xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 
78 #include "book3s.h"
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82 
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86 
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
91 
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL	(~(u64)0)
94 
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96 
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103 
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107 
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111 
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114 	.set = param_set_int,
115 	.get = param_get_int,
116 };
117 
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120 
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124 
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129 
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134 
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137 
138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
139 
140 /*
141  * RWMR values for POWER8.  These control the rate at which PURR
142  * and SPURR count and should be set according to the number of
143  * online threads in the vcore being run.
144  */
145 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
146 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
147 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
149 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
153 
154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
155 	RWMR_RPA_P8_1THREAD,
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_2THREAD,
158 	RWMR_RPA_P8_3THREAD,
159 	RWMR_RPA_P8_4THREAD,
160 	RWMR_RPA_P8_5THREAD,
161 	RWMR_RPA_P8_6THREAD,
162 	RWMR_RPA_P8_7THREAD,
163 	RWMR_RPA_P8_8THREAD,
164 };
165 
166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167 		int *ip)
168 {
169 	int i = *ip;
170 	struct kvm_vcpu *vcpu;
171 
172 	while (++i < MAX_SMT_THREADS) {
173 		vcpu = READ_ONCE(vc->runnable_threads[i]);
174 		if (vcpu) {
175 			*ip = i;
176 			return vcpu;
177 		}
178 	}
179 	return NULL;
180 }
181 
182 /* Used to traverse the list of runnable threads for a given vcore */
183 #define for_each_runnable_thread(i, vcpu, vc) \
184 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
185 
186 static bool kvmppc_ipi_thread(int cpu)
187 {
188 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
189 
190 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
191 	if (kvmhv_on_pseries())
192 		return false;
193 
194 	/* On POWER9 we can use msgsnd to IPI any cpu */
195 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
196 		msg |= get_hard_smp_processor_id(cpu);
197 		smp_mb();
198 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199 		return true;
200 	}
201 
202 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
203 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
204 		preempt_disable();
205 		if (cpu_first_thread_sibling(cpu) ==
206 		    cpu_first_thread_sibling(smp_processor_id())) {
207 			msg |= cpu_thread_in_core(cpu);
208 			smp_mb();
209 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
210 			preempt_enable();
211 			return true;
212 		}
213 		preempt_enable();
214 	}
215 
216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
217 	if (cpu >= 0 && cpu < nr_cpu_ids) {
218 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
219 			xics_wake_cpu(cpu);
220 			return true;
221 		}
222 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
223 		return true;
224 	}
225 #endif
226 
227 	return false;
228 }
229 
230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
231 {
232 	int cpu;
233 	struct rcuwait *waitp;
234 
235 	waitp = kvm_arch_vcpu_get_wait(vcpu);
236 	if (rcuwait_wake_up(waitp))
237 		++vcpu->stat.halt_wakeup;
238 
239 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
240 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
241 		return;
242 
243 	/* CPU points to the first thread of the core */
244 	cpu = vcpu->cpu;
245 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
246 		smp_send_reschedule(cpu);
247 }
248 
249 /*
250  * We use the vcpu_load/put functions to measure stolen time.
251  * Stolen time is counted as time when either the vcpu is able to
252  * run as part of a virtual core, but the task running the vcore
253  * is preempted or sleeping, or when the vcpu needs something done
254  * in the kernel by the task running the vcpu, but that task is
255  * preempted or sleeping.  Those two things have to be counted
256  * separately, since one of the vcpu tasks will take on the job
257  * of running the core, and the other vcpu tasks in the vcore will
258  * sleep waiting for it to do that, but that sleep shouldn't count
259  * as stolen time.
260  *
261  * Hence we accumulate stolen time when the vcpu can run as part of
262  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
263  * needs its task to do other things in the kernel (for example,
264  * service a page fault) in busy_stolen.  We don't accumulate
265  * stolen time for a vcore when it is inactive, or for a vcpu
266  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
267  * a misnomer; it means that the vcpu task is not executing in
268  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
269  * the kernel.  We don't have any way of dividing up that time
270  * between time that the vcpu is genuinely stopped, time that
271  * the task is actively working on behalf of the vcpu, and time
272  * that the task is preempted, so we don't count any of it as
273  * stolen.
274  *
275  * Updates to busy_stolen are protected by arch.tbacct_lock;
276  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
277  * lock.  The stolen times are measured in units of timebase ticks.
278  * (Note that the != TB_NIL checks below are purely defensive;
279  * they should never fail.)
280  */
281 
282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
283 {
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&vc->stoltb_lock, flags);
287 	vc->preempt_tb = mftb();
288 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
289 }
290 
291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&vc->stoltb_lock, flags);
296 	if (vc->preempt_tb != TB_NIL) {
297 		vc->stolen_tb += mftb() - vc->preempt_tb;
298 		vc->preempt_tb = TB_NIL;
299 	}
300 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
301 }
302 
303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
304 {
305 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
306 	unsigned long flags;
307 
308 	/*
309 	 * We can test vc->runner without taking the vcore lock,
310 	 * because only this task ever sets vc->runner to this
311 	 * vcpu, and once it is set to this vcpu, only this task
312 	 * ever sets it to NULL.
313 	 */
314 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
315 		kvmppc_core_end_stolen(vc);
316 
317 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
318 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
319 	    vcpu->arch.busy_preempt != TB_NIL) {
320 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
321 		vcpu->arch.busy_preempt = TB_NIL;
322 	}
323 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
324 }
325 
326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
327 {
328 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
329 	unsigned long flags;
330 
331 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
332 		kvmppc_core_start_stolen(vc);
333 
334 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
335 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
336 		vcpu->arch.busy_preempt = mftb();
337 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
338 }
339 
340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
341 {
342 	vcpu->arch.pvr = pvr;
343 }
344 
345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
346 {
347 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
348 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
349 
350 	/* We can (emulate) our own architecture version and anything older */
351 	if (cpu_has_feature(CPU_FTR_ARCH_300))
352 		host_pcr_bit = PCR_ARCH_300;
353 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
354 		host_pcr_bit = PCR_ARCH_207;
355 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
356 		host_pcr_bit = PCR_ARCH_206;
357 	else
358 		host_pcr_bit = PCR_ARCH_205;
359 
360 	/* Determine lowest PCR bit needed to run guest in given PVR level */
361 	guest_pcr_bit = host_pcr_bit;
362 	if (arch_compat) {
363 		switch (arch_compat) {
364 		case PVR_ARCH_205:
365 			guest_pcr_bit = PCR_ARCH_205;
366 			break;
367 		case PVR_ARCH_206:
368 		case PVR_ARCH_206p:
369 			guest_pcr_bit = PCR_ARCH_206;
370 			break;
371 		case PVR_ARCH_207:
372 			guest_pcr_bit = PCR_ARCH_207;
373 			break;
374 		case PVR_ARCH_300:
375 			guest_pcr_bit = PCR_ARCH_300;
376 			break;
377 		default:
378 			return -EINVAL;
379 		}
380 	}
381 
382 	/* Check requested PCR bits don't exceed our capabilities */
383 	if (guest_pcr_bit > host_pcr_bit)
384 		return -EINVAL;
385 
386 	spin_lock(&vc->lock);
387 	vc->arch_compat = arch_compat;
388 	/*
389 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
390 	 * Also set all reserved PCR bits
391 	 */
392 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
393 	spin_unlock(&vc->lock);
394 
395 	return 0;
396 }
397 
398 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
399 {
400 	int r;
401 
402 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
403 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
404 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
405 	for (r = 0; r < 16; ++r)
406 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
407 		       r, kvmppc_get_gpr(vcpu, r),
408 		       r+16, kvmppc_get_gpr(vcpu, r+16));
409 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
410 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
411 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
412 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
413 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
414 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
415 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
416 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
417 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
418 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
419 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
420 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
421 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
422 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
423 	for (r = 0; r < vcpu->arch.slb_max; ++r)
424 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
425 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
426 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
427 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
428 	       vcpu->arch.last_inst);
429 }
430 
431 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
432 {
433 	return kvm_get_vcpu_by_id(kvm, id);
434 }
435 
436 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
437 {
438 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
439 	vpa->yield_count = cpu_to_be32(1);
440 }
441 
442 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
443 		   unsigned long addr, unsigned long len)
444 {
445 	/* check address is cacheline aligned */
446 	if (addr & (L1_CACHE_BYTES - 1))
447 		return -EINVAL;
448 	spin_lock(&vcpu->arch.vpa_update_lock);
449 	if (v->next_gpa != addr || v->len != len) {
450 		v->next_gpa = addr;
451 		v->len = addr ? len : 0;
452 		v->update_pending = 1;
453 	}
454 	spin_unlock(&vcpu->arch.vpa_update_lock);
455 	return 0;
456 }
457 
458 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
459 struct reg_vpa {
460 	u32 dummy;
461 	union {
462 		__be16 hword;
463 		__be32 word;
464 	} length;
465 };
466 
467 static int vpa_is_registered(struct kvmppc_vpa *vpap)
468 {
469 	if (vpap->update_pending)
470 		return vpap->next_gpa != 0;
471 	return vpap->pinned_addr != NULL;
472 }
473 
474 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
475 				       unsigned long flags,
476 				       unsigned long vcpuid, unsigned long vpa)
477 {
478 	struct kvm *kvm = vcpu->kvm;
479 	unsigned long len, nb;
480 	void *va;
481 	struct kvm_vcpu *tvcpu;
482 	int err;
483 	int subfunc;
484 	struct kvmppc_vpa *vpap;
485 
486 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
487 	if (!tvcpu)
488 		return H_PARAMETER;
489 
490 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
491 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
492 	    subfunc == H_VPA_REG_SLB) {
493 		/* Registering new area - address must be cache-line aligned */
494 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
495 			return H_PARAMETER;
496 
497 		/* convert logical addr to kernel addr and read length */
498 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
499 		if (va == NULL)
500 			return H_PARAMETER;
501 		if (subfunc == H_VPA_REG_VPA)
502 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
503 		else
504 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
505 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
506 
507 		/* Check length */
508 		if (len > nb || len < sizeof(struct reg_vpa))
509 			return H_PARAMETER;
510 	} else {
511 		vpa = 0;
512 		len = 0;
513 	}
514 
515 	err = H_PARAMETER;
516 	vpap = NULL;
517 	spin_lock(&tvcpu->arch.vpa_update_lock);
518 
519 	switch (subfunc) {
520 	case H_VPA_REG_VPA:		/* register VPA */
521 		/*
522 		 * The size of our lppaca is 1kB because of the way we align
523 		 * it for the guest to avoid crossing a 4kB boundary. We only
524 		 * use 640 bytes of the structure though, so we should accept
525 		 * clients that set a size of 640.
526 		 */
527 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
528 		if (len < sizeof(struct lppaca))
529 			break;
530 		vpap = &tvcpu->arch.vpa;
531 		err = 0;
532 		break;
533 
534 	case H_VPA_REG_DTL:		/* register DTL */
535 		if (len < sizeof(struct dtl_entry))
536 			break;
537 		len -= len % sizeof(struct dtl_entry);
538 
539 		/* Check that they have previously registered a VPA */
540 		err = H_RESOURCE;
541 		if (!vpa_is_registered(&tvcpu->arch.vpa))
542 			break;
543 
544 		vpap = &tvcpu->arch.dtl;
545 		err = 0;
546 		break;
547 
548 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
549 		/* Check that they have previously registered a VPA */
550 		err = H_RESOURCE;
551 		if (!vpa_is_registered(&tvcpu->arch.vpa))
552 			break;
553 
554 		vpap = &tvcpu->arch.slb_shadow;
555 		err = 0;
556 		break;
557 
558 	case H_VPA_DEREG_VPA:		/* deregister VPA */
559 		/* Check they don't still have a DTL or SLB buf registered */
560 		err = H_RESOURCE;
561 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
562 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
563 			break;
564 
565 		vpap = &tvcpu->arch.vpa;
566 		err = 0;
567 		break;
568 
569 	case H_VPA_DEREG_DTL:		/* deregister DTL */
570 		vpap = &tvcpu->arch.dtl;
571 		err = 0;
572 		break;
573 
574 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
575 		vpap = &tvcpu->arch.slb_shadow;
576 		err = 0;
577 		break;
578 	}
579 
580 	if (vpap) {
581 		vpap->next_gpa = vpa;
582 		vpap->len = len;
583 		vpap->update_pending = 1;
584 	}
585 
586 	spin_unlock(&tvcpu->arch.vpa_update_lock);
587 
588 	return err;
589 }
590 
591 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
592 {
593 	struct kvm *kvm = vcpu->kvm;
594 	void *va;
595 	unsigned long nb;
596 	unsigned long gpa;
597 
598 	/*
599 	 * We need to pin the page pointed to by vpap->next_gpa,
600 	 * but we can't call kvmppc_pin_guest_page under the lock
601 	 * as it does get_user_pages() and down_read().  So we
602 	 * have to drop the lock, pin the page, then get the lock
603 	 * again and check that a new area didn't get registered
604 	 * in the meantime.
605 	 */
606 	for (;;) {
607 		gpa = vpap->next_gpa;
608 		spin_unlock(&vcpu->arch.vpa_update_lock);
609 		va = NULL;
610 		nb = 0;
611 		if (gpa)
612 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
613 		spin_lock(&vcpu->arch.vpa_update_lock);
614 		if (gpa == vpap->next_gpa)
615 			break;
616 		/* sigh... unpin that one and try again */
617 		if (va)
618 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
619 	}
620 
621 	vpap->update_pending = 0;
622 	if (va && nb < vpap->len) {
623 		/*
624 		 * If it's now too short, it must be that userspace
625 		 * has changed the mappings underlying guest memory,
626 		 * so unregister the region.
627 		 */
628 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
629 		va = NULL;
630 	}
631 	if (vpap->pinned_addr)
632 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
633 					vpap->dirty);
634 	vpap->gpa = gpa;
635 	vpap->pinned_addr = va;
636 	vpap->dirty = false;
637 	if (va)
638 		vpap->pinned_end = va + vpap->len;
639 }
640 
641 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
642 {
643 	if (!(vcpu->arch.vpa.update_pending ||
644 	      vcpu->arch.slb_shadow.update_pending ||
645 	      vcpu->arch.dtl.update_pending))
646 		return;
647 
648 	spin_lock(&vcpu->arch.vpa_update_lock);
649 	if (vcpu->arch.vpa.update_pending) {
650 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
651 		if (vcpu->arch.vpa.pinned_addr)
652 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
653 	}
654 	if (vcpu->arch.dtl.update_pending) {
655 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
656 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
657 		vcpu->arch.dtl_index = 0;
658 	}
659 	if (vcpu->arch.slb_shadow.update_pending)
660 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
661 	spin_unlock(&vcpu->arch.vpa_update_lock);
662 }
663 
664 /*
665  * Return the accumulated stolen time for the vcore up until `now'.
666  * The caller should hold the vcore lock.
667  */
668 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
669 {
670 	u64 p;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&vc->stoltb_lock, flags);
674 	p = vc->stolen_tb;
675 	if (vc->vcore_state != VCORE_INACTIVE &&
676 	    vc->preempt_tb != TB_NIL)
677 		p += now - vc->preempt_tb;
678 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
679 	return p;
680 }
681 
682 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
683 				    struct kvmppc_vcore *vc)
684 {
685 	struct dtl_entry *dt;
686 	struct lppaca *vpa;
687 	unsigned long stolen;
688 	unsigned long core_stolen;
689 	u64 now;
690 	unsigned long flags;
691 
692 	dt = vcpu->arch.dtl_ptr;
693 	vpa = vcpu->arch.vpa.pinned_addr;
694 	now = mftb();
695 	core_stolen = vcore_stolen_time(vc, now);
696 	stolen = core_stolen - vcpu->arch.stolen_logged;
697 	vcpu->arch.stolen_logged = core_stolen;
698 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
699 	stolen += vcpu->arch.busy_stolen;
700 	vcpu->arch.busy_stolen = 0;
701 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
702 	if (!dt || !vpa)
703 		return;
704 	memset(dt, 0, sizeof(struct dtl_entry));
705 	dt->dispatch_reason = 7;
706 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
707 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
708 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
709 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
710 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
711 	++dt;
712 	if (dt == vcpu->arch.dtl.pinned_end)
713 		dt = vcpu->arch.dtl.pinned_addr;
714 	vcpu->arch.dtl_ptr = dt;
715 	/* order writing *dt vs. writing vpa->dtl_idx */
716 	smp_wmb();
717 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
718 	vcpu->arch.dtl.dirty = true;
719 }
720 
721 /* See if there is a doorbell interrupt pending for a vcpu */
722 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
723 {
724 	int thr;
725 	struct kvmppc_vcore *vc;
726 
727 	if (vcpu->arch.doorbell_request)
728 		return true;
729 	/*
730 	 * Ensure that the read of vcore->dpdes comes after the read
731 	 * of vcpu->doorbell_request.  This barrier matches the
732 	 * smp_wmb() in kvmppc_guest_entry_inject().
733 	 */
734 	smp_rmb();
735 	vc = vcpu->arch.vcore;
736 	thr = vcpu->vcpu_id - vc->first_vcpuid;
737 	return !!(vc->dpdes & (1 << thr));
738 }
739 
740 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
741 {
742 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
743 		return true;
744 	if ((!vcpu->arch.vcore->arch_compat) &&
745 	    cpu_has_feature(CPU_FTR_ARCH_207S))
746 		return true;
747 	return false;
748 }
749 
750 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
751 			     unsigned long resource, unsigned long value1,
752 			     unsigned long value2)
753 {
754 	switch (resource) {
755 	case H_SET_MODE_RESOURCE_SET_CIABR:
756 		if (!kvmppc_power8_compatible(vcpu))
757 			return H_P2;
758 		if (value2)
759 			return H_P4;
760 		if (mflags)
761 			return H_UNSUPPORTED_FLAG_START;
762 		/* Guests can't breakpoint the hypervisor */
763 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
764 			return H_P3;
765 		vcpu->arch.ciabr  = value1;
766 		return H_SUCCESS;
767 	case H_SET_MODE_RESOURCE_SET_DAWR:
768 		if (!kvmppc_power8_compatible(vcpu))
769 			return H_P2;
770 		if (!ppc_breakpoint_available())
771 			return H_P2;
772 		if (mflags)
773 			return H_UNSUPPORTED_FLAG_START;
774 		if (value2 & DABRX_HYP)
775 			return H_P4;
776 		vcpu->arch.dawr  = value1;
777 		vcpu->arch.dawrx = value2;
778 		return H_SUCCESS;
779 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
780 		/* KVM does not support mflags=2 (AIL=2) */
781 		if (mflags != 0 && mflags != 3)
782 			return H_UNSUPPORTED_FLAG_START;
783 		return H_TOO_HARD;
784 	default:
785 		return H_TOO_HARD;
786 	}
787 }
788 
789 /* Copy guest memory in place - must reside within a single memslot */
790 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
791 				  unsigned long len)
792 {
793 	struct kvm_memory_slot *to_memslot = NULL;
794 	struct kvm_memory_slot *from_memslot = NULL;
795 	unsigned long to_addr, from_addr;
796 	int r;
797 
798 	/* Get HPA for from address */
799 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
800 	if (!from_memslot)
801 		return -EFAULT;
802 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
803 			     << PAGE_SHIFT))
804 		return -EINVAL;
805 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
806 	if (kvm_is_error_hva(from_addr))
807 		return -EFAULT;
808 	from_addr |= (from & (PAGE_SIZE - 1));
809 
810 	/* Get HPA for to address */
811 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
812 	if (!to_memslot)
813 		return -EFAULT;
814 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
815 			   << PAGE_SHIFT))
816 		return -EINVAL;
817 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
818 	if (kvm_is_error_hva(to_addr))
819 		return -EFAULT;
820 	to_addr |= (to & (PAGE_SIZE - 1));
821 
822 	/* Perform copy */
823 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
824 			     len);
825 	if (r)
826 		return -EFAULT;
827 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
828 	return 0;
829 }
830 
831 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
832 			       unsigned long dest, unsigned long src)
833 {
834 	u64 pg_sz = SZ_4K;		/* 4K page size */
835 	u64 pg_mask = SZ_4K - 1;
836 	int ret;
837 
838 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
839 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
840 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
841 		return H_PARAMETER;
842 
843 	/* dest (and src if copy_page flag set) must be page aligned */
844 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
845 		return H_PARAMETER;
846 
847 	/* zero and/or copy the page as determined by the flags */
848 	if (flags & H_COPY_PAGE) {
849 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
850 		if (ret < 0)
851 			return H_PARAMETER;
852 	} else if (flags & H_ZERO_PAGE) {
853 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
854 		if (ret < 0)
855 			return H_PARAMETER;
856 	}
857 
858 	/* We can ignore the remaining flags */
859 
860 	return H_SUCCESS;
861 }
862 
863 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
864 {
865 	struct kvmppc_vcore *vcore = target->arch.vcore;
866 
867 	/*
868 	 * We expect to have been called by the real mode handler
869 	 * (kvmppc_rm_h_confer()) which would have directly returned
870 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
871 	 * have useful work to do and should not confer) so we don't
872 	 * recheck that here.
