1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpu.h> 31 #include <linux/cpumask.h> 32 #include <linux/spinlock.h> 33 #include <linux/page-flags.h> 34 #include <linux/srcu.h> 35 #include <linux/miscdevice.h> 36 #include <linux/debugfs.h> 37 38 #include <asm/reg.h> 39 #include <asm/cputable.h> 40 #include <asm/cacheflush.h> 41 #include <asm/tlbflush.h> 42 #include <linux/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/kvm_book3s.h> 46 #include <asm/mmu_context.h> 47 #include <asm/lppaca.h> 48 #include <asm/processor.h> 49 #include <asm/cputhreads.h> 50 #include <asm/page.h> 51 #include <asm/hvcall.h> 52 #include <asm/switch_to.h> 53 #include <asm/smp.h> 54 #include <asm/dbell.h> 55 #include <asm/hmi.h> 56 #include <asm/pnv-pci.h> 57 #include <asm/mmu.h> 58 #include <asm/opal.h> 59 #include <asm/xics.h> 60 #include <linux/gfp.h> 61 #include <linux/vmalloc.h> 62 #include <linux/highmem.h> 63 #include <linux/hugetlb.h> 64 #include <linux/kvm_irqfd.h> 65 #include <linux/irqbypass.h> 66 #include <linux/module.h> 67 #include <linux/compiler.h> 68 #include <linux/of.h> 69 70 #include "book3s.h" 71 72 #define CREATE_TRACE_POINTS 73 #include "trace_hv.h" 74 75 /* #define EXIT_DEBUG */ 76 /* #define EXIT_DEBUG_SIMPLE */ 77 /* #define EXIT_DEBUG_INT */ 78 79 /* Used to indicate that a guest page fault needs to be handled */ 80 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 81 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 82 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 83 84 /* Used as a "null" value for timebase values */ 85 #define TB_NIL (~(u64)0) 86 87 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 88 89 static int dynamic_mt_modes = 6; 90 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 91 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 92 static int target_smt_mode; 93 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 94 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 95 96 #ifdef CONFIG_KVM_XICS 97 static struct kernel_param_ops module_param_ops = { 98 .set = param_set_int, 99 .get = param_get_int, 100 }; 101 102 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 103 S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 105 106 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 107 S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 109 #endif 110 111 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 112 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 113 114 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 115 int *ip) 116 { 117 int i = *ip; 118 struct kvm_vcpu *vcpu; 119 120 while (++i < MAX_SMT_THREADS) { 121 vcpu = READ_ONCE(vc->runnable_threads[i]); 122 if (vcpu) { 123 *ip = i; 124 return vcpu; 125 } 126 } 127 return NULL; 128 } 129 130 /* Used to traverse the list of runnable threads for a given vcore */ 131 #define for_each_runnable_thread(i, vcpu, vc) \ 132 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 133 134 static bool kvmppc_ipi_thread(int cpu) 135 { 136 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 137 138 /* On POWER9 we can use msgsnd to IPI any cpu */ 139 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 140 msg |= get_hard_smp_processor_id(cpu); 141 smp_mb(); 142 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 143 return true; 144 } 145 146 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 147 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 148 preempt_disable(); 149 if (cpu_first_thread_sibling(cpu) == 150 cpu_first_thread_sibling(smp_processor_id())) { 151 msg |= cpu_thread_in_core(cpu); 152 smp_mb(); 153 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 154 preempt_enable(); 155 return true; 156 } 157 preempt_enable(); 158 } 159 160 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 161 if (cpu >= 0 && cpu < nr_cpu_ids) { 162 if (paca[cpu].kvm_hstate.xics_phys) { 163 xics_wake_cpu(cpu); 164 return true; 165 } 166 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 167 return true; 168 } 169 #endif 170 171 return false; 172 } 173 174 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 175 { 176 int cpu; 177 struct swait_queue_head *wqp; 178 179 wqp = kvm_arch_vcpu_wq(vcpu); 180 if (swait_active(wqp)) { 181 swake_up(wqp); 182 ++vcpu->stat.halt_wakeup; 183 } 184 185 cpu = READ_ONCE(vcpu->arch.thread_cpu); 186 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 187 return; 188 189 /* CPU points to the first thread of the core */ 190 cpu = vcpu->cpu; 191 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 192 smp_send_reschedule(cpu); 193 } 194 195 /* 196 * We use the vcpu_load/put functions to measure stolen time. 197 * Stolen time is counted as time when either the vcpu is able to 198 * run as part of a virtual core, but the task running the vcore 199 * is preempted or sleeping, or when the vcpu needs something done 200 * in the kernel by the task running the vcpu, but that task is 201 * preempted or sleeping. Those two things have to be counted 202 * separately, since one of the vcpu tasks will take on the job 203 * of running the core, and the other vcpu tasks in the vcore will 204 * sleep waiting for it to do that, but that sleep shouldn't count 205 * as stolen time. 206 * 207 * Hence we accumulate stolen time when the vcpu can run as part of 208 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 209 * needs its task to do other things in the kernel (for example, 210 * service a page fault) in busy_stolen. We don't accumulate 211 * stolen time for a vcore when it is inactive, or for a vcpu 212 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 213 * a misnomer; it means that the vcpu task is not executing in 214 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 215 * the kernel. We don't have any way of dividing up that time 216 * between time that the vcpu is genuinely stopped, time that 217 * the task is actively working on behalf of the vcpu, and time 218 * that the task is preempted, so we don't count any of it as 219 * stolen. 220 * 221 * Updates to busy_stolen are protected by arch.tbacct_lock; 222 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 223 * lock. The stolen times are measured in units of timebase ticks. 224 * (Note that the != TB_NIL checks below are purely defensive; 225 * they should never fail.) 226 */ 227 228 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(&vc->stoltb_lock, flags); 233 vc->preempt_tb = mftb(); 234 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 235 } 236 237 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 238 { 239 unsigned long flags; 240 241 spin_lock_irqsave(&vc->stoltb_lock, flags); 242 if (vc->preempt_tb != TB_NIL) { 243 vc->stolen_tb += mftb() - vc->preempt_tb; 244 vc->preempt_tb = TB_NIL; 245 } 246 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 247 } 248 249 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 250 { 251 struct kvmppc_vcore *vc = vcpu->arch.vcore; 252 unsigned long flags; 253 254 /* 255 * We can test vc->runner without taking the vcore lock, 256 * because only this task ever sets vc->runner to this 257 * vcpu, and once it is set to this vcpu, only this task 258 * ever sets it to NULL. 259 */ 260 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 261 kvmppc_core_end_stolen(vc); 262 263 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 264 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 265 vcpu->arch.busy_preempt != TB_NIL) { 266 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 267 vcpu->arch.busy_preempt = TB_NIL; 268 } 269 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 270 } 271 272 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 273 { 274 struct kvmppc_vcore *vc = vcpu->arch.vcore; 275 unsigned long flags; 276 277 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 278 kvmppc_core_start_stolen(vc); 279 280 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 281 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 282 vcpu->arch.busy_preempt = mftb(); 283 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 284 } 285 286 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 287 { 288 /* 289 * Check for illegal transactional state bit combination 290 * and if we find it, force the TS field to a safe state. 291 */ 292 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 293 msr &= ~MSR_TS_MASK; 294 vcpu->arch.shregs.msr = msr; 295 kvmppc_end_cede(vcpu); 296 } 297 298 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 299 { 300 vcpu->arch.pvr = pvr; 301 } 302 303 /* Dummy value used in computing PCR value below */ 304 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 305 306 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 307 { 308 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 309 struct kvmppc_vcore *vc = vcpu->arch.vcore; 310 311 /* We can (emulate) our own architecture version and anything older */ 312 if (cpu_has_feature(CPU_FTR_ARCH_300)) 313 host_pcr_bit = PCR_ARCH_300; 314 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 315 host_pcr_bit = PCR_ARCH_207; 316 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 317 host_pcr_bit = PCR_ARCH_206; 318 else 319 host_pcr_bit = PCR_ARCH_205; 320 321 /* Determine lowest PCR bit needed to run guest in given PVR level */ 322 guest_pcr_bit = host_pcr_bit; 323 if (arch_compat) { 324 switch (arch_compat) { 325 case PVR_ARCH_205: 326 guest_pcr_bit = PCR_ARCH_205; 327 break; 328 case PVR_ARCH_206: 329 case PVR_ARCH_206p: 330 guest_pcr_bit = PCR_ARCH_206; 331 break; 332 case PVR_ARCH_207: 333 guest_pcr_bit = PCR_ARCH_207; 334 break; 335 case PVR_ARCH_300: 336 guest_pcr_bit = PCR_ARCH_300; 337 break; 338 default: 339 return -EINVAL; 340 } 341 } 342 343 /* Check requested PCR bits don't exceed our capabilities */ 344 if (guest_pcr_bit > host_pcr_bit) 345 return -EINVAL; 346 347 spin_lock(&vc->lock); 348 vc->arch_compat = arch_compat; 349 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 350 vc->pcr = host_pcr_bit - guest_pcr_bit; 351 spin_unlock(&vc->lock); 352 353 return 0; 354 } 355 356 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 357 { 358 int r; 359 360 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 361 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 362 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 363 for (r = 0; r < 16; ++r) 364 pr_err("r%2d = %.16lx r%d = %.16lx\n", 365 r, kvmppc_get_gpr(vcpu, r), 366 r+16, kvmppc_get_gpr(vcpu, r+16)); 367 pr_err("ctr = %.16lx lr = %.16lx\n", 368 vcpu->arch.ctr, vcpu->arch.lr); 369 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 370 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 371 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 372 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 373 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 374 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 375 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 376 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 377 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 378 pr_err("fault dar = %.16lx dsisr = %.8x\n", 379 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 380 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 381 for (r = 0; r < vcpu->arch.slb_max; ++r) 382 pr_err(" ESID = %.16llx VSID = %.16llx\n", 383 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 384 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 385 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 386 vcpu->arch.last_inst); 387 } 388 389 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 390 { 391 struct kvm_vcpu *ret; 392 393 mutex_lock(&kvm->lock); 394 ret = kvm_get_vcpu_by_id(kvm, id); 395 mutex_unlock(&kvm->lock); 396 return ret; 397 } 398 399 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 400 { 401 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 402 vpa->yield_count = cpu_to_be32(1); 403 } 404 405 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 406 unsigned long addr, unsigned long len) 407 { 408 /* check address is cacheline aligned */ 409 if (addr & (L1_CACHE_BYTES - 1)) 410 return -EINVAL; 411 spin_lock(&vcpu->arch.vpa_update_lock); 412 if (v->next_gpa != addr || v->len != len) { 413 v->next_gpa = addr; 414 v->len = addr ? len : 0; 415 v->update_pending = 1; 416 } 417 spin_unlock(&vcpu->arch.vpa_update_lock); 418 return 0; 419 } 420 421 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 422 struct reg_vpa { 423 u32 dummy; 424 union { 425 __be16 hword; 426 __be32 word; 427 } length; 428 }; 429 430 static int vpa_is_registered(struct kvmppc_vpa *vpap) 431 { 432 if (vpap->update_pending) 433 return vpap->next_gpa != 0; 434 return vpap->pinned_addr != NULL; 435 } 436 437 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 438 unsigned long flags, 439 unsigned long vcpuid, unsigned long vpa) 440 { 441 struct kvm *kvm = vcpu->kvm; 442 unsigned long len, nb; 443 void *va; 444 struct kvm_vcpu *tvcpu; 445 int err; 446 int subfunc; 447 struct kvmppc_vpa *vpap; 448 449 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 450 if (!tvcpu) 451 return H_PARAMETER; 452 453 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 454 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 455 subfunc == H_VPA_REG_SLB) { 456 /* Registering new area - address must be cache-line aligned */ 457 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 458 return H_PARAMETER; 459 460 /* convert logical addr to kernel addr and read length */ 461 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 462 if (va == NULL) 463 return H_PARAMETER; 464 if (subfunc == H_VPA_REG_VPA) 465 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 466 else 467 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 468 kvmppc_unpin_guest_page(kvm, va, vpa, false); 469 470 /* Check length */ 471 if (len > nb || len < sizeof(struct reg_vpa)) 472 return H_PARAMETER; 473 } else { 474 vpa = 0; 475 len = 0; 476 } 477 478 err = H_PARAMETER; 479 vpap = NULL; 480 spin_lock(&tvcpu->arch.vpa_update_lock); 481 482 switch (subfunc) { 483 case H_VPA_REG_VPA: /* register VPA */ 484 if (len < sizeof(struct lppaca)) 485 break; 486 vpap = &tvcpu->arch.vpa; 487 err = 0; 488 break; 489 490 case H_VPA_REG_DTL: /* register DTL */ 491 if (len < sizeof(struct dtl_entry)) 492 break; 493 len -= len % sizeof(struct dtl_entry); 494 495 /* Check that they have previously registered a VPA */ 496 err = H_RESOURCE; 497 if (!vpa_is_registered(&tvcpu->arch.vpa)) 498 break; 499 500 vpap = &tvcpu->arch.dtl; 501 err = 0; 502 break; 503 504 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 505 /* Check that they have previously registered a VPA */ 506 err = H_RESOURCE; 507 if (!vpa_is_registered(&tvcpu->arch.vpa)) 508 break; 509 510 vpap = &tvcpu->arch.slb_shadow; 511 err = 0; 512 break; 513 514 case H_VPA_DEREG_VPA: /* deregister VPA */ 515 /* Check they don't still have a DTL or SLB buf registered */ 516 err = H_RESOURCE; 517 if (vpa_is_registered(&tvcpu->arch.dtl) || 518 vpa_is_registered(&tvcpu->arch.slb_shadow)) 519 break; 520 521 vpap = &tvcpu->arch.vpa; 522 err = 0; 523 break; 524 525 case H_VPA_DEREG_DTL: /* deregister DTL */ 526 vpap = &tvcpu->arch.dtl; 527 err = 0; 528 break; 529 530 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 531 vpap = &tvcpu->arch.slb_shadow; 532 err = 0; 533 break; 534 } 535 536 if (vpap) { 537 vpap->next_gpa = vpa; 538 vpap->len = len; 539 vpap->update_pending = 1; 540 } 541 542 spin_unlock(&tvcpu->arch.vpa_update_lock); 543 544 return err; 545 } 546 547 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 548 { 549 struct kvm *kvm = vcpu->kvm; 550 void *va; 551 unsigned long nb; 552 unsigned long gpa; 553 554 /* 555 * We need to pin the page pointed to by vpap->next_gpa, 556 * but we can't call kvmppc_pin_guest_page under the lock 557 * as it does get_user_pages() and down_read(). So we 558 * have to drop the lock, pin the page, then get the lock 559 * again and check that a new area didn't get registered 560 * in the meantime. 