1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/interrupt.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 #include <asm/hw_breakpoint.h> 76 #include <asm/kvm_book3s_uvmem.h> 77 #include <asm/ultravisor.h> 78 #include <asm/dtl.h> 79 80 #include "book3s.h" 81 82 #define CREATE_TRACE_POINTS 83 #include "trace_hv.h" 84 85 /* #define EXIT_DEBUG */ 86 /* #define EXIT_DEBUG_SIMPLE */ 87 /* #define EXIT_DEBUG_INT */ 88 89 /* Used to indicate that a guest page fault needs to be handled */ 90 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 91 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 92 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 93 94 /* Used as a "null" value for timebase values */ 95 #define TB_NIL (~(u64)0) 96 97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 98 99 static int dynamic_mt_modes = 6; 100 module_param(dynamic_mt_modes, int, 0644); 101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 102 static int target_smt_mode; 103 module_param(target_smt_mode, int, 0644); 104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 105 106 static bool one_vm_per_core; 107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 109 110 #ifdef CONFIG_KVM_XICS 111 static const struct kernel_param_ops module_param_ops = { 112 .set = param_set_int, 113 .get = param_get_int, 114 }; 115 116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 118 119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 121 #endif 122 123 /* If set, guests are allowed to create and control nested guests */ 124 static bool nested = true; 125 module_param(nested, bool, S_IRUGO | S_IWUSR); 126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 127 128 static inline bool nesting_enabled(struct kvm *kvm) 129 { 130 return kvm->arch.nested_enable && kvm_is_radix(kvm); 131 } 132 133 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 134 135 /* 136 * RWMR values for POWER8. These control the rate at which PURR 137 * and SPURR count and should be set according to the number of 138 * online threads in the vcore being run. 139 */ 140 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 141 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 142 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 144 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 148 149 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 150 RWMR_RPA_P8_1THREAD, 151 RWMR_RPA_P8_1THREAD, 152 RWMR_RPA_P8_2THREAD, 153 RWMR_RPA_P8_3THREAD, 154 RWMR_RPA_P8_4THREAD, 155 RWMR_RPA_P8_5THREAD, 156 RWMR_RPA_P8_6THREAD, 157 RWMR_RPA_P8_7THREAD, 158 RWMR_RPA_P8_8THREAD, 159 }; 160 161 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 162 int *ip) 163 { 164 int i = *ip; 165 struct kvm_vcpu *vcpu; 166 167 while (++i < MAX_SMT_THREADS) { 168 vcpu = READ_ONCE(vc->runnable_threads[i]); 169 if (vcpu) { 170 *ip = i; 171 return vcpu; 172 } 173 } 174 return NULL; 175 } 176 177 /* Used to traverse the list of runnable threads for a given vcore */ 178 #define for_each_runnable_thread(i, vcpu, vc) \ 179 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 180 181 static bool kvmppc_ipi_thread(int cpu) 182 { 183 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 184 185 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 186 if (kvmhv_on_pseries()) 187 return false; 188 189 /* On POWER9 we can use msgsnd to IPI any cpu */ 190 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 191 msg |= get_hard_smp_processor_id(cpu); 192 smp_mb(); 193 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 194 return true; 195 } 196 197 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 198 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 199 preempt_disable(); 200 if (cpu_first_thread_sibling(cpu) == 201 cpu_first_thread_sibling(smp_processor_id())) { 202 msg |= cpu_thread_in_core(cpu); 203 smp_mb(); 204 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 205 preempt_enable(); 206 return true; 207 } 208 preempt_enable(); 209 } 210 211 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 212 if (cpu >= 0 && cpu < nr_cpu_ids) { 213 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 214 xics_wake_cpu(cpu); 215 return true; 216 } 217 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 218 return true; 219 } 220 #endif 221 222 