xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 4c8c3c7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47 
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83 
84 #include <trace/events/ipi.h>
85 
86 #include "book3s.h"
87 #include "book3s_hv.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91 
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95 
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
100 
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL	(~(u64)0)
103 
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105 
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112 
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116 
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119 	.set = param_set_int,
120 	.get = param_get_int,
121 };
122 
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125 
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129 
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134 
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136 
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
150 
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152 	RWMR_RPA_P8_1THREAD,
153 	RWMR_RPA_P8_1THREAD,
154 	RWMR_RPA_P8_2THREAD,
155 	RWMR_RPA_P8_3THREAD,
156 	RWMR_RPA_P8_4THREAD,
157 	RWMR_RPA_P8_5THREAD,
158 	RWMR_RPA_P8_6THREAD,
159 	RWMR_RPA_P8_7THREAD,
160 	RWMR_RPA_P8_8THREAD,
161 };
162 
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164 		int *ip)
165 {
166 	int i = *ip;
167 	struct kvm_vcpu *vcpu;
168 
169 	while (++i < MAX_SMT_THREADS) {
170 		vcpu = READ_ONCE(vc->runnable_threads[i]);
171 		if (vcpu) {
172 			*ip = i;
173 			return vcpu;
174 		}
175 	}
176 	return NULL;
177 }
178 
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182 
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186 
187 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 	if (kvmhv_on_pseries())
189 		return false;
190 
191 	/* On POWER9 we can use msgsnd to IPI any cpu */
192 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 		msg |= get_hard_smp_processor_id(cpu);
194 		smp_mb();
195 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196 		return true;
197 	}
198 
199 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201 		preempt_disable();
202 		if (cpu_first_thread_sibling(cpu) ==
203 		    cpu_first_thread_sibling(smp_processor_id())) {
204 			msg |= cpu_thread_in_core(cpu);
205 			smp_mb();
206 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 			preempt_enable();
208 			return true;
209 		}
210 		preempt_enable();
211 	}
212 
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 	if (cpu >= 0 && cpu < nr_cpu_ids) {
215 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216 			xics_wake_cpu(cpu);
217 			return true;
218 		}
219 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220 		return true;
221 	}
222 #endif
223 
224 	return false;
225 }
226 
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229 	int cpu;
230 	struct rcuwait *waitp;
231 
232 	/*
233 	 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 	 * create pending work vs below loads of cpu fields. The other side
235 	 * is the barrier in vcpu run that orders setting the cpu fields vs
236 	 * testing for pending work.
237 	 */
238 
239 	waitp = kvm_arch_vcpu_get_wait(vcpu);
240 	if (rcuwait_wake_up(waitp))
241 		++vcpu->stat.generic.halt_wakeup;
242 
243 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 		return;
246 
247 	/* CPU points to the first thread of the core */
248 	cpu = vcpu->cpu;
249 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 		smp_send_reschedule(cpu);
251 }
252 
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  *
256  * Stolen time is counted as time when either the vcpu is able to
257  * run as part of a virtual core, but the task running the vcore
258  * is preempted or sleeping, or when the vcpu needs something done
259  * in the kernel by the task running the vcpu, but that task is
260  * preempted or sleeping.  Those two things have to be counted
261  * separately, since one of the vcpu tasks will take on the job
262  * of running the core, and the other vcpu tasks in the vcore will
263  * sleep waiting for it to do that, but that sleep shouldn't count
264  * as stolen time.
265  *
266  * Hence we accumulate stolen time when the vcpu can run as part of
267  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268  * needs its task to do other things in the kernel (for example,
269  * service a page fault) in busy_stolen.  We don't accumulate
270  * stolen time for a vcore when it is inactive, or for a vcpu
271  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272  * a misnomer; it means that the vcpu task is not executing in
273  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274  * the kernel.  We don't have any way of dividing up that time
275  * between time that the vcpu is genuinely stopped, time that
276  * the task is actively working on behalf of the vcpu, and time
277  * that the task is preempted, so we don't count any of it as
278  * stolen.
279  *
280  * Updates to busy_stolen are protected by arch.tbacct_lock;
281  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282  * lock.  The stolen times are measured in units of timebase ticks.
283  * (Note that the != TB_NIL checks below are purely defensive;
284  * they should never fail.)
285  *
286  * The POWER9 path is simpler, one vcpu per virtual core so the
287  * former case does not exist. If a vcpu is preempted when it is
288  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290  * state in the P9 path.
291  */
292 
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295 	unsigned long flags;
296 
297 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298 
299 	spin_lock_irqsave(&vc->stoltb_lock, flags);
300 	vc->preempt_tb = tb;
301 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303 
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306 	unsigned long flags;
307 
308 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309 
310 	spin_lock_irqsave(&vc->stoltb_lock, flags);
311 	if (vc->preempt_tb != TB_NIL) {
312 		vc->stolen_tb += tb - vc->preempt_tb;
313 		vc->preempt_tb = TB_NIL;
314 	}
315 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317 
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 	unsigned long flags;
322 	u64 now;
323 
324 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 		if (vcpu->arch.busy_preempt != TB_NIL) {
326 			WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 			vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 			vcpu->arch.busy_preempt = TB_NIL;
329 		}
330 		return;
331 	}
332 
333 	now = mftb();
334 
335 	/*
336 	 * We can test vc->runner without taking the vcore lock,
337 	 * because only this task ever sets vc->runner to this
338 	 * vcpu, and once it is set to this vcpu, only this task
339 	 * ever sets it to NULL.
340 	 */
341 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 		kvmppc_core_end_stolen(vc, now);
343 
344 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 	    vcpu->arch.busy_preempt != TB_NIL) {
347 		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 		vcpu->arch.busy_preempt = TB_NIL;
349 	}
350 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352 
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
356 	unsigned long flags;
357 	u64 now;
358 
359 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360 		/*
361 		 * In the P9 path, RUNNABLE is not preemptible
362 		 * (nor takes host interrupts)
363 		 */
364 		WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365 		/*
366 		 * Account stolen time when preempted while the vcpu task is
367 		 * running in the kernel (but not in qemu, which is INACTIVE).
368 		 */
369 		if (task_is_running(current) &&
370 				vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 			vcpu->arch.busy_preempt = mftb();
372 		return;
373 	}
374 
375 	now = mftb();
376 
377 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 		kvmppc_core_start_stolen(vc, now);
379 
380 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 		vcpu->arch.busy_preempt = now;
383 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385 
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388 	vcpu->arch.pvr = pvr;
389 }
390 
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393 
394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
395 {
396 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
397 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
398 
399 	/* We can (emulate) our own architecture version and anything older */
400 	if (cpu_has_feature(CPU_FTR_ARCH_31))
401 		host_pcr_bit = PCR_ARCH_31;
402 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
403 		host_pcr_bit = PCR_ARCH_300;
404 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405 		host_pcr_bit = PCR_ARCH_207;
406 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
407 		host_pcr_bit = PCR_ARCH_206;
408 	else
409 		host_pcr_bit = PCR_ARCH_205;
410 
411 	/* Determine lowest PCR bit needed to run guest in given PVR level */
412 	guest_pcr_bit = host_pcr_bit;
413 	if (arch_compat) {
414 		switch (arch_compat) {
415 		case PVR_ARCH_205:
416 			guest_pcr_bit = PCR_ARCH_205;
417 			break;
418 		case PVR_ARCH_206:
419 		case PVR_ARCH_206p:
420 			guest_pcr_bit = PCR_ARCH_206;
421 			break;
422 		case PVR_ARCH_207:
423 			guest_pcr_bit = PCR_ARCH_207;
424 			break;
425 		case PVR_ARCH_300:
426 			guest_pcr_bit = PCR_ARCH_300;
427 			break;
428 		case PVR_ARCH_31:
429 			guest_pcr_bit = PCR_ARCH_31;
430 			break;
431 		default:
432 			return -EINVAL;
433 		}
434 	}
435 
436 	/* Check requested PCR bits don't exceed our capabilities */
437 	if (guest_pcr_bit > host_pcr_bit)
438 		return -EINVAL;
439 
440 	spin_lock(&vc->lock);
441 	vc->arch_compat = arch_compat;
442 	/*
443 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
444 	 * Also set all reserved PCR bits
445 	 */
446 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
447 	spin_unlock(&vc->lock);
448 
449 	return 0;
450 }
451 
452 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
453 {
454 	int r;
455 
456 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
457 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
458 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
459 	for (r = 0; r < 16; ++r)
460 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
461 		       r, kvmppc_get_gpr(vcpu, r),
462 		       r+16, kvmppc_get_gpr(vcpu, r+16));
463 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
464 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
465 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
466 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
467 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
468 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
469 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
470 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
471 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
472 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
473 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
474 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
475 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
476 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
477 	for (r = 0; r < vcpu->arch.slb_max; ++r)
478 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
479 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
480 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
481 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
482 	       vcpu->arch.last_inst);
483 }
484 
485 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
486 {
487 	return kvm_get_vcpu_by_id(kvm, id);
488 }
489 
490 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
491 {
492 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
493 	vpa->yield_count = cpu_to_be32(1);
494 }
495 
496 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
497 		   unsigned long addr, unsigned long len)
498 {
499 	/* check address is cacheline aligned */
500 	if (addr & (L1_CACHE_BYTES - 1))
501 		return -EINVAL;
502 	spin_lock(&vcpu->arch.vpa_update_lock);
503 	if (v->next_gpa != addr || v->len != len) {
504 		v->next_gpa = addr;
505 		v->len = addr ? len : 0;
506 		v->update_pending = 1;
507 	}
508 	spin_unlock(&vcpu->arch.vpa_update_lock);
509 	return 0;
510 }
511 
512 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
513 struct reg_vpa {
514 	u32 dummy;
515 	union {
516 		__be16 hword;
517 		__be32 word;
518 	} length;
519 };
520 
521 static int vpa_is_registered(struct kvmppc_vpa *vpap)
522 {
523 	if (vpap->update_pending)
524 		return vpap->next_gpa != 0;
525 	return vpap->pinned_addr != NULL;
526 }
527 
528 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
529 				       unsigned long flags,
530 				       unsigned long vcpuid, unsigned long vpa)
531 {
532 	struct kvm *kvm = vcpu->kvm;
533 	unsigned long len, nb;
534 	void *va;
535 	struct kvm_vcpu *tvcpu;
536 	int err;
537 	int subfunc;
538 	struct kvmppc_vpa *vpap;
539 
540 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
541 	if (!tvcpu)
542 		return H_PARAMETER;
543 
544 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
545 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
546 	    subfunc == H_VPA_REG_SLB) {
547 		/* Registering new area - address must be cache-line aligned */
548 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
549 			return H_PARAMETER;
550 
551 		/* convert logical addr to kernel addr and read length */
552 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
553 		if (va == NULL)
554 			return H_PARAMETER;
555 		if (subfunc == H_VPA_REG_VPA)
556 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
557 		else
558 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
559 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
560 
561 		/* Check length */
562 		if (len > nb || len < sizeof(struct reg_vpa))
563 			return H_PARAMETER;
564 	} else {
565 		vpa = 0;
566 		len = 0;
567 	}
568 
569 	err = H_PARAMETER;
570 	vpap = NULL;
571 	spin_lock(&tvcpu->arch.vpa_update_lock);
572 
573 	switch (subfunc) {
574 	case H_VPA_REG_VPA:		/* register VPA */
575 		/*
576 		 * The size of our lppaca is 1kB because of the way we align
577 		 * it for the guest to avoid crossing a 4kB boundary. We only
578 		 * use 640 bytes of the structure though, so we should accept
579 		 * clients that set a size of 640.
580 		 */
581 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
582 		if (len < sizeof(struct lppaca))
583 			break;
584 		vpap = &tvcpu->arch.vpa;
585 		err = 0;
586 		break;
587 
588 	case H_VPA_REG_DTL:		/* register DTL */
589 		if (len < sizeof(struct dtl_entry))
590 			break;
591 		len -= len % sizeof(struct dtl_entry);
592 
593 		/* Check that they have previously registered a VPA */
594 		err = H_RESOURCE;
595 		if (!vpa_is_registered(&tvcpu->arch.vpa))
596 			break;
597 
598 		vpap = &tvcpu->arch.dtl;
599 		err = 0;
600 		break;
601 
602 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
603 		/* Check that they have previously registered a VPA */
604 		err = H_RESOURCE;
605 		if (!vpa_is_registered(&tvcpu->arch.vpa))
606 			break;
607 
608 		vpap = &tvcpu->arch.slb_shadow;
609 		err = 0;
610 		break;
611 
612 	case H_VPA_DEREG_VPA:		/* deregister VPA */
613 		/* Check they don't still have a DTL or SLB buf registered */
614 		err = H_RESOURCE;
615 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
616 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
617 			break;
618 
619 		vpap = &tvcpu->arch.vpa;
620 		err = 0;
621 		break;
622 
623 	case H_VPA_DEREG_DTL:		/* deregister DTL */
624 		vpap = &tvcpu->arch.dtl;
625 		err = 0;
626 		break;
627 
628 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
629 		vpap = &tvcpu->arch.slb_shadow;
630 		err = 0;
631 		break;
632 	}
633 
634 	if (vpap) {
635 		vpap->next_gpa = vpa;
636 		vpap->len = len;
637 		vpap->update_pending = 1;
638 	}
639 
640 	spin_unlock(&tvcpu->arch.vpa_update_lock);
641 
642 	return err;
643 }
644 
645 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
646 {
647 	struct kvm *kvm = vcpu->kvm;
648 	void *va;
649 	unsigned long nb;
650 	unsigned long gpa;
651 
652 	/*
653 	 * We need to pin the page pointed to by vpap->next_gpa,
654 	 * but we can't call kvmppc_pin_guest_page under the lock
655 	 * as it does get_user_pages() and down_read().  So we
656 	 * have to drop the lock, pin the page, then get the lock
657 	 * again and check that a new area didn't get registered
658 	 * in the meantime.
659 	 */
660 	for (;;) {
661 		gpa = vpap->next_gpa;
662 		spin_unlock(&vcpu->arch.vpa_update_lock);
663 		va = NULL;
664 		nb = 0;
665 		if (gpa)
666 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
667 		spin_lock(&vcpu->arch.vpa_update_lock);
668 		if (gpa == vpap->next_gpa)
669 			break;
670 		/* sigh... unpin that one and try again */
671 		if (va)
672 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
673 	}
674 
675 	vpap->update_pending = 0;
676 	if (va && nb < vpap->len) {
677 		/*
678 		 * If it's now too short, it must be that userspace
679 		 * has changed the mappings underlying guest memory,
680 		 * so unregister the region.
681 		 */
682 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
683 		va = NULL;
684 	}
685 	if (vpap->pinned_addr)
686 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
687 					vpap->dirty);
688 	vpap->gpa = gpa;
689 	vpap->pinned_addr = va;
690 	vpap->dirty = false;
691 	if (va)
692 		vpap->pinned_end = va + vpap->len;
693 }
694 
695 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
696 {
697 	if (!(vcpu->arch.vpa.update_pending ||
698 	      vcpu->arch.slb_shadow.update_pending ||
699 	      vcpu->arch.dtl.update_pending))
700 		return;
701 
702 	spin_lock(&vcpu->arch.vpa_update_lock);
703 	if (vcpu->arch.vpa.update_pending) {
704 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
705 		if (vcpu->arch.vpa.pinned_addr)
706 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
707 	}
708 	if (vcpu->arch.dtl.update_pending) {
709 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
710 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
711 		vcpu->arch.dtl_index = 0;
712 	}
713 	if (vcpu->arch.slb_shadow.update_pending)
714 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
715 	spin_unlock(&vcpu->arch.vpa_update_lock);
716 }
717 
718 /*
719  * Return the accumulated stolen time for the vcore up until `now'.
720  * The caller should hold the vcore lock.
721  */
722 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
723 {
724 	u64 p;
725 	unsigned long flags;
726 
727 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
728 
729 	spin_lock_irqsave(&vc->stoltb_lock, flags);
730 	p = vc->stolen_tb;
731 	if (vc->vcore_state != VCORE_INACTIVE &&
732 	    vc->preempt_tb != TB_NIL)
733 		p += now - vc->preempt_tb;
734 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
735 	return p;
736 }
737 
738 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
739 					struct lppaca *vpa,
740 					unsigned int pcpu, u64 now,
741 					unsigned long stolen)
742 {
743 	struct dtl_entry *dt;
744 
745 	dt = vcpu->arch.dtl_ptr;
746 
747 	if (!dt)
748 		return;
749 
750 	dt->dispatch_reason = 7;
751 	dt->preempt_reason = 0;
752 	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
753 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
754 	dt->ready_to_enqueue_time = 0;
755 	dt->waiting_to_ready_time = 0;
756 	dt->timebase = cpu_to_be64(now);
757 	dt->fault_addr = 0;
758 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
759 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
760 
761 	++dt;
762 	if (dt == vcpu->arch.dtl.pinned_end)
763 		dt = vcpu->arch.dtl.pinned_addr;
764 	vcpu->arch.dtl_ptr = dt;
765 	/* order writing *dt vs. writing vpa->dtl_idx */
766 	smp_wmb();
767 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
768 
769 	/* vcpu->arch.dtl.dirty is set by the caller */
770 }
771 
772 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
773 				       struct kvmppc_vcore *vc)
774 {
775 	struct lppaca *vpa;
776 	unsigned long stolen;
777 	unsigned long core_stolen;
778 	u64 now;
779 	unsigned long flags;
780 
781 	vpa = vcpu->arch.vpa.pinned_addr;
782 	if (!vpa)
783 		return;
784 
785 	now = mftb();
786 
787 	core_stolen = vcore_stolen_time(vc, now);
788 	stolen = core_stolen - vcpu->arch.stolen_logged;
789 	vcpu->arch.stolen_logged = core_stolen;
790 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
791 	stolen += vcpu->arch.busy_stolen;
792 	vcpu->arch.busy_stolen = 0;
793 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
794 
795 	vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
796 
797 	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
798 
799 	vcpu->arch.vpa.dirty = true;
800 }
801 
802 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
803 				       struct kvmppc_vcore *vc,
804 				       u64 now)
805 {
806 	struct lppaca *vpa;
807 	unsigned long stolen;
808 	unsigned long stolen_delta;
809 
810 	vpa = vcpu->arch.vpa.pinned_addr;
811 	if (!vpa)
812 		return;
813 
814 	stolen = vc->stolen_tb;
815 	stolen_delta = stolen - vcpu->arch.stolen_logged;
816 	vcpu->arch.stolen_logged = stolen;
817 
818 	vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
819 
820 	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
821 
822 	vcpu->arch.vpa.dirty = true;
823 }
824 
825 /* See if there is a doorbell interrupt pending for a vcpu */
826 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
827 {
828 	int thr;
829 	struct kvmppc_vcore *vc;
830 
831 	if (vcpu->arch.doorbell_request)
832 		return true;
833 	if (cpu_has_feature(CPU_FTR_ARCH_300))
834 		return false;
835 	/*
836 	 * Ensure that the read of vcore->dpdes comes after the read
837 	 * of vcpu->doorbell_request.  This barrier matches the
838 	 * smp_wmb() in kvmppc_guest_entry_inject().
839 	 */
840 	smp_rmb();
841 	vc = vcpu->arch.vcore;
842 	thr = vcpu->vcpu_id - vc->first_vcpuid;
843 	return !!(vc->dpdes & (1 << thr));
844 }
845 
846 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
847 {
848 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
849 		return true;
850 	if ((!vcpu->arch.vcore->arch_compat) &&
851 	    cpu_has_feature(CPU_FTR_ARCH_207S))
852 		return true;
853 	return false;
854 }
855 
856 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
857 			     unsigned long resource, unsigned long value1,
858 			     unsigned long value2)
859 {
860 	switch (resource) {
861 	case H_SET_MODE_RESOURCE_SET_CIABR:
862 		if (!kvmppc_power8_compatible(vcpu))
863 			return H_P2;
864 		if (value2)
865 			return H_P4;
866 		if (mflags)
867 			return H_UNSUPPORTED_FLAG_START;
868 		/* Guests can't breakpoint the hypervisor */
869 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
870 			return H_P3;
871 		vcpu->arch.ciabr  = value1;
872 		return H_SUCCESS;
873 	case H_SET_MODE_RESOURCE_SET_DAWR0:
874 		if (!kvmppc_power8_compatible(vcpu))
875 			return H_P2;
876 		if (!ppc_breakpoint_available())
877 			return H_P2;
878 		if (mflags)
879 			return H_UNSUPPORTED_FLAG_START;
880 		if (value2 & DABRX_HYP)
881 			return H_P4;
882 		vcpu->arch.dawr0  = value1;
883 		vcpu->arch.dawrx0 = value2;
884 		return H_SUCCESS;
885 	case H_SET_MODE_RESOURCE_SET_DAWR1:
886 		if (!kvmppc_power8_compatible(vcpu))
887 			return H_P2;
888 		if (!ppc_breakpoint_available())
889 			return H_P2;
890 		if (!cpu_has_feature(CPU_FTR_DAWR1))
891 			return H_P2;
892 		if (!vcpu->kvm->arch.dawr1_enabled)
893 			return H_FUNCTION;
894 		if (mflags)
895 			return H_UNSUPPORTED_FLAG_START;
896 		if (value2 & DABRX_HYP)
897 			return H_P4;
898 		vcpu->arch.dawr1  = value1;
899 		vcpu->arch.dawrx1 = value2;
900 		return H_SUCCESS;
901 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
902 		/*
903 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
904 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
905 		 */
906 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
907 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
908 			return H_UNSUPPORTED_FLAG_START;
909 		return H_TOO_HARD;
910 	default:
911 		return H_TOO_HARD;
912 	}
913 }
914 
915 /* Copy guest memory in place - must reside within a single memslot */
916 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
917 				  unsigned long len)
918 {
919 	struct kvm_memory_slot *to_memslot = NULL;
920 	struct kvm_memory_slot *from_memslot = NULL;
921 	unsigned long to_addr, from_addr;
922 	int r;
923 
924 	/* Get HPA for from address */
925 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
926 	if (!from_memslot)
927 		return -EFAULT;
928 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
929 			     << PAGE_SHIFT))
930 		return -EINVAL;
931 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
932 	if (kvm_is_error_hva(from_addr))
933 		return -EFAULT;
934 	from_addr |= (from & (PAGE_SIZE - 1));
935 
936 	/* Get HPA for to address */
937 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
938 	if (!to_memslot)
939 		return -EFAULT;
940 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
941 			   << PAGE_SHIFT))
942 		return -EINVAL;
943 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
944 	if (kvm_is_error_hva(to_addr))
945 		return -EFAULT;
946 	to_addr |= (to & (PAGE_SIZE - 1));
947 
948 	/* Perform copy */
949 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
950 			     len);
951 	if (r)
952 		return -EFAULT;
953 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
954 	return 0;
955 }
956 
957 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
958 			       unsigned long dest, unsigned long src)
959 {
960 	u64 pg_sz = SZ_4K;		/* 4K page size */
961 	u64 pg_mask = SZ_4K - 1;
962 	int ret;
963 
964 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
965 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
966 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
967 		return H_PARAMETER;
968 
969 	/* dest (and src if copy_page flag set) must be page aligned */
970 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
971 		return H_PARAMETER;
972 
973 	/* zero and/or copy the page as determined by the flags */
974 	if (flags & H_COPY_PAGE) {
975 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
976 		if (ret < 0)
977 			return H_PARAMETER;
978 	} else if (flags & H_ZERO_PAGE) {
979 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
980 		if (ret < 0)
981 			return H_PARAMETER;
982 	}
983 
984 	/* We can ignore the remaining flags */
985 
986 	return H_SUCCESS;
987 }
988 
989 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
990 {
991 	struct kvmppc_vcore *vcore = target->arch.vcore;
992 
993 	/*
994 	 * We expect to have been called by the real mode handler
995 	 * (kvmppc_rm_h_confer()) which would have directly returned
996 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
997 	 * have useful work to do and should not confer) so we don't
998 	 * recheck that here.
999 	 *
1000 	 * In the case of the P9 single vcpu per vcore case, the real
1001 	 * mode handler is not called but no other threads are in the
1002 	 * source vcore.
