xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 4e1a33b1)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpu.h>
31 #include <linux/cpumask.h>
32 #include <linux/spinlock.h>
33 #include <linux/page-flags.h>
34 #include <linux/srcu.h>
35 #include <linux/miscdevice.h>
36 #include <linux/debugfs.h>
37 
38 #include <asm/reg.h>
39 #include <asm/cputable.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <linux/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <asm/hmi.h>
56 #include <asm/pnv-pci.h>
57 #include <asm/mmu.h>
58 #include <asm/opal.h>
59 #include <asm/xics.h>
60 #include <linux/gfp.h>
61 #include <linux/vmalloc.h>
62 #include <linux/highmem.h>
63 #include <linux/hugetlb.h>
64 #include <linux/kvm_irqfd.h>
65 #include <linux/irqbypass.h>
66 #include <linux/module.h>
67 #include <linux/compiler.h>
68 #include <linux/of.h>
69 
70 #include "book3s.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace_hv.h"
74 
75 /* #define EXIT_DEBUG */
76 /* #define EXIT_DEBUG_SIMPLE */
77 /* #define EXIT_DEBUG_INT */
78 
79 /* Used to indicate that a guest page fault needs to be handled */
80 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
81 /* Used to indicate that a guest passthrough interrupt needs to be handled */
82 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
83 
84 /* Used as a "null" value for timebase values */
85 #define TB_NIL	(~(u64)0)
86 
87 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
88 
89 static int dynamic_mt_modes = 6;
90 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
92 static int target_smt_mode;
93 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
95 
96 #ifdef CONFIG_KVM_XICS
97 static struct kernel_param_ops module_param_ops = {
98 	.set = param_set_int,
99 	.get = param_get_int,
100 };
101 
102 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
103 							S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
105 
106 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
107 							S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
109 #endif
110 
111 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
112 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
113 
114 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
115 		int *ip)
116 {
117 	int i = *ip;
118 	struct kvm_vcpu *vcpu;
119 
120 	while (++i < MAX_SMT_THREADS) {
121 		vcpu = READ_ONCE(vc->runnable_threads[i]);
122 		if (vcpu) {
123 			*ip = i;
124 			return vcpu;
125 		}
126 	}
127 	return NULL;
128 }
129 
130 /* Used to traverse the list of runnable threads for a given vcore */
131 #define for_each_runnable_thread(i, vcpu, vc) \
132 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
133 
134 static bool kvmppc_ipi_thread(int cpu)
135 {
136 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
137 
138 	/* On POWER9 we can use msgsnd to IPI any cpu */
139 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
140 		msg |= get_hard_smp_processor_id(cpu);
141 		smp_mb();
142 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
143 		return true;
144 	}
145 
146 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
147 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
148 		preempt_disable();
149 		if (cpu_first_thread_sibling(cpu) ==
150 		    cpu_first_thread_sibling(smp_processor_id())) {
151 			msg |= cpu_thread_in_core(cpu);
152 			smp_mb();
153 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 			preempt_enable();
155 			return true;
156 		}
157 		preempt_enable();
158 	}
159 
160 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
161 	if (cpu >= 0 && cpu < nr_cpu_ids) {
162 		if (paca[cpu].kvm_hstate.xics_phys) {
163 			xics_wake_cpu(cpu);
164 			return true;
165 		}
166 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
167 		return true;
168 	}
169 #endif
170 
171 	return false;
172 }
173 
174 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
175 {
176 	int cpu;
177 	struct swait_queue_head *wqp;
178 
179 	wqp = kvm_arch_vcpu_wq(vcpu);
180 	if (swait_active(wqp)) {
181 		swake_up(wqp);
182 		++vcpu->stat.halt_wakeup;
183 	}
184 
185 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
186 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
187 		return;
188 
189 	/* CPU points to the first thread of the core */
190 	cpu = vcpu->cpu;
191 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
192 		smp_send_reschedule(cpu);
193 }
194 
195 /*
196  * We use the vcpu_load/put functions to measure stolen time.
197  * Stolen time is counted as time when either the vcpu is able to
198  * run as part of a virtual core, but the task running the vcore
199  * is preempted or sleeping, or when the vcpu needs something done
200  * in the kernel by the task running the vcpu, but that task is
201  * preempted or sleeping.  Those two things have to be counted
202  * separately, since one of the vcpu tasks will take on the job
203  * of running the core, and the other vcpu tasks in the vcore will
204  * sleep waiting for it to do that, but that sleep shouldn't count
205  * as stolen time.
206  *
207  * Hence we accumulate stolen time when the vcpu can run as part of
208  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
209  * needs its task to do other things in the kernel (for example,
210  * service a page fault) in busy_stolen.  We don't accumulate
211  * stolen time for a vcore when it is inactive, or for a vcpu
212  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
213  * a misnomer; it means that the vcpu task is not executing in
214  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
215  * the kernel.  We don't have any way of dividing up that time
216  * between time that the vcpu is genuinely stopped, time that
217  * the task is actively working on behalf of the vcpu, and time
218  * that the task is preempted, so we don't count any of it as
219  * stolen.
220  *
221  * Updates to busy_stolen are protected by arch.tbacct_lock;
222  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
223  * lock.  The stolen times are measured in units of timebase ticks.
224  * (Note that the != TB_NIL checks below are purely defensive;
225  * they should never fail.)
226  */
227 
228 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&vc->stoltb_lock, flags);
233 	vc->preempt_tb = mftb();
234 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
235 }
236 
237 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
238 {
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&vc->stoltb_lock, flags);
242 	if (vc->preempt_tb != TB_NIL) {
243 		vc->stolen_tb += mftb() - vc->preempt_tb;
244 		vc->preempt_tb = TB_NIL;
245 	}
246 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
247 }
248 
249 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
250 {
251 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
252 	unsigned long flags;
253 
254 	/*
255 	 * We can test vc->runner without taking the vcore lock,
256 	 * because only this task ever sets vc->runner to this
257 	 * vcpu, and once it is set to this vcpu, only this task
258 	 * ever sets it to NULL.
259 	 */
260 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
261 		kvmppc_core_end_stolen(vc);
262 
263 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
264 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
265 	    vcpu->arch.busy_preempt != TB_NIL) {
266 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
267 		vcpu->arch.busy_preempt = TB_NIL;
268 	}
269 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
270 }
271 
272 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
273 {
274 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
275 	unsigned long flags;
276 
277 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
278 		kvmppc_core_start_stolen(vc);
279 
280 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
281 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
282 		vcpu->arch.busy_preempt = mftb();
283 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
284 }
285 
286 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
287 {
288 	/*
289 	 * Check for illegal transactional state bit combination
290 	 * and if we find it, force the TS field to a safe state.
291 	 */
292 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
293 		msr &= ~MSR_TS_MASK;
294 	vcpu->arch.shregs.msr = msr;
295 	kvmppc_end_cede(vcpu);
296 }
297 
298 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
299 {
300 	vcpu->arch.pvr = pvr;
301 }
302 
303 /* Dummy value used in computing PCR value below */
304 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
305 
306 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
307 {
308 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
309 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
310 
311 	/* We can (emulate) our own architecture version and anything older */
312 	if (cpu_has_feature(CPU_FTR_ARCH_300))
313 		host_pcr_bit = PCR_ARCH_300;
314 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
315 		host_pcr_bit = PCR_ARCH_207;
316 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
317 		host_pcr_bit = PCR_ARCH_206;
318 	else
319 		host_pcr_bit = PCR_ARCH_205;
320 
321 	/* Determine lowest PCR bit needed to run guest in given PVR level */
322 	guest_pcr_bit = host_pcr_bit;
323 	if (arch_compat) {
324 		switch (arch_compat) {
325 		case PVR_ARCH_205:
326 			guest_pcr_bit = PCR_ARCH_205;
327 			break;
328 		case PVR_ARCH_206:
329 		case PVR_ARCH_206p:
330 			guest_pcr_bit = PCR_ARCH_206;
331 			break;
332 		case PVR_ARCH_207:
333 			guest_pcr_bit = PCR_ARCH_207;
334 			break;
335 		case PVR_ARCH_300:
336 			guest_pcr_bit = PCR_ARCH_300;
337 			break;
338 		default:
339 			return -EINVAL;
340 		}
341 	}
342 
343 	/* Check requested PCR bits don't exceed our capabilities */
344 	if (guest_pcr_bit > host_pcr_bit)
345 		return -EINVAL;
346 
347 	spin_lock(&vc->lock);
348 	vc->arch_compat = arch_compat;
349 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
350 	vc->pcr = host_pcr_bit - guest_pcr_bit;
351 	spin_unlock(&vc->lock);
352 
353 	return 0;
354 }
355 
356 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
357 {
358 	int r;
359 
360 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
361 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
362 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
363 	for (r = 0; r < 16; ++r)
364 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
365 		       r, kvmppc_get_gpr(vcpu, r),
366 		       r+16, kvmppc_get_gpr(vcpu, r+16));
367 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
368 	       vcpu->arch.ctr, vcpu->arch.lr);
369 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
370 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
371 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
372 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
373 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
374 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
375 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
376 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
377 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
378 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
379 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
380 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
381 	for (r = 0; r < vcpu->arch.slb_max; ++r)
382 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
383 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
384 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
385 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
386 	       vcpu->arch.last_inst);
387 }
388 
389 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
390 {
391 	struct kvm_vcpu *ret;
392 
393 	mutex_lock(&kvm->lock);
394 	ret = kvm_get_vcpu_by_id(kvm, id);
395 	mutex_unlock(&kvm->lock);
396 	return ret;
397 }
398 
399 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
400 {
401 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
402 	vpa->yield_count = cpu_to_be32(1);
403 }
404 
405 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
406 		   unsigned long addr, unsigned long len)
407 {
408 	/* check address is cacheline aligned */
409 	if (addr & (L1_CACHE_BYTES - 1))
410 		return -EINVAL;
411 	spin_lock(&vcpu->arch.vpa_update_lock);
412 	if (v->next_gpa != addr || v->len != len) {
413 		v->next_gpa = addr;
414 		v->len = addr ? len : 0;
415 		v->update_pending = 1;
416 	}
417 	spin_unlock(&vcpu->arch.vpa_update_lock);
418 	return 0;
419 }
420 
421 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
422 struct reg_vpa {
423 	u32 dummy;
424 	union {
425 		__be16 hword;
426 		__be32 word;
427 	} length;
428 };
429 
430 static int vpa_is_registered(struct kvmppc_vpa *vpap)
431 {
432 	if (vpap->update_pending)
433 		return vpap->next_gpa != 0;
434 	return vpap->pinned_addr != NULL;
435 }
436 
437 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
438 				       unsigned long flags,
439 				       unsigned long vcpuid, unsigned long vpa)
440 {
441 	struct kvm *kvm = vcpu->kvm;
442 	unsigned long len, nb;
443 	void *va;
444 	struct kvm_vcpu *tvcpu;
445 	int err;
446 	int subfunc;
447 	struct kvmppc_vpa *vpap;
448 
449 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
450 	if (!tvcpu)
451 		return H_PARAMETER;
452 
453 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
454 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
455 	    subfunc == H_VPA_REG_SLB) {
456 		/* Registering new area - address must be cache-line aligned */
457 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
458 			return H_PARAMETER;
459 
460 		/* convert logical addr to kernel addr and read length */
461 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
462 		if (va == NULL)
463 			return H_PARAMETER;
464 		if (subfunc == H_VPA_REG_VPA)
465 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
466 		else
467 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
468 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
469 
470 		/* Check length */
471 		if (len > nb || len < sizeof(struct reg_vpa))
472 			return H_PARAMETER;
473 	} else {
474 		vpa = 0;
475 		len = 0;
476 	}
477 
478 	err = H_PARAMETER;
479 	vpap = NULL;
480 	spin_lock(&tvcpu->arch.vpa_update_lock);
481 
482 	switch (subfunc) {
483 	case H_VPA_REG_VPA:		/* register VPA */
484 		if (len < sizeof(struct lppaca))
485 			break;
486 		vpap = &tvcpu->arch.vpa;
487 		err = 0;
488 		break;
489 
490 	case H_VPA_REG_DTL:		/* register DTL */
491 		if (len < sizeof(struct dtl_entry))
492 			break;
493 		len -= len % sizeof(struct dtl_entry);
494 
495 		/* Check that they have previously registered a VPA */
496 		err = H_RESOURCE;
497 		if (!vpa_is_registered(&tvcpu->arch.vpa))
498 			break;
499 
500 		vpap = &tvcpu->arch.dtl;
501 		err = 0;
502 		break;
503 
504 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
505 		/* Check that they have previously registered a VPA */
506 		err = H_RESOURCE;
507 		if (!vpa_is_registered(&tvcpu->arch.vpa))
508 			break;
509 
510 		vpap = &tvcpu->arch.slb_shadow;
511 		err = 0;
512 		break;
513 
514 	case H_VPA_DEREG_VPA:		/* deregister VPA */
515 		/* Check they don't still have a DTL or SLB buf registered */
516 		err = H_RESOURCE;
517 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
518 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
519 			break;
520 
521 		vpap = &tvcpu->arch.vpa;
522 		err = 0;
523 		break;
524 
525 	case H_VPA_DEREG_DTL:		/* deregister DTL */
526 		vpap = &tvcpu->arch.dtl;
527 		err = 0;
528 		break;
529 
530 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
531 		vpap = &tvcpu->arch.slb_shadow;
532 		err = 0;
533 		break;
534 	}
535 
536 	if (vpap) {
537 		vpap->next_gpa = vpa;
538 		vpap->len = len;
539 		vpap->update_pending = 1;
540 	}
541 
542 	spin_unlock(&tvcpu->arch.vpa_update_lock);
543 
544 	return err;
545 }
546 
547 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
548 {
549 	struct kvm *kvm = vcpu->kvm;
550 	void *va;
551 	unsigned long nb;
552 	unsigned long gpa;
553 
554 	/*
555 	 * We need to pin the page pointed to by vpap->next_gpa,
556 	 * but we can't call kvmppc_pin_guest_page under the lock
557 	 * as it does get_user_pages() and down_read().  So we
558 	 * have to drop the lock, pin the page, then get the lock
559 	 * again and check that a new area didn't get registered
560 	 * in the meantime.
561 	 */
562 	for (;;) {
563 		gpa = vpap->next_gpa;
564 		spin_unlock(&vcpu->arch.vpa_update_lock);
565 		va = NULL;
566 		nb = 0;
567 		if (gpa)
568 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
569 		spin_lock(&vcpu->arch.vpa_update_lock);
570 		if (gpa == vpap->next_gpa)
571 			break;
572 		/* sigh... unpin that one and try again */
573 		if (va)
574 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
575 	}
576 
577 	vpap->update_pending = 0;
578 	if (va && nb < vpap->len) {
579 		/*
580 		 * If it's now too short, it must be that userspace
581 		 * has changed the mappings underlying guest memory,
582 		 * so unregister the region.