return false; 223 } 224 225 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 226 { 227 int cpu; 228 struct rcuwait *waitp; 229 230 waitp = kvm_arch_vcpu_get_wait(vcpu); 231 if (rcuwait_wake_up(waitp)) 232 ++vcpu->stat.halt_wakeup; 233 234 cpu = READ_ONCE(vcpu->arch.thread_cpu); 235 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 236 return; 237 238 /* CPU points to the first thread of the core */ 239 cpu = vcpu->cpu; 240 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 241 smp_send_reschedule(cpu); 242 } 243 244 /* 245 * We use the vcpu_load/put functions to measure stolen time. 246 * Stolen time is counted as time when either the vcpu is able to 247 * run as part of a virtual core, but the task running the vcore 248 * is preempted or sleeping, or when the vcpu needs something done 249 * in the kernel by the task running the vcpu, but that task is 250 * preempted or sleeping. Those two things have to be counted 251 * separately, since one of the vcpu tasks will take on the job 252 * of running the core, and the other vcpu tasks in the vcore will 253 * sleep waiting for it to do that, but that sleep shouldn't count 254 * as stolen time. 255 * 256 * Hence we accumulate stolen time when the vcpu can run as part of 257 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 258 * needs its task to do other things in the kernel (for example, 259 * service a page fault) in busy_stolen. We don't accumulate 260 * stolen time for a vcore when it is inactive, or for a vcpu 261 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 262 * a misnomer; it means that the vcpu task is not executing in 263 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 264 * the kernel. We don't have any way of dividing up that time 265 * between time that the vcpu is genuinely stopped, time that 266 * the task is actively working on behalf of the vcpu, and time 267 * that the task is preempted, so we don't count any of it as 268 * stolen. 269 * 270 * Updates to busy_stolen are protected by arch.tbacct_lock; 271 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 272 * lock. The stolen times are measured in units of timebase ticks. 273 * (Note that the != TB_NIL checks below are purely defensive; 274 * they should never fail.) 275 */ 276 277 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 278 { 279 unsigned long flags; 280 281 spin_lock_irqsave(&vc->stoltb_lock, flags); 282 vc->preempt_tb = mftb(); 283 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 284 } 285 286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 287 { 288 unsigned long flags; 289 290 spin_lock_irqsave(&vc->stoltb_lock, flags); 291 if (vc->preempt_tb != TB_NIL) { 292 vc->stolen_tb += mftb() - vc->preempt_tb; 293 vc->preempt_tb = TB_NIL; 294 } 295 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 296 } 297 298 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 299 { 300 struct kvmppc_vcore *vc = vcpu->arch.vcore; 301 unsigned long flags; 302 303 /* 304 * We can test vc->runner without taking the vcore lock, 305 * because only this task ever sets vc->runner to this 306 * vcpu, and once it is set to this vcpu, only this task 307 * ever sets it to NULL. 308 */ 309 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 310 kvmppc_core_end_stolen(vc); 311 312 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 313 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 314 vcpu->arch.busy_preempt != TB_NIL) { 315 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 316 vcpu->arch.busy_preempt = TB_NIL; 317 } 318 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 319 } 320 321 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 322 { 323 struct kvmppc_vcore *vc = vcpu->arch.vcore; 324 unsigned long flags; 325 326 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 327 kvmppc_core_start_stolen(vc); 328 329 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 330 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 331 vcpu->arch.busy_preempt = mftb(); 332 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 333 } 334 335 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 336 { 337 vcpu->arch.pvr = pvr; 338 } 339 340 /* Dummy value used in computing PCR value below */ 341 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 