873 	 */
874 
875 	spin_lock(&vcore->lock);
876 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
877 	    vcore->vcore_state != VCORE_INACTIVE &&
878 	    vcore->runner)
879 		target = vcore->runner;
880 	spin_unlock(&vcore->lock);
881 
882 	return kvm_vcpu_yield_to(target);
883 }
884 
885 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
886 {
887 	int yield_count = 0;
888 	struct lppaca *lppaca;
889 
890 	spin_lock(&vcpu->arch.vpa_update_lock);
891 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
892 	if (lppaca)
893 		yield_count = be32_to_cpu(lppaca->yield_count);
894 	spin_unlock(&vcpu->arch.vpa_update_lock);
895 	return yield_count;
896 }
897 
898 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
899 {
900 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
901 	unsigned long target, ret = H_SUCCESS;
902 	int yield_count;
903 	struct kvm_vcpu *tvcpu;
904 	int idx, rc;
905 
906 	if (req <= MAX_HCALL_OPCODE &&
907 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
908 		return RESUME_HOST;
909 
910 	switch (req) {
911 	case H_CEDE:
912 		break;
913 	case H_PROD:
914 		target = kvmppc_get_gpr(vcpu, 4);
915 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
916 		if (!tvcpu) {
917 			ret = H_PARAMETER;
918 			break;
919 		}
920 		tvcpu->arch.prodded = 1;
921 		smp_mb();
922 		if (tvcpu->arch.ceded)
923 			kvmppc_fast_vcpu_kick_hv(tvcpu);
924 		break;
925 	case H_CONFER:
926 		target = kvmppc_get_gpr(vcpu, 4);
927 		if (target == -1)
928 			break;
929 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
930 		if (!tvcpu) {
931 			ret = H_PARAMETER;
932 			break;
933 		}
934 		yield_count = kvmppc_get_gpr(vcpu, 5);
935 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
936 			break;
937 		kvm_arch_vcpu_yield_to(tvcpu);
938 		break;
939 	case H_REGISTER_VPA:
940 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
941 					kvmppc_get_gpr(vcpu, 5),
942 					kvmppc_get_gpr(vcpu, 6));
943 		break;
944 	case H_RTAS:
945 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
946 			return RESUME_HOST;
947 
948 		idx = srcu_read_lock(&vcpu->kvm->srcu);
949 		rc = kvmppc_rtas_hcall(vcpu);
950 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
951 
952 		if (rc == -ENOENT)
953 			return RESUME_HOST;
954 		else if (rc == 0)
955 			break;
956 
957 		/* Send the error out to userspace via KVM_RUN */
958 		return rc;
959 	case H_LOGICAL_CI_LOAD:
960 		ret = kvmppc_h_logical_ci_load(vcpu);
961 		if (ret == H_TOO_HARD)
962 			return RESUME_HOST;
963 		break;
964 	case H_LOGICAL_CI_STORE:
965 		ret = kvmppc_h_logical_ci_store(vcpu);
966 		if (ret == H_TOO_HARD)
967 			return RESUME_HOST;
968 		break;
969 	case H_SET_MODE:
970 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
971 					kvmppc_get_gpr(vcpu, 5),
972 					kvmppc_get_gpr(vcpu, 6),
973 					kvmppc_get_gpr(vcpu, 7));
974 		if (ret == H_TOO_HARD)
975 			return RESUME_HOST;
976 		break;
977 	case H_XIRR:
978 	case H_CPPR:
979 	case H_EOI:
980 	case H_IPI:
981 	case H_IPOLL:
982 	case H_XIRR_X:
983 		if (kvmppc_xics_enabled(vcpu)) {
984 			if (xics_on_xive()) {
985 				ret = H_NOT_AVAILABLE;
986 				return RESUME_GUEST;
987 			}
988 			ret = kvmppc_xics_hcall(vcpu, req);
989 			break;
990 		}
991 		return RESUME_HOST;
992 	case H_SET_DABR:
993 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
994 		break;
995 	case H_SET_XDABR:
996 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
997 						kvmppc_get_gpr(vcpu, 5));
998 		break;
999 #ifdef CONFIG_SPAPR_TCE_IOMMU
1000 	case H_GET_TCE:
1001 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1002 						kvmppc_get_gpr(vcpu, 5));
1003 		if (ret == H_TOO_HARD)
1004 			return RESUME_HOST;
1005 		break;
1006 	case H_PUT_TCE:
1007 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 						kvmppc_get_gpr(vcpu, 5),
1009 						kvmppc_get_gpr(vcpu, 6));
1010 		if (ret == H_TOO_HARD)
1011 			return RESUME_HOST;
1012 		break;
1013 	case H_PUT_TCE_INDIRECT:
1014 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1015 						kvmppc_get_gpr(vcpu, 5),
1016 						kvmppc_get_gpr(vcpu, 6),
1017 						kvmppc_get_gpr(vcpu, 7));
1018 		if (ret == H_TOO_HARD)
1019 			return RESUME_HOST;
1020 		break;
1021 	case H_STUFF_TCE:
1022 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 						kvmppc_get_gpr(vcpu, 5),
1024 						kvmppc_get_gpr(vcpu, 6),
1025 						kvmppc_get_gpr(vcpu, 7));
1026 		if (ret == H_TOO_HARD)
1027 			return RESUME_HOST;
1028 		break;
1029 #endif
1030 	case H_RANDOM:
1031 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1032 			ret = H_HARDWARE;
1033 		break;
1034 
1035 	case H_SET_PARTITION_TABLE:
1036 		ret = H_FUNCTION;
1037 		if (nesting_enabled(vcpu->kvm))
1038 			ret = kvmhv_set_partition_table(vcpu);
1039 		break;
1040 	case H_ENTER_NESTED:
1041 		ret = H_FUNCTION;
1042 		if (!nesting_enabled(vcpu->kvm))
1043 			break;
1044 		ret = kvmhv_enter_nested_guest(vcpu);
1045 		if (ret == H_INTERRUPT) {
1046 			kvmppc_set_gpr(vcpu, 3, 0);
1047 			vcpu->arch.hcall_needed = 0;
1048 			return -EINTR;
1049 		} else if (ret == H_TOO_HARD) {
1050 			kvmppc_set_gpr(vcpu, 3, 0);
1051 			vcpu->arch.hcall_needed = 0;
1052 			return RESUME_HOST;
1053 		}
1054 		break;
1055 	case H_TLB_INVALIDATE:
1056 		ret = H_FUNCTION;
1057 		if (nesting_enabled(vcpu->kvm))
1058 			ret = kvmhv_do_nested_tlbie(vcpu);
1059 		break;
1060 	case H_COPY_TOFROM_GUEST:
1061 		ret = H_FUNCTION;
1062 		if (nesting_enabled(vcpu->kvm))
1063 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1064 		break;
1065 	case H_PAGE_INIT:
1066 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1067 					 kvmppc_get_gpr(vcpu, 5),
1068 					 kvmppc_get_gpr(vcpu, 6));
1069 		break;
1070 	case H_SVM_PAGE_IN:
1071 		ret = H_UNSUPPORTED;
1072 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1073 			ret = kvmppc_h_svm_page_in(vcpu->kvm,
1074 						   kvmppc_get_gpr(vcpu, 4),
1075 						   kvmppc_get_gpr(vcpu, 5),
1076 						   kvmppc_get_gpr(vcpu, 6));
1077 		break;
1078 	case H_SVM_PAGE_OUT:
1079 		ret = H_UNSUPPORTED;
1080 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1081 			ret = kvmppc_h_svm_page_out(vcpu->kvm,
1082 						    kvmppc_get_gpr(vcpu, 4),
1083 						    kvmppc_get_gpr(vcpu, 5),
1084 						    kvmppc_get_gpr(vcpu, 6));
1085 		break;
1086 	case H_SVM_INIT_START:
1087 		ret = H_UNSUPPORTED;
1088 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1089 			ret = kvmppc_h_svm_init_start(vcpu->kvm);
1090 		break;
1091 	case H_SVM_INIT_DONE:
1092 		ret = H_UNSUPPORTED;
1093 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1094 			ret = kvmppc_h_svm_init_done(vcpu->kvm);
1095 		break;
1096 	case H_SVM_INIT_ABORT:
1097 		/*
1098 		 * Even if that call is made by the Ultravisor, the SSR1 value
1099 		 * is the guest context one, with the secure bit clear as it has
1100 		 * not yet been secured. So we can't check it here.
1101 		 * Instead the kvm->arch.secure_guest flag is checked inside
1102 		 * kvmppc_h_svm_init_abort().
1103 		 */
1104 		ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1105 		break;
1106 
1107 	default:
1108 		return RESUME_HOST;
1109 	}
1110 	kvmppc_set_gpr(vcpu, 3, ret);
1111 	vcpu->arch.hcall_needed = 0;
1112 	return RESUME_GUEST;
1113 }
1114 
1115 /*
1116  * Handle H_CEDE in the nested virtualization case where we haven't
1117  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1118  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1119  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1120  */
1121 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1122 {
1123 	vcpu->arch.shregs.msr |= MSR_EE;
1124 	vcpu->arch.ceded = 1;
1125 	smp_mb();
1126 	if (vcpu->arch.prodded) {
1127 		vcpu->arch.prodded = 0;
1128 		smp_mb();
1129 		vcpu->arch.ceded = 0;
1130 	}
1131 }
1132 
1133 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1134 {
1135 	switch (cmd) {
1136 	case H_CEDE:
1137 	case H_PROD:
1138 	case H_CONFER:
1139 	case H_REGISTER_VPA:
1140 	case H_SET_MODE:
1141 	case H_LOGICAL_CI_LOAD:
1142 	case H_LOGICAL_CI_STORE:
1143 #ifdef CONFIG_KVM_XICS
1144 	case H_XIRR:
1145 	case H_CPPR:
1146 	case H_EOI:
1147 	case H_IPI:
1148 	case H_IPOLL:
1149 	case H_XIRR_X:
1150 #endif
1151 	case H_PAGE_INIT:
1152 		return 1;
1153 	}
1154 
1155 	/* See if it's in the real-mode table */
1156 	return kvmppc_hcall_impl_hv_realmode(cmd);
1157 }
1158 
1159 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1160 {
1161 	u32 last_inst;
1162 
1163 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1164 					EMULATE_DONE) {
1165 		/*
1166 		 * Fetch failed, so return to guest and
1167 		 * try executing it again.
1168 		 */
1169 		return RESUME_GUEST;
1170 	}
1171 
1172 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1173 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1174 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1175 		return RESUME_HOST;
1176 	} else {
1177 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1178 		return RESUME_GUEST;
1179 	}
1180 }
1181 
1182 static void do_nothing(void *x)
1183 {
1184 }
1185 
1186 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1187 {
1188 	int thr, cpu, pcpu, nthreads;
1189 	struct kvm_vcpu *v;
1190 	unsigned long dpdes;
1191 
1192 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1193 	dpdes = 0;
1194 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1195 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1196 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1197 		if (!v)
1198 			continue;
1199 		/*
1200 		 * If the vcpu is currently running on a physical cpu thread,
1201 		 * interrupt it in order to pull it out of the guest briefly,
1202 		 * which will update its vcore->dpdes value.
1203 		 */
1204 		pcpu = READ_ONCE(v->cpu);
1205 		if (pcpu >= 0)
1206 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1207 		if (kvmppc_doorbell_pending(v))
1208 			dpdes |= 1 << thr;
1209 	}
1210 	return dpdes;
1211 }
1212 
1213 /*
1214  * On POWER9, emulate doorbell-related instructions in order to
1215  * give the guest the illusion of running on a multi-threaded core.
1216  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1217  * and mfspr DPDES.
1218  */
1219 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1220 {
1221 	u32 inst, rb, thr;
1222 	unsigned long arg;
1223 	struct kvm *kvm = vcpu->kvm;
1224 	struct kvm_vcpu *tvcpu;
1225 
1226 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1227 		return RESUME_GUEST;
1228 	if (get_op(inst) != 31)
1229 		return EMULATE_FAIL;
1230 	rb = get_rb(inst);
1231 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1232 	switch (get_xop(inst)) {
1233 	case OP_31_XOP_MSGSNDP:
1234 		arg = kvmppc_get_gpr(vcpu, rb);
1235 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1236 			break;
1237 		arg &= 0x3f;
1238 		if (arg >= kvm->arch.emul_smt_mode)
1239 			break;
1240 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1241 		if (!tvcpu)
1242 			break;
1243 		if (!tvcpu->arch.doorbell_request) {
1244 			tvcpu->arch.doorbell_request = 1;
1245 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1246 		}
1247 		break;
1248 	case OP_31_XOP_MSGCLRP:
1249 		arg = kvmppc_get_gpr(vcpu, rb);
1250 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1251 			break;
1252 		vcpu->arch.vcore->dpdes = 0;
1253 		vcpu->arch.doorbell_request = 0;
1254 		break;
1255 	case OP_31_XOP_MFSPR:
1256 		switch (get_sprn(inst)) {
1257 		case SPRN_TIR:
1258 			arg = thr;
1259 			break;
1260 		case SPRN_DPDES:
1261 			arg = kvmppc_read_dpdes(vcpu);
1262 			break;
1263 		default:
1264 			return EMULATE_FAIL;
1265 		}
1266 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1267 		break;
1268 	default:
1269 		return EMULATE_FAIL;
1270 	}
1271 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1272 	return RESUME_GUEST;
1273 }
1274 
1275 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1276 				 struct task_struct *tsk)
1277 {
1278 	struct kvm_run *run = vcpu->run;
1279 	int r = RESUME_HOST;
1280 
1281 	vcpu->stat.sum_exits++;
1282 
1283 	/*
1284 	 * This can happen if an interrupt occurs in the last stages
1285 	 * of guest entry or the first stages of guest exit (i.e. after
1286 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1287 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1288 	 * That can happen due to a bug, or due to a machine check
1289 	 * occurring at just the wrong time.
1290 	 */
1291 	if (vcpu->arch.shregs.msr & MSR_HV) {
1292 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1293 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1294 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1295 			vcpu->arch.shregs.msr);
1296 		kvmppc_dump_regs(vcpu);
1297 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1298 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1299 		return RESUME_HOST;
1300 	}
1301 	run->exit_reason = KVM_EXIT_UNKNOWN;
1302 	run->ready_for_interrupt_injection = 1;
1303 	switch (vcpu->arch.trap) {
1304 	/* We're good on these - the host merely wanted to get our attention */
1305 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1306 		vcpu->stat.dec_exits++;
1307 		r = RESUME_GUEST;
1308 		break;
1309 	case BOOK3S_INTERRUPT_EXTERNAL:
1310 	case BOOK3S_INTERRUPT_H_DOORBELL:
1311 	case BOOK3S_INTERRUPT_H_VIRT:
1312 		vcpu->stat.ext_intr_exits++;
1313 		r = RESUME_GUEST;
1314 		break;
1315 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1316 	case BOOK3S_INTERRUPT_HMI:
1317 	case BOOK3S_INTERRUPT_PERFMON:
1318 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1319 		r = RESUME_GUEST;
1320 		break;
1321 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1322 		/* Print the MCE event to host console. */
1323 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1324 
1325 		/*
1326 		 * If the guest can do FWNMI, exit to userspace so it can
1327 		 * deliver a FWNMI to the guest.
1328 		 * Otherwise we synthesize a machine check for the guest
1329 		 * so that it knows that the machine check occurred.
1330 		 */
1331 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1332 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1333 			kvmppc_core_queue_machine_check(vcpu, flags);
1334 			r = RESUME_GUEST;
1335 			break;
1336 		}
1337 
1338 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1339 		run->exit_reason = KVM_EXIT_NMI;
1340 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1341 		/* Clear out the old NMI status from run->flags */
1342 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1343 		/* Now set the NMI status */
1344 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1345 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1346 		else
1347 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1348 
1349 		r = RESUME_HOST;
1350 		break;
1351 	case BOOK3S_INTERRUPT_PROGRAM:
1352 	{
1353 		ulong flags;
1354 		/*
1355 		 * Normally program interrupts are delivered directly
1356 		 * to the guest by the hardware, but we can get here
1357 		 * as a result of a hypervisor emulation interrupt
1358 		 * (e40) getting turned into a 700 by BML RTAS.
1359 		 */
1360 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1361 		kvmppc_core_queue_program(vcpu, flags);
1362 		r = RESUME_GUEST;
1363 		break;
1364 	}
1365 	case BOOK3S_INTERRUPT_SYSCALL:
1366 	{
1367 		/* hcall - punt to userspace */
1368 		int i;
1369 
1370 		/* hypercall with MSR_PR has already been handled in rmode,
1371 		 * and never reaches here.
1372 		 */
1373 
1374 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1375 		for (i = 0; i < 9; ++i)
1376 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1377 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1378 		vcpu->arch.hcall_needed = 1;
1379 		r = RESUME_HOST;
1380 		break;
1381 	}
1382 	/*
1383 	 * We get these next two if the guest accesses a page which it thinks
1384 	 * it has mapped but which is not actually present, either because
1385 	 * it is for an emulated I/O device or because the corresonding
1386 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1387 	 * have been handled already.
1388 	 */
1389 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1390 		r = RESUME_PAGE_FAULT;
1391 		break;
1392 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1393 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1394 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1395 			DSISR_SRR1_MATCH_64S;
1396 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1397 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1398 		r = RESUME_PAGE_FAULT;
1399 		break;
1400 	/*
1401 	 * This occurs if the guest executes an illegal instruction.
1402 	 * If the guest debug is disabled, generate a program interrupt
1403 	 * to the guest. If guest debug is enabled, we need to check
1404 	 * whether the instruction is a software breakpoint instruction.
1405 	 * Accordingly return to Guest or Host.
1406 	 */
1407 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1408 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1409 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1410 				swab32(vcpu->arch.emul_inst) :
1411 				vcpu->arch.emul_inst;
1412 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1413 			r = kvmppc_emulate_debug_inst(vcpu);
1414 		} else {
1415 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1416 			r = RESUME_GUEST;
1417 		}
1418 		break;
1419 	/*
1420 	 * This occurs if the guest (kernel or userspace), does something that
1421 	 * is prohibited by HFSCR.
1422 	 * On POWER9, this could be a doorbell instruction that we need
1423 	 * to emulate.
1424 	 * Otherwise, we just generate a program interrupt to the guest.
1425 	 */
1426 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1427 		r = EMULATE_FAIL;
1428 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1429 		    cpu_has_feature(CPU_FTR_ARCH_300))
1430 			r = kvmppc_emulate_doorbell_instr(vcpu);
1431 		if (r == EMULATE_FAIL) {
1432 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1433 			r = RESUME_GUEST;
1434 		}
1435 		break;
1436 
1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1439 		/*
1440 		 * This occurs for various TM-related instructions that
1441 		 * we need to emulate on POWER9 DD2.2.  We have already
1442 		 * handled the cases where the guest was in real-suspend
1443 		 * mode and was transitioning to transactional state.
1444 		 */
1445 		r = kvmhv_p9_tm_emulation(vcpu);
1446 		break;
1447 #endif
1448 
1449 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1450 		r = RESUME_PASSTHROUGH;
1451 		break;
1452 	default:
1453 		kvmppc_dump_regs(vcpu);
1454 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1455 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1456 			vcpu->arch.shregs.msr);
1457 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1458 		r = RESUME_HOST;
1459 		break;
1460 	}
1461 
1462 	return r;
1463 }
1464 
1465 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1466 {
1467 	int r;
1468 	int srcu_idx;
1469 
1470 	vcpu->stat.sum_exits++;
1471 
1472 	/*
1473 	 * This can happen if an interrupt occurs in the last stages
1474 	 * of guest entry or the first stages of guest exit (i.e. after
1475 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1476 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1477 	 * That can happen due to a bug, or due to a machine check
1478 	 * occurring at just the wrong time.
1479 	 */
1480 	if (vcpu->arch.shregs.msr & MSR_HV) {
1481 		pr_emerg("KVM trap in HV mode while nested!\n");
1482 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1483 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1484 			 vcpu->arch.shregs.msr);
1485 		kvmppc_dump_regs(vcpu);
1486 		return RESUME_HOST;
1487 	}
1488 	switch (vcpu->arch.trap) {
1489 	/* We're good on these - the host merely wanted to get our attention */
1490 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1491 		vcpu->stat.dec_exits++;
1492 		r = RESUME_GUEST;
1493 		break;
1494 	case BOOK3S_INTERRUPT_EXTERNAL:
1495 		vcpu->stat.ext_intr_exits++;
1496 		r = RESUME_HOST;
1497 		break;
1498 	case BOOK3S_INTERRUPT_H_DOORBELL:
1499 	case BOOK3S_INTERRUPT_H_VIRT:
1500 		vcpu->stat.ext_intr_exits++;
1501 		r = RESUME_GUEST;
1502 		break;
1503 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1504 	case BOOK3S_INTERRUPT_HMI:
1505 	case BOOK3S_INTERRUPT_PERFMON:
1506 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1507 		r = RESUME_GUEST;
1508 		break;
1509 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1510 		/* Pass the machine check to the L1 guest */
1511 		r = RESUME_HOST;
1512 		/* Print the MCE event to host console. */
1513 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1514 		break;
1515 	/*
1516 	 * We get these next two if the guest accesses a page which it thinks
1517 	 * it has mapped but which is not actually present, either because
1518 	 * it is for an emulated I/O device or because the corresonding
1519 	 * host page has been paged out.
1520 	 */
1521 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1522 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1523 		r = kvmhv_nested_page_fault(vcpu);
1524 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1525 		break;
1526 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1527 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1528 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1529 					 DSISR_SRR1_MATCH_64S;
1530 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1531 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1532 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1533 		r = kvmhv_nested_page_fault(vcpu);
1534 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1535 		break;
1536 
1537 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1538 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1539 		/*
1540 		 * This occurs for various TM-related instructions that
1541 		 * we need to emulate on POWER9 DD2.2.  We have already
1542 		 * handled the cases where the guest was in real-suspend
1543 		 * mode and was transitioning to transactional state.