583 		 */
584 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
585 		va = NULL;
586 	}
587 	if (vpap->pinned_addr)
588 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
589 					vpap->dirty);
590 	vpap->gpa = gpa;
591 	vpap->pinned_addr = va;
592 	vpap->dirty = false;
593 	if (va)
594 		vpap->pinned_end = va + vpap->len;
595 }
596 
597 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
598 {
599 	if (!(vcpu->arch.vpa.update_pending ||
600 	      vcpu->arch.slb_shadow.update_pending ||
601 	      vcpu->arch.dtl.update_pending))
602 		return;
603 
604 	spin_lock(&vcpu->arch.vpa_update_lock);
605 	if (vcpu->arch.vpa.update_pending) {
606 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
607 		if (vcpu->arch.vpa.pinned_addr)
608 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
609 	}
610 	if (vcpu->arch.dtl.update_pending) {
611 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
612 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
613 		vcpu->arch.dtl_index = 0;
614 	}
615 	if (vcpu->arch.slb_shadow.update_pending)
616 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
617 	spin_unlock(&vcpu->arch.vpa_update_lock);
618 }
619 
620 /*
621  * Return the accumulated stolen time for the vcore up until `now'.
622  * The caller should hold the vcore lock.
623  */
624 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
625 {
626 	u64 p;
627 	unsigned long flags;
628 
629 	spin_lock_irqsave(&vc->stoltb_lock, flags);
630 	p = vc->stolen_tb;
631 	if (vc->vcore_state != VCORE_INACTIVE &&
632 	    vc->preempt_tb != TB_NIL)
633 		p += now - vc->preempt_tb;
634 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
635 	return p;
636 }
637 
638 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
639 				    struct kvmppc_vcore *vc)
640 {
641 	struct dtl_entry *dt;
642 	struct lppaca *vpa;
643 	unsigned long stolen;
644 	unsigned long core_stolen;
645 	u64 now;
646 
647 	dt = vcpu->arch.dtl_ptr;
648 	vpa = vcpu->arch.vpa.pinned_addr;
649 	now = mftb();
650 	core_stolen = vcore_stolen_time(vc, now);
651 	stolen = core_stolen - vcpu->arch.stolen_logged;
652 	vcpu->arch.stolen_logged = core_stolen;
653 	spin_lock_irq(&vcpu->arch.tbacct_lock);
654 	stolen += vcpu->arch.busy_stolen;
655 	vcpu->arch.busy_stolen = 0;
656 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
657 	if (!dt || !vpa)
658 		return;
659 	memset(dt, 0, sizeof(struct dtl_entry));
660 	dt->dispatch_reason = 7;
661 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
662 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
663 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
664 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
665 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
666 	++dt;
667 	if (dt == vcpu->arch.dtl.pinned_end)
668 		dt = vcpu->arch.dtl.pinned_addr;
669 	vcpu->arch.dtl_ptr = dt;
670 	/* order writing *dt vs. writing vpa->dtl_idx */
671 	smp_wmb();
672 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
673 	vcpu->arch.dtl.dirty = true;
674 }
675 
676 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
677 {
678 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
679 		return true;
680 	if ((!vcpu->arch.vcore->arch_compat) &&
681 	    cpu_has_feature(CPU_FTR_ARCH_207S))
682 		return true;
683 	return false;
684 }
685 
686 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
687 			     unsigned long resource, unsigned long value1,
688 			     unsigned long value2)
689 {
690 	switch (resource) {
691 	case H_SET_MODE_RESOURCE_SET_CIABR:
692 		if (!kvmppc_power8_compatible(vcpu))
693 			return H_P2;
694 		if (value2)
695 			return H_P4;
696 		if (mflags)
697 			return H_UNSUPPORTED_FLAG_START;
698 		/* Guests can't breakpoint the hypervisor */
699 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
700 			return H_P3;
701 		vcpu->arch.ciabr  = value1;
702 		return H_SUCCESS;
703 	case H_SET_MODE_RESOURCE_SET_DAWR:
704 		if (!kvmppc_power8_compatible(vcpu))
705 			return H_P2;
706 		if (mflags)
707 			return H_UNSUPPORTED_FLAG_START;
708 		if (value2 & DABRX_HYP)
709 			return H_P4;
710 		vcpu->arch.dawr  = value1;
711 		vcpu->arch.dawrx = value2;
712 		return H_SUCCESS;
713 	default:
714 		return H_TOO_HARD;
715 	}
716 }
717 
718 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
719 {
720 	struct kvmppc_vcore *vcore = target->arch.vcore;
721 
722 	/*
723 	 * We expect to have been called by the real mode handler
724 	 * (kvmppc_rm_h_confer()) which would have directly returned
725 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
726 	 * have useful work to do and should not confer) so we don't
727 	 * recheck that here.
728 	 */
729 
730 	spin_lock(&vcore->lock);
731 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
732 	    vcore->vcore_state != VCORE_INACTIVE &&
733 	    vcore->runner)
734 		target = vcore->runner;
735 	spin_unlock(&vcore->lock);
736 
737 	return kvm_vcpu_yield_to(target);
738 }
739 
740 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
741 {
742 	int yield_count = 0;
743 	struct lppaca *lppaca;
744 
745 	spin_lock(&vcpu->arch.vpa_update_lock);
746 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
747 	if (lppaca)
748 		yield_count = be32_to_cpu(lppaca->yield_count);
749 	spin_unlock(&vcpu->arch.vpa_update_lock);
750 	return yield_count;
751 }
752 
753 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
754 {
755 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
756 	unsigned long target, ret = H_SUCCESS;
757 	int yield_count;
758 	struct kvm_vcpu *tvcpu;
759 	int idx, rc;
760 
761 	if (req <= MAX_HCALL_OPCODE &&
762 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
763 		return RESUME_HOST;
764 
765 	switch (req) {
766 	case H_CEDE:
767 		break;
768 	case H_PROD:
769 		target = kvmppc_get_gpr(vcpu, 4);
770 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
771 		if (!tvcpu) {
772 			ret = H_PARAMETER;
773 			break;
774 		}
775 		tvcpu->arch.prodded = 1;
776 		smp_mb();
777 		if (tvcpu->arch.ceded)
778 			kvmppc_fast_vcpu_kick_hv(tvcpu);
779 		break;
780 	case H_CONFER:
781 		target = kvmppc_get_gpr(vcpu, 4);
782 		if (target == -1)
783 			break;
784 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
785 		if (!tvcpu) {
786 			ret = H_PARAMETER;
787 			break;
788 		}
789 		yield_count = kvmppc_get_gpr(vcpu, 5);
790 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
791 			break;
792 		kvm_arch_vcpu_yield_to(tvcpu);
793 		break;
794 	case H_REGISTER_VPA:
795 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
796 					kvmppc_get_gpr(vcpu, 5),
797 					kvmppc_get_gpr(vcpu, 6));
798 		break;
799 	case H_RTAS:
800 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
801 			return RESUME_HOST;
802 
803 		idx = srcu_read_lock(&vcpu->kvm->srcu);
804 		rc = kvmppc_rtas_hcall(vcpu);
805 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
806 
807 		if (rc == -ENOENT)
808 			return RESUME_HOST;
809 		else if (rc == 0)
810 			break;
811 
812 		/* Send the error out to userspace via KVM_RUN */
813 		return rc;
814 	case H_LOGICAL_CI_LOAD:
815 		ret = kvmppc_h_logical_ci_load(vcpu);
816 		if (ret == H_TOO_HARD)
817 			return RESUME_HOST;
818 		break;
819 	case H_LOGICAL_CI_STORE:
820 		ret = kvmppc_h_logical_ci_store(vcpu);
821 		if (ret == H_TOO_HARD)
822 			return RESUME_HOST;
823 		break;
824 	case H_SET_MODE:
825 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
826 					kvmppc_get_gpr(vcpu, 5),
827 					kvmppc_get_gpr(vcpu, 6),
828 					kvmppc_get_gpr(vcpu, 7));
829 		if (ret == H_TOO_HARD)
830 			return RESUME_HOST;
831 		break;
832 	case H_XIRR:
833 	case H_CPPR:
834 	case H_EOI:
835 	case H_IPI:
836 	case H_IPOLL:
837 	case H_XIRR_X:
838 		if (kvmppc_xics_enabled(vcpu)) {
839 			ret = kvmppc_xics_hcall(vcpu, req);
840 			break;
841 		}
842 		return RESUME_HOST;
843 	case H_PUT_TCE:
844 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
845 						kvmppc_get_gpr(vcpu, 5),
846 						kvmppc_get_gpr(vcpu, 6));
847 		if (ret == H_TOO_HARD)
848 			return RESUME_HOST;
849 		break;
850 	case H_PUT_TCE_INDIRECT:
851 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
852 						kvmppc_get_gpr(vcpu, 5),
853 						kvmppc_get_gpr(vcpu, 6),
854 						kvmppc_get_gpr(vcpu, 7));
855 		if (ret == H_TOO_HARD)
856 			return RESUME_HOST;
857 		break;
858 	case H_STUFF_TCE:
859 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
860 						kvmppc_get_gpr(vcpu, 5),
861 						kvmppc_get_gpr(vcpu, 6),
862 						kvmppc_get_gpr(vcpu, 7));
863 		if (ret == H_TOO_HARD)
864 			return RESUME_HOST;
865 		break;
866 	default:
867 		return RESUME_HOST;
868 	}
869 	kvmppc_set_gpr(vcpu, 3, ret);
870 	vcpu->arch.hcall_needed = 0;
871 	return RESUME_GUEST;
872 }
873 
874 static int kvmppc_hcall_impl_hv(unsigned long cmd)
875 {
876 	switch (cmd) {
877 	case H_CEDE:
878 	case H_PROD:
879 	case H_CONFER:
880 	case H_REGISTER_VPA:
881 	case H_SET_MODE:
882 	case H_LOGICAL_CI_LOAD:
883 	case H_LOGICAL_CI_STORE:
884 #ifdef CONFIG_KVM_XICS
885 	case H_XIRR:
886 	case H_CPPR:
887 	case H_EOI:
888 	case H_IPI:
889 	case H_IPOLL:
890 	case H_XIRR_X:
891 #endif
892 		return 1;
893 	}
894 
895 	/* See if it's in the real-mode table */
896 	return kvmppc_hcall_impl_hv_realmode(cmd);
897 }
898 
899 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
900 					struct kvm_vcpu *vcpu)
901 {
902 	u32 last_inst;
903 
904 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
905 					EMULATE_DONE) {
906 		/*
907 		 * Fetch failed, so return to guest and
908 		 * try executing it again.
909 		 */
910 		return RESUME_GUEST;
911 	}
912 
913 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
914 		run->exit_reason = KVM_EXIT_DEBUG;
915 		run->debug.arch.address = kvmppc_get_pc(vcpu);
916 		return RESUME_HOST;
917 	} else {
918 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
919 		return RESUME_GUEST;
920 	}
921 }
922 
923 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
924 				 struct task_struct *tsk)
925 {
926 	int r = RESUME_HOST;
927 
928 	vcpu->stat.sum_exits++;
929 
930 	/*
931 	 * This can happen if an interrupt occurs in the last stages
932 	 * of guest entry or the first stages of guest exit (i.e. after
933 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
934 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
935 	 * That can happen due to a bug, or due to a machine check
936 	 * occurring at just the wrong time.
937 	 */
938 	if (vcpu->arch.shregs.msr & MSR_HV) {
939 		printk(KERN_EMERG "KVM trap in HV mode!\n");
940 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
941 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
942 			vcpu->arch.shregs.msr);
943 		kvmppc_dump_regs(vcpu);
944 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
945 		run->hw.hardware_exit_reason = vcpu->arch.trap;
946 		return RESUME_HOST;
947 	}
948 	run->exit_reason = KVM_EXIT_UNKNOWN;
949 	run->ready_for_interrupt_injection = 1;
950 	switch (vcpu->arch.trap) {
951 	/* We're good on these - the host merely wanted to get our attention */
952 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
953 		vcpu->stat.dec_exits++;
954 		r = RESUME_GUEST;
955 		break;
956 	case BOOK3S_INTERRUPT_EXTERNAL:
957 	case BOOK3S_INTERRUPT_H_DOORBELL:
958 	case BOOK3S_INTERRUPT_H_VIRT:
959 		vcpu->stat.ext_intr_exits++;
960 		r = RESUME_GUEST;
961 		break;
962 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
963 	case BOOK3S_INTERRUPT_HMI:
964 	case BOOK3S_INTERRUPT_PERFMON:
965 		r = RESUME_GUEST;
966 		break;
967 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
968 		/*
969 		 * Deliver a machine check interrupt to the guest.
970 		 * We have to do this, even if the host has handled the
971 		 * machine check, because machine checks use SRR0/1 and
972 		 * the interrupt might have trashed guest state in them.
973 		 */
974 		kvmppc_book3s_queue_irqprio(vcpu,
975 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
976 		r = RESUME_GUEST;
977 		break;
978 	case BOOK3S_INTERRUPT_PROGRAM:
979 	{
980 		ulong flags;
981 		/*
982 		 * Normally program interrupts are delivered directly
983 		 * to the guest by the hardware, but we can get here
984 		 * as a result of a hypervisor emulation interrupt
985 		 * (e40) getting turned into a 700 by BML RTAS.
986 		 */
987 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
988 		kvmppc_core_queue_program(vcpu, flags);
989 		r = RESUME_GUEST;
990 		break;
991 	}
992 	case BOOK3S_INTERRUPT_SYSCALL:
993 	{
994 		/* hcall - punt to userspace */
995 		int i;
996 
997 		/* hypercall with MSR_PR has already been handled in rmode,
998 		 * and never reaches here.
999 		 */
1000 
1001 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1002 		for (i = 0; i < 9; ++i)
1003 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1004 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1005 		vcpu->arch.hcall_needed = 1;
1006 		r = RESUME_HOST;
1007 		break;
1008 	}
1009 	/*
1010 	 * We get these next two if the guest accesses a page which it thinks
1011 	 * it has mapped but which is not actually present, either because
1012 	 * it is for an emulated I/O device or because the corresonding
1013 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1014 	 * have been handled already.
1015 	 */
1016 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1017 		r = RESUME_PAGE_FAULT;
1018 		break;
1019 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1020 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1021 		vcpu->arch.fault_dsisr = 0;
1022 		r = RESUME_PAGE_FAULT;
1023 		break;
1024 	/*
1025 	 * This occurs if the guest executes an illegal instruction.
1026 	 * If the guest debug is disabled, generate a program interrupt
1027 	 * to the guest. If guest debug is enabled, we need to check
1028 	 * whether the instruction is a software breakpoint instruction.
1029 	 * Accordingly return to Guest or Host.
1030 	 */
1031 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1032 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1033 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1034 				swab32(vcpu->arch.emul_inst) :
1035 				vcpu->arch.emul_inst;
1036 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1037 			r = kvmppc_emulate_debug_inst(run, vcpu);
1038 		} else {
1039 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1040 			r = RESUME_GUEST;
1041 		}
1042 		break;
1043 	/*
1044 	 * This occurs if the guest (kernel or userspace), does something that
1045 	 * is prohibited by HFSCR.  We just generate a program interrupt to
1046 	 * the guest.