561 */ 562 for (;;) { 563 gpa = vpap->next_gpa; 564 spin_unlock(&vcpu->arch.vpa_update_lock); 565 va = NULL; 566 nb = 0; 567 if (gpa) 568 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 569 spin_lock(&vcpu->arch.vpa_update_lock); 570 if (gpa == vpap->next_gpa) 571 break; 572 /* sigh... unpin that one and try again */ 573 if (va) 574 kvmppc_unpin_guest_page(kvm, va, gpa, false); 575 } 576 577 vpap->update_pending = 0; 578 if (va && nb < vpap->len) { 579 /* 580 * If it's now too short, it must be that userspace 581 * has changed the mappings underlying guest memory, 582 * so unregister the region. 583 */ 584 kvmppc_unpin_guest_page(kvm, va, gpa, false); 585 va = NULL; 586 } 587 if (vpap->pinned_addr) 588 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 589 vpap->dirty); 590 vpap->gpa = gpa; 591 vpap->pinned_addr = va; 592 vpap->dirty = false; 593 if (va) 594 vpap->pinned_end = va + vpap->len; 595 } 596 597 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 598 { 599 if (!(vcpu->arch.vpa.update_pending || 600 vcpu->arch.slb_shadow.update_pending || 601 vcpu->arch.dtl.update_pending)) 602 return; 603 604 spin_lock(&vcpu->arch.vpa_update_lock); 605 if (vcpu->arch.vpa.update_pending) { 606 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 607 if (vcpu->arch.vpa.pinned_addr) 608 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 609 } 610 if (vcpu->arch.dtl.update_pending) { 611 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 612 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 613 vcpu->arch.dtl_index = 0; 614 } 615 if (vcpu->arch.slb_shadow.update_pending) 616 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 617 spin_unlock(&vcpu->arch.vpa_update_lock); 618 } 619 620 /* 621 * Return the accumulated stolen time for the vcore up until `now'. 622 * The caller should hold the vcore lock. 623 */ 624 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 625 { 626 u64 p; 627 unsigned long flags; 628 629 spin_lock_irqsave(&vc->stoltb_lock, flags); 630 p = vc->stolen_tb; 631 if (vc->vcore_state != VCORE_INACTIVE && 632 vc->preempt_tb != TB_NIL) 633 p += now - vc->preempt_tb; 634 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 635 return p; 636 } 637 638 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 639 struct kvmppc_vcore *vc) 640 { 641 struct dtl_entry *dt; 642 struct lppaca *vpa; 643 unsigned long stolen; 644 unsigned long core_stolen; 645 u64 now; 646 647 dt = vcpu->arch.dtl_ptr; 648 vpa = vcpu->arch.vpa.pinned_addr; 649 now = mftb(); 650 core_stolen = vcore_stolen_time(vc, now); 651 stolen = core_stolen - vcpu->arch.stolen_logged; 652 vcpu->arch.stolen_logged = core_stolen; 653 spin_lock_irq(&vcpu->arch.tbacct_lock); 654 stolen += vcpu->arch.busy_stolen; 655 vcpu->arch.busy_stolen = 0; 656 spin_unlock_irq(&vcpu->arch.tbacct_lock); 657 if (!dt || !vpa) 658 return; 659 memset(dt, 0, sizeof(struct dtl_entry)); 660 dt->dispatch_reason = 7; 661 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 662 dt->timebase = cpu_to_be64(now + vc->tb_offset); 663 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 664 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 665 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 666 ++dt; 667 if (dt == vcpu->arch.dtl.pinned_end) 668 dt = vcpu->arch.dtl.pinned_addr; 669 vcpu->arch.dtl_ptr = dt; 670 /* order writing *dt vs. writing vpa->dtl_idx */ 671 smp_wmb(); 672 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 673 vcpu->arch.dtl.dirty = true; 674 } 675 676 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 677 { 678 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 679 return true; 680 if ((!vcpu->arch.vcore->arch_compat) && 681 cpu_has_feature(CPU_FTR_ARCH_207S)) 682 return true; 683 return false; 684 } 685 686 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 687 unsigned long resource, unsigned long value1, 688 unsigned long value2) 689 { 690 switch (resource) { 691 case H_SET_MODE_RESOURCE_SET_CIABR: 692 if (!kvmppc_power8_compatible(vcpu)) 693 return H_P2; 694 if (value2) 695 return H_P4; 696 if (mflags) 697 return H_UNSUPPORTED_FLAG_START; 698 /* Guests can't breakpoint the hypervisor */ 699 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 700 return H_P3; 701 vcpu->arch.ciabr = value1; 702 return H_SUCCESS; 703 case H_SET_MODE_RESOURCE_SET_DAWR: 704 if (!kvmppc_power8_compatible(vcpu)) 705 return H_P2; 706 if (mflags) 707 return H_UNSUPPORTED_FLAG_START; 708 if (value2 & DABRX_HYP) 709 return H_P4; 710 vcpu->arch.dawr = value1; 711 vcpu->arch.dawrx = value2; 712 return H_SUCCESS; 713 default: 714 return H_TOO_HARD; 715 } 716 } 717 718 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 719 { 720 struct kvmppc_vcore *vcore = target->arch.vcore; 721 722 /* 723 * We expect to have been called by the real mode handler 724 * (kvmppc_rm_h_confer()) which would have directly returned 725 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 726 * have useful work to do and should not confer) so we don't 727 * recheck that here. 728 */ 729 730 spin_lock(&vcore->lock); 731 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 732 vcore->vcore_state != VCORE_INACTIVE && 733 vcore->runner) 734 target = vcore->runner; 735 spin_unlock(&vcore->lock); 736 737 return kvm_vcpu_yield_to(target); 738 } 739 740 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 741 { 742 int yield_count = 0; 743 struct lppaca *lppaca; 744 745 spin_lock(&vcpu->arch.vpa_update_lock); 746 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 747 if (lppaca) 748 yield_count = be32_to_cpu(lppaca->yield_count); 749 spin_unlock(&vcpu->arch.vpa_update_lock); 750 return yield_count; 751 } 752 753 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 754 { 755 unsigned long req = kvmppc_get_gpr(vcpu, 3); 756 unsigned long target, ret = H_SUCCESS; 757 int yield_count; 758 struct kvm_vcpu *tvcpu; 759 int idx, rc; 760 761 if (req <= MAX_HCALL_OPCODE && 762 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 763 return RESUME_HOST; 764 765 switch (req) { 766 case H_CEDE: 767 break; 768 case H_PROD: 769 target = kvmppc_get_gpr(vcpu, 4); 770 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 771 if (!tvcpu) { 772 ret = H_PARAMETER; 773 break; 774 } 775 tvcpu->arch.prodded = 1; 776 smp_mb(); 777 if (tvcpu->arch.ceded) 778 kvmppc_fast_vcpu_kick_hv(tvcpu); 779 break; 780 case H_CONFER: 781 target = kvmppc_get_gpr(vcpu, 4); 782 if (target == -1) 783 break; 784 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 785 if (!tvcpu) { 786 ret = H_PARAMETER; 787 break; 788 } 789 yield_count = kvmppc_get_gpr(vcpu, 5); 790 if (kvmppc_get_yield_count(tvcpu) != yield_count) 791 break; 792 kvm_arch_vcpu_yield_to(tvcpu); 793 break; 794 case H_REGISTER_VPA: 795 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 796 kvmppc_get_gpr(vcpu, 5), 797 kvmppc_get_gpr(vcpu, 6)); 798 break; 799 case H_RTAS: 800 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 801 return RESUME_HOST; 802 803 idx = srcu_read_lock(&vcpu->kvm->srcu); 804 rc = kvmppc_rtas_hcall(vcpu); 805 srcu_read_unlock(&vcpu->kvm->srcu, idx); 806 807 if (rc == -ENOENT) 808 return RESUME_HOST; 809 else if (rc == 0) 810 break; 811 812 /* Send the error out to userspace via KVM_RUN */ 813 return rc; 814 case H_LOGICAL_CI_LOAD: 815 ret = kvmppc_h_logical_ci_load(vcpu); 816 if (ret == H_TOO_HARD) 817 return RESUME_HOST; 818 break; 819 case H_LOGICAL_CI_STORE: 820 ret = kvmppc_h_logical_ci_store(vcpu); 821 if (ret == H_TOO_HARD) 822 return RESUME_HOST; 823 break; 824 case H_SET_MODE: 825 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 826 kvmppc_get_gpr(vcpu, 5), 827 kvmppc_get_gpr(vcpu, 6), 828 kvmppc_get_gpr(vcpu, 7)); 829 if (ret == H_TOO_HARD) 830 return RESUME_HOST; 831 break; 832 case H_XIRR: 833 case H_CPPR: 834 case H_EOI: 835 case H_IPI: 836 case H_IPOLL: 837 case H_XIRR_X: 838 if (kvmppc_xics_enabled(vcpu)) { 839 ret = kvmppc_xics_hcall(vcpu, req); 840 break; 841 } 842 return RESUME_HOST; 843 case H_PUT_TCE: 844 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 845 kvmppc_get_gpr(vcpu, 5), 846 kvmppc_get_gpr(vcpu, 6)); 847 if (ret == H_TOO_HARD) 848 return RESUME_HOST; 849 break; 850 case H_PUT_TCE_INDIRECT: 851 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 852 kvmppc_get_gpr(vcpu, 5), 853 kvmppc_get_gpr(vcpu, 6), 854 kvmppc_get_gpr(vcpu, 7)); 855 if (ret == H_TOO_HARD) 856 return RESUME_HOST; 857 break; 858 case H_STUFF_TCE: 859 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 860 kvmppc_get_gpr(vcpu, 5), 861 kvmppc_get_gpr(vcpu, 6), 862 kvmppc_get_gpr(vcpu, 7)); 863 if (ret == H_TOO_HARD) 864 return RESUME_HOST; 865 break; 866 default: 867 return RESUME_HOST; 868 } 869 kvmppc_set_gpr(vcpu, 3, ret); 870 vcpu->arch.hcall_needed = 0; 871 return RESUME_GUEST; 872 } 873 874 static int kvmppc_hcall_impl_hv(unsigned long cmd) 875 { 876 switch (cmd) { 877 case H_CEDE: 878 case H_PROD: 879 case H_CONFER: 880 case H_REGISTER_VPA: 881 case H_SET_MODE: 882 case H_LOGICAL_CI_LOAD: 883 case H_LOGICAL_CI_STORE: 884 #ifdef CONFIG_KVM_XICS 885 case H_XIRR: 886 case H_CPPR: 887 case H_EOI: 888 case H_IPI: 889 case H_IPOLL: 890 case H_XIRR_X: 891 #endif 892 return 1; 893 } 894 895 /* See if it's in the real-mode table */ 896 return kvmppc_hcall_impl_hv_realmode(cmd); 897 } 898 899 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 900 struct kvm_vcpu *vcpu) 901 { 902 u32 last_inst; 903 904 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 905 EMULATE_DONE) { 906 /* 907 * Fetch failed, so return to guest and 908 * try executing it again. 909 */ 910 return RESUME_GUEST; 911 } 912 913 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 914 run->exit_reason = KVM_EXIT_DEBUG; 915 run->debug.arch.address = kvmppc_get_pc(vcpu); 916 return RESUME_HOST; 917 } else { 918 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 919 return RESUME_GUEST; 920 } 921 } 922 923 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 924 struct task_struct *tsk) 925 { 926 int r = RESUME_HOST; 927 928 vcpu->stat.sum_exits++; 929 930 /* 931 * This can happen if an interrupt occurs in the last stages 932 * of guest entry or the first stages of guest exit (i.e. after 933 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 934 * and before setting it to KVM_GUEST_MODE_HOST_HV). 935 * That can happen due to a bug, or due to a machine check 936 * occurring at just the wrong time. 937 */ 938 if (vcpu->arch.shregs.msr & MSR_HV) { 939 printk(KERN_EMERG "KVM trap in HV mode!\n"); 940 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 941 vcpu->arch.trap, kvmppc_get_pc(vcpu), 942 vcpu->arch.shregs.msr); 943 kvmppc_dump_regs(vcpu); 944 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 945 run->hw.hardware_exit_reason = vcpu->arch.trap; 946 return RESUME_HOST; 947 } 948 run->exit_reason = KVM_EXIT_UNKNOWN; 949 run->ready_for_interrupt_injection = 1; 950 switch (vcpu->arch.trap) { 951 /* We're good on these - the host merely wanted to get our attention */ 952 case BOOK3S_INTERRUPT_HV_DECREMENTER: 953 vcpu->stat.dec_exits++; 954 r = RESUME_GUEST; 955 break; 956 case BOOK3S_INTERRUPT_EXTERNAL: 957 case BOOK3S_INTERRUPT_H_DOORBELL: 958 case BOOK3S_INTERRUPT_H_VIRT: 959 vcpu->stat.ext_intr_exits++; 960 r = RESUME_GUEST; 961 break; 962 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 963 case BOOK3S_INTERRUPT_HMI: 964 case BOOK3S_INTERRUPT_PERFMON: 965 r = RESUME_GUEST; 966 break; 967 case BOOK3S_INTERRUPT_MACHINE_CHECK: 968 /* 969 * Deliver a machine check interrupt to the guest. 970 * We have to do this, even if the host has handled the 971 * machine check, because machine checks use SRR0/1 and 972 * the interrupt might have trashed guest state in them. 973 */ 974 kvmppc_book3s_queue_irqprio(vcpu, 975 BOOK3S_INTERRUPT_MACHINE_CHECK); 976 r = RESUME_GUEST; 977 break; 978 case BOOK3S_INTERRUPT_PROGRAM: 979 { 980 ulong flags; 981 /* 982 * Normally program interrupts are delivered directly 983 * to the guest by the hardware, but we can get here 984 * as a result of a hypervisor emulation interrupt 985 * (e40) getting turned into a 700 by BML RTAS. 986 */ 987 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 988 kvmppc_core_queue_program(vcpu, flags); 989 r = RESUME_GUEST; 990 break; 991 } 992 case BOOK3S_INTERRUPT_SYSCALL: 993 { 994 /* hcall - punt to userspace */ 995 int i; 996 997 /* hypercall with MSR_PR has already been handled in rmode, 998 * and never reaches here. 999 */ 1000 1001 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1002 for (i = 0; i < 9; ++i) 1003 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1004 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1005 vcpu->arch.hcall_needed = 1; 1006 r = RESUME_HOST; 1007 break; 1008 } 1009 /* 1010 * We get these next two if the guest accesses a page which it thinks 1011 * it has mapped but which is not actually present, either because 1012 * it is for an emulated I/O device or because the corresonding 1013 * host page has been paged out. Any other HDSI/HISI interrupts 1014 * have been handled already. 