1544 		 */
1545 		r = kvmhv_p9_tm_emulation(vcpu);
1546 		break;
1547 #endif
1548 
1549 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1550 		vcpu->arch.trap = 0;
1551 		r = RESUME_GUEST;
1552 		if (!xics_on_xive())
1553 			kvmppc_xics_rm_complete(vcpu, 0);
1554 		break;
1555 	default:
1556 		r = RESUME_HOST;
1557 		break;
1558 	}
1559 
1560 	return r;
1561 }
1562 
1563 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1564 					    struct kvm_sregs *sregs)
1565 {
1566 	int i;
1567 
1568 	memset(sregs, 0, sizeof(struct kvm_sregs));
1569 	sregs->pvr = vcpu->arch.pvr;
1570 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1571 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1572 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1579 					    struct kvm_sregs *sregs)
1580 {
1581 	int i, j;
1582 
1583 	/* Only accept the same PVR as the host's, since we can't spoof it */
1584 	if (sregs->pvr != vcpu->arch.pvr)
1585 		return -EINVAL;
1586 
1587 	j = 0;
1588 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1589 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1590 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1591 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1592 			++j;
1593 		}
1594 	}
1595 	vcpu->arch.slb_max = j;
1596 
1597 	return 0;
1598 }
1599 
1600 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1601 		bool preserve_top32)
1602 {
1603 	struct kvm *kvm = vcpu->kvm;
1604 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1605 	u64 mask;
1606 
1607 	spin_lock(&vc->lock);
1608 	/*
1609 	 * If ILE (interrupt little-endian) has changed, update the
1610 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1611 	 */
1612 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1613 		struct kvm_vcpu *vcpu;
1614 		int i;
1615 
1616 		kvm_for_each_vcpu(i, vcpu, kvm) {
1617 			if (vcpu->arch.vcore != vc)
1618 				continue;
1619 			if (new_lpcr & LPCR_ILE)
1620 				vcpu->arch.intr_msr |= MSR_LE;
1621 			else
1622 				vcpu->arch.intr_msr &= ~MSR_LE;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * Userspace can only modify DPFD (default prefetch depth),
1628 	 * ILE (interrupt little-endian) and TC (translation control).
1629 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1630 	 */
1631 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1632 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1633 		mask |= LPCR_AIL;
1634 	/*
1635 	 * On POWER9, allow userspace to enable large decrementer for the
1636 	 * guest, whether or not the host has it enabled.
1637 	 */
1638 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1639 		mask |= LPCR_LD;
1640 
1641 	/* Broken 32-bit version of LPCR must not clear top bits */
1642 	if (preserve_top32)
1643 		mask &= 0xFFFFFFFF;
1644 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1645 	spin_unlock(&vc->lock);
1646 }
1647 
1648 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1649 				 union kvmppc_one_reg *val)
1650 {
1651 	int r = 0;
1652 	long int i;
1653 
1654 	switch (id) {
1655 	case KVM_REG_PPC_DEBUG_INST:
1656 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1657 		break;
1658 	case KVM_REG_PPC_HIOR:
1659 		*val = get_reg_val(id, 0);
1660 		break;
1661 	case KVM_REG_PPC_DABR:
1662 		*val = get_reg_val(id, vcpu->arch.dabr);
1663 		break;
1664 	case KVM_REG_PPC_DABRX:
1665 		*val = get_reg_val(id, vcpu->arch.dabrx);
1666 		break;
1667 	case KVM_REG_PPC_DSCR:
1668 		*val = get_reg_val(id, vcpu->arch.dscr);
1669 		break;
1670 	case KVM_REG_PPC_PURR:
1671 		*val = get_reg_val(id, vcpu->arch.purr);
1672 		break;
1673 	case KVM_REG_PPC_SPURR:
1674 		*val = get_reg_val(id, vcpu->arch.spurr);
1675 		break;
1676 	case KVM_REG_PPC_AMR:
1677 		*val = get_reg_val(id, vcpu->arch.amr);
1678 		break;
1679 	case KVM_REG_PPC_UAMOR:
1680 		*val = get_reg_val(id, vcpu->arch.uamor);
1681 		break;
1682 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1683 		i = id - KVM_REG_PPC_MMCR0;
1684 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1685 		break;
1686 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1687 		i = id - KVM_REG_PPC_PMC1;
1688 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1689 		break;
1690 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1691 		i = id - KVM_REG_PPC_SPMC1;
1692 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1693 		break;
1694 	case KVM_REG_PPC_SIAR:
1695 		*val = get_reg_val(id, vcpu->arch.siar);
1696 		break;
1697 	case KVM_REG_PPC_SDAR:
1698 		*val = get_reg_val(id, vcpu->arch.sdar);
1699 		break;
1700 	case KVM_REG_PPC_SIER:
1701 		*val = get_reg_val(id, vcpu->arch.sier);
1702 		break;
1703 	case KVM_REG_PPC_IAMR:
1704 		*val = get_reg_val(id, vcpu->arch.iamr);
1705 		break;
1706 	case KVM_REG_PPC_PSPB:
1707 		*val = get_reg_val(id, vcpu->arch.pspb);
1708 		break;
1709 	case KVM_REG_PPC_DPDES:
1710 		/*
1711 		 * On POWER9, where we are emulating msgsndp etc.,
1712 		 * we return 1 bit for each vcpu, which can come from
1713 		 * either vcore->dpdes or doorbell_request.
1714 		 * On POWER8, doorbell_request is 0.
1715 		 */
1716 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1717 				   vcpu->arch.doorbell_request);
1718 		break;
1719 	case KVM_REG_PPC_VTB:
1720 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1721 		break;
1722 	case KVM_REG_PPC_DAWR:
1723 		*val = get_reg_val(id, vcpu->arch.dawr);
1724 		break;
1725 	case KVM_REG_PPC_DAWRX:
1726 		*val = get_reg_val(id, vcpu->arch.dawrx);
1727 		break;
1728 	case KVM_REG_PPC_CIABR:
1729 		*val = get_reg_val(id, vcpu->arch.ciabr);
1730 		break;
1731 	case KVM_REG_PPC_CSIGR:
1732 		*val = get_reg_val(id, vcpu->arch.csigr);
1733 		break;
1734 	case KVM_REG_PPC_TACR:
1735 		*val = get_reg_val(id, vcpu->arch.tacr);
1736 		break;
1737 	case KVM_REG_PPC_TCSCR:
1738 		*val = get_reg_val(id, vcpu->arch.tcscr);
1739 		break;
1740 	case KVM_REG_PPC_PID:
1741 		*val = get_reg_val(id, vcpu->arch.pid);
1742 		break;
1743 	case KVM_REG_PPC_ACOP:
1744 		*val = get_reg_val(id, vcpu->arch.acop);
1745 		break;
1746 	case KVM_REG_PPC_WORT:
1747 		*val = get_reg_val(id, vcpu->arch.wort);
1748 		break;
1749 	case KVM_REG_PPC_TIDR:
1750 		*val = get_reg_val(id, vcpu->arch.tid);
1751 		break;
1752 	case KVM_REG_PPC_PSSCR:
1753 		*val = get_reg_val(id, vcpu->arch.psscr);
1754 		break;
1755 	case KVM_REG_PPC_VPA_ADDR:
1756 		spin_lock(&vcpu->arch.vpa_update_lock);
1757 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1758 		spin_unlock(&vcpu->arch.vpa_update_lock);
1759 		break;
1760 	case KVM_REG_PPC_VPA_SLB:
1761 		spin_lock(&vcpu->arch.vpa_update_lock);
1762 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1763 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1764 		spin_unlock(&vcpu->arch.vpa_update_lock);
1765 		break;
1766 	case KVM_REG_PPC_VPA_DTL:
1767 		spin_lock(&vcpu->arch.vpa_update_lock);
1768 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1769 		val->vpaval.length = vcpu->arch.dtl.len;
1770 		spin_unlock(&vcpu->arch.vpa_update_lock);
1771 		break;
1772 	case KVM_REG_PPC_TB_OFFSET:
1773 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1774 		break;
1775 	case KVM_REG_PPC_LPCR:
1776 	case KVM_REG_PPC_LPCR_64:
1777 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1778 		break;
1779 	case KVM_REG_PPC_PPR:
1780 		*val = get_reg_val(id, vcpu->arch.ppr);
1781 		break;
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1783 	case KVM_REG_PPC_TFHAR:
1784 		*val = get_reg_val(id, vcpu->arch.tfhar);
1785 		break;
1786 	case KVM_REG_PPC_TFIAR:
1787 		*val = get_reg_val(id, vcpu->arch.tfiar);
1788 		break;
1789 	case KVM_REG_PPC_TEXASR:
1790 		*val = get_reg_val(id, vcpu->arch.texasr);
1791 		break;
1792 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1793 		i = id - KVM_REG_PPC_TM_GPR0;
1794 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1795 		break;
1796 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1797 	{
1798 		int j;
1799 		i = id - KVM_REG_PPC_TM_VSR0;
1800 		if (i < 32)
1801 			for (j = 0; j < TS_FPRWIDTH; j++)
1802 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1803 		else {
1804 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1805 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1806 			else
1807 				r = -ENXIO;
1808 		}
1809 		break;
1810 	}
1811 	case KVM_REG_PPC_TM_CR:
1812 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1813 		break;
1814 	case KVM_REG_PPC_TM_XER:
1815 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1816 		break;
1817 	case KVM_REG_PPC_TM_LR:
1818 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1819 		break;
1820 	case KVM_REG_PPC_TM_CTR:
1821 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1822 		break;
1823 	case KVM_REG_PPC_TM_FPSCR:
1824 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1825 		break;
1826 	case KVM_REG_PPC_TM_AMR:
1827 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1828 		break;
1829 	case KVM_REG_PPC_TM_PPR:
1830 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1831 		break;
1832 	case KVM_REG_PPC_TM_VRSAVE:
1833 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1834 		break;
1835 	case KVM_REG_PPC_TM_VSCR:
1836 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1837 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1838 		else
1839 			r = -ENXIO;
1840 		break;
1841 	case KVM_REG_PPC_TM_DSCR:
1842 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1843 		break;
1844 	case KVM_REG_PPC_TM_TAR:
1845 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1846 		break;
1847 #endif
1848 	case KVM_REG_PPC_ARCH_COMPAT:
1849 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1850 		break;
1851 	case KVM_REG_PPC_DEC_EXPIRY:
1852 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1853 				   vcpu->arch.vcore->tb_offset);
1854 		break;
1855 	case KVM_REG_PPC_ONLINE:
1856 		*val = get_reg_val(id, vcpu->arch.online);
1857 		break;
1858 	case KVM_REG_PPC_PTCR:
1859 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1860 		break;
1861 	default:
1862 		r = -EINVAL;
1863 		break;
1864 	}
1865 
1866 	return r;
1867 }
1868 
1869 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1870 				 union kvmppc_one_reg *val)
1871 {
1872 	int r = 0;
1873 	long int i;
1874 	unsigned long addr, len;
1875 
1876 	switch (id) {
1877 	case KVM_REG_PPC_HIOR:
1878 		/* Only allow this to be set to zero */
1879 		if (set_reg_val(id, *val))
1880 			r = -EINVAL;
1881 		break;
1882 	case KVM_REG_PPC_DABR:
1883 		vcpu->arch.dabr = set_reg_val(id, *val);
1884 		break;
1885 	case KVM_REG_PPC_DABRX:
1886 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1887 		break;
1888 	case KVM_REG_PPC_DSCR:
1889 		vcpu->arch.dscr = set_reg_val(id, *val);
1890 		break;
1891 	case KVM_REG_PPC_PURR:
1892 		vcpu->arch.purr = set_reg_val(id, *val);
1893 		break;
1894 	case KVM_REG_PPC_SPURR:
1895 		vcpu->arch.spurr = set_reg_val(id, *val);
1896 		break;
1897 	case KVM_REG_PPC_AMR:
1898 		vcpu->arch.amr = set_reg_val(id, *val);
1899 		break;
1900 	case KVM_REG_PPC_UAMOR:
1901 		vcpu->arch.uamor = set_reg_val(id, *val);
1902 		break;
1903 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1904 		i = id - KVM_REG_PPC_MMCR0;
1905 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1906 		break;
1907 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1908 		i = id - KVM_REG_PPC_PMC1;
1909 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1910 		break;
1911 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1912 		i = id - KVM_REG_PPC_SPMC1;
1913 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1914 		break;
1915 	case KVM_REG_PPC_SIAR:
1916 		vcpu->arch.siar = set_reg_val(id, *val);
1917 		break;
1918 	case KVM_REG_PPC_SDAR:
1919 		vcpu->arch.sdar = set_reg_val(id, *val);
1920 		break;
1921 	case KVM_REG_PPC_SIER:
1922 		vcpu->arch.sier = set_reg_val(id, *val);
1923 		break;
1924 	case KVM_REG_PPC_IAMR:
1925 		vcpu->arch.iamr = set_reg_val(id, *val);
1926 		break;
1927 	case KVM_REG_PPC_PSPB:
1928 		vcpu->arch.pspb = set_reg_val(id, *val);
1929 		break;
1930 	case KVM_REG_PPC_DPDES:
1931 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1932 		break;
1933 	case KVM_REG_PPC_VTB:
1934 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1935 		break;
1936 	case KVM_REG_PPC_DAWR:
1937 		vcpu->arch.dawr = set_reg_val(id, *val);
1938 		break;
1939 	case KVM_REG_PPC_DAWRX:
1940 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1941 		break;
1942 	case KVM_REG_PPC_CIABR:
1943 		vcpu->arch.ciabr = set_reg_val(id, *val);
1944 		/* Don't allow setting breakpoints in hypervisor code */
1945 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1946 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1947 		break;
1948 	case KVM_REG_PPC_CSIGR:
1949 		vcpu->arch.csigr = set_reg_val(id, *val);
1950 		break;
1951 	case KVM_REG_PPC_TACR:
1952 		vcpu->arch.tacr = set_reg_val(id, *val);
1953 		break;
1954 	case KVM_REG_PPC_TCSCR:
1955 		vcpu->arch.tcscr = set_reg_val(id, *val);
1956 		break;
1957 	case KVM_REG_PPC_PID:
1958 		vcpu->arch.pid = set_reg_val(id, *val);
1959 		break;
1960 	case KVM_REG_PPC_ACOP:
1961 		vcpu->arch.acop = set_reg_val(id, *val);
1962 		break;
1963 	case KVM_REG_PPC_WORT:
1964 		vcpu->arch.wort = set_reg_val(id, *val);
1965 		break;
1966 	case KVM_REG_PPC_TIDR:
1967 		vcpu->arch.tid = set_reg_val(id, *val);
1968 		break;
1969 	case KVM_REG_PPC_PSSCR:
1970 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1971 		break;
1972 	case KVM_REG_PPC_VPA_ADDR:
1973 		addr = set_reg_val(id, *val);
1974 		r = -EINVAL;
1975 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1976 			      vcpu->arch.dtl.next_gpa))
1977 			break;
1978 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1979 		break;
1980 	case KVM_REG_PPC_VPA_SLB:
1981 		addr = val->vpaval.addr;
1982 		len = val->vpaval.length;
1983 		r = -EINVAL;
1984 		if (addr && !vcpu->arch.vpa.next_gpa)
1985 			break;
1986 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1987 		break;
1988 	case KVM_REG_PPC_VPA_DTL:
1989 		addr = val->vpaval.addr;
1990 		len = val->vpaval.length;
1991 		r = -EINVAL;
1992 		if (addr && (len < sizeof(struct dtl_entry) ||
1993 			     !vcpu->arch.vpa.next_gpa))
1994 			break;
1995 		len -= len % sizeof(struct dtl_entry);
1996 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1997 		break;
1998 	case KVM_REG_PPC_TB_OFFSET:
1999 		/* round up to multiple of 2^24 */
2000 		vcpu->arch.vcore->tb_offset =
2001 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2002 		break;
2003 	case KVM_REG_PPC_LPCR:
2004 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2005 		break;
2006 	case KVM_REG_PPC_LPCR_64:
2007 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2008 		break;
2009 	case KVM_REG_PPC_PPR:
2010 		vcpu->arch.ppr = set_reg_val(id, *val);
2011 		break;
2012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2013 	case KVM_REG_PPC_TFHAR:
2014 		vcpu->arch.tfhar = set_reg_val(id, *val);
2015 		break;
2016 	case KVM_REG_PPC_TFIAR:
2017 		vcpu->arch.tfiar = set_reg_val(id, *val);
2018 		break;
2019 	case KVM_REG_PPC_TEXASR:
2020 		vcpu->arch.texasr = set_reg_val(id, *val);
2021 		break;
2022 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2023 		i = id - KVM_REG_PPC_TM_GPR0;
2024 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2025 		break;
2026 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2027 	{
2028 		int j;
2029 		i = id - KVM_REG_PPC_TM_VSR0;
2030 		if (i < 32)
2031 			for (j = 0; j < TS_FPRWIDTH; j++)
2032 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2033 		else
2034 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2035 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2036 			else
2037 				r = -ENXIO;
2038 		break;
2039 	}
2040 	case KVM_REG_PPC_TM_CR:
2041 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2042 		break;
2043 	case KVM_REG_PPC_TM_XER:
2044 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2045 		break;
2046 	case KVM_REG_PPC_TM_LR:
2047 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2048 		break;
2049 	case KVM_REG_PPC_TM_CTR:
2050 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2051 		break;
2052 	case KVM_REG_PPC_TM_FPSCR:
2053 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2054 		break;
2055 	case KVM_REG_PPC_TM_AMR:
2056 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2057 		break;
2058 	case KVM_REG_PPC_TM_PPR:
2059 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2060 		break;
2061 	case KVM_REG_PPC_TM_VRSAVE:
2062 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2063 		break;
2064 	case KVM_REG_PPC_TM_VSCR:
2065 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2066 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2067 		else
2068 			r = - ENXIO;
2069 		break;
2070 	case KVM_REG_PPC_TM_DSCR:
2071 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2072 		break;
2073 	case KVM_REG_PPC_TM_TAR:
2074 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2075 		break;
2076 #endif
2077 	case KVM_REG_PPC_ARCH_COMPAT:
2078 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2079 		break;
2080 	case KVM_REG_PPC_DEC_EXPIRY:
2081 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2082 			vcpu->arch.vcore->tb_offset;
2083 		break;
2084 	case KVM_REG_PPC_ONLINE:
2085 		i = set_reg_val(id, *val);
2086 		if (i && !vcpu->arch.online)
2087 			atomic_inc(&vcpu->arch.vcore->online_count);
2088 		else if (!i && vcpu->arch.online)
2089 			atomic_dec(&vcpu->arch.vcore->online_count);
2090 		vcpu->arch.online = i;
2091 		break;
2092 	case KVM_REG_PPC_PTCR:
2093 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2094 		break;
2095 	default:
2096 		r = -EINVAL;
2097 		break;
2098 	}
2099 
2100 	return r;
2101 }
2102 
2103 /*
2104  * On POWER9, threads are independent and can be in different partitions.
2105  * Therefore we consider each thread to be a subcore.
2106  * There is a restriction that all threads have to be in the same
2107  * MMU mode (radix or HPT), unfortunately, but since we only support
2108  * HPT guests on a HPT host so far, that isn't an impediment yet.
2109  */
2110 static int threads_per_vcore(struct kvm *kvm)
2111 {
2112 	if (kvm->arch.threads_indep)
2113 		return 1;
2114 	return threads_per_subcore;
2115 }
2116 
2117 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2118 {
2119 	struct kvmppc_vcore *vcore;
2120 
2121 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2122 
2123 	if (vcore == NULL)
2124 		return NULL;
2125 
2126 	spin_lock_init(&vcore->lock);
2127 	spin_lock_init(&vcore->stoltb_lock);
2128 	rcuwait_init(&vcore->wait);
2129 	vcore->preempt_tb = TB_NIL;
2130 	vcore->lpcr = kvm->arch.lpcr;
2131 	vcore->first_vcpuid = id;
2132 	vcore->kvm = kvm;
2133 	INIT_LIST_HEAD(&vcore->preempt_list);
2134 
2135 	return vcore;
2136 }
2137 
2138 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2139 static struct debugfs_timings_element {
2140 	const char *name;
2141 	size_t offset;
2142 } timings[] = {
2143 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2144 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2145 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2146 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2147 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2148 };
2149 
2150 #define N_TIMINGS	(ARRAY_SIZE(timings))
2151 
2152 struct debugfs_timings_state {
2153 	struct kvm_vcpu	*vcpu;
2154 	unsigned int	buflen;
2155 	char		buf[N_TIMINGS * 100];
2156 };
2157 
2158 static int debugfs_timings_open(struct inode *inode, struct file *file)
2159 {
2160 	struct kvm_vcpu *vcpu = inode->i_private;
2161 	struct debugfs_timings_state *p;
2162 
2163 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2164 	if (!p)
2165 		return -ENOMEM;
2166 
2167 	kvm_get_kvm(vcpu->kvm);
2168 	p->vcpu = vcpu;
2169 	file->private_data = p;
2170 
2171 	return nonseekable_open(inode, file);
2172 }
2173 
2174 static int debugfs_timings_release(struct inode *inode, struct file *file)
2175 {
2176 	struct debugfs_timings_state *p = file->private_data;
2177 
2178 	kvm_put_kvm(p->vcpu->kvm);
2179 	kfree(p);
2180 	return 0;
2181 }
2182 
2183 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2184 				    size_t len, loff_t *ppos)
2185 {
2186 	struct debugfs_timings_state *p = file->private_data;
2187 	struct kvm_vcpu *vcpu = p->vcpu;
2188 	char *s, *buf_end;
2189 	struct kvmhv_tb_accumulator tb;
2190 	u64 count;
2191 	loff_t pos;
2192 	ssize_t n;
2193 	int i, loops;
2194 	bool ok;
2195 
2196 	if (!p->buflen) {
2197 		s = p->buf;
2198 		buf_end = s + sizeof(p->buf);
2199 		for (i = 0; i < N_TIMINGS; ++i) {
2200 			struct kvmhv_tb_accumulator *acc;
2201 
2202 			acc = (struct kvmhv_tb_accumulator *)
2203 				((unsigned long)vcpu + timings[i].offset);
2204 			ok = false;
2205 			for (loops = 0; loops < 1000; ++loops) {
2206 				count = acc->seqcount;
2207 				if (!(count & 1)) {
2208 					smp_rmb();
2209 					tb = *acc;
2210 					smp_rmb();
2211 					if (count == acc->seqcount) {
2212 						ok = true;
2213 						break;
2214 					}
2215 				}
2216 				udelay(1);
2217 			}
2218 			if (!ok)
2219 				snprintf(s, buf_end - s, "%s: stuck\n",
2220 					timings[i].name);
2221 			else
2222 				snprintf(s, buf_end - s,
2223 					"%s: %llu %llu %llu %llu\n",
2224 					timings[i].name, count / 2,
2225 					tb_to_ns(tb.tb_total),
2226 					tb_to_ns(tb.tb_min),
2227 					tb_to_ns(tb.tb_max));
2228 			s += strlen(s);
2229 		}
2230 		p->buflen = s - p->buf;
2231 	}
2232 
2233 	pos = *ppos;
2234 	if (pos >= p->buflen)
2235 		return 0;
2236 	if (len > p->buflen - pos)
2237 		len = p->buflen - pos;
2238 	n = copy_to_user(buf, p->buf + pos, len);
2239 	if (n) {
2240 		if (n == len)
2241 			return -EFAULT;
2242 		len -= n;
2243 	}
2244 	*ppos = pos + len;
2245 	return len;
2246 }
2247 
2248 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2249 				     size_t len, loff_t *ppos)
2250 {
2251 	return -EACCES;
2252 }
2253 
2254 static const struct file_operations debugfs_timings_ops = {
2255 	.owner	 = THIS_MODULE,
2256 	.open	 = debugfs_timings_open,
2257 	.release = debugfs_timings_release,
2258 	.read	 = debugfs_timings_read,
2259 	.write	 = debugfs_timings_write,
2260 	.llseek	 = generic_file_llseek,
2261 };
2262 
2263 /* Create a debugfs directory for the vcpu */
2264 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2265 {
2266 	char buf[16];
2267 	struct kvm *kvm = vcpu->kvm;
2268 
2269 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2270 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2271 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2272 			    &debugfs_timings_ops);
2273 }
2274 
2275 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2276 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2277 {
2278 }
2279 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2280 
2281 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2282 {
2283 	int err;
2284 	int core;
2285 	struct kvmppc_vcore *vcore;
2286 	struct kvm *kvm;
2287 	unsigned int id;
2288 
2289 	kvm = vcpu->kvm;
2290 	id = vcpu->vcpu_id;
2291 
2292 	vcpu->arch.shared = &vcpu->arch.shregs;
2293 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2294 	/*
2295 	 * The shared struct is never shared on HV,
2296 	 * so we can always use host endianness
2297 	 */
2298 #ifdef __BIG_ENDIAN__
2299 	vcpu->arch.shared_big_endian = true;
2300 #else
2301 	vcpu->arch.shared_big_endian = false;
2302 #endif
2303 #endif
2304 	vcpu->arch.mmcr[0] = MMCR0_FC;
2305 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2306 	/* default to host PVR, since we can't spoof it */
2307 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2308 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2309 	spin_lock_init(&vcpu->arch.tbacct_lock);
2310 	vcpu->arch.busy_preempt = TB_NIL;
2311 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2312 
2313 	/*
2314 	 * Set the default HFSCR for the guest from the host value.