1047 	 */
1048 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1049 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1050 		r = RESUME_GUEST;
1051 		break;
1052 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1053 		r = RESUME_PASSTHROUGH;
1054 		break;
1055 	default:
1056 		kvmppc_dump_regs(vcpu);
1057 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1058 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1059 			vcpu->arch.shregs.msr);
1060 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1061 		r = RESUME_HOST;
1062 		break;
1063 	}
1064 
1065 	return r;
1066 }
1067 
1068 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1069 					    struct kvm_sregs *sregs)
1070 {
1071 	int i;
1072 
1073 	memset(sregs, 0, sizeof(struct kvm_sregs));
1074 	sregs->pvr = vcpu->arch.pvr;
1075 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1076 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1077 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1084 					    struct kvm_sregs *sregs)
1085 {
1086 	int i, j;
1087 
1088 	/* Only accept the same PVR as the host's, since we can't spoof it */
1089 	if (sregs->pvr != vcpu->arch.pvr)
1090 		return -EINVAL;
1091 
1092 	j = 0;
1093 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1094 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1095 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1096 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1097 			++j;
1098 		}
1099 	}
1100 	vcpu->arch.slb_max = j;
1101 
1102 	return 0;
1103 }
1104 
1105 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1106 		bool preserve_top32)
1107 {
1108 	struct kvm *kvm = vcpu->kvm;
1109 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1110 	u64 mask;
1111 
1112 	mutex_lock(&kvm->lock);
1113 	spin_lock(&vc->lock);
1114 	/*
1115 	 * If ILE (interrupt little-endian) has changed, update the
1116 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1117 	 */
1118 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1119 		struct kvm_vcpu *vcpu;
1120 		int i;
1121 
1122 		kvm_for_each_vcpu(i, vcpu, kvm) {
1123 			if (vcpu->arch.vcore != vc)
1124 				continue;
1125 			if (new_lpcr & LPCR_ILE)
1126 				vcpu->arch.intr_msr |= MSR_LE;
1127 			else
1128 				vcpu->arch.intr_msr &= ~MSR_LE;
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * Userspace can only modify DPFD (default prefetch depth),
1134 	 * ILE (interrupt little-endian) and TC (translation control).
1135 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1136 	 */
1137 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1138 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1139 		mask |= LPCR_AIL;
1140 
1141 	/* Broken 32-bit version of LPCR must not clear top bits */
1142 	if (preserve_top32)
1143 		mask &= 0xFFFFFFFF;
1144 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1145 	spin_unlock(&vc->lock);
1146 	mutex_unlock(&kvm->lock);
1147 }
1148 
1149 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1150 				 union kvmppc_one_reg *val)
1151 {
1152 	int r = 0;
1153 	long int i;
1154 
1155 	switch (id) {
1156 	case KVM_REG_PPC_DEBUG_INST:
1157 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1158 		break;
1159 	case KVM_REG_PPC_HIOR:
1160 		*val = get_reg_val(id, 0);
1161 		break;
1162 	case KVM_REG_PPC_DABR:
1163 		*val = get_reg_val(id, vcpu->arch.dabr);
1164 		break;
1165 	case KVM_REG_PPC_DABRX:
1166 		*val = get_reg_val(id, vcpu->arch.dabrx);
1167 		break;
1168 	case KVM_REG_PPC_DSCR:
1169 		*val = get_reg_val(id, vcpu->arch.dscr);
1170 		break;
1171 	case KVM_REG_PPC_PURR:
1172 		*val = get_reg_val(id, vcpu->arch.purr);
1173 		break;
1174 	case KVM_REG_PPC_SPURR:
1175 		*val = get_reg_val(id, vcpu->arch.spurr);
1176 		break;
1177 	case KVM_REG_PPC_AMR:
1178 		*val = get_reg_val(id, vcpu->arch.amr);
1179 		break;
1180 	case KVM_REG_PPC_UAMOR:
1181 		*val = get_reg_val(id, vcpu->arch.uamor);
1182 		break;
1183 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1184 		i = id - KVM_REG_PPC_MMCR0;
1185 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1186 		break;
1187 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1188 		i = id - KVM_REG_PPC_PMC1;
1189 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1190 		break;
1191 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1192 		i = id - KVM_REG_PPC_SPMC1;
1193 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1194 		break;
1195 	case KVM_REG_PPC_SIAR:
1196 		*val = get_reg_val(id, vcpu->arch.siar);
1197 		break;
1198 	case KVM_REG_PPC_SDAR:
1199 		*val = get_reg_val(id, vcpu->arch.sdar);
1200 		break;
1201 	case KVM_REG_PPC_SIER:
1202 		*val = get_reg_val(id, vcpu->arch.sier);
1203 		break;
1204 	case KVM_REG_PPC_IAMR:
1205 		*val = get_reg_val(id, vcpu->arch.iamr);
1206 		break;
1207 	case KVM_REG_PPC_PSPB:
1208 		*val = get_reg_val(id, vcpu->arch.pspb);
1209 		break;
1210 	case KVM_REG_PPC_DPDES:
1211 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1212 		break;
1213 	case KVM_REG_PPC_VTB:
1214 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1215 		break;
1216 	case KVM_REG_PPC_DAWR:
1217 		*val = get_reg_val(id, vcpu->arch.dawr);
1218 		break;
1219 	case KVM_REG_PPC_DAWRX:
1220 		*val = get_reg_val(id, vcpu->arch.dawrx);
1221 		break;
1222 	case KVM_REG_PPC_CIABR:
1223 		*val = get_reg_val(id, vcpu->arch.ciabr);
1224 		break;
1225 	case KVM_REG_PPC_CSIGR:
1226 		*val = get_reg_val(id, vcpu->arch.csigr);
1227 		break;
1228 	case KVM_REG_PPC_TACR:
1229 		*val = get_reg_val(id, vcpu->arch.tacr);
1230 		break;
1231 	case KVM_REG_PPC_TCSCR:
1232 		*val = get_reg_val(id, vcpu->arch.tcscr);
1233 		break;
1234 	case KVM_REG_PPC_PID:
1235 		*val = get_reg_val(id, vcpu->arch.pid);
1236 		break;
1237 	case KVM_REG_PPC_ACOP:
1238 		*val = get_reg_val(id, vcpu->arch.acop);
1239 		break;
1240 	case KVM_REG_PPC_WORT:
1241 		*val = get_reg_val(id, vcpu->arch.wort);
1242 		break;
1243 	case KVM_REG_PPC_TIDR:
1244 		*val = get_reg_val(id, vcpu->arch.tid);
1245 		break;
1246 	case KVM_REG_PPC_PSSCR:
1247 		*val = get_reg_val(id, vcpu->arch.psscr);
1248 		break;
1249 	case KVM_REG_PPC_VPA_ADDR:
1250 		spin_lock(&vcpu->arch.vpa_update_lock);
1251 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1252 		spin_unlock(&vcpu->arch.vpa_update_lock);
1253 		break;
1254 	case KVM_REG_PPC_VPA_SLB:
1255 		spin_lock(&vcpu->arch.vpa_update_lock);
1256 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1257 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1258 		spin_unlock(&vcpu->arch.vpa_update_lock);
1259 		break;
1260 	case KVM_REG_PPC_VPA_DTL:
1261 		spin_lock(&vcpu->arch.vpa_update_lock);
1262 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1263 		val->vpaval.length = vcpu->arch.dtl.len;
1264 		spin_unlock(&vcpu->arch.vpa_update_lock);
1265 		break;
1266 	case KVM_REG_PPC_TB_OFFSET:
1267 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1268 		break;
1269 	case KVM_REG_PPC_LPCR:
1270 	case KVM_REG_PPC_LPCR_64:
1271 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1272 		break;
1273 	case KVM_REG_PPC_PPR:
1274 		*val = get_reg_val(id, vcpu->arch.ppr);
1275 		break;
1276 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1277 	case KVM_REG_PPC_TFHAR:
1278 		*val = get_reg_val(id, vcpu->arch.tfhar);
1279 		break;
1280 	case KVM_REG_PPC_TFIAR:
1281 		*val = get_reg_val(id, vcpu->arch.tfiar);
1282 		break;
1283 	case KVM_REG_PPC_TEXASR:
1284 		*val = get_reg_val(id, vcpu->arch.texasr);
1285 		break;
1286 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1287 		i = id - KVM_REG_PPC_TM_GPR0;
1288 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1289 		break;
1290 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1291 	{
1292 		int j;
1293 		i = id - KVM_REG_PPC_TM_VSR0;
1294 		if (i < 32)
1295 			for (j = 0; j < TS_FPRWIDTH; j++)
1296 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1297 		else {
1298 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1299 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1300 			else
1301 				r = -ENXIO;
1302 		}
1303 		break;
1304 	}
1305 	case KVM_REG_PPC_TM_CR:
1306 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1307 		break;
1308 	case KVM_REG_PPC_TM_XER:
1309 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1310 		break;
1311 	case KVM_REG_PPC_TM_LR:
1312 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1313 		break;
1314 	case KVM_REG_PPC_TM_CTR:
1315 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1316 		break;
1317 	case KVM_REG_PPC_TM_FPSCR:
1318 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1319 		break;
1320 	case KVM_REG_PPC_TM_AMR:
1321 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1322 		break;
1323 	case KVM_REG_PPC_TM_PPR:
1324 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1325 		break;
1326 	case KVM_REG_PPC_TM_VRSAVE:
1327 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1328 		break;
1329 	case KVM_REG_PPC_TM_VSCR:
1330 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1331 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1332 		else
1333 			r = -ENXIO;
1334 		break;
1335 	case KVM_REG_PPC_TM_DSCR:
1336 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1337 		break;
1338 	case KVM_REG_PPC_TM_TAR:
1339 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1340 		break;
1341 #endif
1342 	case KVM_REG_PPC_ARCH_COMPAT:
1343 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1344 		break;
1345 	default:
1346 		r = -EINVAL;
1347 		break;
1348 	}
1349 
1350 	return r;
1351 }
1352 
1353 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1354 				 union kvmppc_one_reg *val)
1355 {
1356 	int r = 0;
1357 	long int i;
1358 	unsigned long addr, len;
1359 
1360 	switch (id) {
1361 	case KVM_REG_PPC_HIOR:
1362 		/* Only allow this to be set to zero */
1363 		if (set_reg_val(id, *val))
1364 			r = -EINVAL;
1365 		break;
1366 	case KVM_REG_PPC_DABR:
1367 		vcpu->arch.dabr = set_reg_val(id, *val);
1368 		break;
1369 	case KVM_REG_PPC_DABRX:
1370 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1371 		break;
1372 	case KVM_REG_PPC_DSCR:
1373 		vcpu->arch.dscr = set_reg_val(id, *val);
1374 		break;
1375 	case KVM_REG_PPC_PURR:
1376 		vcpu->arch.purr = set_reg_val(id, *val);
1377 		break;
1378 	case KVM_REG_PPC_SPURR:
1379 		vcpu->arch.spurr = set_reg_val(id, *val);
1380 		break;
1381 	case KVM_REG_PPC_AMR:
1382 		vcpu->arch.amr = set_reg_val(id, *val);
1383 		break;
1384 	case KVM_REG_PPC_UAMOR:
1385 		vcpu->arch.uamor = set_reg_val(id, *val);
1386 		break;
1387 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1388 		i = id - KVM_REG_PPC_MMCR0;
1389 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1390 		break;
1391 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1392 		i = id - KVM_REG_PPC_PMC1;
1393 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1394 		break;
1395 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1396 		i = id - KVM_REG_PPC_SPMC1;
1397 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1398 		break;
1399 	case KVM_REG_PPC_SIAR:
1400 		vcpu->arch.siar = set_reg_val(id, *val);
1401 		break;
1402 	case KVM_REG_PPC_SDAR:
1403 		vcpu->arch.sdar = set_reg_val(id, *val);
1404 		break;
1405 	case KVM_REG_PPC_SIER:
1406 		vcpu->arch.sier = set_reg_val(id, *val);
1407 		break;
1408 	case KVM_REG_PPC_IAMR:
1409 		vcpu->arch.iamr = set_reg_val(id, *val);
1410 		break;
1411 	case KVM_REG_PPC_PSPB:
1412 		vcpu->arch.pspb = set_reg_val(id, *val);
1413 		break;
1414 	case KVM_REG_PPC_DPDES:
1415 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1416 		break;
1417 	case KVM_REG_PPC_VTB:
1418 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1419 		break;
1420 	case KVM_REG_PPC_DAWR:
1421 		vcpu->arch.dawr = set_reg_val(id, *val);
1422 		break;
1423 	case KVM_REG_PPC_DAWRX:
1424 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1425 		break;
1426 	case KVM_REG_PPC_CIABR:
1427 		vcpu->arch.ciabr = set_reg_val(id, *val);
1428 		/* Don't allow setting breakpoints in hypervisor code */
1429 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1430 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1431 		break;
1432 	case KVM_REG_PPC_CSIGR:
1433 		vcpu->arch.csigr = set_reg_val(id, *val);
1434 		break;
1435 	case KVM_REG_PPC_TACR:
1436 		vcpu->arch.tacr = set_reg_val(id, *val);
1437 		break;
1438 	case KVM_REG_PPC_TCSCR:
1439 		vcpu->arch.tcscr = set_reg_val(id, *val);
1440 		break;
1441 	case KVM_REG_PPC_PID:
1442 		vcpu->arch.pid = set_reg_val(id, *val);
1443 		break;
1444 	case KVM_REG_PPC_ACOP:
1445 		vcpu->arch.acop = set_reg_val(id, *val);
1446 		break;
1447 	case KVM_REG_PPC_WORT:
1448 		vcpu->arch.wort = set_reg_val(id, *val);
1449 		break;
1450 	case KVM_REG_PPC_TIDR:
1451 		vcpu->arch.tid = set_reg_val(id, *val);
1452 		break;
1453 	case KVM_REG_PPC_PSSCR:
1454 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1455 		break;
1456 	case KVM_REG_PPC_VPA_ADDR:
1457 		addr = set_reg_val(id, *val);
1458 		r = -EINVAL;
1459 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1460 			      vcpu->arch.dtl.next_gpa))
1461 			break;
1462 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1463 		break;
1464 	case KVM_REG_PPC_VPA_SLB:
1465 		addr = val->vpaval.addr;
1466 		len = val->vpaval.length;
1467 		r = -EINVAL;
1468 		if (addr && !vcpu->arch.vpa.next_gpa)
1469 			break;
1470 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1471 		break;
1472 	case KVM_REG_PPC_VPA_DTL:
1473 		addr = val->vpaval.addr;
1474 		len = val->vpaval.length;
1475 		r = -EINVAL;
1476 		if (addr && (len < sizeof(struct dtl_entry) ||
1477 			     !vcpu->arch.vpa.next_gpa))
1478 			break;
1479 		len -= len % sizeof(struct dtl_entry);
1480 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1481 		break;
1482 	case KVM_REG_PPC_TB_OFFSET:
1483 		/* round up to multiple of 2^24 */
1484 		vcpu->arch.vcore->tb_offset =
1485 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1486 		break;
1487 	case KVM_REG_PPC_LPCR:
1488 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1489 		break;
1490 	case KVM_REG_PPC_LPCR_64:
1491 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1492 		break;
1493 	case KVM_REG_PPC_PPR:
1494 		vcpu->arch.ppr = set_reg_val(id, *val);
1495 		break;
1496 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1497 	case KVM_REG_PPC_TFHAR:
1498 		vcpu->arch.tfhar = set_reg_val(id, *val);
1499 		break;
1500 	case KVM_REG_PPC_TFIAR:
1501 		vcpu->arch.tfiar = set_reg_val(id, *val);
1502 		break;
1503 	case KVM_REG_PPC_TEXASR:
1504 		vcpu->arch.texasr = set_reg_val(id, *val);
1505 		break;
1506 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1507 		i = id - KVM_REG_PPC_TM_GPR0;
1508 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1509 		break;
1510 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1511 	{
1512 		int j;
1513 		i = id - KVM_REG_PPC_TM_VSR0;
1514 		if (i < 32)
1515 			for (j = 0; j < TS_FPRWIDTH; j++)
1516 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1517 		else
1518 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1519 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1520 			else
1521 				r = -ENXIO;
1522 		break;
1523 	}
1524 	case KVM_REG_PPC_TM_CR:
1525 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1526 		break;
1527 	case KVM_REG_PPC_TM_XER:
1528 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1529 		break;
1530 	case KVM_REG_PPC_TM_LR:
1531 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1532 		break;
1533 	case KVM_REG_PPC_TM_CTR:
1534 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1535 		break;
1536 	case KVM_REG_PPC_TM_FPSCR:
1537 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1538 		break;
1539 	case KVM_REG_PPC_TM_AMR:
1540 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1541 		break;
1542 	case KVM_REG_PPC_TM_PPR:
1543 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1544 		break;
1545 	case KVM_REG_PPC_TM_VRSAVE:
1546 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1547 		break;
1548 	case KVM_REG_PPC_TM_VSCR:
1549 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1550 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1551 		else
1552 			r = - ENXIO;
1553 		break;
1554 	case KVM_REG_PPC_TM_DSCR:
1555 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1556 		break;
1557 	case KVM_REG_PPC_TM_TAR:
1558 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1559 		break;
1560 #endif
1561 	case KVM_REG_PPC_ARCH_COMPAT:
1562 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1563 		break;
1564 	default:
1565 		r = -EINVAL;
1566 		break;
1567 	}
1568 
1569 	return r;
1570 }
1571 
1572 /*
1573  * On POWER9, threads are independent and can be in different partitions.