1015 */ 1016 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1017 r = RESUME_PAGE_FAULT; 1018 break; 1019 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1020 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1021 vcpu->arch.fault_dsisr = 0; 1022 r = RESUME_PAGE_FAULT; 1023 break; 1024 /* 1025 * This occurs if the guest executes an illegal instruction. 1026 * If the guest debug is disabled, generate a program interrupt 1027 * to the guest. If guest debug is enabled, we need to check 1028 * whether the instruction is a software breakpoint instruction. 1029 * Accordingly return to Guest or Host. 1030 */ 1031 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1032 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1033 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1034 swab32(vcpu->arch.emul_inst) : 1035 vcpu->arch.emul_inst; 1036 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1037 r = kvmppc_emulate_debug_inst(run, vcpu); 1038 } else { 1039 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1040 r = RESUME_GUEST; 1041 } 1042 break; 1043 /* 1044 * This occurs if the guest (kernel or userspace), does something that 1045 * is prohibited by HFSCR. We just generate a program interrupt to 1046 * the guest. 1047 */ 1048 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1049 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1050 r = RESUME_GUEST; 1051 break; 1052 case BOOK3S_INTERRUPT_HV_RM_HARD: 1053 r = RESUME_PASSTHROUGH; 1054 break; 1055 default: 1056 kvmppc_dump_regs(vcpu); 1057 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1058 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1059 vcpu->arch.shregs.msr); 1060 run->hw.hardware_exit_reason = vcpu->arch.trap; 1061 r = RESUME_HOST; 1062 break; 1063 } 1064 1065 return r; 1066 } 1067 1068 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1069 struct kvm_sregs *sregs) 1070 { 1071 int i; 1072 1073 memset(sregs, 0, sizeof(struct kvm_sregs)); 1074 sregs->pvr = vcpu->arch.pvr; 1075 for (i = 0; i < vcpu->arch.slb_max; i++) { 1076 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1077 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1078 } 1079 1080 return 0; 1081 } 1082 1083 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1084 struct kvm_sregs *sregs) 1085 { 1086 int i, j; 1087 1088 /* Only accept the same PVR as the host's, since we can't spoof it */ 1089 if (sregs->pvr != vcpu->arch.pvr) 1090 return -EINVAL; 1091 1092 j = 0; 1093 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1094 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1095 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1096 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1097 ++j; 1098 } 1099 } 1100 vcpu->arch.slb_max = j; 1101 1102 return 0; 1103 } 1104 1105 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1106 bool preserve_top32) 1107 { 1108 struct kvm *kvm = vcpu->kvm; 1109 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1110 u64 mask; 1111 1112 mutex_lock(&kvm->lock); 1113 spin_lock(&vc->lock); 1114 /* 1115 * If ILE (interrupt little-endian) has changed, update the 1116 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1117 */ 1118 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1119 struct kvm_vcpu *vcpu; 1120 int i; 1121 1122 kvm_for_each_vcpu(i, vcpu, kvm) { 1123 if (vcpu->arch.vcore != vc) 1124 continue; 1125 if (new_lpcr & LPCR_ILE) 1126 vcpu->arch.intr_msr |= MSR_LE; 1127 else 1128 vcpu->arch.intr_msr &= ~MSR_LE; 1129 } 1130 } 1131 1132 /* 1133 * Userspace can only modify DPFD (default prefetch depth), 1134 * ILE (interrupt little-endian) and TC (translation control). 1135 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1136 */ 1137 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1138 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1139 mask |= LPCR_AIL; 1140 1141 /* Broken 32-bit version of LPCR must not clear top bits */ 1142 if (preserve_top32) 1143 mask &= 0xFFFFFFFF; 1144 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1145 spin_unlock(&vc->lock); 1146 mutex_unlock(&kvm->lock); 1147 } 1148 1149 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1150 union kvmppc_one_reg *val) 1151 { 1152 int r = 0; 1153 long int i; 1154 1155 switch (id) { 1156 case KVM_REG_PPC_DEBUG_INST: 1157 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1158 break; 1159 case KVM_REG_PPC_HIOR: 1160 *val = get_reg_val(id, 0); 1161 break; 1162 case KVM_REG_PPC_DABR: 1163 *val = get_reg_val(id, vcpu->arch.dabr); 1164 break; 1165 case KVM_REG_PPC_DABRX: 1166 *val = get_reg_val(id, vcpu->arch.dabrx); 1167 break; 1168 case KVM_REG_PPC_DSCR: 1169 *val = get_reg_val(id, vcpu->arch.dscr); 1170 break; 1171 case KVM_REG_PPC_PURR: 1172 *val = get_reg_val(id, vcpu->arch.purr); 1173 break; 1174 case KVM_REG_PPC_SPURR: 1175 *val = get_reg_val(id, vcpu->arch.spurr); 1176 break; 1177 case KVM_REG_PPC_AMR: 1178 *val = get_reg_val(id, vcpu->arch.amr); 1179 break; 1180 case KVM_REG_PPC_UAMOR: 1181 *val = get_reg_val(id, vcpu->arch.uamor); 1182 break; 1183 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1184 i = id - KVM_REG_PPC_MMCR0; 1185 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1186 break; 1187 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1188 i = id - KVM_REG_PPC_PMC1; 1189 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1190 break; 1191 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1192 i = id - KVM_REG_PPC_SPMC1; 1193 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1194 break; 1195 case KVM_REG_PPC_SIAR: 1196 *val = get_reg_val(id, vcpu->arch.siar); 1197 break; 1198 case KVM_REG_PPC_SDAR: 1199 *val = get_reg_val(id, vcpu->arch.sdar); 1200 break; 1201 case KVM_REG_PPC_SIER: 1202 *val = get_reg_val(id, vcpu->arch.sier); 1203 break; 1204 case KVM_REG_PPC_IAMR: 1205 *val = get_reg_val(id, vcpu->arch.iamr); 1206 break; 1207 case KVM_REG_PPC_PSPB: 1208 *val = get_reg_val(id, vcpu->arch.pspb); 1209 break; 1210 case KVM_REG_PPC_DPDES: 1211 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1212 break; 1213 case KVM_REG_PPC_VTB: 1214 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1215 break; 1216 case KVM_REG_PPC_DAWR: 1217 *val = get_reg_val(id, vcpu->arch.dawr); 1218 break; 1219 case KVM_REG_PPC_DAWRX: 1220 *val = get_reg_val(id, vcpu->arch.dawrx); 1221 break; 1222 case KVM_REG_PPC_CIABR: 1223 *val = get_reg_val(id, vcpu->arch.ciabr); 1224 break; 1225 case KVM_REG_PPC_CSIGR: 1226 *val = get_reg_val(id, vcpu->arch.csigr); 1227 break; 1228 case KVM_REG_PPC_TACR: 1229 *val = get_reg_val(id, vcpu->arch.tacr); 1230 break; 1231 case KVM_REG_PPC_TCSCR: 1232 *val = get_reg_val(id, vcpu->arch.tcscr); 1233 break; 1234 case KVM_REG_PPC_PID: 1235 *val = get_reg_val(id, vcpu->arch.pid); 1236 break; 1237 case KVM_REG_PPC_ACOP: 1238 *val = get_reg_val(id, vcpu->arch.acop); 1239 break; 1240 case KVM_REG_PPC_WORT: 1241 *val = get_reg_val(id, vcpu->arch.wort); 1242 break; 1243 case KVM_REG_PPC_TIDR: 1244 *val = get_reg_val(id, vcpu->arch.tid); 1245 break; 1246 case KVM_REG_PPC_PSSCR: 1247 *val = get_reg_val(id, vcpu->arch.psscr); 1248 break; 1249 case KVM_REG_PPC_VPA_ADDR: 1250 spin_lock(&vcpu->arch.vpa_update_lock); 1251 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1252 spin_unlock(&vcpu->arch.vpa_update_lock); 1253 break; 1254 case KVM_REG_PPC_VPA_SLB: 1255 spin_lock(&vcpu->arch.vpa_update_lock); 1256 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1257 val->vpaval.length = vcpu->arch.slb_shadow.len; 1258 spin_unlock(&vcpu->arch.vpa_update_lock); 1259 break; 1260 case KVM_REG_PPC_VPA_DTL: 1261 spin_lock(&vcpu->arch.vpa_update_lock); 1262 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1263 val->vpaval.length = vcpu->arch.dtl.len; 1264 spin_unlock(&vcpu->arch.vpa_update_lock); 1265 break; 1266 case KVM_REG_PPC_TB_OFFSET: 1267 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1268 break; 1269 case KVM_REG_PPC_LPCR: 1270 case KVM_REG_PPC_LPCR_64: 1271 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1272 break; 1273 case KVM_REG_PPC_PPR: 1274 *val = get_reg_val(id, vcpu->arch.ppr); 1275 break; 1276 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1277 case KVM_REG_PPC_TFHAR: 1278 *val = get_reg_val(id, vcpu->arch.tfhar); 1279 break; 1280 case KVM_REG_PPC_TFIAR: 1281 *val = get_reg_val(id, vcpu->arch.tfiar); 1282 break; 1283 case KVM_REG_PPC_TEXASR: 1284 *val = get_reg_val(id, vcpu->arch.texasr); 1285 break; 1286 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1287 i = id - KVM_REG_PPC_TM_GPR0; 1288 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1289 break; 1290 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1291 { 1292 int j; 1293 i = id - KVM_REG_PPC_TM_VSR0; 1294 if (i < 32) 1295 for (j = 0; j < TS_FPRWIDTH; j++) 1296 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1297 else { 1298 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1299 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1300 else 1301 r = -ENXIO; 1302 } 1303 break; 1304 } 1305 case KVM_REG_PPC_TM_CR: 1306 *val = get_reg_val(id, vcpu->arch.cr_tm); 1307 break; 1308 case KVM_REG_PPC_TM_XER: 1309 *val = get_reg_val(id, vcpu->arch.xer_tm); 1310 break; 1311 case KVM_REG_PPC_TM_LR: 1312 *val = get_reg_val(id, vcpu->arch.lr_tm); 1313 break; 1314 case KVM_REG_PPC_TM_CTR: 1315 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1316 break; 1317 case KVM_REG_PPC_TM_FPSCR: 1318 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1319 break; 1320 case KVM_REG_PPC_TM_AMR: 1321 *val = get_reg_val(id, vcpu->arch.amr_tm); 1322 break; 1323 case KVM_REG_PPC_TM_PPR: 1324 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1325 break; 1326 case KVM_REG_PPC_TM_VRSAVE: 1327 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1328 break; 1329 case KVM_REG_PPC_TM_VSCR: 1330 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1331 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1332 else 1333 r = -ENXIO; 1334 break; 1335 case KVM_REG_PPC_TM_DSCR: 1336 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1337 break; 1338 case KVM_REG_PPC_TM_TAR: 1339 *val = get_reg_val(id, vcpu->arch.tar_tm); 1340 break; 1341 #endif 1342 case KVM_REG_PPC_ARCH_COMPAT: 1343 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1344 break; 1345 default: 1346 r = -EINVAL; 1347 break; 1348 } 1349 1350 return r; 1351 } 1352 1353 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1354 union kvmppc_one_reg *val) 1355 { 1356 int r = 0; 1357 long int i; 1358 unsigned long addr, len; 1359 1360 switch (id) { 1361 case KVM_REG_PPC_HIOR: 1362 /* Only allow this to be set to zero */ 1363 if (set_reg_val(id, *val)) 1364 r = -EINVAL; 1365 break; 1366 case KVM_REG_PPC_DABR: 1367 vcpu->arch.dabr = set_reg_val(id, *val); 1368 break; 1369 case KVM_REG_PPC_DABRX: 1370 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1371 break; 1372 case KVM_REG_PPC_DSCR: 1373 vcpu->arch.dscr = set_reg_val(id, *val); 1374 break; 1375 case KVM_REG_PPC_PURR: 1376 vcpu->arch.purr = set_reg_val(id, *val); 1377 break; 1378 case KVM_REG_PPC_SPURR: 1379 vcpu->arch.spurr = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_AMR: 1382 vcpu->arch.amr = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_UAMOR: 1385 vcpu->arch.uamor = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1388 i = id - KVM_REG_PPC_MMCR0; 1389 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1390 break; 1391 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1392 i = id - KVM_REG_PPC_PMC1; 1393 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1394 break; 1395 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1396 i = id - KVM_REG_PPC_SPMC1; 1397 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1398 break; 1399 case KVM_REG_PPC_SIAR: 1400 vcpu->arch.siar = set_reg_val(id, *val); 1401 break; 1402 case KVM_REG_PPC_SDAR: 1403 vcpu->arch.sdar = set_reg_val(id, *val); 1404 break; 1405 case KVM_REG_PPC_SIER: 1406 vcpu->arch.sier = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_IAMR: 1409 vcpu->arch.iamr = set_reg_val(id, *val); 1410 break; 1411 case KVM_REG_PPC_PSPB: 1412 vcpu->arch.pspb = set_reg_val(id, *val); 1413 break; 1414 case KVM_REG_PPC_DPDES: 1415 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_VTB: 1418 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_DAWR: 1421 vcpu->arch.dawr = set_reg_val(id, *val); 1422 break; 1423 case KVM_REG_PPC_DAWRX: 1424 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1425 break; 1426 case KVM_REG_PPC_CIABR: 1427 vcpu->arch.ciabr = set_reg_val(id, *val); 1428 /* Don't allow setting breakpoints in hypervisor code */ 1429 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1430 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1431 break; 1432 case KVM_REG_PPC_CSIGR: 1433 vcpu->arch.csigr = set_reg_val(id, *val); 1434 break; 1435 case KVM_REG_PPC_TACR: 1436 vcpu->arch.tacr = set_reg_val(id, *val); 1437 break; 1438 case KVM_REG_PPC_TCSCR: 1439 vcpu->arch.tcscr = set_reg_val(id, *val); 1440 break; 1441 case KVM_REG_PPC_PID: 1442 vcpu->arch.pid = set_reg_val(id, *val); 1443 break; 1444 case KVM_REG_PPC_ACOP: 1445 vcpu->arch.acop = set_reg_val(id, *val); 1446 break; 1447 case KVM_REG_PPC_WORT: 1448 vcpu->arch.wort = set_reg_val(id, *val); 1449 break; 1450 case KVM_REG_PPC_TIDR: 1451 vcpu->arch.tid = set_reg_val(id, *val); 1452 break; 1453 case KVM_REG_PPC_PSSCR: 1454 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1455 break; 1456 case KVM_REG_PPC_VPA_ADDR: 1457 addr = set_reg_val(id, *val); 1458 r = -EINVAL; 1459 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1460 vcpu->arch.dtl.next_gpa)) 1461 break; 1462 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1463 break; 1464 case KVM_REG_PPC_VPA_SLB: 1465 addr = val->vpaval.addr; 1466 len = val->vpaval.length; 1467 r = -EINVAL; 1468 if (addr && !vcpu->arch.vpa.next_gpa) 1469 break; 1470 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1471 break; 1472 case KVM_REG_PPC_VPA_DTL: 1473 addr = val->vpaval.addr; 1474 len = val->vpaval.length; 1475 r = -EINVAL; 