2315 	 * This value is only used on POWER9.
2316 	 * On POWER9, we want to virtualize the doorbell facility, so we
2317 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2318 	 * to trap and then we emulate them.
2319 	 */
2320 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2321 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2322 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2323 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2324 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2325 			vcpu->arch.hfscr |= HFSCR_TM;
2326 	}
2327 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2328 		vcpu->arch.hfscr |= HFSCR_TM;
2329 
2330 	kvmppc_mmu_book3s_hv_init(vcpu);
2331 
2332 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2333 
2334 	init_waitqueue_head(&vcpu->arch.cpu_run);
2335 
2336 	mutex_lock(&kvm->lock);
2337 	vcore = NULL;
2338 	err = -EINVAL;
2339 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2340 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2341 			pr_devel("KVM: VCPU ID too high\n");
2342 			core = KVM_MAX_VCORES;
2343 		} else {
2344 			BUG_ON(kvm->arch.smt_mode != 1);
2345 			core = kvmppc_pack_vcpu_id(kvm, id);
2346 		}
2347 	} else {
2348 		core = id / kvm->arch.smt_mode;
2349 	}
2350 	if (core < KVM_MAX_VCORES) {
2351 		vcore = kvm->arch.vcores[core];
2352 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2353 			pr_devel("KVM: collision on id %u", id);
2354 			vcore = NULL;
2355 		} else if (!vcore) {
2356 			/*
2357 			 * Take mmu_setup_lock for mutual exclusion
2358 			 * with kvmppc_update_lpcr().
2359 			 */
2360 			err = -ENOMEM;
2361 			vcore = kvmppc_vcore_create(kvm,
2362 					id & ~(kvm->arch.smt_mode - 1));
2363 			mutex_lock(&kvm->arch.mmu_setup_lock);
2364 			kvm->arch.vcores[core] = vcore;
2365 			kvm->arch.online_vcores++;
2366 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2367 		}
2368 	}
2369 	mutex_unlock(&kvm->lock);
2370 
2371 	if (!vcore)
2372 		return err;
2373 
2374 	spin_lock(&vcore->lock);
2375 	++vcore->num_threads;
2376 	spin_unlock(&vcore->lock);
2377 	vcpu->arch.vcore = vcore;
2378 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2379 	vcpu->arch.thread_cpu = -1;
2380 	vcpu->arch.prev_cpu = -1;
2381 
2382 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2383 	kvmppc_sanity_check(vcpu);
2384 
2385 	debugfs_vcpu_init(vcpu, id);
2386 
2387 	return 0;
2388 }
2389 
2390 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2391 			      unsigned long flags)
2392 {
2393 	int err;
2394 	int esmt = 0;
2395 
2396 	if (flags)
2397 		return -EINVAL;
2398 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2399 		return -EINVAL;
2400 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2401 		/*
2402 		 * On POWER8 (or POWER7), the threading mode is "strict",
2403 		 * so we pack smt_mode vcpus per vcore.
2404 		 */
2405 		if (smt_mode > threads_per_subcore)
2406 			return -EINVAL;
2407 	} else {
2408 		/*
2409 		 * On POWER9, the threading mode is "loose",
2410 		 * so each vcpu gets its own vcore.
2411 		 */
2412 		esmt = smt_mode;
2413 		smt_mode = 1;
2414 	}
2415 	mutex_lock(&kvm->lock);
2416 	err = -EBUSY;
2417 	if (!kvm->arch.online_vcores) {
2418 		kvm->arch.smt_mode = smt_mode;
2419 		kvm->arch.emul_smt_mode = esmt;
2420 		err = 0;
2421 	}
2422 	mutex_unlock(&kvm->lock);
2423 
2424 	return err;
2425 }
2426 
2427 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2428 {
2429 	if (vpa->pinned_addr)
2430 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2431 					vpa->dirty);
2432 }
2433 
2434 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2435 {
2436 	spin_lock(&vcpu->arch.vpa_update_lock);
2437 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2438 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2439 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2440 	spin_unlock(&vcpu->arch.vpa_update_lock);
2441 }
2442 
2443 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2444 {
2445 	/* Indicate we want to get back into the guest */
2446 	return 1;
2447 }
2448 
2449 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2450 {
2451 	unsigned long dec_nsec, now;
2452 
2453 	now = get_tb();
2454 	if (now > vcpu->arch.dec_expires) {
2455 		/* decrementer has already gone negative */
2456 		kvmppc_core_queue_dec(vcpu);
2457 		kvmppc_core_prepare_to_enter(vcpu);
2458 		return;
2459 	}
2460 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2461 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2462 	vcpu->arch.timer_running = 1;
2463 }
2464 
2465 extern int __kvmppc_vcore_entry(void);
2466 
2467 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2468 				   struct kvm_vcpu *vcpu)
2469 {
2470 	u64 now;
2471 
2472 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2473 		return;
2474 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2475 	now = mftb();
2476 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2477 		vcpu->arch.stolen_logged;
2478 	vcpu->arch.busy_preempt = now;
2479 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2480 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2481 	--vc->n_runnable;
2482 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2483 }
2484 
2485 static int kvmppc_grab_hwthread(int cpu)
2486 {
2487 	struct paca_struct *tpaca;
2488 	long timeout = 10000;
2489 
2490 	tpaca = paca_ptrs[cpu];
2491 
2492 	/* Ensure the thread won't go into the kernel if it wakes */
2493 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2494 	tpaca->kvm_hstate.kvm_vcore = NULL;
2495 	tpaca->kvm_hstate.napping = 0;
2496 	smp_wmb();
2497 	tpaca->kvm_hstate.hwthread_req = 1;
2498 
2499 	/*
2500 	 * If the thread is already executing in the kernel (e.g. handling
2501 	 * a stray interrupt), wait for it to get back to nap mode.
2502 	 * The smp_mb() is to ensure that our setting of hwthread_req
2503 	 * is visible before we look at hwthread_state, so if this
2504 	 * races with the code at system_reset_pSeries and the thread
2505 	 * misses our setting of hwthread_req, we are sure to see its
2506 	 * setting of hwthread_state, and vice versa.
2507 	 */
2508 	smp_mb();
2509 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2510 		if (--timeout <= 0) {
2511 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2512 			return -EBUSY;
2513 		}
2514 		udelay(1);
2515 	}
2516 	return 0;
2517 }
2518 
2519 static void kvmppc_release_hwthread(int cpu)
2520 {
2521 	struct paca_struct *tpaca;
2522 
2523 	tpaca = paca_ptrs[cpu];
2524 	tpaca->kvm_hstate.hwthread_req = 0;
2525 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2526 	tpaca->kvm_hstate.kvm_vcore = NULL;
2527 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2528 }
2529 
2530 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2531 {
2532 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2533 	cpumask_t *cpu_in_guest;
2534 	int i;
2535 
2536 	cpu = cpu_first_thread_sibling(cpu);
2537 	if (nested) {
2538 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2539 		cpu_in_guest = &nested->cpu_in_guest;
2540 	} else {
2541 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2542 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2543 	}
2544 	/*
2545 	 * Make sure setting of bit in need_tlb_flush precedes
2546 	 * testing of cpu_in_guest bits.  The matching barrier on
2547 	 * the other side is the first smp_mb() in kvmppc_run_core().
2548 	 */
2549 	smp_mb();
2550 	for (i = 0; i < threads_per_core; ++i)
2551 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2552 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2553 }
2554 
2555 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2556 {
2557 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2558 	struct kvm *kvm = vcpu->kvm;
2559 	int prev_cpu;
2560 
2561 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2562 		return;
2563 
2564 	if (nested)
2565 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2566 	else
2567 		prev_cpu = vcpu->arch.prev_cpu;
2568 
2569 	/*
2570 	 * With radix, the guest can do TLB invalidations itself,
2571 	 * and it could choose to use the local form (tlbiel) if
2572 	 * it is invalidating a translation that has only ever been
2573 	 * used on one vcpu.  However, that doesn't mean it has
2574 	 * only ever been used on one physical cpu, since vcpus
2575 	 * can move around between pcpus.  To cope with this, when
2576 	 * a vcpu moves from one pcpu to another, we need to tell
2577 	 * any vcpus running on the same core as this vcpu previously
2578 	 * ran to flush the TLB.  The TLB is shared between threads,
2579 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2580 	 */
2581 	if (prev_cpu != pcpu) {
2582 		if (prev_cpu >= 0 &&
2583 		    cpu_first_thread_sibling(prev_cpu) !=
2584 		    cpu_first_thread_sibling(pcpu))
2585 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2586 		if (nested)
2587 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2588 		else
2589 			vcpu->arch.prev_cpu = pcpu;
2590 	}
2591 }
2592 
2593 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2594 {
2595 	int cpu;
2596 	struct paca_struct *tpaca;
2597 	struct kvm *kvm = vc->kvm;
2598 
2599 	cpu = vc->pcpu;
2600 	if (vcpu) {
2601 		if (vcpu->arch.timer_running) {
2602 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2603 			vcpu->arch.timer_running = 0;
2604 		}
2605 		cpu += vcpu->arch.ptid;
2606 		vcpu->cpu = vc->pcpu;
2607 		vcpu->arch.thread_cpu = cpu;
2608 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2609 	}
2610 	tpaca = paca_ptrs[cpu];
2611 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2612 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2613 	tpaca->kvm_hstate.fake_suspend = 0;
2614 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2615 	smp_wmb();
2616 	tpaca->kvm_hstate.kvm_vcore = vc;
2617 	if (cpu != smp_processor_id())
2618 		kvmppc_ipi_thread(cpu);
2619 }
2620 
2621 static void kvmppc_wait_for_nap(int n_threads)
2622 {
2623 	int cpu = smp_processor_id();
2624 	int i, loops;
2625 
2626 	if (n_threads <= 1)
2627 		return;
2628 	for (loops = 0; loops < 1000000; ++loops) {
2629 		/*
2630 		 * Check if all threads are finished.
2631 		 * We set the vcore pointer when starting a thread
2632 		 * and the thread clears it when finished, so we look
2633 		 * for any threads that still have a non-NULL vcore ptr.
2634 		 */
2635 		for (i = 1; i < n_threads; ++i)
2636 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2637 				break;
2638 		if (i == n_threads) {
2639 			HMT_medium();
2640 			return;
2641 		}
2642 		HMT_low();
2643 	}
2644 	HMT_medium();
2645 	for (i = 1; i < n_threads; ++i)
2646 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2647 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2648 }
2649 
2650 /*
2651  * Check that we are on thread 0 and that any other threads in
2652  * this core are off-line.  Then grab the threads so they can't
2653  * enter the kernel.
2654  */
2655 static int on_primary_thread(void)
2656 {
2657 	int cpu = smp_processor_id();
2658 	int thr;
2659 
2660 	/* Are we on a primary subcore? */
2661 	if (cpu_thread_in_subcore(cpu))
2662 		return 0;
2663 
2664 	thr = 0;
2665 	while (++thr < threads_per_subcore)
2666 		if (cpu_online(cpu + thr))
2667 			return 0;
2668 
2669 	/* Grab all hw threads so they can't go into the kernel */
2670 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2671 		if (kvmppc_grab_hwthread(cpu + thr)) {
2672 			/* Couldn't grab one; let the others go */
2673 			do {
2674 				kvmppc_release_hwthread(cpu + thr);
2675 			} while (--thr > 0);
2676 			return 0;
2677 		}
2678 	}
2679 	return 1;
2680 }
2681 
2682 /*
2683  * A list of virtual cores for each physical CPU.
2684  * These are vcores that could run but their runner VCPU tasks are
2685  * (or may be) preempted.
2686  */
2687 struct preempted_vcore_list {
2688 	struct list_head	list;
2689 	spinlock_t		lock;
2690 };
2691 
2692 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2693 
2694 static void init_vcore_lists(void)
2695 {
2696 	int cpu;
2697 
2698 	for_each_possible_cpu(cpu) {
2699 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2700 		spin_lock_init(&lp->lock);
2701 		INIT_LIST_HEAD(&lp->list);
2702 	}
2703 }
2704 
2705 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2706 {
2707 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2708 
2709 	vc->vcore_state = VCORE_PREEMPT;
2710 	vc->pcpu = smp_processor_id();
2711 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2712 		spin_lock(&lp->lock);
2713 		list_add_tail(&vc->preempt_list, &lp->list);
2714 		spin_unlock(&lp->lock);
2715 	}
2716 
2717 	/* Start accumulating stolen time */
2718 	kvmppc_core_start_stolen(vc);
2719 }
2720 
2721 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2722 {
2723 	struct preempted_vcore_list *lp;
2724 
2725 	kvmppc_core_end_stolen(vc);
2726 	if (!list_empty(&vc->preempt_list)) {
2727 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2728 		spin_lock(&lp->lock);
2729 		list_del_init(&vc->preempt_list);
2730 		spin_unlock(&lp->lock);
2731 	}
2732 	vc->vcore_state = VCORE_INACTIVE;
2733 }
2734 
2735 /*
2736  * This stores information about the virtual cores currently
2737  * assigned to a physical core.
2738  */
2739 struct core_info {
2740 	int		n_subcores;
2741 	int		max_subcore_threads;
2742 	int		total_threads;
2743 	int		subcore_threads[MAX_SUBCORES];
2744 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2745 };
2746 
2747 /*
2748  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2749  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2750  */
2751 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2752 
2753 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2754 {
2755 	memset(cip, 0, sizeof(*cip));
2756 	cip->n_subcores = 1;
2757 	cip->max_subcore_threads = vc->num_threads;
2758 	cip->total_threads = vc->num_threads;
2759 	cip->subcore_threads[0] = vc->num_threads;
2760 	cip->vc[0] = vc;
2761 }
2762 
2763 static bool subcore_config_ok(int n_subcores, int n_threads)
2764 {
2765 	/*
2766 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2767 	 * split-core mode, with one thread per subcore.
2768 	 */
2769 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2770 		return n_subcores <= 4 && n_threads == 1;
2771 
2772 	/* On POWER8, can only dynamically split if unsplit to begin with */
2773 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2774 		return false;
2775 	if (n_subcores > MAX_SUBCORES)
2776 		return false;
2777 	if (n_subcores > 1) {
2778 		if (!(dynamic_mt_modes & 2))
2779 			n_subcores = 4;
2780 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2781 			return false;
2782 	}
2783 
2784 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2785 }
2786 
2787 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2788 {
2789 	vc->entry_exit_map = 0;
2790 	vc->in_guest = 0;
2791 	vc->napping_threads = 0;
2792 	vc->conferring_threads = 0;
2793 	vc->tb_offset_applied = 0;
2794 }
2795 
2796 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2797 {
2798 	int n_threads = vc->num_threads;
2799 	int sub;
2800 
2801 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2802 		return false;
2803 
2804 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2805 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2806 		return false;
2807 
2808 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2809 	if (no_mixing_hpt_and_radix &&
2810 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2811 		return false;
2812 
2813 	if (n_threads < cip->max_subcore_threads)
2814 		n_threads = cip->max_subcore_threads;
2815 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2816 		return false;
2817 	cip->max_subcore_threads = n_threads;
2818 
2819 	sub = cip->n_subcores;
2820 	++cip->n_subcores;
2821 	cip->total_threads += vc->num_threads;
2822 	cip->subcore_threads[sub] = vc->num_threads;
2823 	cip->vc[sub] = vc;
2824 	init_vcore_to_run(vc);
2825 	list_del_init(&vc->preempt_list);
2826 
2827 	return true;
2828 }
2829 
2830 /*
2831  * Work out whether it is possible to piggyback the execution of
2832  * vcore *pvc onto the execution of the other vcores described in *cip.
2833  */
2834 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2835 			  int target_threads)
2836 {
2837 	if (cip->total_threads + pvc->num_threads > target_threads)
2838 		return false;
2839 
2840 	return can_dynamic_split(pvc, cip);
2841 }
2842 
2843 static void prepare_threads(struct kvmppc_vcore *vc)
2844 {
2845 	int i;
2846 	struct kvm_vcpu *vcpu;
2847 
2848 	for_each_runnable_thread(i, vcpu, vc) {
2849 		if (signal_pending(vcpu->arch.run_task))
2850 			vcpu->arch.ret = -EINTR;
2851 		else if (vcpu->arch.vpa.update_pending ||
2852 			 vcpu->arch.slb_shadow.update_pending ||
2853 			 vcpu->arch.dtl.update_pending)
2854 			vcpu->arch.ret = RESUME_GUEST;
2855 		else
2856 			continue;
2857 		kvmppc_remove_runnable(vc, vcpu);
2858 		wake_up(&vcpu->arch.cpu_run);
2859 	}
2860 }
2861 
2862 static void collect_piggybacks(struct core_info *cip, int target_threads)
2863 {
2864 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2865 	struct kvmppc_vcore *pvc, *vcnext;
2866 
2867 	spin_lock(&lp->lock);
2868 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2869 		if (!spin_trylock(&pvc->lock))
2870 			continue;
2871 		prepare_threads(pvc);
2872 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2873 			list_del_init(&pvc->preempt_list);
2874 			if (pvc->runner == NULL) {
2875 				pvc->vcore_state = VCORE_INACTIVE;
2876 				kvmppc_core_end_stolen(pvc);
2877 			}
2878 			spin_unlock(&pvc->lock);
2879 			continue;
2880 		}
2881 		if (!can_piggyback(pvc, cip, target_threads)) {
2882 			spin_unlock(&pvc->lock);
2883 			continue;
2884 		}
2885 		kvmppc_core_end_stolen(pvc);
2886 		pvc->vcore_state = VCORE_PIGGYBACK;
2887 		if (cip->total_threads >= target_threads)
2888 			break;
2889 	}
2890 	spin_unlock(&lp->lock);
2891 }
2892 
2893 static bool recheck_signals_and_mmu(struct core_info *cip)
2894 {
2895 	int sub, i;
2896 	struct kvm_vcpu *vcpu;
2897 	struct kvmppc_vcore *vc;
2898 
2899 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2900 		vc = cip->vc[sub];
2901 		if (!vc->kvm->arch.mmu_ready)
2902 			return true;
2903 		for_each_runnable_thread(i, vcpu, vc)
2904 			if (signal_pending(vcpu->arch.run_task))
2905 				return true;
2906 	}
2907 	return false;
2908 }
2909 
2910 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2911 {
2912 	int still_running = 0, i;
2913 	u64 now;
2914 	long ret;
2915 	struct kvm_vcpu *vcpu;
2916 
2917 	spin_lock(&vc->lock);
2918 	now = get_tb();
2919 	for_each_runnable_thread(i, vcpu, vc) {
2920 		/*
2921 		 * It's safe to unlock the vcore in the loop here, because
2922 		 * for_each_runnable_thread() is safe against removal of
2923 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2924 		 * so any vcpus becoming runnable will have their arch.trap
2925 		 * set to zero and can't actually run in the guest.
