xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 413d6ed3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 #include <asm/dtl.h>
79 
80 #include "book3s.h"
81 
82 #define CREATE_TRACE_POINTS
83 #include "trace_hv.h"
84 
85 /* #define EXIT_DEBUG */
86 /* #define EXIT_DEBUG_SIMPLE */
87 /* #define EXIT_DEBUG_INT */
88 
89 /* Used to indicate that a guest page fault needs to be handled */
90 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
91 /* Used to indicate that a guest passthrough interrupt needs to be handled */
92 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
93 
94 /* Used as a "null" value for timebase values */
95 #define TB_NIL	(~(u64)0)
96 
97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
98 
99 static int dynamic_mt_modes = 6;
100 module_param(dynamic_mt_modes, int, 0644);
101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
102 static int target_smt_mode;
103 module_param(target_smt_mode, int, 0644);
104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
105 
106 static bool one_vm_per_core;
107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
109 
110 #ifdef CONFIG_KVM_XICS
111 static const struct kernel_param_ops module_param_ops = {
112 	.set = param_set_int,
113 	.get = param_get_int,
114 };
115 
116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118 
119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121 #endif
122 
123 /* If set, guests are allowed to create and control nested guests */
124 static bool nested = true;
125 module_param(nested, bool, S_IRUGO | S_IWUSR);
126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127 
128 static inline bool nesting_enabled(struct kvm *kvm)
129 {
130 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
131 }
132 
133 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
134 
135 /*
136  * RWMR values for POWER8.  These control the rate at which PURR
137  * and SPURR count and should be set according to the number of
138  * online threads in the vcore being run.
139  */
140 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
141 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
142 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
143 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
144 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
146 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
148 
149 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
150 	RWMR_RPA_P8_1THREAD,
151 	RWMR_RPA_P8_1THREAD,
152 	RWMR_RPA_P8_2THREAD,
153 	RWMR_RPA_P8_3THREAD,
154 	RWMR_RPA_P8_4THREAD,
155 	RWMR_RPA_P8_5THREAD,
156 	RWMR_RPA_P8_6THREAD,
157 	RWMR_RPA_P8_7THREAD,
158 	RWMR_RPA_P8_8THREAD,
159 };
160 
161 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
162 		int *ip)
163 {
164 	int i = *ip;
165 	struct kvm_vcpu *vcpu;
166 
167 	while (++i < MAX_SMT_THREADS) {
168 		vcpu = READ_ONCE(vc->runnable_threads[i]);
169 		if (vcpu) {
170 			*ip = i;
171 			return vcpu;
172 		}
173 	}
174 	return NULL;
175 }
176 
177 /* Used to traverse the list of runnable threads for a given vcore */
178 #define for_each_runnable_thread(i, vcpu, vc) \
179 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
180 
181 static bool kvmppc_ipi_thread(int cpu)
182 {
183 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
184 
185 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
186 	if (kvmhv_on_pseries())
187 		return false;
188 
189 	/* On POWER9 we can use msgsnd to IPI any cpu */
190 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
191 		msg |= get_hard_smp_processor_id(cpu);
192 		smp_mb();
193 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
194 		return true;
195 	}
196 
197 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
198 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
199 		preempt_disable();
200 		if (cpu_first_thread_sibling(cpu) ==
201 		    cpu_first_thread_sibling(smp_processor_id())) {
202 			msg |= cpu_thread_in_core(cpu);
203 			smp_mb();
204 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
205 			preempt_enable();
206 			return true;
207 		}
208 		preempt_enable();
209 	}
210 
211 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
212 	if (cpu >= 0 && cpu < nr_cpu_ids) {
213 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
214 			xics_wake_cpu(cpu);
215 			return true;
216 		}
217 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
218 		return true;
219 	}
220 #endif
221 
222 	return false;
223 }
224 
225 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
226 {
227 	int cpu;
228 	struct rcuwait *waitp;
229 
230 	waitp = kvm_arch_vcpu_get_wait(vcpu);
231 	if (rcuwait_wake_up(waitp))
232 		++vcpu->stat.halt_wakeup;
233 
234 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
235 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
236 		return;
237 
238 	/* CPU points to the first thread of the core */
239 	cpu = vcpu->cpu;
240 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
241 		smp_send_reschedule(cpu);
242 }
243 
244 /*
245  * We use the vcpu_load/put functions to measure stolen time.
246  * Stolen time is counted as time when either the vcpu is able to
247  * run as part of a virtual core, but the task running the vcore
248  * is preempted or sleeping, or when the vcpu needs something done
249  * in the kernel by the task running the vcpu, but that task is
250  * preempted or sleeping.  Those two things have to be counted
251  * separately, since one of the vcpu tasks will take on the job
252  * of running the core, and the other vcpu tasks in the vcore will
253  * sleep waiting for it to do that, but that sleep shouldn't count
254  * as stolen time.
255  *
256  * Hence we accumulate stolen time when the vcpu can run as part of
257  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
258  * needs its task to do other things in the kernel (for example,
259  * service a page fault) in busy_stolen.  We don't accumulate
260  * stolen time for a vcore when it is inactive, or for a vcpu
261  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
262  * a misnomer; it means that the vcpu task is not executing in
263  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
264  * the kernel.  We don't have any way of dividing up that time
265  * between time that the vcpu is genuinely stopped, time that
266  * the task is actively working on behalf of the vcpu, and time
267  * that the task is preempted, so we don't count any of it as
268  * stolen.
269  *
270  * Updates to busy_stolen are protected by arch.tbacct_lock;
271  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
272  * lock.  The stolen times are measured in units of timebase ticks.
273  * (Note that the != TB_NIL checks below are purely defensive;
274  * they should never fail.)
275  */
276 
277 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
278 {
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&vc->stoltb_lock, flags);
282 	vc->preempt_tb = mftb();
283 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
284 }
285 
286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
287 {
288 	unsigned long flags;
289 
290 	spin_lock_irqsave(&vc->stoltb_lock, flags);
291 	if (vc->preempt_tb != TB_NIL) {
292 		vc->stolen_tb += mftb() - vc->preempt_tb;
293 		vc->preempt_tb = TB_NIL;
294 	}
295 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
296 }
297 
298 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
299 {
300 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
301 	unsigned long flags;
302 
303 	/*
304 	 * We can test vc->runner without taking the vcore lock,
305 	 * because only this task ever sets vc->runner to this
306 	 * vcpu, and once it is set to this vcpu, only this task
307 	 * ever sets it to NULL.
308 	 */
309 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
310 		kvmppc_core_end_stolen(vc);
311 
312 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
313 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
314 	    vcpu->arch.busy_preempt != TB_NIL) {
315 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
316 		vcpu->arch.busy_preempt = TB_NIL;
317 	}
318 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
319 }
320 
321 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
322 {
323 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
324 	unsigned long flags;
325 
326 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
327 		kvmppc_core_start_stolen(vc);
328 
329 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
330 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
331 		vcpu->arch.busy_preempt = mftb();
332 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
333 }
334 
335 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
336 {
337 	vcpu->arch.pvr = pvr;
338 }
339 
340 /* Dummy value used in computing PCR value below */
341 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
342 
343 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
344 {
345 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
346 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
347 
348 	/* We can (emulate) our own architecture version and anything older */
349 	if (cpu_has_feature(CPU_FTR_ARCH_31))
350 		host_pcr_bit = PCR_ARCH_31;
351 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
352 		host_pcr_bit = PCR_ARCH_300;
353 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
354 		host_pcr_bit = PCR_ARCH_207;
355 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
356 		host_pcr_bit = PCR_ARCH_206;
357 	else
358 		host_pcr_bit = PCR_ARCH_205;
359 
360 	/* Determine lowest PCR bit needed to run guest in given PVR level */
361 	guest_pcr_bit = host_pcr_bit;
362 	if (arch_compat) {
363 		switch (arch_compat) {
364 		case PVR_ARCH_205:
365 			guest_pcr_bit = PCR_ARCH_205;
366 			break;
367 		case PVR_ARCH_206:
368 		case PVR_ARCH_206p:
369 			guest_pcr_bit = PCR_ARCH_206;
370 			break;
371 		case PVR_ARCH_207:
372 			guest_pcr_bit = PCR_ARCH_207;
373 			break;
374 		case PVR_ARCH_300:
375 			guest_pcr_bit = PCR_ARCH_300;
376 			break;
377 		case PVR_ARCH_31:
378 			guest_pcr_bit = PCR_ARCH_31;
379 			break;
380 		default:
381 			return -EINVAL;
382 		}
383 	}
384 
385 	/* Check requested PCR bits don't exceed our capabilities */
386 	if (guest_pcr_bit > host_pcr_bit)
387 		return -EINVAL;
388 
389 	spin_lock(&vc->lock);
390 	vc->arch_compat = arch_compat;
391 	/*
392 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
393 	 * Also set all reserved PCR bits
394 	 */
395 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
396 	spin_unlock(&vc->lock);
397 
398 	return 0;
399 }
400 
401 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
402 {
403 	int r;
404 
405 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
406 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
407 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
408 	for (r = 0; r < 16; ++r)
409 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
410 		       r, kvmppc_get_gpr(vcpu, r),
411 		       r+16, kvmppc_get_gpr(vcpu, r+16));
412 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
413 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
414 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
415 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
416 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
417 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
418 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
419 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
420 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
421 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
422 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
423 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
424 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
425 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
426 	for (r = 0; r < vcpu->arch.slb_max; ++r)
427 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
428 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
429 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
430 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
431 	       vcpu->arch.last_inst);
432 }
433 
434 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
435 {
436 	return kvm_get_vcpu_by_id(kvm, id);
437 }
438 
439 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
440 {
441 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
442 	vpa->yield_count = cpu_to_be32(1);
443 }
444 
445 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
446 		   unsigned long addr, unsigned long len)
447 {
448 	/* check address is cacheline aligned */
449 	if (addr & (L1_CACHE_BYTES - 1))
450 		return -EINVAL;
451 	spin_lock(&vcpu->arch.vpa_update_lock);
452 	if (v->next_gpa != addr || v->len != len) {
453 		v->next_gpa = addr;
454 		v->len = addr ? len : 0;
455 		v->update_pending = 1;
456 	}
457 	spin_unlock(&vcpu->arch.vpa_update_lock);
458 	return 0;
459 }
460 
461 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
462 struct reg_vpa {
463 	u32 dummy;
464 	union {
465 		__be16 hword;
466 		__be32 word;
467 	} length;
468 };
469 
470 static int vpa_is_registered(struct kvmppc_vpa *vpap)
471 {
472 	if (vpap->update_pending)
473 		return vpap->next_gpa != 0;
474 	return vpap->pinned_addr != NULL;
475 }
476 
477 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
478 				       unsigned long flags,
479 				       unsigned long vcpuid, unsigned long vpa)
480 {
481 	struct kvm *kvm = vcpu->kvm;
482 	unsigned long len, nb;
483 	void *va;
484 	struct kvm_vcpu *tvcpu;
485 	int err;
486 	int subfunc;
487 	struct kvmppc_vpa *vpap;
488 
489 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
490 	if (!tvcpu)
491 		return H_PARAMETER;
492 
493 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
494 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
495 	    subfunc == H_VPA_REG_SLB) {
496 		/* Registering new area - address must be cache-line aligned */
497 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
498 			return H_PARAMETER;
499 
500 		/* convert logical addr to kernel addr and read length */
501 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
502 		if (va == NULL)
503 			return H_PARAMETER;
504 		if (subfunc == H_VPA_REG_VPA)
505 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
506 		else
507 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
508 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
509 
510 		/* Check length */
511 		if (len > nb || len < sizeof(struct reg_vpa))
512 			return H_PARAMETER;
513 	} else {
514 		vpa = 0;
515 		len = 0;
516 	}
517 
518 	err = H_PARAMETER;
519 	vpap = NULL;
520 	spin_lock(&tvcpu->arch.vpa_update_lock);
521 
522 	switch (subfunc) {
523 	case H_VPA_REG_VPA:		/* register VPA */
524 		/*
525 		 * The size of our lppaca is 1kB because of the way we align
526 		 * it for the guest to avoid crossing a 4kB boundary. We only
527 		 * use 640 bytes of the structure though, so we should accept
528 		 * clients that set a size of 640.
529 		 */
530 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
531 		if (len < sizeof(struct lppaca))
532 			break;
533 		vpap = &tvcpu->arch.vpa;
534 		err = 0;
535 		break;
536 
537 	case H_VPA_REG_DTL:		/* register DTL */
538 		if (len < sizeof(struct dtl_entry))
539 			break;
540 		len -= len % sizeof(struct dtl_entry);
541 
542 		/* Check that they have previously registered a VPA */
543 		err = H_RESOURCE;
544 		if (!vpa_is_registered(&tvcpu->arch.vpa))
545 			break;
546 
547 		vpap = &tvcpu->arch.dtl;
548 		err = 0;
549 		break;
550 
551 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
552 		/* Check that they have previously registered a VPA */
553 		err = H_RESOURCE;
554 		if (!vpa_is_registered(&tvcpu->arch.vpa))
555 			break;
556 
557 		vpap = &tvcpu->arch.slb_shadow;
558 		err = 0;
559 		break;
560 
561 	case H_VPA_DEREG_VPA:		/* deregister VPA */
562 		/* Check they don't still have a DTL or SLB buf registered */
563 		err = H_RESOURCE;
564 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
565 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
566 			break;
567 
568 		vpap = &tvcpu->arch.vpa;
569 		err = 0;
570 		break;
571 
572 	case H_VPA_DEREG_DTL:		/* deregister DTL */
573 		vpap = &tvcpu->arch.dtl;
574 		err = 0;
575 		break;
576 
577 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
578 		vpap = &tvcpu->arch.slb_shadow;
579 		err = 0;
580 		break;
581 	}
582 
583 	if (vpap) {
584 		vpap->next_gpa = vpa;
585 		vpap->len = len;
586 		vpap->update_pending = 1;
587 	}
588 
589 	spin_unlock(&tvcpu->arch.vpa_update_lock);
590 
591 	return err;
592 }
593 
594 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
595 {
596 	struct kvm *kvm = vcpu->kvm;
597 	void *va;
598 	unsigned long nb;
599 	unsigned long gpa;
600 
601 	/*
602 	 * We need to pin the page pointed to by vpap->next_gpa,
603 	 * but we can't call kvmppc_pin_guest_page under the lock
604 	 * as it does get_user_pages() and down_read().  So we
605 	 * have to drop the lock, pin the page, then get the lock
606 	 * again and check that a new area didn't get registered
607 	 * in the meantime.
608 	 */
609 	for (;;) {
610 		gpa = vpap->next_gpa;
611 		spin_unlock(&vcpu->arch.vpa_update_lock);
612 		va = NULL;
613 		nb = 0;
614 		if (gpa)
615 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
616 		spin_lock(&vcpu->arch.vpa_update_lock);
617 		if (gpa == vpap->next_gpa)
618 			break;
619 		/* sigh... unpin that one and try again */
620 		if (va)
621 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
622 	}
623 
624 	vpap->update_pending = 0;
625 	if (va && nb < vpap->len) {
626 		/*
627 		 * If it's now too short, it must be that userspace
628 		 * has changed the mappings underlying guest memory,
629 		 * so unregister the region.
630 		 */
631 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
632 		va = NULL;
633 	}
634 	if (vpap->pinned_addr)
635 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
636 					vpap->dirty);
637 	vpap->gpa = gpa;
638 	vpap->pinned_addr = va;
639 	vpap->dirty = false;
640 	if (va)
641 		vpap->pinned_end = va + vpap->len;
642 }
643 
644 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
645 {
646 	if (!(vcpu->arch.vpa.update_pending ||
647 	      vcpu->arch.slb_shadow.update_pending ||
648 	      vcpu->arch.dtl.update_pending))
649 		return;
650 
651 	spin_lock(&vcpu->arch.vpa_update_lock);
652 	if (vcpu->arch.vpa.update_pending) {
653 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
654 		if (vcpu->arch.vpa.pinned_addr)
655 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
656 	}
657 	if (vcpu->arch.dtl.update_pending) {
658 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
659 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
660 		vcpu->arch.dtl_index = 0;
661 	}
662 	if (vcpu->arch.slb_shadow.update_pending)
663 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
664 	spin_unlock(&vcpu->arch.vpa_update_lock);
665 }
666 
667 /*
668  * Return the accumulated stolen time for the vcore up until `now'.
669  * The caller should hold the vcore lock.
670  */
671 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
672 {
673 	u64 p;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&vc->stoltb_lock, flags);
677 	p = vc->stolen_tb;
678 	if (vc->vcore_state != VCORE_INACTIVE &&
679 	    vc->preempt_tb != TB_NIL)
680 		p += now - vc->preempt_tb;
681 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
682 	return p;
683 }
684 
685 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
686 				    struct kvmppc_vcore *vc)
687 {
688 	struct dtl_entry *dt;
689 	struct lppaca *vpa;
690 	unsigned long stolen;
691 	unsigned long core_stolen;
692 	u64 now;
693 	unsigned long flags;
694 
695 	dt = vcpu->arch.dtl_ptr;
696 	vpa = vcpu->arch.vpa.pinned_addr;
697 	now = mftb();
698 	core_stolen = vcore_stolen_time(vc, now);
699 	stolen = core_stolen - vcpu->arch.stolen_logged;
700 	vcpu->arch.stolen_logged = core_stolen;
701 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
702 	stolen += vcpu->arch.busy_stolen;
703 	vcpu->arch.busy_stolen = 0;
704 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
705 	if (!dt || !vpa)
706 		return;
707 	memset(dt, 0, sizeof(struct dtl_entry));
708 	dt->dispatch_reason = 7;
709 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
710 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
711 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
712 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
713 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
714 	++dt;
715 	if (dt == vcpu->arch.dtl.pinned_end)
716 		dt = vcpu->arch.dtl.pinned_addr;
717 	vcpu->arch.dtl_ptr = dt;
718 	/* order writing *dt vs. writing vpa->dtl_idx */
719 	smp_wmb();
720 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
721 	vcpu->arch.dtl.dirty = true;
722 }
723 
724 /* See if there is a doorbell interrupt pending for a vcpu */
725 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
726 {
727 	int thr;
728 	struct kvmppc_vcore *vc;
729 
730 	if (vcpu->arch.doorbell_request)
731 		return true;
732 	/*
733 	 * Ensure that the read of vcore->dpdes comes after the read
734 	 * of vcpu->doorbell_request.  This barrier matches the
735 	 * smp_wmb() in kvmppc_guest_entry_inject().
736 	 */
737 	smp_rmb();
738 	vc = vcpu->arch.vcore;
739 	thr = vcpu->vcpu_id - vc->first_vcpuid;
740 	return !!(vc->dpdes & (1 << thr));
741 }
742 
743 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
744 {
745 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
746 		return true;
747 	if ((!vcpu->arch.vcore->arch_compat) &&
748 	    cpu_has_feature(CPU_FTR_ARCH_207S))
749 		return true;
750 	return false;
751 }
752 
753 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
754 			     unsigned long resource, unsigned long value1,
755 			     unsigned long value2)
756 {
757 	switch (resource) {
758 	case H_SET_MODE_RESOURCE_SET_CIABR:
759 		if (!kvmppc_power8_compatible(vcpu))
760 			return H_P2;
761 		if (value2)
762 			return H_P4;
763 		if (mflags)
764 			return H_UNSUPPORTED_FLAG_START;
765 		/* Guests can't breakpoint the hypervisor */
766 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
767 			return H_P3;
768 		vcpu->arch.ciabr  = value1;
769 		return H_SUCCESS;
770 	case H_SET_MODE_RESOURCE_SET_DAWR0:
771 		if (!kvmppc_power8_compatible(vcpu))
772 			return H_P2;
773 		if (!ppc_breakpoint_available())
774 			return H_P2;
775 		if (mflags)
776 			return H_UNSUPPORTED_FLAG_START;
777 		if (value2 & DABRX_HYP)
778 			return H_P4;
779 		vcpu->arch.dawr0  = value1;
780 		vcpu->arch.dawrx0 = value2;
781 		return H_SUCCESS;
782 	case H_SET_MODE_RESOURCE_SET_DAWR1:
783 		if (!kvmppc_power8_compatible(vcpu))
784 			return H_P2;
785 		if (!ppc_breakpoint_available())
786 			return H_P2;
787 		if (!cpu_has_feature(CPU_FTR_DAWR1))
788 			return H_P2;
789 		if (!vcpu->kvm->arch.dawr1_enabled)
790 			return H_FUNCTION;
791 		if (mflags)
792 			return H_UNSUPPORTED_FLAG_START;
793 		if (value2 & DABRX_HYP)
794 			return H_P4;
795 		vcpu->arch.dawr1  = value1;
796 		vcpu->arch.dawrx1 = value2;
797 		return H_SUCCESS;
798 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
799 		/*
800 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
801 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
802 		 */
803 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
804 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
805 			return H_UNSUPPORTED_FLAG_START;
806 		return H_TOO_HARD;
807 	default:
808 		return H_TOO_HARD;
809 	}
810 }
811 
812 /* Copy guest memory in place - must reside within a single memslot */
813 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
814 				  unsigned long len)
815 {
816 	struct kvm_memory_slot *to_memslot = NULL;
817 	struct kvm_memory_slot *from_memslot = NULL;
818 	unsigned long to_addr, from_addr;
819 	int r;
820 
821 	/* Get HPA for from address */
822 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
823 	if (!from_memslot)
824 		return -EFAULT;
825 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
826 			     << PAGE_SHIFT))
827 		return -EINVAL;
828 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
829 	if (kvm_is_error_hva(from_addr))
830 		return -EFAULT;
831 	from_addr |= (from & (PAGE_SIZE - 1));
832 
833 	/* Get HPA for to address */
834 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
835 	if (!to_memslot)
836 		return -EFAULT;
837 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
838 			   << PAGE_SHIFT))
839 		return -EINVAL;
840 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
841 	if (kvm_is_error_hva(to_addr))
842 		return -EFAULT;
843 	to_addr |= (to & (PAGE_SIZE - 1));
844 
845 	/* Perform copy */
846 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
847 			     len);
848 	if (r)
849 		return -EFAULT;
850 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
851 	return 0;
852 }
853 
854 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
855 			       unsigned long dest, unsigned long src)
856 {
857 	u64 pg_sz = SZ_4K;		/* 4K page size */
858 	u64 pg_mask = SZ_4K - 1;
859 	int ret;
860 
861 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
862 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
863 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
864 		return H_PARAMETER;
865 
866 	/* dest (and src if copy_page flag set) must be page aligned */
867 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
868 		return H_PARAMETER;
869 
870 	/* zero and/or copy the page as determined by the flags */
871 	if (flags & H_COPY_PAGE) {
872 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
873 		if (ret < 0)
874 			return H_PARAMETER;
875 	} else if (flags & H_ZERO_PAGE) {
876 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
877 		if (ret < 0)
878 			return H_PARAMETER;
879 	}
880 
881 	/* We can ignore the remaining flags */
882 
883 	return H_SUCCESS;
884 }
885 
886 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
887 {
888 	struct kvmppc_vcore *vcore = target->arch.vcore;
889 
890 	/*
891 	 * We expect to have been called by the real mode handler
892 	 * (kvmppc_rm_h_confer()) which would have directly returned
893 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
894 	 * have useful work to do and should not confer) so we don't
895 	 * recheck that here.