1574  * Therefore we consider each thread to be a subcore.
1575  * There is a restriction that all threads have to be in the same
1576  * MMU mode (radix or HPT), unfortunately, but since we only support
1577  * HPT guests on a HPT host so far, that isn't an impediment yet.
1578  */
1579 static int threads_per_vcore(void)
1580 {
1581 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1582 		return 1;
1583 	return threads_per_subcore;
1584 }
1585 
1586 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1587 {
1588 	struct kvmppc_vcore *vcore;
1589 
1590 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1591 
1592 	if (vcore == NULL)
1593 		return NULL;
1594 
1595 	spin_lock_init(&vcore->lock);
1596 	spin_lock_init(&vcore->stoltb_lock);
1597 	init_swait_queue_head(&vcore->wq);
1598 	vcore->preempt_tb = TB_NIL;
1599 	vcore->lpcr = kvm->arch.lpcr;
1600 	vcore->first_vcpuid = core * threads_per_vcore();
1601 	vcore->kvm = kvm;
1602 	INIT_LIST_HEAD(&vcore->preempt_list);
1603 
1604 	return vcore;
1605 }
1606 
1607 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1608 static struct debugfs_timings_element {
1609 	const char *name;
1610 	size_t offset;
1611 } timings[] = {
1612 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1613 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1614 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1615 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1616 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1617 };
1618 
1619 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1620 
1621 struct debugfs_timings_state {
1622 	struct kvm_vcpu	*vcpu;
1623 	unsigned int	buflen;
1624 	char		buf[N_TIMINGS * 100];
1625 };
1626 
1627 static int debugfs_timings_open(struct inode *inode, struct file *file)
1628 {
1629 	struct kvm_vcpu *vcpu = inode->i_private;
1630 	struct debugfs_timings_state *p;
1631 
1632 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1633 	if (!p)
1634 		return -ENOMEM;
1635 
1636 	kvm_get_kvm(vcpu->kvm);
1637 	p->vcpu = vcpu;
1638 	file->private_data = p;
1639 
1640 	return nonseekable_open(inode, file);
1641 }
1642 
1643 static int debugfs_timings_release(struct inode *inode, struct file *file)
1644 {
1645 	struct debugfs_timings_state *p = file->private_data;
1646 
1647 	kvm_put_kvm(p->vcpu->kvm);
1648 	kfree(p);
1649 	return 0;
1650 }
1651 
1652 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1653 				    size_t len, loff_t *ppos)
1654 {
1655 	struct debugfs_timings_state *p = file->private_data;
1656 	struct kvm_vcpu *vcpu = p->vcpu;
1657 	char *s, *buf_end;
1658 	struct kvmhv_tb_accumulator tb;
1659 	u64 count;
1660 	loff_t pos;
1661 	ssize_t n;
1662 	int i, loops;
1663 	bool ok;
1664 
1665 	if (!p->buflen) {
1666 		s = p->buf;
1667 		buf_end = s + sizeof(p->buf);
1668 		for (i = 0; i < N_TIMINGS; ++i) {
1669 			struct kvmhv_tb_accumulator *acc;
1670 
1671 			acc = (struct kvmhv_tb_accumulator *)
1672 				((unsigned long)vcpu + timings[i].offset);
1673 			ok = false;
1674 			for (loops = 0; loops < 1000; ++loops) {
1675 				count = acc->seqcount;
1676 				if (!(count & 1)) {
1677 					smp_rmb();
1678 					tb = *acc;
1679 					smp_rmb();
1680 					if (count == acc->seqcount) {
1681 						ok = true;
1682 						break;
1683 					}
1684 				}
1685 				udelay(1);
1686 			}
1687 			if (!ok)
1688 				snprintf(s, buf_end - s, "%s: stuck\n",
1689 					timings[i].name);
1690 			else
1691 				snprintf(s, buf_end - s,
1692 					"%s: %llu %llu %llu %llu\n",
1693 					timings[i].name, count / 2,
1694 					tb_to_ns(tb.tb_total),
1695 					tb_to_ns(tb.tb_min),
1696 					tb_to_ns(tb.tb_max));
1697 			s += strlen(s);
1698 		}
1699 		p->buflen = s - p->buf;
1700 	}
1701 
1702 	pos = *ppos;
1703 	if (pos >= p->buflen)
1704 		return 0;
1705 	if (len > p->buflen - pos)
1706 		len = p->buflen - pos;
1707 	n = copy_to_user(buf, p->buf + pos, len);
1708 	if (n) {
1709 		if (n == len)
1710 			return -EFAULT;
1711 		len -= n;
1712 	}
1713 	*ppos = pos + len;
1714 	return len;
1715 }
1716 
1717 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1718 				     size_t len, loff_t *ppos)
1719 {
1720 	return -EACCES;
1721 }
1722 
1723 static const struct file_operations debugfs_timings_ops = {
1724 	.owner	 = THIS_MODULE,
1725 	.open	 = debugfs_timings_open,
1726 	.release = debugfs_timings_release,
1727 	.read	 = debugfs_timings_read,
1728 	.write	 = debugfs_timings_write,
1729 	.llseek	 = generic_file_llseek,
1730 };
1731 
1732 /* Create a debugfs directory for the vcpu */
1733 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1734 {
1735 	char buf[16];
1736 	struct kvm *kvm = vcpu->kvm;
1737 
1738 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1739 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1740 		return;
1741 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1742 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1743 		return;
1744 	vcpu->arch.debugfs_timings =
1745 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1746 				    vcpu, &debugfs_timings_ops);
1747 }
1748 
1749 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1750 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1751 {
1752 }
1753 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1754 
1755 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1756 						   unsigned int id)
1757 {
1758 	struct kvm_vcpu *vcpu;
1759 	int err = -EINVAL;
1760 	int core;
1761 	struct kvmppc_vcore *vcore;
1762 
1763 	core = id / threads_per_vcore();
1764 	if (core >= KVM_MAX_VCORES)
1765 		goto out;
1766 
1767 	err = -ENOMEM;
1768 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1769 	if (!vcpu)
1770 		goto out;
1771 
1772 	err = kvm_vcpu_init(vcpu, kvm, id);
1773 	if (err)
1774 		goto free_vcpu;
1775 
1776 	vcpu->arch.shared = &vcpu->arch.shregs;
1777 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1778 	/*
1779 	 * The shared struct is never shared on HV,
1780 	 * so we can always use host endianness
1781 	 */
1782 #ifdef __BIG_ENDIAN__
1783 	vcpu->arch.shared_big_endian = true;
1784 #else
1785 	vcpu->arch.shared_big_endian = false;
1786 #endif
1787 #endif
1788 	vcpu->arch.mmcr[0] = MMCR0_FC;
1789 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1790 	/* default to host PVR, since we can't spoof it */
1791 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1792 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1793 	spin_lock_init(&vcpu->arch.tbacct_lock);
1794 	vcpu->arch.busy_preempt = TB_NIL;
1795 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1796 
1797 	kvmppc_mmu_book3s_hv_init(vcpu);
1798 
1799 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1800 
1801 	init_waitqueue_head(&vcpu->arch.cpu_run);
1802 
1803 	mutex_lock(&kvm->lock);
1804 	vcore = kvm->arch.vcores[core];
1805 	if (!vcore) {
1806 		vcore = kvmppc_vcore_create(kvm, core);
1807 		kvm->arch.vcores[core] = vcore;
1808 		kvm->arch.online_vcores++;
1809 	}
1810 	mutex_unlock(&kvm->lock);
1811 
1812 	if (!vcore)
1813 		goto free_vcpu;
1814 
1815 	spin_lock(&vcore->lock);
1816 	++vcore->num_threads;
1817 	spin_unlock(&vcore->lock);
1818 	vcpu->arch.vcore = vcore;
1819 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1820 	vcpu->arch.thread_cpu = -1;
1821 	vcpu->arch.prev_cpu = -1;
1822 
1823 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1824 	kvmppc_sanity_check(vcpu);
1825 
1826 	debugfs_vcpu_init(vcpu, id);
1827 
1828 	return vcpu;
1829 
1830 free_vcpu:
1831 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1832 out:
1833 	return ERR_PTR(err);
1834 }
1835 
1836 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1837 {
1838 	if (vpa->pinned_addr)
1839 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1840 					vpa->dirty);
1841 }
1842 
1843 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1844 {
1845 	spin_lock(&vcpu->arch.vpa_update_lock);
1846 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1847 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1848 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1849 	spin_unlock(&vcpu->arch.vpa_update_lock);
1850 	kvm_vcpu_uninit(vcpu);
1851 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1852 }
1853 
1854 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1855 {
1856 	/* Indicate we want to get back into the guest */
1857 	return 1;
1858 }
1859 
1860 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1861 {
1862 	unsigned long dec_nsec, now;
1863 
1864 	now = get_tb();
1865 	if (now > vcpu->arch.dec_expires) {
1866 		/* decrementer has already gone negative */
1867 		kvmppc_core_queue_dec(vcpu);
1868 		kvmppc_core_prepare_to_enter(vcpu);
1869 		return;
1870 	}
1871 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1872 		   / tb_ticks_per_sec;
1873 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
1874 	vcpu->arch.timer_running = 1;
1875 }
1876 
1877 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1878 {
1879 	vcpu->arch.ceded = 0;
1880 	if (vcpu->arch.timer_running) {
1881 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1882 		vcpu->arch.timer_running = 0;
1883 	}
1884 }
1885 
1886 extern void __kvmppc_vcore_entry(void);
1887 
1888 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1889 				   struct kvm_vcpu *vcpu)
1890 {
1891 	u64 now;
1892 
1893 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1894 		return;
1895 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1896 	now = mftb();
1897 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1898 		vcpu->arch.stolen_logged;
1899 	vcpu->arch.busy_preempt = now;
1900 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1901 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1902 	--vc->n_runnable;
1903 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1904 }
1905 
1906 static int kvmppc_grab_hwthread(int cpu)
1907 {
1908 	struct paca_struct *tpaca;
1909 	long timeout = 10000;
1910 
1911 	tpaca = &paca[cpu];
1912 
1913 	/* Ensure the thread won't go into the kernel if it wakes */
1914 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1915 	tpaca->kvm_hstate.kvm_vcore = NULL;
1916 	tpaca->kvm_hstate.napping = 0;
1917 	smp_wmb();
1918 	tpaca->kvm_hstate.hwthread_req = 1;
1919 
1920 	/*
1921 	 * If the thread is already executing in the kernel (e.g. handling
1922 	 * a stray interrupt), wait for it to get back to nap mode.
1923 	 * The smp_mb() is to ensure that our setting of hwthread_req
1924 	 * is visible before we look at hwthread_state, so if this
1925 	 * races with the code at system_reset_pSeries and the thread
1926 	 * misses our setting of hwthread_req, we are sure to see its
1927 	 * setting of hwthread_state, and vice versa.
1928 	 */
1929 	smp_mb();
1930 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1931 		if (--timeout <= 0) {
1932 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1933 			return -EBUSY;
1934 		}
1935 		udelay(1);
1936 	}
1937 	return 0;
1938 }
1939 
1940 static void kvmppc_release_hwthread(int cpu)
1941 {
1942 	struct paca_struct *tpaca;
1943 
1944 	tpaca = &paca[cpu];
1945 	tpaca->kvm_hstate.hwthread_req = 0;
1946 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1947 	tpaca->kvm_hstate.kvm_vcore = NULL;
1948 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1949 }
1950 
1951 static void do_nothing(void *x)
1952 {
1953 }
1954 
1955 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
1956 {
1957 	int i;
1958 
1959 	cpu = cpu_first_thread_sibling(cpu);
1960 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
1961 	/*
1962 	 * Make sure setting of bit in need_tlb_flush precedes
1963 	 * testing of cpu_in_guest bits.  The matching barrier on
1964 	 * the other side is the first smp_mb() in kvmppc_run_core().
1965 	 */
1966 	smp_mb();
1967 	for (i = 0; i < threads_per_core; ++i)
1968 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
1969 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
1970 }
1971 
1972 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1973 {
1974 	int cpu;
1975 	struct paca_struct *tpaca;
1976 	struct kvmppc_vcore *mvc = vc->master_vcore;
1977 	struct kvm *kvm = vc->kvm;
1978 
1979 	cpu = vc->pcpu;
1980 	if (vcpu) {
1981 		if (vcpu->arch.timer_running) {
1982 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1983 			vcpu->arch.timer_running = 0;
1984 		}
1985 		cpu += vcpu->arch.ptid;
1986 		vcpu->cpu = mvc->pcpu;
1987 		vcpu->arch.thread_cpu = cpu;
1988 
1989 		/*
1990 		 * With radix, the guest can do TLB invalidations itself,
1991 		 * and it could choose to use the local form (tlbiel) if
1992 		 * it is invalidating a translation that has only ever been
1993 		 * used on one vcpu.  However, that doesn't mean it has
1994 		 * only ever been used on one physical cpu, since vcpus
1995 		 * can move around between pcpus.  To cope with this, when
1996 		 * a vcpu moves from one pcpu to another, we need to tell
1997 		 * any vcpus running on the same core as this vcpu previously
1998 		 * ran to flush the TLB.  The TLB is shared between threads,
1999 		 * so we use a single bit in .need_tlb_flush for all 4 threads.
2000 		 */
2001 		if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) {
2002 			if (vcpu->arch.prev_cpu >= 0 &&
2003 			    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2004 			    cpu_first_thread_sibling(cpu))
2005 				radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2006 			vcpu->arch.prev_cpu = cpu;
2007 		}
2008 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2009 	}
2010 	tpaca = &paca[cpu];
2011 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2012 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
2013 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2014 	smp_wmb();
2015 	tpaca->kvm_hstate.kvm_vcore = mvc;
2016 	if (cpu != smp_processor_id())
2017 		kvmppc_ipi_thread(cpu);
2018 }
2019 
2020 static void kvmppc_wait_for_nap(void)
2021 {
2022 	int cpu = smp_processor_id();
2023 	int i, loops;
2024 	int n_threads = threads_per_vcore();
2025 
2026 	if (n_threads <= 1)
2027 		return;
2028 	for (loops = 0; loops < 1000000; ++loops) {
2029 		/*
2030 		 * Check if all threads are finished.