2926 		 */
2927 		spin_unlock(&vc->lock);
2928 		/* cancel pending dec exception if dec is positive */
2929 		if (now < vcpu->arch.dec_expires &&
2930 		    kvmppc_core_pending_dec(vcpu))
2931 			kvmppc_core_dequeue_dec(vcpu);
2932 
2933 		trace_kvm_guest_exit(vcpu);
2934 
2935 		ret = RESUME_GUEST;
2936 		if (vcpu->arch.trap)
2937 			ret = kvmppc_handle_exit_hv(vcpu,
2938 						    vcpu->arch.run_task);
2939 
2940 		vcpu->arch.ret = ret;
2941 		vcpu->arch.trap = 0;
2942 
2943 		spin_lock(&vc->lock);
2944 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2945 			if (vcpu->arch.pending_exceptions)
2946 				kvmppc_core_prepare_to_enter(vcpu);
2947 			if (vcpu->arch.ceded)
2948 				kvmppc_set_timer(vcpu);
2949 			else
2950 				++still_running;
2951 		} else {
2952 			kvmppc_remove_runnable(vc, vcpu);
2953 			wake_up(&vcpu->arch.cpu_run);
2954 		}
2955 	}
2956 	if (!is_master) {
2957 		if (still_running > 0) {
2958 			kvmppc_vcore_preempt(vc);
2959 		} else if (vc->runner) {
2960 			vc->vcore_state = VCORE_PREEMPT;
2961 			kvmppc_core_start_stolen(vc);
2962 		} else {
2963 			vc->vcore_state = VCORE_INACTIVE;
2964 		}
2965 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2966 			/* make sure there's a candidate runner awake */
2967 			i = -1;
2968 			vcpu = next_runnable_thread(vc, &i);
2969 			wake_up(&vcpu->arch.cpu_run);
2970 		}
2971 	}
2972 	spin_unlock(&vc->lock);
2973 }
2974 
2975 /*
2976  * Clear core from the list of active host cores as we are about to
2977  * enter the guest. Only do this if it is the primary thread of the
2978  * core (not if a subcore) that is entering the guest.
2979  */
2980 static inline int kvmppc_clear_host_core(unsigned int cpu)
2981 {
2982 	int core;
2983 
2984 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2985 		return 0;
2986 	/*
2987 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2988 	 * later in kvmppc_start_thread and we need ensure that state is
2989 	 * visible to other CPUs only after we enter guest.
2990 	 */
2991 	core = cpu >> threads_shift;
2992 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2993 	return 0;
2994 }
2995 
2996 /*
2997  * Advertise this core as an active host core since we exited the guest
2998  * Only need to do this if it is the primary thread of the core that is
2999  * exiting.
3000  */
3001 static inline int kvmppc_set_host_core(unsigned int cpu)
3002 {
3003 	int core;
3004 
3005 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3006 		return 0;
3007 
3008 	/*
3009 	 * Memory barrier can be omitted here because we do a spin_unlock
3010 	 * immediately after this which provides the memory barrier.
3011 	 */
3012 	core = cpu >> threads_shift;
3013 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3014 	return 0;
3015 }
3016 
3017 static void set_irq_happened(int trap)
3018 {
3019 	switch (trap) {
3020 	case BOOK3S_INTERRUPT_EXTERNAL:
3021 		local_paca->irq_happened |= PACA_IRQ_EE;
3022 		break;
3023 	case BOOK3S_INTERRUPT_H_DOORBELL:
3024 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3025 		break;
3026 	case BOOK3S_INTERRUPT_HMI:
3027 		local_paca->irq_happened |= PACA_IRQ_HMI;
3028 		break;
3029 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3030 		replay_system_reset();
3031 		break;
3032 	}
3033 }
3034 
3035 /*
3036  * Run a set of guest threads on a physical core.
3037  * Called with vc->lock held.
3038  */
3039 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3040 {
3041 	struct kvm_vcpu *vcpu;
3042 	int i;
3043 	int srcu_idx;
3044 	struct core_info core_info;
3045 	struct kvmppc_vcore *pvc;
3046 	struct kvm_split_mode split_info, *sip;
3047 	int split, subcore_size, active;
3048 	int sub;
3049 	bool thr0_done;
3050 	unsigned long cmd_bit, stat_bit;
3051 	int pcpu, thr;
3052 	int target_threads;
3053 	int controlled_threads;
3054 	int trap;
3055 	bool is_power8;
3056 	bool hpt_on_radix;
3057 
3058 	/*
3059 	 * Remove from the list any threads that have a signal pending
3060 	 * or need a VPA update done
3061 	 */
3062 	prepare_threads(vc);
3063 
3064 	/* if the runner is no longer runnable, let the caller pick a new one */
3065 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3066 		return;
3067 
3068 	/*
3069 	 * Initialize *vc.
3070 	 */
3071 	init_vcore_to_run(vc);
3072 	vc->preempt_tb = TB_NIL;
3073 
3074 	/*
3075 	 * Number of threads that we will be controlling: the same as
3076 	 * the number of threads per subcore, except on POWER9,
3077 	 * where it's 1 because the threads are (mostly) independent.
3078 	 */
3079 	controlled_threads = threads_per_vcore(vc->kvm);
3080 
3081 	/*
3082 	 * Make sure we are running on primary threads, and that secondary
3083 	 * threads are offline.  Also check if the number of threads in this
3084 	 * guest are greater than the current system threads per guest.
3085 	 * On POWER9, we need to be not in independent-threads mode if
3086 	 * this is a HPT guest on a radix host machine where the
3087 	 * CPU threads may not be in different MMU modes.
3088 	 */
3089 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3090 		!kvm_is_radix(vc->kvm);
3091 	if (((controlled_threads > 1) &&
3092 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3093 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3094 		for_each_runnable_thread(i, vcpu, vc) {
3095 			vcpu->arch.ret = -EBUSY;
3096 			kvmppc_remove_runnable(vc, vcpu);
3097 			wake_up(&vcpu->arch.cpu_run);
3098 		}
3099 		goto out;
3100 	}
3101 
3102 	/*
3103 	 * See if we could run any other vcores on the physical core
3104 	 * along with this one.
3105 	 */
3106 	init_core_info(&core_info, vc);
3107 	pcpu = smp_processor_id();
3108 	target_threads = controlled_threads;
3109 	if (target_smt_mode && target_smt_mode < target_threads)
3110 		target_threads = target_smt_mode;
3111 	if (vc->num_threads < target_threads)
3112 		collect_piggybacks(&core_info, target_threads);
3113 
3114 	/*
3115 	 * On radix, arrange for TLB flushing if necessary.
3116 	 * This has to be done before disabling interrupts since
3117 	 * it uses smp_call_function().
3118 	 */
3119 	pcpu = smp_processor_id();
3120 	if (kvm_is_radix(vc->kvm)) {
3121 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3122 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3123 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3124 	}
3125 
3126 	/*
3127 	 * Hard-disable interrupts, and check resched flag and signals.
3128 	 * If we need to reschedule or deliver a signal, clean up
3129 	 * and return without going into the guest(s).
3130 	 * If the mmu_ready flag has been cleared, don't go into the
3131 	 * guest because that means a HPT resize operation is in progress.
3132 	 */
3133 	local_irq_disable();
3134 	hard_irq_disable();
3135 	if (lazy_irq_pending() || need_resched() ||
3136 	    recheck_signals_and_mmu(&core_info)) {
3137 		local_irq_enable();
3138 		vc->vcore_state = VCORE_INACTIVE;
3139 		/* Unlock all except the primary vcore */
3140 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3141 			pvc = core_info.vc[sub];
3142 			/* Put back on to the preempted vcores list */
3143 			kvmppc_vcore_preempt(pvc);
3144 			spin_unlock(&pvc->lock);
3145 		}
3146 		for (i = 0; i < controlled_threads; ++i)
3147 			kvmppc_release_hwthread(pcpu + i);
3148 		return;
3149 	}
3150 
3151 	kvmppc_clear_host_core(pcpu);
3152 
3153 	/* Decide on micro-threading (split-core) mode */
3154 	subcore_size = threads_per_subcore;
3155 	cmd_bit = stat_bit = 0;
3156 	split = core_info.n_subcores;
3157 	sip = NULL;
3158 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3159 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3160 
3161 	if (split > 1 || hpt_on_radix) {
3162 		sip = &split_info;
3163 		memset(&split_info, 0, sizeof(split_info));
3164 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3165 			split_info.vc[sub] = core_info.vc[sub];
3166 
3167 		if (is_power8) {
3168 			if (split == 2 && (dynamic_mt_modes & 2)) {
3169 				cmd_bit = HID0_POWER8_1TO2LPAR;
3170 				stat_bit = HID0_POWER8_2LPARMODE;
3171 			} else {
3172 				split = 4;
3173 				cmd_bit = HID0_POWER8_1TO4LPAR;
3174 				stat_bit = HID0_POWER8_4LPARMODE;
3175 			}
3176 			subcore_size = MAX_SMT_THREADS / split;
3177 			split_info.rpr = mfspr(SPRN_RPR);
3178 			split_info.pmmar = mfspr(SPRN_PMMAR);
3179 			split_info.ldbar = mfspr(SPRN_LDBAR);
3180 			split_info.subcore_size = subcore_size;
3181 		} else {
3182 			split_info.subcore_size = 1;
3183 			if (hpt_on_radix) {
3184 				/* Use the split_info for LPCR/LPIDR changes */
3185 				split_info.lpcr_req = vc->lpcr;
3186 				split_info.lpidr_req = vc->kvm->arch.lpid;
3187 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3188 				split_info.do_set = 1;
3189 			}
3190 		}
3191 
3192 		/* order writes to split_info before kvm_split_mode pointer */
3193 		smp_wmb();
3194 	}
3195 
3196 	for (thr = 0; thr < controlled_threads; ++thr) {
3197 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3198 
3199 		paca->kvm_hstate.tid = thr;
3200 		paca->kvm_hstate.napping = 0;
3201 		paca->kvm_hstate.kvm_split_mode = sip;
3202 	}
3203 
3204 	/* Initiate micro-threading (split-core) on POWER8 if required */
3205 	if (cmd_bit) {
3206 		unsigned long hid0 = mfspr(SPRN_HID0);
3207 
3208 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3209 		mb();
3210 		mtspr(SPRN_HID0, hid0);
3211 		isync();
3212 		for (;;) {
3213 			hid0 = mfspr(SPRN_HID0);
3214 			if (hid0 & stat_bit)
3215 				break;
3216 			cpu_relax();
3217 		}
3218 	}
3219 
3220 	/*
3221 	 * On POWER8, set RWMR register.
3222 	 * Since it only affects PURR and SPURR, it doesn't affect
3223 	 * the host, so we don't save/restore the host value.
3224 	 */
3225 	if (is_power8) {
3226 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3227 		int n_online = atomic_read(&vc->online_count);
3228 
3229 		/*
3230 		 * Use the 8-thread value if we're doing split-core
3231 		 * or if the vcore's online count looks bogus.
3232 		 */
3233 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3234 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3235 			rwmr_val = p8_rwmr_values[n_online];
3236 		mtspr(SPRN_RWMR, rwmr_val);
3237 	}
3238 
3239 	/* Start all the threads */
3240 	active = 0;
3241 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3242 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3243 		thr0_done = false;
3244 		active |= 1 << thr;
3245 		pvc = core_info.vc[sub];
3246 		pvc->pcpu = pcpu + thr;
3247 		for_each_runnable_thread(i, vcpu, pvc) {
3248 			kvmppc_start_thread(vcpu, pvc);
3249 			kvmppc_create_dtl_entry(vcpu, pvc);
3250 			trace_kvm_guest_enter(vcpu);
3251 			if (!vcpu->arch.ptid)
3252 				thr0_done = true;
3253 			active |= 1 << (thr + vcpu->arch.ptid);
3254 		}
3255 		/*
3256 		 * We need to start the first thread of each subcore
3257 		 * even if it doesn't have a vcpu.
3258 		 */
3259 		if (!thr0_done)
3260 			kvmppc_start_thread(NULL, pvc);
3261 	}
3262 
3263 	/*
3264 	 * Ensure that split_info.do_nap is set after setting
3265 	 * the vcore pointer in the PACA of the secondaries.
3266 	 */
3267 	smp_mb();
3268 
3269 	/*
3270 	 * When doing micro-threading, poke the inactive threads as well.
3271 	 * This gets them to the nap instruction after kvm_do_nap,
3272 	 * which reduces the time taken to unsplit later.
3273 	 * For POWER9 HPT guest on radix host, we need all the secondary
3274 	 * threads woken up so they can do the LPCR/LPIDR change.
3275 	 */
3276 	if (cmd_bit || hpt_on_radix) {
3277 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3278 		for (thr = 1; thr < threads_per_subcore; ++thr)
3279 			if (!(active & (1 << thr)))
3280 				kvmppc_ipi_thread(pcpu + thr);
3281 	}
3282 
3283 	vc->vcore_state = VCORE_RUNNING;
3284 	preempt_disable();
3285 
3286 	trace_kvmppc_run_core(vc, 0);
3287 
3288 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3289 		spin_unlock(&core_info.vc[sub]->lock);
3290 
3291 	guest_enter_irqoff();
3292 
3293 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3294 
3295 	this_cpu_disable_ftrace();
3296 
3297 	/*
3298 	 * Interrupts will be enabled once we get into the guest,
3299 	 * so tell lockdep that we're about to enable interrupts.
3300 	 */
3301 	trace_hardirqs_on();
3302 
3303 	trap = __kvmppc_vcore_entry();
3304 
3305 	trace_hardirqs_off();
3306 
3307 	this_cpu_enable_ftrace();
3308 
3309 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3310 
3311 	set_irq_happened(trap);
3312 
3313 	spin_lock(&vc->lock);
3314 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3315 	vc->vcore_state = VCORE_EXITING;
3316 
3317 	/* wait for secondary threads to finish writing their state to memory */
3318 	kvmppc_wait_for_nap(controlled_threads);
3319 
3320 	/* Return to whole-core mode if we split the core earlier */
3321 	if (cmd_bit) {
3322 		unsigned long hid0 = mfspr(SPRN_HID0);
3323 		unsigned long loops = 0;
3324 
3325 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3326 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3327 		mb();
3328 		mtspr(SPRN_HID0, hid0);
3329 		isync();
3330 		for (;;) {
3331 			hid0 = mfspr(SPRN_HID0);
3332 			if (!(hid0 & stat_bit))
3333 				break;
3334 			cpu_relax();
3335 			++loops;
3336 		}
3337 	} else if (hpt_on_radix) {
3338 		/* Wait for all threads to have seen final sync */
3339 		for (thr = 1; thr < controlled_threads; ++thr) {
3340 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3341 
3342 			while (paca->kvm_hstate.kvm_split_mode) {
3343 				HMT_low();
3344 				barrier();
3345 			}
3346 			HMT_medium();
3347 		}
3348 	}
3349 	split_info.do_nap = 0;
3350 
3351 	kvmppc_set_host_core(pcpu);
3352 
3353 	local_irq_enable();
3354 	guest_exit();
3355 
3356 	/* Let secondaries go back to the offline loop */
3357 	for (i = 0; i < controlled_threads; ++i) {
3358 		kvmppc_release_hwthread(pcpu + i);
3359 		if (sip && sip->napped[i])
3360 			kvmppc_ipi_thread(pcpu + i);
3361 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3362 	}
3363 
3364 	spin_unlock(&vc->lock);
3365 
3366 	/* make sure updates to secondary vcpu structs are visible now */
3367 	smp_mb();
3368 
3369 	preempt_enable();
3370 
3371 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3372 		pvc = core_info.vc[sub];
3373 		post_guest_process(pvc, pvc == vc);
3374 	}
3375 
3376 	spin_lock(&vc->lock);
3377 
3378  out:
3379 	vc->vcore_state = VCORE_INACTIVE;
3380 	trace_kvmppc_run_core(vc, 1);
3381 }
3382 
3383 /*
3384  * Load up hypervisor-mode registers on P9.
3385  */
3386 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3387 				     unsigned long lpcr)
3388 {
3389 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3390 	s64 hdec;
3391 	u64 tb, purr, spurr;
3392 	int trap;
3393 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3394 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3395 	unsigned long host_dawr = mfspr(SPRN_DAWR0);
3396 	unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3397 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3398 	unsigned long host_pidr = mfspr(SPRN_PID);
3399 
3400 	hdec = time_limit - mftb();
3401 	if (hdec < 0)
3402 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3403 	mtspr(SPRN_HDEC, hdec);
3404 
3405 	if (vc->tb_offset) {
3406 		u64 new_tb = mftb() + vc->tb_offset;
3407 		mtspr(SPRN_TBU40, new_tb);
3408 		tb = mftb();
3409 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3410 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3411 		vc->tb_offset_applied = vc->tb_offset;
3412 	}
3413 
3414 	if (vc->pcr)
3415 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3416 	mtspr(SPRN_DPDES, vc->dpdes);
3417 	mtspr(SPRN_VTB, vc->vtb);
3418 
3419 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3420 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3421 	mtspr(SPRN_PURR, vcpu->arch.purr);
3422 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3423 
3424 	if (dawr_enabled()) {
3425 		mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3426 		mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3427 	}
3428 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3429 	mtspr(SPRN_IC, vcpu->arch.ic);
3430 	mtspr(SPRN_PID, vcpu->arch.pid);
3431 
3432 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3433 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3434 
3435 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3436 
3437 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3438 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3439 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3440 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3441 
3442 	mtspr(SPRN_AMOR, ~0UL);
3443 
3444 	mtspr(SPRN_LPCR, lpcr);
3445 	isync();
3446 
3447 	kvmppc_xive_push_vcpu(vcpu);
3448 
3449 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3450 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3451 
3452 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3453 
3454 	/* Advance host PURR/SPURR by the amount used by guest */
3455 	purr = mfspr(SPRN_PURR);
3456 	spurr = mfspr(SPRN_SPURR);
3457 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3458 	      purr - vcpu->arch.purr);
3459 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3460 	      spurr - vcpu->arch.spurr);
3461 	vcpu->arch.purr = purr;
3462 	vcpu->arch.spurr = spurr;
3463 
3464 	vcpu->arch.ic = mfspr(SPRN_IC);
3465 	vcpu->arch.pid = mfspr(SPRN_PID);
3466 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3467 
3468 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3469 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3470 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3471 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3472 
3473 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3474 	mtspr(SPRN_PSSCR, host_psscr |
3475 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3476 	mtspr(SPRN_HFSCR, host_hfscr);
3477 	mtspr(SPRN_CIABR, host_ciabr);
3478 	mtspr(SPRN_DAWR0, host_dawr);
3479 	mtspr(SPRN_DAWRX0, host_dawrx);
3480 	mtspr(SPRN_PID, host_pidr);
3481 
3482 	/*
3483 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3484 	 * case we interrupted the guest between a tlbie and a ptesync.
3485 	 */
3486 	asm volatile("eieio; tlbsync; ptesync");
3487 
3488 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3489 	isync();
3490 
3491 	vc->dpdes = mfspr(SPRN_DPDES);
3492 	vc->vtb = mfspr(SPRN_VTB);
3493 	mtspr(SPRN_DPDES, 0);
3494 	if (vc->pcr)
3495 		mtspr(SPRN_PCR, PCR_MASK);
3496 
3497 	if (vc->tb_offset_applied) {
3498 		u64 new_tb = mftb() - vc->tb_offset_applied;
3499 		mtspr(SPRN_TBU40, new_tb);
3500 		tb = mftb();
3501 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3502 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3503 		vc->tb_offset_applied = 0;
3504 	}
3505 
3506 	mtspr(SPRN_HDEC, 0x7fffffff);
3507 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3508 
3509 	return trap;
3510 }
3511 
3512 /*
3513  * Virtual-mode guest entry for POWER9 and later when the host and
3514  * guest are both using the radix MMU.  The LPIDR has already been set.