896 	 *
897 	 * In the case of the P9 single vcpu per vcore case, the real
898 	 * mode handler is not called but no other threads are in the
899 	 * source vcore.
900 	 */
901 
902 	spin_lock(&vcore->lock);
903 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
904 	    vcore->vcore_state != VCORE_INACTIVE &&
905 	    vcore->runner)
906 		target = vcore->runner;
907 	spin_unlock(&vcore->lock);
908 
909 	return kvm_vcpu_yield_to(target);
910 }
911 
912 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
913 {
914 	int yield_count = 0;
915 	struct lppaca *lppaca;
916 
917 	spin_lock(&vcpu->arch.vpa_update_lock);
918 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
919 	if (lppaca)
920 		yield_count = be32_to_cpu(lppaca->yield_count);
921 	spin_unlock(&vcpu->arch.vpa_update_lock);
922 	return yield_count;
923 }
924 
925 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
926 {
927 	struct kvm *kvm = vcpu->kvm;
928 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
929 	unsigned long target, ret = H_SUCCESS;
930 	int yield_count;
931 	struct kvm_vcpu *tvcpu;
932 	int idx, rc;
933 
934 	if (req <= MAX_HCALL_OPCODE &&
935 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
936 		return RESUME_HOST;
937 
938 	switch (req) {
939 	case H_REMOVE:
940 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
941 					kvmppc_get_gpr(vcpu, 5),
942 					kvmppc_get_gpr(vcpu, 6));
943 		if (ret == H_TOO_HARD)
944 			return RESUME_HOST;
945 		break;
946 	case H_ENTER:
947 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
948 					kvmppc_get_gpr(vcpu, 5),
949 					kvmppc_get_gpr(vcpu, 6),
950 					kvmppc_get_gpr(vcpu, 7));
951 		if (ret == H_TOO_HARD)
952 			return RESUME_HOST;
953 		break;
954 	case H_READ:
955 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
956 					kvmppc_get_gpr(vcpu, 5));
957 		if (ret == H_TOO_HARD)
958 			return RESUME_HOST;
959 		break;
960 	case H_CLEAR_MOD:
961 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
962 					kvmppc_get_gpr(vcpu, 5));
963 		if (ret == H_TOO_HARD)
964 			return RESUME_HOST;
965 		break;
966 	case H_CLEAR_REF:
967 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
968 					kvmppc_get_gpr(vcpu, 5));
969 		if (ret == H_TOO_HARD)
970 			return RESUME_HOST;
971 		break;
972 	case H_PROTECT:
973 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
974 					kvmppc_get_gpr(vcpu, 5),
975 					kvmppc_get_gpr(vcpu, 6));
976 		if (ret == H_TOO_HARD)
977 			return RESUME_HOST;
978 		break;
979 	case H_BULK_REMOVE:
980 		ret = kvmppc_h_bulk_remove(vcpu);
981 		if (ret == H_TOO_HARD)
982 			return RESUME_HOST;
983 		break;
984 
985 	case H_CEDE:
986 		break;
987 	case H_PROD:
988 		target = kvmppc_get_gpr(vcpu, 4);
989 		tvcpu = kvmppc_find_vcpu(kvm, target);
990 		if (!tvcpu) {
991 			ret = H_PARAMETER;
992 			break;
993 		}
994 		tvcpu->arch.prodded = 1;
995 		smp_mb();
996 		if (tvcpu->arch.ceded)
997 			kvmppc_fast_vcpu_kick_hv(tvcpu);
998 		break;
999 	case H_CONFER:
1000 		target = kvmppc_get_gpr(vcpu, 4);
1001 		if (target == -1)
1002 			break;
1003 		tvcpu = kvmppc_find_vcpu(kvm, target);
1004 		if (!tvcpu) {
1005 			ret = H_PARAMETER;
1006 			break;
1007 		}
1008 		yield_count = kvmppc_get_gpr(vcpu, 5);
1009 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1010 			break;
1011 		kvm_arch_vcpu_yield_to(tvcpu);
1012 		break;
1013 	case H_REGISTER_VPA:
1014 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1015 					kvmppc_get_gpr(vcpu, 5),
1016 					kvmppc_get_gpr(vcpu, 6));
1017 		break;
1018 	case H_RTAS:
1019 		if (list_empty(&kvm->arch.rtas_tokens))
1020 			return RESUME_HOST;
1021 
1022 		idx = srcu_read_lock(&kvm->srcu);
1023 		rc = kvmppc_rtas_hcall(vcpu);
1024 		srcu_read_unlock(&kvm->srcu, idx);
1025 
1026 		if (rc == -ENOENT)
1027 			return RESUME_HOST;
1028 		else if (rc == 0)
1029 			break;
1030 
1031 		/* Send the error out to userspace via KVM_RUN */
1032 		return rc;
1033 	case H_LOGICAL_CI_LOAD:
1034 		ret = kvmppc_h_logical_ci_load(vcpu);
1035 		if (ret == H_TOO_HARD)
1036 			return RESUME_HOST;
1037 		break;
1038 	case H_LOGICAL_CI_STORE:
1039 		ret = kvmppc_h_logical_ci_store(vcpu);
1040 		if (ret == H_TOO_HARD)
1041 			return RESUME_HOST;
1042 		break;
1043 	case H_SET_MODE:
1044 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1045 					kvmppc_get_gpr(vcpu, 5),
1046 					kvmppc_get_gpr(vcpu, 6),
1047 					kvmppc_get_gpr(vcpu, 7));
1048 		if (ret == H_TOO_HARD)
1049 			return RESUME_HOST;
1050 		break;
1051 	case H_XIRR:
1052 	case H_CPPR:
1053 	case H_EOI:
1054 	case H_IPI:
1055 	case H_IPOLL:
1056 	case H_XIRR_X:
1057 		if (kvmppc_xics_enabled(vcpu)) {
1058 			if (xics_on_xive()) {
1059 				ret = H_NOT_AVAILABLE;
1060 				return RESUME_GUEST;
1061 			}
1062 			ret = kvmppc_xics_hcall(vcpu, req);
1063 			break;
1064 		}
1065 		return RESUME_HOST;
1066 	case H_SET_DABR:
1067 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1068 		break;
1069 	case H_SET_XDABR:
1070 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1071 						kvmppc_get_gpr(vcpu, 5));
1072 		break;
1073 #ifdef CONFIG_SPAPR_TCE_IOMMU
1074 	case H_GET_TCE:
1075 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1076 						kvmppc_get_gpr(vcpu, 5));
1077 		if (ret == H_TOO_HARD)
1078 			return RESUME_HOST;
1079 		break;
1080 	case H_PUT_TCE:
1081 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1082 						kvmppc_get_gpr(vcpu, 5),
1083 						kvmppc_get_gpr(vcpu, 6));
1084 		if (ret == H_TOO_HARD)
1085 			return RESUME_HOST;
1086 		break;
1087 	case H_PUT_TCE_INDIRECT:
1088 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1089 						kvmppc_get_gpr(vcpu, 5),
1090 						kvmppc_get_gpr(vcpu, 6),
1091 						kvmppc_get_gpr(vcpu, 7));
1092 		if (ret == H_TOO_HARD)
1093 			return RESUME_HOST;
1094 		break;
1095 	case H_STUFF_TCE:
1096 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1097 						kvmppc_get_gpr(vcpu, 5),
1098 						kvmppc_get_gpr(vcpu, 6),
1099 						kvmppc_get_gpr(vcpu, 7));
1100 		if (ret == H_TOO_HARD)
1101 			return RESUME_HOST;
1102 		break;
1103 #endif
1104 	case H_RANDOM:
1105 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1106 			ret = H_HARDWARE;
1107 		break;
1108 
1109 	case H_SET_PARTITION_TABLE:
1110 		ret = H_FUNCTION;
1111 		if (nesting_enabled(kvm))
1112 			ret = kvmhv_set_partition_table(vcpu);
1113 		break;
1114 	case H_ENTER_NESTED:
1115 		ret = H_FUNCTION;
1116 		if (!nesting_enabled(kvm))
1117 			break;
1118 		ret = kvmhv_enter_nested_guest(vcpu);
1119 		if (ret == H_INTERRUPT) {
1120 			kvmppc_set_gpr(vcpu, 3, 0);
1121 			vcpu->arch.hcall_needed = 0;
1122 			return -EINTR;
1123 		} else if (ret == H_TOO_HARD) {
1124 			kvmppc_set_gpr(vcpu, 3, 0);
1125 			vcpu->arch.hcall_needed = 0;
1126 			return RESUME_HOST;
1127 		}
1128 		break;
1129 	case H_TLB_INVALIDATE:
1130 		ret = H_FUNCTION;
1131 		if (nesting_enabled(kvm))
1132 			ret = kvmhv_do_nested_tlbie(vcpu);
1133 		break;
1134 	case H_COPY_TOFROM_GUEST:
1135 		ret = H_FUNCTION;
1136 		if (nesting_enabled(kvm))
1137 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1138 		break;
1139 	case H_PAGE_INIT:
1140 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1141 					 kvmppc_get_gpr(vcpu, 5),
1142 					 kvmppc_get_gpr(vcpu, 6));
1143 		break;
1144 	case H_SVM_PAGE_IN:
1145 		ret = H_UNSUPPORTED;
1146 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1147 			ret = kvmppc_h_svm_page_in(kvm,
1148 						   kvmppc_get_gpr(vcpu, 4),
1149 						   kvmppc_get_gpr(vcpu, 5),
1150 						   kvmppc_get_gpr(vcpu, 6));
1151 		break;
1152 	case H_SVM_PAGE_OUT:
1153 		ret = H_UNSUPPORTED;
1154 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1155 			ret = kvmppc_h_svm_page_out(kvm,
1156 						    kvmppc_get_gpr(vcpu, 4),
1157 						    kvmppc_get_gpr(vcpu, 5),
1158 						    kvmppc_get_gpr(vcpu, 6));
1159 		break;
1160 	case H_SVM_INIT_START:
1161 		ret = H_UNSUPPORTED;
1162 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1163 			ret = kvmppc_h_svm_init_start(kvm);
1164 		break;
1165 	case H_SVM_INIT_DONE:
1166 		ret = H_UNSUPPORTED;
1167 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1168 			ret = kvmppc_h_svm_init_done(kvm);
1169 		break;
1170 	case H_SVM_INIT_ABORT:
1171 		/*
1172 		 * Even if that call is made by the Ultravisor, the SSR1 value
1173 		 * is the guest context one, with the secure bit clear as it has
1174 		 * not yet been secured. So we can't check it here.
1175 		 * Instead the kvm->arch.secure_guest flag is checked inside
1176 		 * kvmppc_h_svm_init_abort().
1177 		 */
1178 		ret = kvmppc_h_svm_init_abort(kvm);
1179 		break;
1180 
1181 	default:
1182 		return RESUME_HOST;
1183 	}
1184 	WARN_ON_ONCE(ret == H_TOO_HARD);
1185 	kvmppc_set_gpr(vcpu, 3, ret);
1186 	vcpu->arch.hcall_needed = 0;
1187 	return RESUME_GUEST;
1188 }
1189 
1190 /*
1191  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1192  * handlers in book3s_hv_rmhandlers.S.
1193  *
1194  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1195  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1196  */
1197 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1198 {
1199 	vcpu->arch.shregs.msr |= MSR_EE;
1200 	vcpu->arch.ceded = 1;
1201 	smp_mb();
1202 	if (vcpu->arch.prodded) {
1203 		vcpu->arch.prodded = 0;
1204 		smp_mb();
1205 		vcpu->arch.ceded = 0;
1206 	}
1207 }
1208 
1209 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1210 {
1211 	switch (cmd) {
1212 	case H_CEDE:
1213 	case H_PROD:
1214 	case H_CONFER:
1215 	case H_REGISTER_VPA:
1216 	case H_SET_MODE:
1217 	case H_LOGICAL_CI_LOAD:
1218 	case H_LOGICAL_CI_STORE:
1219 #ifdef CONFIG_KVM_XICS
1220 	case H_XIRR:
1221 	case H_CPPR:
1222 	case H_EOI:
1223 	case H_IPI:
1224 	case H_IPOLL:
1225 	case H_XIRR_X:
1226 #endif
1227 	case H_PAGE_INIT:
1228 		return 1;
1229 	}
1230 
1231 	/* See if it's in the real-mode table */
1232 	return kvmppc_hcall_impl_hv_realmode(cmd);
1233 }
1234 
1235 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1236 {
1237 	u32 last_inst;
1238 
1239 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1240 					EMULATE_DONE) {
1241 		/*
1242 		 * Fetch failed, so return to guest and
1243 		 * try executing it again.
1244 		 */
1245 		return RESUME_GUEST;
1246 	}
1247 
1248 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1249 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1250 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1251 		return RESUME_HOST;
1252 	} else {
1253 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1254 		return RESUME_GUEST;
1255 	}
1256 }
1257 
1258 static void do_nothing(void *x)
1259 {
1260 }
1261 
1262 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1263 {
1264 	int thr, cpu, pcpu, nthreads;
1265 	struct kvm_vcpu *v;
1266 	unsigned long dpdes;
1267 
1268 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1269 	dpdes = 0;
1270 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1271 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1272 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1273 		if (!v)
1274 			continue;
1275 		/*
1276 		 * If the vcpu is currently running on a physical cpu thread,
1277 		 * interrupt it in order to pull it out of the guest briefly,
1278 		 * which will update its vcore->dpdes value.
1279 		 */
1280 		pcpu = READ_ONCE(v->cpu);
1281 		if (pcpu >= 0)
1282 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1283 		if (kvmppc_doorbell_pending(v))
1284 			dpdes |= 1 << thr;
1285 	}
1286 	return dpdes;
1287 }
1288 
1289 /*
1290  * On POWER9, emulate doorbell-related instructions in order to
1291  * give the guest the illusion of running on a multi-threaded core.
1292  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1293  * and mfspr DPDES.
1294  */
1295 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1296 {
1297 	u32 inst, rb, thr;
1298 	unsigned long arg;
1299 	struct kvm *kvm = vcpu->kvm;
1300 	struct kvm_vcpu *tvcpu;
1301 
1302 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1303 		return RESUME_GUEST;
1304 	if (get_op(inst) != 31)
1305 		return EMULATE_FAIL;
1306 	rb = get_rb(inst);
1307 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1308 	switch (get_xop(inst)) {
1309 	case OP_31_XOP_MSGSNDP:
1310 		arg = kvmppc_get_gpr(vcpu, rb);
1311 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1312 			break;
1313 		arg &= 0x7f;
1314 		if (arg >= kvm->arch.emul_smt_mode)
1315 			break;
1316 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1317 		if (!tvcpu)
1318 			break;
1319 		if (!tvcpu->arch.doorbell_request) {
1320 			tvcpu->arch.doorbell_request = 1;
1321 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1322 		}
1323 		break;
1324 	case OP_31_XOP_MSGCLRP:
1325 		arg = kvmppc_get_gpr(vcpu, rb);
1326 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1327 			break;
1328 		vcpu->arch.vcore->dpdes = 0;
1329 		vcpu->arch.doorbell_request = 0;
1330 		break;
1331 	case OP_31_XOP_MFSPR:
1332 		switch (get_sprn(inst)) {
1333 		case SPRN_TIR:
1334 			arg = thr;
1335 			break;
1336 		case SPRN_DPDES:
1337 			arg = kvmppc_read_dpdes(vcpu);
1338 			break;
1339 		default:
1340 			return EMULATE_FAIL;
1341 		}
1342 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1343 		break;
1344 	default:
1345 		return EMULATE_FAIL;
1346 	}
1347 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1348 	return RESUME_GUEST;
1349 }
1350 
1351 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1352 				 struct task_struct *tsk)
1353 {
1354 	struct kvm_run *run = vcpu->run;
1355 	int r = RESUME_HOST;
1356 
1357 	vcpu->stat.sum_exits++;
1358 
1359 	/*
1360 	 * This can happen if an interrupt occurs in the last stages
1361 	 * of guest entry or the first stages of guest exit (i.e. after
1362 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1363 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1364 	 * That can happen due to a bug, or due to a machine check
1365 	 * occurring at just the wrong time.
1366 	 */
1367 	if (vcpu->arch.shregs.msr & MSR_HV) {
1368 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1369 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1370 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1371 			vcpu->arch.shregs.msr);
1372 		kvmppc_dump_regs(vcpu);
1373 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1374 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1375 		return RESUME_HOST;
1376 	}
1377 	run->exit_reason = KVM_EXIT_UNKNOWN;
1378 	run->ready_for_interrupt_injection = 1;
1379 	switch (vcpu->arch.trap) {
1380 	/* We're good on these - the host merely wanted to get our attention */
1381 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1382 		vcpu->stat.dec_exits++;
1383 		r = RESUME_GUEST;
1384 		break;
1385 	case BOOK3S_INTERRUPT_EXTERNAL:
1386 	case BOOK3S_INTERRUPT_H_DOORBELL:
1387 	case BOOK3S_INTERRUPT_H_VIRT:
1388 		vcpu->stat.ext_intr_exits++;
1389 		r = RESUME_GUEST;
1390 		break;
1391 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1392 	case BOOK3S_INTERRUPT_HMI:
1393 	case BOOK3S_INTERRUPT_PERFMON:
1394 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1395 		r = RESUME_GUEST;
1396 		break;
1397 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1398 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1399 					      DEFAULT_RATELIMIT_BURST);
1400 		/*
1401 		 * Print the MCE event to host console. Ratelimit so the guest
1402 		 * can't flood the host log.
1403 		 */
1404 		if (__ratelimit(&rs))
1405 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1406 
1407 		/*
1408 		 * If the guest can do FWNMI, exit to userspace so it can
1409 		 * deliver a FWNMI to the guest.
1410 		 * Otherwise we synthesize a machine check for the guest
1411 		 * so that it knows that the machine check occurred.
1412 		 */
1413 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1414 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1415 			kvmppc_core_queue_machine_check(vcpu, flags);
1416 			r = RESUME_GUEST;
1417 			break;
1418 		}
1419 
1420 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1421 		run->exit_reason = KVM_EXIT_NMI;
1422 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1423 		/* Clear out the old NMI status from run->flags */
1424 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1425 		/* Now set the NMI status */
1426 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1427 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1428 		else
1429 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1430 
1431 		r = RESUME_HOST;
1432 		break;
1433 	}
1434 	case BOOK3S_INTERRUPT_PROGRAM:
1435 	{
1436 		ulong flags;
1437 		/*
1438 		 * Normally program interrupts are delivered directly
1439 		 * to the guest by the hardware, but we can get here
1440 		 * as a result of a hypervisor emulation interrupt
1441 		 * (e40) getting turned into a 700 by BML RTAS.
1442 		 */
1443 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1444 		kvmppc_core_queue_program(vcpu, flags);
1445 		r = RESUME_GUEST;
1446 		break;
1447 	}
1448 	case BOOK3S_INTERRUPT_SYSCALL:
1449 	{
1450 		int i;
1451 
1452 		if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1453 			/*
1454 			 * Guest userspace executed sc 1. This can only be
1455 			 * reached by the P9 path because the old path
1456 			 * handles this case in realmode hcall handlers.
1457 			 */
1458 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1459 				/*
1460 				 * A guest could be running PR KVM, so this
1461 				 * may be a PR KVM hcall. It must be reflected
1462 				 * to the guest kernel as a sc interrupt.
1463 				 */
1464 				kvmppc_core_queue_syscall(vcpu);
1465 			} else {
1466 				/*
1467 				 * Radix guests can not run PR KVM or nested HV
1468 				 * hash guests which might run PR KVM, so this
1469 				 * is always a privilege fault. Send a program
1470 				 * check to guest kernel.
1471 				 */
1472 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1473 			}
1474 			r = RESUME_GUEST;
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * hcall - gather args and set exit_reason. This will next be
1480 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1481 		 * with it and resume guest, or may punt to userspace.
1482 		 */
1483 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1484 		for (i = 0; i < 9; ++i)
1485 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1486 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1487 		vcpu->arch.hcall_needed = 1;
1488 		r = RESUME_HOST;
1489 		break;
1490 	}
1491 	/*
1492 	 * We get these next two if the guest accesses a page which it thinks
1493 	 * it has mapped but which is not actually present, either because
1494 	 * it is for an emulated I/O device or because the corresonding
1495 	 * host page has been paged out.
1496 	 *
1497 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1498 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1499 	 * fault handling is done here.
1500 	 */
1501 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1502 		unsigned long vsid;
1503 		long err;
1504 
1505 		if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
1506 			r = RESUME_GUEST; /* Just retry if it's the canary */
1507 			break;
1508 		}
1509 
1510 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1511 			/*
1512 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1513 			 * already attempted to handle this in rmhandlers. The
1514 			 * hash fault handling below is v3 only (it uses ASDR
1515 			 * via fault_gpa).
1516 			 */
1517 			r = RESUME_PAGE_FAULT;
1518 			break;
1519 		}
1520 
1521 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1522 			kvmppc_core_queue_data_storage(vcpu,
1523 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1524 			r = RESUME_GUEST;
1525 			break;
1526 		}
1527 
1528 		if (!(vcpu->arch.shregs.msr & MSR_DR))
1529 			vsid = vcpu->kvm->arch.vrma_slb_v;
1530 		else
1531 			vsid = vcpu->arch.fault_gpa;
1532 
1533 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1534 				vsid, vcpu->arch.fault_dsisr, true);
1535 		if (err == 0) {
1536 			r = RESUME_GUEST;
1537 		} else if (err == -1 || err == -2) {
1538 			r = RESUME_PAGE_FAULT;
1539 		} else {
1540 			kvmppc_core_queue_data_storage(vcpu,
1541 				vcpu->arch.fault_dar, err);
1542 			r = RESUME_GUEST;
1543 		}
1544 		break;
1545 	}
1546 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1547 		unsigned long vsid;
1548 		long err;
1549 
1550 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1551 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1552 			DSISR_SRR1_MATCH_64S;
1553 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1554 			/*
1555 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1556 			 * already attempted to handle this in rmhandlers. The
1557 			 * hash fault handling below is v3 only (it uses ASDR
1558 			 * via fault_gpa).
1559 			 */
1560 			if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1561 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1562 			r = RESUME_PAGE_FAULT;
1563 			break;
1564 		}
1565 
1566 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1567 			kvmppc_core_queue_inst_storage(vcpu,
1568 				vcpu->arch.fault_dsisr);
1569 			r = RESUME_GUEST;
1570 			break;
1571 		}
1572 
1573 		if (!(vcpu->arch.shregs.msr & MSR_IR))
1574 			vsid = vcpu->kvm->arch.vrma_slb_v;
1575 		else
1576 			vsid = vcpu->arch.fault_gpa;
1577 
1578 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1579 				vsid, vcpu->arch.fault_dsisr, false);
1580 		if (err == 0) {
1581 			r = RESUME_GUEST;
1582 		} else if (err == -1) {
1583 			r = RESUME_PAGE_FAULT;
1584 		} else {
1585 			kvmppc_core_queue_inst_storage(vcpu, err);
1586 			r = RESUME_GUEST;
1587 		}
1588 		break;
1589 	}
1590 
1591 	/*
1592 	 * This occurs if the guest executes an illegal instruction.