1476 if (addr && (len < sizeof(struct dtl_entry) || 1477 !vcpu->arch.vpa.next_gpa)) 1478 break; 1479 len -= len % sizeof(struct dtl_entry); 1480 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1481 break; 1482 case KVM_REG_PPC_TB_OFFSET: 1483 /* round up to multiple of 2^24 */ 1484 vcpu->arch.vcore->tb_offset = 1485 ALIGN(set_reg_val(id, *val), 1UL << 24); 1486 break; 1487 case KVM_REG_PPC_LPCR: 1488 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1489 break; 1490 case KVM_REG_PPC_LPCR_64: 1491 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1492 break; 1493 case KVM_REG_PPC_PPR: 1494 vcpu->arch.ppr = set_reg_val(id, *val); 1495 break; 1496 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1497 case KVM_REG_PPC_TFHAR: 1498 vcpu->arch.tfhar = set_reg_val(id, *val); 1499 break; 1500 case KVM_REG_PPC_TFIAR: 1501 vcpu->arch.tfiar = set_reg_val(id, *val); 1502 break; 1503 case KVM_REG_PPC_TEXASR: 1504 vcpu->arch.texasr = set_reg_val(id, *val); 1505 break; 1506 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1507 i = id - KVM_REG_PPC_TM_GPR0; 1508 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1509 break; 1510 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1511 { 1512 int j; 1513 i = id - KVM_REG_PPC_TM_VSR0; 1514 if (i < 32) 1515 for (j = 0; j < TS_FPRWIDTH; j++) 1516 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1517 else 1518 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1519 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1520 else 1521 r = -ENXIO; 1522 break; 1523 } 1524 case KVM_REG_PPC_TM_CR: 1525 vcpu->arch.cr_tm = set_reg_val(id, *val); 1526 break; 1527 case KVM_REG_PPC_TM_XER: 1528 vcpu->arch.xer_tm = set_reg_val(id, *val); 1529 break; 1530 case KVM_REG_PPC_TM_LR: 1531 vcpu->arch.lr_tm = set_reg_val(id, *val); 1532 break; 1533 case KVM_REG_PPC_TM_CTR: 1534 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1535 break; 1536 case KVM_REG_PPC_TM_FPSCR: 1537 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1538 break; 1539 case KVM_REG_PPC_TM_AMR: 1540 vcpu->arch.amr_tm = set_reg_val(id, *val); 1541 break; 1542 case KVM_REG_PPC_TM_PPR: 1543 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1544 break; 1545 case KVM_REG_PPC_TM_VRSAVE: 1546 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1547 break; 1548 case KVM_REG_PPC_TM_VSCR: 1549 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1550 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1551 else 1552 r = - ENXIO; 1553 break; 1554 case KVM_REG_PPC_TM_DSCR: 1555 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1556 break; 1557 case KVM_REG_PPC_TM_TAR: 1558 vcpu->arch.tar_tm = set_reg_val(id, *val); 1559 break; 1560 #endif 1561 case KVM_REG_PPC_ARCH_COMPAT: 1562 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1563 break; 1564 default: 1565 r = -EINVAL; 1566 break; 1567 } 1568 1569 return r; 1570 } 1571 1572 /* 1573 * On POWER9, threads are independent and can be in different partitions. 1574 * Therefore we consider each thread to be a subcore. 1575 * There is a restriction that all threads have to be in the same 1576 * MMU mode (radix or HPT), unfortunately, but since we only support 1577 * HPT guests on a HPT host so far, that isn't an impediment yet. 1578 */ 1579 static int threads_per_vcore(void) 1580 { 1581 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1582 return 1; 1583 return threads_per_subcore; 1584 } 1585 1586 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1587 { 1588 struct kvmppc_vcore *vcore; 1589 1590 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1591 1592 if (vcore == NULL) 1593 return NULL; 1594 1595 spin_lock_init(&vcore->lock); 1596 spin_lock_init(&vcore->stoltb_lock); 1597 init_swait_queue_head(&vcore->wq); 1598 vcore->preempt_tb = TB_NIL; 1599 vcore->lpcr = kvm->arch.lpcr; 1600 vcore->first_vcpuid = core * threads_per_vcore(); 1601 vcore->kvm = kvm; 1602 INIT_LIST_HEAD(&vcore->preempt_list); 1603 1604 return vcore; 1605 } 1606 1607 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1608 static struct debugfs_timings_element { 1609 const char *name; 1610 size_t offset; 1611 } timings[] = { 1612 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1613 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1614 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1615 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1616 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1617 }; 1618 1619 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1620 1621 struct debugfs_timings_state { 1622 struct kvm_vcpu *vcpu; 1623 unsigned int buflen; 1624 char buf[N_TIMINGS * 100]; 1625 }; 1626 1627 static int debugfs_timings_open(struct inode *inode, struct file *file) 1628 { 1629 struct kvm_vcpu *vcpu = inode->i_private; 1630 struct debugfs_timings_state *p; 1631 1632 p = kzalloc(sizeof(*p), GFP_KERNEL); 1633 if (!p) 1634 return -ENOMEM; 1635 1636 kvm_get_kvm(vcpu->kvm); 1637 p->vcpu = vcpu; 1638 file->private_data = p; 1639 1640 return nonseekable_open(inode, file); 1641 } 1642 1643 static int debugfs_timings_release(struct inode *inode, struct file *file) 1644 { 1645 struct debugfs_timings_state *p = file->private_data; 1646 1647 kvm_put_kvm(p->vcpu->kvm); 1648 kfree(p); 1649 return 0; 1650 } 1651 1652 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1653 size_t len, loff_t *ppos) 1654 { 1655 struct debugfs_timings_state *p = file->private_data; 1656 struct kvm_vcpu *vcpu = p->vcpu; 1657 char *s, *buf_end; 1658 struct kvmhv_tb_accumulator tb; 1659 u64 count; 1660 loff_t pos; 1661 ssize_t n; 1662 int i, loops; 1663 bool ok; 1664 1665 if (!p->buflen) { 1666 s = p->buf; 1667 buf_end = s + sizeof(p->buf); 1668 for (i = 0; i < N_TIMINGS; ++i) { 1669 struct kvmhv_tb_accumulator *acc; 1670 1671 acc = (struct kvmhv_tb_accumulator *) 1672 ((unsigned long)vcpu + timings[i].offset); 1673 ok = false; 1674 for (loops = 0; loops < 1000; ++loops) { 1675 count = acc->seqcount; 1676 if (!(count & 1)) { 1677 smp_rmb(); 1678 tb = *acc; 1679 smp_rmb(); 1680 if (count == acc->seqcount) { 1681 ok = true; 1682 break; 1683 } 1684 } 1685 udelay(1); 1686 } 1687 if (!ok) 1688 snprintf(s, buf_end - s, "%s: stuck\n", 1689 timings[i].name); 1690 else 1691 snprintf(s, buf_end - s, 1692 "%s: %llu %llu %llu %llu\n", 1693 timings[i].name, count / 2, 1694 tb_to_ns(tb.tb_total), 1695 tb_to_ns(tb.tb_min), 1696 tb_to_ns(tb.tb_max)); 1697 s += strlen(s); 1698 } 1699 p->buflen = s - p->buf; 1700 } 1701 1702 pos = *ppos; 1703 if (pos >= p->buflen) 1704 return 0; 1705 if (len > p->buflen - pos) 1706 len = p->buflen - pos; 1707 n = copy_to_user(buf, p->buf + pos, len); 1708 if (n) { 1709 if (n == len) 1710 return -EFAULT; 1711 len -= n; 1712 } 1713 *ppos = pos + len; 1714 return len; 1715 } 1716 1717 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1718 size_t len, loff_t *ppos) 1719 { 1720 return -EACCES; 1721 } 1722 1723 static const struct file_operations debugfs_timings_ops = { 1724 .owner = THIS_MODULE, 1725 .open = debugfs_timings_open, 1726 .release = debugfs_timings_release, 1727 .read = debugfs_timings_read, 1728 .write = debugfs_timings_write, 1729 .llseek = generic_file_llseek, 1730 }; 1731 1732 /* Create a debugfs directory for the vcpu */ 1733 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1734 { 1735 char buf[16]; 1736 struct kvm *kvm = vcpu->kvm; 1737 1738 snprintf(buf, sizeof(buf), "vcpu%u", id); 1739 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1740 return; 1741 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1742 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1743 return; 1744 vcpu->arch.debugfs_timings = 1745 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1746 vcpu, &debugfs_timings_ops); 1747 } 1748 1749 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1750 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1751 { 1752 } 1753 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1754 1755 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1756 unsigned int id) 1757 { 1758 struct kvm_vcpu *vcpu; 1759 int err = -EINVAL; 1760 int core; 1761 struct kvmppc_vcore *vcore; 1762 1763 core = id / threads_per_vcore(); 1764 if (core >= KVM_MAX_VCORES) 1765 goto out; 1766 1767 err = -ENOMEM; 1768 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1769 if (!vcpu) 1770 goto out; 1771 1772 err = kvm_vcpu_init(vcpu, kvm, id); 1773 if (err) 1774 goto free_vcpu; 1775 1776 vcpu->arch.shared = &vcpu->arch.shregs; 1777 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1778 /* 1779 * The shared struct is never shared on HV, 1780 * so we can always use host endianness 1781 */ 1782 #ifdef __BIG_ENDIAN__ 1783 vcpu->arch.shared_big_endian = true; 1784 #else 1785 vcpu->arch.shared_big_endian = false; 1786 #endif 1787 #endif 1788 vcpu->arch.mmcr[0] = MMCR0_FC; 1789 vcpu->arch.ctrl = CTRL_RUNLATCH; 1790 /* default to host PVR, since we can't spoof it */ 1791 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1792 spin_lock_init(&vcpu->arch.vpa_update_lock); 1793 spin_lock_init(&vcpu->arch.tbacct_lock); 1794 vcpu->arch.busy_preempt = TB_NIL; 1795 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1796 1797 kvmppc_mmu_book3s_hv_init(vcpu); 1798 1799 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1800 1801 init_waitqueue_head(&vcpu->arch.cpu_run); 1802 1803 mutex_lock(&kvm->lock); 1804 vcore = kvm->arch.vcores[core]; 1805 if (!vcore) { 1806 vcore = kvmppc_vcore_create(kvm, core); 1807 kvm->arch.vcores[core] = vcore; 1808 kvm->arch.online_vcores++; 1809 } 1810 mutex_unlock(&kvm->lock); 1811 1812 if (!vcore) 1813 goto free_vcpu; 1814 1815 spin_lock(&vcore->lock); 1816 ++vcore->num_threads; 1817 spin_unlock(&vcore->lock); 1818 vcpu->arch.vcore = vcore; 1819 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1820 vcpu->arch.thread_cpu = -1; 1821 vcpu->arch.prev_cpu = -1; 1822 1823 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1824 kvmppc_sanity_check(vcpu); 1825 1826 debugfs_vcpu_init(vcpu, id); 1827 1828 return vcpu; 1829 1830 free_vcpu: 1831 kmem_cache_free(kvm_vcpu_cache, vcpu); 1832 out: 1833 return ERR_PTR(err); 1834 } 1835 1836 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1837 { 1838 if (vpa->pinned_addr) 1839 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1840 vpa->dirty); 1841 } 1842 1843 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1844 { 1845 spin_lock(&vcpu->arch.vpa_update_lock); 1846 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1847 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1848 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1849 spin_unlock(&vcpu->arch.vpa_update_lock); 1850 kvm_vcpu_uninit(vcpu); 1851 kmem_cache_free(kvm_vcpu_cache, vcpu); 1852 } 1853 1854 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1855 { 1856 /* Indicate we want to get back into the guest */ 1857 return 1; 1858 } 1859 1860 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1861 { 1862 unsigned long dec_nsec, now; 1863 1864 now = get_tb(); 1865 if (now > vcpu->arch.dec_expires) { 1866 /* decrementer has already gone negative */ 1867 kvmppc_core_queue_dec(vcpu); 1868 kvmppc_core_prepare_to_enter(vcpu); 1869 return; 1870 } 1871 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1872 / tb_ticks_per_sec; 1873 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 1874 vcpu->arch.timer_running = 1; 1875 } 1876 1877 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1878 { 1879 vcpu->arch.ceded = 0; 1880 if (vcpu->arch.timer_running) { 1881 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1882 vcpu->arch.timer_running = 0; 1883 } 1884 } 1885 1886 extern void __kvmppc_vcore_entry(void); 1887 1888 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1889 struct kvm_vcpu *vcpu) 1890 { 1891 u64 now; 1892 1893 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1894 return; 1895 spin_lock_irq(&vcpu->arch.tbacct_lock); 1896 now = mftb(); 1897 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1898 vcpu->arch.stolen_logged; 1899 vcpu->arch.busy_preempt = now; 1900 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1901 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1902 --vc->n_runnable; 1903 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 1904 } 1905 1906 static int kvmppc_grab_hwthread(int cpu) 1907 { 1908 struct paca_struct *tpaca; 1909 long timeout = 10000; 1910 1911 tpaca = &paca[cpu]; 1912 1913 /* Ensure the thread won't go into the kernel if it wakes */ 1914 tpaca->kvm_hstate.kvm_vcpu = NULL; 1915 tpaca->kvm_hstate.kvm_vcore = NULL; 1916 tpaca->kvm_hstate.napping = 0; 1917 smp_wmb(); 1918 tpaca->kvm_hstate.hwthread_req = 1; 1919 1920 /* 1921 * If the thread is already executing in the kernel (e.g. handling 1922 * a stray interrupt), wait for it to get back to nap mode. 1923 * The smp_mb() is to ensure that our setting of hwthread_req 1924 * is visible before we look at hwthread_state, so if this 1925 * races with the code at system_reset_pSeries and the thread 1926 * misses our setting of hwthread_req, we are sure to see its 1927 * setting of hwthread_state, and vice versa. 1928 */ 1929 smp_mb(); 1930 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1931 if (--timeout <= 0) { 1932 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1933 return -EBUSY; 1934 } 1935 udelay(1); 1936 } 1937 return 0; 1938 } 1939 1940 static void kvmppc_release_hwthread(int cpu) 1941 { 1942 struct paca_struct *tpaca; 1943 1944 tpaca = &paca[cpu]; 1945 tpaca->kvm_hstate.hwthread_req = 0; 1946 tpaca->kvm_hstate.kvm_vcpu = NULL; 1947 tpaca->kvm_hstate.kvm_vcore = NULL; 1948 tpaca->kvm_hstate.kvm_split_mode = NULL; 1949 } 1950 1951 static void do_nothing(void *x) 1952 { 1953 } 1954 1955 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 1956 { 1957 int i; 1958 1959 cpu = cpu_first_thread_sibling(cpu); 1960 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 1961 /* 1962 * Make sure setting of bit in need_tlb_flush precedes 1963 * testing of cpu_in_guest bits. The matching barrier on 1964 * the other side is the first smp_mb() in kvmppc_run_core(). 