3515  */
3516 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3517 			 unsigned long lpcr)
3518 {
3519 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3520 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3521 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3522 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3523 	unsigned long host_amr = mfspr(SPRN_AMR);
3524 	s64 dec;
3525 	u64 tb;
3526 	int trap, save_pmu;
3527 
3528 	dec = mfspr(SPRN_DEC);
3529 	tb = mftb();
3530 	if (dec < 512)
3531 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3532 	local_paca->kvm_hstate.dec_expires = dec + tb;
3533 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3534 		time_limit = local_paca->kvm_hstate.dec_expires;
3535 
3536 	vcpu->arch.ceded = 0;
3537 
3538 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3539 
3540 	kvmppc_subcore_enter_guest();
3541 
3542 	vc->entry_exit_map = 1;
3543 	vc->in_guest = 1;
3544 
3545 	if (vcpu->arch.vpa.pinned_addr) {
3546 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3547 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3548 		lp->yield_count = cpu_to_be32(yield_count);
3549 		vcpu->arch.vpa.dirty = 1;
3550 	}
3551 
3552 	if (cpu_has_feature(CPU_FTR_TM) ||
3553 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3554 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3555 
3556 	kvmhv_load_guest_pmu(vcpu);
3557 
3558 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3559 	load_fp_state(&vcpu->arch.fp);
3560 #ifdef CONFIG_ALTIVEC
3561 	load_vr_state(&vcpu->arch.vr);
3562 #endif
3563 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3564 
3565 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3566 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3567 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3568 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3569 	mtspr(SPRN_TAR, vcpu->arch.tar);
3570 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3571 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3572 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3573 	mtspr(SPRN_WORT, vcpu->arch.wort);
3574 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3575 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3576 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3577 	mtspr(SPRN_AMR, vcpu->arch.amr);
3578 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3579 
3580 	if (!(vcpu->arch.ctrl & 1))
3581 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3582 
3583 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3584 
3585 	if (kvmhv_on_pseries()) {
3586 		/*
3587 		 * We need to save and restore the guest visible part of the
3588 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3589 		 * doesn't do this for us. Note only required if pseries since
3590 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3591 		 */
3592 		unsigned long host_psscr;
3593 		/* call our hypervisor to load up HV regs and go */
3594 		struct hv_guest_state hvregs;
3595 
3596 		host_psscr = mfspr(SPRN_PSSCR_PR);
3597 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3598 		kvmhv_save_hv_regs(vcpu, &hvregs);
3599 		hvregs.lpcr = lpcr;
3600 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3601 		hvregs.version = HV_GUEST_STATE_VERSION;
3602 		if (vcpu->arch.nested) {
3603 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3604 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3605 		} else {
3606 			hvregs.lpid = vcpu->kvm->arch.lpid;
3607 			hvregs.vcpu_token = vcpu->vcpu_id;
3608 		}
3609 		hvregs.hdec_expiry = time_limit;
3610 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3611 					  __pa(&vcpu->arch.regs));
3612 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3613 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3614 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3615 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3616 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3617 		mtspr(SPRN_PSSCR_PR, host_psscr);
3618 
3619 		/* H_CEDE has to be handled now, not later */
3620 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3621 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3622 			kvmppc_nested_cede(vcpu);
3623 			kvmppc_set_gpr(vcpu, 3, 0);
3624 			trap = 0;
3625 		}
3626 	} else {
3627 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3628 	}
3629 
3630 	vcpu->arch.slb_max = 0;
3631 	dec = mfspr(SPRN_DEC);
3632 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633 		dec = (s32) dec;
3634 	tb = mftb();
3635 	vcpu->arch.dec_expires = dec + tb;
3636 	vcpu->cpu = -1;
3637 	vcpu->arch.thread_cpu = -1;
3638 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639 
3640 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643 	vcpu->arch.tar = mfspr(SPRN_TAR);
3644 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647 	vcpu->arch.wort = mfspr(SPRN_WORT);
3648 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3649 	vcpu->arch.amr = mfspr(SPRN_AMR);
3650 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652 
3653 	mtspr(SPRN_PSPB, 0);
3654 	mtspr(SPRN_WORT, 0);
3655 	mtspr(SPRN_UAMOR, 0);
3656 	mtspr(SPRN_DSCR, host_dscr);
3657 	mtspr(SPRN_TIDR, host_tidr);
3658 	mtspr(SPRN_IAMR, host_iamr);
3659 	mtspr(SPRN_PSPB, 0);
3660 
3661 	if (host_amr != vcpu->arch.amr)
3662 		mtspr(SPRN_AMR, host_amr);
3663 
3664 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665 	store_fp_state(&vcpu->arch.fp);
3666 #ifdef CONFIG_ALTIVEC
3667 	store_vr_state(&vcpu->arch.vr);
3668 #endif
3669 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3670 
3671 	if (cpu_has_feature(CPU_FTR_TM) ||
3672 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674 
3675 	save_pmu = 1;
3676 	if (vcpu->arch.vpa.pinned_addr) {
3677 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679 		lp->yield_count = cpu_to_be32(yield_count);
3680 		vcpu->arch.vpa.dirty = 1;
3681 		save_pmu = lp->pmcregs_in_use;
3682 	}
3683 	/* Must save pmu if this guest is capable of running nested guests */
3684 	save_pmu |= nesting_enabled(vcpu->kvm);
3685 
3686 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3687 
3688 	vc->entry_exit_map = 0x101;
3689 	vc->in_guest = 0;
3690 
3691 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3692 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3693 
3694 	kvmhv_load_host_pmu();
3695 
3696 	kvmppc_subcore_exit_guest();
3697 
3698 	return trap;
3699 }
3700 
3701 /*
3702  * Wait for some other vcpu thread to execute us, and
3703  * wake us up when we need to handle something in the host.
3704  */
3705 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706 				 struct kvm_vcpu *vcpu, int wait_state)
3707 {
3708 	DEFINE_WAIT(wait);
3709 
3710 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3711 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712 		spin_unlock(&vc->lock);
3713 		schedule();
3714 		spin_lock(&vc->lock);
3715 	}
3716 	finish_wait(&vcpu->arch.cpu_run, &wait);
3717 }
3718 
3719 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720 {
3721 	if (!halt_poll_ns_grow)
3722 		return;
3723 
3724 	vc->halt_poll_ns *= halt_poll_ns_grow;
3725 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3726 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3727 }
3728 
3729 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730 {
3731 	if (halt_poll_ns_shrink == 0)
3732 		vc->halt_poll_ns = 0;
3733 	else
3734 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3735 }
3736 
3737 #ifdef CONFIG_KVM_XICS
3738 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739 {
3740 	if (!xics_on_xive())
3741 		return false;
3742 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3743 		vcpu->arch.xive_saved_state.cppr;
3744 }
3745 #else
3746 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747 {
3748 	return false;
3749 }
3750 #endif /* CONFIG_KVM_XICS */
3751 
3752 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753 {
3754 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3755 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3756 		return true;
3757 
3758 	return false;
3759 }
3760 
3761 /*
3762  * Check to see if any of the runnable vcpus on the vcore have pending
3763  * exceptions or are no longer ceded
3764  */
3765 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766 {
3767 	struct kvm_vcpu *vcpu;
3768 	int i;
3769 
3770 	for_each_runnable_thread(i, vcpu, vc) {
3771 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3772 			return 1;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 /*
3779  * All the vcpus in this vcore are idle, so wait for a decrementer
3780  * or external interrupt to one of the vcpus.  vc->lock is held.
3781  */
3782 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783 {
3784 	ktime_t cur, start_poll, start_wait;
3785 	int do_sleep = 1;
3786 	u64 block_ns;
3787 
3788 	/* Poll for pending exceptions and ceded state */
3789 	cur = start_poll = ktime_get();
3790 	if (vc->halt_poll_ns) {
3791 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3792 		++vc->runner->stat.halt_attempted_poll;
3793 
3794 		vc->vcore_state = VCORE_POLLING;
3795 		spin_unlock(&vc->lock);
3796 
3797 		do {
3798 			if (kvmppc_vcore_check_block(vc)) {
3799 				do_sleep = 0;
3800 				break;
3801 			}
3802 			cur = ktime_get();
3803 		} while (single_task_running() && ktime_before(cur, stop));
3804 
3805 		spin_lock(&vc->lock);
3806 		vc->vcore_state = VCORE_INACTIVE;
3807 
3808 		if (!do_sleep) {
3809 			++vc->runner->stat.halt_successful_poll;
3810 			goto out;
3811 		}
3812 	}
3813 
3814 	prepare_to_rcuwait(&vc->wait);
3815 	set_current_state(TASK_INTERRUPTIBLE);
3816 	if (kvmppc_vcore_check_block(vc)) {
3817 		finish_rcuwait(&vc->wait);
3818 		do_sleep = 0;
3819 		/* If we polled, count this as a successful poll */
3820 		if (vc->halt_poll_ns)
3821 			++vc->runner->stat.halt_successful_poll;
3822 		goto out;
3823 	}
3824 
3825 	start_wait = ktime_get();
3826 
3827 	vc->vcore_state = VCORE_SLEEPING;
3828 	trace_kvmppc_vcore_blocked(vc, 0);
3829 	spin_unlock(&vc->lock);
3830 	schedule();
3831 	finish_rcuwait(&vc->wait);
3832 	spin_lock(&vc->lock);
3833 	vc->vcore_state = VCORE_INACTIVE;
3834 	trace_kvmppc_vcore_blocked(vc, 1);
3835 	++vc->runner->stat.halt_successful_wait;
3836 
3837 	cur = ktime_get();
3838 
3839 out:
3840 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3841 
3842 	/* Attribute wait time */
3843 	if (do_sleep) {
3844 		vc->runner->stat.halt_wait_ns +=
3845 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3846 		/* Attribute failed poll time */
3847 		if (vc->halt_poll_ns)
3848 			vc->runner->stat.halt_poll_fail_ns +=
3849 				ktime_to_ns(start_wait) -
3850 				ktime_to_ns(start_poll);
3851 	} else {
3852 		/* Attribute successful poll time */
3853 		if (vc->halt_poll_ns)
3854 			vc->runner->stat.halt_poll_success_ns +=
3855 				ktime_to_ns(cur) -
3856 				ktime_to_ns(start_poll);
3857 	}
3858 
3859 	/* Adjust poll time */
3860 	if (halt_poll_ns) {
3861 		if (block_ns <= vc->halt_poll_ns)
3862 			;
3863 		/* We slept and blocked for longer than the max halt time */
3864 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3865 			shrink_halt_poll_ns(vc);
3866 		/* We slept and our poll time is too small */
3867 		else if (vc->halt_poll_ns < halt_poll_ns &&
3868 				block_ns < halt_poll_ns)
3869 			grow_halt_poll_ns(vc);
3870 		if (vc->halt_poll_ns > halt_poll_ns)
3871 			vc->halt_poll_ns = halt_poll_ns;
3872 	} else
3873 		vc->halt_poll_ns = 0;
3874 
3875 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3876 }
3877 
3878 /*
3879  * This never fails for a radix guest, as none of the operations it does
3880  * for a radix guest can fail or have a way to report failure.
3881  * kvmhv_run_single_vcpu() relies on this fact.
3882  */
3883 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3884 {
3885 	int r = 0;
3886 	struct kvm *kvm = vcpu->kvm;
3887 
3888 	mutex_lock(&kvm->arch.mmu_setup_lock);
3889 	if (!kvm->arch.mmu_ready) {
3890 		if (!kvm_is_radix(kvm))
3891 			r = kvmppc_hv_setup_htab_rma(vcpu);
3892 		if (!r) {
3893 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3894 				kvmppc_setup_partition_table(kvm);
3895 			kvm->arch.mmu_ready = 1;
3896 		}
3897 	}
3898 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3899 	return r;
3900 }
3901 
3902 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3903 {
3904 	struct kvm_run *run = vcpu->run;
3905 	int n_ceded, i, r;
3906 	struct kvmppc_vcore *vc;
3907 	struct kvm_vcpu *v;
3908 
3909 	trace_kvmppc_run_vcpu_enter(vcpu);
3910 
3911 	run->exit_reason = 0;
3912 	vcpu->arch.ret = RESUME_GUEST;
3913 	vcpu->arch.trap = 0;
3914 	kvmppc_update_vpas(vcpu);
3915 
3916 	/*
3917 	 * Synchronize with other threads in this virtual core
3918 	 */
3919 	vc = vcpu->arch.vcore;
3920 	spin_lock(&vc->lock);
3921 	vcpu->arch.ceded = 0;
3922 	vcpu->arch.run_task = current;
3923 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3924 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3925 	vcpu->arch.busy_preempt = TB_NIL;
3926 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3927 	++vc->n_runnable;
3928 
3929 	/*
3930 	 * This happens the first time this is called for a vcpu.
3931 	 * If the vcore is already running, we may be able to start
3932 	 * this thread straight away and have it join in.
3933 	 */
3934 	if (!signal_pending(current)) {
3935 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3936 		     vc->vcore_state == VCORE_RUNNING) &&
3937 			   !VCORE_IS_EXITING(vc)) {
3938 			kvmppc_create_dtl_entry(vcpu, vc);
3939 			kvmppc_start_thread(vcpu, vc);
3940 			trace_kvm_guest_enter(vcpu);
3941 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3942 		        rcuwait_wake_up(&vc->wait);
3943 		}
3944 
3945 	}
3946 
3947 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3948 	       !signal_pending(current)) {
3949 		/* See if the MMU is ready to go */
3950 		if (!vcpu->kvm->arch.mmu_ready) {
3951 			spin_unlock(&vc->lock);
3952 			r = kvmhv_setup_mmu(vcpu);
3953 			spin_lock(&vc->lock);
3954 			if (r) {
3955 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3956 				run->fail_entry.
3957 					hardware_entry_failure_reason = 0;
3958 				vcpu->arch.ret = r;
3959 				break;
3960 			}
3961 		}
3962 
3963 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3964 			kvmppc_vcore_end_preempt(vc);
3965 
3966 		if (vc->vcore_state != VCORE_INACTIVE) {
3967 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3968 			continue;
3969 		}
3970 		for_each_runnable_thread(i, v, vc) {
3971 			kvmppc_core_prepare_to_enter(v);
3972 			if (signal_pending(v->arch.run_task)) {
3973 				kvmppc_remove_runnable(vc, v);
3974 				v->stat.signal_exits++;
3975 				v->run->exit_reason = KVM_EXIT_INTR;
3976 				v->arch.ret = -EINTR;
3977 				wake_up(&v->arch.cpu_run);
3978 			}
3979 		}
3980 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3981 			break;
3982 		n_ceded = 0;
3983 		for_each_runnable_thread(i, v, vc) {
3984 			if (!kvmppc_vcpu_woken(v))
3985 				n_ceded += v->arch.ceded;
3986 			else
3987 				v->arch.ceded = 0;
3988 		}
3989 		vc->runner = vcpu;
3990 		if (n_ceded == vc->n_runnable) {
3991 			kvmppc_vcore_blocked(vc);
3992 		} else if (need_resched()) {
3993 			kvmppc_vcore_preempt(vc);
3994 			/* Let something else run */
3995 			cond_resched_lock(&vc->lock);
3996 			if (vc->vcore_state == VCORE_PREEMPT)
3997 				kvmppc_vcore_end_preempt(vc);
3998 		} else {
3999 			kvmppc_run_core(vc);
4000 		}
4001 		vc->runner = NULL;
4002 	}
4003 
4004 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4005 	       (vc->vcore_state == VCORE_RUNNING ||
4006 		vc->vcore_state == VCORE_EXITING ||
4007 		vc->vcore_state == VCORE_PIGGYBACK))
4008 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4009 
4010 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4011 		kvmppc_vcore_end_preempt(vc);
4012 
4013 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4014 		kvmppc_remove_runnable(vc, vcpu);
4015 		vcpu->stat.signal_exits++;
4016 		run->exit_reason = KVM_EXIT_INTR;
4017 		vcpu->arch.ret = -EINTR;
4018 	}
4019 
4020 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4021 		/* Wake up some vcpu to run the core */
4022 		i = -1;
4023 		v = next_runnable_thread(vc, &i);
4024 		wake_up(&v->arch.cpu_run);
4025 	}
4026 
4027 	trace_kvmppc_run_vcpu_exit(vcpu);
4028 	spin_unlock(&vc->lock);
4029 	return vcpu->arch.ret;
4030 }
4031 
4032 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4033 			  unsigned long lpcr)
4034 {
4035 	struct kvm_run *run = vcpu->run;
4036 	int trap, r, pcpu;
4037 	int srcu_idx, lpid;
4038 	struct kvmppc_vcore *vc;
4039 	struct kvm *kvm = vcpu->kvm;
4040 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4041 
4042 	trace_kvmppc_run_vcpu_enter(vcpu);
4043 
4044 	run->exit_reason = 0;
4045 	vcpu->arch.ret = RESUME_GUEST;
4046 	vcpu->arch.trap = 0;
4047 
4048 	vc = vcpu->arch.vcore;
4049 	vcpu->arch.ceded = 0;
4050 	vcpu->arch.run_task = current;
4051 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4052 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4053 	vcpu->arch.busy_preempt = TB_NIL;
4054 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4055 	vc->runnable_threads[0] = vcpu;
4056 	vc->n_runnable = 1;
4057 	vc->runner = vcpu;
4058 
4059 	/* See if the MMU is ready to go */
4060 	if (!kvm->arch.mmu_ready)
4061 		kvmhv_setup_mmu(vcpu);
4062 
4063 	if (need_resched())
4064 		cond_resched();
4065 
4066 	kvmppc_update_vpas(vcpu);
4067 
4068 	init_vcore_to_run(vc);
4069 	vc->preempt_tb = TB_NIL;
4070 
4071 	preempt_disable();
4072 	pcpu = smp_processor_id();
4073 	vc->pcpu = pcpu;
4074 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4075 
4076 	local_irq_disable();
4077 	hard_irq_disable();
4078 	if (signal_pending(current))
4079 		goto sigpend;
4080 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4081 		goto out;
4082 
4083 	if (!nested) {
4084 		kvmppc_core_prepare_to_enter(vcpu);
4085 		if (vcpu->arch.doorbell_request) {
4086 			vc->dpdes = 1;
4087 			smp_wmb();
4088 			vcpu->arch.doorbell_request = 0;
4089 		}
4090 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4091 			     &vcpu->arch.pending_exceptions))
4092 			lpcr |= LPCR_MER;
4093 	} else if (vcpu->arch.pending_exceptions ||
4094 		   vcpu->arch.doorbell_request ||
4095 		   xive_interrupt_pending(vcpu)) {
4096 		vcpu->arch.ret = RESUME_HOST;
4097 		goto out;
4098 	}
4099 
4100 	kvmppc_clear_host_core(pcpu);
4101 
4102 	local_paca->kvm_hstate.tid = 0;
4103 	local_paca->kvm_hstate.napping = 0;
4104 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4105 	kvmppc_start_thread(vcpu, vc);
4106 	kvmppc_create_dtl_entry(vcpu, vc);
4107 	trace_kvm_guest_enter(vcpu);
4108 
4109 	vc->vcore_state = VCORE_RUNNING;
4110 	trace_kvmppc_run_core(vc, 0);
4111 
4112 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4113 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4114 		mtspr(SPRN_LPID, lpid);
4115 		isync();
4116 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4117 	}
4118 
4119 	guest_enter_irqoff();
4120 
4121 	srcu_idx = srcu_read_lock(&kvm->srcu);
4122 
4123 	this_cpu_disable_ftrace();
4124 
4125 	/* Tell lockdep that we're about to enable interrupts */
4126 	trace_hardirqs_on();
4127 
4128 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4129 	vcpu->arch.trap = trap;
4130 
4131 	trace_hardirqs_off();
4132 
4133 	this_cpu_enable_ftrace();
4134 
4135 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4136 
4137 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4138 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4139 		isync();
4140 	}
4141 
4142 	set_irq_happened(trap);
4143 
4144 	kvmppc_set_host_core(pcpu);
4145 
4146 	local_irq_enable();
4147 	guest_exit();
4148 
4149 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4150 
4151 	preempt_enable();
4152 
4153 	/*
4154 	 * cancel pending decrementer exception if DEC is now positive, or if
4155 	 * entering a nested guest in which case the decrementer is now owned
4156 	 * by L2 and the L1 decrementer is provided in hdec_expires
4157 	 */
4158 	if (kvmppc_core_pending_dec(vcpu) &&
4159 			((get_tb() < vcpu->arch.dec_expires) ||
4160 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4161 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4162 		kvmppc_core_dequeue_dec(vcpu);
4163 
4164 	trace_kvm_guest_exit(vcpu);
4165 	r = RESUME_GUEST;
4166 	if (trap) {
4167 		if (!nested)
4168 			r = kvmppc_handle_exit_hv(vcpu, current);
4169 		else
4170 			r = kvmppc_handle_nested_exit(vcpu);
4171 	}
4172 	vcpu->arch.ret = r;
4173 
4174 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4175 	    !kvmppc_vcpu_woken(vcpu)) {
4176 		kvmppc_set_timer(vcpu);
4177 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4178 			if (signal_pending(current)) {
4179 				vcpu->stat.signal_exits++;
4180 				run->exit_reason = KVM_EXIT_INTR;
4181 				vcpu->arch.ret = -EINTR;
4182 				break;
4183 			}
4184 			spin_lock(&vc->lock);
4185 			kvmppc_vcore_blocked(vc);
4186 			spin_unlock(&vc->lock);
4187 		}
4188 	}
4189 	vcpu->arch.ceded = 0;
4190 
4191 	vc->vcore_state = VCORE_INACTIVE;
4192 	trace_kvmppc_run_core(vc, 1);
4193 
4194  done:
4195 	kvmppc_remove_runnable(vc, vcpu);
4196 	trace_kvmppc_run_vcpu_exit(vcpu);
4197 
4198 	return vcpu->arch.ret;
4199 
4200  sigpend:
4201 	vcpu->stat.signal_exits++;
4202 	run->exit_reason = KVM_EXIT_INTR;
4203 	vcpu->arch.ret = -EINTR;
4204  out:
4205 	local_irq_enable();
4206 	preempt_enable();
4207 	goto done;
4208 }
4209 
4210 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4211 {
4212 	struct kvm_run *run = vcpu->run;
4213 	int r;
4214 	int srcu_idx;
4215 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4216 	unsigned long user_tar = 0;
4217 	unsigned int user_vrsave;
4218 	struct kvm *kvm;
4219 
4220 	if (!vcpu->arch.sane) {
4221 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4222 		return -EINVAL;
4223 	}
4224 
4225 	/*
4226 	 * Don't allow entry with a suspended transaction, because
4227 	 * the guest entry/exit code will lose it.
4228 	 * If the guest has TM enabled, save away their TM-related SPRs
4229 	 * (they will get restored by the TM unavailable interrupt).
4230 	 */
4231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4232 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4233 	    (current->thread.regs->msr & MSR_TM)) {
4234 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4235 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4236 			run->fail_entry.hardware_entry_failure_reason = 0;
4237 			return -EINVAL;
4238 		}
4239 		/* Enable TM so we can read the TM SPRs */
4240 		mtmsr(mfmsr() | MSR_TM);
4241 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4242 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4243 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4244 		current->thread.regs->msr &= ~MSR_TM;
4245 	}
4246 #endif
4247 
4248 	/*
4249 	 * Force online to 1 for the sake of old userspace which doesn't
4250 	 * set it.