1593 	 * If the guest debug is disabled, generate a program interrupt
1594 	 * to the guest. If guest debug is enabled, we need to check
1595 	 * whether the instruction is a software breakpoint instruction.
1596 	 * Accordingly return to Guest or Host.
1597 	 */
1598 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1599 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1600 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1601 				swab32(vcpu->arch.emul_inst) :
1602 				vcpu->arch.emul_inst;
1603 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1604 			r = kvmppc_emulate_debug_inst(vcpu);
1605 		} else {
1606 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1607 			r = RESUME_GUEST;
1608 		}
1609 		break;
1610 	/*
1611 	 * This occurs if the guest (kernel or userspace), does something that
1612 	 * is prohibited by HFSCR.
1613 	 * On POWER9, this could be a doorbell instruction that we need
1614 	 * to emulate.
1615 	 * Otherwise, we just generate a program interrupt to the guest.
1616 	 */
1617 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1618 		r = EMULATE_FAIL;
1619 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1620 		    cpu_has_feature(CPU_FTR_ARCH_300))
1621 			r = kvmppc_emulate_doorbell_instr(vcpu);
1622 		if (r == EMULATE_FAIL) {
1623 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1624 			r = RESUME_GUEST;
1625 		}
1626 		break;
1627 
1628 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1629 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1630 		/*
1631 		 * This occurs for various TM-related instructions that
1632 		 * we need to emulate on POWER9 DD2.2.  We have already
1633 		 * handled the cases where the guest was in real-suspend
1634 		 * mode and was transitioning to transactional state.
1635 		 */
1636 		r = kvmhv_p9_tm_emulation(vcpu);
1637 		break;
1638 #endif
1639 
1640 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1641 		r = RESUME_PASSTHROUGH;
1642 		break;
1643 	default:
1644 		kvmppc_dump_regs(vcpu);
1645 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1646 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1647 			vcpu->arch.shregs.msr);
1648 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1649 		r = RESUME_HOST;
1650 		break;
1651 	}
1652 
1653 	return r;
1654 }
1655 
1656 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1657 {
1658 	int r;
1659 	int srcu_idx;
1660 
1661 	vcpu->stat.sum_exits++;
1662 
1663 	/*
1664 	 * This can happen if an interrupt occurs in the last stages
1665 	 * of guest entry or the first stages of guest exit (i.e. after
1666 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1667 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1668 	 * That can happen due to a bug, or due to a machine check
1669 	 * occurring at just the wrong time.
1670 	 */
1671 	if (vcpu->arch.shregs.msr & MSR_HV) {
1672 		pr_emerg("KVM trap in HV mode while nested!\n");
1673 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1674 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1675 			 vcpu->arch.shregs.msr);
1676 		kvmppc_dump_regs(vcpu);
1677 		return RESUME_HOST;
1678 	}
1679 	switch (vcpu->arch.trap) {
1680 	/* We're good on these - the host merely wanted to get our attention */
1681 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1682 		vcpu->stat.dec_exits++;
1683 		r = RESUME_GUEST;
1684 		break;
1685 	case BOOK3S_INTERRUPT_EXTERNAL:
1686 		vcpu->stat.ext_intr_exits++;
1687 		r = RESUME_HOST;
1688 		break;
1689 	case BOOK3S_INTERRUPT_H_DOORBELL:
1690 	case BOOK3S_INTERRUPT_H_VIRT:
1691 		vcpu->stat.ext_intr_exits++;
1692 		r = RESUME_GUEST;
1693 		break;
1694 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1695 	case BOOK3S_INTERRUPT_HMI:
1696 	case BOOK3S_INTERRUPT_PERFMON:
1697 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1698 		r = RESUME_GUEST;
1699 		break;
1700 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1701 	{
1702 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1703 					      DEFAULT_RATELIMIT_BURST);
1704 		/* Pass the machine check to the L1 guest */
1705 		r = RESUME_HOST;
1706 		/* Print the MCE event to host console. */
1707 		if (__ratelimit(&rs))
1708 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1709 		break;
1710 	}
1711 	/*
1712 	 * We get these next two if the guest accesses a page which it thinks
1713 	 * it has mapped but which is not actually present, either because
1714 	 * it is for an emulated I/O device or because the corresonding
1715 	 * host page has been paged out.
1716 	 */
1717 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1718 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1719 		r = kvmhv_nested_page_fault(vcpu);
1720 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1721 		break;
1722 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1723 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1724 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1725 					 DSISR_SRR1_MATCH_64S;
1726 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1727 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1728 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1729 		r = kvmhv_nested_page_fault(vcpu);
1730 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1731 		break;
1732 
1733 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1734 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1735 		/*
1736 		 * This occurs for various TM-related instructions that
1737 		 * we need to emulate on POWER9 DD2.2.  We have already
1738 		 * handled the cases where the guest was in real-suspend
1739 		 * mode and was transitioning to transactional state.
1740 		 */
1741 		r = kvmhv_p9_tm_emulation(vcpu);
1742 		break;
1743 #endif
1744 
1745 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1746 		vcpu->arch.trap = 0;
1747 		r = RESUME_GUEST;
1748 		if (!xics_on_xive())
1749 			kvmppc_xics_rm_complete(vcpu, 0);
1750 		break;
1751 	default:
1752 		r = RESUME_HOST;
1753 		break;
1754 	}
1755 
1756 	return r;
1757 }
1758 
1759 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1760 					    struct kvm_sregs *sregs)
1761 {
1762 	int i;
1763 
1764 	memset(sregs, 0, sizeof(struct kvm_sregs));
1765 	sregs->pvr = vcpu->arch.pvr;
1766 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1767 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1768 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1775 					    struct kvm_sregs *sregs)
1776 {
1777 	int i, j;
1778 
1779 	/* Only accept the same PVR as the host's, since we can't spoof it */
1780 	if (sregs->pvr != vcpu->arch.pvr)
1781 		return -EINVAL;
1782 
1783 	j = 0;
1784 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1785 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1786 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1787 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1788 			++j;
1789 		}
1790 	}
1791 	vcpu->arch.slb_max = j;
1792 
1793 	return 0;
1794 }
1795 
1796 /*
1797  * Enforce limits on guest LPCR values based on hardware availability,
1798  * guest configuration, and possibly hypervisor support and security
1799  * concerns.
1800  */
1801 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1802 {
1803 	/* LPCR_TC only applies to HPT guests */
1804 	if (kvm_is_radix(kvm))
1805 		lpcr &= ~LPCR_TC;
1806 
1807 	/* On POWER8 and above, userspace can modify AIL */
1808 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1809 		lpcr &= ~LPCR_AIL;
1810 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1811 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1812 	/*
1813 	 * On some POWER9s we force AIL off for radix guests to prevent
1814 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1815 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1816 	 * be cached, which the host TLB management does not expect.
1817 	 */
1818 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1819 		lpcr &= ~LPCR_AIL;
1820 
1821 	/*
1822 	 * On POWER9, allow userspace to enable large decrementer for the
1823 	 * guest, whether or not the host has it enabled.
1824 	 */
1825 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1826 		lpcr &= ~LPCR_LD;
1827 
1828 	return lpcr;
1829 }
1830 
1831 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1832 {
1833 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1834 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1835 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1836 	}
1837 }
1838 
1839 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1840 		bool preserve_top32)
1841 {
1842 	struct kvm *kvm = vcpu->kvm;
1843 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1844 	u64 mask;
1845 
1846 	spin_lock(&vc->lock);
1847 
1848 	/*
1849 	 * Userspace can only modify
1850 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
1851 	 * TC (translation control), AIL (alternate interrupt location),
1852 	 * LD (large decrementer).
1853 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1854 	 */
1855 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1856 
1857 	/* Broken 32-bit version of LPCR must not clear top bits */
1858 	if (preserve_top32)
1859 		mask &= 0xFFFFFFFF;
1860 
1861 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1862 			(vc->lpcr & ~mask) | (new_lpcr & mask));
1863 
1864 	/*
1865 	 * If ILE (interrupt little-endian) has changed, update the
1866 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1867 	 */
1868 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1869 		struct kvm_vcpu *vcpu;
1870 		int i;
1871 
1872 		kvm_for_each_vcpu(i, vcpu, kvm) {
1873 			if (vcpu->arch.vcore != vc)
1874 				continue;
1875 			if (new_lpcr & LPCR_ILE)
1876 				vcpu->arch.intr_msr |= MSR_LE;
1877 			else
1878 				vcpu->arch.intr_msr &= ~MSR_LE;
1879 		}
1880 	}
1881 
1882 	vc->lpcr = new_lpcr;
1883 
1884 	spin_unlock(&vc->lock);
1885 }
1886 
1887 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1888 				 union kvmppc_one_reg *val)
1889 {
1890 	int r = 0;
1891 	long int i;
1892 
1893 	switch (id) {
1894 	case KVM_REG_PPC_DEBUG_INST:
1895 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1896 		break;
1897 	case KVM_REG_PPC_HIOR:
1898 		*val = get_reg_val(id, 0);
1899 		break;
1900 	case KVM_REG_PPC_DABR:
1901 		*val = get_reg_val(id, vcpu->arch.dabr);
1902 		break;
1903 	case KVM_REG_PPC_DABRX:
1904 		*val = get_reg_val(id, vcpu->arch.dabrx);
1905 		break;
1906 	case KVM_REG_PPC_DSCR:
1907 		*val = get_reg_val(id, vcpu->arch.dscr);
1908 		break;
1909 	case KVM_REG_PPC_PURR:
1910 		*val = get_reg_val(id, vcpu->arch.purr);
1911 		break;
1912 	case KVM_REG_PPC_SPURR:
1913 		*val = get_reg_val(id, vcpu->arch.spurr);
1914 		break;
1915 	case KVM_REG_PPC_AMR:
1916 		*val = get_reg_val(id, vcpu->arch.amr);
1917 		break;
1918 	case KVM_REG_PPC_UAMOR:
1919 		*val = get_reg_val(id, vcpu->arch.uamor);
1920 		break;
1921 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1922 		i = id - KVM_REG_PPC_MMCR0;
1923 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1924 		break;
1925 	case KVM_REG_PPC_MMCR2:
1926 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
1927 		break;
1928 	case KVM_REG_PPC_MMCRA:
1929 		*val = get_reg_val(id, vcpu->arch.mmcra);
1930 		break;
1931 	case KVM_REG_PPC_MMCRS:
1932 		*val = get_reg_val(id, vcpu->arch.mmcrs);
1933 		break;
1934 	case KVM_REG_PPC_MMCR3:
1935 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1936 		break;
1937 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1938 		i = id - KVM_REG_PPC_PMC1;
1939 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1940 		break;
1941 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1942 		i = id - KVM_REG_PPC_SPMC1;
1943 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1944 		break;
1945 	case KVM_REG_PPC_SIAR:
1946 		*val = get_reg_val(id, vcpu->arch.siar);
1947 		break;
1948 	case KVM_REG_PPC_SDAR:
1949 		*val = get_reg_val(id, vcpu->arch.sdar);
1950 		break;
1951 	case KVM_REG_PPC_SIER:
1952 		*val = get_reg_val(id, vcpu->arch.sier[0]);
1953 		break;
1954 	case KVM_REG_PPC_SIER2:
1955 		*val = get_reg_val(id, vcpu->arch.sier[1]);
1956 		break;
1957 	case KVM_REG_PPC_SIER3:
1958 		*val = get_reg_val(id, vcpu->arch.sier[2]);
1959 		break;
1960 	case KVM_REG_PPC_IAMR:
1961 		*val = get_reg_val(id, vcpu->arch.iamr);
1962 		break;
1963 	case KVM_REG_PPC_PSPB:
1964 		*val = get_reg_val(id, vcpu->arch.pspb);
1965 		break;
1966 	case KVM_REG_PPC_DPDES:
1967 		/*
1968 		 * On POWER9, where we are emulating msgsndp etc.,
1969 		 * we return 1 bit for each vcpu, which can come from
1970 		 * either vcore->dpdes or doorbell_request.
1971 		 * On POWER8, doorbell_request is 0.
1972 		 */
1973 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1974 				   vcpu->arch.doorbell_request);
1975 		break;
1976 	case KVM_REG_PPC_VTB:
1977 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1978 		break;
1979 	case KVM_REG_PPC_DAWR:
1980 		*val = get_reg_val(id, vcpu->arch.dawr0);
1981 		break;
1982 	case KVM_REG_PPC_DAWRX:
1983 		*val = get_reg_val(id, vcpu->arch.dawrx0);
1984 		break;
1985 	case KVM_REG_PPC_DAWR1:
1986 		*val = get_reg_val(id, vcpu->arch.dawr1);
1987 		break;
1988 	case KVM_REG_PPC_DAWRX1:
1989 		*val = get_reg_val(id, vcpu->arch.dawrx1);
1990 		break;
1991 	case KVM_REG_PPC_CIABR:
1992 		*val = get_reg_val(id, vcpu->arch.ciabr);
1993 		break;
1994 	case KVM_REG_PPC_CSIGR:
1995 		*val = get_reg_val(id, vcpu->arch.csigr);
1996 		break;
1997 	case KVM_REG_PPC_TACR:
1998 		*val = get_reg_val(id, vcpu->arch.tacr);
1999 		break;
2000 	case KVM_REG_PPC_TCSCR:
2001 		*val = get_reg_val(id, vcpu->arch.tcscr);
2002 		break;
2003 	case KVM_REG_PPC_PID:
2004 		*val = get_reg_val(id, vcpu->arch.pid);
2005 		break;
2006 	case KVM_REG_PPC_ACOP:
2007 		*val = get_reg_val(id, vcpu->arch.acop);
2008 		break;
2009 	case KVM_REG_PPC_WORT:
2010 		*val = get_reg_val(id, vcpu->arch.wort);
2011 		break;
2012 	case KVM_REG_PPC_TIDR:
2013 		*val = get_reg_val(id, vcpu->arch.tid);
2014 		break;
2015 	case KVM_REG_PPC_PSSCR:
2016 		*val = get_reg_val(id, vcpu->arch.psscr);
2017 		break;
2018 	case KVM_REG_PPC_VPA_ADDR:
2019 		spin_lock(&vcpu->arch.vpa_update_lock);
2020 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2021 		spin_unlock(&vcpu->arch.vpa_update_lock);
2022 		break;
2023 	case KVM_REG_PPC_VPA_SLB:
2024 		spin_lock(&vcpu->arch.vpa_update_lock);
2025 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2026 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2027 		spin_unlock(&vcpu->arch.vpa_update_lock);
2028 		break;
2029 	case KVM_REG_PPC_VPA_DTL:
2030 		spin_lock(&vcpu->arch.vpa_update_lock);
2031 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2032 		val->vpaval.length = vcpu->arch.dtl.len;
2033 		spin_unlock(&vcpu->arch.vpa_update_lock);
2034 		break;
2035 	case KVM_REG_PPC_TB_OFFSET:
2036 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2037 		break;
2038 	case KVM_REG_PPC_LPCR:
2039 	case KVM_REG_PPC_LPCR_64:
2040 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2041 		break;
2042 	case KVM_REG_PPC_PPR:
2043 		*val = get_reg_val(id, vcpu->arch.ppr);
2044 		break;
2045 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2046 	case KVM_REG_PPC_TFHAR:
2047 		*val = get_reg_val(id, vcpu->arch.tfhar);
2048 		break;
2049 	case KVM_REG_PPC_TFIAR:
2050 		*val = get_reg_val(id, vcpu->arch.tfiar);
2051 		break;
2052 	case KVM_REG_PPC_TEXASR:
2053 		*val = get_reg_val(id, vcpu->arch.texasr);
2054 		break;
2055 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2056 		i = id - KVM_REG_PPC_TM_GPR0;
2057 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2058 		break;
2059 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2060 	{
2061 		int j;
2062 		i = id - KVM_REG_PPC_TM_VSR0;
2063 		if (i < 32)
2064 			for (j = 0; j < TS_FPRWIDTH; j++)
2065 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2066 		else {
2067 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2068 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2069 			else
2070 				r = -ENXIO;
2071 		}
2072 		break;
2073 	}
2074 	case KVM_REG_PPC_TM_CR:
2075 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2076 		break;
2077 	case KVM_REG_PPC_TM_XER:
2078 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2079 		break;
2080 	case KVM_REG_PPC_TM_LR:
2081 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2082 		break;
2083 	case KVM_REG_PPC_TM_CTR:
2084 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2085 		break;
2086 	case KVM_REG_PPC_TM_FPSCR:
2087 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2088 		break;
2089 	case KVM_REG_PPC_TM_AMR:
2090 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2091 		break;
2092 	case KVM_REG_PPC_TM_PPR:
2093 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2094 		break;
2095 	case KVM_REG_PPC_TM_VRSAVE:
2096 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2097 		break;
2098 	case KVM_REG_PPC_TM_VSCR:
2099 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2100 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2101 		else
2102 			r = -ENXIO;
2103 		break;
2104 	case KVM_REG_PPC_TM_DSCR:
2105 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2106 		break;
2107 	case KVM_REG_PPC_TM_TAR:
2108 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2109 		break;
2110 #endif
2111 	case KVM_REG_PPC_ARCH_COMPAT:
2112 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2113 		break;
2114 	case KVM_REG_PPC_DEC_EXPIRY:
2115 		*val = get_reg_val(id, vcpu->arch.dec_expires +
2116 				   vcpu->arch.vcore->tb_offset);
2117 		break;
2118 	case KVM_REG_PPC_ONLINE:
2119 		*val = get_reg_val(id, vcpu->arch.online);
2120 		break;
2121 	case KVM_REG_PPC_PTCR:
2122 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2123 		break;
2124 	default:
2125 		r = -EINVAL;
2126 		break;
2127 	}
2128 
2129 	return r;
2130 }
2131 
2132 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2133 				 union kvmppc_one_reg *val)
2134 {
2135 	int r = 0;
2136 	long int i;
2137 	unsigned long addr, len;
2138 
2139 	switch (id) {
2140 	case KVM_REG_PPC_HIOR:
2141 		/* Only allow this to be set to zero */
2142 		if (set_reg_val(id, *val))
2143 			r = -EINVAL;
2144 		break;
2145 	case KVM_REG_PPC_DABR:
2146 		vcpu->arch.dabr = set_reg_val(id, *val);
2147 		break;
2148 	case KVM_REG_PPC_DABRX:
2149 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2150 		break;
2151 	case KVM_REG_PPC_DSCR:
2152 		vcpu->arch.dscr = set_reg_val(id, *val);
2153 		break;
2154 	case KVM_REG_PPC_PURR:
2155 		vcpu->arch.purr = set_reg_val(id, *val);
2156 		break;
2157 	case KVM_REG_PPC_SPURR:
2158 		vcpu->arch.spurr = set_reg_val(id, *val);
2159 		break;
2160 	case KVM_REG_PPC_AMR:
2161 		vcpu->arch.amr = set_reg_val(id, *val);
2162 		break;
2163 	case KVM_REG_PPC_UAMOR:
2164 		vcpu->arch.uamor = set_reg_val(id, *val);
2165 		break;
2166 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2167 		i = id - KVM_REG_PPC_MMCR0;
2168 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2169 		break;
2170 	case KVM_REG_PPC_MMCR2:
2171 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2172 		break;
2173 	case KVM_REG_PPC_MMCRA:
2174 		vcpu->arch.mmcra = set_reg_val(id, *val);
2175 		break;
2176 	case KVM_REG_PPC_MMCRS:
2177 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2178 		break;
2179 	case KVM_REG_PPC_MMCR3:
2180 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2181 		break;
2182 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2183 		i = id - KVM_REG_PPC_PMC1;
2184 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
2185 		break;
2186 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2187 		i = id - KVM_REG_PPC_SPMC1;
2188 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2189 		break;
2190 	case KVM_REG_PPC_SIAR:
2191 		vcpu->arch.siar = set_reg_val(id, *val);
2192 		break;
2193 	case KVM_REG_PPC_SDAR:
2194 		vcpu->arch.sdar = set_reg_val(id, *val);
2195 		break;
2196 	case KVM_REG_PPC_SIER:
2197 		vcpu->arch.sier[0] = set_reg_val(id, *val);
2198 		break;
2199 	case KVM_REG_PPC_SIER2:
2200 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2201 		break;
2202 	case KVM_REG_PPC_SIER3:
2203 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2204 		break;
2205 	case KVM_REG_PPC_IAMR:
2206 		vcpu->arch.iamr = set_reg_val(id, *val);
2207 		break;
2208 	case KVM_REG_PPC_PSPB:
2209 		vcpu->arch.pspb = set_reg_val(id, *val);
2210 		break;
2211 	case KVM_REG_PPC_DPDES:
2212 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2213 		break;
2214 	case KVM_REG_PPC_VTB:
2215 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2216 		break;
2217 	case KVM_REG_PPC_DAWR:
2218 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2219 		break;
2220 	case KVM_REG_PPC_DAWRX:
2221 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2222 		break;
2223 	case KVM_REG_PPC_DAWR1:
2224 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2225 		break;
2226 	case KVM_REG_PPC_DAWRX1:
2227 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2228 		break;
2229 	case KVM_REG_PPC_CIABR:
2230 		vcpu->arch.ciabr = set_reg_val(id, *val);
2231 		/* Don't allow setting breakpoints in hypervisor code */
2232 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2233 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2234 		break;
2235 	case KVM_REG_PPC_CSIGR:
2236 		vcpu->arch.csigr = set_reg_val(id, *val);
2237 		break;
2238 	case KVM_REG_PPC_TACR:
2239 		vcpu->arch.tacr = set_reg_val(id, *val);
2240 		break;
2241 	case KVM_REG_PPC_TCSCR:
2242 		vcpu->arch.tcscr = set_reg_val(id, *val);
2243 		break;
2244 	case KVM_REG_PPC_PID:
2245 		vcpu->arch.pid = set_reg_val(id, *val);
2246 		break;
2247 	case KVM_REG_PPC_ACOP:
2248 		vcpu->arch.acop = set_reg_val(id, *val);
2249 		break;
2250 	case KVM_REG_PPC_WORT:
2251 		vcpu->arch.wort = set_reg_val(id, *val);
2252 		break;
2253 	case KVM_REG_PPC_TIDR:
2254 		vcpu->arch.tid = set_reg_val(id, *val);
2255 		break;
2256 	case KVM_REG_PPC_PSSCR:
2257 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2258 		break;
2259 	case KVM_REG_PPC_VPA_ADDR:
2260 		addr = set_reg_val(id, *val);
2261 		r = -EINVAL;
2262 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2263 			      vcpu->arch.dtl.next_gpa))
2264 			break;
2265 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2266 		break;
2267 	case KVM_REG_PPC_VPA_SLB:
2268 		addr = val->vpaval.addr;
2269 		len = val->vpaval.length;
2270 		r = -EINVAL;
2271 		if (addr && !vcpu->arch.vpa.next_gpa)
2272 			break;
2273 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2274 		break;
2275 	case KVM_REG_PPC_VPA_DTL:
2276 		addr = val->vpaval.addr;
2277 		len = val->vpaval.length;
2278 		r = -EINVAL;
2279 		if (addr && (len < sizeof(struct dtl_entry) ||
2280 			     !vcpu->arch.vpa.next_gpa))
2281 			break;
2282 		len -= len % sizeof(struct dtl_entry);
2283 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2284 		break;
2285 	case KVM_REG_PPC_TB_OFFSET:
2286 		/* round up to multiple of 2^24 */
2287 		vcpu->arch.vcore->tb_offset =
2288 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2289 		break;
2290 	case KVM_REG_PPC_LPCR:
2291 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2292 		break;
2293 	case KVM_REG_PPC_LPCR_64:
2294 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2295 		break;
2296 	case KVM_REG_PPC_PPR:
2297 		vcpu->arch.ppr = set_reg_val(id, *val);
2298 		break;
2299 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2300 	case KVM_REG_PPC_TFHAR:
2301 		vcpu->arch.tfhar = set_reg_val(id, *val);
2302 		break;
2303 	case KVM_REG_PPC_TFIAR:
2304 		vcpu->arch.tfiar = set_reg_val(id, *val);
2305 		break;
2306 	case KVM_REG_PPC_TEXASR:
2307 		vcpu->arch.texasr = set_reg_val(id, *val);
2308 		break;
2309 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2310 		i = id - KVM_REG_PPC_TM_GPR0;
2311 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2312 		break;
2313 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2314 	{
2315 		int j;
2316 		i = id - KVM_REG_PPC_TM_VSR0;
2317 		if (i < 32)
2318 			for (j = 0; j < TS_FPRWIDTH; j++)
2319 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2320 		else
2321 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2322 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2323 			else
2324 				r = -ENXIO;
2325 		break;
2326 	}
2327 	case KVM_REG_PPC_TM_CR:
2328 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2329 		break;
2330 	case KVM_REG_PPC_TM_XER:
2331 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2332 		break;
2333 	case KVM_REG_PPC_TM_LR:
2334 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2335 		break;
2336 	case KVM_REG_PPC_TM_CTR:
2337 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2338 		break;
2339 	case KVM_REG_PPC_TM_FPSCR:
2340 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2341 		break;
2342 	case KVM_REG_PPC_TM_AMR:
2343 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2344 		break;
2345 	case KVM_REG_PPC_TM_PPR:
2346 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2347 		break;
2348 	case KVM_REG_PPC_TM_VRSAVE:
2349 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2350 		break;
2351 	case KVM_REG_PPC_TM_VSCR:
2352 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2353 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2354 		else
2355 			r = - ENXIO;
2356 		break;
2357 	case KVM_REG_PPC_TM_DSCR:
2358 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2359 		break;
2360 	case KVM_REG_PPC_TM_TAR:
2361 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2362 		break;
2363 #endif
2364 	case KVM_REG_PPC_ARCH_COMPAT:
2365 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2366 		break;
2367 	case KVM_REG_PPC_DEC_EXPIRY:
2368 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2369 			vcpu->arch.vcore->tb_offset;
2370 		break;
2371 	case KVM_REG_PPC_ONLINE:
2372 		i = set_reg_val(id, *val);
2373 		if (i && !vcpu->arch.online)
2374 			atomic_inc(&vcpu->arch.vcore->online_count);
2375 		else if (!i && vcpu->arch.online)
2376 			atomic_dec(&vcpu->arch.vcore->online_count);
2377 		vcpu->arch.online = i;
2378 		break;
2379 	case KVM_REG_PPC_PTCR:
2380 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2381 		break;
2382 	default:
2383 		r = -EINVAL;
2384 		break;
2385 	}
2386 
2387 	return r;
2388 }
2389 
2390 /*
2391  * On POWER9, threads are independent and can be in different partitions.