342 343 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 344 { 345 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 346 struct kvmppc_vcore *vc = vcpu->arch.vcore; 347 348 /* We can (emulate) our own architecture version and anything older */ 349 if (cpu_has_feature(CPU_FTR_ARCH_31)) 350 host_pcr_bit = PCR_ARCH_31; 351 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 352 host_pcr_bit = PCR_ARCH_300; 353 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 354 host_pcr_bit = PCR_ARCH_207; 355 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 356 host_pcr_bit = PCR_ARCH_206; 357 else 358 host_pcr_bit = PCR_ARCH_205; 359 360 /* Determine lowest PCR bit needed to run guest in given PVR level */ 361 guest_pcr_bit = host_pcr_bit; 362 if (arch_compat) { 363 switch (arch_compat) { 364 case PVR_ARCH_205: 365 guest_pcr_bit = PCR_ARCH_205; 366 break; 367 case PVR_ARCH_206: 368 case PVR_ARCH_206p: 369 guest_pcr_bit = PCR_ARCH_206; 370 break; 371 case PVR_ARCH_207: 372 guest_pcr_bit = PCR_ARCH_207; 373 break; 374 case PVR_ARCH_300: 375 guest_pcr_bit = PCR_ARCH_300; 376 break; 377 case PVR_ARCH_31: 378 guest_pcr_bit = PCR_ARCH_31; 379 break; 380 default: 381 return -EINVAL; 382 } 383 } 384 385 /* Check requested PCR bits don't exceed our capabilities */ 386 if (guest_pcr_bit > host_pcr_bit) 387 return -EINVAL; 388 389 spin_lock(&vc->lock); 390 vc->arch_compat = arch_compat; 391 /* 392 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 393 * Also set all reserved PCR bits 394 */ 395 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 396 spin_unlock(&vc->lock); 397 398 return 0; 399 } 400 401 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 402 { 403 int r; 404 405 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 406 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 407 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 408 for (r = 0; r < 16; ++r) 409 pr_err("r%2d = %.16lx r%d = %.16lx\n", 410 r, kvmppc_get_gpr(vcpu, r), 411 r+16, kvmppc_get_gpr(vcpu, r+16)); 412 pr_err("ctr = %.16lx lr = %.16lx\n", 413 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 414 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 415 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 416 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 417 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 418 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 419 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 420 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 421 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 422 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 423 pr_err("fault dar = %.16lx dsisr = %.8x\n", 424 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 425 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 426 for (r = 0; r < vcpu->arch.slb_max; ++r) 427 pr_err(" ESID = %.16llx VSID = %.16llx\n", 428 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 429 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 430 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 431 vcpu->arch.last_inst); 432 } 433 434 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 435 { 436 return kvm_get_vcpu_by_id(kvm, id); 437 } 438 439 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 440 { 441 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 442 vpa->yield_count = cpu_to_be32(1); 443 } 444 445 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 446 unsigned long addr, unsigned long len) 447 { 448 /* check address is cacheline aligned */ 449 if (addr & (L1_CACHE_BYTES - 1)) 450 return -EINVAL; 451 spin_lock(&vcpu->arch.vpa_update_lock); 452 if (v->next_gpa != addr || v->len != len) { 453 v->next_gpa = addr; 454 v->len = addr ? len : 0; 455 v->update_pending = 1; 456 } 457 spin_unlock(&vcpu->arch.vpa_update_lock); 458 return 0; 459 } 460 461 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 462 struct reg_vpa { 463 u32 dummy; 464 union { 465 __be16 hword; 466 __be32 word; 467 } length; 468 }; 469 470 static int vpa_is_registered(struct kvmppc_vpa *vpap) 471 { 472 if (vpap->update_pending) 473 return vpap->next_gpa != 0; 474 return vpap->pinned_addr != NULL; 475 } 476 477 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 478 unsigned