4251 	 */
4252 	if (!vcpu->arch.online) {
4253 		atomic_inc(&vcpu->arch.vcore->online_count);
4254 		vcpu->arch.online = 1;
4255 	}
4256 
4257 	kvmppc_core_prepare_to_enter(vcpu);
4258 
4259 	/* No need to go into the guest when all we'll do is come back out */
4260 	if (signal_pending(current)) {
4261 		run->exit_reason = KVM_EXIT_INTR;
4262 		return -EINTR;
4263 	}
4264 
4265 	kvm = vcpu->kvm;
4266 	atomic_inc(&kvm->arch.vcpus_running);
4267 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4268 	smp_mb();
4269 
4270 	flush_all_to_thread(current);
4271 
4272 	/* Save userspace EBB and other register values */
4273 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4274 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4275 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4276 		ebb_regs[2] = mfspr(SPRN_BESCR);
4277 		user_tar = mfspr(SPRN_TAR);
4278 	}
4279 	user_vrsave = mfspr(SPRN_VRSAVE);
4280 
4281 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4282 	vcpu->arch.pgdir = kvm->mm->pgd;
4283 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4284 
4285 	do {
4286 		/*
4287 		 * The early POWER9 chips that can't mix radix and HPT threads
4288 		 * on the same core also need the workaround for the problem
4289 		 * where the TLB would prefetch entries in the guest exit path
4290 		 * for radix guests using the guest PIDR value and LPID 0.
4291 		 * The workaround is in the old path (kvmppc_run_vcpu())
4292 		 * but not the new path (kvmhv_run_single_vcpu()).
4293 		 */
4294 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4295 		    !no_mixing_hpt_and_radix)
4296 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4297 						  vcpu->arch.vcore->lpcr);
4298 		else
4299 			r = kvmppc_run_vcpu(vcpu);
4300 
4301 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4302 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4303 			trace_kvm_hcall_enter(vcpu);
4304 			r = kvmppc_pseries_do_hcall(vcpu);
4305 			trace_kvm_hcall_exit(vcpu, r);
4306 			kvmppc_core_prepare_to_enter(vcpu);
4307 		} else if (r == RESUME_PAGE_FAULT) {
4308 			srcu_idx = srcu_read_lock(&kvm->srcu);
4309 			r = kvmppc_book3s_hv_page_fault(vcpu,
4310 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4311 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4312 		} else if (r == RESUME_PASSTHROUGH) {
4313 			if (WARN_ON(xics_on_xive()))
4314 				r = H_SUCCESS;
4315 			else
4316 				r = kvmppc_xics_rm_complete(vcpu, 0);
4317 		}
4318 	} while (is_kvmppc_resume_guest(r));
4319 
4320 	/* Restore userspace EBB and other register values */
4321 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4322 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4323 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4324 		mtspr(SPRN_BESCR, ebb_regs[2]);
4325 		mtspr(SPRN_TAR, user_tar);
4326 		mtspr(SPRN_FSCR, current->thread.fscr);
4327 	}
4328 	mtspr(SPRN_VRSAVE, user_vrsave);
4329 
4330 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4331 	atomic_dec(&kvm->arch.vcpus_running);
4332 	return r;
4333 }
4334 
4335 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4336 				     int shift, int sllp)
4337 {
4338 	(*sps)->page_shift = shift;
4339 	(*sps)->slb_enc = sllp;
4340 	(*sps)->enc[0].page_shift = shift;
4341 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4342 	/*
4343 	 * Add 16MB MPSS support (may get filtered out by userspace)
4344 	 */
4345 	if (shift != 24) {
4346 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4347 		if (penc != -1) {
4348 			(*sps)->enc[1].page_shift = 24;
4349 			(*sps)->enc[1].pte_enc = penc;
4350 		}
4351 	}
4352 	(*sps)++;
4353 }
4354 
4355 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4356 					 struct kvm_ppc_smmu_info *info)
4357 {
4358 	struct kvm_ppc_one_seg_page_size *sps;
4359 
4360 	/*
4361 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4362 	 * POWER7 doesn't support keys for instruction accesses,
4363 	 * POWER8 and POWER9 do.
4364 	 */
4365 	info->data_keys = 32;
4366 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4367 
4368 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4369 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4370 	info->slb_size = 32;
4371 
4372 	/* We only support these sizes for now, and no muti-size segments */
4373 	sps = &info->sps[0];
4374 	kvmppc_add_seg_page_size(&sps, 12, 0);
4375 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4376 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4377 
4378 	/* If running as a nested hypervisor, we don't support HPT guests */
4379 	if (kvmhv_on_pseries())
4380 		info->flags |= KVM_PPC_NO_HASH;
4381 
4382 	return 0;
4383 }
4384 
4385 /*
4386  * Get (and clear) the dirty memory log for a memory slot.
4387  */
4388 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4389 					 struct kvm_dirty_log *log)
4390 {
4391 	struct kvm_memslots *slots;
4392 	struct kvm_memory_slot *memslot;
4393 	int i, r;
4394 	unsigned long n;
4395 	unsigned long *buf, *p;
4396 	struct kvm_vcpu *vcpu;
4397 
4398 	mutex_lock(&kvm->slots_lock);
4399 
4400 	r = -EINVAL;
4401 	if (log->slot >= KVM_USER_MEM_SLOTS)
4402 		goto out;
4403 
4404 	slots = kvm_memslots(kvm);
4405 	memslot = id_to_memslot(slots, log->slot);
4406 	r = -ENOENT;
4407 	if (!memslot || !memslot->dirty_bitmap)
4408 		goto out;
4409 
4410 	/*
4411 	 * Use second half of bitmap area because both HPT and radix
4412 	 * accumulate bits in the first half.
4413 	 */
4414 	n = kvm_dirty_bitmap_bytes(memslot);
4415 	buf = memslot->dirty_bitmap + n / sizeof(long);
4416 	memset(buf, 0, n);
4417 
4418 	if (kvm_is_radix(kvm))
4419 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4420 	else
4421 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4422 	if (r)
4423 		goto out;
4424 
4425 	/*
4426 	 * We accumulate dirty bits in the first half of the
4427 	 * memslot's dirty_bitmap area, for when pages are paged
4428 	 * out or modified by the host directly.  Pick up these
4429 	 * bits and add them to the map.
4430 	 */
4431 	p = memslot->dirty_bitmap;
4432 	for (i = 0; i < n / sizeof(long); ++i)
4433 		buf[i] |= xchg(&p[i], 0);
4434 
4435 	/* Harvest dirty bits from VPA and DTL updates */
4436 	/* Note: we never modify the SLB shadow buffer areas */
4437 	kvm_for_each_vcpu(i, vcpu, kvm) {
4438 		spin_lock(&vcpu->arch.vpa_update_lock);
4439 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4440 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4441 		spin_unlock(&vcpu->arch.vpa_update_lock);
4442 	}
4443 
4444 	r = -EFAULT;
4445 	if (copy_to_user(log->dirty_bitmap, buf, n))
4446 		goto out;
4447 
4448 	r = 0;
4449 out:
4450 	mutex_unlock(&kvm->slots_lock);
4451 	return r;
4452 }
4453 
4454 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4455 {
4456 	vfree(slot->arch.rmap);
4457 	slot->arch.rmap = NULL;
4458 }
4459 
4460 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4461 					struct kvm_memory_slot *slot,
4462 					const struct kvm_userspace_memory_region *mem,
4463 					enum kvm_mr_change change)
4464 {
4465 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4466 
4467 	if (change == KVM_MR_CREATE) {
4468 		slot->arch.rmap = vzalloc(array_size(npages,
4469 					  sizeof(*slot->arch.rmap)));
4470 		if (!slot->arch.rmap)
4471 			return -ENOMEM;
4472 	}
4473 
4474 	return 0;
4475 }
4476 
4477 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4478 				const struct kvm_userspace_memory_region *mem,
4479 				const struct kvm_memory_slot *old,
4480 				const struct kvm_memory_slot *new,
4481 				enum kvm_mr_change change)
4482 {
4483 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4484 
4485 	/*
4486 	 * If we are making a new memslot, it might make
4487 	 * some address that was previously cached as emulated
4488 	 * MMIO be no longer emulated MMIO, so invalidate
4489 	 * all the caches of emulated MMIO translations.
4490 	 */
4491 	if (npages)
4492 		atomic64_inc(&kvm->arch.mmio_update);
4493 
4494 	/*
4495 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4496 	 * have already called kvm_arch_flush_shadow_memslot() to
4497 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4498 	 * previous mappings.  So the only case to handle is
4499 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4500 	 * has been changed.
4501 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4502 	 * to get rid of any THP PTEs in the partition-scoped page tables
4503 	 * so we can track dirtiness at the page level; we flush when
4504 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4505 	 * using THP PTEs.
4506 	 */
4507 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4508 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4509 		kvmppc_radix_flush_memslot(kvm, old);
4510 	/*
4511 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4512 	 */
4513 	if (!kvm->arch.secure_guest)
4514 		return;
4515 
4516 	switch (change) {
4517 	case KVM_MR_CREATE:
4518 		if (kvmppc_uvmem_slot_init(kvm, new))
4519 			return;
4520 		uv_register_mem_slot(kvm->arch.lpid,
4521 				     new->base_gfn << PAGE_SHIFT,
4522 				     new->npages * PAGE_SIZE,
4523 				     0, new->id);
4524 		break;
4525 	case KVM_MR_DELETE:
4526 		uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4527 		kvmppc_uvmem_slot_free(kvm, old);
4528 		break;
4529 	default:
4530 		/* TODO: Handle KVM_MR_MOVE */
4531 		break;
4532 	}
4533 }
4534 
4535 /*
4536  * Update LPCR values in kvm->arch and in vcores.
4537  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4538  * of kvm->arch.lpcr update).
4539  */
4540 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4541 {
4542 	long int i;
4543 	u32 cores_done = 0;
4544 
4545 	if ((kvm->arch.lpcr & mask) == lpcr)
4546 		return;
4547 
4548 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4549 
4550 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4551 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4552 		if (!vc)
4553 			continue;
4554 		spin_lock(&vc->lock);
4555 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4556 		spin_unlock(&vc->lock);
4557 		if (++cores_done >= kvm->arch.online_vcores)
4558 			break;
4559 	}
4560 }
4561 
4562 void kvmppc_setup_partition_table(struct kvm *kvm)
4563 {
4564 	unsigned long dw0, dw1;
4565 
4566 	if (!kvm_is_radix(kvm)) {
4567 		/* PS field - page size for VRMA */
4568 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4569 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4570 		/* HTABSIZE and HTABORG fields */
4571 		dw0 |= kvm->arch.sdr1;
4572 
4573 		/* Second dword as set by userspace */
4574 		dw1 = kvm->arch.process_table;
4575 	} else {
4576 		dw0 = PATB_HR | radix__get_tree_size() |
4577 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4578 		dw1 = PATB_GR | kvm->arch.process_table;
4579 	}
4580 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4581 }
4582 
4583 /*
4584  * Set up HPT (hashed page table) and RMA (real-mode area).
4585  * Must be called with kvm->arch.mmu_setup_lock held.
4586  */
4587 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4588 {
4589 	int err = 0;
4590 	struct kvm *kvm = vcpu->kvm;
4591 	unsigned long hva;
4592 	struct kvm_memory_slot *memslot;
4593 	struct vm_area_struct *vma;
4594 	unsigned long lpcr = 0, senc;
4595 	unsigned long psize, porder;
4596 	int srcu_idx;
4597 
4598 	/* Allocate hashed page table (if not done already) and reset it */
4599 	if (!kvm->arch.hpt.virt) {
4600 		int order = KVM_DEFAULT_HPT_ORDER;
4601 		struct kvm_hpt_info info;
4602 
4603 		err = kvmppc_allocate_hpt(&info, order);
4604 		/* If we get here, it means userspace didn't specify a
4605 		 * size explicitly.  So, try successively smaller
4606 		 * sizes if the default failed. */
4607 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4608 			err  = kvmppc_allocate_hpt(&info, order);
4609 
4610 		if (err < 0) {
4611 			pr_err("KVM: Couldn't alloc HPT\n");
4612 			goto out;
4613 		}
4614 
4615 		kvmppc_set_hpt(kvm, &info);
4616 	}
4617 
4618 	/* Look up the memslot for guest physical address 0 */
4619 	srcu_idx = srcu_read_lock(&kvm->srcu);
4620 	memslot = gfn_to_memslot(kvm, 0);
4621 
4622 	/* We must have some memory at 0 by now */
4623 	err = -EINVAL;
4624 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4625 		goto out_srcu;
4626 
4627 	/* Look up the VMA for the start of this memory slot */
4628 	hva = memslot->userspace_addr;
4629 	mmap_read_lock(kvm->mm);
4630 	vma = find_vma(kvm->mm, hva);
4631 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4632 		goto up_out;
4633 
4634 	psize = vma_kernel_pagesize(vma);
4635 
4636 	mmap_read_unlock(kvm->mm);
4637 
4638 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4639 	if (psize >= 0x1000000)
4640 		psize = 0x1000000;
4641 	else if (psize >= 0x10000)
4642 		psize = 0x10000;
4643 	else
4644 		psize = 0x1000;
4645 	porder = __ilog2(psize);
4646 
4647 	senc = slb_pgsize_encoding(psize);
4648 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4649 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4650 	/* Create HPTEs in the hash page table for the VRMA */
4651 	kvmppc_map_vrma(vcpu, memslot, porder);
4652 
4653 	/* Update VRMASD field in the LPCR */
4654 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4655 		/* the -4 is to account for senc values starting at 0x10 */
4656 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4657 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4658 	}
4659 
4660 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4661 	smp_wmb();
4662 	err = 0;
4663  out_srcu:
4664 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4665  out:
4666 	return err;
4667 
4668  up_out:
4669 	mmap_read_unlock(kvm->mm);
4670 	goto out_srcu;
4671 }
4672 
4673 /*
4674  * Must be called with kvm->arch.mmu_setup_lock held and
4675  * mmu_ready = 0 and no vcpus running.
4676  */
4677 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4678 {
4679 	if (nesting_enabled(kvm))
4680 		kvmhv_release_all_nested(kvm);
4681 	kvmppc_rmap_reset(kvm);
4682 	kvm->arch.process_table = 0;
4683 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4684 	spin_lock(&kvm->mmu_lock);
4685 	kvm->arch.radix = 0;
4686 	spin_unlock(&kvm->mmu_lock);
4687 	kvmppc_free_radix(kvm);
4688 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4689 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4690 	return 0;
4691 }
4692 
4693 /*
4694  * Must be called with kvm->arch.mmu_setup_lock held and
4695  * mmu_ready = 0 and no vcpus running.
4696  */
4697 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4698 {
4699 	int err;
4700 
4701 	err = kvmppc_init_vm_radix(kvm);
4702 	if (err)
4703 		return err;
4704 	kvmppc_rmap_reset(kvm);
4705 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4706 	spin_lock(&kvm->mmu_lock);
4707 	kvm->arch.radix = 1;
4708 	spin_unlock(&kvm->mmu_lock);
4709 	kvmppc_free_hpt(&kvm->arch.hpt);
4710 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4711 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4712 	return 0;
4713 }
4714 
4715 #ifdef CONFIG_KVM_XICS
4716 /*
4717  * Allocate a per-core structure for managing state about which cores are
4718  * running in the host versus the guest and for exchanging data between
4719  * real mode KVM and CPU running in the host.
4720  * This is only done for the first VM.
4721  * The allocated structure stays even if all VMs have stopped.
4722  * It is only freed when the kvm-hv module is unloaded.
4723  * It's OK for this routine to fail, we just don't support host
4724  * core operations like redirecting H_IPI wakeups.
4725  */
4726 void kvmppc_alloc_host_rm_ops(void)
4727 {
4728 	struct kvmppc_host_rm_ops *ops;
4729 	unsigned long l_ops;
4730 	int cpu, core;
4731 	int size;
4732 
4733 	/* Not the first time here ? */
4734 	if (kvmppc_host_rm_ops_hv != NULL)
4735 		return;
4736 
4737 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4738 	if (!ops)
4739 		return;
4740 
4741 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4742 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4743 
4744 	if (!ops->rm_core) {
4745 		kfree(ops);
4746 		return;
4747 	}
4748 
4749 	cpus_read_lock();
4750 
4751 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4752 		if (!cpu_online(cpu))
4753 			continue;
4754 
4755 		core = cpu >> threads_shift;
4756 		ops->rm_core[core].rm_state.in_host = 1;
4757 	}
4758 
4759 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4760 
4761 	/*
4762 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4763 	 * to other CPUs before we assign it to the global variable.
4764 	 * Do an atomic assignment (no locks used here), but if someone
4765 	 * beats us to it, just free our copy and return.
4766 	 */
4767 	smp_wmb();
4768 	l_ops = (unsigned long) ops;
4769 
4770 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4771 		cpus_read_unlock();
4772 		kfree(ops->rm_core);
4773 		kfree(ops);
4774 		return;
4775 	}
4776 
4777 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4778 					     "ppc/kvm_book3s:prepare",
4779 					     kvmppc_set_host_core,
4780 					     kvmppc_clear_host_core);
4781 	cpus_read_unlock();
4782 }
4783 
4784 void kvmppc_free_host_rm_ops(void)
4785 {
4786 	if (kvmppc_host_rm_ops_hv) {
4787 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4788 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4789 		kfree(kvmppc_host_rm_ops_hv);
4790 		kvmppc_host_rm_ops_hv = NULL;
4791 	}
4792 }
4793 #endif
4794 
4795 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4796 {
4797 	unsigned long lpcr, lpid;
4798 	char buf[32];
4799 	int ret;
4800 
4801 	mutex_init(&kvm->arch.uvmem_lock);
4802 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4803 	mutex_init(&kvm->arch.mmu_setup_lock);
4804 
4805 	/* Allocate the guest's logical partition ID */
4806 
4807 	lpid = kvmppc_alloc_lpid();
4808 	if ((long)lpid < 0)
4809 		return -ENOMEM;
4810 	kvm->arch.lpid = lpid;
4811 
4812 	kvmppc_alloc_host_rm_ops();
4813 
4814 	kvmhv_vm_nested_init(kvm);
4815 
4816 	/*
4817 	 * Since we don't flush the TLB when tearing down a VM,
4818 	 * and this lpid might have previously been used,
4819 	 * make sure we flush on each core before running the new VM.
4820 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4821 	 * does this flush for us.
4822 	 */
4823 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4824 		cpumask_setall(&kvm->arch.need_tlb_flush);
4825 
4826 	/* Start out with the default set of hcalls enabled */
4827 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4828 	       sizeof(kvm->arch.enabled_hcalls));
4829 
4830 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4831 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4832 
4833 	/* Init LPCR for virtual RMA mode */
4834 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4835 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4836 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4837 		lpcr &= LPCR_PECE | LPCR_LPES;
4838 	} else {
4839 		lpcr = 0;
4840 	}
4841 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4842 		LPCR_VPM0 | LPCR_VPM1;
4843 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4844 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4845 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4846 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4847 		lpcr |= LPCR_ONL;
4848 	/*
4849 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4850 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4851 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4852 	 * be unnecessary but better safe than sorry in case we re-enable
4853 	 * EE in HV mode with this LPCR still set)
4854 	 */
4855 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4856 		lpcr &= ~LPCR_VPM0;
4857 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4858 
4859 		/*
4860 		 * If xive is enabled, we route 0x500 interrupts directly
4861 		 * to the guest.
4862 		 */
4863 		if (xics_on_xive())
4864 			lpcr |= LPCR_LPES;
4865 	}
4866 
4867 	/*
4868 	 * If the host uses radix, the guest starts out as radix.
4869 	 */
4870 	if (radix_enabled()) {
4871 		kvm->arch.radix = 1;
4872 		kvm->arch.mmu_ready = 1;
4873 		lpcr &= ~LPCR_VPM1;
4874 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4875 		ret = kvmppc_init_vm_radix(kvm);
4876 		if (ret) {
4877 			kvmppc_free_lpid(kvm->arch.lpid);
4878 			return ret;
4879 		}
4880 		kvmppc_setup_partition_table(kvm);
4881 	}
4882 
4883 	kvm->arch.lpcr = lpcr;
4884 
4885 	/* Initialization for future HPT resizes */
4886 	kvm->arch.resize_hpt = NULL;
4887 
4888 	/*
4889 	 * Work out how many sets the TLB has, for the use of
4890 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4891 	 */
4892 	if (radix_enabled())
4893 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4894 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4895 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4896 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4897 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4898 	else
4899 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4900 
4901 	/*
4902 	 * Track that we now have a HV mode VM active. This blocks secondary
4903 	 * CPU threads from coming online.
4904 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4905 	 * module parameter has been set to N.
4906 	 */
4907 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4908 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4909 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4910 			kvm->arch.threads_indep = true;
4911 		} else {
4912 			kvm->arch.threads_indep = indep_threads_mode;
4913 		}
4914 	}
4915 	if (!kvm->arch.threads_indep)
4916 		kvm_hv_vm_activated();
4917 
4918 	/*
4919 	 * Initialize smt_mode depending on processor.
4920 	 * POWER8 and earlier have to use "strict" threading, where
4921 	 * all vCPUs in a vcore have to run on the same (sub)core,
4922 	 * whereas on POWER9 the threads can each run a different
4923 	 * guest.