2392  * Therefore we consider each thread to be a subcore.
2393  * There is a restriction that all threads have to be in the same
2394  * MMU mode (radix or HPT), unfortunately, but since we only support
2395  * HPT guests on a HPT host so far, that isn't an impediment yet.
2396  */
2397 static int threads_per_vcore(struct kvm *kvm)
2398 {
2399 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2400 		return 1;
2401 	return threads_per_subcore;
2402 }
2403 
2404 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2405 {
2406 	struct kvmppc_vcore *vcore;
2407 
2408 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2409 
2410 	if (vcore == NULL)
2411 		return NULL;
2412 
2413 	spin_lock_init(&vcore->lock);
2414 	spin_lock_init(&vcore->stoltb_lock);
2415 	rcuwait_init(&vcore->wait);
2416 	vcore->preempt_tb = TB_NIL;
2417 	vcore->lpcr = kvm->arch.lpcr;
2418 	vcore->first_vcpuid = id;
2419 	vcore->kvm = kvm;
2420 	INIT_LIST_HEAD(&vcore->preempt_list);
2421 
2422 	return vcore;
2423 }
2424 
2425 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2426 static struct debugfs_timings_element {
2427 	const char *name;
2428 	size_t offset;
2429 } timings[] = {
2430 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2431 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2432 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2433 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2434 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2435 };
2436 
2437 #define N_TIMINGS	(ARRAY_SIZE(timings))
2438 
2439 struct debugfs_timings_state {
2440 	struct kvm_vcpu	*vcpu;
2441 	unsigned int	buflen;
2442 	char		buf[N_TIMINGS * 100];
2443 };
2444 
2445 static int debugfs_timings_open(struct inode *inode, struct file *file)
2446 {
2447 	struct kvm_vcpu *vcpu = inode->i_private;
2448 	struct debugfs_timings_state *p;
2449 
2450 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2451 	if (!p)
2452 		return -ENOMEM;
2453 
2454 	kvm_get_kvm(vcpu->kvm);
2455 	p->vcpu = vcpu;
2456 	file->private_data = p;
2457 
2458 	return nonseekable_open(inode, file);
2459 }
2460 
2461 static int debugfs_timings_release(struct inode *inode, struct file *file)
2462 {
2463 	struct debugfs_timings_state *p = file->private_data;
2464 
2465 	kvm_put_kvm(p->vcpu->kvm);
2466 	kfree(p);
2467 	return 0;
2468 }
2469 
2470 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2471 				    size_t len, loff_t *ppos)
2472 {
2473 	struct debugfs_timings_state *p = file->private_data;
2474 	struct kvm_vcpu *vcpu = p->vcpu;
2475 	char *s, *buf_end;
2476 	struct kvmhv_tb_accumulator tb;
2477 	u64 count;
2478 	loff_t pos;
2479 	ssize_t n;
2480 	int i, loops;
2481 	bool ok;
2482 
2483 	if (!p->buflen) {
2484 		s = p->buf;
2485 		buf_end = s + sizeof(p->buf);
2486 		for (i = 0; i < N_TIMINGS; ++i) {
2487 			struct kvmhv_tb_accumulator *acc;
2488 
2489 			acc = (struct kvmhv_tb_accumulator *)
2490 				((unsigned long)vcpu + timings[i].offset);
2491 			ok = false;
2492 			for (loops = 0; loops < 1000; ++loops) {
2493 				count = acc->seqcount;
2494 				if (!(count & 1)) {
2495 					smp_rmb();
2496 					tb = *acc;
2497 					smp_rmb();
2498 					if (count == acc->seqcount) {
2499 						ok = true;
2500 						break;
2501 					}
2502 				}
2503 				udelay(1);
2504 			}
2505 			if (!ok)
2506 				snprintf(s, buf_end - s, "%s: stuck\n",
2507 					timings[i].name);
2508 			else
2509 				snprintf(s, buf_end - s,
2510 					"%s: %llu %llu %llu %llu\n",
2511 					timings[i].name, count / 2,
2512 					tb_to_ns(tb.tb_total),
2513 					tb_to_ns(tb.tb_min),
2514 					tb_to_ns(tb.tb_max));
2515 			s += strlen(s);
2516 		}
2517 		p->buflen = s - p->buf;
2518 	}
2519 
2520 	pos = *ppos;
2521 	if (pos >= p->buflen)
2522 		return 0;
2523 	if (len > p->buflen - pos)
2524 		len = p->buflen - pos;
2525 	n = copy_to_user(buf, p->buf + pos, len);
2526 	if (n) {
2527 		if (n == len)
2528 			return -EFAULT;
2529 		len -= n;
2530 	}
2531 	*ppos = pos + len;
2532 	return len;
2533 }
2534 
2535 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2536 				     size_t len, loff_t *ppos)
2537 {
2538 	return -EACCES;
2539 }
2540 
2541 static const struct file_operations debugfs_timings_ops = {
2542 	.owner	 = THIS_MODULE,
2543 	.open	 = debugfs_timings_open,
2544 	.release = debugfs_timings_release,
2545 	.read	 = debugfs_timings_read,
2546 	.write	 = debugfs_timings_write,
2547 	.llseek	 = generic_file_llseek,
2548 };
2549 
2550 /* Create a debugfs directory for the vcpu */
2551 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2552 {
2553 	char buf[16];
2554 	struct kvm *kvm = vcpu->kvm;
2555 
2556 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2557 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2558 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2559 			    &debugfs_timings_ops);
2560 }
2561 
2562 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2563 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2564 {
2565 }
2566 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2567 
2568 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2569 {
2570 	int err;
2571 	int core;
2572 	struct kvmppc_vcore *vcore;
2573 	struct kvm *kvm;
2574 	unsigned int id;
2575 
2576 	kvm = vcpu->kvm;
2577 	id = vcpu->vcpu_id;
2578 
2579 	vcpu->arch.shared = &vcpu->arch.shregs;
2580 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2581 	/*
2582 	 * The shared struct is never shared on HV,
2583 	 * so we can always use host endianness
2584 	 */
2585 #ifdef __BIG_ENDIAN__
2586 	vcpu->arch.shared_big_endian = true;
2587 #else
2588 	vcpu->arch.shared_big_endian = false;
2589 #endif
2590 #endif
2591 	vcpu->arch.mmcr[0] = MMCR0_FC;
2592 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2593 	/* default to host PVR, since we can't spoof it */
2594 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2595 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2596 	spin_lock_init(&vcpu->arch.tbacct_lock);
2597 	vcpu->arch.busy_preempt = TB_NIL;
2598 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2599 
2600 	/*
2601 	 * Set the default HFSCR for the guest from the host value.
2602 	 * This value is only used on POWER9.
2603 	 * On POWER9, we want to virtualize the doorbell facility, so we
2604 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2605 	 * to trap and then we emulate them.
2606 	 */
2607 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2608 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2609 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2610 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2611 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2612 			vcpu->arch.hfscr |= HFSCR_TM;
2613 	}
2614 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2615 		vcpu->arch.hfscr |= HFSCR_TM;
2616 
2617 	kvmppc_mmu_book3s_hv_init(vcpu);
2618 
2619 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2620 
2621 	init_waitqueue_head(&vcpu->arch.cpu_run);
2622 
2623 	mutex_lock(&kvm->lock);
2624 	vcore = NULL;
2625 	err = -EINVAL;
2626 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2627 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2628 			pr_devel("KVM: VCPU ID too high\n");
2629 			core = KVM_MAX_VCORES;
2630 		} else {
2631 			BUG_ON(kvm->arch.smt_mode != 1);
2632 			core = kvmppc_pack_vcpu_id(kvm, id);
2633 		}
2634 	} else {
2635 		core = id / kvm->arch.smt_mode;
2636 	}
2637 	if (core < KVM_MAX_VCORES) {
2638 		vcore = kvm->arch.vcores[core];
2639 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2640 			pr_devel("KVM: collision on id %u", id);
2641 			vcore = NULL;
2642 		} else if (!vcore) {
2643 			/*
2644 			 * Take mmu_setup_lock for mutual exclusion
2645 			 * with kvmppc_update_lpcr().
2646 			 */
2647 			err = -ENOMEM;
2648 			vcore = kvmppc_vcore_create(kvm,
2649 					id & ~(kvm->arch.smt_mode - 1));
2650 			mutex_lock(&kvm->arch.mmu_setup_lock);
2651 			kvm->arch.vcores[core] = vcore;
2652 			kvm->arch.online_vcores++;
2653 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2654 		}
2655 	}
2656 	mutex_unlock(&kvm->lock);
2657 
2658 	if (!vcore)
2659 		return err;
2660 
2661 	spin_lock(&vcore->lock);
2662 	++vcore->num_threads;
2663 	spin_unlock(&vcore->lock);
2664 	vcpu->arch.vcore = vcore;
2665 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2666 	vcpu->arch.thread_cpu = -1;
2667 	vcpu->arch.prev_cpu = -1;
2668 
2669 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2670 	kvmppc_sanity_check(vcpu);
2671 
2672 	debugfs_vcpu_init(vcpu, id);
2673 
2674 	return 0;
2675 }
2676 
2677 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2678 			      unsigned long flags)
2679 {
2680 	int err;
2681 	int esmt = 0;
2682 
2683 	if (flags)
2684 		return -EINVAL;
2685 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2686 		return -EINVAL;
2687 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2688 		/*
2689 		 * On POWER8 (or POWER7), the threading mode is "strict",
2690 		 * so we pack smt_mode vcpus per vcore.
2691 		 */
2692 		if (smt_mode > threads_per_subcore)
2693 			return -EINVAL;
2694 	} else {
2695 		/*
2696 		 * On POWER9, the threading mode is "loose",
2697 		 * so each vcpu gets its own vcore.
2698 		 */
2699 		esmt = smt_mode;
2700 		smt_mode = 1;
2701 	}
2702 	mutex_lock(&kvm->lock);
2703 	err = -EBUSY;
2704 	if (!kvm->arch.online_vcores) {
2705 		kvm->arch.smt_mode = smt_mode;
2706 		kvm->arch.emul_smt_mode = esmt;
2707 		err = 0;
2708 	}
2709 	mutex_unlock(&kvm->lock);
2710 
2711 	return err;
2712 }
2713 
2714 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2715 {
2716 	if (vpa->pinned_addr)
2717 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2718 					vpa->dirty);
2719 }
2720 
2721 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2722 {
2723 	spin_lock(&vcpu->arch.vpa_update_lock);
2724 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2725 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2726 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2727 	spin_unlock(&vcpu->arch.vpa_update_lock);
2728 }
2729 
2730 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2731 {
2732 	/* Indicate we want to get back into the guest */
2733 	return 1;
2734 }
2735 
2736 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2737 {
2738 	unsigned long dec_nsec, now;
2739 
2740 	now = get_tb();
2741 	if (now > vcpu->arch.dec_expires) {
2742 		/* decrementer has already gone negative */
2743 		kvmppc_core_queue_dec(vcpu);
2744 		kvmppc_core_prepare_to_enter(vcpu);
2745 		return;
2746 	}
2747 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2748 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2749 	vcpu->arch.timer_running = 1;
2750 }
2751 
2752 extern int __kvmppc_vcore_entry(void);
2753 
2754 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2755 				   struct kvm_vcpu *vcpu)
2756 {
2757 	u64 now;
2758 
2759 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2760 		return;
2761 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2762 	now = mftb();
2763 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2764 		vcpu->arch.stolen_logged;
2765 	vcpu->arch.busy_preempt = now;
2766 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2767 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2768 	--vc->n_runnable;
2769 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2770 }
2771 
2772 static int kvmppc_grab_hwthread(int cpu)
2773 {
2774 	struct paca_struct *tpaca;
2775 	long timeout = 10000;
2776 
2777 	tpaca = paca_ptrs[cpu];
2778 
2779 	/* Ensure the thread won't go into the kernel if it wakes */
2780 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2781 	tpaca->kvm_hstate.kvm_vcore = NULL;
2782 	tpaca->kvm_hstate.napping = 0;
2783 	smp_wmb();
2784 	tpaca->kvm_hstate.hwthread_req = 1;
2785 
2786 	/*
2787 	 * If the thread is already executing in the kernel (e.g. handling
2788 	 * a stray interrupt), wait for it to get back to nap mode.
2789 	 * The smp_mb() is to ensure that our setting of hwthread_req
2790 	 * is visible before we look at hwthread_state, so if this
2791 	 * races with the code at system_reset_pSeries and the thread
2792 	 * misses our setting of hwthread_req, we are sure to see its
2793 	 * setting of hwthread_state, and vice versa.
2794 	 */
2795 	smp_mb();
2796 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2797 		if (--timeout <= 0) {
2798 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2799 			return -EBUSY;
2800 		}
2801 		udelay(1);
2802 	}
2803 	return 0;
2804 }
2805 
2806 static void kvmppc_release_hwthread(int cpu)
2807 {
2808 	struct paca_struct *tpaca;
2809 
2810 	tpaca = paca_ptrs[cpu];
2811 	tpaca->kvm_hstate.hwthread_req = 0;
2812 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2813 	tpaca->kvm_hstate.kvm_vcore = NULL;
2814 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2815 }
2816 
2817 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2818 {
2819 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2820 	cpumask_t *cpu_in_guest;
2821 	int i;
2822 
2823 	cpu = cpu_first_thread_sibling(cpu);
2824 	if (nested) {
2825 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2826 		cpu_in_guest = &nested->cpu_in_guest;
2827 	} else {
2828 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2829 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2830 	}
2831 	/*
2832 	 * Make sure setting of bit in need_tlb_flush precedes
2833 	 * testing of cpu_in_guest bits.  The matching barrier on
2834 	 * the other side is the first smp_mb() in kvmppc_run_core().
2835 	 */
2836 	smp_mb();
2837 	for (i = 0; i < threads_per_core; ++i)
2838 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2839 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2840 }
2841 
2842 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2843 {
2844 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2845 	struct kvm *kvm = vcpu->kvm;
2846 	int prev_cpu;
2847 
2848 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2849 		return;
2850 
2851 	if (nested)
2852 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2853 	else
2854 		prev_cpu = vcpu->arch.prev_cpu;
2855 
2856 	/*
2857 	 * With radix, the guest can do TLB invalidations itself,
2858 	 * and it could choose to use the local form (tlbiel) if
2859 	 * it is invalidating a translation that has only ever been
2860 	 * used on one vcpu.  However, that doesn't mean it has
2861 	 * only ever been used on one physical cpu, since vcpus
2862 	 * can move around between pcpus.  To cope with this, when
2863 	 * a vcpu moves from one pcpu to another, we need to tell
2864 	 * any vcpus running on the same core as this vcpu previously
2865 	 * ran to flush the TLB.  The TLB is shared between threads,
2866 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2867 	 */
2868 	if (prev_cpu != pcpu) {
2869 		if (prev_cpu >= 0 &&
2870 		    cpu_first_thread_sibling(prev_cpu) !=
2871 		    cpu_first_thread_sibling(pcpu))
2872 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2873 		if (nested)
2874 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2875 		else
2876 			vcpu->arch.prev_cpu = pcpu;
2877 	}
2878 }
2879 
2880 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2881 {
2882 	int cpu;
2883 	struct paca_struct *tpaca;
2884 	struct kvm *kvm = vc->kvm;
2885 
2886 	cpu = vc->pcpu;
2887 	if (vcpu) {
2888 		if (vcpu->arch.timer_running) {
2889 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2890 			vcpu->arch.timer_running = 0;
2891 		}
2892 		cpu += vcpu->arch.ptid;
2893 		vcpu->cpu = vc->pcpu;
2894 		vcpu->arch.thread_cpu = cpu;
2895 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2896 	}
2897 	tpaca = paca_ptrs[cpu];
2898 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2899 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2900 	tpaca->kvm_hstate.fake_suspend = 0;
2901 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2902 	smp_wmb();
2903 	tpaca->kvm_hstate.kvm_vcore = vc;
2904 	if (cpu != smp_processor_id())
2905 		kvmppc_ipi_thread(cpu);
2906 }
2907 
2908 static void kvmppc_wait_for_nap(int n_threads)
2909 {
2910 	int cpu = smp_processor_id();
2911 	int i, loops;
2912 
2913 	if (n_threads <= 1)
2914 		return;
2915 	for (loops = 0; loops < 1000000; ++loops) {
2916 		/*
2917 		 * Check if all threads are finished.
2918 		 * We set the vcore pointer when starting a thread
2919 		 * and the thread clears it when finished, so we look
2920 		 * for any threads that still have a non-NULL vcore ptr.
2921 		 */
2922 		for (i = 1; i < n_threads; ++i)
2923 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2924 				break;
2925 		if (i == n_threads) {
2926 			HMT_medium();
2927 			return;
2928 		}
2929 		HMT_low();
2930 	}
2931 	HMT_medium();
2932 	for (i = 1; i < n_threads; ++i)
2933 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2934 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2935 }
2936 
2937 /*
2938  * Check that we are on thread 0 and that any other threads in
2939  * this core are off-line.  Then grab the threads so they can't
2940  * enter the kernel.
2941  */
2942 static int on_primary_thread(void)
2943 {
2944 	int cpu = smp_processor_id();
2945 	int thr;
2946 
2947 	/* Are we on a primary subcore? */
2948 	if (cpu_thread_in_subcore(cpu))
2949 		return 0;
2950 
2951 	thr = 0;
2952 	while (++thr < threads_per_subcore)
2953 		if (cpu_online(cpu + thr))
2954 			return 0;
2955 
2956 	/* Grab all hw threads so they can't go into the kernel */
2957 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2958 		if (kvmppc_grab_hwthread(cpu + thr)) {
2959 			/* Couldn't grab one; let the others go */
2960 			do {
2961 				kvmppc_release_hwthread(cpu + thr);
2962 			} while (--thr > 0);
2963 			return 0;
2964 		}
2965 	}
2966 	return 1;
2967 }
2968 
2969 /*
2970  * A list of virtual cores for each physical CPU.
2971  * These are vcores that could run but their runner VCPU tasks are
2972  * (or may be) preempted.
2973  */
2974 struct preempted_vcore_list {
2975 	struct list_head	list;
2976 	spinlock_t		lock;
2977 };
2978 
2979 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2980 
2981 static void init_vcore_lists(void)
2982 {
2983 	int cpu;
2984 
2985 	for_each_possible_cpu(cpu) {
2986 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2987 		spin_lock_init(&lp->lock);
2988 		INIT_LIST_HEAD(&lp->list);
2989 	}
2990 }
2991 
2992 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2993 {
2994 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2995 
2996 	vc->vcore_state = VCORE_PREEMPT;
2997 	vc->pcpu = smp_processor_id();
2998 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2999 		spin_lock(&lp->lock);
3000 		list_add_tail(&vc->preempt_list, &lp->list);
3001 		spin_unlock(&lp->lock);
3002 	}
3003 
3004 	/* Start accumulating stolen time */
3005 	kvmppc_core_start_stolen(vc);
3006 }
3007 
3008 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3009 {
3010 	struct preempted_vcore_list *lp;
3011 
3012 	kvmppc_core_end_stolen(vc);
3013 	if (!list_empty(&vc->preempt_list)) {
3014 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3015 		spin_lock(&lp->lock);
3016 		list_del_init(&vc->preempt_list);
3017 		spin_unlock(&lp->lock);
3018 	}
3019 	vc->vcore_state = VCORE_INACTIVE;
3020 }
3021 
3022 /*
3023  * This stores information about the virtual cores currently
3024  * assigned to a physical core.