long flags, 479 unsigned long vcpuid, unsigned long vpa) 480 { 481 struct kvm *kvm = vcpu->kvm; 482 unsigned long len, nb; 483 void *va; 484 struct kvm_vcpu *tvcpu; 485 int err; 486 int subfunc; 487 struct kvmppc_vpa *vpap; 488 489 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 490 if (!tvcpu) 491 return H_PARAMETER; 492 493 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 494 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 495 subfunc == H_VPA_REG_SLB) { 496 /* Registering new area - address must be cache-line aligned */ 497 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 498 return H_PARAMETER; 499 500 /* convert logical addr to kernel addr and read length */ 501 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 502 if (va == NULL) 503 return H_PARAMETER; 504 if (subfunc == H_VPA_REG_VPA) 505 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 506 else 507 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 508 kvmppc_unpin_guest_page(kvm, va, vpa, false); 509 510 /* Check length */ 511 if (len > nb || len < sizeof(struct reg_vpa)) 512 return H_PARAMETER; 513 } else { 514 vpa = 0; 515 len = 0; 516 } 517 518 err = H_PARAMETER; 519 vpap = NULL; 520 spin_lock(&tvcpu->arch.vpa_update_lock); 521 522 switch (subfunc) { 523 case H_VPA_REG_VPA: /* register VPA */ 524 /* 525 * The size of our lppaca is 1kB because of the way we align 526 * it for the guest to avoid crossing a 4kB boundary. We only 527 * use 640 bytes of the structure though, so we should accept 528 * clients that set a size of 640. 529 */ 530 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 531 if (len < sizeof(struct lppaca)) 532 break; 533 vpap = &tvcpu->arch.vpa; 534 err = 0; 535 break; 536 537 case H_VPA_REG_DTL: /* register DTL */ 538 if (len < sizeof(struct dtl_entry)) 539 break; 540 len -= len % sizeof(struct dtl_entry); 541 542 /* Check that they have previously registered a VPA */ 543 err = H_RESOURCE; 544 if (!vpa_is_registered(&tvcpu->arch.vpa)) 545 break; 546 547 vpap = &tvcpu->arch.dtl; 548 err = 0; 549 break; 550 551 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 552 /* Check that they have previously registered a VPA */ 553 err = H_RESOURCE; 554 if (!vpa_is_registered(&tvcpu->arch.vpa)) 555 break; 556 557 vpap = &tvcpu->arch.slb_shadow; 558 err = 0; 559 break; 560 561 case H_VPA_DEREG_VPA: /* deregister VPA */ 562 /* Check they don't still have a DTL or SLB buf registered */ 563 err = H_RESOURCE; 564 if (vpa_is_registered(&tvcpu->arch.dtl) || 565 vpa_is_registered(&tvcpu->arch.slb_shadow)) 566 break; 567 568 vpap = &tvcpu->arch.vpa; 569 err = 0; 570 break; 571 572 case H_VPA_DEREG_DTL: /* deregister DTL */ 573 vpap = &tvcpu->arch.dtl; 574 err = 0; 575 break; 576 577 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 578 vpap = &tvcpu->arch.slb_shadow; 579 err = 0; 580 break; 581 } 582 583 if (vpap) { 584 vpap->next_gpa = vpa; 585 vpap->len = len; 586 vpap->update_pending = 1; 587 } 588 589 spin_unlock(&tvcpu->arch.vpa_update_lock); 590 591 return err; 592 } 593 594 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 595 { 596 struct kvm *kvm = vcpu->kvm; 597 void *va; 598 unsigned long nb; 599 unsigned long gpa; 600 601 /* 602 * We need to pin the page pointed to by vpap->next_gpa, 603 * but we can't call kvmppc_pin_guest_page under the lock 604 * as it does get_user_pages() and down_read(). So we 605 * have to drop the lock, pin the page, then get the lock 606 * again and check that a new area didn't get registered 607 * in the meantime. 608 */ 609 for (;;) { 610 gpa = vpap->next_gpa; 611 spin_unlock(&vcpu->arch.vpa_update_lock); 612 va = NULL; 613 nb = 0; 614 if (gpa) 615 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 616 spin_lock(&vcpu->arch.vpa_update_lock); 617 if (gpa == vpap->next_gpa) 618 break; 619 /* sigh... unpin that one and try again */ 620 if (va) 621 kvmppc_unpin_guest_page(kvm, va, gpa, false); 622 } 623 624 vpap->update_pending = 0; 625 if (va && nb < vpap->len) { 626 /* 627 * If it's now too short, it must be that userspace 628 * has changed the mappings underlying guest memory, 629 * so unregister the region. 