1003 	 */
1004 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1005 		spin_lock(&vcore->lock);
1006 		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1007 		    vcore->vcore_state != VCORE_INACTIVE &&
1008 		    vcore->runner)
1009 			target = vcore->runner;
1010 		spin_unlock(&vcore->lock);
1011 	}
1012 
1013 	return kvm_vcpu_yield_to(target);
1014 }
1015 
1016 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1017 {
1018 	int yield_count = 0;
1019 	struct lppaca *lppaca;
1020 
1021 	spin_lock(&vcpu->arch.vpa_update_lock);
1022 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1023 	if (lppaca)
1024 		yield_count = be32_to_cpu(lppaca->yield_count);
1025 	spin_unlock(&vcpu->arch.vpa_update_lock);
1026 	return yield_count;
1027 }
1028 
1029 /*
1030  * H_RPT_INVALIDATE hcall handler for nested guests.
1031  *
1032  * Handles only nested process-scoped invalidation requests in L0.
1033  */
1034 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1035 {
1036 	unsigned long type = kvmppc_get_gpr(vcpu, 6);
1037 	unsigned long pid, pg_sizes, start, end;
1038 
1039 	/*
1040 	 * The partition-scoped invalidations aren't handled here in L0.
1041 	 */
1042 	if (type & H_RPTI_TYPE_NESTED)
1043 		return RESUME_HOST;
1044 
1045 	pid = kvmppc_get_gpr(vcpu, 4);
1046 	pg_sizes = kvmppc_get_gpr(vcpu, 7);
1047 	start = kvmppc_get_gpr(vcpu, 8);
1048 	end = kvmppc_get_gpr(vcpu, 9);
1049 
1050 	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1051 				type, pg_sizes, start, end);
1052 
1053 	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1054 	return RESUME_GUEST;
1055 }
1056 
1057 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1058 				    unsigned long id, unsigned long target,
1059 				    unsigned long type, unsigned long pg_sizes,
1060 				    unsigned long start, unsigned long end)
1061 {
1062 	if (!kvm_is_radix(vcpu->kvm))
1063 		return H_UNSUPPORTED;
1064 
1065 	if (end < start)
1066 		return H_P5;
1067 
1068 	/*
1069 	 * Partition-scoped invalidation for nested guests.
1070 	 */
1071 	if (type & H_RPTI_TYPE_NESTED) {
1072 		if (!nesting_enabled(vcpu->kvm))
1073 			return H_FUNCTION;
1074 
1075 		/* Support only cores as target */
1076 		if (target != H_RPTI_TARGET_CMMU)
1077 			return H_P2;
1078 
1079 		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1080 					       start, end);
1081 	}
1082 
1083 	/*
1084 	 * Process-scoped invalidation for L1 guests.
1085 	 */
1086 	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1087 				type, pg_sizes, start, end);
1088 	return H_SUCCESS;
1089 }
1090 
1091 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1092 {
1093 	struct kvm *kvm = vcpu->kvm;
1094 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1095 	unsigned long target, ret = H_SUCCESS;
1096 	int yield_count;
1097 	struct kvm_vcpu *tvcpu;
1098 	int idx, rc;
1099 
1100 	if (req <= MAX_HCALL_OPCODE &&
1101 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1102 		return RESUME_HOST;
1103 
1104 	switch (req) {
1105 	case H_REMOVE:
1106 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1107 					kvmppc_get_gpr(vcpu, 5),
1108 					kvmppc_get_gpr(vcpu, 6));
1109 		if (ret == H_TOO_HARD)
1110 			return RESUME_HOST;
1111 		break;
1112 	case H_ENTER:
1113 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1114 					kvmppc_get_gpr(vcpu, 5),
1115 					kvmppc_get_gpr(vcpu, 6),
1116 					kvmppc_get_gpr(vcpu, 7));
1117 		if (ret == H_TOO_HARD)
1118 			return RESUME_HOST;
1119 		break;
1120 	case H_READ:
1121 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1122 					kvmppc_get_gpr(vcpu, 5));
1123 		if (ret == H_TOO_HARD)
1124 			return RESUME_HOST;
1125 		break;
1126 	case H_CLEAR_MOD:
1127 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1128 					kvmppc_get_gpr(vcpu, 5));
1129 		if (ret == H_TOO_HARD)
1130 			return RESUME_HOST;
1131 		break;
1132 	case H_CLEAR_REF:
1133 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1134 					kvmppc_get_gpr(vcpu, 5));
1135 		if (ret == H_TOO_HARD)
1136 			return RESUME_HOST;
1137 		break;
1138 	case H_PROTECT:
1139 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1140 					kvmppc_get_gpr(vcpu, 5),
1141 					kvmppc_get_gpr(vcpu, 6));
1142 		if (ret == H_TOO_HARD)
1143 			return RESUME_HOST;
1144 		break;
1145 	case H_BULK_REMOVE:
1146 		ret = kvmppc_h_bulk_remove(vcpu);
1147 		if (ret == H_TOO_HARD)
1148 			return RESUME_HOST;
1149 		break;
1150 
1151 	case H_CEDE:
1152 		break;
1153 	case H_PROD:
1154 		target = kvmppc_get_gpr(vcpu, 4);
1155 		tvcpu = kvmppc_find_vcpu(kvm, target);
1156 		if (!tvcpu) {
1157 			ret = H_PARAMETER;
1158 			break;
1159 		}
1160 		tvcpu->arch.prodded = 1;
1161 		smp_mb(); /* This orders prodded store vs ceded load */
1162 		if (tvcpu->arch.ceded)
1163 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1164 		break;
1165 	case H_CONFER:
1166 		target = kvmppc_get_gpr(vcpu, 4);
1167 		if (target == -1)
1168 			break;
1169 		tvcpu = kvmppc_find_vcpu(kvm, target);
1170 		if (!tvcpu) {
1171 			ret = H_PARAMETER;
1172 			break;
1173 		}
1174 		yield_count = kvmppc_get_gpr(vcpu, 5);
1175 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1176 			break;
1177 		kvm_arch_vcpu_yield_to(tvcpu);
1178 		break;
1179 	case H_REGISTER_VPA:
1180 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1181 					kvmppc_get_gpr(vcpu, 5),
1182 					kvmppc_get_gpr(vcpu, 6));
1183 		break;
1184 	case H_RTAS:
1185 		if (list_empty(&kvm->arch.rtas_tokens))
1186 			return RESUME_HOST;
1187 
1188 		idx = srcu_read_lock(&kvm->srcu);
1189 		rc = kvmppc_rtas_hcall(vcpu);
1190 		srcu_read_unlock(&kvm->srcu, idx);
1191 
1192 		if (rc == -ENOENT)
1193 			return RESUME_HOST;
1194 		else if (rc == 0)
1195 			break;
1196 
1197 		/* Send the error out to userspace via KVM_RUN */
1198 		return rc;
1199 	case H_LOGICAL_CI_LOAD:
1200 		ret = kvmppc_h_logical_ci_load(vcpu);
1201 		if (ret == H_TOO_HARD)
1202 			return RESUME_HOST;
1203 		break;
1204 	case H_LOGICAL_CI_STORE:
1205 		ret = kvmppc_h_logical_ci_store(vcpu);
1206 		if (ret == H_TOO_HARD)
1207 			return RESUME_HOST;
1208 		break;
1209 	case H_SET_MODE:
1210 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1211 					kvmppc_get_gpr(vcpu, 5),
1212 					kvmppc_get_gpr(vcpu, 6),
1213 					kvmppc_get_gpr(vcpu, 7));
1214 		if (ret == H_TOO_HARD)
1215 			return RESUME_HOST;
1216 		break;
1217 	case H_XIRR:
1218 	case H_CPPR:
1219 	case H_EOI:
1220 	case H_IPI:
1221 	case H_IPOLL:
1222 	case H_XIRR_X:
1223 		if (kvmppc_xics_enabled(vcpu)) {
1224 			if (xics_on_xive()) {
1225 				ret = H_NOT_AVAILABLE;
1226 				return RESUME_GUEST;
1227 			}
1228 			ret = kvmppc_xics_hcall(vcpu, req);
1229 			break;
1230 		}
1231 		return RESUME_HOST;
1232 	case H_SET_DABR:
1233 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1234 		break;
1235 	case H_SET_XDABR:
1236 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1237 						kvmppc_get_gpr(vcpu, 5));
1238 		break;
1239 #ifdef CONFIG_SPAPR_TCE_IOMMU
1240 	case H_GET_TCE:
1241 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1242 						kvmppc_get_gpr(vcpu, 5));
1243 		if (ret == H_TOO_HARD)
1244 			return RESUME_HOST;
1245 		break;
1246 	case H_PUT_TCE:
1247 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1248 						kvmppc_get_gpr(vcpu, 5),
1249 						kvmppc_get_gpr(vcpu, 6));
1250 		if (ret == H_TOO_HARD)
1251 			return RESUME_HOST;
1252 		break;
1253 	case H_PUT_TCE_INDIRECT:
1254 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1255 						kvmppc_get_gpr(vcpu, 5),
1256 						kvmppc_get_gpr(vcpu, 6),
1257 						kvmppc_get_gpr(vcpu, 7));
1258 		if (ret == H_TOO_HARD)
1259 			return RESUME_HOST;
1260 		break;
1261 	case H_STUFF_TCE:
1262 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1263 						kvmppc_get_gpr(vcpu, 5),
1264 						kvmppc_get_gpr(vcpu, 6),
1265 						kvmppc_get_gpr(vcpu, 7));
1266 		if (ret == H_TOO_HARD)
1267 			return RESUME_HOST;
1268 		break;
1269 #endif
1270 	case H_RANDOM:
1271 		if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1272 			ret = H_HARDWARE;
1273 		break;
1274 	case H_RPT_INVALIDATE:
1275 		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1276 					      kvmppc_get_gpr(vcpu, 5),
1277 					      kvmppc_get_gpr(vcpu, 6),
1278 					      kvmppc_get_gpr(vcpu, 7),
1279 					      kvmppc_get_gpr(vcpu, 8),
1280 					      kvmppc_get_gpr(vcpu, 9));
1281 		break;
1282 
1283 	case H_SET_PARTITION_TABLE:
1284 		ret = H_FUNCTION;
1285 		if (nesting_enabled(kvm))
1286 			ret = kvmhv_set_partition_table(vcpu);
1287 		break;
1288 	case H_ENTER_NESTED:
1289 		ret = H_FUNCTION;
1290 		if (!nesting_enabled(kvm))
1291 			break;
1292 		ret = kvmhv_enter_nested_guest(vcpu);
1293 		if (ret == H_INTERRUPT) {
1294 			kvmppc_set_gpr(vcpu, 3, 0);
1295 			vcpu->arch.hcall_needed = 0;
1296 			return -EINTR;
1297 		} else if (ret == H_TOO_HARD) {
1298 			kvmppc_set_gpr(vcpu, 3, 0);
1299 			vcpu->arch.hcall_needed = 0;
1300 			return RESUME_HOST;
1301 		}
1302 		break;
1303 	case H_TLB_INVALIDATE:
1304 		ret = H_FUNCTION;
1305 		if (nesting_enabled(kvm))
1306 			ret = kvmhv_do_nested_tlbie(vcpu);
1307 		break;
1308 	case H_COPY_TOFROM_GUEST:
1309 		ret = H_FUNCTION;
1310 		if (nesting_enabled(kvm))
1311 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1312 		break;
1313 	case H_PAGE_INIT:
1314 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1315 					 kvmppc_get_gpr(vcpu, 5),
1316 					 kvmppc_get_gpr(vcpu, 6));
1317 		break;
1318 	case H_SVM_PAGE_IN:
1319 		ret = H_UNSUPPORTED;
1320 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1321 			ret = kvmppc_h_svm_page_in(kvm,
1322 						   kvmppc_get_gpr(vcpu, 4),
1323 						   kvmppc_get_gpr(vcpu, 5),
1324 						   kvmppc_get_gpr(vcpu, 6));
1325 		break;
1326 	case H_SVM_PAGE_OUT:
1327 		ret = H_UNSUPPORTED;
1328 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1329 			ret = kvmppc_h_svm_page_out(kvm,
1330 						    kvmppc_get_gpr(vcpu, 4),
1331 						    kvmppc_get_gpr(vcpu, 5),
1332 						    kvmppc_get_gpr(vcpu, 6));
1333 		break;
1334 	case H_SVM_INIT_START:
1335 		ret = H_UNSUPPORTED;
1336 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1337 			ret = kvmppc_h_svm_init_start(kvm);
1338 		break;
1339 	case H_SVM_INIT_DONE:
1340 		ret = H_UNSUPPORTED;
1341 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1342 			ret = kvmppc_h_svm_init_done(kvm);
1343 		break;
1344 	case H_SVM_INIT_ABORT:
1345 		/*
1346 		 * Even if that call is made by the Ultravisor, the SSR1 value
1347 		 * is the guest context one, with the secure bit clear as it has
1348 		 * not yet been secured. So we can't check it here.
1349 		 * Instead the kvm->arch.secure_guest flag is checked inside
1350 		 * kvmppc_h_svm_init_abort().
1351 		 */
1352 		ret = kvmppc_h_svm_init_abort(kvm);
1353 		break;
1354 
1355 	default:
1356 		return RESUME_HOST;
1357 	}
1358 	WARN_ON_ONCE(ret == H_TOO_HARD);
1359 	kvmppc_set_gpr(vcpu, 3, ret);
1360 	vcpu->arch.hcall_needed = 0;
1361 	return RESUME_GUEST;
1362 }
1363 
1364 /*
1365  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1366  * handlers in book3s_hv_rmhandlers.S.
1367  *
1368  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1369  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1370  */
1371 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1372 {
1373 	vcpu->arch.shregs.msr |= MSR_EE;
1374 	vcpu->arch.ceded = 1;
1375 	smp_mb();
1376 	if (vcpu->arch.prodded) {
1377 		vcpu->arch.prodded = 0;
1378 		smp_mb();
1379 		vcpu->arch.ceded = 0;
1380 	}
1381 }
1382 
1383 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1384 {
1385 	switch (cmd) {
1386 	case H_CEDE:
1387 	case H_PROD:
1388 	case H_CONFER:
1389 	case H_REGISTER_VPA:
1390 	case H_SET_MODE:
1391 #ifdef CONFIG_SPAPR_TCE_IOMMU
1392 	case H_GET_TCE:
1393 	case H_PUT_TCE:
1394 	case H_PUT_TCE_INDIRECT:
1395 	case H_STUFF_TCE:
1396 #endif
1397 	case H_LOGICAL_CI_LOAD:
1398 	case H_LOGICAL_CI_STORE:
1399 #ifdef CONFIG_KVM_XICS
1400 	case H_XIRR:
1401 	case H_CPPR:
1402 	case H_EOI:
1403 	case H_IPI:
1404 	case H_IPOLL:
1405 	case H_XIRR_X:
1406 #endif
1407 	case H_PAGE_INIT:
1408 	case H_RPT_INVALIDATE:
1409 		return 1;
1410 	}
1411 
1412 	/* See if it's in the real-mode table */
1413 	return kvmppc_hcall_impl_hv_realmode(cmd);
1414 }
1415 
1416 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1417 {
1418 	u32 last_inst;
1419 
1420 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1421 					EMULATE_DONE) {
1422 		/*
1423 		 * Fetch failed, so return to guest and
1424 		 * try executing it again.
1425 		 */
1426 		return RESUME_GUEST;
1427 	}
1428 
1429 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1430 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1431 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1432 		return RESUME_HOST;
1433 	} else {
1434 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1435 		return RESUME_GUEST;
1436 	}
1437 }
1438 
1439 static void do_nothing(void *x)
1440 {
1441 }
1442 
1443 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1444 {
1445 	int thr, cpu, pcpu, nthreads;
1446 	struct kvm_vcpu *v;
1447 	unsigned long dpdes;
1448 
1449 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1450 	dpdes = 0;
1451 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1452 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1453 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1454 		if (!v)
1455 			continue;
1456 		/*
1457 		 * If the vcpu is currently running on a physical cpu thread,
1458 		 * interrupt it in order to pull it out of the guest briefly,
1459 		 * which will update its vcore->dpdes value.
1460 		 */
1461 		pcpu = READ_ONCE(v->cpu);
1462 		if (pcpu >= 0)
1463 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1464 		if (kvmppc_doorbell_pending(v))
1465 			dpdes |= 1 << thr;
1466 	}
1467 	return dpdes;
1468 }
1469 
1470 /*
1471  * On POWER9, emulate doorbell-related instructions in order to
1472  * give the guest the illusion of running on a multi-threaded core.
1473  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1474  * and mfspr DPDES.
1475  */
1476 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1477 {
1478 	u32 inst, rb, thr;
1479 	unsigned long arg;
1480 	struct kvm *kvm = vcpu->kvm;
1481 	struct kvm_vcpu *tvcpu;
1482 
1483 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1484 		return RESUME_GUEST;
1485 	if (get_op(inst) != 31)
1486 		return EMULATE_FAIL;
1487 	rb = get_rb(inst);
1488 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1489 	switch (get_xop(inst)) {
1490 	case OP_31_XOP_MSGSNDP:
1491 		arg = kvmppc_get_gpr(vcpu, rb);
1492 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1493 			break;
1494 		arg &= 0x7f;
1495 		if (arg >= kvm->arch.emul_smt_mode)
1496 			break;
1497 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1498 		if (!tvcpu)
1499 			break;
1500 		if (!tvcpu->arch.doorbell_request) {
1501 			tvcpu->arch.doorbell_request = 1;
1502 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1503 		}
1504 		break;
1505 	case OP_31_XOP_MSGCLRP:
1506 		arg = kvmppc_get_gpr(vcpu, rb);
1507 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1508 			break;
1509 		vcpu->arch.vcore->dpdes = 0;
1510 		vcpu->arch.doorbell_request = 0;
1511 		break;
1512 	case OP_31_XOP_MFSPR:
1513 		switch (get_sprn(inst)) {
1514 		case SPRN_TIR:
1515 			arg = thr;
1516 			break;
1517 		case SPRN_DPDES:
1518 			arg = kvmppc_read_dpdes(vcpu);
1519 			break;
1520 		default:
1521 			return EMULATE_FAIL;
1522 		}
1523 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1524 		break;
1525 	default:
1526 		return EMULATE_FAIL;
1527 	}
1528 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1529 	return RESUME_GUEST;
1530 }
1531 
1532 /*
1533  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1534  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1535  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1536  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1537  * allow the guest access to continue.
1538  */
1539 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1540 {
1541 	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1542 		return EMULATE_FAIL;
1543 
1544 	vcpu->arch.hfscr |= HFSCR_PM;
1545 
1546 	return RESUME_GUEST;
1547 }
1548 
1549 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1550 {
1551 	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1552 		return EMULATE_FAIL;
1553 
1554 	vcpu->arch.hfscr |= HFSCR_EBB;
1555 
1556 	return RESUME_GUEST;
1557 }
1558 
1559 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1560 {
1561 	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1562 		return EMULATE_FAIL;
1563 
1564 	vcpu->arch.hfscr |= HFSCR_TM;
1565 
1566 	return RESUME_GUEST;
1567 }
1568 
1569 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1570 				 struct task_struct *tsk)
1571 {
1572 	struct kvm_run *run = vcpu->run;
1573 	int r = RESUME_HOST;
1574 
1575 	vcpu->stat.sum_exits++;
1576 
1577 	/*
1578 	 * This can happen if an interrupt occurs in the last stages
1579 	 * of guest entry or the first stages of guest exit (i.e. after
1580 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1581 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1582 	 * That can happen due to a bug, or due to a machine check
1583 	 * occurring at just the wrong time.
1584 	 */
1585 	if (vcpu->arch.shregs.msr & MSR_HV) {
1586 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1587 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1588 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1589 			vcpu->arch.shregs.msr);
1590 		kvmppc_dump_regs(vcpu);
1591 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1592 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1593 		return RESUME_HOST;
1594 	}
1595 	run->exit_reason = KVM_EXIT_UNKNOWN;
1596 	run->ready_for_interrupt_injection = 1;
1597 	switch (vcpu->arch.trap) {
1598 	/* We're good on these - the host merely wanted to get our attention */
1599 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1600 		WARN_ON_ONCE(1); /* Should never happen */
1601 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1602 		fallthrough;
1603 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1604 		vcpu->stat.dec_exits++;
1605 		r = RESUME_GUEST;
1606 		break;
1607 	case BOOK3S_INTERRUPT_EXTERNAL:
1608 	case BOOK3S_INTERRUPT_H_DOORBELL:
1609 	case BOOK3S_INTERRUPT_H_VIRT:
1610 		vcpu->stat.ext_intr_exits++;
1611 		r = RESUME_GUEST;
1612 		break;
1613 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1614 	case BOOK3S_INTERRUPT_HMI:
1615 	case BOOK3S_INTERRUPT_PERFMON:
1616 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1617 		r = RESUME_GUEST;
1618 		break;
1619 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1620 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1621 					      DEFAULT_RATELIMIT_BURST);
1622 		/*
1623 		 * Print the MCE event to host console. Ratelimit so the guest
1624 		 * can't flood the host log.
1625 		 */
1626 		if (__ratelimit(&rs))
1627 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1628 
1629 		/*
1630 		 * If the guest can do FWNMI, exit to userspace so it can
1631 		 * deliver a FWNMI to the guest.
1632 		 * Otherwise we synthesize a machine check for the guest
1633 		 * so that it knows that the machine check occurred.
1634 		 */
1635 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1636 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1637 			kvmppc_core_queue_machine_check(vcpu, flags);
1638 			r = RESUME_GUEST;
1639 			break;
1640 		}
1641 
1642 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1643 		run->exit_reason = KVM_EXIT_NMI;
1644 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1645 		/* Clear out the old NMI status from run->flags */
1646 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1647 		/* Now set the NMI status */
1648 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1649 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1650 		else
1651 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1652 
1653 		r = RESUME_HOST;
1654 		break;
1655 	}
1656 	case BOOK3S_INTERRUPT_PROGRAM:
1657 	{
1658 		ulong flags;
1659 		/*
1660 		 * Normally program interrupts are delivered directly
1661 		 * to the guest by the hardware, but we can get here
1662 		 * as a result of a hypervisor emulation interrupt
1663 		 * (e40) getting turned into a 700 by BML RTAS.
1664 		 */
1665 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1666 		kvmppc_core_queue_program(vcpu, flags);
1667 		r = RESUME_GUEST;
1668 		break;
1669 	}
1670 	case BOOK3S_INTERRUPT_SYSCALL:
1671 	{
1672 		int i;
1673 
1674 		if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1675 			/*
1676 			 * Guest userspace executed sc 1. This can only be
1677 			 * reached by the P9 path because the old path
1678 			 * handles this case in realmode hcall handlers.
1679 			 */
1680 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1681 				/*
1682 				 * A guest could be running PR KVM, so this
1683 				 * may be a PR KVM hcall. It must be reflected
1684 				 * to the guest kernel as a sc interrupt.
1685 				 */
1686 				kvmppc_core_queue_syscall(vcpu);
1687 			} else {
1688 				/*
1689 				 * Radix guests can not run PR KVM or nested HV
1690 				 * hash guests which might run PR KVM, so this
1691 				 * is always a privilege fault. Send a program
1692 				 * check to guest kernel.
1693 				 */
1694 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1695 			}
1696 			r = RESUME_GUEST;
1697 			break;
1698 		}
1699 
1700 		/*
1701 		 * hcall - gather args and set exit_reason. This will next be
1702 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1703 		 * with it and resume guest, or may punt to userspace.
1704 		 */
1705 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1706 		for (i = 0; i < 9; ++i)
1707 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1708 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1709 		vcpu->arch.hcall_needed = 1;
1710 		r = RESUME_HOST;
1711 		break;
1712 	}
1713 	/*
1714 	 * We get these next two if the guest accesses a page which it thinks
1715 	 * it has mapped but which is not actually present, either because
1716 	 * it is for an emulated I/O device or because the corresonding
1717 	 * host page has been paged out.
1718 	 *
1719 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1720 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1721 	 * fault handling is done here.
1722 	 */
1723 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1724 		unsigned long vsid;
1725 		long err;
1726 
1727 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1728 		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1729 			r = RESUME_GUEST; /* Just retry if it's the canary */
1730 			break;
1731 		}
1732 
1733 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1734 			/*
1735 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1736 			 * already attempted to handle this in rmhandlers. The
1737 			 * hash fault handling below is v3 only (it uses ASDR
1738 			 * via fault_gpa).