3025  */
3026 struct core_info {
3027 	int		n_subcores;
3028 	int		max_subcore_threads;
3029 	int		total_threads;
3030 	int		subcore_threads[MAX_SUBCORES];
3031 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3032 };
3033 
3034 /*
3035  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3036  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3037  */
3038 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3039 
3040 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3041 {
3042 	memset(cip, 0, sizeof(*cip));
3043 	cip->n_subcores = 1;
3044 	cip->max_subcore_threads = vc->num_threads;
3045 	cip->total_threads = vc->num_threads;
3046 	cip->subcore_threads[0] = vc->num_threads;
3047 	cip->vc[0] = vc;
3048 }
3049 
3050 static bool subcore_config_ok(int n_subcores, int n_threads)
3051 {
3052 	/*
3053 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3054 	 * split-core mode, with one thread per subcore.
3055 	 */
3056 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3057 		return n_subcores <= 4 && n_threads == 1;
3058 
3059 	/* On POWER8, can only dynamically split if unsplit to begin with */
3060 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3061 		return false;
3062 	if (n_subcores > MAX_SUBCORES)
3063 		return false;
3064 	if (n_subcores > 1) {
3065 		if (!(dynamic_mt_modes & 2))
3066 			n_subcores = 4;
3067 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3068 			return false;
3069 	}
3070 
3071 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3072 }
3073 
3074 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3075 {
3076 	vc->entry_exit_map = 0;
3077 	vc->in_guest = 0;
3078 	vc->napping_threads = 0;
3079 	vc->conferring_threads = 0;
3080 	vc->tb_offset_applied = 0;
3081 }
3082 
3083 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3084 {
3085 	int n_threads = vc->num_threads;
3086 	int sub;
3087 
3088 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3089 		return false;
3090 
3091 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3092 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3093 		return false;
3094 
3095 	if (n_threads < cip->max_subcore_threads)
3096 		n_threads = cip->max_subcore_threads;
3097 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3098 		return false;
3099 	cip->max_subcore_threads = n_threads;
3100 
3101 	sub = cip->n_subcores;
3102 	++cip->n_subcores;
3103 	cip->total_threads += vc->num_threads;
3104 	cip->subcore_threads[sub] = vc->num_threads;
3105 	cip->vc[sub] = vc;
3106 	init_vcore_to_run(vc);
3107 	list_del_init(&vc->preempt_list);
3108 
3109 	return true;
3110 }
3111 
3112 /*
3113  * Work out whether it is possible to piggyback the execution of
3114  * vcore *pvc onto the execution of the other vcores described in *cip.
3115  */
3116 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3117 			  int target_threads)
3118 {
3119 	if (cip->total_threads + pvc->num_threads > target_threads)
3120 		return false;
3121 
3122 	return can_dynamic_split(pvc, cip);
3123 }
3124 
3125 static void prepare_threads(struct kvmppc_vcore *vc)
3126 {
3127 	int i;
3128 	struct kvm_vcpu *vcpu;
3129 
3130 	for_each_runnable_thread(i, vcpu, vc) {
3131 		if (signal_pending(vcpu->arch.run_task))
3132 			vcpu->arch.ret = -EINTR;
3133 		else if (vcpu->arch.vpa.update_pending ||
3134 			 vcpu->arch.slb_shadow.update_pending ||
3135 			 vcpu->arch.dtl.update_pending)
3136 			vcpu->arch.ret = RESUME_GUEST;
3137 		else
3138 			continue;
3139 		kvmppc_remove_runnable(vc, vcpu);
3140 		wake_up(&vcpu->arch.cpu_run);
3141 	}
3142 }
3143 
3144 static void collect_piggybacks(struct core_info *cip, int target_threads)
3145 {
3146 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3147 	struct kvmppc_vcore *pvc, *vcnext;
3148 
3149 	spin_lock(&lp->lock);
3150 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3151 		if (!spin_trylock(&pvc->lock))
3152 			continue;
3153 		prepare_threads(pvc);
3154 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3155 			list_del_init(&pvc->preempt_list);
3156 			if (pvc->runner == NULL) {
3157 				pvc->vcore_state = VCORE_INACTIVE;
3158 				kvmppc_core_end_stolen(pvc);
3159 			}
3160 			spin_unlock(&pvc->lock);
3161 			continue;
3162 		}
3163 		if (!can_piggyback(pvc, cip, target_threads)) {
3164 			spin_unlock(&pvc->lock);
3165 			continue;
3166 		}
3167 		kvmppc_core_end_stolen(pvc);
3168 		pvc->vcore_state = VCORE_PIGGYBACK;
3169 		if (cip->total_threads >= target_threads)
3170 			break;
3171 	}
3172 	spin_unlock(&lp->lock);
3173 }
3174 
3175 static bool recheck_signals_and_mmu(struct core_info *cip)
3176 {
3177 	int sub, i;
3178 	struct kvm_vcpu *vcpu;
3179 	struct kvmppc_vcore *vc;
3180 
3181 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3182 		vc = cip->vc[sub];
3183 		if (!vc->kvm->arch.mmu_ready)
3184 			return true;
3185 		for_each_runnable_thread(i, vcpu, vc)
3186 			if (signal_pending(vcpu->arch.run_task))
3187 				return true;
3188 	}
3189 	return false;
3190 }
3191 
3192 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3193 {
3194 	int still_running = 0, i;
3195 	u64 now;
3196 	long ret;
3197 	struct kvm_vcpu *vcpu;
3198 
3199 	spin_lock(&vc->lock);
3200 	now = get_tb();
3201 	for_each_runnable_thread(i, vcpu, vc) {
3202 		/*
3203 		 * It's safe to unlock the vcore in the loop here, because
3204 		 * for_each_runnable_thread() is safe against removal of
3205 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3206 		 * so any vcpus becoming runnable will have their arch.trap
3207 		 * set to zero and can't actually run in the guest.
3208 		 */
3209 		spin_unlock(&vc->lock);
3210 		/* cancel pending dec exception if dec is positive */
3211 		if (now < vcpu->arch.dec_expires &&
3212 		    kvmppc_core_pending_dec(vcpu))
3213 			kvmppc_core_dequeue_dec(vcpu);
3214 
3215 		trace_kvm_guest_exit(vcpu);
3216 
3217 		ret = RESUME_GUEST;
3218 		if (vcpu->arch.trap)
3219 			ret = kvmppc_handle_exit_hv(vcpu,
3220 						    vcpu->arch.run_task);
3221 
3222 		vcpu->arch.ret = ret;
3223 		vcpu->arch.trap = 0;
3224 
3225 		spin_lock(&vc->lock);
3226 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3227 			if (vcpu->arch.pending_exceptions)
3228 				kvmppc_core_prepare_to_enter(vcpu);
3229 			if (vcpu->arch.ceded)
3230 				kvmppc_set_timer(vcpu);
3231 			else
3232 				++still_running;
3233 		} else {
3234 			kvmppc_remove_runnable(vc, vcpu);
3235 			wake_up(&vcpu->arch.cpu_run);
3236 		}
3237 	}
3238 	if (!is_master) {
3239 		if (still_running > 0) {
3240 			kvmppc_vcore_preempt(vc);
3241 		} else if (vc->runner) {
3242 			vc->vcore_state = VCORE_PREEMPT;
3243 			kvmppc_core_start_stolen(vc);
3244 		} else {
3245 			vc->vcore_state = VCORE_INACTIVE;
3246 		}
3247 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3248 			/* make sure there's a candidate runner awake */
3249 			i = -1;
3250 			vcpu = next_runnable_thread(vc, &i);
3251 			wake_up(&vcpu->arch.cpu_run);
3252 		}
3253 	}
3254 	spin_unlock(&vc->lock);
3255 }
3256 
3257 /*
3258  * Clear core from the list of active host cores as we are about to
3259  * enter the guest. Only do this if it is the primary thread of the
3260  * core (not if a subcore) that is entering the guest.
3261  */
3262 static inline int kvmppc_clear_host_core(unsigned int cpu)
3263 {
3264 	int core;
3265 
3266 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3267 		return 0;
3268 	/*
3269 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3270 	 * later in kvmppc_start_thread and we need ensure that state is
3271 	 * visible to other CPUs only after we enter guest.
3272 	 */
3273 	core = cpu >> threads_shift;
3274 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3275 	return 0;
3276 }
3277 
3278 /*
3279  * Advertise this core as an active host core since we exited the guest
3280  * Only need to do this if it is the primary thread of the core that is
3281  * exiting.
3282  */
3283 static inline int kvmppc_set_host_core(unsigned int cpu)
3284 {
3285 	int core;
3286 
3287 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3288 		return 0;
3289 
3290 	/*
3291 	 * Memory barrier can be omitted here because we do a spin_unlock
3292 	 * immediately after this which provides the memory barrier.
3293 	 */
3294 	core = cpu >> threads_shift;
3295 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3296 	return 0;
3297 }
3298 
3299 static void set_irq_happened(int trap)
3300 {
3301 	switch (trap) {
3302 	case BOOK3S_INTERRUPT_EXTERNAL:
3303 		local_paca->irq_happened |= PACA_IRQ_EE;
3304 		break;
3305 	case BOOK3S_INTERRUPT_H_DOORBELL:
3306 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3307 		break;
3308 	case BOOK3S_INTERRUPT_HMI:
3309 		local_paca->irq_happened |= PACA_IRQ_HMI;
3310 		break;
3311 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3312 		replay_system_reset();
3313 		break;
3314 	}
3315 }
3316 
3317 /*
3318  * Run a set of guest threads on a physical core.
3319  * Called with vc->lock held.
3320  */
3321 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3322 {
3323 	struct kvm_vcpu *vcpu;
3324 	int i;
3325 	int srcu_idx;
3326 	struct core_info core_info;
3327 	struct kvmppc_vcore *pvc;
3328 	struct kvm_split_mode split_info, *sip;
3329 	int split, subcore_size, active;
3330 	int sub;
3331 	bool thr0_done;
3332 	unsigned long cmd_bit, stat_bit;
3333 	int pcpu, thr;
3334 	int target_threads;
3335 	int controlled_threads;
3336 	int trap;
3337 	bool is_power8;
3338 
3339 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3340 		return;
3341 
3342 	/*
3343 	 * Remove from the list any threads that have a signal pending
3344 	 * or need a VPA update done
3345 	 */
3346 	prepare_threads(vc);
3347 
3348 	/* if the runner is no longer runnable, let the caller pick a new one */
3349 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3350 		return;
3351 
3352 	/*
3353 	 * Initialize *vc.
3354 	 */
3355 	init_vcore_to_run(vc);
3356 	vc->preempt_tb = TB_NIL;
3357 
3358 	/*
3359 	 * Number of threads that we will be controlling: the same as
3360 	 * the number of threads per subcore, except on POWER9,
3361 	 * where it's 1 because the threads are (mostly) independent.
3362 	 */
3363 	controlled_threads = threads_per_vcore(vc->kvm);
3364 
3365 	/*
3366 	 * Make sure we are running on primary threads, and that secondary
3367 	 * threads are offline.  Also check if the number of threads in this
3368 	 * guest are greater than the current system threads per guest.
3369 	 */
3370 	if ((controlled_threads > 1) &&
3371 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3372 		for_each_runnable_thread(i, vcpu, vc) {
3373 			vcpu->arch.ret = -EBUSY;
3374 			kvmppc_remove_runnable(vc, vcpu);
3375 			wake_up(&vcpu->arch.cpu_run);
3376 		}
3377 		goto out;
3378 	}
3379 
3380 	/*
3381 	 * See if we could run any other vcores on the physical core
3382 	 * along with this one.
3383 	 */
3384 	init_core_info(&core_info, vc);
3385 	pcpu = smp_processor_id();
3386 	target_threads = controlled_threads;
3387 	if (target_smt_mode && target_smt_mode < target_threads)
3388 		target_threads = target_smt_mode;
3389 	if (vc->num_threads < target_threads)
3390 		collect_piggybacks(&core_info, target_threads);
3391 
3392 	/*
3393 	 * Hard-disable interrupts, and check resched flag and signals.
3394 	 * If we need to reschedule or deliver a signal, clean up
3395 	 * and return without going into the guest(s).
3396 	 * If the mmu_ready flag has been cleared, don't go into the
3397 	 * guest because that means a HPT resize operation is in progress.
3398 	 */
3399 	local_irq_disable();
3400 	hard_irq_disable();
3401 	if (lazy_irq_pending() || need_resched() ||
3402 	    recheck_signals_and_mmu(&core_info)) {
3403 		local_irq_enable();
3404 		vc->vcore_state = VCORE_INACTIVE;
3405 		/* Unlock all except the primary vcore */
3406 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3407 			pvc = core_info.vc[sub];
3408 			/* Put back on to the preempted vcores list */
3409 			kvmppc_vcore_preempt(pvc);
3410 			spin_unlock(&pvc->lock);
3411 		}
3412 		for (i = 0; i < controlled_threads; ++i)
3413 			kvmppc_release_hwthread(pcpu + i);
3414 		return;
3415 	}
3416 
3417 	kvmppc_clear_host_core(pcpu);
3418 
3419 	/* Decide on micro-threading (split-core) mode */
3420 	subcore_size = threads_per_subcore;
3421 	cmd_bit = stat_bit = 0;
3422 	split = core_info.n_subcores;
3423 	sip = NULL;
3424 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3425 
3426 	if (split > 1) {
3427 		sip = &split_info;
3428 		memset(&split_info, 0, sizeof(split_info));
3429 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3430 			split_info.vc[sub] = core_info.vc[sub];
3431 
3432 		if (is_power8) {
3433 			if (split == 2 && (dynamic_mt_modes & 2)) {
3434 				cmd_bit = HID0_POWER8_1TO2LPAR;
3435 				stat_bit = HID0_POWER8_2LPARMODE;
3436 			} else {
3437 				split = 4;
3438 				cmd_bit = HID0_POWER8_1TO4LPAR;
3439 				stat_bit = HID0_POWER8_4LPARMODE;
3440 			}
3441 			subcore_size = MAX_SMT_THREADS / split;
3442 			split_info.rpr = mfspr(SPRN_RPR);
3443 			split_info.pmmar = mfspr(SPRN_PMMAR);
3444 			split_info.ldbar = mfspr(SPRN_LDBAR);
3445 			split_info.subcore_size = subcore_size;
3446 		} else {
3447 			split_info.subcore_size = 1;
3448 		}
3449 
3450 		/* order writes to split_info before kvm_split_mode pointer */
3451 		smp_wmb();
3452 	}
3453 
3454 	for (thr = 0; thr < controlled_threads; ++thr) {
3455 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3456 
3457 		paca->kvm_hstate.napping = 0;
3458 		paca->kvm_hstate.kvm_split_mode = sip;
3459 	}
3460 
3461 	/* Initiate micro-threading (split-core) on POWER8 if required */
3462 	if (cmd_bit) {
3463 		unsigned long hid0 = mfspr(SPRN_HID0);
3464 
3465 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3466 		mb();
3467 		mtspr(SPRN_HID0, hid0);
3468 		isync();
3469 		for (;;) {
3470 			hid0 = mfspr(SPRN_HID0);
3471 			if (hid0 & stat_bit)
3472 				break;
3473 			cpu_relax();
3474 		}
3475 	}
3476 
3477 	/*
3478 	 * On POWER8, set RWMR register.
3479 	 * Since it only affects PURR and SPURR, it doesn't affect
3480 	 * the host, so we don't save/restore the host value.
3481 	 */
3482 	if (is_power8) {
3483 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3484 		int n_online = atomic_read(&vc->online_count);
3485 
3486 		/*
3487 		 * Use the 8-thread value if we're doing split-core
3488 		 * or if the vcore's online count looks bogus.
3489 		 */
3490 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3491 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3492 			rwmr_val = p8_rwmr_values[n_online];
3493 		mtspr(SPRN_RWMR, rwmr_val);
3494 	}
3495 
3496 	/* Start all the threads */
3497 	active = 0;
3498 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3499 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3500 		thr0_done = false;
3501 		active |= 1 << thr;
3502 		pvc = core_info.vc[sub];
3503 		pvc->pcpu = pcpu + thr;
3504 		for_each_runnable_thread(i, vcpu, pvc) {
3505 			kvmppc_start_thread(vcpu, pvc);
3506 			kvmppc_create_dtl_entry(vcpu, pvc);
3507 			trace_kvm_guest_enter(vcpu);
3508 			if (!vcpu->arch.ptid)
3509 				thr0_done = true;
3510 			active |= 1 << (thr + vcpu->arch.ptid);
3511 		}
3512 		/*
3513 		 * We need to start the first thread of each subcore
3514 		 * even if it doesn't have a vcpu.
3515 		 */
3516 		if (!thr0_done)
3517 			kvmppc_start_thread(NULL, pvc);
3518 	}
3519 
3520 	/*
3521 	 * Ensure that split_info.do_nap is set after setting
3522 	 * the vcore pointer in the PACA of the secondaries.
3523 	 */
3524 	smp_mb();
3525 
3526 	/*
3527 	 * When doing micro-threading, poke the inactive threads as well.
3528 	 * This gets them to the nap instruction after kvm_do_nap,
3529 	 * which reduces the time taken to unsplit later.
3530 	 */
3531 	if (cmd_bit) {
3532 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3533 		for (thr = 1; thr < threads_per_subcore; ++thr)
3534 			if (!(active & (1 << thr)))
3535 				kvmppc_ipi_thread(pcpu + thr);
3536 	}
3537 
3538 	vc->vcore_state = VCORE_RUNNING;
3539 	preempt_disable();
3540 
3541 	trace_kvmppc_run_core(vc, 0);
3542 
3543 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3544 		spin_unlock(&core_info.vc[sub]->lock);
3545 
3546 	guest_enter_irqoff();
3547 
3548 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3549 
3550 	this_cpu_disable_ftrace();
3551 
3552 	/*
3553 	 * Interrupts will be enabled once we get into the guest,
3554 	 * so tell lockdep that we're about to enable interrupts.
3555 	 */
3556 	trace_hardirqs_on();
3557 
3558 	trap = __kvmppc_vcore_entry();
3559 
3560 	trace_hardirqs_off();
3561 
3562 	this_cpu_enable_ftrace();
3563 
3564 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3565 
3566 	set_irq_happened(trap);
3567 
3568 	spin_lock(&vc->lock);
3569 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3570 	vc->vcore_state = VCORE_EXITING;
3571 
3572 	/* wait for secondary threads to finish writing their state to memory */
3573 	kvmppc_wait_for_nap(controlled_threads);
3574 
3575 	/* Return to whole-core mode if we split the core earlier */
3576 	if (cmd_bit) {
3577 		unsigned long hid0 = mfspr(SPRN_HID0);
3578 		unsigned long loops = 0;
3579 
3580 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3581 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3582 		mb();
3583 		mtspr(SPRN_HID0, hid0);
3584 		isync();
3585 		for (;;) {
3586 			hid0 = mfspr(SPRN_HID0);
3587 			if (!(hid0 & stat_bit))
3588 				break;
3589 			cpu_relax();
3590 			++loops;
3591 		}
3592 		split_info.do_nap = 0;
3593 	}
3594 
3595 	kvmppc_set_host_core(pcpu);
3596 
3597 	guest_exit_irqoff();
3598 
3599 	local_irq_enable();
3600 
3601 	/* Let secondaries go back to the offline loop */
3602 	for (i = 0; i < controlled_threads; ++i) {
3603 		kvmppc_release_hwthread(pcpu + i);
3604 		if (sip && sip->napped[i])
3605 			kvmppc_ipi_thread(pcpu + i);
3606 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3607 	}
3608 
3609 	spin_unlock(&vc->lock);
3610 
3611 	/* make sure updates to secondary vcpu structs are visible now */
3612 	smp_mb();
3613 
3614 	preempt_enable();
3615 
3616 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3617 		pvc = core_info.vc[sub];
3618 		post_guest_process(pvc, pvc == vc);
3619 	}
3620 
3621 	spin_lock(&vc->lock);
3622 
3623  out:
3624 	vc->vcore_state = VCORE_INACTIVE;
3625 	trace_kvmppc_run_core(vc, 1);
3626 }
3627 
3628 static void load_spr_state(struct kvm_vcpu *vcpu)
3629 {
3630 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3631 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3632 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3633 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3634 	mtspr(SPRN_TAR, vcpu->arch.tar);
3635 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3636 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3637 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3638 	mtspr(SPRN_WORT, vcpu->arch.wort);
3639 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3640 	mtspr(SPRN_AMR, vcpu->arch.amr);
3641 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3642 
3643 	/*
3644 	 * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3645 	 * clear (or hstate set appropriately to catch those registers
3646 	 * being clobbered if we take a MCE or SRESET), so those are done
3647 	 * later.
3648 	 */
3649 
3650 	if (!(vcpu->arch.ctrl & 1))
3651 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3652 }
3653 
3654 static void store_spr_state(struct kvm_vcpu *vcpu)
3655 {
3656 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3657 
3658 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3659 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3660 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3661 	vcpu->arch.tar = mfspr(SPRN_TAR);
3662 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3663 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3664 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3665 	vcpu->arch.wort = mfspr(SPRN_WORT);
3666 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3667 	vcpu->arch.amr = mfspr(SPRN_AMR);
3668 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3669 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3670 }
3671 
3672 /*
3673  * Privileged (non-hypervisor) host registers to save.
3674  */
3675 struct p9_host_os_sprs {
3676 	unsigned long dscr;
3677 	unsigned long tidr;
3678 	unsigned long iamr;
3679 	unsigned long amr;
3680 	unsigned long fscr;
3681 };
3682 
3683 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3684 {
3685 	host_os_sprs->dscr = mfspr(SPRN_DSCR);
3686 	host_os_sprs->tidr = mfspr(SPRN_TIDR);
3687 	host_os_sprs->iamr = mfspr(SPRN_IAMR);
3688 	host_os_sprs->amr = mfspr(SPRN_AMR);
3689 	host_os_sprs->fscr = mfspr(SPRN_FSCR);
3690 }
3691 
3692 /* vcpu guest regs must already be saved */
3693 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3694 				    struct p9_host_os_sprs *host_os_sprs)
3695 {
3696 	mtspr(SPRN_PSPB, 0);
3697 	mtspr(SPRN_WORT, 0);
3698 	mtspr(SPRN_UAMOR, 0);
3699 
3700 	mtspr(SPRN_DSCR, host_os_sprs->dscr);
3701 	mtspr(SPRN_TIDR, host_os_sprs->tidr);
3702 	mtspr(SPRN_IAMR, host_os_sprs->iamr);
3703 
3704 	if (host_os_sprs->amr != vcpu->arch.amr)
3705 		mtspr(SPRN_AMR, host_os_sprs->amr);
3706 
3707 	if (host_os_sprs->fscr != vcpu->arch.fscr)
3708 		mtspr(SPRN_FSCR, host_os_sprs->fscr);
3709 
3710 	/* Save guest CTRL register, set runlatch to 1 */
3711 	if (!(vcpu->arch.ctrl & 1))
3712 		mtspr(SPRN_CTRLT, 1);
3713 }
3714 
3715 static inline bool hcall_is_xics(unsigned long req)
3716 {
3717 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
3718 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3719 }
3720 
3721 /*
3722  * Guest entry for POWER9 and later CPUs.