630 */ 631 kvmppc_unpin_guest_page(kvm, va, gpa, false); 632 va = NULL; 633 } 634 if (vpap->pinned_addr) 635 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 636 vpap->dirty); 637 vpap->gpa = gpa; 638 vpap->pinned_addr = va; 639 vpap->dirty = false; 640 if (va) 641 vpap->pinned_end = va + vpap->len; 642 } 643 644 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 645 { 646 if (!(vcpu->arch.vpa.update_pending || 647 vcpu->arch.slb_shadow.update_pending || 648 vcpu->arch.dtl.update_pending)) 649 return; 650 651 spin_lock(&vcpu->arch.vpa_update_lock); 652 if (vcpu->arch.vpa.update_pending) { 653 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 654 if (vcpu->arch.vpa.pinned_addr) 655 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 656 } 657 if (vcpu->arch.dtl.update_pending) { 658 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 659 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 660 vcpu->arch.dtl_index = 0; 661 } 662 if (vcpu->arch.slb_shadow.update_pending) 663 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 664 spin_unlock(&vcpu->arch.vpa_update_lock); 665 } 666 667 /* 668 * Return the accumulated stolen time for the vcore up until `now'. 669 * The caller should hold the vcore lock. 670 */ 671 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 672 { 673 u64 p; 674 unsigned long flags; 675 676 spin_lock_irqsave(&vc->stoltb_lock, flags); 677 p = vc->stolen_tb; 678 if (vc->vcore_state != VCORE_INACTIVE && 679 vc->preempt_tb != TB_NIL) 680 p += now - vc->preempt_tb; 681 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 682 return p; 683 } 684 685 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 686 struct kvmppc_vcore *vc) 687 { 688 struct dtl_entry *dt; 689 struct lppaca *vpa; 690 unsigned long stolen; 691 unsigned long core_stolen; 692 u64 now; 693 unsigned long flags; 694 695 dt = vcpu->arch.dtl_ptr; 696 vpa = vcpu->arch.vpa.pinned_addr; 697 now = mftb(); 698 core_stolen = vcore_stolen_time(vc, now); 699 stolen = core_stolen - vcpu->arch.stolen_logged; 700 vcpu->arch.stolen_logged = core_stolen; 701 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 702 stolen += vcpu->arch.busy_stolen; 703 vcpu->arch.busy_stolen = 0; 704 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 705 if (!dt || !vpa) 706 return; 707 memset(dt, 0, sizeof(struct dtl_entry)); 708 dt->dispatch_reason = 7; 709 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 710 dt->timebase = cpu_to_be64(now + vc->tb_offset); 711 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 712 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 713 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 714 ++dt; 715 if (dt == vcpu->arch.dtl.pinned_end) 716 dt = vcpu->arch.dtl.pinned_addr; 717 vcpu->arch.dtl_ptr = dt; 718 /* order writing *dt vs. writing vpa->dtl_idx */ 719 smp_wmb(); 720 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 721 vcpu->arch.dtl.dirty = true; 722 } 723 724 /* See if there is a doorbell interrupt pending for a vcpu */ 725 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 726 { 727 int thr; 728 struct kvmppc_vcore *vc; 729 730 if (vcpu->arch.doorbell_request) 731 return true; 732 /* 733 * Ensure that the read of vcore->dpdes comes after the read 734 * of vcpu->doorbell_request. This barrier matches the 735 * smp_wmb() in kvmppc_guest_entry_inject(). 736 */ 737 smp_rmb(); 738 vc = vcpu->arch.vcore; 739 thr = vcpu->vcpu_id - vc->first_vcpuid; 740 return !!(vc->dpdes & (1 << thr)); 741 } 742 743 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 744 { 745 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 746 return true; 747 if ((!vcpu->arch.vcore->arch_compat) && 748 cpu_has_feature(CPU_FTR_ARCH_207S)) 749 return true; 750 return false; 751 } 752 753 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 754 unsigned long resource, unsigned long value1, 755 unsigned long value2) 756 { 757 switch (resource) { 758 case H_SET_MODE_RESOURCE_SET_CIABR: 759 if (!kvmppc_power8_compatible(vcpu)) 760 return H_P2; 761 if (value2) 762 return H_P4; 763 if (mflags) 764 return H_UNSUPPORTED_FLAG_START; 765 /* Guests can't breakpoint the hypervisor */ 766 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 767 return H_P3; 768 vcpu->arch.ciabr = value1; 769 return H_SUCCESS; 770 case H_SET_MODE_RESOURCE_SET_DAWR0: 771 if (!kvmppc_power8_compatible(vcpu)) 772 return H_P2; 773 if (!ppc_breakpoint_available()) 