2031 		 * We set the vcore pointer when starting a thread
2032 		 * and the thread clears it when finished, so we look
2033 		 * for any threads that still have a non-NULL vcore ptr.
2034 		 */
2035 		for (i = 1; i < n_threads; ++i)
2036 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2037 				break;
2038 		if (i == n_threads) {
2039 			HMT_medium();
2040 			return;
2041 		}
2042 		HMT_low();
2043 	}
2044 	HMT_medium();
2045 	for (i = 1; i < n_threads; ++i)
2046 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2047 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2048 }
2049 
2050 /*
2051  * Check that we are on thread 0 and that any other threads in
2052  * this core are off-line.  Then grab the threads so they can't
2053  * enter the kernel.
2054  */
2055 static int on_primary_thread(void)
2056 {
2057 	int cpu = smp_processor_id();
2058 	int thr;
2059 
2060 	/* Are we on a primary subcore? */
2061 	if (cpu_thread_in_subcore(cpu))
2062 		return 0;
2063 
2064 	thr = 0;
2065 	while (++thr < threads_per_subcore)
2066 		if (cpu_online(cpu + thr))
2067 			return 0;
2068 
2069 	/* Grab all hw threads so they can't go into the kernel */
2070 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2071 		if (kvmppc_grab_hwthread(cpu + thr)) {
2072 			/* Couldn't grab one; let the others go */
2073 			do {
2074 				kvmppc_release_hwthread(cpu + thr);
2075 			} while (--thr > 0);
2076 			return 0;
2077 		}
2078 	}
2079 	return 1;
2080 }
2081 
2082 /*
2083  * A list of virtual cores for each physical CPU.
2084  * These are vcores that could run but their runner VCPU tasks are
2085  * (or may be) preempted.
2086  */
2087 struct preempted_vcore_list {
2088 	struct list_head	list;
2089 	spinlock_t		lock;
2090 };
2091 
2092 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2093 
2094 static void init_vcore_lists(void)
2095 {
2096 	int cpu;
2097 
2098 	for_each_possible_cpu(cpu) {
2099 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2100 		spin_lock_init(&lp->lock);
2101 		INIT_LIST_HEAD(&lp->list);
2102 	}
2103 }
2104 
2105 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2106 {
2107 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2108 
2109 	vc->vcore_state = VCORE_PREEMPT;
2110 	vc->pcpu = smp_processor_id();
2111 	if (vc->num_threads < threads_per_vcore()) {
2112 		spin_lock(&lp->lock);
2113 		list_add_tail(&vc->preempt_list, &lp->list);
2114 		spin_unlock(&lp->lock);
2115 	}
2116 
2117 	/* Start accumulating stolen time */
2118 	kvmppc_core_start_stolen(vc);
2119 }
2120 
2121 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2122 {
2123 	struct preempted_vcore_list *lp;
2124 
2125 	kvmppc_core_end_stolen(vc);
2126 	if (!list_empty(&vc->preempt_list)) {
2127 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2128 		spin_lock(&lp->lock);
2129 		list_del_init(&vc->preempt_list);
2130 		spin_unlock(&lp->lock);
2131 	}
2132 	vc->vcore_state = VCORE_INACTIVE;
2133 }
2134 
2135 /*
2136  * This stores information about the virtual cores currently
2137  * assigned to a physical core.
2138  */
2139 struct core_info {
2140 	int		n_subcores;
2141 	int		max_subcore_threads;
2142 	int		total_threads;
2143 	int		subcore_threads[MAX_SUBCORES];
2144 	struct kvm	*subcore_vm[MAX_SUBCORES];
2145 	struct list_head vcs[MAX_SUBCORES];
2146 };
2147 
2148 /*
2149  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2150  * respectively in 2-way micro-threading (split-core) mode.
2151  */
2152 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2153 
2154 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2155 {
2156 	int sub;
2157 
2158 	memset(cip, 0, sizeof(*cip));
2159 	cip->n_subcores = 1;
2160 	cip->max_subcore_threads = vc->num_threads;
2161 	cip->total_threads = vc->num_threads;
2162 	cip->subcore_threads[0] = vc->num_threads;
2163 	cip->subcore_vm[0] = vc->kvm;
2164 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2165 		INIT_LIST_HEAD(&cip->vcs[sub]);
2166 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2167 }
2168 
2169 static bool subcore_config_ok(int n_subcores, int n_threads)
2170 {
2171 	/* Can only dynamically split if unsplit to begin with */
2172 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2173 		return false;
2174 	if (n_subcores > MAX_SUBCORES)
2175 		return false;
2176 	if (n_subcores > 1) {
2177 		if (!(dynamic_mt_modes & 2))
2178 			n_subcores = 4;
2179 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2180 			return false;
2181 	}
2182 
2183 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2184 }
2185 
2186 static void init_master_vcore(struct kvmppc_vcore *vc)
2187 {
2188 	vc->master_vcore = vc;
2189 	vc->entry_exit_map = 0;
2190 	vc->in_guest = 0;
2191 	vc->napping_threads = 0;
2192 	vc->conferring_threads = 0;
2193 }
2194 
2195 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2196 {
2197 	int n_threads = vc->num_threads;
2198 	int sub;
2199 
2200 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2201 		return false;
2202 
2203 	if (n_threads < cip->max_subcore_threads)
2204 		n_threads = cip->max_subcore_threads;
2205 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2206 		return false;
2207 	cip->max_subcore_threads = n_threads;
2208 
2209 	sub = cip->n_subcores;
2210 	++cip->n_subcores;
2211 	cip->total_threads += vc->num_threads;
2212 	cip->subcore_threads[sub] = vc->num_threads;
2213 	cip->subcore_vm[sub] = vc->kvm;
2214 	init_master_vcore(vc);
2215 	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2216 
2217 	return true;
2218 }
2219 
2220 /*
2221  * Work out whether it is possible to piggyback the execution of
2222  * vcore *pvc onto the execution of the other vcores described in *cip.
2223  */
2224 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2225 			  int target_threads)
2226 {
2227 	if (cip->total_threads + pvc->num_threads > target_threads)
2228 		return false;
2229 
2230 	return can_dynamic_split(pvc, cip);
2231 }
2232 
2233 static void prepare_threads(struct kvmppc_vcore *vc)
2234 {
2235 	int i;
2236 	struct kvm_vcpu *vcpu;
2237 
2238 	for_each_runnable_thread(i, vcpu, vc) {
2239 		if (signal_pending(vcpu->arch.run_task))
2240 			vcpu->arch.ret = -EINTR;
2241 		else if (vcpu->arch.vpa.update_pending ||
2242 			 vcpu->arch.slb_shadow.update_pending ||
2243 			 vcpu->arch.dtl.update_pending)
2244 			vcpu->arch.ret = RESUME_GUEST;
2245 		else
2246 			continue;
2247 		kvmppc_remove_runnable(vc, vcpu);
2248 		wake_up(&vcpu->arch.cpu_run);
2249 	}
2250 }
2251 
2252 static void collect_piggybacks(struct core_info *cip, int target_threads)
2253 {
2254 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2255 	struct kvmppc_vcore *pvc, *vcnext;
2256 
2257 	spin_lock(&lp->lock);
2258 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2259 		if (!spin_trylock(&pvc->lock))
2260 			continue;
2261 		prepare_threads(pvc);
2262 		if (!pvc->n_runnable) {
2263 			list_del_init(&pvc->preempt_list);
2264 			if (pvc->runner == NULL) {
2265 				pvc->vcore_state = VCORE_INACTIVE;
2266 				kvmppc_core_end_stolen(pvc);
2267 			}
2268 			spin_unlock(&pvc->lock);
2269 			continue;
2270 		}
2271 		if (!can_piggyback(pvc, cip, target_threads)) {
2272 			spin_unlock(&pvc->lock);
2273 			continue;
2274 		}
2275 		kvmppc_core_end_stolen(pvc);
2276 		pvc->vcore_state = VCORE_PIGGYBACK;
2277 		if (cip->total_threads >= target_threads)
2278 			break;
2279 	}
2280 	spin_unlock(&lp->lock);
2281 }
2282 
2283 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2284 {
2285 	int still_running = 0, i;
2286 	u64 now;
2287 	long ret;
2288 	struct kvm_vcpu *vcpu;
2289 
2290 	spin_lock(&vc->lock);
2291 	now = get_tb();
2292 	for_each_runnable_thread(i, vcpu, vc) {
2293 		/* cancel pending dec exception if dec is positive */
2294 		if (now < vcpu->arch.dec_expires &&
2295 		    kvmppc_core_pending_dec(vcpu))
2296 			kvmppc_core_dequeue_dec(vcpu);
2297 
2298 		trace_kvm_guest_exit(vcpu);
2299 
2300 		ret = RESUME_GUEST;
2301 		if (vcpu->arch.trap)
2302 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2303 						    vcpu->arch.run_task);
2304 
2305 		vcpu->arch.ret = ret;
2306 		vcpu->arch.trap = 0;
2307 
2308 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2309 			if (vcpu->arch.pending_exceptions)
2310 				kvmppc_core_prepare_to_enter(vcpu);
2311 			if (vcpu->arch.ceded)
2312 				kvmppc_set_timer(vcpu);
2313 			else
2314 				++still_running;
2315 		} else {
2316 			kvmppc_remove_runnable(vc, vcpu);
2317 			wake_up(&vcpu->arch.cpu_run);
2318 		}
2319 	}
2320 	list_del_init(&vc->preempt_list);
2321 	if (!is_master) {
2322 		if (still_running > 0) {
2323 			kvmppc_vcore_preempt(vc);
2324 		} else if (vc->runner) {
2325 			vc->vcore_state = VCORE_PREEMPT;
2326 			kvmppc_core_start_stolen(vc);
2327 		} else {
2328 			vc->vcore_state = VCORE_INACTIVE;
2329 		}
2330 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2331 			/* make sure there's a candidate runner awake */
2332 			i = -1;
2333 			vcpu = next_runnable_thread(vc, &i);
2334 			wake_up(&vcpu->arch.cpu_run);
2335 		}
2336 	}
2337 	spin_unlock(&vc->lock);
2338 }
2339 
2340 /*
2341  * Clear core from the list of active host cores as we are about to
2342  * enter the guest. Only do this if it is the primary thread of the
2343  * core (not if a subcore) that is entering the guest.
2344  */
2345 static inline int kvmppc_clear_host_core(unsigned int cpu)
2346 {
2347 	int core;
2348 
2349 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2350 		return 0;
2351 	/*
2352 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2353 	 * later in kvmppc_start_thread and we need ensure that state is
2354 	 * visible to other CPUs only after we enter guest.
2355 	 */
2356 	core = cpu >> threads_shift;
2357 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2358 	return 0;
2359 }
2360 
2361 /*
2362  * Advertise this core as an active host core since we exited the guest
2363  * Only need to do this if it is the primary thread of the core that is
2364  * exiting.
2365  */
2366 static inline int kvmppc_set_host_core(unsigned int cpu)
2367 {
2368 	int core;
2369 
2370 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2371 		return 0;
2372 
2373 	/*
2374 	 * Memory barrier can be omitted here because we do a spin_unlock
2375 	 * immediately after this which provides the memory barrier.
2376 	 */
2377 	core = cpu >> threads_shift;
2378 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2379 	return 0;
2380 }
2381 
2382 /*
2383  * Run a set of guest threads on a physical core.
2384  * Called with vc->lock held.
2385  */
2386 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2387 {
2388 	struct kvm_vcpu *vcpu;
2389 	int i;
2390 	int srcu_idx;
2391 	struct core_info core_info;
2392 	struct kvmppc_vcore *pvc, *vcnext;
2393 	struct kvm_split_mode split_info, *sip;
2394 	int split, subcore_size, active;
2395 	int sub;
2396 	bool thr0_done;
2397 	unsigned long cmd_bit, stat_bit;
2398 	int pcpu, thr;
2399 	int target_threads;
2400 	int controlled_threads;
2401 
2402 	/*
2403 	 * Remove from the list any threads that have a signal pending
2404 	 * or need a VPA update done
2405 	 */
2406 	prepare_threads(vc);
2407 
2408 	/* if the runner is no longer runnable, let the caller pick a new one */
2409 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2410 		return;
2411 
2412 	/*
2413 	 * Initialize *vc.
2414 	 */
2415 	init_master_vcore(vc);
2416 	vc->preempt_tb = TB_NIL;
2417 
2418 	/*
2419 	 * Number of threads that we will be controlling: the same as
2420 	 * the number of threads per subcore, except on POWER9,
2421 	 * where it's 1 because the threads are (mostly) independent.
2422 	 */
2423 	controlled_threads = threads_per_vcore();
2424 
2425 	/*
2426 	 * Make sure we are running on primary threads, and that secondary
2427 	 * threads are offline.  Also check if the number of threads in this
2428 	 * guest are greater than the current system threads per guest.
2429 	 */
2430 	if ((controlled_threads > 1) &&
2431 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2432 		for_each_runnable_thread(i, vcpu, vc) {
2433 			vcpu->arch.ret = -EBUSY;
2434 			kvmppc_remove_runnable(vc, vcpu);
2435 			wake_up(&vcpu->arch.cpu_run);
2436 		}
2437 		goto out;
2438 	}
2439 
2440 	/*
2441 	 * See if we could run any other vcores on the physical core
2442 	 * along with this one.