3723  */
3724 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3725 			 unsigned long lpcr)
3726 {
3727 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3728 	struct p9_host_os_sprs host_os_sprs;
3729 	s64 dec;
3730 	u64 tb;
3731 	int trap, save_pmu;
3732 
3733 	WARN_ON_ONCE(vcpu->arch.ceded);
3734 
3735 	dec = mfspr(SPRN_DEC);
3736 	tb = mftb();
3737 	if (dec < 0)
3738 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3739 	local_paca->kvm_hstate.dec_expires = dec + tb;
3740 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3741 		time_limit = local_paca->kvm_hstate.dec_expires;
3742 
3743 	save_p9_host_os_sprs(&host_os_sprs);
3744 
3745 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3746 
3747 	kvmppc_subcore_enter_guest();
3748 
3749 	vc->entry_exit_map = 1;
3750 	vc->in_guest = 1;
3751 
3752 	if (vcpu->arch.vpa.pinned_addr) {
3753 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3754 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3755 		lp->yield_count = cpu_to_be32(yield_count);
3756 		vcpu->arch.vpa.dirty = 1;
3757 	}
3758 
3759 	if (cpu_has_feature(CPU_FTR_TM) ||
3760 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3761 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3762 
3763 	kvmhv_load_guest_pmu(vcpu);
3764 
3765 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3766 	load_fp_state(&vcpu->arch.fp);
3767 #ifdef CONFIG_ALTIVEC
3768 	load_vr_state(&vcpu->arch.vr);
3769 #endif
3770 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3771 
3772 	load_spr_state(vcpu);
3773 
3774 	/*
3775 	 * When setting DEC, we must always deal with irq_work_raise via NMI vs
3776 	 * setting DEC. The problem occurs right as we switch into guest mode
3777 	 * if a NMI hits and sets pending work and sets DEC, then that will
3778 	 * apply to the guest and not bring us back to the host.
3779 	 *
3780 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3781 	 * example) and set HDEC to 1? That wouldn't solve the nested hv
3782 	 * case which needs to abort the hcall or zero the time limit.
3783 	 *
3784 	 * XXX: Another day's problem.
3785 	 */
3786 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3787 
3788 	if (kvmhv_on_pseries()) {
3789 		/*
3790 		 * We need to save and restore the guest visible part of the
3791 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3792 		 * doesn't do this for us. Note only required if pseries since
3793 		 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3794 		 */
3795 		unsigned long host_psscr;
3796 		/* call our hypervisor to load up HV regs and go */
3797 		struct hv_guest_state hvregs;
3798 
3799 		host_psscr = mfspr(SPRN_PSSCR_PR);
3800 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3801 		kvmhv_save_hv_regs(vcpu, &hvregs);
3802 		hvregs.lpcr = lpcr;
3803 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3804 		hvregs.version = HV_GUEST_STATE_VERSION;
3805 		if (vcpu->arch.nested) {
3806 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3807 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3808 		} else {
3809 			hvregs.lpid = vcpu->kvm->arch.lpid;
3810 			hvregs.vcpu_token = vcpu->vcpu_id;
3811 		}
3812 		hvregs.hdec_expiry = time_limit;
3813 		mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3814 		mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3815 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3816 					  __pa(&vcpu->arch.regs));
3817 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3818 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3819 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3820 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3821 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3822 		mtspr(SPRN_PSSCR_PR, host_psscr);
3823 
3824 		/* H_CEDE has to be handled now, not later */
3825 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3826 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3827 			kvmppc_cede(vcpu);
3828 			kvmppc_set_gpr(vcpu, 3, 0);
3829 			trap = 0;
3830 		}
3831 	} else {
3832 		kvmppc_xive_push_vcpu(vcpu);
3833 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
3834 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3835 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3836 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
3837 
3838 			/* H_CEDE has to be handled now, not later */
3839 			if (req == H_CEDE) {
3840 				kvmppc_cede(vcpu);
3841 				kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3842 				kvmppc_set_gpr(vcpu, 3, 0);
3843 				trap = 0;
3844 
3845 			/* XICS hcalls must be handled before xive is pulled */
3846 			} else if (hcall_is_xics(req)) {
3847 				int ret;
3848 
3849 				ret = kvmppc_xive_xics_hcall(vcpu, req);
3850 				if (ret != H_TOO_HARD) {
3851 					kvmppc_set_gpr(vcpu, 3, ret);
3852 					trap = 0;
3853 				}
3854 			}
3855 		}
3856 		kvmppc_xive_pull_vcpu(vcpu);
3857 
3858 		if (kvm_is_radix(vcpu->kvm))
3859 			vcpu->arch.slb_max = 0;
3860 	}
3861 
3862 	dec = mfspr(SPRN_DEC);
3863 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3864 		dec = (s32) dec;
3865 	tb = mftb();
3866 	vcpu->arch.dec_expires = dec + tb;
3867 	vcpu->cpu = -1;
3868 	vcpu->arch.thread_cpu = -1;
3869 
3870 	store_spr_state(vcpu);
3871 
3872 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
3873 
3874 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3875 	store_fp_state(&vcpu->arch.fp);
3876 #ifdef CONFIG_ALTIVEC
3877 	store_vr_state(&vcpu->arch.vr);
3878 #endif
3879 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3880 
3881 	if (cpu_has_feature(CPU_FTR_TM) ||
3882 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3883 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3884 
3885 	save_pmu = 1;
3886 	if (vcpu->arch.vpa.pinned_addr) {
3887 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3888 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3889 		lp->yield_count = cpu_to_be32(yield_count);
3890 		vcpu->arch.vpa.dirty = 1;
3891 		save_pmu = lp->pmcregs_in_use;
3892 	}
3893 	/* Must save pmu if this guest is capable of running nested guests */
3894 	save_pmu |= nesting_enabled(vcpu->kvm);
3895 
3896 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3897 
3898 	vc->entry_exit_map = 0x101;
3899 	vc->in_guest = 0;
3900 
3901 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3902 	/* We may have raced with new irq work */
3903 	if (test_irq_work_pending())
3904 		set_dec(1);
3905 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3906 
3907 	kvmhv_load_host_pmu();
3908 
3909 	kvmppc_subcore_exit_guest();
3910 
3911 	return trap;
3912 }
3913 
3914 /*
3915  * Wait for some other vcpu thread to execute us, and
3916  * wake us up when we need to handle something in the host.
3917  */
3918 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3919 				 struct kvm_vcpu *vcpu, int wait_state)
3920 {
3921 	DEFINE_WAIT(wait);
3922 
3923 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3924 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3925 		spin_unlock(&vc->lock);
3926 		schedule();
3927 		spin_lock(&vc->lock);
3928 	}
3929 	finish_wait(&vcpu->arch.cpu_run, &wait);
3930 }
3931 
3932 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3933 {
3934 	if (!halt_poll_ns_grow)
3935 		return;
3936 
3937 	vc->halt_poll_ns *= halt_poll_ns_grow;
3938 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3939 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3940 }
3941 
3942 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3943 {
3944 	if (halt_poll_ns_shrink == 0)
3945 		vc->halt_poll_ns = 0;
3946 	else
3947 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3948 }
3949 
3950 #ifdef CONFIG_KVM_XICS
3951 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3952 {
3953 	if (!xics_on_xive())
3954 		return false;
3955 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3956 		vcpu->arch.xive_saved_state.cppr;
3957 }
3958 #else
3959 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3960 {
3961 	return false;
3962 }
3963 #endif /* CONFIG_KVM_XICS */
3964 
3965 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3966 {
3967 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3968 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3969 		return true;
3970 
3971 	return false;
3972 }
3973 
3974 /*
3975  * Check to see if any of the runnable vcpus on the vcore have pending
3976  * exceptions or are no longer ceded
3977  */
3978 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3979 {
3980 	struct kvm_vcpu *vcpu;
3981 	int i;
3982 
3983 	for_each_runnable_thread(i, vcpu, vc) {
3984 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3985 			return 1;
3986 	}
3987 
3988 	return 0;
3989 }
3990 
3991 /*
3992  * All the vcpus in this vcore are idle, so wait for a decrementer
3993  * or external interrupt to one of the vcpus.  vc->lock is held.
3994  */
3995 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3996 {
3997 	ktime_t cur, start_poll, start_wait;
3998 	int do_sleep = 1;
3999 	u64 block_ns;
4000 
4001 	/* Poll for pending exceptions and ceded state */
4002 	cur = start_poll = ktime_get();
4003 	if (vc->halt_poll_ns) {
4004 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4005 		++vc->runner->stat.halt_attempted_poll;
4006 
4007 		vc->vcore_state = VCORE_POLLING;
4008 		spin_unlock(&vc->lock);
4009 
4010 		do {
4011 			if (kvmppc_vcore_check_block(vc)) {
4012 				do_sleep = 0;
4013 				break;
4014 			}
4015 			cur = ktime_get();
4016 		} while (single_task_running() && ktime_before(cur, stop));
4017 
4018 		spin_lock(&vc->lock);
4019 		vc->vcore_state = VCORE_INACTIVE;
4020 
4021 		if (!do_sleep) {
4022 			++vc->runner->stat.halt_successful_poll;
4023 			goto out;
4024 		}
4025 	}
4026 
4027 	prepare_to_rcuwait(&vc->wait);
4028 	set_current_state(TASK_INTERRUPTIBLE);
4029 	if (kvmppc_vcore_check_block(vc)) {
4030 		finish_rcuwait(&vc->wait);
4031 		do_sleep = 0;
4032 		/* If we polled, count this as a successful poll */
4033 		if (vc->halt_poll_ns)
4034 			++vc->runner->stat.halt_successful_poll;
4035 		goto out;
4036 	}
4037 
4038 	start_wait = ktime_get();
4039 
4040 	vc->vcore_state = VCORE_SLEEPING;
4041 	trace_kvmppc_vcore_blocked(vc, 0);
4042 	spin_unlock(&vc->lock);
4043 	schedule();
4044 	finish_rcuwait(&vc->wait);
4045 	spin_lock(&vc->lock);
4046 	vc->vcore_state = VCORE_INACTIVE;
4047 	trace_kvmppc_vcore_blocked(vc, 1);
4048 	++vc->runner->stat.halt_successful_wait;
4049 
4050 	cur = ktime_get();
4051 
4052 out:
4053 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4054 
4055 	/* Attribute wait time */
4056 	if (do_sleep) {
4057 		vc->runner->stat.halt_wait_ns +=
4058 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4059 		/* Attribute failed poll time */
4060 		if (vc->halt_poll_ns)
4061 			vc->runner->stat.halt_poll_fail_ns +=
4062 				ktime_to_ns(start_wait) -
4063 				ktime_to_ns(start_poll);
4064 	} else {
4065 		/* Attribute successful poll time */
4066 		if (vc->halt_poll_ns)
4067 			vc->runner->stat.halt_poll_success_ns +=
4068 				ktime_to_ns(cur) -
4069 				ktime_to_ns(start_poll);
4070 	}
4071 
4072 	/* Adjust poll time */
4073 	if (halt_poll_ns) {
4074 		if (block_ns <= vc->halt_poll_ns)
4075 			;
4076 		/* We slept and blocked for longer than the max halt time */
4077 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4078 			shrink_halt_poll_ns(vc);
4079 		/* We slept and our poll time is too small */
4080 		else if (vc->halt_poll_ns < halt_poll_ns &&
4081 				block_ns < halt_poll_ns)
4082 			grow_halt_poll_ns(vc);
4083 		if (vc->halt_poll_ns > halt_poll_ns)
4084 			vc->halt_poll_ns = halt_poll_ns;
4085 	} else
4086 		vc->halt_poll_ns = 0;
4087 
4088 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4089 }
4090 
4091 /*
4092  * This never fails for a radix guest, as none of the operations it does
4093  * for a radix guest can fail or have a way to report failure.
4094  */
4095 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4096 {
4097 	int r = 0;
4098 	struct kvm *kvm = vcpu->kvm;
4099 
4100 	mutex_lock(&kvm->arch.mmu_setup_lock);
4101 	if (!kvm->arch.mmu_ready) {
4102 		if (!kvm_is_radix(kvm))
4103 			r = kvmppc_hv_setup_htab_rma(vcpu);
4104 		if (!r) {
4105 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4106 				kvmppc_setup_partition_table(kvm);
4107 			kvm->arch.mmu_ready = 1;
4108 		}
4109 	}
4110 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4111 	return r;
4112 }
4113 
4114 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4115 {
4116 	struct kvm_run *run = vcpu->run;
4117 	int n_ceded, i, r;
4118 	struct kvmppc_vcore *vc;
4119 	struct kvm_vcpu *v;
4120 
4121 	trace_kvmppc_run_vcpu_enter(vcpu);
4122 
4123 	run->exit_reason = 0;
4124 	vcpu->arch.ret = RESUME_GUEST;
4125 	vcpu->arch.trap = 0;
4126 	kvmppc_update_vpas(vcpu);
4127 
4128 	/*
4129 	 * Synchronize with other threads in this virtual core
4130 	 */
4131 	vc = vcpu->arch.vcore;
4132 	spin_lock(&vc->lock);
4133 	vcpu->arch.ceded = 0;
4134 	vcpu->arch.run_task = current;
4135 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4136 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4137 	vcpu->arch.busy_preempt = TB_NIL;
4138 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4139 	++vc->n_runnable;
4140 
4141 	/*
4142 	 * This happens the first time this is called for a vcpu.
4143 	 * If the vcore is already running, we may be able to start
4144 	 * this thread straight away and have it join in.
4145 	 */
4146 	if (!signal_pending(current)) {
4147 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4148 		     vc->vcore_state == VCORE_RUNNING) &&
4149 			   !VCORE_IS_EXITING(vc)) {
4150 			kvmppc_create_dtl_entry(vcpu, vc);
4151 			kvmppc_start_thread(vcpu, vc);
4152 			trace_kvm_guest_enter(vcpu);
4153 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4154 		        rcuwait_wake_up(&vc->wait);
4155 		}
4156 
4157 	}
4158 
4159 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4160 	       !signal_pending(current)) {
4161 		/* See if the MMU is ready to go */
4162 		if (!vcpu->kvm->arch.mmu_ready) {
4163 			spin_unlock(&vc->lock);
4164 			r = kvmhv_setup_mmu(vcpu);
4165 			spin_lock(&vc->lock);
4166 			if (r) {
4167 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4168 				run->fail_entry.
4169 					hardware_entry_failure_reason = 0;
4170 				vcpu->arch.ret = r;
4171 				break;
4172 			}
4173 		}
4174 
4175 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4176 			kvmppc_vcore_end_preempt(vc);
4177 
4178 		if (vc->vcore_state != VCORE_INACTIVE) {
4179 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4180 			continue;
4181 		}
4182 		for_each_runnable_thread(i, v, vc) {
4183 			kvmppc_core_prepare_to_enter(v);
4184 			if (signal_pending(v->arch.run_task)) {
4185 				kvmppc_remove_runnable(vc, v);
4186 				v->stat.signal_exits++;
4187 				v->run->exit_reason = KVM_EXIT_INTR;
4188 				v->arch.ret = -EINTR;
4189 				wake_up(&v->arch.cpu_run);
4190 			}
4191 		}
4192 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4193 			break;
4194 		n_ceded = 0;
4195 		for_each_runnable_thread(i, v, vc) {
4196 			if (!kvmppc_vcpu_woken(v))
4197 				n_ceded += v->arch.ceded;
4198 			else
4199 				v->arch.ceded = 0;
4200 		}
4201 		vc->runner = vcpu;
4202 		if (n_ceded == vc->n_runnable) {
4203 			kvmppc_vcore_blocked(vc);
4204 		} else if (need_resched()) {
4205 			kvmppc_vcore_preempt(vc);
4206 			/* Let something else run */
4207 			cond_resched_lock(&vc->lock);
4208 			if (vc->vcore_state == VCORE_PREEMPT)
4209 				kvmppc_vcore_end_preempt(vc);
4210 		} else {
4211 			kvmppc_run_core(vc);
4212 		}
4213 		vc->runner = NULL;
4214 	}
4215 
4216 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4217 	       (vc->vcore_state == VCORE_RUNNING ||
4218 		vc->vcore_state == VCORE_EXITING ||
4219 		vc->vcore_state == VCORE_PIGGYBACK))
4220 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4221 
4222 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4223 		kvmppc_vcore_end_preempt(vc);
4224 
4225 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4226 		kvmppc_remove_runnable(vc, vcpu);
4227 		vcpu->stat.signal_exits++;
4228 		run->exit_reason = KVM_EXIT_INTR;
4229 		vcpu->arch.ret = -EINTR;
4230 	}
4231 
4232 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4233 		/* Wake up some vcpu to run the core */
4234 		i = -1;
4235 		v = next_runnable_thread(vc, &i);
4236 		wake_up(&v->arch.cpu_run);
4237 	}
4238 
4239 	trace_kvmppc_run_vcpu_exit(vcpu);
4240 	spin_unlock(&vc->lock);
4241 	return vcpu->arch.ret;
4242 }
4243 
4244 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4245 			  unsigned long lpcr)
4246 {
4247 	struct kvm_run *run = vcpu->run;
4248 	int trap, r, pcpu;
4249 	int srcu_idx;
4250 	struct kvmppc_vcore *vc;
4251 	struct kvm *kvm = vcpu->kvm;
4252 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4253 
4254 	trace_kvmppc_run_vcpu_enter(vcpu);
4255 
4256 	run->exit_reason = 0;
4257 	vcpu->arch.ret = RESUME_GUEST;
4258 	vcpu->arch.trap = 0;
4259 
4260 	vc = vcpu->arch.vcore;
4261 	vcpu->arch.ceded = 0;
4262 	vcpu->arch.run_task = current;
4263 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4264 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4265 	vcpu->arch.busy_preempt = TB_NIL;
4266 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4267 	vc->runnable_threads[0] = vcpu;
4268 	vc->n_runnable = 1;
4269 	vc->runner = vcpu;
4270 
4271 	/* See if the MMU is ready to go */
4272 	if (!kvm->arch.mmu_ready) {
4273 		r = kvmhv_setup_mmu(vcpu);
4274 		if (r) {
4275 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4276 			run->fail_entry.hardware_entry_failure_reason = 0;
4277 			vcpu->arch.ret = r;
4278 			return r;
4279 		}
4280 	}
4281 
4282 	if (need_resched())
4283 		cond_resched();
4284 
4285 	kvmppc_update_vpas(vcpu);
4286 
4287 	init_vcore_to_run(vc);
4288 	vc->preempt_tb = TB_NIL;
4289 
4290 	preempt_disable();
4291 	pcpu = smp_processor_id();
4292 	vc->pcpu = pcpu;
4293 	if (kvm_is_radix(kvm))
4294 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4295 
4296 	local_irq_disable();
4297 	hard_irq_disable();
4298 	if (signal_pending(current))
4299 		goto sigpend;
4300 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4301 		goto out;
4302 
4303 	if (!nested) {
4304 		kvmppc_core_prepare_to_enter(vcpu);
4305 		if (vcpu->arch.doorbell_request) {
4306 			vc->dpdes = 1;
4307 			smp_wmb();
4308 			vcpu->arch.doorbell_request = 0;
4309 		}
4310 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4311 			     &vcpu->arch.pending_exceptions))
4312 			lpcr |= LPCR_MER;
4313 	} else if (vcpu->arch.pending_exceptions ||
4314 		   vcpu->arch.doorbell_request ||
4315 		   xive_interrupt_pending(vcpu)) {
4316 		vcpu->arch.ret = RESUME_HOST;
4317 		goto out;
4318 	}
4319 
4320 	kvmppc_clear_host_core(pcpu);
4321 
4322 	local_paca->kvm_hstate.napping = 0;
4323 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4324 	kvmppc_start_thread(vcpu, vc);
4325 	kvmppc_create_dtl_entry(vcpu, vc);
4326 	trace_kvm_guest_enter(vcpu);
4327 
4328 	vc->vcore_state = VCORE_RUNNING;
4329 	trace_kvmppc_run_core(vc, 0);
4330 
4331 	guest_enter_irqoff();
4332 
4333 	srcu_idx = srcu_read_lock(&kvm->srcu);
4334 
4335 	this_cpu_disable_ftrace();
4336 
4337 	/* Tell lockdep that we're about to enable interrupts */
4338 	trace_hardirqs_on();
4339 
4340 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4341 	vcpu->arch.trap = trap;
4342 
4343 	trace_hardirqs_off();
4344 
4345 	this_cpu_enable_ftrace();
4346 
4347 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4348 
4349 	set_irq_happened(trap);
4350 
4351 	kvmppc_set_host_core(pcpu);
4352 
4353 	guest_exit_irqoff();
4354 
4355 	local_irq_enable();
4356 
4357 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4358 
4359 	preempt_enable();
4360 
4361 	/*
4362 	 * cancel pending decrementer exception if DEC is now positive, or if
4363 	 * entering a nested guest in which case the decrementer is now owned
4364 	 * by L2 and the L1 decrementer is provided in hdec_expires
4365 	 */
4366 	if (kvmppc_core_pending_dec(vcpu) &&
4367 			((get_tb() < vcpu->arch.dec_expires) ||
4368 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4369 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4370 		kvmppc_core_dequeue_dec(vcpu);
4371 
4372 	trace_kvm_guest_exit(vcpu);
4373 	r = RESUME_GUEST;
4374 	if (trap) {
4375 		if (!nested)
4376 			r = kvmppc_handle_exit_hv(vcpu, current);
4377 		else
4378 			r = kvmppc_handle_nested_exit(vcpu);
4379 	}
4380 	vcpu->arch.ret = r;
4381 
4382 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4383 	    !kvmppc_vcpu_woken(vcpu)) {
4384 		kvmppc_set_timer(vcpu);
4385 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4386 			if (signal_pending(current)) {
4387 				vcpu->stat.signal_exits++;
4388 				run->exit_reason = KVM_EXIT_INTR;
4389 				vcpu->arch.ret = -EINTR;
4390 				break;
4391 			}
4392 			spin_lock(&vc->lock);
4393 			kvmppc_vcore_blocked(vc);
4394 			spin_unlock(&vc->lock);
4395 		}
4396 	}
4397 	vcpu->arch.ceded = 0;
4398 
4399 	vc->vcore_state = VCORE_INACTIVE;
4400 	trace_kvmppc_run_core(vc, 1);
4401 
4402  done:
4403 	kvmppc_remove_runnable(vc, vcpu);
4404 	trace_kvmppc_run_vcpu_exit(vcpu);
4405 
4406 	return vcpu->arch.ret;
4407 
4408  sigpend:
4409 	vcpu->stat.signal_exits++;
4410 	run->exit_reason = KVM_EXIT_INTR;
4411 	vcpu->arch.ret = -EINTR;
4412  out:
4413 	local_irq_enable();
4414 	preempt_enable();
4415 	goto done;
4416 }
4417 
4418 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4419 {
4420 	struct kvm_run *run = vcpu->run;
4421 	int r;
4422 	int srcu_idx;
4423 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4424 	unsigned long user_tar = 0;
4425 	unsigned int user_vrsave;
4426 	struct kvm *kvm;
4427 
4428 	if (!vcpu->arch.sane) {
4429 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4430 		return -EINVAL;
4431 	}
4432 
4433 	/*
4434 	 * Don't allow entry with a suspended transaction, because
4435 	 * the guest entry/exit code will lose it.