1965 */ 1966 smp_mb(); 1967 for (i = 0; i < threads_per_core; ++i) 1968 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 1969 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 1970 } 1971 1972 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1973 { 1974 int cpu; 1975 struct paca_struct *tpaca; 1976 struct kvmppc_vcore *mvc = vc->master_vcore; 1977 struct kvm *kvm = vc->kvm; 1978 1979 cpu = vc->pcpu; 1980 if (vcpu) { 1981 if (vcpu->arch.timer_running) { 1982 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1983 vcpu->arch.timer_running = 0; 1984 } 1985 cpu += vcpu->arch.ptid; 1986 vcpu->cpu = mvc->pcpu; 1987 vcpu->arch.thread_cpu = cpu; 1988 1989 /* 1990 * With radix, the guest can do TLB invalidations itself, 1991 * and it could choose to use the local form (tlbiel) if 1992 * it is invalidating a translation that has only ever been 1993 * used on one vcpu. However, that doesn't mean it has 1994 * only ever been used on one physical cpu, since vcpus 1995 * can move around between pcpus. To cope with this, when 1996 * a vcpu moves from one pcpu to another, we need to tell 1997 * any vcpus running on the same core as this vcpu previously 1998 * ran to flush the TLB. The TLB is shared between threads, 1999 * so we use a single bit in .need_tlb_flush for all 4 threads. 2000 */ 2001 if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) { 2002 if (vcpu->arch.prev_cpu >= 0 && 2003 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2004 cpu_first_thread_sibling(cpu)) 2005 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2006 vcpu->arch.prev_cpu = cpu; 2007 } 2008 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2009 } 2010 tpaca = &paca[cpu]; 2011 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2012 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 2013 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2014 smp_wmb(); 2015 tpaca->kvm_hstate.kvm_vcore = mvc; 2016 if (cpu != smp_processor_id()) 2017 kvmppc_ipi_thread(cpu); 2018 } 2019 2020 static void kvmppc_wait_for_nap(void) 2021 { 2022 int cpu = smp_processor_id(); 2023 int i, loops; 2024 int n_threads = threads_per_vcore(); 2025 2026 if (n_threads <= 1) 2027 return; 2028 for (loops = 0; loops < 1000000; ++loops) { 2029 /* 2030 * Check if all threads are finished. 2031 * We set the vcore pointer when starting a thread 2032 * and the thread clears it when finished, so we look 2033 * for any threads that still have a non-NULL vcore ptr. 2034 */ 2035 for (i = 1; i < n_threads; ++i) 2036 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2037 break; 2038 if (i == n_threads) { 2039 HMT_medium(); 2040 return; 2041 } 2042 HMT_low(); 2043 } 2044 HMT_medium(); 2045 for (i = 1; i < n_threads; ++i) 2046 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2047 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2048 } 2049 2050 /* 2051 * Check that we are on thread 0 and that any other threads in 2052 * this core are off-line. Then grab the threads so they can't 2053 * enter the kernel. 2054 */ 2055 static int on_primary_thread(void) 2056 { 2057 int cpu = smp_processor_id(); 2058 int thr; 2059 2060 /* Are we on a primary subcore? */ 2061 if (cpu_thread_in_subcore(cpu)) 2062 return 0; 2063 2064 thr = 0; 2065 while (++thr < threads_per_subcore) 2066 if (cpu_online(cpu + thr)) 2067 return 0; 2068 2069 /* Grab all hw threads so they can't go into the kernel */ 2070 for (thr = 1; thr < threads_per_subcore; ++thr) { 2071 if (kvmppc_grab_hwthread(cpu + thr)) { 2072 /* Couldn't grab one; let the others go */ 2073 do { 2074 kvmppc_release_hwthread(cpu + thr); 2075 } while (--thr > 0); 2076 return 0; 2077 } 2078 } 2079 return 1; 2080 } 2081 2082 /* 2083 * A list of virtual cores for each physical CPU. 2084 * These are vcores that could run but their runner VCPU tasks are 2085 * (or may be) preempted. 2086 */ 2087 struct preempted_vcore_list { 2088 struct list_head list; 2089 spinlock_t lock; 2090 }; 2091 2092 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2093 2094 static void init_vcore_lists(void) 2095 { 2096 int cpu; 2097 2098 for_each_possible_cpu(cpu) { 2099 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2100 spin_lock_init(&lp->lock); 2101 INIT_LIST_HEAD(&lp->list); 2102 } 2103 } 2104 2105 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2106 { 2107 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2108 2109 vc->vcore_state = VCORE_PREEMPT; 2110 vc->pcpu = smp_processor_id(); 2111 if (vc->num_threads < threads_per_vcore()) { 2112 spin_lock(&lp->lock); 2113 list_add_tail(&vc->preempt_list, &lp->list); 2114 spin_unlock(&lp->lock); 2115 } 2116 2117 /* Start accumulating stolen time */ 2118 kvmppc_core_start_stolen(vc); 2119 } 2120 2121 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2122 { 2123 struct preempted_vcore_list *lp; 2124 2125 kvmppc_core_end_stolen(vc); 2126 if (!list_empty(&vc->preempt_list)) { 2127 lp = &per_cpu(preempted_vcores, vc->pcpu); 2128 spin_lock(&lp->lock); 2129 list_del_init(&vc->preempt_list); 2130 spin_unlock(&lp->lock); 2131 } 2132 vc->vcore_state = VCORE_INACTIVE; 2133 } 2134 2135 /* 2136 * This stores information about the virtual cores currently 2137 * assigned to a physical core. 2138 */ 2139 struct core_info { 2140 int n_subcores; 2141 int max_subcore_threads; 2142 int total_threads; 2143 int subcore_threads[MAX_SUBCORES]; 2144 struct kvm *subcore_vm[MAX_SUBCORES]; 2145 struct list_head vcs[MAX_SUBCORES]; 2146 }; 2147 2148 /* 2149 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2150 * respectively in 2-way micro-threading (split-core) mode. 2151 */ 2152 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2153 2154 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2155 { 2156 int sub; 2157 2158 memset(cip, 0, sizeof(*cip)); 2159 cip->n_subcores = 1; 2160 cip->max_subcore_threads = vc->num_threads; 2161 cip->total_threads = vc->num_threads; 2162 cip->subcore_threads[0] = vc->num_threads; 2163 cip->subcore_vm[0] = vc->kvm; 2164 for (sub = 0; sub < MAX_SUBCORES; ++sub) 2165 INIT_LIST_HEAD(&cip->vcs[sub]); 2166 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 2167 } 2168 2169 static bool subcore_config_ok(int n_subcores, int n_threads) 2170 { 2171 /* Can only dynamically split if unsplit to begin with */ 2172 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2173 return false; 2174 if (n_subcores > MAX_SUBCORES) 2175 return false; 2176 if (n_subcores > 1) { 2177 if (!(dynamic_mt_modes & 2)) 2178 n_subcores = 4; 2179 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2180 return false; 2181 } 2182 2183 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2184 } 2185 2186 static void init_master_vcore(struct kvmppc_vcore *vc) 2187 { 2188 vc->master_vcore = vc; 2189 vc->entry_exit_map = 0; 2190 vc->in_guest = 0; 2191 vc->napping_threads = 0; 2192 vc->conferring_threads = 0; 2193 } 2194 2195 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2196 { 2197 int n_threads = vc->num_threads; 2198 int sub; 2199 2200 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2201 return false; 2202 2203 if (n_threads < cip->max_subcore_threads) 2204 n_threads = cip->max_subcore_threads; 2205 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2206 return false; 2207 cip->max_subcore_threads = n_threads; 2208 2209 sub = cip->n_subcores; 2210 ++cip->n_subcores; 2211 cip->total_threads += vc->num_threads; 2212 cip->subcore_threads[sub] = vc->num_threads; 2213 cip->subcore_vm[sub] = vc->kvm; 2214 init_master_vcore(vc); 2215 list_move_tail(&vc->preempt_list, &cip->vcs[sub]); 2216 2217 return true; 2218 } 2219 2220 /* 2221 * Work out whether it is possible to piggyback the execution of 2222 * vcore *pvc onto the execution of the other vcores described in *cip. 2223 */ 2224 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2225 int target_threads) 2226 { 2227 if (cip->total_threads + pvc->num_threads > target_threads) 2228 return false; 2229 2230 return can_dynamic_split(pvc, cip); 2231 } 2232 2233 static void prepare_threads(struct kvmppc_vcore *vc) 2234 { 2235 int i; 2236 struct kvm_vcpu *vcpu; 2237 2238 for_each_runnable_thread(i, vcpu, vc) { 2239 if (signal_pending(vcpu->arch.run_task)) 2240 vcpu->arch.ret = -EINTR; 2241 else if (vcpu->arch.vpa.update_pending || 2242 vcpu->arch.slb_shadow.update_pending || 2243 vcpu->arch.dtl.update_pending) 2244 vcpu->arch.ret = RESUME_GUEST; 2245 else 2246 continue; 2247 kvmppc_remove_runnable(vc, vcpu); 2248 wake_up(&vcpu->arch.cpu_run); 2249 } 2250 } 2251 2252 static void collect_piggybacks(struct core_info *cip, int target_threads) 2253 { 2254 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2255 struct kvmppc_vcore *pvc, *vcnext; 2256 2257 spin_lock(&lp->lock); 2258 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2259 if (!spin_trylock(&pvc->lock)) 2260 continue; 2261 prepare_threads(pvc); 2262 if (!pvc->n_runnable) { 2263 list_del_init(&pvc->preempt_list); 2264 if (pvc->runner == NULL) { 2265 pvc->vcore_state = VCORE_INACTIVE; 2266 kvmppc_core_end_stolen(pvc); 2267 } 2268 spin_unlock(&pvc->lock); 2269 continue; 2270 } 2271 if (!can_piggyback(pvc, cip, target_threads)) { 2272 spin_unlock(&pvc->lock); 2273 continue; 2274 } 2275 kvmppc_core_end_stolen(pvc); 2276 pvc->vcore_state = VCORE_PIGGYBACK; 2277 if (cip->total_threads >= target_threads) 2278 break; 2279 } 2280 spin_unlock(&lp->lock); 2281 } 2282 2283 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2284 { 2285 int still_running = 0, i; 2286 u64 now; 2287 long ret; 2288 struct kvm_vcpu *vcpu; 2289 2290 spin_lock(&vc->lock); 2291 now = get_tb(); 2292 for_each_runnable_thread(i, vcpu, vc) { 2293 /* cancel pending dec exception if dec is positive */ 2294 if (now < vcpu->arch.dec_expires && 2295 kvmppc_core_pending_dec(vcpu)) 2296 kvmppc_core_dequeue_dec(vcpu); 2297 2298 trace_kvm_guest_exit(vcpu); 2299 2300 ret = RESUME_GUEST; 2301 if (vcpu->arch.trap) 2302 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2303 vcpu->arch.run_task); 2304 2305 vcpu->arch.ret = ret; 2306 vcpu->arch.trap = 0; 2307 2308 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2309 if (vcpu->arch.pending_exceptions) 2310 kvmppc_core_prepare_to_enter(vcpu); 2311 if (vcpu->arch.ceded) 2312 kvmppc_set_timer(vcpu); 2313 else 2314 ++still_running; 2315 } else { 2316 kvmppc_remove_runnable(vc, vcpu); 2317 wake_up(&vcpu->arch.cpu_run); 2318 } 2319 } 2320 list_del_init(&vc->preempt_list); 2321 if (!is_master) { 2322 if (still_running > 0) { 2323 kvmppc_vcore_preempt(vc); 2324 } else if (vc->runner) { 2325 vc->vcore_state = VCORE_PREEMPT; 2326 kvmppc_core_start_stolen(vc); 2327 } else { 2328 vc->vcore_state = VCORE_INACTIVE; 2329 } 2330 if (vc->n_runnable > 0 && vc->runner == NULL) { 2331 /* make sure there's a candidate runner awake */ 2332 i = -1; 2333 vcpu = next_runnable_thread(vc, &i); 2334 wake_up(&vcpu->arch.cpu_run); 2335 } 2336 } 2337 spin_unlock(&vc->lock); 2338 } 2339 2340 /* 2341 * Clear core from the list of active host cores as we are about to 2342 * enter the guest. Only do this if it is the primary thread of the 2343 * core (not if a subcore) that is entering the guest. 2344 */ 2345 static inline int kvmppc_clear_host_core(unsigned int cpu) 2346 { 2347 int core; 2348 2349 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2350 return 0; 2351 /* 2352 * Memory barrier can be omitted here as we will do a smp_wmb() 2353 * later in kvmppc_start_thread and we need ensure that state is 2354 * visible to other CPUs only after we enter guest. 2355 */ 2356 core = cpu >> threads_shift; 2357 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2358 return 0; 2359 } 2360 2361 /* 2362 * Advertise this core as an active host core since we exited the guest 2363 * Only need to do this if it is the primary thread of the core that is 2364 * exiting. 2365 */ 2366 static inline int kvmppc_set_host_core(unsigned int cpu) 2367 { 2368 int core; 2369 2370 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2371 return 0; 2372 2373 /* 2374 * Memory barrier can be omitted here because we do a spin_unlock 2375 * immediately after this which provides the memory barrier. 2376 */ 2377 core = cpu >> threads_shift; 2378 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2379 return 0; 2380 } 2381 2382 /* 2383 * Run a set of guest threads on a physical core. 2384 * Called with vc->lock held. 2385 */ 2386 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2387 { 2388 struct kvm_vcpu *vcpu; 2389 int i; 2390 int srcu_idx; 2391 struct core_info core_info; 2392 struct kvmppc_vcore *pvc, *vcnext; 2393 struct kvm_split_mode split_info, *sip; 2394 int split, subcore_size, active; 2395 int sub; 2396 bool thr0_done; 2397 unsigned long cmd_bit, stat_bit; 2398 int pcpu, thr; 2399 int target_threads; 2400 int controlled_threads; 2401 2402 /* 2403 * Remove from the list any threads that have a signal pending 2404 * or need a VPA update done 2405 */ 2406 prepare_threads(vc); 2407 2408 /* if the runner is no longer runnable, let the caller pick a new one */ 2409 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2410 return; 2411 2412 /* 2413 * Initialize *vc. 2414 */ 2415 init_master_vcore(vc); 2416 vc->preempt_tb = TB_NIL; 2417 2418 /* 2419 * Number of threads that we will be controlling: the same as 2420 * the number of threads per subcore, except on POWER9, 2421 * where it's 1 because the threads are (mostly) independent. 2422 */ 2423 controlled_threads = threads_per_vcore(); 2424 2425 /* 2426 * Make sure we are running on primary threads, and that secondary 2427 * threads are offline. Also check if the number of threads in this 2428 * guest are greater than the current system threads per guest. 