4924 	 */
4925 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4926 		kvm->arch.smt_mode = threads_per_subcore;
4927 	else
4928 		kvm->arch.smt_mode = 1;
4929 	kvm->arch.emul_smt_mode = 1;
4930 
4931 	/*
4932 	 * Create a debugfs directory for the VM
4933 	 */
4934 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4935 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4936 	kvmppc_mmu_debugfs_init(kvm);
4937 	if (radix_enabled())
4938 		kvmhv_radix_debugfs_init(kvm);
4939 
4940 	return 0;
4941 }
4942 
4943 static void kvmppc_free_vcores(struct kvm *kvm)
4944 {
4945 	long int i;
4946 
4947 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4948 		kfree(kvm->arch.vcores[i]);
4949 	kvm->arch.online_vcores = 0;
4950 }
4951 
4952 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4953 {
4954 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4955 
4956 	if (!kvm->arch.threads_indep)
4957 		kvm_hv_vm_deactivated();
4958 
4959 	kvmppc_free_vcores(kvm);
4960 
4961 
4962 	if (kvm_is_radix(kvm))
4963 		kvmppc_free_radix(kvm);
4964 	else
4965 		kvmppc_free_hpt(&kvm->arch.hpt);
4966 
4967 	/* Perform global invalidation and return lpid to the pool */
4968 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4969 		if (nesting_enabled(kvm))
4970 			kvmhv_release_all_nested(kvm);
4971 		kvm->arch.process_table = 0;
4972 		if (kvm->arch.secure_guest)
4973 			uv_svm_terminate(kvm->arch.lpid);
4974 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4975 	}
4976 
4977 	kvmppc_free_lpid(kvm->arch.lpid);
4978 
4979 	kvmppc_free_pimap(kvm);
4980 }
4981 
4982 /* We don't need to emulate any privileged instructions or dcbz */
4983 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
4984 				     unsigned int inst, int *advance)
4985 {
4986 	return EMULATE_FAIL;
4987 }
4988 
4989 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4990 					ulong spr_val)
4991 {
4992 	return EMULATE_FAIL;
4993 }
4994 
4995 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4996 					ulong *spr_val)
4997 {
4998 	return EMULATE_FAIL;
4999 }
5000 
5001 static int kvmppc_core_check_processor_compat_hv(void)
5002 {
5003 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5004 	    cpu_has_feature(CPU_FTR_ARCH_206))
5005 		return 0;
5006 
5007 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5008 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5009 		return 0;
5010 
5011 	return -EIO;
5012 }
5013 
5014 #ifdef CONFIG_KVM_XICS
5015 
5016 void kvmppc_free_pimap(struct kvm *kvm)
5017 {
5018 	kfree(kvm->arch.pimap);
5019 }
5020 
5021 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5022 {
5023 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5024 }
5025 
5026 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5027 {
5028 	struct irq_desc *desc;
5029 	struct kvmppc_irq_map *irq_map;
5030 	struct kvmppc_passthru_irqmap *pimap;
5031 	struct irq_chip *chip;
5032 	int i, rc = 0;
5033 
5034 	if (!kvm_irq_bypass)
5035 		return 1;
5036 
5037 	desc = irq_to_desc(host_irq);
5038 	if (!desc)
5039 		return -EIO;
5040 
5041 	mutex_lock(&kvm->lock);
5042 
5043 	pimap = kvm->arch.pimap;
5044 	if (pimap == NULL) {
5045 		/* First call, allocate structure to hold IRQ map */
5046 		pimap = kvmppc_alloc_pimap();
5047 		if (pimap == NULL) {
5048 			mutex_unlock(&kvm->lock);
5049 			return -ENOMEM;
5050 		}
5051 		kvm->arch.pimap = pimap;
5052 	}
5053 
5054 	/*
5055 	 * For now, we only support interrupts for which the EOI operation
5056 	 * is an OPAL call followed by a write to XIRR, since that's
5057 	 * what our real-mode EOI code does, or a XIVE interrupt
5058 	 */
5059 	chip = irq_data_get_irq_chip(&desc->irq_data);
5060 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5061 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5062 			host_irq, guest_gsi);
5063 		mutex_unlock(&kvm->lock);
5064 		return -ENOENT;
5065 	}
5066 
5067 	/*
5068 	 * See if we already have an entry for this guest IRQ number.
5069 	 * If it's mapped to a hardware IRQ number, that's an error,
5070 	 * otherwise re-use this entry.
5071 	 */
5072 	for (i = 0; i < pimap->n_mapped; i++) {
5073 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5074 			if (pimap->mapped[i].r_hwirq) {
5075 				mutex_unlock(&kvm->lock);
5076 				return -EINVAL;
5077 			}
5078 			break;
5079 		}
5080 	}
5081 
5082 	if (i == KVMPPC_PIRQ_MAPPED) {
5083 		mutex_unlock(&kvm->lock);
5084 		return -EAGAIN;		/* table is full */
5085 	}
5086 
5087 	irq_map = &pimap->mapped[i];
5088 
5089 	irq_map->v_hwirq = guest_gsi;
5090 	irq_map->desc = desc;
5091 
5092 	/*
5093 	 * Order the above two stores before the next to serialize with
5094 	 * the KVM real mode handler.
5095 	 */
5096 	smp_wmb();
5097 	irq_map->r_hwirq = desc->irq_data.hwirq;
5098 
5099 	if (i == pimap->n_mapped)
5100 		pimap->n_mapped++;
5101 
5102 	if (xics_on_xive())
5103 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5104 	else
5105 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5106 	if (rc)
5107 		irq_map->r_hwirq = 0;
5108 
5109 	mutex_unlock(&kvm->lock);
5110 
5111 	return 0;
5112 }
5113 
5114 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5115 {
5116 	struct irq_desc *desc;
5117 	struct kvmppc_passthru_irqmap *pimap;
5118 	int i, rc = 0;
5119 
5120 	if (!kvm_irq_bypass)
5121 		return 0;
5122 
5123 	desc = irq_to_desc(host_irq);
5124 	if (!desc)
5125 		return -EIO;
5126 
5127 	mutex_lock(&kvm->lock);
5128 	if (!kvm->arch.pimap)
5129 		goto unlock;
5130 
5131 	pimap = kvm->arch.pimap;
5132 
5133 	for (i = 0; i < pimap->n_mapped; i++) {
5134 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5135 			break;
5136 	}
5137 
5138 	if (i == pimap->n_mapped) {
5139 		mutex_unlock(&kvm->lock);
5140 		return -ENODEV;
5141 	}
5142 
5143 	if (xics_on_xive())
5144 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5145 	else
5146 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5147 
5148 	/* invalidate the entry (what do do on error from the above ?) */
5149 	pimap->mapped[i].r_hwirq = 0;
5150 
5151 	/*
5152 	 * We don't free this structure even when the count goes to
5153 	 * zero. The structure is freed when we destroy the VM.
5154 	 */
5155  unlock:
5156 	mutex_unlock(&kvm->lock);
5157 	return rc;
5158 }
5159 
5160 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5161 					     struct irq_bypass_producer *prod)
5162 {
5163 	int ret = 0;
5164 	struct kvm_kernel_irqfd *irqfd =
5165 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5166 
5167 	irqfd->producer = prod;
5168 
5169 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5170 	if (ret)
5171 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5172 			prod->irq, irqfd->gsi, ret);
5173 
5174 	return ret;
5175 }
5176 
5177 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5178 					      struct irq_bypass_producer *prod)
5179 {
5180 	int ret;
5181 	struct kvm_kernel_irqfd *irqfd =
5182 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5183 
5184 	irqfd->producer = NULL;
5185 
5186 	/*
5187 	 * When producer of consumer is unregistered, we change back to
5188 	 * default external interrupt handling mode - KVM real mode
5189 	 * will switch back to host.
5190 	 */
5191 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5192 	if (ret)
5193 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5194 			prod->irq, irqfd->gsi, ret);
5195 }
5196 #endif
5197 
5198 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5199 				 unsigned int ioctl, unsigned long arg)
5200 {
5201 	struct kvm *kvm __maybe_unused = filp->private_data;
5202 	void __user *argp = (void __user *)arg;
5203 	long r;
5204 
5205 	switch (ioctl) {
5206 
5207 	case KVM_PPC_ALLOCATE_HTAB: {
5208 		u32 htab_order;
5209 
5210 		r = -EFAULT;
5211 		if (get_user(htab_order, (u32 __user *)argp))
5212 			break;
5213 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5214 		if (r)
5215 			break;
5216 		r = 0;
5217 		break;
5218 	}
5219 
5220 	case KVM_PPC_GET_HTAB_FD: {
5221 		struct kvm_get_htab_fd ghf;
5222 
5223 		r = -EFAULT;
5224 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5225 			break;
5226 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5227 		break;
5228 	}
5229 
5230 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5231 		struct kvm_ppc_resize_hpt rhpt;
5232 
5233 		r = -EFAULT;
5234 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5235 			break;
5236 
5237 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5238 		break;
5239 	}
5240 
5241 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5242 		struct kvm_ppc_resize_hpt rhpt;
5243 
5244 		r = -EFAULT;
5245 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5246 			break;
5247 
5248 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5249 		break;
5250 	}
5251 
5252 	default:
5253 		r = -ENOTTY;
5254 	}
5255 
5256 	return r;
5257 }
5258 
5259 /*
5260  * List of hcall numbers to enable by default.
5261  * For compatibility with old userspace, we enable by default
5262  * all hcalls that were implemented before the hcall-enabling
5263  * facility was added.  Note this list should not include H_RTAS.
5264  */
5265 static unsigned int default_hcall_list[] = {
5266 	H_REMOVE,
5267 	H_ENTER,
5268 	H_READ,
5269 	H_PROTECT,
5270 	H_BULK_REMOVE,
5271 	H_GET_TCE,
5272 	H_PUT_TCE,
5273 	H_SET_DABR,
5274 	H_SET_XDABR,
5275 	H_CEDE,
5276 	H_PROD,
5277 	H_CONFER,
5278 	H_REGISTER_VPA,
5279 #ifdef CONFIG_KVM_XICS
5280 	H_EOI,
5281 	H_CPPR,
5282 	H_IPI,
5283 	H_IPOLL,
5284 	H_XIRR,
5285 	H_XIRR_X,
5286 #endif
5287 	0
5288 };
5289 
5290 static void init_default_hcalls(void)
5291 {
5292 	int i;
5293 	unsigned int hcall;
5294 
5295 	for (i = 0; default_hcall_list[i]; ++i) {
5296 		hcall = default_hcall_list[i];
5297 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5298 		__set_bit(hcall / 4, default_enabled_hcalls);
5299 	}
5300 }
5301 
5302 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5303 {
5304 	unsigned long lpcr;
5305 	int radix;
5306 	int err;
5307 
5308 	/* If not on a POWER9, reject it */
5309 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5310 		return -ENODEV;
5311 
5312 	/* If any unknown flags set, reject it */
5313 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5314 		return -EINVAL;
5315 
5316 	/* GR (guest radix) bit in process_table field must match */
5317 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5318 	if (!!(cfg->process_table & PATB_GR) != radix)
5319 		return -EINVAL;
5320 
5321 	/* Process table size field must be reasonable, i.e. <= 24 */
5322 	if ((cfg->process_table & PRTS_MASK) > 24)
5323 		return -EINVAL;
5324 
5325 	/* We can change a guest to/from radix now, if the host is radix */
5326 	if (radix && !radix_enabled())
5327 		return -EINVAL;
5328 
5329 	/* If we're a nested hypervisor, we currently only support radix */
5330 	if (kvmhv_on_pseries() && !radix)
5331 		return -EINVAL;
5332 
5333 	mutex_lock(&kvm->arch.mmu_setup_lock);
5334 	if (radix != kvm_is_radix(kvm)) {
5335 		if (kvm->arch.mmu_ready) {
5336 			kvm->arch.mmu_ready = 0;
5337 			/* order mmu_ready vs. vcpus_running */
5338 			smp_mb();
5339 			if (atomic_read(&kvm->arch.vcpus_running)) {
5340 				kvm->arch.mmu_ready = 1;
5341 				err = -EBUSY;
5342 				goto out_unlock;
5343 			}
5344 		}
5345 		if (radix)
5346 			err = kvmppc_switch_mmu_to_radix(kvm);
5347 		else
5348 			err = kvmppc_switch_mmu_to_hpt(kvm);
5349 		if (err)
5350 			goto out_unlock;
5351 	}
5352 
5353 	kvm->arch.process_table = cfg->process_table;
5354 	kvmppc_setup_partition_table(kvm);
5355 
5356 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5357 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5358 	err = 0;
5359 
5360  out_unlock:
5361 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5362 	return err;
5363 }
5364 
5365 static int kvmhv_enable_nested(struct kvm *kvm)
5366 {
5367 	if (!nested)
5368 		return -EPERM;
5369 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5370 		return -ENODEV;
5371 
5372 	/* kvm == NULL means the caller is testing if the capability exists */
5373 	if (kvm)
5374 		kvm->arch.nested_enable = true;
5375 	return 0;
5376 }
5377 
5378 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5379 				 int size)
5380 {
5381 	int rc = -EINVAL;
5382 
5383 	if (kvmhv_vcpu_is_radix(vcpu)) {
5384 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5385 
5386 		if (rc > 0)
5387 			rc = -EINVAL;
5388 	}
5389 
5390 	/* For now quadrants are the only way to access nested guest memory */
5391 	if (rc && vcpu->arch.nested)
5392 		rc = -EAGAIN;
5393 
5394 	return rc;
5395 }
5396 
5397 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5398 				int size)
5399 {
5400 	int rc = -EINVAL;
5401 
5402 	if (kvmhv_vcpu_is_radix(vcpu)) {
5403 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5404 
5405 		if (rc > 0)
5406 			rc = -EINVAL;
5407 	}
5408 
5409 	/* For now quadrants are the only way to access nested guest memory */
5410 	if (rc && vcpu->arch.nested)
5411 		rc = -EAGAIN;
5412 
5413 	return rc;
5414 }
5415 
5416 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5417 {
5418 	unpin_vpa(kvm, vpa);
5419 	vpa->gpa = 0;
5420 	vpa->pinned_addr = NULL;
5421 	vpa->dirty = false;
5422 	vpa->update_pending = 0;
5423 }
5424 
5425 /*
5426  * Enable a guest to become a secure VM, or test whether
5427  * that could be enabled.
5428  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5429  * tested (kvm == NULL) or enabled (kvm != NULL).
5430  */
5431 static int kvmhv_enable_svm(struct kvm *kvm)
5432 {
5433 	if (!kvmppc_uvmem_available())
5434 		return -EINVAL;
5435 	if (kvm)
5436 		kvm->arch.svm_enabled = 1;
5437 	return 0;
5438 }
5439 
5440 /*
5441  *  IOCTL handler to turn off secure mode of guest
5442  *
5443  * - Release all device pages
5444  * - Issue ucall to terminate the guest on the UV side
5445  * - Unpin the VPA pages.
5446  * - Reinit the partition scoped page tables
5447  */
5448 static int kvmhv_svm_off(struct kvm *kvm)
5449 {
5450 	struct kvm_vcpu *vcpu;
5451 	int mmu_was_ready;
5452 	int srcu_idx;
5453 	int ret = 0;
5454 	int i;
5455 
5456 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5457 		return ret;
5458 
5459 	mutex_lock(&kvm->arch.mmu_setup_lock);
5460 	mmu_was_ready = kvm->arch.mmu_ready;
5461 	if (kvm->arch.mmu_ready) {
5462 		kvm->arch.mmu_ready = 0;
5463 		/* order mmu_ready vs. vcpus_running */
5464 		smp_mb();
5465 		if (atomic_read(&kvm->arch.vcpus_running)) {
5466 			kvm->arch.mmu_ready = 1;
5467 			ret = -EBUSY;
5468 			goto out;
5469 		}
5470 	}
5471 
5472 	srcu_idx = srcu_read_lock(&kvm->srcu);
5473 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5474 		struct kvm_memory_slot *memslot;
5475 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5476 
5477 		if (!slots)
5478 			continue;
5479 
5480 		kvm_for_each_memslot(memslot, slots) {
5481 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5482 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5483 		}
5484 	}
5485 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5486 
5487 	ret = uv_svm_terminate(kvm->arch.lpid);
5488 	if (ret != U_SUCCESS) {
5489 		ret = -EINVAL;
5490 		goto out;
5491 	}
5492 
5493 	/*
5494 	 * When secure guest is reset, all the guest pages are sent
5495 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5496 	 * chance to run and unpin their VPA pages. Unpinning of all
5497 	 * VPA pages is done here explicitly so that VPA pages
5498 	 * can be migrated to the secure side.
5499 	 *
5500 	 * This is required to for the secure SMP guest to reboot
5501 	 * correctly.
5502 	 */
5503 	kvm_for_each_vcpu(i, vcpu, kvm) {
5504 		spin_lock(&vcpu->arch.vpa_update_lock);
5505 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5506 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5507 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5508 		spin_unlock(&vcpu->arch.vpa_update_lock);
5509 	}
5510 
5511 	kvmppc_setup_partition_table(kvm);
5512 	kvm->arch.secure_guest = 0;
5513 	kvm->arch.mmu_ready = mmu_was_ready;
5514 out:
5515 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5516 	return ret;
5517 }
5518 
5519 static struct kvmppc_ops kvm_ops_hv = {
5520 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5521 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5522 	.get_one_reg = kvmppc_get_one_reg_hv,
5523 	.set_one_reg = kvmppc_set_one_reg_hv,
5524 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5525 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5526 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5527 	.set_msr     = kvmppc_set_msr_hv,
5528 	.vcpu_run    = kvmppc_vcpu_run_hv,
5529 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5530 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5531 	.check_requests = kvmppc_core_check_requests_hv,
5532 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5533 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5534 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5535 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5536 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5537 	.age_hva  = kvm_age_hva_hv,
5538 	.test_age_hva = kvm_test_age_hva_hv,
5539 	.set_spte_hva = kvm_set_spte_hva_hv,
5540 	.free_memslot = kvmppc_core_free_memslot_hv,
5541 	.init_vm =  kvmppc_core_init_vm_hv,
5542 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5543 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5544 	.emulate_op = kvmppc_core_emulate_op_hv,
5545 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5546 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5547 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5548 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5549 	.hcall_implemented = kvmppc_hcall_impl_hv,
5550 #ifdef CONFIG_KVM_XICS
5551 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5552 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5553 #endif
5554 	.configure_mmu = kvmhv_configure_mmu,
5555 	.get_rmmu_info = kvmhv_get_rmmu_info,
5556 	.set_smt_mode = kvmhv_set_smt_mode,
5557 	.enable_nested = kvmhv_enable_nested,
5558 	.load_from_eaddr = kvmhv_load_from_eaddr,
5559 	.store_to_eaddr = kvmhv_store_to_eaddr,
5560 	.enable_svm = kvmhv_enable_svm,
5561 	.svm_off = kvmhv_svm_off,
5562 };
5563 
5564 static int kvm_init_subcore_bitmap(void)
5565 {
5566 	int i, j;
5567 	int nr_cores = cpu_nr_cores();
5568 	struct sibling_subcore_state *sibling_subcore_state;
5569 
5570 	for (i = 0; i < nr_cores; i++) {
5571 		int first_cpu = i * threads_per_core;
5572 		int node = cpu_to_node(first_cpu);
5573 
5574 		/* Ignore if it is already allocated. */
5575 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5576 			continue;
5577 
5578 		sibling_subcore_state =
5579 			kzalloc_node(sizeof(struct sibling_subcore_state),
5580 							GFP_KERNEL, node);
5581 		if (!sibling_subcore_state)
5582 			return -ENOMEM;
5583 
5584 
5585 		for (j = 0; j < threads_per_core; j++) {
5586 			int cpu = first_cpu + j;
5587 
5588 			paca_ptrs[cpu]->sibling_subcore_state =
5589 						sibling_subcore_state;
5590 		}
5591 	}
5592 	return 0;
5593 }
5594 
5595 static int kvmppc_radix_possible(void)
5596 {
5597 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5598 }
5599 
5600 static int kvmppc_book3s_init_hv(void)
5601 {
5602 	int r;
5603 
5604 	if (!tlbie_capable) {
5605 		pr_err("KVM-HV: Host does not support TLBIE\n");
5606 		return -ENODEV;
5607 	}
5608 
5609 	/*
5610 	 * FIXME!! Do we need to check on all cpus ?
5611 	 */
5612 	r = kvmppc_core_check_processor_compat_hv();
5613 	if (r < 0)
5614 		return -ENODEV;
5615 
5616 	r = kvmhv_nested_init();
5617 	if (r)
5618 		return r;
5619 
5620 	r = kvm_init_subcore_bitmap();
5621 	if (r)
5622 		return r;
5623 
5624 	/*
5625 	 * We need a way of accessing the XICS interrupt controller,
5626 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5627 	 * indirectly, via OPAL.
5628 	 */
5629 #ifdef CONFIG_SMP
5630 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5631 	    !local_paca->kvm_hstate.xics_phys) {
5632 		struct device_node *np;
5633 
5634 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5635 		if (!np) {
5636 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5637 			return -ENODEV;
5638 		}
5639 		/* presence of intc confirmed - node can be dropped again */
5640 		of_node_put(np);
5641 	}
5642 #endif
5643 
5644 	kvm_ops_hv.owner = THIS_MODULE;
5645 	kvmppc_hv_ops = &kvm_ops_hv;
5646 
5647 	init_default_hcalls();
5648 
5649 	init_vcore_lists();
5650 
5651 	r = kvmppc_mmu_hv_init();
5652 	if (r)
5653 		return r;
5654 
5655 	if (kvmppc_radix_possible())
5656 		r = kvmppc_radix_init();
5657 
5658 	/*
5659 	 * POWER9 chips before version 2.02 can't have some threads in
5660 	 * HPT mode and some in radix mode on the same core.
5661 	 */
5662 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5663 		unsigned int pvr = mfspr(SPRN_PVR);
5664 		if ((pvr >> 16) == PVR_POWER9 &&
5665 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5666 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5667 			no_mixing_hpt_and_radix = true;
5668 	}
5669 
5670 	r = kvmppc_uvmem_init();
5671 	if (r < 0)
5672 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5673 
5674 	return r;
5675 }
5676 
5677 static void kvmppc_book3s_exit_hv(void)
5678 {
5679 	kvmppc_uvmem_free();
5680 	kvmppc_free_host_rm_ops();
5681 	if (kvmppc_radix_possible())
5682 		kvmppc_radix_exit();
5683 	kvmppc_hv_ops = NULL;
5684 	kvmhv_nested_exit();
5685 }
5686 
5687 module_init(kvmppc_book3s_init_hv);
5688 module_exit(kvmppc_book3s_exit_hv);
5689 MODULE_LICENSE("GPL");
5690 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5691 MODULE_ALIAS("devname:kvm");
5692