4436 	 * If the guest has TM enabled, save away their TM-related SPRs
4437 	 * (they will get restored by the TM unavailable interrupt).
4438 	 */
4439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4440 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4441 	    (current->thread.regs->msr & MSR_TM)) {
4442 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4443 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4444 			run->fail_entry.hardware_entry_failure_reason = 0;
4445 			return -EINVAL;
4446 		}
4447 		/* Enable TM so we can read the TM SPRs */
4448 		mtmsr(mfmsr() | MSR_TM);
4449 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4450 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4451 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4452 		current->thread.regs->msr &= ~MSR_TM;
4453 	}
4454 #endif
4455 
4456 	/*
4457 	 * Force online to 1 for the sake of old userspace which doesn't
4458 	 * set it.
4459 	 */
4460 	if (!vcpu->arch.online) {
4461 		atomic_inc(&vcpu->arch.vcore->online_count);
4462 		vcpu->arch.online = 1;
4463 	}
4464 
4465 	kvmppc_core_prepare_to_enter(vcpu);
4466 
4467 	/* No need to go into the guest when all we'll do is come back out */
4468 	if (signal_pending(current)) {
4469 		run->exit_reason = KVM_EXIT_INTR;
4470 		return -EINTR;
4471 	}
4472 
4473 	kvm = vcpu->kvm;
4474 	atomic_inc(&kvm->arch.vcpus_running);
4475 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4476 	smp_mb();
4477 
4478 	flush_all_to_thread(current);
4479 
4480 	/* Save userspace EBB and other register values */
4481 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4482 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4483 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4484 		ebb_regs[2] = mfspr(SPRN_BESCR);
4485 		user_tar = mfspr(SPRN_TAR);
4486 	}
4487 	user_vrsave = mfspr(SPRN_VRSAVE);
4488 
4489 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4490 	vcpu->arch.pgdir = kvm->mm->pgd;
4491 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4492 
4493 	do {
4494 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4495 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4496 						  vcpu->arch.vcore->lpcr);
4497 		else
4498 			r = kvmppc_run_vcpu(vcpu);
4499 
4500 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4501 			if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4502 				/*
4503 				 * These should have been caught reflected
4504 				 * into the guest by now. Final sanity check:
4505 				 * don't allow userspace to execute hcalls in
4506 				 * the hypervisor.
4507 				 */
4508 				r = RESUME_GUEST;
4509 				continue;
4510 			}
4511 			trace_kvm_hcall_enter(vcpu);
4512 			r = kvmppc_pseries_do_hcall(vcpu);
4513 			trace_kvm_hcall_exit(vcpu, r);
4514 			kvmppc_core_prepare_to_enter(vcpu);
4515 		} else if (r == RESUME_PAGE_FAULT) {
4516 			srcu_idx = srcu_read_lock(&kvm->srcu);
4517 			r = kvmppc_book3s_hv_page_fault(vcpu,
4518 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4519 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4520 		} else if (r == RESUME_PASSTHROUGH) {
4521 			if (WARN_ON(xics_on_xive()))
4522 				r = H_SUCCESS;
4523 			else
4524 				r = kvmppc_xics_rm_complete(vcpu, 0);
4525 		}
4526 	} while (is_kvmppc_resume_guest(r));
4527 
4528 	/* Restore userspace EBB and other register values */
4529 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4530 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4531 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4532 		mtspr(SPRN_BESCR, ebb_regs[2]);
4533 		mtspr(SPRN_TAR, user_tar);
4534 	}
4535 	mtspr(SPRN_VRSAVE, user_vrsave);
4536 
4537 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4538 	atomic_dec(&kvm->arch.vcpus_running);
4539 	return r;
4540 }
4541 
4542 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4543 				     int shift, int sllp)
4544 {
4545 	(*sps)->page_shift = shift;
4546 	(*sps)->slb_enc = sllp;
4547 	(*sps)->enc[0].page_shift = shift;
4548 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4549 	/*
4550 	 * Add 16MB MPSS support (may get filtered out by userspace)
4551 	 */
4552 	if (shift != 24) {
4553 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4554 		if (penc != -1) {
4555 			(*sps)->enc[1].page_shift = 24;
4556 			(*sps)->enc[1].pte_enc = penc;
4557 		}
4558 	}
4559 	(*sps)++;
4560 }
4561 
4562 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4563 					 struct kvm_ppc_smmu_info *info)
4564 {
4565 	struct kvm_ppc_one_seg_page_size *sps;
4566 
4567 	/*
4568 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4569 	 * POWER7 doesn't support keys for instruction accesses,
4570 	 * POWER8 and POWER9 do.
4571 	 */
4572 	info->data_keys = 32;
4573 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4574 
4575 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4576 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4577 	info->slb_size = 32;
4578 
4579 	/* We only support these sizes for now, and no muti-size segments */
4580 	sps = &info->sps[0];
4581 	kvmppc_add_seg_page_size(&sps, 12, 0);
4582 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4583 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4584 
4585 	/* If running as a nested hypervisor, we don't support HPT guests */
4586 	if (kvmhv_on_pseries())
4587 		info->flags |= KVM_PPC_NO_HASH;
4588 
4589 	return 0;
4590 }
4591 
4592 /*
4593  * Get (and clear) the dirty memory log for a memory slot.
4594  */
4595 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4596 					 struct kvm_dirty_log *log)
4597 {
4598 	struct kvm_memslots *slots;
4599 	struct kvm_memory_slot *memslot;
4600 	int i, r;
4601 	unsigned long n;
4602 	unsigned long *buf, *p;
4603 	struct kvm_vcpu *vcpu;
4604 
4605 	mutex_lock(&kvm->slots_lock);
4606 
4607 	r = -EINVAL;
4608 	if (log->slot >= KVM_USER_MEM_SLOTS)
4609 		goto out;
4610 
4611 	slots = kvm_memslots(kvm);
4612 	memslot = id_to_memslot(slots, log->slot);
4613 	r = -ENOENT;
4614 	if (!memslot || !memslot->dirty_bitmap)
4615 		goto out;
4616 
4617 	/*
4618 	 * Use second half of bitmap area because both HPT and radix
4619 	 * accumulate bits in the first half.
4620 	 */
4621 	n = kvm_dirty_bitmap_bytes(memslot);
4622 	buf = memslot->dirty_bitmap + n / sizeof(long);
4623 	memset(buf, 0, n);
4624 
4625 	if (kvm_is_radix(kvm))
4626 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4627 	else
4628 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4629 	if (r)
4630 		goto out;
4631 
4632 	/*
4633 	 * We accumulate dirty bits in the first half of the
4634 	 * memslot's dirty_bitmap area, for when pages are paged
4635 	 * out or modified by the host directly.  Pick up these
4636 	 * bits and add them to the map.
4637 	 */
4638 	p = memslot->dirty_bitmap;
4639 	for (i = 0; i < n / sizeof(long); ++i)
4640 		buf[i] |= xchg(&p[i], 0);
4641 
4642 	/* Harvest dirty bits from VPA and DTL updates */
4643 	/* Note: we never modify the SLB shadow buffer areas */
4644 	kvm_for_each_vcpu(i, vcpu, kvm) {
4645 		spin_lock(&vcpu->arch.vpa_update_lock);
4646 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4647 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4648 		spin_unlock(&vcpu->arch.vpa_update_lock);
4649 	}
4650 
4651 	r = -EFAULT;
4652 	if (copy_to_user(log->dirty_bitmap, buf, n))
4653 		goto out;
4654 
4655 	r = 0;
4656 out:
4657 	mutex_unlock(&kvm->slots_lock);
4658 	return r;
4659 }
4660 
4661 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4662 {
4663 	vfree(slot->arch.rmap);
4664 	slot->arch.rmap = NULL;
4665 }
4666 
4667 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4668 					struct kvm_memory_slot *slot,
4669 					const struct kvm_userspace_memory_region *mem,
4670 					enum kvm_mr_change change)
4671 {
4672 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4673 
4674 	if (change == KVM_MR_CREATE) {
4675 		slot->arch.rmap = vzalloc(array_size(npages,
4676 					  sizeof(*slot->arch.rmap)));
4677 		if (!slot->arch.rmap)
4678 			return -ENOMEM;
4679 	}
4680 
4681 	return 0;
4682 }
4683 
4684 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4685 				const struct kvm_userspace_memory_region *mem,
4686 				const struct kvm_memory_slot *old,
4687 				const struct kvm_memory_slot *new,
4688 				enum kvm_mr_change change)
4689 {
4690 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4691 
4692 	/*
4693 	 * If we are making a new memslot, it might make
4694 	 * some address that was previously cached as emulated
4695 	 * MMIO be no longer emulated MMIO, so invalidate
4696 	 * all the caches of emulated MMIO translations.
4697 	 */
4698 	if (npages)
4699 		atomic64_inc(&kvm->arch.mmio_update);
4700 
4701 	/*
4702 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4703 	 * have already called kvm_arch_flush_shadow_memslot() to
4704 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4705 	 * previous mappings.  So the only case to handle is
4706 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4707 	 * has been changed.
4708 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4709 	 * to get rid of any THP PTEs in the partition-scoped page tables
4710 	 * so we can track dirtiness at the page level; we flush when
4711 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4712 	 * using THP PTEs.
4713 	 */
4714 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4715 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4716 		kvmppc_radix_flush_memslot(kvm, old);
4717 	/*
4718 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4719 	 */
4720 	if (!kvm->arch.secure_guest)
4721 		return;
4722 
4723 	switch (change) {
4724 	case KVM_MR_CREATE:
4725 		/*
4726 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4727 		 * return error. Fix this.
4728 		 */
4729 		kvmppc_uvmem_memslot_create(kvm, new);
4730 		break;
4731 	case KVM_MR_DELETE:
4732 		kvmppc_uvmem_memslot_delete(kvm, old);
4733 		break;
4734 	default:
4735 		/* TODO: Handle KVM_MR_MOVE */
4736 		break;
4737 	}
4738 }
4739 
4740 /*
4741  * Update LPCR values in kvm->arch and in vcores.
4742  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4743  * of kvm->arch.lpcr update).
4744  */
4745 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4746 {
4747 	long int i;
4748 	u32 cores_done = 0;
4749 
4750 	if ((kvm->arch.lpcr & mask) == lpcr)
4751 		return;
4752 
4753 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4754 
4755 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4756 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4757 		if (!vc)
4758 			continue;
4759 
4760 		spin_lock(&vc->lock);
4761 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4762 		verify_lpcr(kvm, vc->lpcr);
4763 		spin_unlock(&vc->lock);
4764 		if (++cores_done >= kvm->arch.online_vcores)
4765 			break;
4766 	}
4767 }
4768 
4769 void kvmppc_setup_partition_table(struct kvm *kvm)
4770 {
4771 	unsigned long dw0, dw1;
4772 
4773 	if (!kvm_is_radix(kvm)) {
4774 		/* PS field - page size for VRMA */
4775 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4776 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4777 		/* HTABSIZE and HTABORG fields */
4778 		dw0 |= kvm->arch.sdr1;
4779 
4780 		/* Second dword as set by userspace */
4781 		dw1 = kvm->arch.process_table;
4782 	} else {
4783 		dw0 = PATB_HR | radix__get_tree_size() |
4784 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4785 		dw1 = PATB_GR | kvm->arch.process_table;
4786 	}
4787 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4788 }
4789 
4790 /*
4791  * Set up HPT (hashed page table) and RMA (real-mode area).
4792  * Must be called with kvm->arch.mmu_setup_lock held.
4793  */
4794 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4795 {
4796 	int err = 0;
4797 	struct kvm *kvm = vcpu->kvm;
4798 	unsigned long hva;
4799 	struct kvm_memory_slot *memslot;
4800 	struct vm_area_struct *vma;
4801 	unsigned long lpcr = 0, senc;
4802 	unsigned long psize, porder;
4803 	int srcu_idx;
4804 
4805 	/* Allocate hashed page table (if not done already) and reset it */
4806 	if (!kvm->arch.hpt.virt) {
4807 		int order = KVM_DEFAULT_HPT_ORDER;
4808 		struct kvm_hpt_info info;
4809 
4810 		err = kvmppc_allocate_hpt(&info, order);
4811 		/* If we get here, it means userspace didn't specify a
4812 		 * size explicitly.  So, try successively smaller
4813 		 * sizes if the default failed. */
4814 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4815 			err  = kvmppc_allocate_hpt(&info, order);
4816 
4817 		if (err < 0) {
4818 			pr_err("KVM: Couldn't alloc HPT\n");
4819 			goto out;
4820 		}
4821 
4822 		kvmppc_set_hpt(kvm, &info);
4823 	}
4824 
4825 	/* Look up the memslot for guest physical address 0 */
4826 	srcu_idx = srcu_read_lock(&kvm->srcu);
4827 	memslot = gfn_to_memslot(kvm, 0);
4828 
4829 	/* We must have some memory at 0 by now */
4830 	err = -EINVAL;
4831 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4832 		goto out_srcu;
4833 
4834 	/* Look up the VMA for the start of this memory slot */
4835 	hva = memslot->userspace_addr;
4836 	mmap_read_lock(kvm->mm);
4837 	vma = find_vma(kvm->mm, hva);
4838 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4839 		goto up_out;
4840 
4841 	psize = vma_kernel_pagesize(vma);
4842 
4843 	mmap_read_unlock(kvm->mm);
4844 
4845 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4846 	if (psize >= 0x1000000)
4847 		psize = 0x1000000;
4848 	else if (psize >= 0x10000)
4849 		psize = 0x10000;
4850 	else
4851 		psize = 0x1000;
4852 	porder = __ilog2(psize);
4853 
4854 	senc = slb_pgsize_encoding(psize);
4855 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4856 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4857 	/* Create HPTEs in the hash page table for the VRMA */
4858 	kvmppc_map_vrma(vcpu, memslot, porder);
4859 
4860 	/* Update VRMASD field in the LPCR */
4861 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4862 		/* the -4 is to account for senc values starting at 0x10 */
4863 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4864 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4865 	}
4866 
4867 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4868 	smp_wmb();
4869 	err = 0;
4870  out_srcu:
4871 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4872  out:
4873 	return err;
4874 
4875  up_out:
4876 	mmap_read_unlock(kvm->mm);
4877 	goto out_srcu;
4878 }
4879 
4880 /*
4881  * Must be called with kvm->arch.mmu_setup_lock held and
4882  * mmu_ready = 0 and no vcpus running.
4883  */
4884 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4885 {
4886 	if (nesting_enabled(kvm))
4887 		kvmhv_release_all_nested(kvm);
4888 	kvmppc_rmap_reset(kvm);
4889 	kvm->arch.process_table = 0;
4890 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
4891 	spin_lock(&kvm->mmu_lock);
4892 	kvm->arch.radix = 0;
4893 	spin_unlock(&kvm->mmu_lock);
4894 	kvmppc_free_radix(kvm);
4895 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4896 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4897 	return 0;
4898 }
4899 
4900 /*
4901  * Must be called with kvm->arch.mmu_setup_lock held and
4902  * mmu_ready = 0 and no vcpus running.
4903  */
4904 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4905 {
4906 	int err;
4907 
4908 	err = kvmppc_init_vm_radix(kvm);
4909 	if (err)
4910 		return err;
4911 	kvmppc_rmap_reset(kvm);
4912 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
4913 	spin_lock(&kvm->mmu_lock);
4914 	kvm->arch.radix = 1;
4915 	spin_unlock(&kvm->mmu_lock);
4916 	kvmppc_free_hpt(&kvm->arch.hpt);
4917 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4918 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4919 	return 0;
4920 }
4921 
4922 #ifdef CONFIG_KVM_XICS
4923 /*
4924  * Allocate a per-core structure for managing state about which cores are
4925  * running in the host versus the guest and for exchanging data between
4926  * real mode KVM and CPU running in the host.
4927  * This is only done for the first VM.
4928  * The allocated structure stays even if all VMs have stopped.
4929  * It is only freed when the kvm-hv module is unloaded.
4930  * It's OK for this routine to fail, we just don't support host
4931  * core operations like redirecting H_IPI wakeups.
4932  */
4933 void kvmppc_alloc_host_rm_ops(void)
4934 {
4935 	struct kvmppc_host_rm_ops *ops;
4936 	unsigned long l_ops;
4937 	int cpu, core;
4938 	int size;
4939 
4940 	/* Not the first time here ? */
4941 	if (kvmppc_host_rm_ops_hv != NULL)
4942 		return;
4943 
4944 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4945 	if (!ops)
4946 		return;
4947 
4948 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4949 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4950 
4951 	if (!ops->rm_core) {
4952 		kfree(ops);
4953 		return;
4954 	}
4955 
4956 	cpus_read_lock();
4957 
4958 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4959 		if (!cpu_online(cpu))
4960 			continue;
4961 
4962 		core = cpu >> threads_shift;
4963 		ops->rm_core[core].rm_state.in_host = 1;
4964 	}
4965 
4966 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4967 
4968 	/*
4969 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4970 	 * to other CPUs before we assign it to the global variable.
4971 	 * Do an atomic assignment (no locks used here), but if someone
4972 	 * beats us to it, just free our copy and return.
4973 	 */
4974 	smp_wmb();
4975 	l_ops = (unsigned long) ops;
4976 
4977 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4978 		cpus_read_unlock();
4979 		kfree(ops->rm_core);
4980 		kfree(ops);
4981 		return;
4982 	}
4983 
4984 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4985 					     "ppc/kvm_book3s:prepare",
4986 					     kvmppc_set_host_core,
4987 					     kvmppc_clear_host_core);
4988 	cpus_read_unlock();
4989 }
4990 
4991 void kvmppc_free_host_rm_ops(void)
4992 {
4993 	if (kvmppc_host_rm_ops_hv) {
4994 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4995 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4996 		kfree(kvmppc_host_rm_ops_hv);
4997 		kvmppc_host_rm_ops_hv = NULL;
4998 	}
4999 }
5000 #endif
5001 
5002 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5003 {
5004 	unsigned long lpcr, lpid;
5005 	char buf[32];
5006 	int ret;
5007 
5008 	mutex_init(&kvm->arch.uvmem_lock);
5009 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5010 	mutex_init(&kvm->arch.mmu_setup_lock);
5011 
5012 	/* Allocate the guest's logical partition ID */
5013 
5014 	lpid = kvmppc_alloc_lpid();
5015 	if ((long)lpid < 0)
5016 		return -ENOMEM;
5017 	kvm->arch.lpid = lpid;
5018 
5019 	kvmppc_alloc_host_rm_ops();
5020 
5021 	kvmhv_vm_nested_init(kvm);
5022 
5023 	/*
5024 	 * Since we don't flush the TLB when tearing down a VM,
5025 	 * and this lpid might have previously been used,
5026 	 * make sure we flush on each core before running the new VM.
5027 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5028 	 * does this flush for us.
5029 	 */
5030 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5031 		cpumask_setall(&kvm->arch.need_tlb_flush);
5032 
5033 	/* Start out with the default set of hcalls enabled */
5034 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5035 	       sizeof(kvm->arch.enabled_hcalls));
5036 
5037 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5038 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5039 
5040 	/* Init LPCR for virtual RMA mode */
5041 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5042 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5043 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5044 		lpcr &= LPCR_PECE | LPCR_LPES;
5045 	} else {
5046 		lpcr = 0;
5047 	}
5048 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5049 		LPCR_VPM0 | LPCR_VPM1;
5050 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5051 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5052 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5053 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5054 		lpcr |= LPCR_ONL;
5055 	/*
5056 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5057 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5058 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5059 	 * be unnecessary but better safe than sorry in case we re-enable
5060 	 * EE in HV mode with this LPCR still set)
5061 	 */
5062 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5063 		lpcr &= ~LPCR_VPM0;
5064 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5065 
5066 		/*
5067 		 * If xive is enabled, we route 0x500 interrupts directly
5068 		 * to the guest.
5069 		 */
5070 		if (xics_on_xive())
5071 			lpcr |= LPCR_LPES;
5072 	}
5073 
5074 	/*
5075 	 * If the host uses radix, the guest starts out as radix.
5076 	 */
5077 	if (radix_enabled()) {
5078 		kvm->arch.radix = 1;
5079 		kvm->arch.mmu_ready = 1;
5080 		lpcr &= ~LPCR_VPM1;
5081 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5082 		ret = kvmppc_init_vm_radix(kvm);
5083 		if (ret) {
5084 			kvmppc_free_lpid(kvm->arch.lpid);
5085 			return ret;
5086 		}
5087 		kvmppc_setup_partition_table(kvm);
5088 	}
5089 
5090 	verify_lpcr(kvm, lpcr);
5091 	kvm->arch.lpcr = lpcr;
5092 
5093 	/* Initialization for future HPT resizes */
5094 	kvm->arch.resize_hpt = NULL;
5095 
5096 	/*
5097 	 * Work out how many sets the TLB has, for the use of
5098 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5099 	 */
5100 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5101 		/*
5102 		 * P10 will flush all the congruence class with a single tlbiel
5103 		 */
5104 		kvm->arch.tlb_sets = 1;
5105 	} else if (radix_enabled())
5106 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5107 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5108 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5109 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5110 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5111 	else
5112 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5113 
5114 	/*
5115 	 * Track that we now have a HV mode VM active. This blocks secondary
5116 	 * CPU threads from coming online.
5117 	 */
5118 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5119 		kvm_hv_vm_activated();
5120 
5121 	/*
5122 	 * Initialize smt_mode depending on processor.
5123 	 * POWER8 and earlier have to use "strict" threading, where
5124 	 * all vCPUs in a vcore have to run on the same (sub)core,
5125 	 * whereas on POWER9 the threads can each run a different
5126 	 * guest.