2429 */ 2430 if ((controlled_threads > 1) && 2431 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2432 for_each_runnable_thread(i, vcpu, vc) { 2433 vcpu->arch.ret = -EBUSY; 2434 kvmppc_remove_runnable(vc, vcpu); 2435 wake_up(&vcpu->arch.cpu_run); 2436 } 2437 goto out; 2438 } 2439 2440 /* 2441 * See if we could run any other vcores on the physical core 2442 * along with this one. 2443 */ 2444 init_core_info(&core_info, vc); 2445 pcpu = smp_processor_id(); 2446 target_threads = controlled_threads; 2447 if (target_smt_mode && target_smt_mode < target_threads) 2448 target_threads = target_smt_mode; 2449 if (vc->num_threads < target_threads) 2450 collect_piggybacks(&core_info, target_threads); 2451 2452 /* Decide on micro-threading (split-core) mode */ 2453 subcore_size = threads_per_subcore; 2454 cmd_bit = stat_bit = 0; 2455 split = core_info.n_subcores; 2456 sip = NULL; 2457 if (split > 1) { 2458 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2459 if (split == 2 && (dynamic_mt_modes & 2)) { 2460 cmd_bit = HID0_POWER8_1TO2LPAR; 2461 stat_bit = HID0_POWER8_2LPARMODE; 2462 } else { 2463 split = 4; 2464 cmd_bit = HID0_POWER8_1TO4LPAR; 2465 stat_bit = HID0_POWER8_4LPARMODE; 2466 } 2467 subcore_size = MAX_SMT_THREADS / split; 2468 sip = &split_info; 2469 memset(&split_info, 0, sizeof(split_info)); 2470 split_info.rpr = mfspr(SPRN_RPR); 2471 split_info.pmmar = mfspr(SPRN_PMMAR); 2472 split_info.ldbar = mfspr(SPRN_LDBAR); 2473 split_info.subcore_size = subcore_size; 2474 for (sub = 0; sub < core_info.n_subcores; ++sub) 2475 split_info.master_vcs[sub] = 2476 list_first_entry(&core_info.vcs[sub], 2477 struct kvmppc_vcore, preempt_list); 2478 /* order writes to split_info before kvm_split_mode pointer */ 2479 smp_wmb(); 2480 } 2481 pcpu = smp_processor_id(); 2482 for (thr = 0; thr < controlled_threads; ++thr) 2483 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2484 2485 /* Initiate micro-threading (split-core) if required */ 2486 if (cmd_bit) { 2487 unsigned long hid0 = mfspr(SPRN_HID0); 2488 2489 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2490 mb(); 2491 mtspr(SPRN_HID0, hid0); 2492 isync(); 2493 for (;;) { 2494 hid0 = mfspr(SPRN_HID0); 2495 if (hid0 & stat_bit) 2496 break; 2497 cpu_relax(); 2498 } 2499 } 2500 2501 kvmppc_clear_host_core(pcpu); 2502 2503 /* Start all the threads */ 2504 active = 0; 2505 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2506 thr = subcore_thread_map[sub]; 2507 thr0_done = false; 2508 active |= 1 << thr; 2509 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2510 pvc->pcpu = pcpu + thr; 2511 for_each_runnable_thread(i, vcpu, pvc) { 2512 kvmppc_start_thread(vcpu, pvc); 2513 kvmppc_create_dtl_entry(vcpu, pvc); 2514 trace_kvm_guest_enter(vcpu); 2515 if (!vcpu->arch.ptid) 2516 thr0_done = true; 2517 active |= 1 << (thr + vcpu->arch.ptid); 2518 } 2519 /* 2520 * We need to start the first thread of each subcore 2521 * even if it doesn't have a vcpu. 2522 */ 2523 if (pvc->master_vcore == pvc && !thr0_done) 2524 kvmppc_start_thread(NULL, pvc); 2525 thr += pvc->num_threads; 2526 } 2527 } 2528 2529 /* 2530 * Ensure that split_info.do_nap is set after setting 2531 * the vcore pointer in the PACA of the secondaries. 2532 */ 2533 smp_mb(); 2534 if (cmd_bit) 2535 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2536 2537 /* 2538 * When doing micro-threading, poke the inactive threads as well. 2539 * This gets them to the nap instruction after kvm_do_nap, 2540 * which reduces the time taken to unsplit later. 2541 */ 2542 if (split > 1) 2543 for (thr = 1; thr < threads_per_subcore; ++thr) 2544 if (!(active & (1 << thr))) 2545 kvmppc_ipi_thread(pcpu + thr); 2546 2547 vc->vcore_state = VCORE_RUNNING; 2548 preempt_disable(); 2549 2550 trace_kvmppc_run_core(vc, 0); 2551 2552 for (sub = 0; sub < core_info.n_subcores; ++sub) 2553 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2554 spin_unlock(&pvc->lock); 2555 2556 guest_enter(); 2557 2558 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2559 2560 __kvmppc_vcore_entry(); 2561 2562 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2563 2564 spin_lock(&vc->lock); 2565 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2566 vc->vcore_state = VCORE_EXITING; 2567 2568 /* wait for secondary threads to finish writing their state to memory */ 2569 kvmppc_wait_for_nap(); 2570 2571 /* Return to whole-core mode if we split the core earlier */ 2572 if (split > 1) { 2573 unsigned long hid0 = mfspr(SPRN_HID0); 2574 unsigned long loops = 0; 2575 2576 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2577 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2578 mb(); 2579 mtspr(SPRN_HID0, hid0); 2580 isync(); 2581 for (;;) { 2582 hid0 = mfspr(SPRN_HID0); 2583 if (!(hid0 & stat_bit)) 2584 break; 2585 cpu_relax(); 2586 ++loops; 2587 } 2588 split_info.do_nap = 0; 2589 } 2590 2591 /* Let secondaries go back to the offline loop */ 2592 for (i = 0; i < controlled_threads; ++i) { 2593 kvmppc_release_hwthread(pcpu + i); 2594 if (sip && sip->napped[i]) 2595 kvmppc_ipi_thread(pcpu + i); 2596 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2597 } 2598 2599 kvmppc_set_host_core(pcpu); 2600 2601 spin_unlock(&vc->lock); 2602 2603 /* make sure updates to secondary vcpu structs are visible now */ 2604 smp_mb(); 2605 guest_exit(); 2606 2607 for (sub = 0; sub < core_info.n_subcores; ++sub) 2608 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2609 preempt_list) 2610 post_guest_process(pvc, pvc == vc); 2611 2612 spin_lock(&vc->lock); 2613 preempt_enable(); 2614 2615 out: 2616 vc->vcore_state = VCORE_INACTIVE; 2617 trace_kvmppc_run_core(vc, 1); 2618 } 2619 2620 /* 2621 * Wait for some other vcpu thread to execute us, and 2622 * wake us up when we need to handle something in the host. 2623 */ 2624 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2625 struct kvm_vcpu *vcpu, int wait_state) 2626 { 2627 DEFINE_WAIT(wait); 2628 2629 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2630 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2631 spin_unlock(&vc->lock); 2632 schedule(); 2633 spin_lock(&vc->lock); 2634 } 2635 finish_wait(&vcpu->arch.cpu_run, &wait); 2636 } 2637 2638 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2639 { 2640 /* 10us base */ 2641 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2642 vc->halt_poll_ns = 10000; 2643 else 2644 vc->halt_poll_ns *= halt_poll_ns_grow; 2645 } 2646 2647 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2648 { 2649 if (halt_poll_ns_shrink == 0) 2650 vc->halt_poll_ns = 0; 2651 else 2652 vc->halt_poll_ns /= halt_poll_ns_shrink; 2653 } 2654 2655 /* 2656 * Check to see if any of the runnable vcpus on the vcore have pending 2657 * exceptions or are no longer ceded 2658 */ 2659 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 2660 { 2661 struct kvm_vcpu *vcpu; 2662 int i; 2663 2664 for_each_runnable_thread(i, vcpu, vc) { 2665 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded || 2666 vcpu->arch.prodded) 2667 return 1; 2668 } 2669 2670 return 0; 2671 } 2672 2673 /* 2674 * All the vcpus in this vcore are idle, so wait for a decrementer 2675 * or external interrupt to one of the vcpus. vc->lock is held. 2676 */ 2677 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2678 { 2679 ktime_t cur, start_poll, start_wait; 2680 int do_sleep = 1; 2681 u64 block_ns; 2682 DECLARE_SWAITQUEUE(wait); 2683 2684 /* Poll for pending exceptions and ceded state */ 2685 cur = start_poll = ktime_get(); 2686 if (vc->halt_poll_ns) { 2687 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 2688 ++vc->runner->stat.halt_attempted_poll; 2689 2690 vc->vcore_state = VCORE_POLLING; 2691 spin_unlock(&vc->lock); 2692 2693 do { 2694 if (kvmppc_vcore_check_block(vc)) { 2695 do_sleep = 0; 2696 break; 2697 } 2698 cur = ktime_get(); 2699 } while (single_task_running() && ktime_before(cur, stop)); 2700 2701 spin_lock(&vc->lock); 2702 vc->vcore_state = VCORE_INACTIVE; 2703 2704 if (!do_sleep) { 2705 ++vc->runner->stat.halt_successful_poll; 2706 goto out; 2707 } 2708 } 2709 2710 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2711 2712 if (kvmppc_vcore_check_block(vc)) { 2713 finish_swait(&vc->wq, &wait); 2714 do_sleep = 0; 2715 /* If we polled, count this as a successful poll */ 2716 if (vc->halt_poll_ns) 2717 ++vc->runner->stat.halt_successful_poll; 2718 goto out; 2719 } 2720 2721 start_wait = ktime_get(); 2722 2723 vc->vcore_state = VCORE_SLEEPING; 2724 trace_kvmppc_vcore_blocked(vc, 0); 2725 spin_unlock(&vc->lock); 2726 schedule(); 2727 finish_swait(&vc->wq, &wait); 2728 spin_lock(&vc->lock); 2729 vc->vcore_state = VCORE_INACTIVE; 2730 trace_kvmppc_vcore_blocked(vc, 1); 2731 ++vc->runner->stat.halt_successful_wait; 2732 2733 cur = ktime_get(); 2734 2735 out: 2736 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 2737 2738 /* Attribute wait time */ 2739 if (do_sleep) { 2740 vc->runner->stat.halt_wait_ns += 2741 ktime_to_ns(cur) - ktime_to_ns(start_wait); 2742 /* Attribute failed poll time */ 2743 if (vc->halt_poll_ns) 2744 vc->runner->stat.halt_poll_fail_ns += 2745 ktime_to_ns(start_wait) - 2746 ktime_to_ns(start_poll); 2747 } else { 2748 /* Attribute successful poll time */ 2749 if (vc->halt_poll_ns) 2750 vc->runner->stat.halt_poll_success_ns += 2751 ktime_to_ns(cur) - 2752 ktime_to_ns(start_poll); 2753 } 2754 2755 /* Adjust poll time */ 2756 if (halt_poll_ns) { 2757 if (block_ns <= vc->halt_poll_ns) 2758 ; 2759 /* We slept and blocked for longer than the max halt time */ 2760 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 2761 shrink_halt_poll_ns(vc); 2762 /* We slept and our poll time is too small */ 2763 else if (vc->halt_poll_ns < halt_poll_ns && 2764 block_ns < halt_poll_ns) 2765 grow_halt_poll_ns(vc); 2766 if (vc->halt_poll_ns > halt_poll_ns) 2767 vc->halt_poll_ns = halt_poll_ns; 2768 } else 2769 vc->halt_poll_ns = 0; 2770 2771 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 2772 } 2773 2774 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2775 { 2776 int n_ceded, i; 2777 struct kvmppc_vcore *vc; 2778 struct kvm_vcpu *v; 2779 2780 trace_kvmppc_run_vcpu_enter(vcpu); 2781 2782 kvm_run->exit_reason = 0; 2783 vcpu->arch.ret = RESUME_GUEST; 2784 vcpu->arch.trap = 0; 2785 kvmppc_update_vpas(vcpu); 2786 2787 /* 2788 * Synchronize with other threads in this virtual core 2789 */ 2790 vc = vcpu->arch.vcore; 2791 spin_lock(&vc->lock); 2792 vcpu->arch.ceded = 0; 2793 vcpu->arch.run_task = current; 2794 vcpu->arch.kvm_run = kvm_run; 2795 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2796 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2797 vcpu->arch.busy_preempt = TB_NIL; 2798 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 2799 ++vc->n_runnable; 2800 2801 /* 2802 * This happens the first time this is called for a vcpu. 2803 * If the vcore is already running, we may be able to start 2804 * this thread straight away and have it join in. 2805 */ 2806 if (!signal_pending(current)) { 2807 if (vc->vcore_state == VCORE_PIGGYBACK) { 2808 struct kvmppc_vcore *mvc = vc->master_vcore; 2809 if (spin_trylock(&mvc->lock)) { 2810 if (mvc->vcore_state == VCORE_RUNNING && 2811 !VCORE_IS_EXITING(mvc)) { 2812 kvmppc_create_dtl_entry(vcpu, vc); 2813 kvmppc_start_thread(vcpu, vc); 2814 trace_kvm_guest_enter(vcpu); 2815 } 2816 spin_unlock(&mvc->lock); 2817 } 2818 } else if (vc->vcore_state == VCORE_RUNNING && 2819 !VCORE_IS_EXITING(vc)) { 2820 kvmppc_create_dtl_entry(vcpu, vc); 2821 kvmppc_start_thread(vcpu, vc); 2822 trace_kvm_guest_enter(vcpu); 2823 } else if (vc->vcore_state == VCORE_SLEEPING) { 2824 swake_up(&vc->wq); 2825 } 2826 2827 } 2828 2829 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2830 !signal_pending(current)) { 2831 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2832 kvmppc_vcore_end_preempt(vc); 2833 2834 if (vc->vcore_state != VCORE_INACTIVE) { 2835 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2836 continue; 2837 } 2838 for_each_runnable_thread(i, v, vc) { 2839 kvmppc_core_prepare_to_enter(v); 2840 if (signal_pending(v->arch.run_task)) { 2841 kvmppc_remove_runnable(vc, v); 2842 v->stat.signal_exits++; 2843 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2844 v->arch.ret = -EINTR; 2845 wake_up(&v->arch.cpu_run); 2846 } 2847 } 2848 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2849 break; 2850 n_ceded = 0; 2851 for_each_runnable_thread(i, v, vc) { 2852 if (!v->arch.pending_exceptions && !v->arch.prodded) 2853 n_ceded += v->arch.ceded; 2854 else 2855 v->arch.ceded = 0; 2856 } 2857 vc->runner = vcpu; 2858 if (n_ceded == vc->n_runnable) { 2859 kvmppc_vcore_blocked(vc); 2860 } else if (need_resched()) { 2861 kvmppc_vcore_preempt(vc); 2862 /* Let something else run */ 2863 cond_resched_lock(&vc->lock); 2864 if (vc->vcore_state == VCORE_PREEMPT) 2865 kvmppc_vcore_end_preempt(vc); 2866 } else { 2867 kvmppc_run_core(vc); 2868 } 2869 vc->runner = NULL; 2870 } 2871 2872 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2873 (vc->vcore_state == VCORE_RUNNING || 2874 vc->vcore_state == VCORE_EXITING || 2875 vc->vcore_state == VCORE_PIGGYBACK)) 2876 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2877 2878 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2879 kvmppc_vcore_end_preempt(vc); 2880 2881 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2882 kvmppc_remove_runnable(vc, vcpu); 2883 vcpu->stat.signal_exits++; 2884 kvm_run->exit_reason = KVM_EXIT_INTR; 2885 vcpu->arch.ret = -EINTR; 2886 } 2887 2888 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2889 /* Wake up some vcpu to run the core */ 2890 i = -1; 2891 v = next_runnable_thread(vc, &i); 2892 wake_up(&v->arch.cpu_run); 2893 } 2894 2895 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2896 spin_unlock(&vc->lock); 2897 return vcpu->arch.ret; 2898 } 2899 2900 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2901 { 2902 int r; 2903 int srcu_idx; 2904 2905 if (!vcpu->arch.sane) { 2906 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2907 return -EINVAL; 2908 } 2909 2910 kvmppc_core_prepare_to_enter(vcpu); 2911 2912 /* No need to go into the guest when all we'll do is come back out */ 2913 if (signal_pending(current)) { 2914 run->exit_reason = KVM_EXIT_INTR; 2915 return -EINTR; 2916 } 2917 2918 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2919 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2920 smp_mb(); 2921 2922 /* On the first time here, set up HTAB and VRMA */ 2923 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) { 2924 r = kvmppc_hv_setup_htab_rma(vcpu); 2925 if (r) 2926 goto out; 2927 } 2928 2929 flush_all_to_thread(current); 2930 2931 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2932 vcpu->arch.pgdir = current->mm->pgd; 2933 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2934 2935 do { 2936 r = kvmppc_run_vcpu(run, vcpu); 2937 2938 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2939 !