1739 			 */
1740 			r = RESUME_PAGE_FAULT;
1741 			break;
1742 		}
1743 
1744 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1745 			kvmppc_core_queue_data_storage(vcpu,
1746 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1747 			r = RESUME_GUEST;
1748 			break;
1749 		}
1750 
1751 		if (!(vcpu->arch.shregs.msr & MSR_DR))
1752 			vsid = vcpu->kvm->arch.vrma_slb_v;
1753 		else
1754 			vsid = vcpu->arch.fault_gpa;
1755 
1756 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1757 				vsid, vcpu->arch.fault_dsisr, true);
1758 		if (err == 0) {
1759 			r = RESUME_GUEST;
1760 		} else if (err == -1 || err == -2) {
1761 			r = RESUME_PAGE_FAULT;
1762 		} else {
1763 			kvmppc_core_queue_data_storage(vcpu,
1764 				vcpu->arch.fault_dar, err);
1765 			r = RESUME_GUEST;
1766 		}
1767 		break;
1768 	}
1769 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1770 		unsigned long vsid;
1771 		long err;
1772 
1773 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1774 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1775 			DSISR_SRR1_MATCH_64S;
1776 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1777 			/*
1778 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1779 			 * already attempted to handle this in rmhandlers. The
1780 			 * hash fault handling below is v3 only (it uses ASDR
1781 			 * via fault_gpa).
1782 			 */
1783 			if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1784 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1785 			r = RESUME_PAGE_FAULT;
1786 			break;
1787 		}
1788 
1789 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1790 			kvmppc_core_queue_inst_storage(vcpu,
1791 				vcpu->arch.fault_dsisr);
1792 			r = RESUME_GUEST;
1793 			break;
1794 		}
1795 
1796 		if (!(vcpu->arch.shregs.msr & MSR_IR))
1797 			vsid = vcpu->kvm->arch.vrma_slb_v;
1798 		else
1799 			vsid = vcpu->arch.fault_gpa;
1800 
1801 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1802 				vsid, vcpu->arch.fault_dsisr, false);
1803 		if (err == 0) {
1804 			r = RESUME_GUEST;
1805 		} else if (err == -1) {
1806 			r = RESUME_PAGE_FAULT;
1807 		} else {
1808 			kvmppc_core_queue_inst_storage(vcpu, err);
1809 			r = RESUME_GUEST;
1810 		}
1811 		break;
1812 	}
1813 
1814 	/*
1815 	 * This occurs if the guest executes an illegal instruction.
1816 	 * If the guest debug is disabled, generate a program interrupt
1817 	 * to the guest. If guest debug is enabled, we need to check
1818 	 * whether the instruction is a software breakpoint instruction.
1819 	 * Accordingly return to Guest or Host.
1820 	 */
1821 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1822 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1823 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1824 				swab32(vcpu->arch.emul_inst) :
1825 				vcpu->arch.emul_inst;
1826 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1827 			r = kvmppc_emulate_debug_inst(vcpu);
1828 		} else {
1829 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1830 			r = RESUME_GUEST;
1831 		}
1832 		break;
1833 
1834 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1835 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1836 		/*
1837 		 * This occurs for various TM-related instructions that
1838 		 * we need to emulate on POWER9 DD2.2.  We have already
1839 		 * handled the cases where the guest was in real-suspend
1840 		 * mode and was transitioning to transactional state.
1841 		 */
1842 		r = kvmhv_p9_tm_emulation(vcpu);
1843 		if (r != -1)
1844 			break;
1845 		fallthrough; /* go to facility unavailable handler */
1846 #endif
1847 
1848 	/*
1849 	 * This occurs if the guest (kernel or userspace), does something that
1850 	 * is prohibited by HFSCR.
1851 	 * On POWER9, this could be a doorbell instruction that we need
1852 	 * to emulate.
1853 	 * Otherwise, we just generate a program interrupt to the guest.
1854 	 */
1855 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1856 		u64 cause = vcpu->arch.hfscr >> 56;
1857 
1858 		r = EMULATE_FAIL;
1859 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1860 			if (cause == FSCR_MSGP_LG)
1861 				r = kvmppc_emulate_doorbell_instr(vcpu);
1862 			if (cause == FSCR_PM_LG)
1863 				r = kvmppc_pmu_unavailable(vcpu);
1864 			if (cause == FSCR_EBB_LG)
1865 				r = kvmppc_ebb_unavailable(vcpu);
1866 			if (cause == FSCR_TM_LG)
1867 				r = kvmppc_tm_unavailable(vcpu);
1868 		}
1869 		if (r == EMULATE_FAIL) {
1870 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1871 			r = RESUME_GUEST;
1872 		}
1873 		break;
1874 	}
1875 
1876 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1877 		r = RESUME_PASSTHROUGH;
1878 		break;
1879 	default:
1880 		kvmppc_dump_regs(vcpu);
1881 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1882 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1883 			vcpu->arch.shregs.msr);
1884 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1885 		r = RESUME_HOST;
1886 		break;
1887 	}
1888 
1889 	return r;
1890 }
1891 
1892 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1893 {
1894 	int r;
1895 	int srcu_idx;
1896 
1897 	vcpu->stat.sum_exits++;
1898 
1899 	/*
1900 	 * This can happen if an interrupt occurs in the last stages
1901 	 * of guest entry or the first stages of guest exit (i.e. after
1902 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1903 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1904 	 * That can happen due to a bug, or due to a machine check
1905 	 * occurring at just the wrong time.
1906 	 */
1907 	if (vcpu->arch.shregs.msr & MSR_HV) {
1908 		pr_emerg("KVM trap in HV mode while nested!\n");
1909 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1910 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1911 			 vcpu->arch.shregs.msr);
1912 		kvmppc_dump_regs(vcpu);
1913 		return RESUME_HOST;
1914 	}
1915 	switch (vcpu->arch.trap) {
1916 	/* We're good on these - the host merely wanted to get our attention */
1917 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1918 		vcpu->stat.dec_exits++;
1919 		r = RESUME_GUEST;
1920 		break;
1921 	case BOOK3S_INTERRUPT_EXTERNAL:
1922 		vcpu->stat.ext_intr_exits++;
1923 		r = RESUME_HOST;
1924 		break;
1925 	case BOOK3S_INTERRUPT_H_DOORBELL:
1926 	case BOOK3S_INTERRUPT_H_VIRT:
1927 		vcpu->stat.ext_intr_exits++;
1928 		r = RESUME_GUEST;
1929 		break;
1930 	/* These need to go to the nested HV */
1931 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1932 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1933 		vcpu->stat.dec_exits++;
1934 		r = RESUME_HOST;
1935 		break;
1936 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1937 	case BOOK3S_INTERRUPT_HMI:
1938 	case BOOK3S_INTERRUPT_PERFMON:
1939 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1940 		r = RESUME_GUEST;
1941 		break;
1942 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1943 	{
1944 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1945 					      DEFAULT_RATELIMIT_BURST);
1946 		/* Pass the machine check to the L1 guest */
1947 		r = RESUME_HOST;
1948 		/* Print the MCE event to host console. */
1949 		if (__ratelimit(&rs))
1950 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1951 		break;
1952 	}
1953 	/*
1954 	 * We get these next two if the guest accesses a page which it thinks
1955 	 * it has mapped but which is not actually present, either because
1956 	 * it is for an emulated I/O device or because the corresonding
1957 	 * host page has been paged out.
1958 	 */
1959 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1960 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1961 		r = kvmhv_nested_page_fault(vcpu);
1962 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1963 		break;
1964 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1965 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1966 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1967 					 DSISR_SRR1_MATCH_64S;
1968 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1969 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1970 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1971 		r = kvmhv_nested_page_fault(vcpu);
1972 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1973 		break;
1974 
1975 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1976 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1977 		/*
1978 		 * This occurs for various TM-related instructions that
1979 		 * we need to emulate on POWER9 DD2.2.  We have already
1980 		 * handled the cases where the guest was in real-suspend
1981 		 * mode and was transitioning to transactional state.
1982 		 */
1983 		r = kvmhv_p9_tm_emulation(vcpu);
1984 		if (r != -1)
1985 			break;
1986 		fallthrough; /* go to facility unavailable handler */
1987 #endif
1988 
1989 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1990 		u64 cause = vcpu->arch.hfscr >> 56;
1991 
1992 		/*
1993 		 * Only pass HFU interrupts to the L1 if the facility is
1994 		 * permitted but disabled by the L1's HFSCR, otherwise
1995 		 * the interrupt does not make sense to the L1 so turn
1996 		 * it into a HEAI.
1997 		 */
1998 		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1999 				(vcpu->arch.nested_hfscr & (1UL << cause))) {
2000 			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2001 
2002 			/*
2003 			 * If the fetch failed, return to guest and
2004 			 * try executing it again.
2005 			 */
2006 			r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
2007 						 &vcpu->arch.emul_inst);
2008 			if (r != EMULATE_DONE)
2009 				r = RESUME_GUEST;
2010 			else
2011 				r = RESUME_HOST;
2012 		} else {
2013 			r = RESUME_HOST;
2014 		}
2015 
2016 		break;
2017 	}
2018 
2019 	case BOOK3S_INTERRUPT_HV_RM_HARD:
2020 		vcpu->arch.trap = 0;
2021 		r = RESUME_GUEST;
2022 		if (!xics_on_xive())
2023 			kvmppc_xics_rm_complete(vcpu, 0);
2024 		break;
2025 	case BOOK3S_INTERRUPT_SYSCALL:
2026 	{
2027 		unsigned long req = kvmppc_get_gpr(vcpu, 3);
2028 
2029 		/*
2030 		 * The H_RPT_INVALIDATE hcalls issued by nested
2031 		 * guests for process-scoped invalidations when
2032 		 * GTSE=0, are handled here in L0.
2033 		 */
2034 		if (req == H_RPT_INVALIDATE) {
2035 			r = kvmppc_nested_h_rpt_invalidate(vcpu);
2036 			break;
2037 		}
2038 
2039 		r = RESUME_HOST;
2040 		break;
2041 	}
2042 	default:
2043 		r = RESUME_HOST;
2044 		break;
2045 	}
2046 
2047 	return r;
2048 }
2049 
2050 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2051 					    struct kvm_sregs *sregs)
2052 {
2053 	int i;
2054 
2055 	memset(sregs, 0, sizeof(struct kvm_sregs));
2056 	sregs->pvr = vcpu->arch.pvr;
2057 	for (i = 0; i < vcpu->arch.slb_max; i++) {
2058 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2059 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2066 					    struct kvm_sregs *sregs)
2067 {
2068 	int i, j;
2069 
2070 	/* Only accept the same PVR as the host's, since we can't spoof it */
2071 	if (sregs->pvr != vcpu->arch.pvr)
2072 		return -EINVAL;
2073 
2074 	j = 0;
2075 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2076 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2077 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2078 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2079 			++j;
2080 		}
2081 	}
2082 	vcpu->arch.slb_max = j;
2083 
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Enforce limits on guest LPCR values based on hardware availability,
2089  * guest configuration, and possibly hypervisor support and security
2090  * concerns.
2091  */
2092 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2093 {
2094 	/* LPCR_TC only applies to HPT guests */
2095 	if (kvm_is_radix(kvm))
2096 		lpcr &= ~LPCR_TC;
2097 
2098 	/* On POWER8 and above, userspace can modify AIL */
2099 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2100 		lpcr &= ~LPCR_AIL;
2101 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2102 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2103 	/*
2104 	 * On some POWER9s we force AIL off for radix guests to prevent
2105 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2106 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2107 	 * be cached, which the host TLB management does not expect.
2108 	 */
2109 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2110 		lpcr &= ~LPCR_AIL;
2111 
2112 	/*
2113 	 * On POWER9, allow userspace to enable large decrementer for the
2114 	 * guest, whether or not the host has it enabled.
2115 	 */
2116 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2117 		lpcr &= ~LPCR_LD;
2118 
2119 	return lpcr;
2120 }
2121 
2122 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2123 {
2124 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2125 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2126 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2127 	}
2128 }
2129 
2130 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2131 		bool preserve_top32)
2132 {
2133 	struct kvm *kvm = vcpu->kvm;
2134 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2135 	u64 mask;
2136 
2137 	spin_lock(&vc->lock);
2138 
2139 	/*
2140 	 * Userspace can only modify
2141 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2142 	 * TC (translation control), AIL (alternate interrupt location),
2143 	 * LD (large decrementer).
2144 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2145 	 */
2146 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2147 
2148 	/* Broken 32-bit version of LPCR must not clear top bits */
2149 	if (preserve_top32)
2150 		mask &= 0xFFFFFFFF;
2151 
2152 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2153 			(vc->lpcr & ~mask) | (new_lpcr & mask));
2154 
2155 	/*
2156 	 * If ILE (interrupt little-endian) has changed, update the
2157 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2158 	 */
2159 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2160 		struct kvm_vcpu *vcpu;
2161 		unsigned long i;
2162 
2163 		kvm_for_each_vcpu(i, vcpu, kvm) {
2164 			if (vcpu->arch.vcore != vc)
2165 				continue;
2166 			if (new_lpcr & LPCR_ILE)
2167 				vcpu->arch.intr_msr |= MSR_LE;
2168 			else
2169 				vcpu->arch.intr_msr &= ~MSR_LE;
2170 		}
2171 	}
2172 
2173 	vc->lpcr = new_lpcr;
2174 
2175 	spin_unlock(&vc->lock);
2176 }
2177 
2178 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2179 				 union kvmppc_one_reg *val)
2180 {
2181 	int r = 0;
2182 	long int i;
2183 
2184 	switch (id) {
2185 	case KVM_REG_PPC_DEBUG_INST:
2186 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2187 		break;
2188 	case KVM_REG_PPC_HIOR:
2189 		*val = get_reg_val(id, 0);
2190 		break;
2191 	case KVM_REG_PPC_DABR:
2192 		*val = get_reg_val(id, vcpu->arch.dabr);
2193 		break;
2194 	case KVM_REG_PPC_DABRX:
2195 		*val = get_reg_val(id, vcpu->arch.dabrx);
2196 		break;
2197 	case KVM_REG_PPC_DSCR:
2198 		*val = get_reg_val(id, vcpu->arch.dscr);
2199 		break;
2200 	case KVM_REG_PPC_PURR:
2201 		*val = get_reg_val(id, vcpu->arch.purr);
2202 		break;
2203 	case KVM_REG_PPC_SPURR:
2204 		*val = get_reg_val(id, vcpu->arch.spurr);
2205 		break;
2206 	case KVM_REG_PPC_AMR:
2207 		*val = get_reg_val(id, vcpu->arch.amr);
2208 		break;
2209 	case KVM_REG_PPC_UAMOR:
2210 		*val = get_reg_val(id, vcpu->arch.uamor);
2211 		break;
2212 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2213 		i = id - KVM_REG_PPC_MMCR0;
2214 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
2215 		break;
2216 	case KVM_REG_PPC_MMCR2:
2217 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
2218 		break;
2219 	case KVM_REG_PPC_MMCRA:
2220 		*val = get_reg_val(id, vcpu->arch.mmcra);
2221 		break;
2222 	case KVM_REG_PPC_MMCRS:
2223 		*val = get_reg_val(id, vcpu->arch.mmcrs);
2224 		break;
2225 	case KVM_REG_PPC_MMCR3:
2226 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2227 		break;
2228 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2229 		i = id - KVM_REG_PPC_PMC1;
2230 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
2231 		break;
2232 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2233 		i = id - KVM_REG_PPC_SPMC1;
2234 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2235 		break;
2236 	case KVM_REG_PPC_SIAR:
2237 		*val = get_reg_val(id, vcpu->arch.siar);
2238 		break;
2239 	case KVM_REG_PPC_SDAR:
2240 		*val = get_reg_val(id, vcpu->arch.sdar);
2241 		break;
2242 	case KVM_REG_PPC_SIER:
2243 		*val = get_reg_val(id, vcpu->arch.sier[0]);
2244 		break;
2245 	case KVM_REG_PPC_SIER2:
2246 		*val = get_reg_val(id, vcpu->arch.sier[1]);
2247 		break;
2248 	case KVM_REG_PPC_SIER3:
2249 		*val = get_reg_val(id, vcpu->arch.sier[2]);
2250 		break;
2251 	case KVM_REG_PPC_IAMR:
2252 		*val = get_reg_val(id, vcpu->arch.iamr);
2253 		break;
2254 	case KVM_REG_PPC_PSPB:
2255 		*val = get_reg_val(id, vcpu->arch.pspb);
2256 		break;
2257 	case KVM_REG_PPC_DPDES:
2258 		/*
2259 		 * On POWER9, where we are emulating msgsndp etc.,
2260 		 * we return 1 bit for each vcpu, which can come from
2261 		 * either vcore->dpdes or doorbell_request.
2262 		 * On POWER8, doorbell_request is 0.
2263 		 */
2264 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2265 			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2266 		else
2267 			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2268 		break;
2269 	case KVM_REG_PPC_VTB:
2270 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
2271 		break;
2272 	case KVM_REG_PPC_DAWR:
2273 		*val = get_reg_val(id, vcpu->arch.dawr0);
2274 		break;
2275 	case KVM_REG_PPC_DAWRX:
2276 		*val = get_reg_val(id, vcpu->arch.dawrx0);
2277 		break;
2278 	case KVM_REG_PPC_DAWR1:
2279 		*val = get_reg_val(id, vcpu->arch.dawr1);
2280 		break;
2281 	case KVM_REG_PPC_DAWRX1:
2282 		*val = get_reg_val(id, vcpu->arch.dawrx1);
2283 		break;
2284 	case KVM_REG_PPC_CIABR:
2285 		*val = get_reg_val(id, vcpu->arch.ciabr);
2286 		break;
2287 	case KVM_REG_PPC_CSIGR:
2288 		*val = get_reg_val(id, vcpu->arch.csigr);
2289 		break;
2290 	case KVM_REG_PPC_TACR:
2291 		*val = get_reg_val(id, vcpu->arch.tacr);
2292 		break;
2293 	case KVM_REG_PPC_TCSCR:
2294 		*val = get_reg_val(id, vcpu->arch.tcscr);
2295 		break;
2296 	case KVM_REG_PPC_PID:
2297 		*val = get_reg_val(id, vcpu->arch.pid);
2298 		break;
2299 	case KVM_REG_PPC_ACOP:
2300 		*val = get_reg_val(id, vcpu->arch.acop);
2301 		break;
2302 	case KVM_REG_PPC_WORT:
2303 		*val = get_reg_val(id, vcpu->arch.wort);
2304 		break;
2305 	case KVM_REG_PPC_TIDR:
2306 		*val = get_reg_val(id, vcpu->arch.tid);
2307 		break;
2308 	case KVM_REG_PPC_PSSCR:
2309 		*val = get_reg_val(id, vcpu->arch.psscr);
2310 		break;
2311 	case KVM_REG_PPC_VPA_ADDR:
2312 		spin_lock(&vcpu->arch.vpa_update_lock);
2313 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2314 		spin_unlock(&vcpu->arch.vpa_update_lock);
2315 		break;
2316 	case KVM_REG_PPC_VPA_SLB:
2317 		spin_lock(&vcpu->arch.vpa_update_lock);
2318 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2319 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2320 		spin_unlock(&vcpu->arch.vpa_update_lock);
2321 		break;
2322 	case KVM_REG_PPC_VPA_DTL:
2323 		spin_lock(&vcpu->arch.vpa_update_lock);
2324 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2325 		val->vpaval.length = vcpu->arch.dtl.len;
2326 		spin_unlock(&vcpu->arch.vpa_update_lock);
2327 		break;
2328 	case KVM_REG_PPC_TB_OFFSET:
2329 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2330 		break;
2331 	case KVM_REG_PPC_LPCR:
2332 	case KVM_REG_PPC_LPCR_64:
2333 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2334 		break;
2335 	case KVM_REG_PPC_PPR:
2336 		*val = get_reg_val(id, vcpu->arch.ppr);
2337 		break;
2338 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2339 	case KVM_REG_PPC_TFHAR:
2340 		*val = get_reg_val(id, vcpu->arch.tfhar);
2341 		break;
2342 	case KVM_REG_PPC_TFIAR:
2343 		*val = get_reg_val(id, vcpu->arch.tfiar);
2344 		break;
2345 	case KVM_REG_PPC_TEXASR:
2346 		*val = get_reg_val(id, vcpu->arch.texasr);
2347 		break;
2348 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2349 		i = id - KVM_REG_PPC_TM_GPR0;
2350 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2351 		break;
2352 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2353 	{
2354 		int j;
2355 		i = id - KVM_REG_PPC_TM_VSR0;
2356 		if (i < 32)
2357 			for (j = 0; j < TS_FPRWIDTH; j++)
2358 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2359 		else {
2360 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2361 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2362 			else
2363 				r = -ENXIO;
2364 		}
2365 		break;
2366 	}
2367 	case KVM_REG_PPC_TM_CR:
2368 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2369 		break;
2370 	case KVM_REG_PPC_TM_XER:
2371 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2372 		break;
2373 	case KVM_REG_PPC_TM_LR:
2374 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2375 		break;
2376 	case KVM_REG_PPC_TM_CTR:
2377 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2378 		break;
2379 	case KVM_REG_PPC_TM_FPSCR:
2380 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2381 		break;
2382 	case KVM_REG_PPC_TM_AMR:
2383 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2384 		break;
2385 	case KVM_REG_PPC_TM_PPR:
2386 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2387 		break;
2388 	case KVM_REG_PPC_TM_VRSAVE:
2389 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2390 		break;
2391 	case KVM_REG_PPC_TM_VSCR:
2392 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2393 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2394 		else
2395 			r = -ENXIO;
2396 		break;
2397 	case KVM_REG_PPC_TM_DSCR:
2398 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2399 		break;
2400 	case KVM_REG_PPC_TM_TAR:
2401 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2402 		break;
2403 #endif
2404 	case KVM_REG_PPC_ARCH_COMPAT:
2405 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2406 		break;
2407 	case KVM_REG_PPC_DEC_EXPIRY:
2408 		*val = get_reg_val(id, vcpu->arch.dec_expires);
2409 		break;
2410 	case KVM_REG_PPC_ONLINE:
2411 		*val = get_reg_val(id, vcpu->arch.online);
2412 		break;
2413 	case KVM_REG_PPC_PTCR:
2414 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2415 		break;
2416 	default:
2417 		r = -EINVAL;
2418 		break;
2419 	}
2420 
2421 	return r;
2422 }
2423 
2424 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2425 				 union kvmppc_one_reg *val)
2426 {
2427 	int r = 0;
2428 	long int i;
2429 	unsigned long addr, len;
2430 
2431 	switch (id) {
2432 	case KVM_REG_PPC_HIOR:
2433 		/* Only allow this to be set to zero */
2434 		if (set_reg_val(id, *val))
2435 			r = -EINVAL;
2436 		break;
2437 	case KVM_REG_PPC_DABR:
2438 		vcpu->arch.dabr = set_reg_val(id, *val);
2439 		break;
2440 	case KVM_REG_PPC_DABRX:
2441 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2442 		break;
2443 	case KVM_REG_PPC_DSCR:
2444 		vcpu->arch.dscr = set_reg_val(id, *val);
2445 		break;
2446 	case KVM_REG_PPC_PURR:
2447 		vcpu->arch.purr = set_reg_val(id, *val);
2448 		break;
2449 	case KVM_REG_PPC_SPURR:
2450 		vcpu->arch.spurr = set_reg_val(id, *val);
2451 		break;
2452 	case KVM_REG_PPC_AMR:
2453 		vcpu->arch.amr = set_reg_val(id, *val);
2454 		break;
2455 	case KVM_REG_PPC_UAMOR:
2456 		vcpu->arch.uamor = set_reg_val(id, *val);
2457 		break;
2458 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2459 		i = id - KVM_REG_PPC_MMCR0;
2460 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2461 		break;
2462 	case KVM_REG_PPC_MMCR2:
2463 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2464 		break;
2465 	case KVM_REG_PPC_MMCRA:
2466 		vcpu->arch.mmcra = set_reg_val(id, *val);
2467 		break;
2468 	case KVM_REG_PPC_MMCRS:
2469 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2470 		break;
2471 	case KVM_REG_PPC_MMCR3:
2472 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2473 		break;
2474 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2475 		i = id - KVM_REG_PPC_PMC1;
2476 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
2477 		break;
2478 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2479 		i = id - KVM_REG_PPC_SPMC1;
2480 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2481 		break;
2482 	case KVM_REG_PPC_SIAR:
2483 		vcpu->arch.siar = set_reg_val(id, *val);
2484 		break;
2485 	case KVM_REG_PPC_SDAR:
2486 		vcpu->arch.sdar = set_reg_val(id, *val);
2487 		break;
2488 	case KVM_REG_PPC_SIER:
2489 		vcpu->arch.sier[0] = set_reg_val(id, *val);
2490 		break;
2491 	case KVM_REG_PPC_SIER2:
2492 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2493 		break;
2494 	case KVM_REG_PPC_SIER3:
2495 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2496 		break;
2497 	case KVM_REG_PPC_IAMR:
2498 		vcpu->arch.iamr = set_reg_val(id, *val);
2499 		break;
2500 	case KVM_REG_PPC_PSPB:
2501 		vcpu->arch.pspb = set_reg_val(id, *val);
2502 		break;
2503 	case KVM_REG_PPC_DPDES:
2504 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2505 			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2506 		else
2507 			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2508 		break;
2509 	case KVM_REG_PPC_VTB:
2510 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2511 		break;
2512 	case KVM_REG_PPC_DAWR:
2513 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2514 		break;
2515 	case KVM_REG_PPC_DAWRX:
2516 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2517 		break;
2518 	case KVM_REG_PPC_DAWR1:
2519 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2520 		break;
2521 	case KVM_REG_PPC_DAWRX1:
2522 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2523 		break;
2524 	case KVM_REG_PPC_CIABR:
2525 		vcpu->arch.ciabr = set_reg_val(id, *val);
2526 		/* Don't allow setting breakpoints in hypervisor code */
2527 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2528 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2529 		break;
2530 	case KVM_REG_PPC_CSIGR:
2531 		vcpu->arch.csigr = set_reg_val(id, *val);
2532 		break;
2533 	case KVM_REG_PPC_TACR:
2534 		vcpu->arch.tacr = set_reg_val(id, *val);
2535 		break;
2536 	case KVM_REG_PPC_TCSCR:
2537 		vcpu->arch.tcscr = set_reg_val(id, *val);
2538 		break;
2539 	case KVM_REG_PPC_PID:
2540 		vcpu->arch.pid = set_reg_val(id, *val);
2541 		break;
2542 	case KVM_REG_PPC_ACOP:
2543 		vcpu->arch.acop = set_reg_val(id, *val);
2544 		break;
2545 	case KVM_REG_PPC_WORT:
2546 		vcpu->arch.wort = set_reg_val(id, *val);
2547 		break;
2548 	case KVM_REG_PPC_TIDR:
2549 		vcpu->arch.tid = set_reg_val(id, *val);
2550 		break;
2551 	case KVM_REG_PPC_PSSCR:
2552 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2553 		break;
2554 	case KVM_REG_PPC_VPA_ADDR:
2555 		addr = set_reg_val(id, *val);
2556 		r = -EINVAL;
2557 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2558 			      vcpu->arch.dtl.next_gpa))
2559 			break;
2560 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2561 		break;
2562 	case KVM_REG_PPC_VPA_SLB:
2563 		addr = val->vpaval.addr;
2564 		len = val->vpaval.length;
2565 		r = -EINVAL;
2566 		if (addr && !vcpu->arch.vpa.next_gpa)
2567 			break;
2568 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2569 		break;
2570 	case KVM_REG_PPC_VPA_DTL:
2571 		addr = val->vpaval.addr;
2572 		len = val->vpaval.length;
2573 		r = -EINVAL;
2574 		if (addr && (len < sizeof(struct dtl_entry) ||
2575 			     !vcpu->arch.vpa.next_gpa))
2576 			break;
2577 		len -= len % sizeof(struct dtl_entry);
2578 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2579 		break;
2580 	case KVM_REG_PPC_TB_OFFSET:
2581 	{
2582 		/* round up to multiple of 2^24 */
2583 		u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2584 
2585 		/*
2586 		 * Now that we know the timebase offset, update the
2587 		 * decrementer expiry with a guest timebase value. If
2588 		 * the userspace does not set DEC_EXPIRY, this ensures
2589 		 * a migrated vcpu at least starts with an expired
2590 		 * decrementer, which is better than a large one that
2591 		 * causes a hang.