5127 	 */
5128 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5129 		kvm->arch.smt_mode = threads_per_subcore;
5130 	else
5131 		kvm->arch.smt_mode = 1;
5132 	kvm->arch.emul_smt_mode = 1;
5133 
5134 	/*
5135 	 * Create a debugfs directory for the VM
5136 	 */
5137 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5138 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5139 	kvmppc_mmu_debugfs_init(kvm);
5140 	if (radix_enabled())
5141 		kvmhv_radix_debugfs_init(kvm);
5142 
5143 	return 0;
5144 }
5145 
5146 static void kvmppc_free_vcores(struct kvm *kvm)
5147 {
5148 	long int i;
5149 
5150 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5151 		kfree(kvm->arch.vcores[i]);
5152 	kvm->arch.online_vcores = 0;
5153 }
5154 
5155 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5156 {
5157 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5158 
5159 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5160 		kvm_hv_vm_deactivated();
5161 
5162 	kvmppc_free_vcores(kvm);
5163 
5164 
5165 	if (kvm_is_radix(kvm))
5166 		kvmppc_free_radix(kvm);
5167 	else
5168 		kvmppc_free_hpt(&kvm->arch.hpt);
5169 
5170 	/* Perform global invalidation and return lpid to the pool */
5171 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5172 		if (nesting_enabled(kvm))
5173 			kvmhv_release_all_nested(kvm);
5174 		kvm->arch.process_table = 0;
5175 		if (kvm->arch.secure_guest)
5176 			uv_svm_terminate(kvm->arch.lpid);
5177 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5178 	}
5179 
5180 	kvmppc_free_lpid(kvm->arch.lpid);
5181 
5182 	kvmppc_free_pimap(kvm);
5183 }
5184 
5185 /* We don't need to emulate any privileged instructions or dcbz */
5186 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5187 				     unsigned int inst, int *advance)
5188 {
5189 	return EMULATE_FAIL;
5190 }
5191 
5192 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5193 					ulong spr_val)
5194 {
5195 	return EMULATE_FAIL;
5196 }
5197 
5198 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5199 					ulong *spr_val)
5200 {
5201 	return EMULATE_FAIL;
5202 }
5203 
5204 static int kvmppc_core_check_processor_compat_hv(void)
5205 {
5206 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5207 	    cpu_has_feature(CPU_FTR_ARCH_206))
5208 		return 0;
5209 
5210 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5211 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5212 		return 0;
5213 
5214 	return -EIO;
5215 }
5216 
5217 #ifdef CONFIG_KVM_XICS
5218 
5219 void kvmppc_free_pimap(struct kvm *kvm)
5220 {
5221 	kfree(kvm->arch.pimap);
5222 }
5223 
5224 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5225 {
5226 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5227 }
5228 
5229 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5230 {
5231 	struct irq_desc *desc;
5232 	struct kvmppc_irq_map *irq_map;
5233 	struct kvmppc_passthru_irqmap *pimap;
5234 	struct irq_chip *chip;
5235 	int i, rc = 0;
5236 
5237 	if (!kvm_irq_bypass)
5238 		return 1;
5239 
5240 	desc = irq_to_desc(host_irq);
5241 	if (!desc)
5242 		return -EIO;
5243 
5244 	mutex_lock(&kvm->lock);
5245 
5246 	pimap = kvm->arch.pimap;
5247 	if (pimap == NULL) {
5248 		/* First call, allocate structure to hold IRQ map */
5249 		pimap = kvmppc_alloc_pimap();
5250 		if (pimap == NULL) {
5251 			mutex_unlock(&kvm->lock);
5252 			return -ENOMEM;
5253 		}
5254 		kvm->arch.pimap = pimap;
5255 	}
5256 
5257 	/*
5258 	 * For now, we only support interrupts for which the EOI operation
5259 	 * is an OPAL call followed by a write to XIRR, since that's
5260 	 * what our real-mode EOI code does, or a XIVE interrupt
5261 	 */
5262 	chip = irq_data_get_irq_chip(&desc->irq_data);
5263 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5264 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5265 			host_irq, guest_gsi);
5266 		mutex_unlock(&kvm->lock);
5267 		return -ENOENT;
5268 	}
5269 
5270 	/*
5271 	 * See if we already have an entry for this guest IRQ number.
5272 	 * If it's mapped to a hardware IRQ number, that's an error,
5273 	 * otherwise re-use this entry.
5274 	 */
5275 	for (i = 0; i < pimap->n_mapped; i++) {
5276 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5277 			if (pimap->mapped[i].r_hwirq) {
5278 				mutex_unlock(&kvm->lock);
5279 				return -EINVAL;
5280 			}
5281 			break;
5282 		}
5283 	}
5284 
5285 	if (i == KVMPPC_PIRQ_MAPPED) {
5286 		mutex_unlock(&kvm->lock);
5287 		return -EAGAIN;		/* table is full */
5288 	}
5289 
5290 	irq_map = &pimap->mapped[i];
5291 
5292 	irq_map->v_hwirq = guest_gsi;
5293 	irq_map->desc = desc;
5294 
5295 	/*
5296 	 * Order the above two stores before the next to serialize with
5297 	 * the KVM real mode handler.
5298 	 */
5299 	smp_wmb();
5300 	irq_map->r_hwirq = desc->irq_data.hwirq;
5301 
5302 	if (i == pimap->n_mapped)
5303 		pimap->n_mapped++;
5304 
5305 	if (xics_on_xive())
5306 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5307 	else
5308 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5309 	if (rc)
5310 		irq_map->r_hwirq = 0;
5311 
5312 	mutex_unlock(&kvm->lock);
5313 
5314 	return 0;
5315 }
5316 
5317 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5318 {
5319 	struct irq_desc *desc;
5320 	struct kvmppc_passthru_irqmap *pimap;
5321 	int i, rc = 0;
5322 
5323 	if (!kvm_irq_bypass)
5324 		return 0;
5325 
5326 	desc = irq_to_desc(host_irq);
5327 	if (!desc)
5328 		return -EIO;
5329 
5330 	mutex_lock(&kvm->lock);
5331 	if (!kvm->arch.pimap)
5332 		goto unlock;
5333 
5334 	pimap = kvm->arch.pimap;
5335 
5336 	for (i = 0; i < pimap->n_mapped; i++) {
5337 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5338 			break;
5339 	}
5340 
5341 	if (i == pimap->n_mapped) {
5342 		mutex_unlock(&kvm->lock);
5343 		return -ENODEV;
5344 	}
5345 
5346 	if (xics_on_xive())
5347 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5348 	else
5349 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5350 
5351 	/* invalidate the entry (what do do on error from the above ?) */
5352 	pimap->mapped[i].r_hwirq = 0;
5353 
5354 	/*
5355 	 * We don't free this structure even when the count goes to
5356 	 * zero. The structure is freed when we destroy the VM.
5357 	 */
5358  unlock:
5359 	mutex_unlock(&kvm->lock);
5360 	return rc;
5361 }
5362 
5363 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5364 					     struct irq_bypass_producer *prod)
5365 {
5366 	int ret = 0;
5367 	struct kvm_kernel_irqfd *irqfd =
5368 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5369 
5370 	irqfd->producer = prod;
5371 
5372 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5373 	if (ret)
5374 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5375 			prod->irq, irqfd->gsi, ret);
5376 
5377 	return ret;
5378 }
5379 
5380 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5381 					      struct irq_bypass_producer *prod)
5382 {
5383 	int ret;
5384 	struct kvm_kernel_irqfd *irqfd =
5385 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5386 
5387 	irqfd->producer = NULL;
5388 
5389 	/*
5390 	 * When producer of consumer is unregistered, we change back to
5391 	 * default external interrupt handling mode - KVM real mode
5392 	 * will switch back to host.
5393 	 */
5394 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5395 	if (ret)
5396 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5397 			prod->irq, irqfd->gsi, ret);
5398 }
5399 #endif
5400 
5401 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5402 				 unsigned int ioctl, unsigned long arg)
5403 {
5404 	struct kvm *kvm __maybe_unused = filp->private_data;
5405 	void __user *argp = (void __user *)arg;
5406 	long r;
5407 
5408 	switch (ioctl) {
5409 
5410 	case KVM_PPC_ALLOCATE_HTAB: {
5411 		u32 htab_order;
5412 
5413 		/* If we're a nested hypervisor, we currently only support radix */
5414 		if (kvmhv_on_pseries()) {
5415 			r = -EOPNOTSUPP;
5416 			break;
5417 		}
5418 
5419 		r = -EFAULT;
5420 		if (get_user(htab_order, (u32 __user *)argp))
5421 			break;
5422 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5423 		if (r)
5424 			break;
5425 		r = 0;
5426 		break;
5427 	}
5428 
5429 	case KVM_PPC_GET_HTAB_FD: {
5430 		struct kvm_get_htab_fd ghf;
5431 
5432 		r = -EFAULT;
5433 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5434 			break;
5435 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5436 		break;
5437 	}
5438 
5439 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5440 		struct kvm_ppc_resize_hpt rhpt;
5441 
5442 		r = -EFAULT;
5443 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5444 			break;
5445 
5446 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5447 		break;
5448 	}
5449 
5450 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5451 		struct kvm_ppc_resize_hpt rhpt;
5452 
5453 		r = -EFAULT;
5454 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5455 			break;
5456 
5457 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5458 		break;
5459 	}
5460 
5461 	default:
5462 		r = -ENOTTY;
5463 	}
5464 
5465 	return r;
5466 }
5467 
5468 /*
5469  * List of hcall numbers to enable by default.
5470  * For compatibility with old userspace, we enable by default
5471  * all hcalls that were implemented before the hcall-enabling
5472  * facility was added.  Note this list should not include H_RTAS.
5473  */
5474 static unsigned int default_hcall_list[] = {
5475 	H_REMOVE,
5476 	H_ENTER,
5477 	H_READ,
5478 	H_PROTECT,
5479 	H_BULK_REMOVE,
5480 #ifdef CONFIG_SPAPR_TCE_IOMMU
5481 	H_GET_TCE,
5482 	H_PUT_TCE,
5483 #endif
5484 	H_SET_DABR,
5485 	H_SET_XDABR,
5486 	H_CEDE,
5487 	H_PROD,
5488 	H_CONFER,
5489 	H_REGISTER_VPA,
5490 #ifdef CONFIG_KVM_XICS
5491 	H_EOI,
5492 	H_CPPR,
5493 	H_IPI,
5494 	H_IPOLL,
5495 	H_XIRR,
5496 	H_XIRR_X,
5497 #endif
5498 	0
5499 };
5500 
5501 static void init_default_hcalls(void)
5502 {
5503 	int i;
5504 	unsigned int hcall;
5505 
5506 	for (i = 0; default_hcall_list[i]; ++i) {
5507 		hcall = default_hcall_list[i];
5508 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5509 		__set_bit(hcall / 4, default_enabled_hcalls);
5510 	}
5511 }
5512 
5513 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5514 {
5515 	unsigned long lpcr;
5516 	int radix;
5517 	int err;
5518 
5519 	/* If not on a POWER9, reject it */
5520 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5521 		return -ENODEV;
5522 
5523 	/* If any unknown flags set, reject it */
5524 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5525 		return -EINVAL;
5526 
5527 	/* GR (guest radix) bit in process_table field must match */
5528 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5529 	if (!!(cfg->process_table & PATB_GR) != radix)
5530 		return -EINVAL;
5531 
5532 	/* Process table size field must be reasonable, i.e. <= 24 */
5533 	if ((cfg->process_table & PRTS_MASK) > 24)
5534 		return -EINVAL;
5535 
5536 	/* We can change a guest to/from radix now, if the host is radix */
5537 	if (radix && !radix_enabled())
5538 		return -EINVAL;
5539 
5540 	/* If we're a nested hypervisor, we currently only support radix */
5541 	if (kvmhv_on_pseries() && !radix)
5542 		return -EINVAL;
5543 
5544 	mutex_lock(&kvm->arch.mmu_setup_lock);
5545 	if (radix != kvm_is_radix(kvm)) {
5546 		if (kvm->arch.mmu_ready) {
5547 			kvm->arch.mmu_ready = 0;
5548 			/* order mmu_ready vs. vcpus_running */
5549 			smp_mb();
5550 			if (atomic_read(&kvm->arch.vcpus_running)) {
5551 				kvm->arch.mmu_ready = 1;
5552 				err = -EBUSY;
5553 				goto out_unlock;
5554 			}
5555 		}
5556 		if (radix)
5557 			err = kvmppc_switch_mmu_to_radix(kvm);
5558 		else
5559 			err = kvmppc_switch_mmu_to_hpt(kvm);
5560 		if (err)
5561 			goto out_unlock;
5562 	}
5563 
5564 	kvm->arch.process_table = cfg->process_table;
5565 	kvmppc_setup_partition_table(kvm);
5566 
5567 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5568 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5569 	err = 0;
5570 
5571  out_unlock:
5572 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5573 	return err;
5574 }
5575 
5576 static int kvmhv_enable_nested(struct kvm *kvm)
5577 {
5578 	if (!nested)
5579 		return -EPERM;
5580 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5581 		return -ENODEV;
5582 	if (!radix_enabled())
5583 		return -ENODEV;
5584 
5585 	/* kvm == NULL means the caller is testing if the capability exists */
5586 	if (kvm)
5587 		kvm->arch.nested_enable = true;
5588 	return 0;
5589 }
5590 
5591 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5592 				 int size)
5593 {
5594 	int rc = -EINVAL;
5595 
5596 	if (kvmhv_vcpu_is_radix(vcpu)) {
5597 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5598 
5599 		if (rc > 0)
5600 			rc = -EINVAL;
5601 	}
5602 
5603 	/* For now quadrants are the only way to access nested guest memory */
5604 	if (rc && vcpu->arch.nested)
5605 		rc = -EAGAIN;
5606 
5607 	return rc;
5608 }
5609 
5610 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5611 				int size)
5612 {
5613 	int rc = -EINVAL;
5614 
5615 	if (kvmhv_vcpu_is_radix(vcpu)) {
5616 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5617 
5618 		if (rc > 0)
5619 			rc = -EINVAL;
5620 	}
5621 
5622 	/* For now quadrants are the only way to access nested guest memory */
5623 	if (rc && vcpu->arch.nested)
5624 		rc = -EAGAIN;
5625 
5626 	return rc;
5627 }
5628 
5629 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5630 {
5631 	unpin_vpa(kvm, vpa);
5632 	vpa->gpa = 0;
5633 	vpa->pinned_addr = NULL;
5634 	vpa->dirty = false;
5635 	vpa->update_pending = 0;
5636 }
5637 
5638 /*
5639  * Enable a guest to become a secure VM, or test whether
5640  * that could be enabled.
5641  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5642  * tested (kvm == NULL) or enabled (kvm != NULL).
5643  */
5644 static int kvmhv_enable_svm(struct kvm *kvm)
5645 {
5646 	if (!kvmppc_uvmem_available())
5647 		return -EINVAL;
5648 	if (kvm)
5649 		kvm->arch.svm_enabled = 1;
5650 	return 0;
5651 }
5652 
5653 /*
5654  *  IOCTL handler to turn off secure mode of guest
5655  *
5656  * - Release all device pages
5657  * - Issue ucall to terminate the guest on the UV side
5658  * - Unpin the VPA pages.
5659  * - Reinit the partition scoped page tables
5660  */
5661 static int kvmhv_svm_off(struct kvm *kvm)
5662 {
5663 	struct kvm_vcpu *vcpu;
5664 	int mmu_was_ready;
5665 	int srcu_idx;
5666 	int ret = 0;
5667 	int i;
5668 
5669 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5670 		return ret;
5671 
5672 	mutex_lock(&kvm->arch.mmu_setup_lock);
5673 	mmu_was_ready = kvm->arch.mmu_ready;
5674 	if (kvm->arch.mmu_ready) {
5675 		kvm->arch.mmu_ready = 0;
5676 		/* order mmu_ready vs. vcpus_running */
5677 		smp_mb();
5678 		if (atomic_read(&kvm->arch.vcpus_running)) {
5679 			kvm->arch.mmu_ready = 1;
5680 			ret = -EBUSY;
5681 			goto out;
5682 		}
5683 	}
5684 
5685 	srcu_idx = srcu_read_lock(&kvm->srcu);
5686 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5687 		struct kvm_memory_slot *memslot;
5688 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5689 
5690 		if (!slots)
5691 			continue;
5692 
5693 		kvm_for_each_memslot(memslot, slots) {
5694 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5695 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5696 		}
5697 	}
5698 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5699 
5700 	ret = uv_svm_terminate(kvm->arch.lpid);
5701 	if (ret != U_SUCCESS) {
5702 		ret = -EINVAL;
5703 		goto out;
5704 	}
5705 
5706 	/*
5707 	 * When secure guest is reset, all the guest pages are sent
5708 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5709 	 * chance to run and unpin their VPA pages. Unpinning of all
5710 	 * VPA pages is done here explicitly so that VPA pages
5711 	 * can be migrated to the secure side.
5712 	 *
5713 	 * This is required to for the secure SMP guest to reboot
5714 	 * correctly.
5715 	 */
5716 	kvm_for_each_vcpu(i, vcpu, kvm) {
5717 		spin_lock(&vcpu->arch.vpa_update_lock);
5718 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5719 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5720 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5721 		spin_unlock(&vcpu->arch.vpa_update_lock);
5722 	}
5723 
5724 	kvmppc_setup_partition_table(kvm);
5725 	kvm->arch.secure_guest = 0;
5726 	kvm->arch.mmu_ready = mmu_was_ready;
5727 out:
5728 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5729 	return ret;
5730 }
5731 
5732 static int kvmhv_enable_dawr1(struct kvm *kvm)
5733 {
5734 	if (!cpu_has_feature(CPU_FTR_DAWR1))
5735 		return -ENODEV;
5736 
5737 	/* kvm == NULL means the caller is testing if the capability exists */
5738 	if (kvm)
5739 		kvm->arch.dawr1_enabled = true;
5740 	return 0;
5741 }
5742 
5743 static bool kvmppc_hash_v3_possible(void)
5744 {
5745 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5746 		return false;
5747 
5748 	if (!cpu_has_feature(CPU_FTR_HVMODE))
5749 		return false;
5750 
5751 	/*
5752 	 * POWER9 chips before version 2.02 can't have some threads in
5753 	 * HPT mode and some in radix mode on the same core.
5754 	 */
5755 	if (radix_enabled()) {
5756 		unsigned int pvr = mfspr(SPRN_PVR);
5757 		if ((pvr >> 16) == PVR_POWER9 &&
5758 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5759 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5760 			return false;
5761 	}
5762 
5763 	return true;
5764 }
5765 
5766 static struct kvmppc_ops kvm_ops_hv = {
5767 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5768 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5769 	.get_one_reg = kvmppc_get_one_reg_hv,
5770 	.set_one_reg = kvmppc_set_one_reg_hv,
5771 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5772 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5773 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5774 	.set_msr     = kvmppc_set_msr_hv,
5775 	.vcpu_run    = kvmppc_vcpu_run_hv,
5776 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5777 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5778 	.check_requests = kvmppc_core_check_requests_hv,
5779 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5780 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5781 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5782 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5783 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
5784 	.age_gfn = kvm_age_gfn_hv,
5785 	.test_age_gfn = kvm_test_age_gfn_hv,
5786 	.set_spte_gfn = kvm_set_spte_gfn_hv,
5787 	.free_memslot = kvmppc_core_free_memslot_hv,
5788 	.init_vm =  kvmppc_core_init_vm_hv,
5789 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5790 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5791 	.emulate_op = kvmppc_core_emulate_op_hv,
5792 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5793 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5794 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5795 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5796 	.hcall_implemented = kvmppc_hcall_impl_hv,
5797 #ifdef CONFIG_KVM_XICS
5798 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5799 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5800 #endif
5801 	.configure_mmu = kvmhv_configure_mmu,
5802 	.get_rmmu_info = kvmhv_get_rmmu_info,
5803 	.set_smt_mode = kvmhv_set_smt_mode,
5804 	.enable_nested = kvmhv_enable_nested,
5805 	.load_from_eaddr = kvmhv_load_from_eaddr,
5806 	.store_to_eaddr = kvmhv_store_to_eaddr,
5807 	.enable_svm = kvmhv_enable_svm,
5808 	.svm_off = kvmhv_svm_off,
5809 	.enable_dawr1 = kvmhv_enable_dawr1,
5810 	.hash_v3_possible = kvmppc_hash_v3_possible,
5811 };
5812 
5813 static int kvm_init_subcore_bitmap(void)
5814 {
5815 	int i, j;
5816 	int nr_cores = cpu_nr_cores();
5817 	struct sibling_subcore_state *sibling_subcore_state;
5818 
5819 	for (i = 0; i < nr_cores; i++) {
5820 		int first_cpu = i * threads_per_core;
5821 		int node = cpu_to_node(first_cpu);
5822 
5823 		/* Ignore if it is already allocated. */
5824 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5825 			continue;
5826 
5827 		sibling_subcore_state =
5828 			kzalloc_node(sizeof(struct sibling_subcore_state),
5829 							GFP_KERNEL, node);
5830 		if (!sibling_subcore_state)
5831 			return -ENOMEM;
5832 
5833 
5834 		for (j = 0; j < threads_per_core; j++) {
5835 			int cpu = first_cpu + j;
5836 
5837 			paca_ptrs[cpu]->sibling_subcore_state =
5838 						sibling_subcore_state;
5839 		}
5840 	}
5841 	return 0;
5842 }
5843 
5844 static int kvmppc_radix_possible(void)
5845 {
5846 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5847 }
5848 
5849 static int kvmppc_book3s_init_hv(void)
5850 {
5851 	int r;
5852 
5853 	if (!tlbie_capable) {
5854 		pr_err("KVM-HV: Host does not support TLBIE\n");
5855 		return -ENODEV;
5856 	}
5857 
5858 	/*
5859 	 * FIXME!! Do we need to check on all cpus ?
5860 	 */
5861 	r = kvmppc_core_check_processor_compat_hv();
5862 	if (r < 0)
5863 		return -ENODEV;
5864 
5865 	r = kvmhv_nested_init();
5866 	if (r)
5867 		return r;
5868 
5869 	r = kvm_init_subcore_bitmap();
5870 	if (r)
5871 		return r;
5872 
5873 	/*
5874 	 * We need a way of accessing the XICS interrupt controller,
5875 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5876 	 * indirectly, via OPAL.
5877 	 */
5878 #ifdef CONFIG_SMP
5879 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5880 	    !local_paca->kvm_hstate.xics_phys) {
5881 		struct device_node *np;
5882 
5883 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5884 		if (!np) {
5885 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5886 			return -ENODEV;
5887 		}
5888 		/* presence of intc confirmed - node can be dropped again */
5889 		of_node_put(np);
5890 	}
5891 #endif
5892 
5893 	kvm_ops_hv.owner = THIS_MODULE;
5894 	kvmppc_hv_ops = &kvm_ops_hv;
5895 
5896 	init_default_hcalls();
5897 
5898 	init_vcore_lists();
5899 
5900 	r = kvmppc_mmu_hv_init();
5901 	if (r)
5902 		return r;
5903 
5904 	if (kvmppc_radix_possible())
5905 		r = kvmppc_radix_init();
5906 
5907 	r = kvmppc_uvmem_init();
5908 	if (r < 0)
5909 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5910 
5911 	return r;
5912 }
5913 
5914 static void kvmppc_book3s_exit_hv(void)
5915 {
5916 	kvmppc_uvmem_free();
5917 	kvmppc_free_host_rm_ops();
5918 	if (kvmppc_radix_possible())
5919 		kvmppc_radix_exit();
5920 	kvmppc_hv_ops = NULL;
5921 	kvmhv_nested_exit();
5922 }
5923 
5924 module_init(kvmppc_book3s_init_hv);
5925 module_exit(kvmppc_book3s_exit_hv);
5926 MODULE_LICENSE("GPL");
5927 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5928 MODULE_ALIAS("devname:kvm");
5929