2443 	 */
2444 	init_core_info(&core_info, vc);
2445 	pcpu = smp_processor_id();
2446 	target_threads = controlled_threads;
2447 	if (target_smt_mode && target_smt_mode < target_threads)
2448 		target_threads = target_smt_mode;
2449 	if (vc->num_threads < target_threads)
2450 		collect_piggybacks(&core_info, target_threads);
2451 
2452 	/* Decide on micro-threading (split-core) mode */
2453 	subcore_size = threads_per_subcore;
2454 	cmd_bit = stat_bit = 0;
2455 	split = core_info.n_subcores;
2456 	sip = NULL;
2457 	if (split > 1) {
2458 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2459 		if (split == 2 && (dynamic_mt_modes & 2)) {
2460 			cmd_bit = HID0_POWER8_1TO2LPAR;
2461 			stat_bit = HID0_POWER8_2LPARMODE;
2462 		} else {
2463 			split = 4;
2464 			cmd_bit = HID0_POWER8_1TO4LPAR;
2465 			stat_bit = HID0_POWER8_4LPARMODE;
2466 		}
2467 		subcore_size = MAX_SMT_THREADS / split;
2468 		sip = &split_info;
2469 		memset(&split_info, 0, sizeof(split_info));
2470 		split_info.rpr = mfspr(SPRN_RPR);
2471 		split_info.pmmar = mfspr(SPRN_PMMAR);
2472 		split_info.ldbar = mfspr(SPRN_LDBAR);
2473 		split_info.subcore_size = subcore_size;
2474 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2475 			split_info.master_vcs[sub] =
2476 				list_first_entry(&core_info.vcs[sub],
2477 					struct kvmppc_vcore, preempt_list);
2478 		/* order writes to split_info before kvm_split_mode pointer */
2479 		smp_wmb();
2480 	}
2481 	pcpu = smp_processor_id();
2482 	for (thr = 0; thr < controlled_threads; ++thr)
2483 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2484 
2485 	/* Initiate micro-threading (split-core) if required */
2486 	if (cmd_bit) {
2487 		unsigned long hid0 = mfspr(SPRN_HID0);
2488 
2489 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2490 		mb();
2491 		mtspr(SPRN_HID0, hid0);
2492 		isync();
2493 		for (;;) {
2494 			hid0 = mfspr(SPRN_HID0);
2495 			if (hid0 & stat_bit)
2496 				break;
2497 			cpu_relax();
2498 		}
2499 	}
2500 
2501 	kvmppc_clear_host_core(pcpu);
2502 
2503 	/* Start all the threads */
2504 	active = 0;
2505 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2506 		thr = subcore_thread_map[sub];
2507 		thr0_done = false;
2508 		active |= 1 << thr;
2509 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2510 			pvc->pcpu = pcpu + thr;
2511 			for_each_runnable_thread(i, vcpu, pvc) {
2512 				kvmppc_start_thread(vcpu, pvc);
2513 				kvmppc_create_dtl_entry(vcpu, pvc);
2514 				trace_kvm_guest_enter(vcpu);
2515 				if (!vcpu->arch.ptid)
2516 					thr0_done = true;
2517 				active |= 1 << (thr + vcpu->arch.ptid);
2518 			}
2519 			/*
2520 			 * We need to start the first thread of each subcore
2521 			 * even if it doesn't have a vcpu.
2522 			 */
2523 			if (pvc->master_vcore == pvc && !thr0_done)
2524 				kvmppc_start_thread(NULL, pvc);
2525 			thr += pvc->num_threads;
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Ensure that split_info.do_nap is set after setting
2531 	 * the vcore pointer in the PACA of the secondaries.
2532 	 */
2533 	smp_mb();
2534 	if (cmd_bit)
2535 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2536 
2537 	/*
2538 	 * When doing micro-threading, poke the inactive threads as well.
2539 	 * This gets them to the nap instruction after kvm_do_nap,
2540 	 * which reduces the time taken to unsplit later.
2541 	 */
2542 	if (split > 1)
2543 		for (thr = 1; thr < threads_per_subcore; ++thr)
2544 			if (!(active & (1 << thr)))
2545 				kvmppc_ipi_thread(pcpu + thr);
2546 
2547 	vc->vcore_state = VCORE_RUNNING;
2548 	preempt_disable();
2549 
2550 	trace_kvmppc_run_core(vc, 0);
2551 
2552 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2553 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2554 			spin_unlock(&pvc->lock);
2555 
2556 	guest_enter();
2557 
2558 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2559 
2560 	__kvmppc_vcore_entry();
2561 
2562 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2563 
2564 	spin_lock(&vc->lock);
2565 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2566 	vc->vcore_state = VCORE_EXITING;
2567 
2568 	/* wait for secondary threads to finish writing their state to memory */
2569 	kvmppc_wait_for_nap();
2570 
2571 	/* Return to whole-core mode if we split the core earlier */
2572 	if (split > 1) {
2573 		unsigned long hid0 = mfspr(SPRN_HID0);
2574 		unsigned long loops = 0;
2575 
2576 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2577 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2578 		mb();
2579 		mtspr(SPRN_HID0, hid0);
2580 		isync();
2581 		for (;;) {
2582 			hid0 = mfspr(SPRN_HID0);
2583 			if (!(hid0 & stat_bit))
2584 				break;
2585 			cpu_relax();
2586 			++loops;
2587 		}
2588 		split_info.do_nap = 0;
2589 	}
2590 
2591 	/* Let secondaries go back to the offline loop */
2592 	for (i = 0; i < controlled_threads; ++i) {
2593 		kvmppc_release_hwthread(pcpu + i);
2594 		if (sip && sip->napped[i])
2595 			kvmppc_ipi_thread(pcpu + i);
2596 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2597 	}
2598 
2599 	kvmppc_set_host_core(pcpu);
2600 
2601 	spin_unlock(&vc->lock);
2602 
2603 	/* make sure updates to secondary vcpu structs are visible now */
2604 	smp_mb();
2605 	guest_exit();
2606 
2607 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2608 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2609 					 preempt_list)
2610 			post_guest_process(pvc, pvc == vc);
2611 
2612 	spin_lock(&vc->lock);
2613 	preempt_enable();
2614 
2615  out:
2616 	vc->vcore_state = VCORE_INACTIVE;
2617 	trace_kvmppc_run_core(vc, 1);
2618 }
2619 
2620 /*
2621  * Wait for some other vcpu thread to execute us, and
2622  * wake us up when we need to handle something in the host.
2623  */
2624 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2625 				 struct kvm_vcpu *vcpu, int wait_state)
2626 {
2627 	DEFINE_WAIT(wait);
2628 
2629 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2630 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2631 		spin_unlock(&vc->lock);
2632 		schedule();
2633 		spin_lock(&vc->lock);
2634 	}
2635 	finish_wait(&vcpu->arch.cpu_run, &wait);
2636 }
2637 
2638 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2639 {
2640 	/* 10us base */
2641 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2642 		vc->halt_poll_ns = 10000;
2643 	else
2644 		vc->halt_poll_ns *= halt_poll_ns_grow;
2645 }
2646 
2647 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2648 {
2649 	if (halt_poll_ns_shrink == 0)
2650 		vc->halt_poll_ns = 0;
2651 	else
2652 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2653 }
2654 
2655 /*
2656  * Check to see if any of the runnable vcpus on the vcore have pending
2657  * exceptions or are no longer ceded
2658  */
2659 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2660 {
2661 	struct kvm_vcpu *vcpu;
2662 	int i;
2663 
2664 	for_each_runnable_thread(i, vcpu, vc) {
2665 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded ||
2666 		    vcpu->arch.prodded)
2667 			return 1;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /*
2674  * All the vcpus in this vcore are idle, so wait for a decrementer
2675  * or external interrupt to one of the vcpus.  vc->lock is held.
2676  */
2677 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2678 {
2679 	ktime_t cur, start_poll, start_wait;
2680 	int do_sleep = 1;
2681 	u64 block_ns;
2682 	DECLARE_SWAITQUEUE(wait);
2683 
2684 	/* Poll for pending exceptions and ceded state */
2685 	cur = start_poll = ktime_get();
2686 	if (vc->halt_poll_ns) {
2687 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2688 		++vc->runner->stat.halt_attempted_poll;
2689 
2690 		vc->vcore_state = VCORE_POLLING;
2691 		spin_unlock(&vc->lock);
2692 
2693 		do {
2694 			if (kvmppc_vcore_check_block(vc)) {
2695 				do_sleep = 0;
2696 				break;
2697 			}
2698 			cur = ktime_get();
2699 		} while (single_task_running() && ktime_before(cur, stop));
2700 
2701 		spin_lock(&vc->lock);
2702 		vc->vcore_state = VCORE_INACTIVE;
2703 
2704 		if (!do_sleep) {
2705 			++vc->runner->stat.halt_successful_poll;
2706 			goto out;
2707 		}
2708 	}
2709 
2710 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2711 
2712 	if (kvmppc_vcore_check_block(vc)) {
2713 		finish_swait(&vc->wq, &wait);
2714 		do_sleep = 0;
2715 		/* If we polled, count this as a successful poll */
2716 		if (vc->halt_poll_ns)
2717 			++vc->runner->stat.halt_successful_poll;
2718 		goto out;
2719 	}
2720 
2721 	start_wait = ktime_get();
2722 
2723 	vc->vcore_state = VCORE_SLEEPING;
2724 	trace_kvmppc_vcore_blocked(vc, 0);
2725 	spin_unlock(&vc->lock);
2726 	schedule();
2727 	finish_swait(&vc->wq, &wait);
2728 	spin_lock(&vc->lock);
2729 	vc->vcore_state = VCORE_INACTIVE;
2730 	trace_kvmppc_vcore_blocked(vc, 1);
2731 	++vc->runner->stat.halt_successful_wait;
2732 
2733 	cur = ktime_get();
2734 
2735 out:
2736 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2737 
2738 	/* Attribute wait time */
2739 	if (do_sleep) {
2740 		vc->runner->stat.halt_wait_ns +=
2741 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
2742 		/* Attribute failed poll time */
2743 		if (vc->halt_poll_ns)
2744 			vc->runner->stat.halt_poll_fail_ns +=
2745 				ktime_to_ns(start_wait) -
2746 				ktime_to_ns(start_poll);
2747 	} else {
2748 		/* Attribute successful poll time */
2749 		if (vc->halt_poll_ns)
2750 			vc->runner->stat.halt_poll_success_ns +=
2751 				ktime_to_ns(cur) -
2752 				ktime_to_ns(start_poll);
2753 	}
2754 
2755 	/* Adjust poll time */
2756 	if (halt_poll_ns) {
2757 		if (block_ns <= vc->halt_poll_ns)
2758 			;
2759 		/* We slept and blocked for longer than the max halt time */
2760 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2761 			shrink_halt_poll_ns(vc);
2762 		/* We slept and our poll time is too small */
2763 		else if (vc->halt_poll_ns < halt_poll_ns &&
2764 				block_ns < halt_poll_ns)
2765 			grow_halt_poll_ns(vc);
2766 		if (vc->halt_poll_ns > halt_poll_ns)
2767 			vc->halt_poll_ns = halt_poll_ns;
2768 	} else
2769 		vc->halt_poll_ns = 0;
2770 
2771 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2772 }
2773 
2774 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2775 {
2776 	int n_ceded, i;
2777 	struct kvmppc_vcore *vc;
2778 	struct kvm_vcpu *v;
2779 
2780 	trace_kvmppc_run_vcpu_enter(vcpu);
2781 
2782 	kvm_run->exit_reason = 0;
2783 	vcpu->arch.ret = RESUME_GUEST;
2784 	vcpu->arch.trap = 0;
2785 	kvmppc_update_vpas(vcpu);
2786 
2787 	/*
2788 	 * Synchronize with other threads in this virtual core
2789 	 */
2790 	vc = vcpu->arch.vcore;
2791 	spin_lock(&vc->lock);
2792 	vcpu->arch.ceded = 0;
2793 	vcpu->arch.run_task = current;
2794 	vcpu->arch.kvm_run = kvm_run;
2795 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2796 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2797 	vcpu->arch.busy_preempt = TB_NIL;
2798 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2799 	++vc->n_runnable;
2800 
2801 	/*
2802 	 * This happens the first time this is called for a vcpu.
2803 	 * If the vcore is already running, we may be able to start
2804 	 * this thread straight away and have it join in.
2805 	 */
2806 	if (!signal_pending(current)) {
2807 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2808 			struct kvmppc_vcore *mvc = vc->master_vcore;
2809 			if (spin_trylock(&mvc->lock)) {
2810 				if (mvc->vcore_state == VCORE_RUNNING &&
2811 				    !VCORE_IS_EXITING(mvc)) {
2812 					kvmppc_create_dtl_entry(vcpu, vc);
2813 					kvmppc_start_thread(vcpu, vc);
2814 					trace_kvm_guest_enter(vcpu);
2815 				}
2816 				spin_unlock(&mvc->lock);
2817 			}
2818 		} else if (vc->vcore_state == VCORE_RUNNING &&
2819 			   !VCORE_IS_EXITING(vc)) {
2820 			kvmppc_create_dtl_entry(vcpu, vc);
2821 			kvmppc_start_thread(vcpu, vc);
2822 			trace_kvm_guest_enter(vcpu);
2823 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2824 			swake_up(&vc->wq);
2825 		}
2826 
2827 	}
2828 
2829 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2830 	       !signal_pending(current)) {
2831 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2832 			kvmppc_vcore_end_preempt(vc);
2833 
2834 		if (vc->vcore_state != VCORE_INACTIVE) {
2835 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2836 			continue;
2837 		}
2838 		for_each_runnable_thread(i, v, vc) {
2839 			kvmppc_core_prepare_to_enter(v);
2840 			if (signal_pending(v->arch.run_task)) {
2841 				kvmppc_remove_runnable(vc, v);
2842 				v->stat.signal_exits++;
2843 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2844 				v->arch.ret = -EINTR;
2845 				wake_up(&v->arch.cpu_run);
2846 			}
2847 		}
2848 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2849 			break;
2850 		n_ceded = 0;
2851 		for_each_runnable_thread(i, v, vc) {
2852 			if (!v->arch.pending_exceptions && !v->arch.prodded)
2853 				n_ceded += v->arch.ceded;
2854 			else
2855 				v->arch.ceded = 0;
2856 		}
2857 		vc->runner = vcpu;
2858 		if (n_ceded == vc->n_runnable) {
2859 			kvmppc_vcore_blocked(vc);
2860 		} else if (need_resched()) {
2861 			kvmppc_vcore_preempt(vc);
2862 			/* Let something else run */
2863 			cond_resched_lock(&vc->lock);
2864 			if (vc->vcore_state == VCORE_PREEMPT)
2865 				kvmppc_vcore_end_preempt(vc);
2866 		} else {
2867 			kvmppc_run_core(vc);
2868 		}
2869 		vc->runner = NULL;
2870 	}
2871 
2872 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2873 	       (vc->vcore_state == VCORE_RUNNING ||
2874 		vc->vcore_state == VCORE_EXITING ||
2875 		vc->vcore_state == VCORE_PIGGYBACK))
2876 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2877 
2878 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2879 		kvmppc_vcore_end_preempt(vc);
2880 
2881 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2882 		kvmppc_remove_runnable(vc, vcpu);
2883 		vcpu->stat.signal_exits++;
2884 		kvm_run->exit_reason = KVM_EXIT_INTR;
2885 		vcpu->arch.ret = -EINTR;
2886 	}
2887 
2888 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2889 		/* Wake up some vcpu to run the core */
2890 		i = -1;
2891 		v = next_runnable_thread(vc, &i);
2892 		wake_up(&v->arch.cpu_run);
2893 	}
2894 
2895 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2896 	spin_unlock(&vc->lock);
2897 	return vcpu->arch.ret;
2898 }
2899 
2900 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2901 {
2902 	int r;
2903 	int srcu_idx;
2904 
2905 	if (!vcpu->arch.sane) {
2906 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2907 		return -EINVAL;
2908 	}
2909 
2910 	kvmppc_core_prepare_to_enter(vcpu);
2911 
2912 	/* No need to go into the guest when all we'll do is come back out */
2913 	if (signal_pending(current)) {
2914 		run->exit_reason = KVM_EXIT_INTR;
2915 		return -EINTR;
2916 	}
2917 
2918 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2919 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2920 	smp_mb();
2921 
2922 	/* On the first time here, set up HTAB and VRMA */
2923 	if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
2924 		r = kvmppc_hv_setup_htab_rma(vcpu);
2925 		if (r)
2926 			goto out;
2927 	}
2928 
2929 	flush_all_to_thread(current);
2930 
2931 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2932 	vcpu->arch.pgdir = current->mm->pgd;
2933 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2934 
2935 	do {
2936 		r = kvmppc_run_vcpu(run, vcpu);
2937 
2938 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2939 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2940 			trace_kvm_hcall_enter(vcpu);
2941 			r = kvmppc_pseries_do_hcall(vcpu);
2942 			trace_kvm_hcall_exit(vcpu, r);
2943 			kvmppc_core_prepare_to_enter(vcpu);
2944 		} else if (r == RESUME_PAGE_FAULT) {
2945 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2946 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2947 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2948 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2949 		} else if (r == RESUME_PASSTHROUGH)
2950 			r = kvmppc_xics_rm_complete(vcpu, 0);
2951 	} while (is_kvmppc_resume_guest(r));
2952 
2953  out:
2954 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2955 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2956 	return r;
2957 }
2958 
2959 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2960 				     int linux_psize)
2961 {
2962 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2963 
2964 	if (!def->shift)
2965 		return;
2966 	(*sps)->page_shift = def->shift;
2967 	(*sps)->slb_enc = def->sllp;
2968 	(*sps)->enc[0].page_shift = def->shift;
2969 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2970 	/*
2971 	 * Add 16MB MPSS support if host supports it
2972 	 */
2973 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2974 		(*sps)->enc[1].page_shift = 24;
2975 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2976 	}
2977 	(*sps)++;
2978 }
2979 
2980 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2981 					 struct kvm_ppc_smmu_info *info)
2982 {
2983 	struct kvm_ppc_one_seg_page_size *sps;
2984 
2985 	/*
2986 	 * Since we don't yet support HPT guests on a radix host,
2987 	 * return an error if the host uses radix.