2592 		 */
2593 		if (!vcpu->arch.dec_expires && tb_offset)
2594 			vcpu->arch.dec_expires = get_tb() + tb_offset;
2595 
2596 		vcpu->arch.vcore->tb_offset = tb_offset;
2597 		break;
2598 	}
2599 	case KVM_REG_PPC_LPCR:
2600 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2601 		break;
2602 	case KVM_REG_PPC_LPCR_64:
2603 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2604 		break;
2605 	case KVM_REG_PPC_PPR:
2606 		vcpu->arch.ppr = set_reg_val(id, *val);
2607 		break;
2608 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2609 	case KVM_REG_PPC_TFHAR:
2610 		vcpu->arch.tfhar = set_reg_val(id, *val);
2611 		break;
2612 	case KVM_REG_PPC_TFIAR:
2613 		vcpu->arch.tfiar = set_reg_val(id, *val);
2614 		break;
2615 	case KVM_REG_PPC_TEXASR:
2616 		vcpu->arch.texasr = set_reg_val(id, *val);
2617 		break;
2618 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2619 		i = id - KVM_REG_PPC_TM_GPR0;
2620 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2621 		break;
2622 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2623 	{
2624 		int j;
2625 		i = id - KVM_REG_PPC_TM_VSR0;
2626 		if (i < 32)
2627 			for (j = 0; j < TS_FPRWIDTH; j++)
2628 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2629 		else
2630 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2631 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2632 			else
2633 				r = -ENXIO;
2634 		break;
2635 	}
2636 	case KVM_REG_PPC_TM_CR:
2637 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2638 		break;
2639 	case KVM_REG_PPC_TM_XER:
2640 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2641 		break;
2642 	case KVM_REG_PPC_TM_LR:
2643 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2644 		break;
2645 	case KVM_REG_PPC_TM_CTR:
2646 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2647 		break;
2648 	case KVM_REG_PPC_TM_FPSCR:
2649 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2650 		break;
2651 	case KVM_REG_PPC_TM_AMR:
2652 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2653 		break;
2654 	case KVM_REG_PPC_TM_PPR:
2655 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2656 		break;
2657 	case KVM_REG_PPC_TM_VRSAVE:
2658 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2659 		break;
2660 	case KVM_REG_PPC_TM_VSCR:
2661 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2662 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2663 		else
2664 			r = - ENXIO;
2665 		break;
2666 	case KVM_REG_PPC_TM_DSCR:
2667 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2668 		break;
2669 	case KVM_REG_PPC_TM_TAR:
2670 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2671 		break;
2672 #endif
2673 	case KVM_REG_PPC_ARCH_COMPAT:
2674 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2675 		break;
2676 	case KVM_REG_PPC_DEC_EXPIRY:
2677 		vcpu->arch.dec_expires = set_reg_val(id, *val);
2678 		break;
2679 	case KVM_REG_PPC_ONLINE:
2680 		i = set_reg_val(id, *val);
2681 		if (i && !vcpu->arch.online)
2682 			atomic_inc(&vcpu->arch.vcore->online_count);
2683 		else if (!i && vcpu->arch.online)
2684 			atomic_dec(&vcpu->arch.vcore->online_count);
2685 		vcpu->arch.online = i;
2686 		break;
2687 	case KVM_REG_PPC_PTCR:
2688 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2689 		break;
2690 	default:
2691 		r = -EINVAL;
2692 		break;
2693 	}
2694 
2695 	return r;
2696 }
2697 
2698 /*
2699  * On POWER9, threads are independent and can be in different partitions.
2700  * Therefore we consider each thread to be a subcore.
2701  * There is a restriction that all threads have to be in the same
2702  * MMU mode (radix or HPT), unfortunately, but since we only support
2703  * HPT guests on a HPT host so far, that isn't an impediment yet.
2704  */
2705 static int threads_per_vcore(struct kvm *kvm)
2706 {
2707 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2708 		return 1;
2709 	return threads_per_subcore;
2710 }
2711 
2712 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2713 {
2714 	struct kvmppc_vcore *vcore;
2715 
2716 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2717 
2718 	if (vcore == NULL)
2719 		return NULL;
2720 
2721 	spin_lock_init(&vcore->lock);
2722 	spin_lock_init(&vcore->stoltb_lock);
2723 	rcuwait_init(&vcore->wait);
2724 	vcore->preempt_tb = TB_NIL;
2725 	vcore->lpcr = kvm->arch.lpcr;
2726 	vcore->first_vcpuid = id;
2727 	vcore->kvm = kvm;
2728 	INIT_LIST_HEAD(&vcore->preempt_list);
2729 
2730 	return vcore;
2731 }
2732 
2733 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2734 static struct debugfs_timings_element {
2735 	const char *name;
2736 	size_t offset;
2737 } timings[] = {
2738 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2739 	{"vcpu_entry",	offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2740 	{"guest_entry",	offsetof(struct kvm_vcpu, arch.guest_entry)},
2741 	{"in_guest",	offsetof(struct kvm_vcpu, arch.in_guest)},
2742 	{"guest_exit",	offsetof(struct kvm_vcpu, arch.guest_exit)},
2743 	{"vcpu_exit",	offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2744 	{"hypercall",	offsetof(struct kvm_vcpu, arch.hcall)},
2745 	{"page_fault",	offsetof(struct kvm_vcpu, arch.pg_fault)},
2746 #else
2747 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2748 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2749 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2750 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2751 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2752 #endif
2753 };
2754 
2755 #define N_TIMINGS	(ARRAY_SIZE(timings))
2756 
2757 struct debugfs_timings_state {
2758 	struct kvm_vcpu	*vcpu;
2759 	unsigned int	buflen;
2760 	char		buf[N_TIMINGS * 100];
2761 };
2762 
2763 static int debugfs_timings_open(struct inode *inode, struct file *file)
2764 {
2765 	struct kvm_vcpu *vcpu = inode->i_private;
2766 	struct debugfs_timings_state *p;
2767 
2768 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2769 	if (!p)
2770 		return -ENOMEM;
2771 
2772 	kvm_get_kvm(vcpu->kvm);
2773 	p->vcpu = vcpu;
2774 	file->private_data = p;
2775 
2776 	return nonseekable_open(inode, file);
2777 }
2778 
2779 static int debugfs_timings_release(struct inode *inode, struct file *file)
2780 {
2781 	struct debugfs_timings_state *p = file->private_data;
2782 
2783 	kvm_put_kvm(p->vcpu->kvm);
2784 	kfree(p);
2785 	return 0;
2786 }
2787 
2788 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2789 				    size_t len, loff_t *ppos)
2790 {
2791 	struct debugfs_timings_state *p = file->private_data;
2792 	struct kvm_vcpu *vcpu = p->vcpu;
2793 	char *s, *buf_end;
2794 	struct kvmhv_tb_accumulator tb;
2795 	u64 count;
2796 	loff_t pos;
2797 	ssize_t n;
2798 	int i, loops;
2799 	bool ok;
2800 
2801 	if (!p->buflen) {
2802 		s = p->buf;
2803 		buf_end = s + sizeof(p->buf);
2804 		for (i = 0; i < N_TIMINGS; ++i) {
2805 			struct kvmhv_tb_accumulator *acc;
2806 
2807 			acc = (struct kvmhv_tb_accumulator *)
2808 				((unsigned long)vcpu + timings[i].offset);
2809 			ok = false;
2810 			for (loops = 0; loops < 1000; ++loops) {
2811 				count = acc->seqcount;
2812 				if (!(count & 1)) {
2813 					smp_rmb();
2814 					tb = *acc;
2815 					smp_rmb();
2816 					if (count == acc->seqcount) {
2817 						ok = true;
2818 						break;
2819 					}
2820 				}
2821 				udelay(1);
2822 			}
2823 			if (!ok)
2824 				snprintf(s, buf_end - s, "%s: stuck\n",
2825 					timings[i].name);
2826 			else
2827 				snprintf(s, buf_end - s,
2828 					"%s: %llu %llu %llu %llu\n",
2829 					timings[i].name, count / 2,
2830 					tb_to_ns(tb.tb_total),
2831 					tb_to_ns(tb.tb_min),
2832 					tb_to_ns(tb.tb_max));
2833 			s += strlen(s);
2834 		}
2835 		p->buflen = s - p->buf;
2836 	}
2837 
2838 	pos = *ppos;
2839 	if (pos >= p->buflen)
2840 		return 0;
2841 	if (len > p->buflen - pos)
2842 		len = p->buflen - pos;
2843 	n = copy_to_user(buf, p->buf + pos, len);
2844 	if (n) {
2845 		if (n == len)
2846 			return -EFAULT;
2847 		len -= n;
2848 	}
2849 	*ppos = pos + len;
2850 	return len;
2851 }
2852 
2853 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2854 				     size_t len, loff_t *ppos)
2855 {
2856 	return -EACCES;
2857 }
2858 
2859 static const struct file_operations debugfs_timings_ops = {
2860 	.owner	 = THIS_MODULE,
2861 	.open	 = debugfs_timings_open,
2862 	.release = debugfs_timings_release,
2863 	.read	 = debugfs_timings_read,
2864 	.write	 = debugfs_timings_write,
2865 	.llseek	 = generic_file_llseek,
2866 };
2867 
2868 /* Create a debugfs directory for the vcpu */
2869 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2870 {
2871 	if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2872 		debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2873 				    &debugfs_timings_ops);
2874 	return 0;
2875 }
2876 
2877 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2878 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2879 {
2880 	return 0;
2881 }
2882 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2883 
2884 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2885 {
2886 	int err;
2887 	int core;
2888 	struct kvmppc_vcore *vcore;
2889 	struct kvm *kvm;
2890 	unsigned int id;
2891 
2892 	kvm = vcpu->kvm;
2893 	id = vcpu->vcpu_id;
2894 
2895 	vcpu->arch.shared = &vcpu->arch.shregs;
2896 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2897 	/*
2898 	 * The shared struct is never shared on HV,
2899 	 * so we can always use host endianness
2900 	 */
2901 #ifdef __BIG_ENDIAN__
2902 	vcpu->arch.shared_big_endian = true;
2903 #else
2904 	vcpu->arch.shared_big_endian = false;
2905 #endif
2906 #endif
2907 	vcpu->arch.mmcr[0] = MMCR0_FC;
2908 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2909 		vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2910 		vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2911 	}
2912 
2913 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2914 	/* default to host PVR, since we can't spoof it */
2915 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2916 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2917 	spin_lock_init(&vcpu->arch.tbacct_lock);
2918 	vcpu->arch.busy_preempt = TB_NIL;
2919 	vcpu->arch.shregs.msr = MSR_ME;
2920 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2921 
2922 	/*
2923 	 * Set the default HFSCR for the guest from the host value.
2924 	 * This value is only used on POWER9.
2925 	 * On POWER9, we want to virtualize the doorbell facility, so we
2926 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2927 	 * to trap and then we emulate them.
2928 	 */
2929 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2930 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2931 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2932 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2933 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2934 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2935 			vcpu->arch.hfscr |= HFSCR_TM;
2936 #endif
2937 	}
2938 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2939 		vcpu->arch.hfscr |= HFSCR_TM;
2940 
2941 	vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2942 
2943 	/*
2944 	 * PM, EBB, TM are demand-faulted so start with it clear.
2945 	 */
2946 	vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2947 
2948 	kvmppc_mmu_book3s_hv_init(vcpu);
2949 
2950 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2951 
2952 	init_waitqueue_head(&vcpu->arch.cpu_run);
2953 
2954 	mutex_lock(&kvm->lock);
2955 	vcore = NULL;
2956 	err = -EINVAL;
2957 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2958 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2959 			pr_devel("KVM: VCPU ID too high\n");
2960 			core = KVM_MAX_VCORES;
2961 		} else {
2962 			BUG_ON(kvm->arch.smt_mode != 1);
2963 			core = kvmppc_pack_vcpu_id(kvm, id);
2964 		}
2965 	} else {
2966 		core = id / kvm->arch.smt_mode;
2967 	}
2968 	if (core < KVM_MAX_VCORES) {
2969 		vcore = kvm->arch.vcores[core];
2970 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2971 			pr_devel("KVM: collision on id %u", id);
2972 			vcore = NULL;
2973 		} else if (!vcore) {
2974 			/*
2975 			 * Take mmu_setup_lock for mutual exclusion
2976 			 * with kvmppc_update_lpcr().
2977 			 */
2978 			err = -ENOMEM;
2979 			vcore = kvmppc_vcore_create(kvm,
2980 					id & ~(kvm->arch.smt_mode - 1));
2981 			mutex_lock(&kvm->arch.mmu_setup_lock);
2982 			kvm->arch.vcores[core] = vcore;
2983 			kvm->arch.online_vcores++;
2984 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2985 		}
2986 	}
2987 	mutex_unlock(&kvm->lock);
2988 
2989 	if (!vcore)
2990 		return err;
2991 
2992 	spin_lock(&vcore->lock);
2993 	++vcore->num_threads;
2994 	spin_unlock(&vcore->lock);
2995 	vcpu->arch.vcore = vcore;
2996 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2997 	vcpu->arch.thread_cpu = -1;
2998 	vcpu->arch.prev_cpu = -1;
2999 
3000 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
3001 	kvmppc_sanity_check(vcpu);
3002 
3003 	return 0;
3004 }
3005 
3006 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3007 			      unsigned long flags)
3008 {
3009 	int err;
3010 	int esmt = 0;
3011 
3012 	if (flags)
3013 		return -EINVAL;
3014 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3015 		return -EINVAL;
3016 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3017 		/*
3018 		 * On POWER8 (or POWER7), the threading mode is "strict",
3019 		 * so we pack smt_mode vcpus per vcore.
3020 		 */
3021 		if (smt_mode > threads_per_subcore)
3022 			return -EINVAL;
3023 	} else {
3024 		/*
3025 		 * On POWER9, the threading mode is "loose",
3026 		 * so each vcpu gets its own vcore.
3027 		 */
3028 		esmt = smt_mode;
3029 		smt_mode = 1;
3030 	}
3031 	mutex_lock(&kvm->lock);
3032 	err = -EBUSY;
3033 	if (!kvm->arch.online_vcores) {
3034 		kvm->arch.smt_mode = smt_mode;
3035 		kvm->arch.emul_smt_mode = esmt;
3036 		err = 0;
3037 	}
3038 	mutex_unlock(&kvm->lock);
3039 
3040 	return err;
3041 }
3042 
3043 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3044 {
3045 	if (vpa->pinned_addr)
3046 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3047 					vpa->dirty);
3048 }
3049 
3050 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3051 {
3052 	spin_lock(&vcpu->arch.vpa_update_lock);
3053 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3054 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3055 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3056 	spin_unlock(&vcpu->arch.vpa_update_lock);
3057 }
3058 
3059 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3060 {
3061 	/* Indicate we want to get back into the guest */
3062 	return 1;
3063 }
3064 
3065 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3066 {
3067 	unsigned long dec_nsec, now;
3068 
3069 	now = get_tb();
3070 	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3071 		/* decrementer has already gone negative */
3072 		kvmppc_core_queue_dec(vcpu);
3073 		kvmppc_core_prepare_to_enter(vcpu);
3074 		return;
3075 	}
3076 	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3077 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3078 	vcpu->arch.timer_running = 1;
3079 }
3080 
3081 extern int __kvmppc_vcore_entry(void);
3082 
3083 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3084 				   struct kvm_vcpu *vcpu, u64 tb)
3085 {
3086 	u64 now;
3087 
3088 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3089 		return;
3090 	spin_lock_irq(&vcpu->arch.tbacct_lock);
3091 	now = tb;
3092 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3093 		vcpu->arch.stolen_logged;
3094 	vcpu->arch.busy_preempt = now;
3095 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3096 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3097 	--vc->n_runnable;
3098 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3099 }
3100 
3101 static int kvmppc_grab_hwthread(int cpu)
3102 {
3103 	struct paca_struct *tpaca;
3104 	long timeout = 10000;
3105 
3106 	tpaca = paca_ptrs[cpu];
3107 
3108 	/* Ensure the thread won't go into the kernel if it wakes */
3109 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3110 	tpaca->kvm_hstate.kvm_vcore = NULL;
3111 	tpaca->kvm_hstate.napping = 0;
3112 	smp_wmb();
3113 	tpaca->kvm_hstate.hwthread_req = 1;
3114 
3115 	/*
3116 	 * If the thread is already executing in the kernel (e.g. handling
3117 	 * a stray interrupt), wait for it to get back to nap mode.
3118 	 * The smp_mb() is to ensure that our setting of hwthread_req
3119 	 * is visible before we look at hwthread_state, so if this
3120 	 * races with the code at system_reset_pSeries and the thread
3121 	 * misses our setting of hwthread_req, we are sure to see its
3122 	 * setting of hwthread_state, and vice versa.
3123 	 */
3124 	smp_mb();
3125 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3126 		if (--timeout <= 0) {
3127 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3128 			return -EBUSY;
3129 		}
3130 		udelay(1);
3131 	}
3132 	return 0;
3133 }
3134 
3135 static void kvmppc_release_hwthread(int cpu)
3136 {
3137 	struct paca_struct *tpaca;
3138 
3139 	tpaca = paca_ptrs[cpu];
3140 	tpaca->kvm_hstate.hwthread_req = 0;
3141 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3142 	tpaca->kvm_hstate.kvm_vcore = NULL;
3143 	tpaca->kvm_hstate.kvm_split_mode = NULL;
3144 }
3145 
3146 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3147 
3148 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3149 {
3150 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3151 	cpumask_t *need_tlb_flush;
3152 	int i;
3153 
3154 	if (nested)
3155 		need_tlb_flush = &nested->need_tlb_flush;
3156 	else
3157 		need_tlb_flush = &kvm->arch.need_tlb_flush;
3158 
3159 	cpu = cpu_first_tlb_thread_sibling(cpu);
3160 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3161 					i += cpu_tlb_thread_sibling_step())
3162 		cpumask_set_cpu(i, need_tlb_flush);
3163 
3164 	/*
3165 	 * Make sure setting of bit in need_tlb_flush precedes testing of
3166 	 * cpu_in_guest. The matching barrier on the other side is hwsync
3167 	 * when switching to guest MMU mode, which happens between
3168 	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3169 	 * being tested.
3170 	 */
3171 	smp_mb();
3172 
3173 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3174 					i += cpu_tlb_thread_sibling_step()) {
3175 		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3176 
3177 		if (running == kvm)
3178 			smp_call_function_single(i, do_nothing, NULL, 1);
3179 	}
3180 }
3181 
3182 static void do_migrate_away_vcpu(void *arg)
3183 {
3184 	struct kvm_vcpu *vcpu = arg;
3185 	struct kvm *kvm = vcpu->kvm;
3186 
3187 	/*
3188 	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3189 	 * ptesync sequence on the old CPU before migrating to a new one, in
3190 	 * case we interrupted the guest between a tlbie ; eieio ;
3191 	 * tlbsync; ptesync sequence.
3192 	 *
3193 	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3194 	 */
3195 	if (kvm->arch.lpcr & LPCR_GTSE)
3196 		asm volatile("eieio; tlbsync; ptesync");
3197 	else
3198 		asm volatile("ptesync");
3199 }
3200 
3201 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3202 {
3203 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3204 	struct kvm *kvm = vcpu->kvm;
3205 	int prev_cpu;
3206 
3207 	if (!cpu_has_feature(CPU_FTR_HVMODE))
3208 		return;
3209 
3210 	if (nested)
3211 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3212 	else
3213 		prev_cpu = vcpu->arch.prev_cpu;
3214 
3215 	/*
3216 	 * With radix, the guest can do TLB invalidations itself,
3217 	 * and it could choose to use the local form (tlbiel) if
3218 	 * it is invalidating a translation that has only ever been
3219 	 * used on one vcpu.  However, that doesn't mean it has
3220 	 * only ever been used on one physical cpu, since vcpus
3221 	 * can move around between pcpus.  To cope with this, when
3222 	 * a vcpu moves from one pcpu to another, we need to tell
3223 	 * any vcpus running on the same core as this vcpu previously
3224 	 * ran to flush the TLB.
3225 	 */
3226 	if (prev_cpu != pcpu) {
3227 		if (prev_cpu >= 0) {
3228 			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3229 			    cpu_first_tlb_thread_sibling(pcpu))
3230 				radix_flush_cpu(kvm, prev_cpu, vcpu);
3231 
3232 			smp_call_function_single(prev_cpu,
3233 					do_migrate_away_vcpu, vcpu, 1);
3234 		}
3235 		if (nested)
3236 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3237 		else
3238 			vcpu->arch.prev_cpu = pcpu;
3239 	}
3240 }
3241 
3242 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3243 {
3244 	int cpu;
3245 	struct paca_struct *tpaca;
3246 
3247 	cpu = vc->pcpu;
3248 	if (vcpu) {
3249 		if (vcpu->arch.timer_running) {
3250 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3251 			vcpu->arch.timer_running = 0;
3252 		}
3253 		cpu += vcpu->arch.ptid;
3254 		vcpu->cpu = vc->pcpu;
3255 		vcpu->arch.thread_cpu = cpu;
3256 	}
3257 	tpaca = paca_ptrs[cpu];
3258 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3259 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3260 	tpaca->kvm_hstate.fake_suspend = 0;
3261 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3262 	smp_wmb();
3263 	tpaca->kvm_hstate.kvm_vcore = vc;
3264 	if (cpu != smp_processor_id())
3265 		kvmppc_ipi_thread(cpu);
3266 }
3267 
3268 static void kvmppc_wait_for_nap(int n_threads)
3269 {
3270 	int cpu = smp_processor_id();
3271 	int i, loops;
3272 
3273 	if (n_threads <= 1)
3274 		return;
3275 	for (loops = 0; loops < 1000000; ++loops) {
3276 		/*
3277 		 * Check if all threads are finished.