(vcpu->arch.shregs.msr & MSR_PR)) { 2940 trace_kvm_hcall_enter(vcpu); 2941 r = kvmppc_pseries_do_hcall(vcpu); 2942 trace_kvm_hcall_exit(vcpu, r); 2943 kvmppc_core_prepare_to_enter(vcpu); 2944 } else if (r == RESUME_PAGE_FAULT) { 2945 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2946 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2947 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2948 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2949 } else if (r == RESUME_PASSTHROUGH) 2950 r = kvmppc_xics_rm_complete(vcpu, 0); 2951 } while (is_kvmppc_resume_guest(r)); 2952 2953 out: 2954 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2955 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2956 return r; 2957 } 2958 2959 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2960 int linux_psize) 2961 { 2962 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2963 2964 if (!def->shift) 2965 return; 2966 (*sps)->page_shift = def->shift; 2967 (*sps)->slb_enc = def->sllp; 2968 (*sps)->enc[0].page_shift = def->shift; 2969 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2970 /* 2971 * Add 16MB MPSS support if host supports it 2972 */ 2973 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2974 (*sps)->enc[1].page_shift = 24; 2975 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2976 } 2977 (*sps)++; 2978 } 2979 2980 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2981 struct kvm_ppc_smmu_info *info) 2982 { 2983 struct kvm_ppc_one_seg_page_size *sps; 2984 2985 /* 2986 * Since we don't yet support HPT guests on a radix host, 2987 * return an error if the host uses radix. 2988 */ 2989 if (radix_enabled()) 2990 return -EINVAL; 2991 2992 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2993 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2994 info->flags |= KVM_PPC_1T_SEGMENTS; 2995 info->slb_size = mmu_slb_size; 2996 2997 /* We only support these sizes for now, and no muti-size segments */ 2998 sps = &info->sps[0]; 2999 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 3000 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 3001 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 3002 3003 return 0; 3004 } 3005 3006 /* 3007 * Get (and clear) the dirty memory log for a memory slot. 3008 */ 3009 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3010 struct kvm_dirty_log *log) 3011 { 3012 struct kvm_memslots *slots; 3013 struct kvm_memory_slot *memslot; 3014 int i, r; 3015 unsigned long n; 3016 unsigned long *buf; 3017 struct kvm_vcpu *vcpu; 3018 3019 mutex_lock(&kvm->slots_lock); 3020 3021 r = -EINVAL; 3022 if (log->slot >= KVM_USER_MEM_SLOTS) 3023 goto out; 3024 3025 slots = kvm_memslots(kvm); 3026 memslot = id_to_memslot(slots, log->slot); 3027 r = -ENOENT; 3028 if (!memslot->dirty_bitmap) 3029 goto out; 3030 3031 /* 3032 * Use second half of bitmap area because radix accumulates 3033 * bits in the first half. 3034 */ 3035 n = kvm_dirty_bitmap_bytes(memslot); 3036 buf = memslot->dirty_bitmap + n / sizeof(long); 3037 memset(buf, 0, n); 3038 3039 if (kvm_is_radix(kvm)) 3040 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3041 else 3042 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3043 if (r) 3044 goto out; 3045 3046 /* Harvest dirty bits from VPA and DTL updates */ 3047 /* Note: we never modify the SLB shadow buffer areas */ 3048 kvm_for_each_vcpu(i, vcpu, kvm) { 3049 spin_lock(&vcpu->arch.vpa_update_lock); 3050 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3051 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3052 spin_unlock(&vcpu->arch.vpa_update_lock); 3053 } 3054 3055 r = -EFAULT; 3056 if (copy_to_user(log->dirty_bitmap, buf, n)) 3057 goto out; 3058 3059 r = 0; 3060 out: 3061 mutex_unlock(&kvm->slots_lock); 3062 return r; 3063 } 3064 3065 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3066 struct kvm_memory_slot *dont) 3067 { 3068 if (!dont || free->arch.rmap != dont->arch.rmap) { 3069 vfree(free->arch.rmap); 3070 free->arch.rmap = NULL; 3071 } 3072 } 3073 3074 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3075 unsigned long npages) 3076 { 3077 /* 3078 * For now, if radix_enabled() then we only support radix guests, 3079 * and in that case we don't need the rmap array. 3080 */ 3081 if (radix_enabled()) { 3082 slot->arch.rmap = NULL; 3083 return 0; 3084 } 3085 3086 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3087 if (!slot->arch.rmap) 3088 return -ENOMEM; 3089 3090 return 0; 3091 } 3092 3093 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3094 struct kvm_memory_slot *memslot, 3095 const struct kvm_userspace_memory_region *mem) 3096 { 3097 return 0; 3098 } 3099 3100 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3101 const struct kvm_userspace_memory_region *mem, 3102 const struct kvm_memory_slot *old, 3103 const struct kvm_memory_slot *new) 3104 { 3105 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3106 struct kvm_memslots *slots; 3107 struct kvm_memory_slot *memslot; 3108 3109 /* 3110 * If we are making a new memslot, it might make 3111 * some address that was previously cached as emulated 3112 * MMIO be no longer emulated MMIO, so invalidate 3113 * all the caches of emulated MMIO translations. 3114 */ 3115 if (npages) 3116 atomic64_inc(&kvm->arch.mmio_update); 3117 3118 if (npages && old->npages && !kvm_is_radix(kvm)) { 3119 /* 3120 * If modifying a memslot, reset all the rmap dirty bits. 3121 * If this is a new memslot, we don't need to do anything 3122 * since the rmap array starts out as all zeroes, 3123 * i.e. no pages are dirty. 3124 */ 3125 slots = kvm_memslots(kvm); 3126 memslot = id_to_memslot(slots, mem->slot); 3127 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL); 3128 } 3129 } 3130 3131 /* 3132 * Update LPCR values in kvm->arch and in vcores. 3133 * Caller must hold kvm->lock. 3134 */ 3135 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3136 { 3137 long int i; 3138 u32 cores_done = 0; 3139 3140 if ((kvm->arch.lpcr & mask) == lpcr) 3141 return; 3142 3143 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3144 3145 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3146 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3147 if (!vc) 3148 continue; 3149 spin_lock(&vc->lock); 3150 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3151 spin_unlock(&vc->lock); 3152 if (++cores_done >= kvm->arch.online_vcores) 3153 break; 3154 } 3155 } 3156 3157 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3158 { 3159 return; 3160 } 3161 3162 static void kvmppc_setup_partition_table(struct kvm *kvm) 3163 { 3164 unsigned long dw0, dw1; 3165 3166 if (!kvm_is_radix(kvm)) { 3167 /* PS field - page size for VRMA */ 3168 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3169 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3170 /* HTABSIZE and HTABORG fields */ 3171 dw0 |= kvm->arch.sdr1; 3172 3173 /* Second dword as set by userspace */ 3174 dw1 = kvm->arch.process_table; 3175 } else { 3176 dw0 = PATB_HR | radix__get_tree_size() | 3177 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3178 dw1 = PATB_GR | kvm->arch.process_table; 3179 } 3180 3181 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3182 } 3183 3184 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3185 { 3186 int err = 0; 3187 struct kvm *kvm = vcpu->kvm; 3188 unsigned long hva; 3189 struct kvm_memory_slot *memslot; 3190 struct vm_area_struct *vma; 3191 unsigned long lpcr = 0, senc; 3192 unsigned long psize, porder; 3193 int srcu_idx; 3194 3195 mutex_lock(&kvm->lock); 3196 if (kvm->arch.hpte_setup_done) 3197 goto out; /* another vcpu beat us to it */ 3198 3199 /* Allocate hashed page table (if not done already) and reset it */ 3200 if (!kvm->arch.hpt.virt) { 3201 int order = KVM_DEFAULT_HPT_ORDER; 3202 struct kvm_hpt_info info; 3203 3204 err = kvmppc_allocate_hpt(&info, order); 3205 /* If we get here, it means userspace didn't specify a 3206 * size explicitly. So, try successively smaller 3207 * sizes if the default failed. */ 3208 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3209 err = kvmppc_allocate_hpt(&info, order); 3210 3211 if (err < 0) { 3212 pr_err("KVM: Couldn't alloc HPT\n"); 3213 goto out; 3214 } 3215 3216 kvmppc_set_hpt(kvm, &info); 3217 } 3218 3219 /* Look up the memslot for guest physical address 0 */ 3220 srcu_idx = srcu_read_lock(&kvm->srcu); 3221 memslot = gfn_to_memslot(kvm, 0); 3222 3223 /* We must have some memory at 0 by now */ 3224 err = -EINVAL; 3225 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3226 goto out_srcu; 3227 3228 /* Look up the VMA for the start of this memory slot */ 3229 hva = memslot->userspace_addr; 3230 down_read(¤t->mm->mmap_sem); 3231 vma = find_vma(current->mm, hva); 3232 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3233 goto up_out; 3234 3235 psize = vma_kernel_pagesize(vma); 3236 porder = __ilog2(psize); 3237 3238 up_read(¤t->mm->mmap_sem); 3239 3240 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3241 err = -EINVAL; 3242 if (!(psize == 0x1000 || psize == 0x10000 || 3243 psize == 0x1000000)) 3244 goto out_srcu; 3245 3246 senc = slb_pgsize_encoding(psize); 3247 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3248 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3249 /* Create HPTEs in the hash page table for the VRMA */ 3250 kvmppc_map_vrma(vcpu, memslot, porder); 3251 3252 /* Update VRMASD field in the LPCR */ 3253 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3254 /* the -4 is to account for senc values starting at 0x10 */ 3255 lpcr = senc << (LPCR_VRMASD_SH - 4); 3256 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3257 } else { 3258 kvmppc_setup_partition_table(kvm); 3259 } 3260 3261 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 3262 smp_wmb(); 3263 kvm->arch.hpte_setup_done = 1; 3264 err = 0; 3265 out_srcu: 3266 srcu_read_unlock(&kvm->srcu, srcu_idx); 3267 out: 3268 mutex_unlock(&kvm->lock); 3269 return err; 3270 3271 up_out: 3272 up_read(¤t->mm->mmap_sem); 3273 goto out_srcu; 3274 } 3275 3276 #ifdef CONFIG_KVM_XICS 3277 /* 3278 * Allocate a per-core structure for managing state about which cores are 3279 * running in the host versus the guest and for exchanging data between 3280 * real mode KVM and CPU running in the host. 3281 * This is only done for the first VM. 3282 * The allocated structure stays even if all VMs have stopped. 3283 * It is only freed when the kvm-hv module is unloaded. 3284 * It's OK for this routine to fail, we just don't support host 3285 * core operations like redirecting H_IPI wakeups. 3286 */ 3287 void kvmppc_alloc_host_rm_ops(void) 3288 { 3289 struct kvmppc_host_rm_ops *ops; 3290 unsigned long l_ops; 3291 int cpu, core; 3292 int size; 3293 3294 /* Not the first time here ? */ 3295 if (kvmppc_host_rm_ops_hv != NULL) 3296 return; 3297 3298 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3299 if (!ops) 3300 return; 3301 3302 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3303 ops->rm_core = kzalloc(size, GFP_KERNEL); 3304 3305 if (!ops->rm_core) { 3306 kfree(ops); 3307 return; 3308 } 3309 3310 get_online_cpus(); 3311 3312 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3313 if (!cpu_online(cpu)) 3314 continue; 3315 3316 core = cpu >> threads_shift; 3317 ops->rm_core[core].rm_state.in_host = 1; 3318 } 3319 3320 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3321 3322 /* 3323 * Make the contents of the kvmppc_host_rm_ops structure visible 3324 * to other CPUs before we assign it to the global variable. 3325 * Do an atomic assignment (no locks used here), but if someone 3326 * beats us to it, just free our copy and return. 3327 */ 3328 smp_wmb(); 3329 l_ops = (unsigned long) ops; 3330 3331 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3332 put_online_cpus(); 3333 kfree(ops->rm_core); 3334 kfree(ops); 3335 return; 3336 } 3337 3338 cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3339 "ppc/kvm_book3s:prepare", 3340 kvmppc_set_host_core, 3341 kvmppc_clear_host_core); 3342 put_online_cpus(); 3343 } 3344 3345 void kvmppc_free_host_rm_ops(void) 3346 { 3347 if (kvmppc_host_rm_ops_hv) { 3348 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3349 kfree(kvmppc_host_rm_ops_hv->rm_core); 3350 kfree(kvmppc_host_rm_ops_hv); 3351 kvmppc_host_rm_ops_hv = NULL; 3352 } 3353 } 3354 #endif 3355 3356 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3357 { 3358 unsigned long lpcr, lpid; 3359 char buf[32]; 3360 int ret; 3361 3362 /* Allocate the guest's logical partition ID */ 3363 3364 lpid = kvmppc_alloc_lpid(); 3365 if ((long)lpid < 0) 3366 return -ENOMEM; 3367 kvm->arch.lpid = lpid; 3368 3369 kvmppc_alloc_host_rm_ops(); 3370 3371 /* 3372 * Since we don't flush the TLB when tearing down a VM, 3373 * and this lpid might have previously been used, 3374 * make sure we flush on each core before running the new VM. 3375 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3376 * does this flush for us. 3377 */ 3378 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3379 cpumask_setall(&kvm->arch.need_tlb_flush); 3380 3381 /* Start out with the default set of hcalls enabled */ 3382 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3383 sizeof(kvm->arch.enabled_hcalls)); 3384 3385 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3386 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3387 3388 /* Init LPCR for virtual RMA mode */ 3389 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3390 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3391 lpcr &= LPCR_PECE | LPCR_LPES; 3392 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3393 LPCR_VPM0 | LPCR_VPM1; 3394 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3395 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3396 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3397 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3398 lpcr |= LPCR_ONL; 3399 /* 3400 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3401 * Set HVICE bit to enable hypervisor virtualization interrupts. 3402 */ 3403 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3404 lpcr &= ~LPCR_VPM0; 3405 lpcr |= LPCR_HVICE; 3406 } 3407 3408 /* 3409 * For now, if the host uses radix, the guest must be radix. 3410 */ 3411 if (radix_enabled()) { 3412 kvm->arch.radix = 1; 3413 lpcr &= ~LPCR_VPM1; 3414 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3415 ret = kvmppc_init_vm_radix(kvm); 3416 if (ret) { 3417 kvmppc_free_lpid(kvm->arch.lpid); 3418 return ret; 3419 } 3420 kvmppc_setup_partition_table(kvm); 3421 } 3422 3423 kvm->arch.lpcr = lpcr; 3424 3425 /* Initialization for future HPT resizes */ 3426 kvm->arch.resize_hpt = NULL; 3427 3428 /* 3429 * Work out how many sets the TLB has, for the use of 3430 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3431 */ 3432 if (kvm_is_radix(kvm)) 3433 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3434 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3435 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3436 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3437 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3438 else 3439 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3440 3441 /* 3442 * Track that we now have a HV mode VM active. This blocks secondary 3443 * CPU threads from coming online. 