2988 	 */
2989 	if (radix_enabled())
2990 		return -EINVAL;
2991 
2992 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2993 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2994 		info->flags |= KVM_PPC_1T_SEGMENTS;
2995 	info->slb_size = mmu_slb_size;
2996 
2997 	/* We only support these sizes for now, and no muti-size segments */
2998 	sps = &info->sps[0];
2999 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3000 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3001 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3002 
3003 	return 0;
3004 }
3005 
3006 /*
3007  * Get (and clear) the dirty memory log for a memory slot.
3008  */
3009 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3010 					 struct kvm_dirty_log *log)
3011 {
3012 	struct kvm_memslots *slots;
3013 	struct kvm_memory_slot *memslot;
3014 	int i, r;
3015 	unsigned long n;
3016 	unsigned long *buf;
3017 	struct kvm_vcpu *vcpu;
3018 
3019 	mutex_lock(&kvm->slots_lock);
3020 
3021 	r = -EINVAL;
3022 	if (log->slot >= KVM_USER_MEM_SLOTS)
3023 		goto out;
3024 
3025 	slots = kvm_memslots(kvm);
3026 	memslot = id_to_memslot(slots, log->slot);
3027 	r = -ENOENT;
3028 	if (!memslot->dirty_bitmap)
3029 		goto out;
3030 
3031 	/*
3032 	 * Use second half of bitmap area because radix accumulates
3033 	 * bits in the first half.
3034 	 */
3035 	n = kvm_dirty_bitmap_bytes(memslot);
3036 	buf = memslot->dirty_bitmap + n / sizeof(long);
3037 	memset(buf, 0, n);
3038 
3039 	if (kvm_is_radix(kvm))
3040 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3041 	else
3042 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3043 	if (r)
3044 		goto out;
3045 
3046 	/* Harvest dirty bits from VPA and DTL updates */
3047 	/* Note: we never modify the SLB shadow buffer areas */
3048 	kvm_for_each_vcpu(i, vcpu, kvm) {
3049 		spin_lock(&vcpu->arch.vpa_update_lock);
3050 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3051 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3052 		spin_unlock(&vcpu->arch.vpa_update_lock);
3053 	}
3054 
3055 	r = -EFAULT;
3056 	if (copy_to_user(log->dirty_bitmap, buf, n))
3057 		goto out;
3058 
3059 	r = 0;
3060 out:
3061 	mutex_unlock(&kvm->slots_lock);
3062 	return r;
3063 }
3064 
3065 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3066 					struct kvm_memory_slot *dont)
3067 {
3068 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3069 		vfree(free->arch.rmap);
3070 		free->arch.rmap = NULL;
3071 	}
3072 }
3073 
3074 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3075 					 unsigned long npages)
3076 {
3077 	/*
3078 	 * For now, if radix_enabled() then we only support radix guests,
3079 	 * and in that case we don't need the rmap array.
3080 	 */
3081 	if (radix_enabled()) {
3082 		slot->arch.rmap = NULL;
3083 		return 0;
3084 	}
3085 
3086 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3087 	if (!slot->arch.rmap)
3088 		return -ENOMEM;
3089 
3090 	return 0;
3091 }
3092 
3093 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3094 					struct kvm_memory_slot *memslot,
3095 					const struct kvm_userspace_memory_region *mem)
3096 {
3097 	return 0;
3098 }
3099 
3100 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3101 				const struct kvm_userspace_memory_region *mem,
3102 				const struct kvm_memory_slot *old,
3103 				const struct kvm_memory_slot *new)
3104 {
3105 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3106 	struct kvm_memslots *slots;
3107 	struct kvm_memory_slot *memslot;
3108 
3109 	/*
3110 	 * If we are making a new memslot, it might make
3111 	 * some address that was previously cached as emulated
3112 	 * MMIO be no longer emulated MMIO, so invalidate
3113 	 * all the caches of emulated MMIO translations.
3114 	 */
3115 	if (npages)
3116 		atomic64_inc(&kvm->arch.mmio_update);
3117 
3118 	if (npages && old->npages && !kvm_is_radix(kvm)) {
3119 		/*
3120 		 * If modifying a memslot, reset all the rmap dirty bits.
3121 		 * If this is a new memslot, we don't need to do anything
3122 		 * since the rmap array starts out as all zeroes,
3123 		 * i.e. no pages are dirty.
3124 		 */
3125 		slots = kvm_memslots(kvm);
3126 		memslot = id_to_memslot(slots, mem->slot);
3127 		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3128 	}
3129 }
3130 
3131 /*
3132  * Update LPCR values in kvm->arch and in vcores.
3133  * Caller must hold kvm->lock.
3134  */
3135 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3136 {
3137 	long int i;
3138 	u32 cores_done = 0;
3139 
3140 	if ((kvm->arch.lpcr & mask) == lpcr)
3141 		return;
3142 
3143 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3144 
3145 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3146 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3147 		if (!vc)
3148 			continue;
3149 		spin_lock(&vc->lock);
3150 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3151 		spin_unlock(&vc->lock);
3152 		if (++cores_done >= kvm->arch.online_vcores)
3153 			break;
3154 	}
3155 }
3156 
3157 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3158 {
3159 	return;
3160 }
3161 
3162 static void kvmppc_setup_partition_table(struct kvm *kvm)
3163 {
3164 	unsigned long dw0, dw1;
3165 
3166 	if (!kvm_is_radix(kvm)) {
3167 		/* PS field - page size for VRMA */
3168 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3169 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3170 		/* HTABSIZE and HTABORG fields */
3171 		dw0 |= kvm->arch.sdr1;
3172 
3173 		/* Second dword as set by userspace */
3174 		dw1 = kvm->arch.process_table;
3175 	} else {
3176 		dw0 = PATB_HR | radix__get_tree_size() |
3177 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3178 		dw1 = PATB_GR | kvm->arch.process_table;
3179 	}
3180 
3181 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3182 }
3183 
3184 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3185 {
3186 	int err = 0;
3187 	struct kvm *kvm = vcpu->kvm;
3188 	unsigned long hva;
3189 	struct kvm_memory_slot *memslot;
3190 	struct vm_area_struct *vma;
3191 	unsigned long lpcr = 0, senc;
3192 	unsigned long psize, porder;
3193 	int srcu_idx;
3194 
3195 	mutex_lock(&kvm->lock);
3196 	if (kvm->arch.hpte_setup_done)
3197 		goto out;	/* another vcpu beat us to it */
3198 
3199 	/* Allocate hashed page table (if not done already) and reset it */
3200 	if (!kvm->arch.hpt.virt) {
3201 		int order = KVM_DEFAULT_HPT_ORDER;
3202 		struct kvm_hpt_info info;
3203 
3204 		err = kvmppc_allocate_hpt(&info, order);
3205 		/* If we get here, it means userspace didn't specify a
3206 		 * size explicitly.  So, try successively smaller
3207 		 * sizes if the default failed. */
3208 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3209 			err  = kvmppc_allocate_hpt(&info, order);
3210 
3211 		if (err < 0) {
3212 			pr_err("KVM: Couldn't alloc HPT\n");
3213 			goto out;
3214 		}
3215 
3216 		kvmppc_set_hpt(kvm, &info);
3217 	}
3218 
3219 	/* Look up the memslot for guest physical address 0 */
3220 	srcu_idx = srcu_read_lock(&kvm->srcu);
3221 	memslot = gfn_to_memslot(kvm, 0);
3222 
3223 	/* We must have some memory at 0 by now */
3224 	err = -EINVAL;
3225 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3226 		goto out_srcu;
3227 
3228 	/* Look up the VMA for the start of this memory slot */
3229 	hva = memslot->userspace_addr;
3230 	down_read(&current->mm->mmap_sem);
3231 	vma = find_vma(current->mm, hva);
3232 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3233 		goto up_out;
3234 
3235 	psize = vma_kernel_pagesize(vma);
3236 	porder = __ilog2(psize);
3237 
3238 	up_read(&current->mm->mmap_sem);
3239 
3240 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3241 	err = -EINVAL;
3242 	if (!(psize == 0x1000 || psize == 0x10000 ||
3243 	      psize == 0x1000000))
3244 		goto out_srcu;
3245 
3246 	senc = slb_pgsize_encoding(psize);
3247 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3248 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3249 	/* Create HPTEs in the hash page table for the VRMA */
3250 	kvmppc_map_vrma(vcpu, memslot, porder);
3251 
3252 	/* Update VRMASD field in the LPCR */
3253 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3254 		/* the -4 is to account for senc values starting at 0x10 */
3255 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3256 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3257 	} else {
3258 		kvmppc_setup_partition_table(kvm);
3259 	}
3260 
3261 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3262 	smp_wmb();
3263 	kvm->arch.hpte_setup_done = 1;
3264 	err = 0;
3265  out_srcu:
3266 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3267  out:
3268 	mutex_unlock(&kvm->lock);
3269 	return err;
3270 
3271  up_out:
3272 	up_read(&current->mm->mmap_sem);
3273 	goto out_srcu;
3274 }
3275 
3276 #ifdef CONFIG_KVM_XICS
3277 /*
3278  * Allocate a per-core structure for managing state about which cores are
3279  * running in the host versus the guest and for exchanging data between
3280  * real mode KVM and CPU running in the host.
3281  * This is only done for the first VM.
3282  * The allocated structure stays even if all VMs have stopped.
3283  * It is only freed when the kvm-hv module is unloaded.
3284  * It's OK for this routine to fail, we just don't support host
3285  * core operations like redirecting H_IPI wakeups.
3286  */
3287 void kvmppc_alloc_host_rm_ops(void)
3288 {
3289 	struct kvmppc_host_rm_ops *ops;
3290 	unsigned long l_ops;
3291 	int cpu, core;
3292 	int size;
3293 
3294 	/* Not the first time here ? */
3295 	if (kvmppc_host_rm_ops_hv != NULL)
3296 		return;
3297 
3298 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3299 	if (!ops)
3300 		return;
3301 
3302 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3303 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3304 
3305 	if (!ops->rm_core) {
3306 		kfree(ops);
3307 		return;
3308 	}
3309 
3310 	get_online_cpus();
3311 
3312 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3313 		if (!cpu_online(cpu))
3314 			continue;
3315 
3316 		core = cpu >> threads_shift;
3317 		ops->rm_core[core].rm_state.in_host = 1;
3318 	}
3319 
3320 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3321 
3322 	/*
3323 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3324 	 * to other CPUs before we assign it to the global variable.
3325 	 * Do an atomic assignment (no locks used here), but if someone
3326 	 * beats us to it, just free our copy and return.
3327 	 */
3328 	smp_wmb();
3329 	l_ops = (unsigned long) ops;
3330 
3331 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3332 		put_online_cpus();
3333 		kfree(ops->rm_core);
3334 		kfree(ops);
3335 		return;
3336 	}
3337 
3338 	cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3339 				  "ppc/kvm_book3s:prepare",
3340 				  kvmppc_set_host_core,
3341 				  kvmppc_clear_host_core);
3342 	put_online_cpus();
3343 }
3344 
3345 void kvmppc_free_host_rm_ops(void)
3346 {
3347 	if (kvmppc_host_rm_ops_hv) {
3348 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3349 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3350 		kfree(kvmppc_host_rm_ops_hv);
3351 		kvmppc_host_rm_ops_hv = NULL;
3352 	}
3353 }
3354 #endif
3355 
3356 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3357 {
3358 	unsigned long lpcr, lpid;
3359 	char buf[32];
3360 	int ret;
3361 
3362 	/* Allocate the guest's logical partition ID */
3363 
3364 	lpid = kvmppc_alloc_lpid();
3365 	if ((long)lpid < 0)
3366 		return -ENOMEM;
3367 	kvm->arch.lpid = lpid;
3368 
3369 	kvmppc_alloc_host_rm_ops();
3370 
3371 	/*
3372 	 * Since we don't flush the TLB when tearing down a VM,
3373 	 * and this lpid might have previously been used,
3374 	 * make sure we flush on each core before running the new VM.
3375 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3376 	 * does this flush for us.
3377 	 */
3378 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3379 		cpumask_setall(&kvm->arch.need_tlb_flush);
3380 
3381 	/* Start out with the default set of hcalls enabled */
3382 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3383 	       sizeof(kvm->arch.enabled_hcalls));
3384 
3385 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3386 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3387 
3388 	/* Init LPCR for virtual RMA mode */
3389 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3390 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3391 	lpcr &= LPCR_PECE | LPCR_LPES;
3392 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3393 		LPCR_VPM0 | LPCR_VPM1;
3394 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3395 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3396 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3397 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3398 		lpcr |= LPCR_ONL;
3399 	/*
3400 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3401 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3402 	 */
3403 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3404 		lpcr &= ~LPCR_VPM0;
3405 		lpcr |= LPCR_HVICE;
3406 	}
3407 
3408 	/*
3409 	 * For now, if the host uses radix, the guest must be radix.
3410 	 */
3411 	if (radix_enabled()) {
3412 		kvm->arch.radix = 1;
3413 		lpcr &= ~LPCR_VPM1;
3414 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3415 		ret = kvmppc_init_vm_radix(kvm);
3416 		if (ret) {
3417 			kvmppc_free_lpid(kvm->arch.lpid);
3418 			return ret;
3419 		}
3420 		kvmppc_setup_partition_table(kvm);
3421 	}
3422 
3423 	kvm->arch.lpcr = lpcr;
3424 
3425 	/* Initialization for future HPT resizes */
3426 	kvm->arch.resize_hpt = NULL;
3427 
3428 	/*
3429 	 * Work out how many sets the TLB has, for the use of
3430 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3431 	 */
3432 	if (kvm_is_radix(kvm))
3433 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3434 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3435 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3436 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3437 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3438 	else
3439 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3440 
3441 	/*
3442 	 * Track that we now have a HV mode VM active. This blocks secondary
3443 	 * CPU threads from coming online.
3444 	 * On POWER9, we only need to do this for HPT guests on a radix
3445 	 * host, which is not yet supported.