3278 		 * We set the vcore pointer when starting a thread
3279 		 * and the thread clears it when finished, so we look
3280 		 * for any threads that still have a non-NULL vcore ptr.
3281 		 */
3282 		for (i = 1; i < n_threads; ++i)
3283 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3284 				break;
3285 		if (i == n_threads) {
3286 			HMT_medium();
3287 			return;
3288 		}
3289 		HMT_low();
3290 	}
3291 	HMT_medium();
3292 	for (i = 1; i < n_threads; ++i)
3293 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3294 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3295 }
3296 
3297 /*
3298  * Check that we are on thread 0 and that any other threads in
3299  * this core are off-line.  Then grab the threads so they can't
3300  * enter the kernel.
3301  */
3302 static int on_primary_thread(void)
3303 {
3304 	int cpu = smp_processor_id();
3305 	int thr;
3306 
3307 	/* Are we on a primary subcore? */
3308 	if (cpu_thread_in_subcore(cpu))
3309 		return 0;
3310 
3311 	thr = 0;
3312 	while (++thr < threads_per_subcore)
3313 		if (cpu_online(cpu + thr))
3314 			return 0;
3315 
3316 	/* Grab all hw threads so they can't go into the kernel */
3317 	for (thr = 1; thr < threads_per_subcore; ++thr) {
3318 		if (kvmppc_grab_hwthread(cpu + thr)) {
3319 			/* Couldn't grab one; let the others go */
3320 			do {
3321 				kvmppc_release_hwthread(cpu + thr);
3322 			} while (--thr > 0);
3323 			return 0;
3324 		}
3325 	}
3326 	return 1;
3327 }
3328 
3329 /*
3330  * A list of virtual cores for each physical CPU.
3331  * These are vcores that could run but their runner VCPU tasks are
3332  * (or may be) preempted.
3333  */
3334 struct preempted_vcore_list {
3335 	struct list_head	list;
3336 	spinlock_t		lock;
3337 };
3338 
3339 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3340 
3341 static void init_vcore_lists(void)
3342 {
3343 	int cpu;
3344 
3345 	for_each_possible_cpu(cpu) {
3346 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3347 		spin_lock_init(&lp->lock);
3348 		INIT_LIST_HEAD(&lp->list);
3349 	}
3350 }
3351 
3352 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3353 {
3354 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3355 
3356 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3357 
3358 	vc->vcore_state = VCORE_PREEMPT;
3359 	vc->pcpu = smp_processor_id();
3360 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3361 		spin_lock(&lp->lock);
3362 		list_add_tail(&vc->preempt_list, &lp->list);
3363 		spin_unlock(&lp->lock);
3364 	}
3365 
3366 	/* Start accumulating stolen time */
3367 	kvmppc_core_start_stolen(vc, mftb());
3368 }
3369 
3370 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3371 {
3372 	struct preempted_vcore_list *lp;
3373 
3374 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3375 
3376 	kvmppc_core_end_stolen(vc, mftb());
3377 	if (!list_empty(&vc->preempt_list)) {
3378 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3379 		spin_lock(&lp->lock);
3380 		list_del_init(&vc->preempt_list);
3381 		spin_unlock(&lp->lock);
3382 	}
3383 	vc->vcore_state = VCORE_INACTIVE;
3384 }
3385 
3386 /*
3387  * This stores information about the virtual cores currently
3388  * assigned to a physical core.
3389  */
3390 struct core_info {
3391 	int		n_subcores;
3392 	int		max_subcore_threads;
3393 	int		total_threads;
3394 	int		subcore_threads[MAX_SUBCORES];
3395 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3396 };
3397 
3398 /*
3399  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3400  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3401  */
3402 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3403 
3404 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3405 {
3406 	memset(cip, 0, sizeof(*cip));
3407 	cip->n_subcores = 1;
3408 	cip->max_subcore_threads = vc->num_threads;
3409 	cip->total_threads = vc->num_threads;
3410 	cip->subcore_threads[0] = vc->num_threads;
3411 	cip->vc[0] = vc;
3412 }
3413 
3414 static bool subcore_config_ok(int n_subcores, int n_threads)
3415 {
3416 	/*
3417 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3418 	 * split-core mode, with one thread per subcore.
3419 	 */
3420 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3421 		return n_subcores <= 4 && n_threads == 1;
3422 
3423 	/* On POWER8, can only dynamically split if unsplit to begin with */
3424 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3425 		return false;
3426 	if (n_subcores > MAX_SUBCORES)
3427 		return false;
3428 	if (n_subcores > 1) {
3429 		if (!(dynamic_mt_modes & 2))
3430 			n_subcores = 4;
3431 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3432 			return false;
3433 	}
3434 
3435 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3436 }
3437 
3438 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3439 {
3440 	vc->entry_exit_map = 0;
3441 	vc->in_guest = 0;
3442 	vc->napping_threads = 0;
3443 	vc->conferring_threads = 0;
3444 	vc->tb_offset_applied = 0;
3445 }
3446 
3447 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3448 {
3449 	int n_threads = vc->num_threads;
3450 	int sub;
3451 
3452 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3453 		return false;
3454 
3455 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3456 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3457 		return false;
3458 
3459 	if (n_threads < cip->max_subcore_threads)
3460 		n_threads = cip->max_subcore_threads;
3461 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3462 		return false;
3463 	cip->max_subcore_threads = n_threads;
3464 
3465 	sub = cip->n_subcores;
3466 	++cip->n_subcores;
3467 	cip->total_threads += vc->num_threads;
3468 	cip->subcore_threads[sub] = vc->num_threads;
3469 	cip->vc[sub] = vc;
3470 	init_vcore_to_run(vc);
3471 	list_del_init(&vc->preempt_list);
3472 
3473 	return true;
3474 }
3475 
3476 /*
3477  * Work out whether it is possible to piggyback the execution of
3478  * vcore *pvc onto the execution of the other vcores described in *cip.
3479  */
3480 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3481 			  int target_threads)
3482 {
3483 	if (cip->total_threads + pvc->num_threads > target_threads)
3484 		return false;
3485 
3486 	return can_dynamic_split(pvc, cip);
3487 }
3488 
3489 static void prepare_threads(struct kvmppc_vcore *vc)
3490 {
3491 	int i;
3492 	struct kvm_vcpu *vcpu;
3493 
3494 	for_each_runnable_thread(i, vcpu, vc) {
3495 		if (signal_pending(vcpu->arch.run_task))
3496 			vcpu->arch.ret = -EINTR;
3497 		else if (vcpu->arch.vpa.update_pending ||
3498 			 vcpu->arch.slb_shadow.update_pending ||
3499 			 vcpu->arch.dtl.update_pending)
3500 			vcpu->arch.ret = RESUME_GUEST;
3501 		else
3502 			continue;
3503 		kvmppc_remove_runnable(vc, vcpu, mftb());
3504 		wake_up(&vcpu->arch.cpu_run);
3505 	}
3506 }
3507 
3508 static void collect_piggybacks(struct core_info *cip, int target_threads)
3509 {
3510 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3511 	struct kvmppc_vcore *pvc, *vcnext;
3512 
3513 	spin_lock(&lp->lock);
3514 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3515 		if (!spin_trylock(&pvc->lock))
3516 			continue;
3517 		prepare_threads(pvc);
3518 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3519 			list_del_init(&pvc->preempt_list);
3520 			if (pvc->runner == NULL) {
3521 				pvc->vcore_state = VCORE_INACTIVE;
3522 				kvmppc_core_end_stolen(pvc, mftb());
3523 			}
3524 			spin_unlock(&pvc->lock);
3525 			continue;
3526 		}
3527 		if (!can_piggyback(pvc, cip, target_threads)) {
3528 			spin_unlock(&pvc->lock);
3529 			continue;
3530 		}
3531 		kvmppc_core_end_stolen(pvc, mftb());
3532 		pvc->vcore_state = VCORE_PIGGYBACK;
3533 		if (cip->total_threads >= target_threads)
3534 			break;
3535 	}
3536 	spin_unlock(&lp->lock);
3537 }
3538 
3539 static bool recheck_signals_and_mmu(struct core_info *cip)
3540 {
3541 	int sub, i;
3542 	struct kvm_vcpu *vcpu;
3543 	struct kvmppc_vcore *vc;
3544 
3545 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3546 		vc = cip->vc[sub];
3547 		if (!vc->kvm->arch.mmu_ready)
3548 			return true;
3549 		for_each_runnable_thread(i, vcpu, vc)
3550 			if (signal_pending(vcpu->arch.run_task))
3551 				return true;
3552 	}
3553 	return false;
3554 }
3555 
3556 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3557 {
3558 	int still_running = 0, i;
3559 	u64 now;
3560 	long ret;
3561 	struct kvm_vcpu *vcpu;
3562 
3563 	spin_lock(&vc->lock);
3564 	now = get_tb();
3565 	for_each_runnable_thread(i, vcpu, vc) {
3566 		/*
3567 		 * It's safe to unlock the vcore in the loop here, because
3568 		 * for_each_runnable_thread() is safe against removal of
3569 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3570 		 * so any vcpus becoming runnable will have their arch.trap
3571 		 * set to zero and can't actually run in the guest.
3572 		 */
3573 		spin_unlock(&vc->lock);
3574 		/* cancel pending dec exception if dec is positive */
3575 		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3576 		    kvmppc_core_pending_dec(vcpu))
3577 			kvmppc_core_dequeue_dec(vcpu);
3578 
3579 		trace_kvm_guest_exit(vcpu);
3580 
3581 		ret = RESUME_GUEST;
3582 		if (vcpu->arch.trap)
3583 			ret = kvmppc_handle_exit_hv(vcpu,
3584 						    vcpu->arch.run_task);
3585 
3586 		vcpu->arch.ret = ret;
3587 		vcpu->arch.trap = 0;
3588 
3589 		spin_lock(&vc->lock);
3590 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3591 			if (vcpu->arch.pending_exceptions)
3592 				kvmppc_core_prepare_to_enter(vcpu);
3593 			if (vcpu->arch.ceded)
3594 				kvmppc_set_timer(vcpu);
3595 			else
3596 				++still_running;
3597 		} else {
3598 			kvmppc_remove_runnable(vc, vcpu, mftb());
3599 			wake_up(&vcpu->arch.cpu_run);
3600 		}
3601 	}
3602 	if (!is_master) {
3603 		if (still_running > 0) {
3604 			kvmppc_vcore_preempt(vc);
3605 		} else if (vc->runner) {
3606 			vc->vcore_state = VCORE_PREEMPT;
3607 			kvmppc_core_start_stolen(vc, mftb());
3608 		} else {
3609 			vc->vcore_state = VCORE_INACTIVE;
3610 		}
3611 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3612 			/* make sure there's a candidate runner awake */
3613 			i = -1;
3614 			vcpu = next_runnable_thread(vc, &i);
3615 			wake_up(&vcpu->arch.cpu_run);
3616 		}
3617 	}
3618 	spin_unlock(&vc->lock);
3619 }
3620 
3621 /*
3622  * Clear core from the list of active host cores as we are about to
3623  * enter the guest. Only do this if it is the primary thread of the
3624  * core (not if a subcore) that is entering the guest.
3625  */
3626 static inline int kvmppc_clear_host_core(unsigned int cpu)
3627 {
3628 	int core;
3629 
3630 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3631 		return 0;
3632 	/*
3633 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3634 	 * later in kvmppc_start_thread and we need ensure that state is
3635 	 * visible to other CPUs only after we enter guest.
3636 	 */
3637 	core = cpu >> threads_shift;
3638 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3639 	return 0;
3640 }
3641 
3642 /*
3643  * Advertise this core as an active host core since we exited the guest
3644  * Only need to do this if it is the primary thread of the core that is
3645  * exiting.
3646  */
3647 static inline int kvmppc_set_host_core(unsigned int cpu)
3648 {
3649 	int core;
3650 
3651 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3652 		return 0;
3653 
3654 	/*
3655 	 * Memory barrier can be omitted here because we do a spin_unlock
3656 	 * immediately after this which provides the memory barrier.
3657 	 */
3658 	core = cpu >> threads_shift;
3659 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3660 	return 0;
3661 }
3662 
3663 static void set_irq_happened(int trap)
3664 {
3665 	switch (trap) {
3666 	case BOOK3S_INTERRUPT_EXTERNAL:
3667 		local_paca->irq_happened |= PACA_IRQ_EE;
3668 		break;
3669 	case BOOK3S_INTERRUPT_H_DOORBELL:
3670 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3671 		break;
3672 	case BOOK3S_INTERRUPT_HMI:
3673 		local_paca->irq_happened |= PACA_IRQ_HMI;
3674 		break;
3675 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3676 		replay_system_reset();
3677 		break;
3678 	}
3679 }
3680 
3681 /*
3682  * Run a set of guest threads on a physical core.
3683  * Called with vc->lock held.
3684  */
3685 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3686 {
3687 	struct kvm_vcpu *vcpu;
3688 	int i;
3689 	int srcu_idx;
3690 	struct core_info core_info;
3691 	struct kvmppc_vcore *pvc;
3692 	struct kvm_split_mode split_info, *sip;
3693 	int split, subcore_size, active;
3694 	int sub;
3695 	bool thr0_done;
3696 	unsigned long cmd_bit, stat_bit;
3697 	int pcpu, thr;
3698 	int target_threads;
3699 	int controlled_threads;
3700 	int trap;
3701 	bool is_power8;
3702 
3703 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3704 		return;
3705 
3706 	/*
3707 	 * Remove from the list any threads that have a signal pending
3708 	 * or need a VPA update done
3709 	 */
3710 	prepare_threads(vc);
3711 
3712 	/* if the runner is no longer runnable, let the caller pick a new one */
3713 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3714 		return;
3715 
3716 	/*
3717 	 * Initialize *vc.
3718 	 */
3719 	init_vcore_to_run(vc);
3720 	vc->preempt_tb = TB_NIL;
3721 
3722 	/*
3723 	 * Number of threads that we will be controlling: the same as
3724 	 * the number of threads per subcore, except on POWER9,
3725 	 * where it's 1 because the threads are (mostly) independent.
3726 	 */
3727 	controlled_threads = threads_per_vcore(vc->kvm);
3728 
3729 	/*
3730 	 * Make sure we are running on primary threads, and that secondary
3731 	 * threads are offline.  Also check if the number of threads in this
3732 	 * guest are greater than the current system threads per guest.
3733 	 */
3734 	if ((controlled_threads > 1) &&
3735 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3736 		for_each_runnable_thread(i, vcpu, vc) {
3737 			vcpu->arch.ret = -EBUSY;
3738 			kvmppc_remove_runnable(vc, vcpu, mftb());
3739 			wake_up(&vcpu->arch.cpu_run);
3740 		}
3741 		goto out;
3742 	}
3743 
3744 	/*
3745 	 * See if we could run any other vcores on the physical core
3746 	 * along with this one.
3747 	 */
3748 	init_core_info(&core_info, vc);
3749 	pcpu = smp_processor_id();
3750 	target_threads = controlled_threads;
3751 	if (target_smt_mode && target_smt_mode < target_threads)
3752 		target_threads = target_smt_mode;
3753 	if (vc->num_threads < target_threads)
3754 		collect_piggybacks(&core_info, target_threads);
3755 
3756 	/*
3757 	 * Hard-disable interrupts, and check resched flag and signals.
3758 	 * If we need to reschedule or deliver a signal, clean up
3759 	 * and return without going into the guest(s).
3760 	 * If the mmu_ready flag has been cleared, don't go into the
3761 	 * guest because that means a HPT resize operation is in progress.
3762 	 */
3763 	local_irq_disable();
3764 	hard_irq_disable();
3765 	if (lazy_irq_pending() || need_resched() ||
3766 	    recheck_signals_and_mmu(&core_info)) {
3767 		local_irq_enable();
3768 		vc->vcore_state = VCORE_INACTIVE;
3769 		/* Unlock all except the primary vcore */
3770 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3771 			pvc = core_info.vc[sub];
3772 			/* Put back on to the preempted vcores list */
3773 			kvmppc_vcore_preempt(pvc);
3774 			spin_unlock(&pvc->lock);
3775 		}
3776 		for (i = 0; i < controlled_threads; ++i)
3777 			kvmppc_release_hwthread(pcpu + i);
3778 		return;
3779 	}
3780 
3781 	kvmppc_clear_host_core(pcpu);
3782 
3783 	/* Decide on micro-threading (split-core) mode */
3784 	subcore_size = threads_per_subcore;
3785 	cmd_bit = stat_bit = 0;
3786 	split = core_info.n_subcores;
3787 	sip = NULL;
3788 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3789 
3790 	if (split > 1) {
3791 		sip = &split_info;
3792 		memset(&split_info, 0, sizeof(split_info));
3793 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3794 			split_info.vc[sub] = core_info.vc[sub];
3795 
3796 		if (is_power8) {
3797 			if (split == 2 && (dynamic_mt_modes & 2)) {
3798 				cmd_bit = HID0_POWER8_1TO2LPAR;
3799 				stat_bit = HID0_POWER8_2LPARMODE;
3800 			} else {
3801 				split = 4;
3802 				cmd_bit = HID0_POWER8_1TO4LPAR;
3803 				stat_bit = HID0_POWER8_4LPARMODE;
3804 			}
3805 			subcore_size = MAX_SMT_THREADS / split;
3806 			split_info.rpr = mfspr(SPRN_RPR);
3807 			split_info.pmmar = mfspr(SPRN_PMMAR);
3808 			split_info.ldbar = mfspr(SPRN_LDBAR);
3809 			split_info.subcore_size = subcore_size;
3810 		} else {
3811 			split_info.subcore_size = 1;
3812 		}
3813 
3814 		/* order writes to split_info before kvm_split_mode pointer */
3815 		smp_wmb();
3816 	}
3817 
3818 	for (thr = 0; thr < controlled_threads; ++thr) {
3819 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3820 
3821 		paca->kvm_hstate.napping = 0;
3822 		paca->kvm_hstate.kvm_split_mode = sip;
3823 	}
3824 
3825 	/* Initiate micro-threading (split-core) on POWER8 if required */
3826 	if (cmd_bit) {
3827 		unsigned long hid0 = mfspr(SPRN_HID0);
3828 
3829 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3830 		mb();
3831 		mtspr(SPRN_HID0, hid0);
3832 		isync();
3833 		for (;;) {
3834 			hid0 = mfspr(SPRN_HID0);
3835 			if (hid0 & stat_bit)
3836 				break;
3837 			cpu_relax();
3838 		}
3839 	}
3840 
3841 	/*
3842 	 * On POWER8, set RWMR register.
3843 	 * Since it only affects PURR and SPURR, it doesn't affect
3844 	 * the host, so we don't save/restore the host value.
3845 	 */
3846 	if (is_power8) {
3847 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3848 		int n_online = atomic_read(&vc->online_count);
3849 
3850 		/*
3851 		 * Use the 8-thread value if we're doing split-core
3852 		 * or if the vcore's online count looks bogus.
3853 		 */
3854 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3855 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3856 			rwmr_val = p8_rwmr_values[n_online];
3857 		mtspr(SPRN_RWMR, rwmr_val);
3858 	}
3859 
3860 	/* Start all the threads */
3861 	active = 0;
3862 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3863 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3864 		thr0_done = false;
3865 		active |= 1 << thr;
3866 		pvc = core_info.vc[sub];
3867 		pvc->pcpu = pcpu + thr;
3868 		for_each_runnable_thread(i, vcpu, pvc) {
3869 			/*
3870 			 * XXX: is kvmppc_start_thread called too late here?
3871 			 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3872 			 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3873 			 * kick is called after new exceptions become available
3874 			 * and exceptions are checked earlier than here, by
3875 			 * kvmppc_core_prepare_to_enter.
3876 			 */
3877 			kvmppc_start_thread(vcpu, pvc);
3878 			kvmppc_update_vpa_dispatch(vcpu, pvc);
3879 			trace_kvm_guest_enter(vcpu);
3880 			if (!vcpu->arch.ptid)
3881 				thr0_done = true;
3882 			active |= 1 << (thr + vcpu->arch.ptid);
3883 		}
3884 		/*
3885 		 * We need to start the first thread of each subcore
3886 		 * even if it doesn't have a vcpu.
3887 		 */
3888 		if (!thr0_done)
3889 			kvmppc_start_thread(NULL, pvc);
3890 	}
3891 
3892 	/*
3893 	 * Ensure that split_info.do_nap is set after setting
3894 	 * the vcore pointer in the PACA of the secondaries.
3895 	 */
3896 	smp_mb();
3897 
3898 	/*
3899 	 * When doing micro-threading, poke the inactive threads as well.
3900 	 * This gets them to the nap instruction after kvm_do_nap,
3901 	 * which reduces the time taken to unsplit later.
3902 	 */
3903 	if (cmd_bit) {
3904 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3905 		for (thr = 1; thr < threads_per_subcore; ++thr)
3906 			if (!(active & (1 << thr)))
3907 				kvmppc_ipi_thread(pcpu + thr);
3908 	}
3909 
3910 	vc->vcore_state = VCORE_RUNNING;
3911 	preempt_disable();
3912 
3913 	trace_kvmppc_run_core(vc, 0);
3914 
3915 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3916 		spin_unlock(&core_info.vc[sub]->lock);
3917 
3918 	guest_timing_enter_irqoff();
3919 
3920 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3921 
3922 	guest_state_enter_irqoff();
3923 	this_cpu_disable_ftrace();
3924 
3925 	trap = __kvmppc_vcore_entry();
3926 
3927 	this_cpu_enable_ftrace();
3928 	guest_state_exit_irqoff();
3929 
3930 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3931 
3932 	set_irq_happened(trap);
3933 
3934 	spin_lock(&vc->lock);
3935 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3936 	vc->vcore_state = VCORE_EXITING;
3937 
3938 	/* wait for secondary threads to finish writing their state to memory */
3939 	kvmppc_wait_for_nap(controlled_threads);
3940 
3941 	/* Return to whole-core mode if we split the core earlier */
3942 	if (cmd_bit) {
3943 		unsigned long hid0 = mfspr(SPRN_HID0);
3944 		unsigned long loops = 0;
3945 
3946 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3947 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3948 		mb();
3949 		mtspr(SPRN_HID0, hid0);
3950 		isync();
3951 		for (;;) {
3952 			hid0 = mfspr(SPRN_HID0);
3953 			if (!(hid0 & stat_bit))
3954 				break;
3955 			cpu_relax();
3956 			++loops;
3957 		}
3958 		split_info.do_nap = 0;
3959 	}
3960 
3961 	kvmppc_set_host_core(pcpu);
3962 
3963 	if (!vtime_accounting_enabled_this_cpu()) {
3964 		local_irq_enable();
3965 		/*
3966 		 * Service IRQs here before guest_timing_exit_irqoff() so any
3967 		 * ticks that occurred while running the guest are accounted to
3968 		 * the guest. If vtime accounting is enabled, accounting uses
3969 		 * TB rather than ticks, so it can be done without enabling
3970 		 * interrupts here, which has the problem that it accounts
3971 		 * interrupt processing overhead to the host.