774 return H_P2; 775 if (mflags) 776 return H_UNSUPPORTED_FLAG_START; 777 if (value2 & DABRX_HYP) 778 return H_P4; 779 vcpu->arch.dawr0 = value1; 780 vcpu->arch.dawrx0 = value2; 781 return H_SUCCESS; 782 case H_SET_MODE_RESOURCE_SET_DAWR1: 783 if (!kvmppc_power8_compatible(vcpu)) 784 return H_P2; 785 if (!ppc_breakpoint_available()) 786 return H_P2; 787 if (!cpu_has_feature(CPU_FTR_DAWR1)) 788 return H_P2; 789 if (!vcpu->kvm->arch.dawr1_enabled) 790 return H_FUNCTION; 791 if (mflags) 792 return H_UNSUPPORTED_FLAG_START; 793 if (value2 & DABRX_HYP) 794 return H_P4; 795 vcpu->arch.dawr1 = value1; 796 vcpu->arch.dawrx1 = value2; 797 return H_SUCCESS; 798 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 799 /* 800 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 801 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 802 */ 803 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 804 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 805 return H_UNSUPPORTED_FLAG_START; 806 return H_TOO_HARD; 807 default: 808 return H_TOO_HARD; 809 } 810 } 811 812 /* Copy guest memory in place - must reside within a single memslot */ 813 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 814 unsigned long len) 815 { 816 struct kvm_memory_slot *to_memslot = NULL; 817 struct kvm_memory_slot *from_memslot = NULL; 818 unsigned long to_addr, from_addr; 819 int r; 820 821 /* Get HPA for from address */ 822 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 823 if (!from_memslot) 824 return -EFAULT; 825 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 826 << PAGE_SHIFT)) 827 return -EINVAL; 828 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 829 if (kvm_is_error_hva(from_addr)) 830 return -EFAULT; 831 from_addr |= (from & (PAGE_SIZE - 1)); 832 833 /* Get HPA for to address */ 834 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 835 if (!to_memslot) 836 return -EFAULT; 837 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 838 << PAGE_SHIFT)) 839 return -EINVAL; 840 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 841 if (kvm_is_error_hva(to_addr)) 842 return -EFAULT; 843 to_addr |= (to & (PAGE_SIZE - 1)); 844 845 /* Perform copy */ 846 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 847 len); 848 if (r) 849 return -EFAULT; 850 mark_page_dirty(kvm, to >> PAGE_SHIFT); 851 return 0; 852 } 853 854 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 855 unsigned long dest, unsigned long src) 856 { 857 u64 pg_sz = SZ_4K; /* 4K page size */ 858 u64 pg_mask = SZ_4K - 1; 859 int ret; 860 861 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 862 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 863 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 864 return H_PARAMETER; 865 866 /* dest (and src if copy_page flag set) must be page aligned */ 867 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 868 return H_PARAMETER; 869 870 /* zero and/or copy the page as determined by the flags */ 871 if (flags & H_COPY_PAGE) { 872 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 873 if (ret < 0) 874 return H_PARAMETER; 875 } else if (flags & H_ZERO_PAGE) { 876 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 877 if (ret < 0) 878 return H_PARAMETER; 879 } 880 881 /* We can ignore the remaining flags */ 882 883 return H_SUCCESS; 884 } 885 886 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 887 { 888 struct kvmppc_vcore *vcore = target->arch.vcore; 889 890 /* 891 * We expect to have been called by the real mode handler 892 * (kvmppc_rm_h_confer()) which would have directly returned 893 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 894 * have useful work to do and should not confer) so we don't 895 * recheck that here. 896 * 897 * In the case of the P9 single vcpu per vcore case, the real 898 * mode handler is not called but no other threads are in the 899 * source vcore. 