3446 	 */
3447 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3448 		kvm_hv_vm_activated();
3449 
3450 	/*
3451 	 * Create a debugfs directory for the VM
3452 	 */
3453 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3454 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3455 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3456 		kvmppc_mmu_debugfs_init(kvm);
3457 
3458 	return 0;
3459 }
3460 
3461 static void kvmppc_free_vcores(struct kvm *kvm)
3462 {
3463 	long int i;
3464 
3465 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3466 		kfree(kvm->arch.vcores[i]);
3467 	kvm->arch.online_vcores = 0;
3468 }
3469 
3470 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3471 {
3472 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3473 
3474 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3475 		kvm_hv_vm_deactivated();
3476 
3477 	kvmppc_free_vcores(kvm);
3478 
3479 	kvmppc_free_lpid(kvm->arch.lpid);
3480 
3481 	if (kvm_is_radix(kvm))
3482 		kvmppc_free_radix(kvm);
3483 	else
3484 		kvmppc_free_hpt(&kvm->arch.hpt);
3485 
3486 	kvmppc_free_pimap(kvm);
3487 }
3488 
3489 /* We don't need to emulate any privileged instructions or dcbz */
3490 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3491 				     unsigned int inst, int *advance)
3492 {
3493 	return EMULATE_FAIL;
3494 }
3495 
3496 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3497 					ulong spr_val)
3498 {
3499 	return EMULATE_FAIL;
3500 }
3501 
3502 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3503 					ulong *spr_val)
3504 {
3505 	return EMULATE_FAIL;
3506 }
3507 
3508 static int kvmppc_core_check_processor_compat_hv(void)
3509 {
3510 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3511 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3512 		return -EIO;
3513 
3514 	return 0;
3515 }
3516 
3517 #ifdef CONFIG_KVM_XICS
3518 
3519 void kvmppc_free_pimap(struct kvm *kvm)
3520 {
3521 	kfree(kvm->arch.pimap);
3522 }
3523 
3524 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3525 {
3526 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3527 }
3528 
3529 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3530 {
3531 	struct irq_desc *desc;
3532 	struct kvmppc_irq_map *irq_map;
3533 	struct kvmppc_passthru_irqmap *pimap;
3534 	struct irq_chip *chip;
3535 	int i;
3536 
3537 	if (!kvm_irq_bypass)
3538 		return 1;
3539 
3540 	desc = irq_to_desc(host_irq);
3541 	if (!desc)
3542 		return -EIO;
3543 
3544 	mutex_lock(&kvm->lock);
3545 
3546 	pimap = kvm->arch.pimap;
3547 	if (pimap == NULL) {
3548 		/* First call, allocate structure to hold IRQ map */
3549 		pimap = kvmppc_alloc_pimap();
3550 		if (pimap == NULL) {
3551 			mutex_unlock(&kvm->lock);
3552 			return -ENOMEM;
3553 		}
3554 		kvm->arch.pimap = pimap;
3555 	}
3556 
3557 	/*
3558 	 * For now, we only support interrupts for which the EOI operation
3559 	 * is an OPAL call followed by a write to XIRR, since that's
3560 	 * what our real-mode EOI code does.
3561 	 */
3562 	chip = irq_data_get_irq_chip(&desc->irq_data);
3563 	if (!chip || !is_pnv_opal_msi(chip)) {
3564 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3565 			host_irq, guest_gsi);
3566 		mutex_unlock(&kvm->lock);
3567 		return -ENOENT;
3568 	}
3569 
3570 	/*
3571 	 * See if we already have an entry for this guest IRQ number.
3572 	 * If it's mapped to a hardware IRQ number, that's an error,
3573 	 * otherwise re-use this entry.
3574 	 */
3575 	for (i = 0; i < pimap->n_mapped; i++) {
3576 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
3577 			if (pimap->mapped[i].r_hwirq) {
3578 				mutex_unlock(&kvm->lock);
3579 				return -EINVAL;
3580 			}
3581 			break;
3582 		}
3583 	}
3584 
3585 	if (i == KVMPPC_PIRQ_MAPPED) {
3586 		mutex_unlock(&kvm->lock);
3587 		return -EAGAIN;		/* table is full */
3588 	}
3589 
3590 	irq_map = &pimap->mapped[i];
3591 
3592 	irq_map->v_hwirq = guest_gsi;
3593 	irq_map->desc = desc;
3594 
3595 	/*
3596 	 * Order the above two stores before the next to serialize with
3597 	 * the KVM real mode handler.
3598 	 */
3599 	smp_wmb();
3600 	irq_map->r_hwirq = desc->irq_data.hwirq;
3601 
3602 	if (i == pimap->n_mapped)
3603 		pimap->n_mapped++;
3604 
3605 	kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3606 
3607 	mutex_unlock(&kvm->lock);
3608 
3609 	return 0;
3610 }
3611 
3612 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3613 {
3614 	struct irq_desc *desc;
3615 	struct kvmppc_passthru_irqmap *pimap;
3616 	int i;
3617 
3618 	if (!kvm_irq_bypass)
3619 		return 0;
3620 
3621 	desc = irq_to_desc(host_irq);
3622 	if (!desc)
3623 		return -EIO;
3624 
3625 	mutex_lock(&kvm->lock);
3626 
3627 	if (kvm->arch.pimap == NULL) {
3628 		mutex_unlock(&kvm->lock);
3629 		return 0;
3630 	}
3631 	pimap = kvm->arch.pimap;
3632 
3633 	for (i = 0; i < pimap->n_mapped; i++) {
3634 		if (guest_gsi == pimap->mapped[i].v_hwirq)
3635 			break;
3636 	}
3637 
3638 	if (i == pimap->n_mapped) {
3639 		mutex_unlock(&kvm->lock);
3640 		return -ENODEV;
3641 	}
3642 
3643 	kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3644 
3645 	/* invalidate the entry */
3646 	pimap->mapped[i].r_hwirq = 0;
3647 
3648 	/*
3649 	 * We don't free this structure even when the count goes to
3650 	 * zero. The structure is freed when we destroy the VM.
3651 	 */
3652 
3653 	mutex_unlock(&kvm->lock);
3654 	return 0;
3655 }
3656 
3657 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3658 					     struct irq_bypass_producer *prod)
3659 {
3660 	int ret = 0;
3661 	struct kvm_kernel_irqfd *irqfd =
3662 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3663 
3664 	irqfd->producer = prod;
3665 
3666 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3667 	if (ret)
3668 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3669 			prod->irq, irqfd->gsi, ret);
3670 
3671 	return ret;
3672 }
3673 
3674 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3675 					      struct irq_bypass_producer *prod)
3676 {
3677 	int ret;
3678 	struct kvm_kernel_irqfd *irqfd =
3679 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3680 
3681 	irqfd->producer = NULL;
3682 
3683 	/*
3684 	 * When producer of consumer is unregistered, we change back to
3685 	 * default external interrupt handling mode - KVM real mode
3686 	 * will switch back to host.
3687 	 */
3688 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3689 	if (ret)
3690 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3691 			prod->irq, irqfd->gsi, ret);
3692 }
3693 #endif
3694 
3695 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3696 				 unsigned int ioctl, unsigned long arg)
3697 {
3698 	struct kvm *kvm __maybe_unused = filp->private_data;
3699 	void __user *argp = (void __user *)arg;
3700 	long r;
3701 
3702 	switch (ioctl) {
3703 
3704 	case KVM_PPC_ALLOCATE_HTAB: {
3705 		u32 htab_order;
3706 
3707 		r = -EFAULT;
3708 		if (get_user(htab_order, (u32 __user *)argp))
3709 			break;
3710 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3711 		if (r)
3712 			break;
3713 		r = 0;
3714 		break;
3715 	}
3716 
3717 	case KVM_PPC_GET_HTAB_FD: {
3718 		struct kvm_get_htab_fd ghf;
3719 
3720 		r = -EFAULT;
3721 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3722 			break;
3723 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3724 		break;
3725 	}
3726 
3727 	case KVM_PPC_RESIZE_HPT_PREPARE: {
3728 		struct kvm_ppc_resize_hpt rhpt;
3729 
3730 		r = -EFAULT;
3731 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3732 			break;
3733 
3734 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
3735 		break;
3736 	}
3737 
3738 	case KVM_PPC_RESIZE_HPT_COMMIT: {
3739 		struct kvm_ppc_resize_hpt rhpt;
3740 
3741 		r = -EFAULT;
3742 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3743 			break;
3744 
3745 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
3746 		break;
3747 	}
3748 
3749 	default:
3750 		r = -ENOTTY;
3751 	}
3752 
3753 	return r;
3754 }
3755 
3756 /*
3757  * List of hcall numbers to enable by default.
3758  * For compatibility with old userspace, we enable by default
3759  * all hcalls that were implemented before the hcall-enabling
3760  * facility was added.  Note this list should not include H_RTAS.
3761  */
3762 static unsigned int default_hcall_list[] = {
3763 	H_REMOVE,
3764 	H_ENTER,
3765 	H_READ,
3766 	H_PROTECT,
3767 	H_BULK_REMOVE,
3768 	H_GET_TCE,
3769 	H_PUT_TCE,
3770 	H_SET_DABR,
3771 	H_SET_XDABR,
3772 	H_CEDE,
3773 	H_PROD,
3774 	H_CONFER,
3775 	H_REGISTER_VPA,
3776 #ifdef CONFIG_KVM_XICS
3777 	H_EOI,
3778 	H_CPPR,
3779 	H_IPI,
3780 	H_IPOLL,
3781 	H_XIRR,
3782 	H_XIRR_X,
3783 #endif
3784 	0
3785 };
3786 
3787 static void init_default_hcalls(void)
3788 {
3789 	int i;
3790 	unsigned int hcall;
3791 
3792 	for (i = 0; default_hcall_list[i]; ++i) {
3793 		hcall = default_hcall_list[i];
3794 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3795 		__set_bit(hcall / 4, default_enabled_hcalls);
3796 	}
3797 }
3798 
3799 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
3800 {
3801 	unsigned long lpcr;
3802 	int radix;
3803 
3804 	/* If not on a POWER9, reject it */
3805 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3806 		return -ENODEV;
3807 
3808 	/* If any unknown flags set, reject it */
3809 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
3810 		return -EINVAL;
3811 
3812 	/* We can't change a guest to/from radix yet */
3813 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
3814 	if (radix != kvm_is_radix(kvm))
3815 		return -EINVAL;
3816 
3817 	/* GR (guest radix) bit in process_table field must match */
3818 	if (!!(cfg->process_table & PATB_GR) != radix)
3819 		return -EINVAL;
3820 
3821 	/* Process table size field must be reasonable, i.e. <= 24 */
3822 	if ((cfg->process_table & PRTS_MASK) > 24)
3823 		return -EINVAL;
3824 
3825 	kvm->arch.process_table = cfg->process_table;
3826 	kvmppc_setup_partition_table(kvm);
3827 
3828 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
3829 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
3830 
3831 	return 0;
3832 }
3833 
3834 static struct kvmppc_ops kvm_ops_hv = {
3835 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3836 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3837 	.get_one_reg = kvmppc_get_one_reg_hv,
3838 	.set_one_reg = kvmppc_set_one_reg_hv,
3839 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3840 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3841 	.set_msr     = kvmppc_set_msr_hv,
3842 	.vcpu_run    = kvmppc_vcpu_run_hv,
3843 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3844 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3845 	.check_requests = kvmppc_core_check_requests_hv,
3846 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3847 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3848 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3849 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3850 	.unmap_hva = kvm_unmap_hva_hv,
3851 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3852 	.age_hva  = kvm_age_hva_hv,
3853 	.test_age_hva = kvm_test_age_hva_hv,
3854 	.set_spte_hva = kvm_set_spte_hva_hv,
3855 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3856 	.free_memslot = kvmppc_core_free_memslot_hv,
3857 	.create_memslot = kvmppc_core_create_memslot_hv,
3858 	.init_vm =  kvmppc_core_init_vm_hv,
3859 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3860 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3861 	.emulate_op = kvmppc_core_emulate_op_hv,
3862 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3863 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3864 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3865 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3866 	.hcall_implemented = kvmppc_hcall_impl_hv,
3867 #ifdef CONFIG_KVM_XICS
3868 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3869 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3870 #endif
3871 	.configure_mmu = kvmhv_configure_mmu,
3872 	.get_rmmu_info = kvmhv_get_rmmu_info,
3873 };
3874 
3875 static int kvm_init_subcore_bitmap(void)
3876 {
3877 	int i, j;
3878 	int nr_cores = cpu_nr_cores();
3879 	struct sibling_subcore_state *sibling_subcore_state;
3880 
3881 	for (i = 0; i < nr_cores; i++) {
3882 		int first_cpu = i * threads_per_core;
3883 		int node = cpu_to_node(first_cpu);
3884 
3885 		/* Ignore if it is already allocated. */
3886 		if (paca[first_cpu].sibling_subcore_state)
3887 			continue;
3888 
3889 		sibling_subcore_state =
3890 			kmalloc_node(sizeof(struct sibling_subcore_state),
3891 							GFP_KERNEL, node);
3892 		if (!sibling_subcore_state)
3893 			return -ENOMEM;
3894 
3895 		memset(sibling_subcore_state, 0,
3896 				sizeof(struct sibling_subcore_state));
3897 
3898 		for (j = 0; j < threads_per_core; j++) {
3899 			int cpu = first_cpu + j;
3900 
3901 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
3902 		}
3903 	}
3904 	return 0;
3905 }
3906 
3907 static int kvmppc_radix_possible(void)
3908 {
3909 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
3910 }
3911 
3912 static int kvmppc_book3s_init_hv(void)
3913 {
3914 	int r;
3915 	/*
3916 	 * FIXME!! Do we need to check on all cpus ?
3917 	 */
3918 	r = kvmppc_core_check_processor_compat_hv();
3919 	if (r < 0)
3920 		return -ENODEV;
3921 
3922 	r = kvm_init_subcore_bitmap();
3923 	if (r)
3924 		return r;
3925 
3926 	/*
3927 	 * We need a way of accessing the XICS interrupt controller,
3928 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
3929 	 * indirectly, via OPAL.
3930 	 */
3931 #ifdef CONFIG_SMP
3932 	if (!get_paca()->kvm_hstate.xics_phys) {
3933 		struct device_node *np;
3934 
3935 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
3936 		if (!np) {
3937 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
3938 			return -ENODEV;
3939 		}
3940 	}
3941 #endif
3942 
3943 	kvm_ops_hv.owner = THIS_MODULE;
3944 	kvmppc_hv_ops = &kvm_ops_hv;
3945 
3946 	init_default_hcalls();
3947 
3948 	init_vcore_lists();
3949 
3950 	r = kvmppc_mmu_hv_init();
3951 	if (r)
3952 		return r;
3953 
3954 	if (kvmppc_radix_possible())
3955 		r = kvmppc_radix_init();
3956 	return r;
3957 }
3958 
3959 static void kvmppc_book3s_exit_hv(void)
3960 {
3961 	kvmppc_free_host_rm_ops();
3962 	if (kvmppc_radix_possible())
3963 		kvmppc_radix_exit();
3964 	kvmppc_hv_ops = NULL;
3965 }
3966 
3967 module_init(kvmppc_book3s_init_hv);
3968 module_exit(kvmppc_book3s_exit_hv);
3969 MODULE_LICENSE("GPL");
3970 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3971 MODULE_ALIAS("devname:kvm");
3972 
3973