3972 		 */
3973 		local_irq_disable();
3974 	}
3975 	guest_timing_exit_irqoff();
3976 
3977 	local_irq_enable();
3978 
3979 	/* Let secondaries go back to the offline loop */
3980 	for (i = 0; i < controlled_threads; ++i) {
3981 		kvmppc_release_hwthread(pcpu + i);
3982 		if (sip && sip->napped[i])
3983 			kvmppc_ipi_thread(pcpu + i);
3984 	}
3985 
3986 	spin_unlock(&vc->lock);
3987 
3988 	/* make sure updates to secondary vcpu structs are visible now */
3989 	smp_mb();
3990 
3991 	preempt_enable();
3992 
3993 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3994 		pvc = core_info.vc[sub];
3995 		post_guest_process(pvc, pvc == vc);
3996 	}
3997 
3998 	spin_lock(&vc->lock);
3999 
4000  out:
4001 	vc->vcore_state = VCORE_INACTIVE;
4002 	trace_kvmppc_run_core(vc, 1);
4003 }
4004 
4005 static inline bool hcall_is_xics(unsigned long req)
4006 {
4007 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
4008 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4009 }
4010 
4011 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4012 {
4013 	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4014 	if (lp) {
4015 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4016 		lp->yield_count = cpu_to_be32(yield_count);
4017 		vcpu->arch.vpa.dirty = 1;
4018 	}
4019 }
4020 
4021 /* call our hypervisor to load up HV regs and go */
4022 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4023 {
4024 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
4025 	unsigned long host_psscr;
4026 	unsigned long msr;
4027 	struct hv_guest_state hvregs;
4028 	struct p9_host_os_sprs host_os_sprs;
4029 	s64 dec;
4030 	int trap;
4031 
4032 	msr = mfmsr();
4033 
4034 	save_p9_host_os_sprs(&host_os_sprs);
4035 
4036 	/*
4037 	 * We need to save and restore the guest visible part of the
4038 	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4039 	 * doesn't do this for us. Note only required if pseries since
4040 	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4041 	 */
4042 	host_psscr = mfspr(SPRN_PSSCR_PR);
4043 
4044 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4045 	if (lazy_irq_pending())
4046 		return 0;
4047 
4048 	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4049 		msr = mfmsr(); /* TM restore can update msr */
4050 
4051 	if (vcpu->arch.psscr != host_psscr)
4052 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4053 
4054 	kvmhv_save_hv_regs(vcpu, &hvregs);
4055 	hvregs.lpcr = lpcr;
4056 	hvregs.amor = ~0;
4057 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4058 	hvregs.version = HV_GUEST_STATE_VERSION;
4059 	if (vcpu->arch.nested) {
4060 		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4061 		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4062 	} else {
4063 		hvregs.lpid = vcpu->kvm->arch.lpid;
4064 		hvregs.vcpu_token = vcpu->vcpu_id;
4065 	}
4066 	hvregs.hdec_expiry = time_limit;
4067 
4068 	/*
4069 	 * When setting DEC, we must always deal with irq_work_raise
4070 	 * via NMI vs setting DEC. The problem occurs right as we
4071 	 * switch into guest mode if a NMI hits and sets pending work
4072 	 * and sets DEC, then that will apply to the guest and not
4073 	 * bring us back to the host.
4074 	 *
4075 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4076 	 * for example) and set HDEC to 1? That wouldn't solve the
4077 	 * nested hv case which needs to abort the hcall or zero the
4078 	 * time limit.
4079 	 *
4080 	 * XXX: Another day's problem.
4081 	 */
4082 	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4083 
4084 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4085 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4086 	switch_pmu_to_guest(vcpu, &host_os_sprs);
4087 	accumulate_time(vcpu, &vcpu->arch.in_guest);
4088 	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4089 				  __pa(&vcpu->arch.regs));
4090 	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4091 	kvmhv_restore_hv_return_state(vcpu, &hvregs);
4092 	switch_pmu_to_host(vcpu, &host_os_sprs);
4093 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4094 	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4095 	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4096 	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4097 
4098 	store_vcpu_state(vcpu);
4099 
4100 	dec = mfspr(SPRN_DEC);
4101 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4102 		dec = (s32) dec;
4103 	*tb = mftb();
4104 	vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4105 
4106 	timer_rearm_host_dec(*tb);
4107 
4108 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4109 	if (vcpu->arch.psscr != host_psscr)
4110 		mtspr(SPRN_PSSCR_PR, host_psscr);
4111 
4112 	return trap;
4113 }
4114 
4115 /*
4116  * Guest entry for POWER9 and later CPUs.
4117  */
4118 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4119 			 unsigned long lpcr, u64 *tb)
4120 {
4121 	struct kvm *kvm = vcpu->kvm;
4122 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4123 	u64 next_timer;
4124 	int trap;
4125 
4126 	next_timer = timer_get_next_tb();
4127 	if (*tb >= next_timer)
4128 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4129 	if (next_timer < time_limit)
4130 		time_limit = next_timer;
4131 	else if (*tb >= time_limit) /* nested time limit */
4132 		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4133 
4134 	vcpu->arch.ceded = 0;
4135 
4136 	vcpu_vpa_increment_dispatch(vcpu);
4137 
4138 	if (kvmhv_on_pseries()) {
4139 		trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4140 
4141 		/* H_CEDE has to be handled now, not later */
4142 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4143 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4144 			kvmppc_cede(vcpu);
4145 			kvmppc_set_gpr(vcpu, 3, 0);
4146 			trap = 0;
4147 		}
4148 
4149 	} else if (nested) {
4150 		__this_cpu_write(cpu_in_guest, kvm);
4151 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4152 		__this_cpu_write(cpu_in_guest, NULL);
4153 
4154 	} else {
4155 		kvmppc_xive_push_vcpu(vcpu);
4156 
4157 		__this_cpu_write(cpu_in_guest, kvm);
4158 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4159 		__this_cpu_write(cpu_in_guest, NULL);
4160 
4161 		if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4162 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4163 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4164 
4165 			/*
4166 			 * XIVE rearm and XICS hcalls must be handled
4167 			 * before xive context is pulled (is this
4168 			 * true?)
4169 			 */
4170 			if (req == H_CEDE) {
4171 				/* H_CEDE has to be handled now */
4172 				kvmppc_cede(vcpu);
4173 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4174 					/*
4175 					 * Pending escalation so abort
4176 					 * the cede.
4177 					 */
4178 					vcpu->arch.ceded = 0;
4179 				}
4180 				kvmppc_set_gpr(vcpu, 3, 0);
4181 				trap = 0;
4182 
4183 			} else if (req == H_ENTER_NESTED) {
4184 				/*
4185 				 * L2 should not run with the L1
4186 				 * context so rearm and pull it.
4187 				 */
4188 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4189 					/*
4190 					 * Pending escalation so abort
4191 					 * H_ENTER_NESTED.
4192 					 */
4193 					kvmppc_set_gpr(vcpu, 3, 0);
4194 					trap = 0;
4195 				}
4196 
4197 			} else if (hcall_is_xics(req)) {
4198 				int ret;
4199 
4200 				ret = kvmppc_xive_xics_hcall(vcpu, req);
4201 				if (ret != H_TOO_HARD) {
4202 					kvmppc_set_gpr(vcpu, 3, ret);
4203 					trap = 0;
4204 				}
4205 			}
4206 		}
4207 		kvmppc_xive_pull_vcpu(vcpu);
4208 
4209 		if (kvm_is_radix(kvm))
4210 			vcpu->arch.slb_max = 0;
4211 	}
4212 
4213 	vcpu_vpa_increment_dispatch(vcpu);
4214 
4215 	return trap;
4216 }
4217 
4218 /*
4219  * Wait for some other vcpu thread to execute us, and
4220  * wake us up when we need to handle something in the host.
4221  */
4222 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4223 				 struct kvm_vcpu *vcpu, int wait_state)
4224 {
4225 	DEFINE_WAIT(wait);
4226 
4227 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4228 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4229 		spin_unlock(&vc->lock);
4230 		schedule();
4231 		spin_lock(&vc->lock);
4232 	}
4233 	finish_wait(&vcpu->arch.cpu_run, &wait);
4234 }
4235 
4236 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4237 {
4238 	if (!halt_poll_ns_grow)
4239 		return;
4240 
4241 	vc->halt_poll_ns *= halt_poll_ns_grow;
4242 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4243 		vc->halt_poll_ns = halt_poll_ns_grow_start;
4244 }
4245 
4246 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4247 {
4248 	if (halt_poll_ns_shrink == 0)
4249 		vc->halt_poll_ns = 0;
4250 	else
4251 		vc->halt_poll_ns /= halt_poll_ns_shrink;
4252 }
4253 
4254 #ifdef CONFIG_KVM_XICS
4255 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4256 {
4257 	if (!xics_on_xive())
4258 		return false;
4259 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4260 		vcpu->arch.xive_saved_state.cppr;
4261 }
4262 #else
4263 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4264 {
4265 	return false;
4266 }
4267 #endif /* CONFIG_KVM_XICS */
4268 
4269 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4270 {
4271 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4272 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4273 		return true;
4274 
4275 	return false;
4276 }
4277 
4278 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4279 {
4280 	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4281 		return true;
4282 	return false;
4283 }
4284 
4285 /*
4286  * Check to see if any of the runnable vcpus on the vcore have pending
4287  * exceptions or are no longer ceded
4288  */
4289 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4290 {
4291 	struct kvm_vcpu *vcpu;
4292 	int i;
4293 
4294 	for_each_runnable_thread(i, vcpu, vc) {
4295 		if (kvmppc_vcpu_check_block(vcpu))
4296 			return 1;
4297 	}
4298 
4299 	return 0;
4300 }
4301 
4302 /*
4303  * All the vcpus in this vcore are idle, so wait for a decrementer
4304  * or external interrupt to one of the vcpus.  vc->lock is held.
4305  */
4306 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4307 {
4308 	ktime_t cur, start_poll, start_wait;
4309 	int do_sleep = 1;
4310 	u64 block_ns;
4311 
4312 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4313 
4314 	/* Poll for pending exceptions and ceded state */
4315 	cur = start_poll = ktime_get();
4316 	if (vc->halt_poll_ns) {
4317 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4318 		++vc->runner->stat.generic.halt_attempted_poll;
4319 
4320 		vc->vcore_state = VCORE_POLLING;
4321 		spin_unlock(&vc->lock);
4322 
4323 		do {
4324 			if (kvmppc_vcore_check_block(vc)) {
4325 				do_sleep = 0;
4326 				break;
4327 			}
4328 			cur = ktime_get();
4329 		} while (kvm_vcpu_can_poll(cur, stop));
4330 
4331 		spin_lock(&vc->lock);
4332 		vc->vcore_state = VCORE_INACTIVE;
4333 
4334 		if (!do_sleep) {
4335 			++vc->runner->stat.generic.halt_successful_poll;
4336 			goto out;
4337 		}
4338 	}
4339 
4340 	prepare_to_rcuwait(&vc->wait);
4341 	set_current_state(TASK_INTERRUPTIBLE);
4342 	if (kvmppc_vcore_check_block(vc)) {
4343 		finish_rcuwait(&vc->wait);
4344 		do_sleep = 0;
4345 		/* If we polled, count this as a successful poll */
4346 		if (vc->halt_poll_ns)
4347 			++vc->runner->stat.generic.halt_successful_poll;
4348 		goto out;
4349 	}
4350 
4351 	start_wait = ktime_get();
4352 
4353 	vc->vcore_state = VCORE_SLEEPING;
4354 	trace_kvmppc_vcore_blocked(vc->runner, 0);
4355 	spin_unlock(&vc->lock);
4356 	schedule();
4357 	finish_rcuwait(&vc->wait);
4358 	spin_lock(&vc->lock);
4359 	vc->vcore_state = VCORE_INACTIVE;
4360 	trace_kvmppc_vcore_blocked(vc->runner, 1);
4361 	++vc->runner->stat.halt_successful_wait;
4362 
4363 	cur = ktime_get();
4364 
4365 out:
4366 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4367 
4368 	/* Attribute wait time */
4369 	if (do_sleep) {
4370 		vc->runner->stat.generic.halt_wait_ns +=
4371 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4372 		KVM_STATS_LOG_HIST_UPDATE(
4373 				vc->runner->stat.generic.halt_wait_hist,
4374 				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4375 		/* Attribute failed poll time */
4376 		if (vc->halt_poll_ns) {
4377 			vc->runner->stat.generic.halt_poll_fail_ns +=
4378 				ktime_to_ns(start_wait) -
4379 				ktime_to_ns(start_poll);
4380 			KVM_STATS_LOG_HIST_UPDATE(
4381 				vc->runner->stat.generic.halt_poll_fail_hist,
4382 				ktime_to_ns(start_wait) -
4383 				ktime_to_ns(start_poll));
4384 		}
4385 	} else {
4386 		/* Attribute successful poll time */
4387 		if (vc->halt_poll_ns) {
4388 			vc->runner->stat.generic.halt_poll_success_ns +=
4389 				ktime_to_ns(cur) -
4390 				ktime_to_ns(start_poll);
4391 			KVM_STATS_LOG_HIST_UPDATE(
4392 				vc->runner->stat.generic.halt_poll_success_hist,
4393 				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4394 		}
4395 	}
4396 
4397 	/* Adjust poll time */
4398 	if (halt_poll_ns) {
4399 		if (block_ns <= vc->halt_poll_ns)
4400 			;
4401 		/* We slept and blocked for longer than the max halt time */
4402 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4403 			shrink_halt_poll_ns(vc);
4404 		/* We slept and our poll time is too small */
4405 		else if (vc->halt_poll_ns < halt_poll_ns &&
4406 				block_ns < halt_poll_ns)
4407 			grow_halt_poll_ns(vc);
4408 		if (vc->halt_poll_ns > halt_poll_ns)
4409 			vc->halt_poll_ns = halt_poll_ns;
4410 	} else
4411 		vc->halt_poll_ns = 0;
4412 
4413 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4414 }
4415 
4416 /*
4417  * This never fails for a radix guest, as none of the operations it does
4418  * for a radix guest can fail or have a way to report failure.
4419  */
4420 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4421 {
4422 	int r = 0;
4423 	struct kvm *kvm = vcpu->kvm;
4424 
4425 	mutex_lock(&kvm->arch.mmu_setup_lock);
4426 	if (!kvm->arch.mmu_ready) {
4427 		if (!kvm_is_radix(kvm))
4428 			r = kvmppc_hv_setup_htab_rma(vcpu);
4429 		if (!r) {
4430 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4431 				kvmppc_setup_partition_table(kvm);
4432 			kvm->arch.mmu_ready = 1;
4433 		}
4434 	}
4435 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4436 	return r;
4437 }
4438 
4439 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4440 {
4441 	struct kvm_run *run = vcpu->run;
4442 	int n_ceded, i, r;
4443 	struct kvmppc_vcore *vc;
4444 	struct kvm_vcpu *v;
4445 
4446 	trace_kvmppc_run_vcpu_enter(vcpu);
4447 
4448 	run->exit_reason = 0;
4449 	vcpu->arch.ret = RESUME_GUEST;
4450 	vcpu->arch.trap = 0;
4451 	kvmppc_update_vpas(vcpu);
4452 
4453 	/*
4454 	 * Synchronize with other threads in this virtual core
4455 	 */
4456 	vc = vcpu->arch.vcore;
4457 	spin_lock(&vc->lock);
4458 	vcpu->arch.ceded = 0;
4459 	vcpu->arch.run_task = current;
4460 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4461 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4462 	vcpu->arch.busy_preempt = TB_NIL;
4463 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4464 	++vc->n_runnable;
4465 
4466 	/*
4467 	 * This happens the first time this is called for a vcpu.
4468 	 * If the vcore is already running, we may be able to start
4469 	 * this thread straight away and have it join in.
4470 	 */
4471 	if (!signal_pending(current)) {
4472 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4473 		     vc->vcore_state == VCORE_RUNNING) &&
4474 			   !VCORE_IS_EXITING(vc)) {
4475 			kvmppc_update_vpa_dispatch(vcpu, vc);
4476 			kvmppc_start_thread(vcpu, vc);
4477 			trace_kvm_guest_enter(vcpu);
4478 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4479 		        rcuwait_wake_up(&vc->wait);
4480 		}
4481 
4482 	}
4483 
4484 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4485 	       !signal_pending(current)) {
4486 		/* See if the MMU is ready to go */
4487 		if (!vcpu->kvm->arch.mmu_ready) {
4488 			spin_unlock(&vc->lock);
4489 			r = kvmhv_setup_mmu(vcpu);
4490 			spin_lock(&vc->lock);
4491 			if (r) {
4492 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4493 				run->fail_entry.
4494 					hardware_entry_failure_reason = 0;
4495 				vcpu->arch.ret = r;
4496 				break;
4497 			}
4498 		}
4499 
4500 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4501 			kvmppc_vcore_end_preempt(vc);
4502 
4503 		if (vc->vcore_state != VCORE_INACTIVE) {
4504 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4505 			continue;
4506 		}
4507 		for_each_runnable_thread(i, v, vc) {
4508 			kvmppc_core_prepare_to_enter(v);
4509 			if (signal_pending(v->arch.run_task)) {
4510 				kvmppc_remove_runnable(vc, v, mftb());
4511 				v->stat.signal_exits++;
4512 				v->run->exit_reason = KVM_EXIT_INTR;
4513 				v->arch.ret = -EINTR;
4514 				wake_up(&v->arch.cpu_run);
4515 			}
4516 		}
4517 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4518 			break;
4519 		n_ceded = 0;
4520 		for_each_runnable_thread(i, v, vc) {
4521 			if (!kvmppc_vcpu_woken(v))
4522 				n_ceded += v->arch.ceded;
4523 			else
4524 				v->arch.ceded = 0;
4525 		}
4526 		vc->runner = vcpu;
4527 		if (n_ceded == vc->n_runnable) {
4528 			kvmppc_vcore_blocked(vc);
4529 		} else if (need_resched()) {
4530 			kvmppc_vcore_preempt(vc);
4531 			/* Let something else run */
4532 			cond_resched_lock(&vc->lock);
4533 			if (vc->vcore_state == VCORE_PREEMPT)
4534 				kvmppc_vcore_end_preempt(vc);
4535 		} else {
4536 			kvmppc_run_core(vc);
4537 		}
4538 		vc->runner = NULL;
4539 	}
4540 
4541 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4542 	       (vc->vcore_state == VCORE_RUNNING ||
4543 		vc->vcore_state == VCORE_EXITING ||
4544 		vc->vcore_state == VCORE_PIGGYBACK))
4545 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4546 
4547 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4548 		kvmppc_vcore_end_preempt(vc);
4549 
4550 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4551 		kvmppc_remove_runnable(vc, vcpu, mftb());
4552 		vcpu->stat.signal_exits++;
4553 		run->exit_reason = KVM_EXIT_INTR;
4554 		vcpu->arch.ret = -EINTR;
4555 	}
4556 
4557 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4558 		/* Wake up some vcpu to run the core */
4559 		i = -1;
4560 		v = next_runnable_thread(vc, &i);
4561 		wake_up(&v->arch.cpu_run);
4562 	}
4563 
4564 	trace_kvmppc_run_vcpu_exit(vcpu);
4565 	spin_unlock(&vc->lock);
4566 	return vcpu->arch.ret;
4567 }
4568 
4569 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4570 			  unsigned long lpcr)
4571 {
4572 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4573 	struct kvm_run *run = vcpu->run;
4574 	int trap, r, pcpu;
4575 	int srcu_idx;
4576 	struct kvmppc_vcore *vc;
4577 	struct kvm *kvm = vcpu->kvm;
4578 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4579 	unsigned long flags;
4580 	u64 tb;
4581 
4582 	trace_kvmppc_run_vcpu_enter(vcpu);
4583 
4584 	run->exit_reason = 0;
4585 	vcpu->arch.ret = RESUME_GUEST;
4586 	vcpu->arch.trap = 0;
4587 
4588 	vc = vcpu->arch.vcore;
4589 	vcpu->arch.ceded = 0;
4590 	vcpu->arch.run_task = current;
4591 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4592 
4593 	/* See if the MMU is ready to go */
4594 	if (unlikely(!kvm->arch.mmu_ready)) {
4595 		r = kvmhv_setup_mmu(vcpu);
4596 		if (r) {
4597 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4598 			run->fail_entry.hardware_entry_failure_reason = 0;
4599 			vcpu->arch.ret = r;
4600 			return r;
4601 		}
4602 	}
4603 
4604 	if (need_resched())
4605 		cond_resched();
4606 
4607 	kvmppc_update_vpas(vcpu);
4608 
4609 	preempt_disable();
4610 	pcpu = smp_processor_id();
4611 	if (kvm_is_radix(kvm))
4612 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4613 
4614 	/* flags save not required, but irq_pmu has no disable/enable API */
4615 	powerpc_local_irq_pmu_save(flags);
4616 
4617 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4618 
4619 	if (signal_pending(current))
4620 		goto sigpend;
4621 	if (need_resched() || !kvm->arch.mmu_ready)
4622 		goto out;
4623 
4624 	vcpu->cpu = pcpu;
4625 	vcpu->arch.thread_cpu = pcpu;
4626 	vc->pcpu = pcpu;
4627 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4628 	local_paca->kvm_hstate.ptid = 0;
4629 	local_paca->kvm_hstate.fake_suspend = 0;
4630 
4631 	/*
4632 	 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4633 	 * doorbells below. The other side is when these fields are set vs
4634 	 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4635 	 * kick a vCPU to notice the pending interrupt.
4636 	 */
4637 	smp_mb();
4638 
4639 	if (!nested) {
4640 		kvmppc_core_prepare_to_enter(vcpu);
4641 		if (vcpu->arch.shregs.msr & MSR_EE) {
4642 			if (xive_interrupt_pending(vcpu))
4643 				kvmppc_inject_interrupt_hv(vcpu,
4644 						BOOK3S_INTERRUPT_EXTERNAL, 0);
4645 		} else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4646 			     &vcpu->arch.pending_exceptions)) {
4647 			lpcr |= LPCR_MER;
4648 		}
4649 	} else if (vcpu->arch.pending_exceptions ||
4650 		   vcpu->arch.doorbell_request ||
4651 		   xive_interrupt_pending(vcpu)) {
4652 		vcpu->arch.ret = RESUME_HOST;
4653 		goto out;
4654 	}
4655 
4656 	if (vcpu->arch.timer_running) {
4657 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4658 		vcpu->arch.timer_running = 0;
4659 	}
4660 
4661 	tb = mftb();
4662 
4663 	kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4664 
4665 	trace_kvm_guest_enter(vcpu);
4666 
4667 	guest_timing_enter_irqoff();
4668 
4669 	srcu_idx = srcu_read_lock(&kvm->srcu);
4670 
4671 	guest_state_enter_irqoff();
4672 	this_cpu_disable_ftrace();
4673 
4674 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4675 	vcpu->arch.trap = trap;
4676 
4677 	this_cpu_enable_ftrace();
4678 	guest_state_exit_irqoff();
4679 
4680 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4681 
4682 	set_irq_happened(trap);
4683 
4684 	vcpu->cpu = -1;
4685 	vcpu->arch.thread_cpu = -1;
4686 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4687 
4688 	if (!vtime_accounting_enabled_this_cpu()) {
4689 		powerpc_local_irq_pmu_restore(flags);
4690 		/*
4691 		 * Service IRQs here before guest_timing_exit_irqoff() so any
4692 		 * ticks that occurred while running the guest are accounted to
4693 		 * the guest. If vtime accounting is enabled, accounting uses
4694 		 * TB rather than ticks, so it can be done without enabling
4695 		 * interrupts here, which has the problem that it accounts
4696 		 * interrupt processing overhead to the host.
4697 		 */
4698 		powerpc_local_irq_pmu_save(flags);
4699 	}
4700 	guest_timing_exit_irqoff();
4701 
4702 	powerpc_local_irq_pmu_restore(flags);
4703 
4704 	preempt_enable();
4705 
4706 	/*
4707 	 * cancel pending decrementer exception if DEC is now positive, or if
4708 	 * entering a nested guest in which case the decrementer is now owned
4709 	 * by L2 and the L1 decrementer is provided in hdec_expires
4710 	 */
4711 	if (kvmppc_core_pending_dec(vcpu) &&
4712 			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4713 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4714 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4715 		kvmppc_core_dequeue_dec(vcpu);
4716 
4717 	trace_kvm_guest_exit(vcpu);
4718 	r = RESUME_GUEST;
4719 	if (trap) {
4720 		if (!nested)
4721 			r = kvmppc_handle_exit_hv(vcpu, current);
4722 		else
4723 			r = kvmppc_handle_nested_exit(vcpu);
4724 	}
4725 	vcpu->arch.ret = r;
4726 
4727 	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4728 		kvmppc_set_timer(vcpu);
4729 
4730 		prepare_to_rcuwait(wait);
4731 		for (;;) {
4732 			set_current_state(TASK_INTERRUPTIBLE);
4733 			if (signal_pending(current)) {
4734 				vcpu->stat.signal_exits++;
4735 				run->exit_reason = KVM_EXIT_INTR;
4736 				vcpu->arch.ret = -EINTR;
4737 				break;
4738 			}
4739 
4740 			if (kvmppc_vcpu_check_block(vcpu))
4741 				break;
4742 
4743 			trace_kvmppc_vcore_blocked(vcpu, 0);
4744 			schedule();
4745 			trace_kvmppc_vcore_blocked(vcpu, 1);
4746 		}
4747 		finish_rcuwait(wait);
4748 	}
4749 	vcpu->arch.ceded = 0;
4750 
4751  done:
4752 	trace_kvmppc_run_vcpu_exit(vcpu);
4753 
4754 	return vcpu->arch.ret;
4755 
4756  sigpend:
4757 	vcpu->stat.signal_exits++;
4758 	run->exit_reason = KVM_EXIT_INTR;
4759 	vcpu->arch.ret = -EINTR;
4760  out:
4761 	vcpu->cpu = -1;
4762 	vcpu->arch.thread_cpu = -1;
4763 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4764 	powerpc_local_irq_pmu_restore(flags);
4765 	preempt_enable();
4766 	goto done;
4767 }
4768 
4769 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4770 {
4771 	struct kvm_run *run = vcpu->run;
4772 	int r;
4773 	int srcu_idx;
4774 	struct kvm *kvm;
4775 	unsigned long msr;
4776 
4777 	start_timing(vcpu, &vcpu->arch.vcpu_entry);
4778 
4779 	if (!vcpu->arch.sane) {
4780 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4781 		return -EINVAL;
4782 	}
4783 
4784 	/* No need to go into the guest when all we'll do is come back out */
4785 	if (signal_pending(current)) {
4786 		run->exit_reason = KVM_EXIT_INTR;
4787 		return -EINTR;
4788 	}
4789 
4790 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4791 	/*
4792 	 * Don't allow entry with a suspended transaction, because
4793 	 * the guest entry/exit code will lose it.