3444 * On POWER9, we only need to do this for HPT guests on a radix 3445 * host, which is not yet supported. 3446 */ 3447 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3448 kvm_hv_vm_activated(); 3449 3450 /* 3451 * Create a debugfs directory for the VM 3452 */ 3453 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3454 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3455 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3456 kvmppc_mmu_debugfs_init(kvm); 3457 3458 return 0; 3459 } 3460 3461 static void kvmppc_free_vcores(struct kvm *kvm) 3462 { 3463 long int i; 3464 3465 for (i = 0; i < KVM_MAX_VCORES; ++i) 3466 kfree(kvm->arch.vcores[i]); 3467 kvm->arch.online_vcores = 0; 3468 } 3469 3470 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3471 { 3472 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3473 3474 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3475 kvm_hv_vm_deactivated(); 3476 3477 kvmppc_free_vcores(kvm); 3478 3479 kvmppc_free_lpid(kvm->arch.lpid); 3480 3481 if (kvm_is_radix(kvm)) 3482 kvmppc_free_radix(kvm); 3483 else 3484 kvmppc_free_hpt(&kvm->arch.hpt); 3485 3486 kvmppc_free_pimap(kvm); 3487 } 3488 3489 /* We don't need to emulate any privileged instructions or dcbz */ 3490 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3491 unsigned int inst, int *advance) 3492 { 3493 return EMULATE_FAIL; 3494 } 3495 3496 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3497 ulong spr_val) 3498 { 3499 return EMULATE_FAIL; 3500 } 3501 3502 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3503 ulong *spr_val) 3504 { 3505 return EMULATE_FAIL; 3506 } 3507 3508 static int kvmppc_core_check_processor_compat_hv(void) 3509 { 3510 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3511 !cpu_has_feature(CPU_FTR_ARCH_206)) 3512 return -EIO; 3513 3514 return 0; 3515 } 3516 3517 #ifdef CONFIG_KVM_XICS 3518 3519 void kvmppc_free_pimap(struct kvm *kvm) 3520 { 3521 kfree(kvm->arch.pimap); 3522 } 3523 3524 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3525 { 3526 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3527 } 3528 3529 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3530 { 3531 struct irq_desc *desc; 3532 struct kvmppc_irq_map *irq_map; 3533 struct kvmppc_passthru_irqmap *pimap; 3534 struct irq_chip *chip; 3535 int i; 3536 3537 if (!kvm_irq_bypass) 3538 return 1; 3539 3540 desc = irq_to_desc(host_irq); 3541 if (!desc) 3542 return -EIO; 3543 3544 mutex_lock(&kvm->lock); 3545 3546 pimap = kvm->arch.pimap; 3547 if (pimap == NULL) { 3548 /* First call, allocate structure to hold IRQ map */ 3549 pimap = kvmppc_alloc_pimap(); 3550 if (pimap == NULL) { 3551 mutex_unlock(&kvm->lock); 3552 return -ENOMEM; 3553 } 3554 kvm->arch.pimap = pimap; 3555 } 3556 3557 /* 3558 * For now, we only support interrupts for which the EOI operation 3559 * is an OPAL call followed by a write to XIRR, since that's 3560 * what our real-mode EOI code does. 3561 */ 3562 chip = irq_data_get_irq_chip(&desc->irq_data); 3563 if (!chip || !is_pnv_opal_msi(chip)) { 3564 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 3565 host_irq, guest_gsi); 3566 mutex_unlock(&kvm->lock); 3567 return -ENOENT; 3568 } 3569 3570 /* 3571 * See if we already have an entry for this guest IRQ number. 3572 * If it's mapped to a hardware IRQ number, that's an error, 3573 * otherwise re-use this entry. 3574 */ 3575 for (i = 0; i < pimap->n_mapped; i++) { 3576 if (guest_gsi == pimap->mapped[i].v_hwirq) { 3577 if (pimap->mapped[i].r_hwirq) { 3578 mutex_unlock(&kvm->lock); 3579 return -EINVAL; 3580 } 3581 break; 3582 } 3583 } 3584 3585 if (i == KVMPPC_PIRQ_MAPPED) { 3586 mutex_unlock(&kvm->lock); 3587 return -EAGAIN; /* table is full */ 3588 } 3589 3590 irq_map = &pimap->mapped[i]; 3591 3592 irq_map->v_hwirq = guest_gsi; 3593 irq_map->desc = desc; 3594 3595 /* 3596 * Order the above two stores before the next to serialize with 3597 * the KVM real mode handler. 3598 */ 3599 smp_wmb(); 3600 irq_map->r_hwirq = desc->irq_data.hwirq; 3601 3602 if (i == pimap->n_mapped) 3603 pimap->n_mapped++; 3604 3605 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 3606 3607 mutex_unlock(&kvm->lock); 3608 3609 return 0; 3610 } 3611 3612 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3613 { 3614 struct irq_desc *desc; 3615 struct kvmppc_passthru_irqmap *pimap; 3616 int i; 3617 3618 if (!kvm_irq_bypass) 3619 return 0; 3620 3621 desc = irq_to_desc(host_irq); 3622 if (!desc) 3623 return -EIO; 3624 3625 mutex_lock(&kvm->lock); 3626 3627 if (kvm->arch.pimap == NULL) { 3628 mutex_unlock(&kvm->lock); 3629 return 0; 3630 } 3631 pimap = kvm->arch.pimap; 3632 3633 for (i = 0; i < pimap->n_mapped; i++) { 3634 if (guest_gsi == pimap->mapped[i].v_hwirq) 3635 break; 3636 } 3637 3638 if (i == pimap->n_mapped) { 3639 mutex_unlock(&kvm->lock); 3640 return -ENODEV; 3641 } 3642 3643 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 3644 3645 /* invalidate the entry */ 3646 pimap->mapped[i].r_hwirq = 0; 3647 3648 /* 3649 * We don't free this structure even when the count goes to 3650 * zero. The structure is freed when we destroy the VM. 3651 */ 3652 3653 mutex_unlock(&kvm->lock); 3654 return 0; 3655 } 3656 3657 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 3658 struct irq_bypass_producer *prod) 3659 { 3660 int ret = 0; 3661 struct kvm_kernel_irqfd *irqfd = 3662 container_of(cons, struct kvm_kernel_irqfd, consumer); 3663 3664 irqfd->producer = prod; 3665 3666 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3667 if (ret) 3668 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 3669 prod->irq, irqfd->gsi, ret); 3670 3671 return ret; 3672 } 3673 3674 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 3675 struct irq_bypass_producer *prod) 3676 { 3677 int ret; 3678 struct kvm_kernel_irqfd *irqfd = 3679 container_of(cons, struct kvm_kernel_irqfd, consumer); 3680 3681 irqfd->producer = NULL; 3682 3683 /* 3684 * When producer of consumer is unregistered, we change back to 3685 * default external interrupt handling mode - KVM real mode 3686 * will switch back to host. 3687 */ 3688 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3689 if (ret) 3690 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 3691 prod->irq, irqfd->gsi, ret); 3692 } 3693 #endif 3694 3695 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3696 unsigned int ioctl, unsigned long arg) 3697 { 3698 struct kvm *kvm __maybe_unused = filp->private_data; 3699 void __user *argp = (void __user *)arg; 3700 long r; 3701 3702 switch (ioctl) { 3703 3704 case KVM_PPC_ALLOCATE_HTAB: { 3705 u32 htab_order; 3706 3707 r = -EFAULT; 3708 if (get_user(htab_order, (u32 __user *)argp)) 3709 break; 3710 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 3711 if (r) 3712 break; 3713 r = 0; 3714 break; 3715 } 3716 3717 case KVM_PPC_GET_HTAB_FD: { 3718 struct kvm_get_htab_fd ghf; 3719 3720 r = -EFAULT; 3721 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3722 break; 3723 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3724 break; 3725 } 3726 3727 case KVM_PPC_RESIZE_HPT_PREPARE: { 3728 struct kvm_ppc_resize_hpt rhpt; 3729 3730 r = -EFAULT; 3731 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3732 break; 3733 3734 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 3735 break; 3736 } 3737 3738 case KVM_PPC_RESIZE_HPT_COMMIT: { 3739 struct kvm_ppc_resize_hpt rhpt; 3740 3741 r = -EFAULT; 3742 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3743 break; 3744 3745 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 3746 break; 3747 } 3748 3749 default: 3750 r = -ENOTTY; 3751 } 3752 3753 return r; 3754 } 3755 3756 /* 3757 * List of hcall numbers to enable by default. 3758 * For compatibility with old userspace, we enable by default 3759 * all hcalls that were implemented before the hcall-enabling 3760 * facility was added. Note this list should not include H_RTAS. 3761 */ 3762 static unsigned int default_hcall_list[] = { 3763 H_REMOVE, 3764 H_ENTER, 3765 H_READ, 3766 H_PROTECT, 3767 H_BULK_REMOVE, 3768 H_GET_TCE, 3769 H_PUT_TCE, 3770 H_SET_DABR, 3771 H_SET_XDABR, 3772 H_CEDE, 3773 H_PROD, 3774 H_CONFER, 3775 H_REGISTER_VPA, 3776 #ifdef CONFIG_KVM_XICS 3777 H_EOI, 3778 H_CPPR, 3779 H_IPI, 3780 H_IPOLL, 3781 H_XIRR, 3782 H_XIRR_X, 3783 #endif 3784 0 3785 }; 3786 3787 static void init_default_hcalls(void) 3788 { 3789 int i; 3790 unsigned int hcall; 3791 3792 for (i = 0; default_hcall_list[i]; ++i) { 3793 hcall = default_hcall_list[i]; 3794 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3795 __set_bit(hcall / 4, default_enabled_hcalls); 3796 } 3797 } 3798 3799 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 3800 { 3801 unsigned long lpcr; 3802 int radix; 3803 3804 /* If not on a POWER9, reject it */ 3805 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3806 return -ENODEV; 3807 3808 /* If any unknown flags set, reject it */ 3809 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 3810 return -EINVAL; 3811 3812 /* We can't change a guest to/from radix yet */ 3813 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 3814 if (radix != kvm_is_radix(kvm)) 3815 return -EINVAL; 3816 3817 /* GR (guest radix) bit in process_table field must match */ 3818 if (!!(cfg->process_table & PATB_GR) != radix) 3819 return -EINVAL; 3820 3821 /* Process table size field must be reasonable, i.e. <= 24 */ 3822 if ((cfg->process_table & PRTS_MASK) > 24) 3823 return -EINVAL; 3824 3825 kvm->arch.process_table = cfg->process_table; 3826 kvmppc_setup_partition_table(kvm); 3827 3828 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 3829 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 3830 3831 return 0; 3832 } 3833 3834 static struct kvmppc_ops kvm_ops_hv = { 3835 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3836 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3837 .get_one_reg = kvmppc_get_one_reg_hv, 3838 .set_one_reg = kvmppc_set_one_reg_hv, 3839 .vcpu_load = kvmppc_core_vcpu_load_hv, 3840 .vcpu_put = kvmppc_core_vcpu_put_hv, 3841 .set_msr = kvmppc_set_msr_hv, 3842 .vcpu_run = kvmppc_vcpu_run_hv, 3843 .vcpu_create = kvmppc_core_vcpu_create_hv, 3844 .vcpu_free = kvmppc_core_vcpu_free_hv, 3845 .check_requests = kvmppc_core_check_requests_hv, 3846 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3847 .flush_memslot = kvmppc_core_flush_memslot_hv, 3848 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3849 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3850 .unmap_hva = kvm_unmap_hva_hv, 3851 .unmap_hva_range = kvm_unmap_hva_range_hv, 3852 .age_hva = kvm_age_hva_hv, 3853 .test_age_hva = kvm_test_age_hva_hv, 3854 .set_spte_hva = kvm_set_spte_hva_hv, 3855 .mmu_destroy = kvmppc_mmu_destroy_hv, 3856 .free_memslot = kvmppc_core_free_memslot_hv, 3857 .create_memslot = kvmppc_core_create_memslot_hv, 3858 .init_vm = kvmppc_core_init_vm_hv, 3859 .destroy_vm = kvmppc_core_destroy_vm_hv, 3860 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3861 .emulate_op = kvmppc_core_emulate_op_hv, 3862 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3863 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3864 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3865 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3866 .hcall_implemented = kvmppc_hcall_impl_hv, 3867 #ifdef CONFIG_KVM_XICS 3868 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 3869 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 3870 #endif 3871 .configure_mmu = kvmhv_configure_mmu, 3872 .get_rmmu_info = kvmhv_get_rmmu_info, 3873 }; 3874 3875 static int kvm_init_subcore_bitmap(void) 3876 { 3877 int i, j; 3878 int nr_cores = cpu_nr_cores(); 3879 struct sibling_subcore_state *sibling_subcore_state; 3880 3881 for (i = 0; i < nr_cores; i++) { 3882 int first_cpu = i * threads_per_core; 3883 int node = cpu_to_node(first_cpu); 3884 3885 /* Ignore if it is already allocated. */ 3886 if (paca[first_cpu].sibling_subcore_state) 3887 continue; 3888 3889 sibling_subcore_state = 3890 kmalloc_node(sizeof(struct sibling_subcore_state), 3891 GFP_KERNEL, node); 3892 if (!sibling_subcore_state) 3893 return -ENOMEM; 3894 3895 memset(sibling_subcore_state, 0, 3896 sizeof(struct sibling_subcore_state)); 3897 3898 for (j = 0; j < threads_per_core; j++) { 3899 int cpu = first_cpu + j; 3900 3901 paca[cpu].sibling_subcore_state = sibling_subcore_state; 3902 } 3903 } 3904 return 0; 3905 } 3906 3907 static int kvmppc_radix_possible(void) 3908 { 3909 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 3910 } 3911 3912 static int kvmppc_book3s_init_hv(void) 3913 { 3914 int r; 3915 /* 3916 * FIXME!! Do we need to check on all cpus ? 3917 */ 3918 r = kvmppc_core_check_processor_compat_hv(); 3919 if (r < 0) 3920 return -ENODEV; 3921 3922 r = kvm_init_subcore_bitmap(); 3923 if (r) 3924 return r; 3925 3926 /* 3927 * We need a way of accessing the XICS interrupt controller, 3928 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 3929 * indirectly, via OPAL. 3930 */ 3931 #ifdef CONFIG_SMP 3932 if (!get_paca()->kvm_hstate.xics_phys) { 3933 struct device_node *np; 3934 3935 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 3936 if (!np) { 3937 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 3938 return -ENODEV; 3939 } 3940 } 3941 #endif 3942 3943 kvm_ops_hv.owner = THIS_MODULE; 3944 kvmppc_hv_ops = &kvm_ops_hv; 3945 3946 init_default_hcalls(); 3947 3948 init_vcore_lists(); 3949 3950 r = kvmppc_mmu_hv_init(); 3951 if (r) 3952 return r; 3953 3954 if (kvmppc_radix_possible()) 3955 r = kvmppc_radix_init(); 3956 return r; 3957 } 3958 3959 static void kvmppc_book3s_exit_hv(void) 3960 { 3961 kvmppc_free_host_rm_ops(); 3962 if (kvmppc_radix_possible()) 3963 kvmppc_radix_exit(); 3964 kvmppc_hv_ops = NULL; 3965 } 3966 3967 module_init(kvmppc_book3s_init_hv); 3968 module_exit(kvmppc_book3s_exit_hv); 3969 MODULE_LICENSE("GPL"); 3970 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3971 MODULE_ALIAS("devname:kvm"); 3972 3973