900 */ 901 902 spin_lock(&vcore->lock); 903 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 904 vcore->vcore_state != VCORE_INACTIVE && 905 vcore->runner) 906 target = vcore->runner; 907 spin_unlock(&vcore->lock); 908 909 return kvm_vcpu_yield_to(target); 910 } 911 912 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 913 { 914 int yield_count = 0; 915 struct lppaca *lppaca; 916 917 spin_lock(&vcpu->arch.vpa_update_lock); 918 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 919 if (lppaca) 920 yield_count = be32_to_cpu(lppaca->yield_count); 921 spin_unlock(&vcpu->arch.vpa_update_lock); 922 return yield_count; 923 } 924 925 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 926 { 927 struct kvm *kvm = vcpu->kvm; 928 unsigned long req = kvmppc_get_gpr(vcpu, 3); 929 unsigned long target, ret = H_SUCCESS; 930 int yield_count; 931 struct kvm_vcpu *tvcpu; 932 int idx, rc; 933 934 if (req <= MAX_HCALL_OPCODE && 935 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 936 return RESUME_HOST; 937 938 switch (req) { 939 case H_REMOVE: 940 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 941 kvmppc_get_gpr(vcpu, 5), 942 kvmppc_get_gpr(vcpu, 6)); 943 if (ret == H_TOO_HARD) 944 return RESUME_HOST; 945 break; 946 case H_ENTER: 947 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 948 kvmppc_get_gpr(vcpu, 5), 949 kvmppc_get_gpr(vcpu, 6), 950 kvmppc_get_gpr(vcpu, 7)); 951 if (ret == H_TOO_HARD) 952 return RESUME_HOST; 953 break; 954 case H_READ: 955 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 956 kvmppc_get_gpr(vcpu, 5)); 957 if (ret == H_TOO_HARD) 958 return RESUME_HOST; 959 break; 960 case H_CLEAR_MOD: 961 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 962 kvmppc_get_gpr(vcpu, 5)); 963 if (ret == H_TOO_HARD) 964 return RESUME_HOST; 965 break; 966 case H_CLEAR_REF: 967 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 968 kvmppc_get_gpr(vcpu, 5)); 969 if (ret == H_TOO_HARD) 970 return RESUME_HOST; 971 break; 972 case H_PROTECT: 973 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 974 kvmppc_get_gpr(vcpu, 5), 975 kvmppc_get_gpr(vcpu, 6)); 976 if (ret == H_TOO_HARD) 977 return RESUME_HOST; 978 break; 979 case H_BULK_REMOVE: 980 ret = kvmppc_h_bulk_remove(vcpu); 981 if (ret == H_TOO_HARD) 982 return RESUME_HOST; 983 break; 984 985 case H_CEDE: 986 break; 987 case H_PROD: 988 target = kvmppc_get_gpr(vcpu, 4); 989 tvcpu = kvmppc_find_vcpu(kvm, target); 990 if (!tvcpu) { 991 ret = H_PARAMETER; 992 break; 993 } 994 tvcpu->arch.prodded = 1; 995 smp_mb(); 996 if (tvcpu->arch.ceded) 997 kvmppc_fast_vcpu_kick_hv(tvcpu); 998 break; 999 case H_CONFER: 1000 target = kvmppc_get_gpr(vcpu, 4); 1001 if (target == -1) 1002 break; 1003 tvcpu = kvmppc_find_vcpu(kvm, target); 1004 if (!tvcpu) { 1005 ret = H_PARAMETER; 1006 break; 1007 } 1008 yield_count = kvmppc_get_gpr(vcpu, 5); 1009 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1010 break; 1011 kvm_arch_vcpu_yield_to(tvcpu); 1012 break; 1013 case H_REGISTER_VPA: 1014 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1015 kvmppc_get_gpr(vcpu, 5), 1016 kvmppc_get_gpr(vcpu, 6)); 1017 break; 1018 case H_RTAS: 1019 if (list_empty(&kvm->arch.rtas_tokens)) 1020 return RESUME_HOST; 1021 1022 idx = srcu_read_lock(&kvm->srcu); 1023 rc = kvmppc_rtas_hcall(vcpu); 1024 srcu_read_unlock(&kvm->srcu, idx); 1025 1026 if (rc == -ENOENT) 1027 return RESUME_HOST; 1028 else if (rc == 0) 1029 break; 1030 1031 /* Send the error out to userspace via KVM_RUN */ 1032 return rc; 1033 case H_LOGICAL_CI_LOAD: 1034 ret = kvmppc_h_logical_ci_load(vcpu); 1035 if (ret == H_TOO_HARD) 1036 return RESUME_HOST; 1037 break; 1038 case H_LOGICAL_CI_STORE: 1039 ret = kvmppc_h_logical_ci_store(vcpu); 1040 if (ret == H_TOO_HARD) 1041 return RESUME_HOST; 1042 break; 1043 case H_SET_MODE: 1044 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1045 kvmppc_get_gpr(vcpu, 5), 1046 kvmppc_get_gpr(vcpu, 6), 1047 kvmppc_get_gpr(vcpu, 7)); 1048 if (ret == H_TOO_HARD) 1049 return RESUME_HOST; 1050 break; 1051 case H_XIRR: 1052 case H_CPPR: 1053 case H_EOI: 1054 case H_IPI: 1055 case H_IPOLL: 1056 case H_XIRR_X: 1057 if (kvmppc_xics_enabled(vcpu)) { 1058 if (xics_on_xive()) { 1059 ret = H_NOT_AVAILABLE; 1060 return RESUME_GUEST; 1061 } 1062 ret = kvmppc_xics_hcall(vcpu, req); 1063 break; 1064 } 1065 return RESUME_HOST; 1066 case H_SET_DABR: 1067 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1068 break; 1069 case H_SET_XDABR: 1070 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1071 kvmppc_get_gpr(vcpu, 5)); 1072 break; 1073 #ifdef CONFIG_SPAPR_TCE_IOMMU 1074 case H_GET_TCE: 1075 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1076 