4794 	 */
4795 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4796 	    (current->thread.regs->msr & MSR_TM)) {
4797 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4798 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4799 			run->fail_entry.hardware_entry_failure_reason = 0;
4800 			return -EINVAL;
4801 		}
4802 	}
4803 #endif
4804 
4805 	/*
4806 	 * Force online to 1 for the sake of old userspace which doesn't
4807 	 * set it.
4808 	 */
4809 	if (!vcpu->arch.online) {
4810 		atomic_inc(&vcpu->arch.vcore->online_count);
4811 		vcpu->arch.online = 1;
4812 	}
4813 
4814 	kvmppc_core_prepare_to_enter(vcpu);
4815 
4816 	kvm = vcpu->kvm;
4817 	atomic_inc(&kvm->arch.vcpus_running);
4818 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4819 	smp_mb();
4820 
4821 	msr = 0;
4822 	if (IS_ENABLED(CONFIG_PPC_FPU))
4823 		msr |= MSR_FP;
4824 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4825 		msr |= MSR_VEC;
4826 	if (cpu_has_feature(CPU_FTR_VSX))
4827 		msr |= MSR_VSX;
4828 	if ((cpu_has_feature(CPU_FTR_TM) ||
4829 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4830 			(vcpu->arch.hfscr & HFSCR_TM))
4831 		msr |= MSR_TM;
4832 	msr = msr_check_and_set(msr);
4833 
4834 	kvmppc_save_user_regs();
4835 
4836 	kvmppc_save_current_sprs();
4837 
4838 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4839 		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4840 	vcpu->arch.pgdir = kvm->mm->pgd;
4841 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4842 
4843 	do {
4844 		accumulate_time(vcpu, &vcpu->arch.guest_entry);
4845 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4846 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4847 						  vcpu->arch.vcore->lpcr);
4848 		else
4849 			r = kvmppc_run_vcpu(vcpu);
4850 
4851 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4852 			accumulate_time(vcpu, &vcpu->arch.hcall);
4853 
4854 			if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4855 				/*
4856 				 * These should have been caught reflected
4857 				 * into the guest by now. Final sanity check:
4858 				 * don't allow userspace to execute hcalls in
4859 				 * the hypervisor.
4860 				 */
4861 				r = RESUME_GUEST;
4862 				continue;
4863 			}
4864 			trace_kvm_hcall_enter(vcpu);
4865 			r = kvmppc_pseries_do_hcall(vcpu);
4866 			trace_kvm_hcall_exit(vcpu, r);
4867 			kvmppc_core_prepare_to_enter(vcpu);
4868 		} else if (r == RESUME_PAGE_FAULT) {
4869 			accumulate_time(vcpu, &vcpu->arch.pg_fault);
4870 			srcu_idx = srcu_read_lock(&kvm->srcu);
4871 			r = kvmppc_book3s_hv_page_fault(vcpu,
4872 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4873 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4874 		} else if (r == RESUME_PASSTHROUGH) {
4875 			if (WARN_ON(xics_on_xive()))
4876 				r = H_SUCCESS;
4877 			else
4878 				r = kvmppc_xics_rm_complete(vcpu, 0);
4879 		}
4880 	} while (is_kvmppc_resume_guest(r));
4881 	accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4882 
4883 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4884 	atomic_dec(&kvm->arch.vcpus_running);
4885 
4886 	srr_regs_clobbered();
4887 
4888 	end_timing(vcpu);
4889 
4890 	return r;
4891 }
4892 
4893 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4894 				     int shift, int sllp)
4895 {
4896 	(*sps)->page_shift = shift;
4897 	(*sps)->slb_enc = sllp;
4898 	(*sps)->enc[0].page_shift = shift;
4899 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4900 	/*
4901 	 * Add 16MB MPSS support (may get filtered out by userspace)
4902 	 */
4903 	if (shift != 24) {
4904 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4905 		if (penc != -1) {
4906 			(*sps)->enc[1].page_shift = 24;
4907 			(*sps)->enc[1].pte_enc = penc;
4908 		}
4909 	}
4910 	(*sps)++;
4911 }
4912 
4913 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4914 					 struct kvm_ppc_smmu_info *info)
4915 {
4916 	struct kvm_ppc_one_seg_page_size *sps;
4917 
4918 	/*
4919 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4920 	 * POWER7 doesn't support keys for instruction accesses,
4921 	 * POWER8 and POWER9 do.
4922 	 */
4923 	info->data_keys = 32;
4924 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4925 
4926 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4927 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4928 	info->slb_size = 32;
4929 
4930 	/* We only support these sizes for now, and no muti-size segments */
4931 	sps = &info->sps[0];
4932 	kvmppc_add_seg_page_size(&sps, 12, 0);
4933 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4934 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4935 
4936 	/* If running as a nested hypervisor, we don't support HPT guests */
4937 	if (kvmhv_on_pseries())
4938 		info->flags |= KVM_PPC_NO_HASH;
4939 
4940 	return 0;
4941 }
4942 
4943 /*
4944  * Get (and clear) the dirty memory log for a memory slot.
4945  */
4946 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4947 					 struct kvm_dirty_log *log)
4948 {
4949 	struct kvm_memslots *slots;
4950 	struct kvm_memory_slot *memslot;
4951 	int r;
4952 	unsigned long n, i;
4953 	unsigned long *buf, *p;
4954 	struct kvm_vcpu *vcpu;
4955 
4956 	mutex_lock(&kvm->slots_lock);
4957 
4958 	r = -EINVAL;
4959 	if (log->slot >= KVM_USER_MEM_SLOTS)
4960 		goto out;
4961 
4962 	slots = kvm_memslots(kvm);
4963 	memslot = id_to_memslot(slots, log->slot);
4964 	r = -ENOENT;
4965 	if (!memslot || !memslot->dirty_bitmap)
4966 		goto out;
4967 
4968 	/*
4969 	 * Use second half of bitmap area because both HPT and radix
4970 	 * accumulate bits in the first half.
4971 	 */
4972 	n = kvm_dirty_bitmap_bytes(memslot);
4973 	buf = memslot->dirty_bitmap + n / sizeof(long);
4974 	memset(buf, 0, n);
4975 
4976 	if (kvm_is_radix(kvm))
4977 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4978 	else
4979 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4980 	if (r)
4981 		goto out;
4982 
4983 	/*
4984 	 * We accumulate dirty bits in the first half of the
4985 	 * memslot's dirty_bitmap area, for when pages are paged
4986 	 * out or modified by the host directly.  Pick up these
4987 	 * bits and add them to the map.
4988 	 */
4989 	p = memslot->dirty_bitmap;
4990 	for (i = 0; i < n / sizeof(long); ++i)
4991 		buf[i] |= xchg(&p[i], 0);
4992 
4993 	/* Harvest dirty bits from VPA and DTL updates */
4994 	/* Note: we never modify the SLB shadow buffer areas */
4995 	kvm_for_each_vcpu(i, vcpu, kvm) {
4996 		spin_lock(&vcpu->arch.vpa_update_lock);
4997 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4998 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4999 		spin_unlock(&vcpu->arch.vpa_update_lock);
5000 	}
5001 
5002 	r = -EFAULT;
5003 	if (copy_to_user(log->dirty_bitmap, buf, n))
5004 		goto out;
5005 
5006 	r = 0;
5007 out:
5008 	mutex_unlock(&kvm->slots_lock);
5009 	return r;
5010 }
5011 
5012 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5013 {
5014 	vfree(slot->arch.rmap);
5015 	slot->arch.rmap = NULL;
5016 }
5017 
5018 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5019 				const struct kvm_memory_slot *old,
5020 				struct kvm_memory_slot *new,
5021 				enum kvm_mr_change change)
5022 {
5023 	if (change == KVM_MR_CREATE) {
5024 		unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5025 
5026 		if ((size >> PAGE_SHIFT) > totalram_pages())
5027 			return -ENOMEM;
5028 
5029 		new->arch.rmap = vzalloc(size);
5030 		if (!new->arch.rmap)
5031 			return -ENOMEM;
5032 	} else if (change != KVM_MR_DELETE) {
5033 		new->arch.rmap = old->arch.rmap;
5034 	}
5035 
5036 	return 0;
5037 }
5038 
5039 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5040 				struct kvm_memory_slot *old,
5041 				const struct kvm_memory_slot *new,
5042 				enum kvm_mr_change change)
5043 {
5044 	/*
5045 	 * If we are creating or modifying a memslot, it might make
5046 	 * some address that was previously cached as emulated
5047 	 * MMIO be no longer emulated MMIO, so invalidate
5048 	 * all the caches of emulated MMIO translations.
5049 	 */
5050 	if (change != KVM_MR_DELETE)
5051 		atomic64_inc(&kvm->arch.mmio_update);
5052 
5053 	/*
5054 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5055 	 * have already called kvm_arch_flush_shadow_memslot() to
5056 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
5057 	 * previous mappings.  So the only case to handle is
5058 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5059 	 * has been changed.
5060 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5061 	 * to get rid of any THP PTEs in the partition-scoped page tables
5062 	 * so we can track dirtiness at the page level; we flush when
5063 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5064 	 * using THP PTEs.
5065 	 */
5066 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5067 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5068 		kvmppc_radix_flush_memslot(kvm, old);
5069 	/*
5070 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5071 	 */
5072 	if (!kvm->arch.secure_guest)
5073 		return;
5074 
5075 	switch (change) {
5076 	case KVM_MR_CREATE:
5077 		/*
5078 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
5079 		 * return error. Fix this.
5080 		 */
5081 		kvmppc_uvmem_memslot_create(kvm, new);
5082 		break;
5083 	case KVM_MR_DELETE:
5084 		kvmppc_uvmem_memslot_delete(kvm, old);
5085 		break;
5086 	default:
5087 		/* TODO: Handle KVM_MR_MOVE */
5088 		break;
5089 	}
5090 }
5091 
5092 /*
5093  * Update LPCR values in kvm->arch and in vcores.
5094  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5095  * of kvm->arch.lpcr update).
5096  */
5097 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5098 {
5099 	long int i;
5100 	u32 cores_done = 0;
5101 
5102 	if ((kvm->arch.lpcr & mask) == lpcr)
5103 		return;
5104 
5105 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5106 
5107 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
5108 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5109 		if (!vc)
5110 			continue;
5111 
5112 		spin_lock(&vc->lock);
5113 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5114 		verify_lpcr(kvm, vc->lpcr);
5115 		spin_unlock(&vc->lock);
5116 		if (++cores_done >= kvm->arch.online_vcores)
5117 			break;
5118 	}
5119 }
5120 
5121 void kvmppc_setup_partition_table(struct kvm *kvm)
5122 {
5123 	unsigned long dw0, dw1;
5124 
5125 	if (!kvm_is_radix(kvm)) {
5126 		/* PS field - page size for VRMA */
5127 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5128 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5129 		/* HTABSIZE and HTABORG fields */
5130 		dw0 |= kvm->arch.sdr1;
5131 
5132 		/* Second dword as set by userspace */
5133 		dw1 = kvm->arch.process_table;
5134 	} else {
5135 		dw0 = PATB_HR | radix__get_tree_size() |
5136 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5137 		dw1 = PATB_GR | kvm->arch.process_table;
5138 	}
5139 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5140 }
5141 
5142 /*
5143  * Set up HPT (hashed page table) and RMA (real-mode area).
5144  * Must be called with kvm->arch.mmu_setup_lock held.
5145  */
5146 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5147 {
5148 	int err = 0;
5149 	struct kvm *kvm = vcpu->kvm;
5150 	unsigned long hva;
5151 	struct kvm_memory_slot *memslot;
5152 	struct vm_area_struct *vma;
5153 	unsigned long lpcr = 0, senc;
5154 	unsigned long psize, porder;
5155 	int srcu_idx;
5156 
5157 	/* Allocate hashed page table (if not done already) and reset it */
5158 	if (!kvm->arch.hpt.virt) {
5159 		int order = KVM_DEFAULT_HPT_ORDER;
5160 		struct kvm_hpt_info info;
5161 
5162 		err = kvmppc_allocate_hpt(&info, order);
5163 		/* If we get here, it means userspace didn't specify a
5164 		 * size explicitly.  So, try successively smaller
5165 		 * sizes if the default failed. */
5166 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5167 			err  = kvmppc_allocate_hpt(&info, order);
5168 
5169 		if (err < 0) {
5170 			pr_err("KVM: Couldn't alloc HPT\n");
5171 			goto out;
5172 		}
5173 
5174 		kvmppc_set_hpt(kvm, &info);
5175 	}
5176 
5177 	/* Look up the memslot for guest physical address 0 */
5178 	srcu_idx = srcu_read_lock(&kvm->srcu);
5179 	memslot = gfn_to_memslot(kvm, 0);
5180 
5181 	/* We must have some memory at 0 by now */
5182 	err = -EINVAL;
5183 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5184 		goto out_srcu;
5185 
5186 	/* Look up the VMA for the start of this memory slot */
5187 	hva = memslot->userspace_addr;
5188 	mmap_read_lock(kvm->mm);
5189 	vma = vma_lookup(kvm->mm, hva);
5190 	if (!vma || (vma->vm_flags & VM_IO))
5191 		goto up_out;
5192 
5193 	psize = vma_kernel_pagesize(vma);
5194 
5195 	mmap_read_unlock(kvm->mm);
5196 
5197 	/* We can handle 4k, 64k or 16M pages in the VRMA */
5198 	if (psize >= 0x1000000)
5199 		psize = 0x1000000;
5200 	else if (psize >= 0x10000)
5201 		psize = 0x10000;
5202 	else
5203 		psize = 0x1000;
5204 	porder = __ilog2(psize);
5205 
5206 	senc = slb_pgsize_encoding(psize);
5207 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5208 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5209 	/* Create HPTEs in the hash page table for the VRMA */
5210 	kvmppc_map_vrma(vcpu, memslot, porder);
5211 
5212 	/* Update VRMASD field in the LPCR */
5213 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5214 		/* the -4 is to account for senc values starting at 0x10 */
5215 		lpcr = senc << (LPCR_VRMASD_SH - 4);
5216 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5217 	}
5218 
5219 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5220 	smp_wmb();
5221 	err = 0;
5222  out_srcu:
5223 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5224  out:
5225 	return err;
5226 
5227  up_out:
5228 	mmap_read_unlock(kvm->mm);
5229 	goto out_srcu;
5230 }
5231 
5232 /*
5233  * Must be called with kvm->arch.mmu_setup_lock held and
5234  * mmu_ready = 0 and no vcpus running.
5235  */
5236 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5237 {
5238 	unsigned long lpcr, lpcr_mask;
5239 
5240 	if (nesting_enabled(kvm))
5241 		kvmhv_release_all_nested(kvm);
5242 	kvmppc_rmap_reset(kvm);
5243 	kvm->arch.process_table = 0;
5244 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5245 	spin_lock(&kvm->mmu_lock);
5246 	kvm->arch.radix = 0;
5247 	spin_unlock(&kvm->mmu_lock);
5248 	kvmppc_free_radix(kvm);
5249 
5250 	lpcr = LPCR_VPM1;
5251 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5252 	if (cpu_has_feature(CPU_FTR_ARCH_31))
5253 		lpcr_mask |= LPCR_HAIL;
5254 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5255 
5256 	return 0;
5257 }
5258 
5259 /*
5260  * Must be called with kvm->arch.mmu_setup_lock held and
5261  * mmu_ready = 0 and no vcpus running.
5262  */
5263 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5264 {
5265 	unsigned long lpcr, lpcr_mask;
5266 	int err;
5267 
5268 	err = kvmppc_init_vm_radix(kvm);
5269 	if (err)
5270 		return err;
5271 	kvmppc_rmap_reset(kvm);
5272 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5273 	spin_lock(&kvm->mmu_lock);
5274 	kvm->arch.radix = 1;
5275 	spin_unlock(&kvm->mmu_lock);
5276 	kvmppc_free_hpt(&kvm->arch.hpt);
5277 
5278 	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5279 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5280 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5281 		lpcr_mask |= LPCR_HAIL;
5282 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5283 				(kvm->arch.host_lpcr & LPCR_HAIL))
5284 			lpcr |= LPCR_HAIL;
5285 	}
5286 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5287 
5288 	return 0;
5289 }
5290 
5291 #ifdef CONFIG_KVM_XICS
5292 /*
5293  * Allocate a per-core structure for managing state about which cores are
5294  * running in the host versus the guest and for exchanging data between
5295  * real mode KVM and CPU running in the host.
5296  * This is only done for the first VM.
5297  * The allocated structure stays even if all VMs have stopped.
5298  * It is only freed when the kvm-hv module is unloaded.
5299  * It's OK for this routine to fail, we just don't support host
5300  * core operations like redirecting H_IPI wakeups.
5301  */
5302 void kvmppc_alloc_host_rm_ops(void)
5303 {
5304 	struct kvmppc_host_rm_ops *ops;
5305 	unsigned long l_ops;
5306 	int cpu, core;
5307 	int size;
5308 
5309 	if (cpu_has_feature(CPU_FTR_ARCH_300))
5310 		return;
5311 
5312 	/* Not the first time here ? */
5313 	if (kvmppc_host_rm_ops_hv != NULL)
5314 		return;
5315 
5316 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5317 	if (!ops)
5318 		return;
5319 
5320 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5321 	ops->rm_core = kzalloc(size, GFP_KERNEL);
5322 
5323 	if (!ops->rm_core) {
5324 		kfree(ops);
5325 		return;
5326 	}
5327 
5328 	cpus_read_lock();
5329 
5330 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5331 		if (!cpu_online(cpu))
5332 			continue;
5333 
5334 		core = cpu >> threads_shift;
5335 		ops->rm_core[core].rm_state.in_host = 1;
5336 	}
5337 
5338 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5339 
5340 	/*
5341 	 * Make the contents of the kvmppc_host_rm_ops structure visible
5342 	 * to other CPUs before we assign it to the global variable.
5343 	 * Do an atomic assignment (no locks used here), but if someone
5344 	 * beats us to it, just free our copy and return.
5345 	 */
5346 	smp_wmb();
5347 	l_ops = (unsigned long) ops;
5348 
5349 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5350 		cpus_read_unlock();
5351 		kfree(ops->rm_core);
5352 		kfree(ops);
5353 		return;
5354 	}
5355 
5356 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5357 					     "ppc/kvm_book3s:prepare",
5358 					     kvmppc_set_host_core,
5359 					     kvmppc_clear_host_core);
5360 	cpus_read_unlock();
5361 }
5362 
5363 void kvmppc_free_host_rm_ops(void)
5364 {
5365 	if (kvmppc_host_rm_ops_hv) {
5366 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5367 		kfree(kvmppc_host_rm_ops_hv->rm_core);
5368 		kfree(kvmppc_host_rm_ops_hv);
5369 		kvmppc_host_rm_ops_hv = NULL;
5370 	}
5371 }
5372 #endif
5373 
5374 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5375 {
5376 	unsigned long lpcr, lpid;
5377 	int ret;
5378 
5379 	mutex_init(&kvm->arch.uvmem_lock);
5380 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5381 	mutex_init(&kvm->arch.mmu_setup_lock);
5382 
5383 	/* Allocate the guest's logical partition ID */
5384 
5385 	lpid = kvmppc_alloc_lpid();
5386 	if ((long)lpid < 0)
5387 		return -ENOMEM;
5388 	kvm->arch.lpid = lpid;
5389 
5390 	kvmppc_alloc_host_rm_ops();
5391 
5392 	kvmhv_vm_nested_init(kvm);
5393 
5394 	/*
5395 	 * Since we don't flush the TLB when tearing down a VM,
5396 	 * and this lpid might have previously been used,
5397 	 * make sure we flush on each core before running the new VM.
5398 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5399 	 * does this flush for us.
5400 	 */
5401 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5402 		cpumask_setall(&kvm->arch.need_tlb_flush);
5403 
5404 	/* Start out with the default set of hcalls enabled */
5405 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5406 	       sizeof(kvm->arch.enabled_hcalls));
5407 
5408 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5409 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5410 
5411 	/* Init LPCR for virtual RMA mode */
5412 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5413 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5414 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5415 		lpcr &= LPCR_PECE | LPCR_LPES;
5416 	} else {
5417 		/*
5418 		 * The L2 LPES mode will be set by the L0 according to whether
5419 		 * or not it needs to take external interrupts in HV mode.
5420 		 */
5421 		lpcr = 0;
5422 	}
5423 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5424 		LPCR_VPM0 | LPCR_VPM1;
5425 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5426 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5427 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5428 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5429 		lpcr |= LPCR_ONL;
5430 	/*
5431 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5432 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5433 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5434 	 * be unnecessary but better safe than sorry in case we re-enable
5435 	 * EE in HV mode with this LPCR still set)
5436 	 */
5437 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5438 		lpcr &= ~LPCR_VPM0;
5439 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5440 
5441 		/*
5442 		 * If xive is enabled, we route 0x500 interrupts directly
5443 		 * to the guest.
5444 		 */
5445 		if (xics_on_xive())
5446 			lpcr |= LPCR_LPES;
5447 	}
5448 
5449 	/*
5450 	 * If the host uses radix, the guest starts out as radix.
5451 	 */
5452 	if (radix_enabled()) {
5453 		kvm->arch.radix = 1;
5454 		kvm->arch.mmu_ready = 1;
5455 		lpcr &= ~LPCR_VPM1;
5456 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5457 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5458 		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5459 		    (kvm->arch.host_lpcr & LPCR_HAIL))
5460 			lpcr |= LPCR_HAIL;
5461 		ret = kvmppc_init_vm_radix(kvm);
5462 		if (ret) {
5463 			kvmppc_free_lpid(kvm->arch.lpid);
5464 			return ret;
5465 		}
5466 		kvmppc_setup_partition_table(kvm);
5467 	}
5468 
5469 	verify_lpcr(kvm, lpcr);
5470 	kvm->arch.lpcr = lpcr;
5471 
5472 	/* Initialization for future HPT resizes */
5473 	kvm->arch.resize_hpt = NULL;
5474 
5475 	/*
5476 	 * Work out how many sets the TLB has, for the use of
5477 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5478 	 */
5479 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5480 		/*
5481 		 * P10 will flush all the congruence class with a single tlbiel
5482 		 */
5483 		kvm->arch.tlb_sets = 1;
5484 	} else if (radix_enabled())
5485 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5486 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5487 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5488 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5489 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5490 	else
5491 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5492 
5493 	/*
5494 	 * Track that we now have a HV mode VM active. This blocks secondary
5495 	 * CPU threads from coming online.
5496 	 */
5497 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5498 		kvm_hv_vm_activated();
5499 
5500 	/*
5501 	 * Initialize smt_mode depending on processor.
5502 	 * POWER8 and earlier have to use "strict" threading, where
5503 	 * all vCPUs in a vcore have to run on the same (sub)core,
5504 	 * whereas on POWER9 the threads can each run a different
5505 	 * guest.
5506 	 */
5507 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5508 		kvm->arch.smt_mode = threads_per_subcore;
5509 	else
5510 		kvm->arch.smt_mode = 1;
5511 	kvm->arch.emul_smt_mode = 1;
5512 
5513 	return 0;
5514 }
5515 
5516 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5517 {
5518 	kvmppc_mmu_debugfs_init(kvm);
5519 	if (radix_enabled())
5520 		kvmhv_radix_debugfs_init(kvm);
5521 	return 0;
5522 }
5523 
5524 static void kvmppc_free_vcores(struct kvm *kvm)
5525 {
5526 	long int i;
5527 
5528 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5529 		kfree(kvm->arch.vcores[i]);
5530 	kvm->arch.online_vcores = 0;
5531 }
5532 
5533 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5534 {
5535 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5536 		kvm_hv_vm_deactivated();
5537 
5538 	kvmppc_free_vcores(kvm);
5539 
5540 
5541 	if (kvm_is_radix(kvm))
5542 		kvmppc_free_radix(kvm);
5543 	else
5544 		kvmppc_free_hpt(&kvm->arch.hpt);
5545 
5546 	/* Perform global invalidation and return lpid to the pool */
5547 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5548 		if (nesting_enabled(kvm))
5549 			kvmhv_release_all_nested(kvm);
5550 		kvm->arch.process_table = 0;
5551 		if (kvm->arch.secure_guest)
5552 			uv_svm_terminate(kvm->arch.lpid);
5553 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5554 	}
5555 
5556 	kvmppc_free_lpid(kvm->arch.lpid);
5557 
5558 	kvmppc_free_pimap(kvm);
5559 }
5560 
5561 /* We don't need to emulate any privileged instructions or dcbz */
5562 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5563 				     unsigned int inst, int *advance)
5564 {
5565 	return EMULATE_FAIL;
5566 }
5567 
5568 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5569 					ulong spr_val)
5570 {
5571 	return EMULATE_FAIL;
5572 }
5573 
5574 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5575 					ulong *spr_val)
5576 {
5577 	return EMULATE_FAIL;
5578 }
5579 
5580 static int kvmppc_core_check_processor_compat_hv(void)
5581 {
5582 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5583 	    cpu_has_feature(CPU_FTR_ARCH_206))
5584 		return 0;
5585 
5586 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5587 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5588 		return 0;
5589 
5590 	return -EIO;
5591 }
5592 
5593 #ifdef CONFIG_KVM_XICS
5594 
5595 void kvmppc_free_pimap(struct kvm *kvm)
5596 {
5597 	kfree(kvm->arch.pimap);
5598 }
5599 
5600 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5601 {
5602 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5603 }
5604 
5605 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5606 {
5607 	struct irq_desc *desc;
5608 	struct kvmppc_irq_map *irq_map;
5609 	struct kvmppc_passthru_irqmap *pimap;
5610 	struct irq_chip *chip;
5611 	int i, rc = 0;
5612 	struct irq_data *host_data;
5613 
5614 	if (!kvm_irq_bypass)
5615 		return 1;
5616 
5617 	desc = irq_to_desc(host_irq);
5618 	if (!desc)
5619 		return -EIO;
5620 
5621 	mutex_lock(&kvm->lock);
5622 
5623 	pimap = kvm->arch.pimap;
5624 	if (pimap == NULL) {
5625 		/* First call, allocate structure to hold IRQ map */
5626 		pimap = kvmppc_alloc_pimap();
5627 		if (pimap == NULL) {
5628 			mutex_unlock(&kvm->lock);
5629 			return -ENOMEM;
5630 		}
5631 		kvm->arch.pimap = pimap;
5632 	}
5633 
5634 	/*
5635 	 * For now, we only support interrupts for which the EOI operation
5636 	 * is an OPAL call followed by a write to XIRR, since that's
5637 	 * what our real-mode EOI code does, or a XIVE interrupt
5638 	 */
5639 	chip = irq_data_get_irq_chip(&desc->irq_data);
5640 	if (!chip || !is_pnv_opal_msi(chip)) {
5641 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5642 			host_irq, guest_gsi);
5643 		mutex_unlock(&kvm->lock);
5644 		return -ENOENT;
5645 	}
5646 
5647 	/*
5648 	 * See if we already have an entry for this guest IRQ number.
5649 	 * If it's mapped to a hardware IRQ number, that's an error,
5650 	 * otherwise re-use this entry.
5651 	 */
5652 	for (i = 0; i < pimap->n_mapped; i++) {
5653 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5654 			if (pimap->mapped[i].r_hwirq) {
5655 				mutex_unlock(&kvm->lock);
5656 				return -EINVAL;
5657 			}
5658 			break;
5659 		}
5660 	}
5661 
5662 	if (i == KVMPPC_PIRQ_MAPPED) {
5663 		mutex_unlock(&kvm->lock);
5664 		return -EAGAIN;		/* table is full */
5665 	}
5666 
5667 	irq_map = &pimap->mapped[i];
5668 
5669 	irq_map->v_hwirq = guest_gsi;
5670 	irq_map->desc = desc;
5671 
5672 	/*
5673 	 * Order the above two stores before the next to serialize with
5674 	 * the KVM real mode handler.
5675 	 */
5676 	smp_wmb();
5677 
5678 	/*
5679 	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5680 	 * the underlying calls, which will EOI the interrupt in real
5681 	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5682 	 */
5683 	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5684 	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5685 
5686 	if (i == pimap->n_mapped)
5687 		pimap->n_mapped++;
5688 
5689 	if (xics_on_xive())
5690 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5691 	else
5692 		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5693 	if (rc)
5694 		irq_map->r_hwirq = 0;
5695 
5696 	mutex_unlock(&kvm->lock);
5697 
5698 	return 0;
5699 }
5700 
5701 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5702 {
5703 	struct irq_desc *desc;
5704 	struct kvmppc_passthru_irqmap *pimap;
5705 	int i, rc = 0;
5706 
5707 	if (!kvm_irq_bypass)
5708 		return 0;
5709 
5710 	desc = irq_to_desc(host_irq);
5711 	if (!desc)
5712 		return -EIO;
5713 
5714 	mutex_lock(&kvm->lock);
5715 	if (!kvm->arch.pimap)
5716 		goto unlock;
5717 
5718 	pimap = kvm->arch.pimap;
5719 
5720 	for (i = 0; i < pimap->n_mapped; i++) {
5721 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5722 			break;
5723 	}
5724 
5725 	if (i == pimap->n_mapped) {
5726 		mutex_unlock(&kvm->lock);
5727 		return -ENODEV;
5728 	}
5729 
5730 	if (xics_on_xive())
5731 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5732 	else
5733 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5734 
5735 	/* invalidate the entry (what to do on error from the above ?) */
5736 	pimap->mapped[i].r_hwirq = 0;
5737 
5738 	/*
5739 	 * We don't free this structure even when the count goes to
5740 	 * zero. The structure is freed when we destroy the VM.
5741 	 */
5742  unlock:
5743 	mutex_unlock(&kvm->lock);
5744 	return rc;
5745 }
5746 
5747 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5748 					     struct irq_bypass_producer *prod)
5749 {
5750 	int ret = 0;
5751 	struct kvm_kernel_irqfd *irqfd =
5752 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5753 
5754 	irqfd->producer = prod;
5755 
5756 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5757 	if (ret)
5758 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5759 			prod->irq, irqfd->gsi, ret);
5760 
5761 	return ret;
5762 }
5763 
5764 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5765 					      struct irq_bypass_producer *prod)
5766 {
5767 	int ret;
5768 	struct kvm_kernel_irqfd *irqfd =
5769 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5770 
5771 	irqfd->producer = NULL;
5772 
5773 	/*
5774 	 * When producer of consumer is unregistered, we change back to
5775 	 * default external interrupt handling mode - KVM real mode
5776 	 * will switch back to host.
5777 	 */
5778 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5779 	if (ret)
5780 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5781 			prod->irq, irqfd->gsi, ret);
5782 }
5783 #endif
5784 
5785 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5786 				 unsigned int ioctl, unsigned long arg)
5787 {
5788 	struct kvm *kvm __maybe_unused = filp->private_data;
5789 	void __user *argp = (void __user *)arg;
5790 	long r;
5791 
5792 	switch (ioctl) {
5793 
5794 	case KVM_PPC_ALLOCATE_HTAB: {
5795 		u32 htab_order;
5796 
5797 		/* If we're a nested hypervisor, we currently only support radix */
5798 		if (kvmhv_on_pseries()) {
5799 			r = -EOPNOTSUPP;
5800 			break;
5801 		}
5802 
5803 		r = -EFAULT;
5804 		if (get_user(htab_order, (u32 __user *)argp))
5805 			break;
5806 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5807 		if (r)
5808 			break;
5809 		r = 0;
5810 		break;
5811 	}
5812 
5813 	case KVM_PPC_GET_HTAB_FD: {
5814 		struct kvm_get_htab_fd ghf;
5815 
5816 		r = -EFAULT;
5817 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5818 			break;
5819 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5820 		break;
5821 	}
5822 
5823 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5824 		struct kvm_ppc_resize_hpt rhpt;
5825 
5826 		r = -EFAULT;
5827 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5828 			break;
5829 
5830 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5831 		break;
5832 	}
5833 
5834 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5835 		struct kvm_ppc_resize_hpt rhpt;
5836 
5837 		r = -EFAULT;
5838 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5839 			break;
5840 
5841 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5842 		break;
5843 	}
5844 
5845 	default:
5846 		r = -ENOTTY;
5847 	}
5848 
5849 	return r;
5850 }
5851 
5852 /*
5853  * List of hcall numbers to enable by default.
5854  * For compatibility with old userspace, we enable by default
5855  * all hcalls that were implemented before the hcall-enabling
5856  * facility was added.  Note this list should not include H_RTAS.
5857  */
5858 static unsigned int default_hcall_list[] = {
5859 	H_REMOVE,
5860 	H_ENTER,
5861 	H_READ,
5862 	H_PROTECT,
5863 	H_BULK_REMOVE,
5864 #ifdef CONFIG_SPAPR_TCE_IOMMU
5865 	H_GET_TCE,
5866 	H_PUT_TCE,
5867 #endif
5868 	H_SET_DABR,
5869 	H_SET_XDABR,
5870 	H_CEDE,
5871 	H_PROD,
5872 	H_CONFER,
5873 	H_REGISTER_VPA,
5874 #ifdef CONFIG_KVM_XICS
5875 	H_EOI,
5876 	H_CPPR,
5877 	H_IPI,
5878 	H_IPOLL,
5879 	H_XIRR,
5880 	H_XIRR_X,
5881 #endif
5882 	0
5883 };
5884 
5885 static void init_default_hcalls(void)
5886 {
5887 	int i;
5888 	unsigned int hcall;
5889 
5890 	for (i = 0; default_hcall_list[i]; ++i) {
5891 		hcall = default_hcall_list[i];
5892 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5893 		__set_bit(hcall / 4, default_enabled_hcalls);
5894 	}
5895 }
5896 
5897 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5898 {
5899 	unsigned long lpcr;
5900 	int radix;
5901 	int err;
5902 
5903 	/* If not on a POWER9, reject it */
5904 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5905 		return -ENODEV;
5906 
5907 	/* If any unknown flags set, reject it */
5908 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5909 		return -EINVAL;
5910 
5911 	/* GR (guest radix) bit in process_table field must match */
5912 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5913 	if (!!(cfg->process_table & PATB_GR) != radix)
5914 		return -EINVAL;
5915 
5916 	/* Process table size field must be reasonable, i.e. <= 24 */
5917 	if ((cfg->process_table & PRTS_MASK) > 24)
5918 		return -EINVAL;
5919 
5920 	/* We can change a guest to/from radix now, if the host is radix */
5921 	if (radix && !radix_enabled())
5922 		return -EINVAL;
5923 
5924 	/* If we're a nested hypervisor, we currently only support radix */
5925 	if (kvmhv_on_pseries() && !radix)
5926 		return -EINVAL;
5927 
5928 	mutex_lock(&kvm->arch.mmu_setup_lock);
5929 	if (radix != kvm_is_radix(kvm)) {
5930 		if (kvm->arch.mmu_ready) {
5931 			kvm->arch.mmu_ready = 0;
5932 			/* order mmu_ready vs. vcpus_running */
5933 			smp_mb();
5934 			if (atomic_read(&kvm->arch.vcpus_running)) {
5935 				kvm->arch.mmu_ready = 1;
5936 				err = -EBUSY;
5937 				goto out_unlock;
5938 			}
5939 		}
5940 		if (radix)
5941 			err = kvmppc_switch_mmu_to_radix(kvm);
5942 		else
5943 			err = kvmppc_switch_mmu_to_hpt(kvm);
5944 		if (err)
5945 			goto out_unlock;
5946 	}
5947 
5948 	kvm->arch.process_table = cfg->process_table;
5949 	kvmppc_setup_partition_table(kvm);
5950 
5951 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5952 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5953 	err = 0;
5954 
5955  out_unlock:
5956 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5957 	return err;
5958 }
5959 
5960 static int kvmhv_enable_nested(struct kvm *kvm)
5961 {
5962 	if (!nested)
5963 		return -EPERM;
5964 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5965 		return -ENODEV;
5966 	if (!radix_enabled())
5967 		return -ENODEV;
5968 
5969 	/* kvm == NULL means the caller is testing if the capability exists */
5970 	if (kvm)
5971 		kvm->arch.nested_enable = true;
5972 	return 0;
5973 }
5974 
5975 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5976 				 int size)
5977 {
5978 	int rc = -EINVAL;
5979 
5980 	if (kvmhv_vcpu_is_radix(vcpu)) {
5981 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5982 
5983 		if (rc > 0)
5984 			rc = -EINVAL;
5985 	}
5986 
5987 	/* For now quadrants are the only way to access nested guest memory */
5988 	if (rc && vcpu->arch.nested)
5989 		rc = -EAGAIN;
5990 
5991 	return rc;
5992 }
5993 
5994 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5995 				int size)
5996 {
5997 	int rc = -EINVAL;
5998 
5999 	if (kvmhv_vcpu_is_radix(vcpu)) {
6000 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6001 
6002 		if (rc > 0)
6003 			rc = -EINVAL;
6004 	}
6005 
6006 	/* For now quadrants are the only way to access nested guest memory */
6007 	if (rc && vcpu->arch.nested)
6008 		rc = -EAGAIN;
6009 
6010 	return rc;
6011 }
6012 
6013 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6014 {
6015 	unpin_vpa(kvm, vpa);
6016 	vpa->gpa = 0;
6017 	vpa->pinned_addr = NULL;
6018 	vpa->dirty = false;
6019 	vpa->update_pending = 0;
6020 }
6021 
6022 /*
6023  * Enable a guest to become a secure VM, or test whether
6024  * that could be enabled.
6025  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6026  * tested (kvm == NULL) or enabled (kvm != NULL).
6027  */
6028 static int kvmhv_enable_svm(struct kvm *kvm)
6029 {
6030 	if (!kvmppc_uvmem_available())
6031 		return -EINVAL;
6032 	if (kvm)
6033 		kvm->arch.svm_enabled = 1;
6034 	return 0;
6035 }
6036 
6037 /*
6038  *  IOCTL handler to turn off secure mode of guest
6039  *
6040  * - Release all device pages
6041  * - Issue ucall to terminate the guest on the UV side
6042  * - Unpin the VPA pages.
6043  * - Reinit the partition scoped page tables
6044  */
6045 static int kvmhv_svm_off(struct kvm *kvm)
6046 {
6047 	struct kvm_vcpu *vcpu;
6048 	int mmu_was_ready;
6049 	int srcu_idx;
6050 	int ret = 0;
6051 	unsigned long i;
6052 
6053 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6054 		return ret;
6055 
6056 	mutex_lock(&kvm->arch.mmu_setup_lock);
6057 	mmu_was_ready = kvm->arch.mmu_ready;
6058 	if (kvm->arch.mmu_ready) {
6059 		kvm->arch.mmu_ready = 0;
6060 		/* order mmu_ready vs. vcpus_running */
6061 		smp_mb();
6062 		if (atomic_read(&kvm->arch.vcpus_running)) {
6063 			kvm->arch.mmu_ready = 1;
6064 			ret = -EBUSY;
6065 			goto out;
6066 		}
6067 	}
6068 
6069 	srcu_idx = srcu_read_lock(&kvm->srcu);
6070 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6071 		struct kvm_memory_slot *memslot;
6072 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6073 		int bkt;
6074 
6075 		if (!slots)
6076 			continue;
6077 
6078 		kvm_for_each_memslot(memslot, bkt, slots) {
6079 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
6080 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6081 		}
6082 	}
6083 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6084 
6085 	ret = uv_svm_terminate(kvm->arch.lpid);
6086 	if (ret != U_SUCCESS) {
6087 		ret = -EINVAL;
6088 		goto out;
6089 	}
6090 
6091 	/*
6092 	 * When secure guest is reset, all the guest pages are sent
6093 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6094 	 * chance to run and unpin their VPA pages. Unpinning of all
6095 	 * VPA pages is done here explicitly so that VPA pages
6096 	 * can be migrated to the secure side.
6097 	 *
6098 	 * This is required to for the secure SMP guest to reboot
6099 	 * correctly.
6100 	 */
6101 	kvm_for_each_vcpu(i, vcpu, kvm) {
6102 		spin_lock(&vcpu->arch.vpa_update_lock);
6103 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6104 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6105 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6106 		spin_unlock(&vcpu->arch.vpa_update_lock);
6107 	}
6108 
6109 	kvmppc_setup_partition_table(kvm);
6110 	kvm->arch.secure_guest = 0;
6111 	kvm->arch.mmu_ready = mmu_was_ready;
6112 out:
6113 	mutex_unlock(&kvm->arch.mmu_setup_lock);
6114 	return ret;
6115 }
6116 
6117 static int kvmhv_enable_dawr1(struct kvm *kvm)
6118 {
6119 	if (!cpu_has_feature(CPU_FTR_DAWR1))
6120 		return -ENODEV;
6121 
6122 	/* kvm == NULL means the caller is testing if the capability exists */
6123 	if (kvm)
6124 		kvm->arch.dawr1_enabled = true;
6125 	return 0;
6126 }
6127 
6128 static bool kvmppc_hash_v3_possible(void)
6129 {
6130 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6131 		return false;
6132 
6133 	if (!cpu_has_feature(CPU_FTR_HVMODE))
6134 		return false;
6135 
6136 	/*
6137 	 * POWER9 chips before version 2.02 can't have some threads in
6138 	 * HPT mode and some in radix mode on the same core.
6139 	 */
6140 	if (radix_enabled()) {
6141 		unsigned int pvr = mfspr(SPRN_PVR);
6142 		if ((pvr >> 16) == PVR_POWER9 &&
6143 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6144 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6145 			return false;
6146 	}
6147 
6148 	return true;
6149 }
6150 
6151 static struct kvmppc_ops kvm_ops_hv = {
6152 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6153 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6154 	.get_one_reg = kvmppc_get_one_reg_hv,
6155 	.set_one_reg = kvmppc_set_one_reg_hv,
6156 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6157 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6158 	.inject_interrupt = kvmppc_inject_interrupt_hv,
6159 	.set_msr     = kvmppc_set_msr_hv,
6160 	.vcpu_run    = kvmppc_vcpu_run_hv,
6161 	.vcpu_create = kvmppc_core_vcpu_create_hv,
6162 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6163 	.check_requests = kvmppc_core_check_requests_hv,
6164 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6165 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6166 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6167 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6168 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6169 	.age_gfn = kvm_age_gfn_hv,
6170 	.test_age_gfn = kvm_test_age_gfn_hv,
6171 	.set_spte_gfn = kvm_set_spte_gfn_hv,
6172 	.free_memslot = kvmppc_core_free_memslot_hv,
6173 	.init_vm =  kvmppc_core_init_vm_hv,
6174 	.destroy_vm = kvmppc_core_destroy_vm_hv,
6175 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6176 	.emulate_op = kvmppc_core_emulate_op_hv,
6177 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6178 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6179 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6180 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6181 	.hcall_implemented = kvmppc_hcall_impl_hv,
6182 #ifdef CONFIG_KVM_XICS
6183 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6184 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6185 #endif
6186 	.configure_mmu = kvmhv_configure_mmu,
6187 	.get_rmmu_info = kvmhv_get_rmmu_info,
6188 	.set_smt_mode = kvmhv_set_smt_mode,
6189 	.enable_nested = kvmhv_enable_nested,
6190 	.load_from_eaddr = kvmhv_load_from_eaddr,
6191 	.store_to_eaddr = kvmhv_store_to_eaddr,
6192 	.enable_svm = kvmhv_enable_svm,
6193 	.svm_off = kvmhv_svm_off,
6194 	.enable_dawr1 = kvmhv_enable_dawr1,
6195 	.hash_v3_possible = kvmppc_hash_v3_possible,
6196 	.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6197 	.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6198 };
6199 
6200 static int kvm_init_subcore_bitmap(void)
6201 {
6202 	int i, j;
6203 	int nr_cores = cpu_nr_cores();
6204 	struct sibling_subcore_state *sibling_subcore_state;
6205 
6206 	for (i = 0; i < nr_cores; i++) {
6207 		int first_cpu = i * threads_per_core;
6208 		int node = cpu_to_node(first_cpu);
6209 
6210 		/* Ignore if it is already allocated. */
6211 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6212 			continue;
6213 
6214 		sibling_subcore_state =
6215 			kzalloc_node(sizeof(struct sibling_subcore_state),
6216 							GFP_KERNEL, node);
6217 		if (!sibling_subcore_state)
6218 			return -ENOMEM;
6219 
6220 
6221 		for (j = 0; j < threads_per_core; j++) {
6222 			int cpu = first_cpu + j;
6223 
6224 			paca_ptrs[cpu]->sibling_subcore_state =
6225 						sibling_subcore_state;
6226 		}
6227 	}
6228 	return 0;
6229 }
6230 
6231 static int kvmppc_radix_possible(void)
6232 {
6233 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6234 }
6235 
6236 static int kvmppc_book3s_init_hv(void)
6237 {
6238 	int r;
6239 
6240 	if (!tlbie_capable) {
6241 		pr_err("KVM-HV: Host does not support TLBIE\n");
6242 		return -ENODEV;
6243 	}
6244 
6245 	/*
6246 	 * FIXME!! Do we need to check on all cpus ?
6247 	 */
6248 	r = kvmppc_core_check_processor_compat_hv();
6249 	if (r < 0)
6250 		return -ENODEV;
6251 
6252 	r = kvmhv_nested_init();
6253 	if (r)
6254 		return r;
6255 
6256 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6257 		r = kvm_init_subcore_bitmap();
6258 		if (r)
6259 			goto err;
6260 	}
6261 
6262 	/*
6263 	 * We need a way of accessing the XICS interrupt controller,
6264 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6265 	 * indirectly, via OPAL.
6266 	 */
6267 #ifdef CONFIG_SMP
6268 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6269 	    !local_paca->kvm_hstate.xics_phys) {
6270 		struct device_node *np;
6271 
6272 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6273 		if (!np) {
6274 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6275 			r = -ENODEV;
6276 			goto err;
6277 		}
6278 		/* presence of intc confirmed - node can be dropped again */
6279 		of_node_put(np);
6280 	}
6281 #endif
6282 
6283 	init_default_hcalls();
6284 
6285 	init_vcore_lists();
6286 
6287 	r = kvmppc_mmu_hv_init();
6288 	if (r)
6289 		goto err;
6290 
6291 	if (kvmppc_radix_possible()) {
6292 		r = kvmppc_radix_init();
6293 		if (r)
6294 			goto err;
6295 	}
6296 
6297 	r = kvmppc_uvmem_init();
6298 	if (r < 0) {
6299 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6300 		return r;
6301 	}
6302 
6303 	kvm_ops_hv.owner = THIS_MODULE;
6304 	kvmppc_hv_ops = &kvm_ops_hv;
6305 
6306 	return 0;
6307 
6308 err:
6309 	kvmhv_nested_exit();
6310 	kvmppc_radix_exit();
6311 
6312 	return r;
6313 }
6314 
6315 static void kvmppc_book3s_exit_hv(void)
6316 {
6317 	kvmppc_uvmem_free();
6318 	kvmppc_free_host_rm_ops();
6319 	if (kvmppc_radix_possible())
6320 		kvmppc_radix_exit();
6321 	kvmppc_hv_ops = NULL;
6322 	kvmhv_nested_exit();
6323 }
6324 
6325 module_init(kvmppc_book3s_init_hv);
6326 module_exit(kvmppc_book3s_exit_hv);
6327 MODULE_LICENSE("GPL");
6328 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6329 MODULE_ALIAS("devname:kvm");
6330