kvmppc_get_gpr(vcpu, 5)); 1077 if (ret == H_TOO_HARD) 1078 return RESUME_HOST; 1079 break; 1080 case H_PUT_TCE: 1081 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1082 kvmppc_get_gpr(vcpu, 5), 1083 kvmppc_get_gpr(vcpu, 6)); 1084 if (ret == H_TOO_HARD) 1085 return RESUME_HOST; 1086 break; 1087 case H_PUT_TCE_INDIRECT: 1088 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1089 kvmppc_get_gpr(vcpu, 5), 1090 kvmppc_get_gpr(vcpu, 6), 1091 kvmppc_get_gpr(vcpu, 7)); 1092 if (ret == H_TOO_HARD) 1093 return RESUME_HOST; 1094 break; 1095 case H_STUFF_TCE: 1096 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1097 kvmppc_get_gpr(vcpu, 5), 1098 kvmppc_get_gpr(vcpu, 6), 1099 kvmppc_get_gpr(vcpu, 7)); 1100 if (ret == H_TOO_HARD) 1101 return RESUME_HOST; 1102 break; 1103 #endif 1104 case H_RANDOM: 1105 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1106 ret = H_HARDWARE; 1107 break; 1108 1109 case H_SET_PARTITION_TABLE: 1110 ret = H_FUNCTION; 1111 if (nesting_enabled(kvm)) 1112 ret = kvmhv_set_partition_table(vcpu); 1113 break; 1114 case H_ENTER_NESTED: 1115 ret = H_FUNCTION; 1116 if (!nesting_enabled(kvm)) 1117 break; 1118 ret = kvmhv_enter_nested_guest(vcpu); 1119 if (ret == H_INTERRUPT) { 1120 kvmppc_set_gpr(vcpu, 3, 0); 1121 vcpu->arch.hcall_needed = 0; 1122 return -EINTR; 1123 } else if (ret == H_TOO_HARD) { 1124 kvmppc_set_gpr(vcpu, 3, 0); 1125 vcpu->arch.hcall_needed = 0; 1126 return RESUME_HOST; 1127 } 1128 break; 1129 case H_TLB_INVALIDATE: 1130 ret = H_FUNCTION; 1131 if (nesting_enabled(kvm)) 1132 ret = kvmhv_do_nested_tlbie(vcpu); 1133 break; 1134 case H_COPY_TOFROM_GUEST: 1135 ret = H_FUNCTION; 1136 if (nesting_enabled(kvm)) 1137 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1138 break; 1139 case H_PAGE_INIT: 1140 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1141 kvmppc_get_gpr(vcpu, 5), 1142 kvmppc_get_gpr(vcpu, 6)); 1143 break; 1144 case H_SVM_PAGE_IN: 1145 ret = H_UNSUPPORTED; 1146 if (kvmppc_get_srr1(vcpu) & MSR_S) 1147 ret = kvmppc_h_svm_page_in(kvm, 1148 kvmppc_get_gpr(vcpu, 4), 1149 kvmppc_get_gpr(vcpu, 5), 1150 kvmppc_get_gpr(vcpu, 6)); 1151 break; 1152 case H_SVM_PAGE_OUT: 1153 ret = H_UNSUPPORTED; 1154 if (kvmppc_get_srr1(vcpu) & MSR_S) 1155 ret = kvmppc_h_svm_page_out(kvm, 1156 kvmppc_get_gpr(vcpu, 4), 1157 kvmppc_get_gpr(vcpu, 5), 1158 kvmppc_get_gpr(vcpu, 6)); 1159 break; 1160 case H_SVM_INIT_START: 1161 ret = H_UNSUPPORTED; 1162 if (kvmppc_get_srr1(vcpu) & MSR_S) 1163 ret = kvmppc_h_svm_init_start(kvm); 1164 break; 1165 case H_SVM_INIT_DONE: 1166 ret = H_UNSUPPORTED; 1167 if (kvmppc_get_srr1(vcpu) & MSR_S) 1168 ret = kvmppc_h_svm_init_done(kvm); 1169 break; 1170 case H_SVM_INIT_ABORT: 1171 /* 1172 * Even if that call is made by the Ultravisor, the SSR1 value 1173 * is the guest context one, with the secure bit clear as it has 1174 * not yet been secured. So we can't check it here. 1175 * Instead the kvm->arch.secure_guest flag is checked inside 1176 * kvmppc_h_svm_init_abort(). 1177 */ 1178 ret = kvmppc_h_svm_init_abort(kvm); 1179 break; 1180 1181 default: 1182 return RESUME_HOST; 1183 } 1184 WARN_ON_ONCE(ret == H_TOO_HARD); 1185 kvmppc_set_gpr(vcpu, 3, ret); 1186 vcpu->arch.hcall_needed = 0; 1187 return RESUME_GUEST; 1188 } 1189 1190 /* 1191 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1192 * handlers in book3s_hv_rmhandlers.S. 1193 * 1194 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1195 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1196 */ 1197 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1198 { 1199 vcpu->arch.shregs.msr |= MSR_EE; 1200 vcpu->arch.ceded = 1; 1201 smp_mb(); 1202 if (vcpu->arch.prodded) { 1203 vcpu->arch.prodded = 0; 1204 smp_mb(); 1205 vcpu->arch.ceded = 0; 1206 } 1207 } 1208 1209 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1210 { 1211 switch (cmd) { 1212 case H_CEDE: 1213 case H_PROD: 1214 case H_CONFER: 1215 case H_REGISTER_VPA: 1216 case H_SET_MODE: 1217 case H_LOGICAL_CI_LOAD: 1218 case H_LOGICAL_CI_STORE: 1219 #ifdef CONFIG_KVM_XICS 1220 case H_XIRR: 1221 case H_CPPR: 1222 case H_EOI: 1223 case H_IPI: 1224 case H_IPOLL: 1225 case H_XIRR_X: 1226 #endif 1227 case H_PAGE_INIT: 1228 return 1; 1229 } 1230 1231 /* See if it's in the real-mode table */ 1232 return kvmppc_hcall_impl_hv_realmode(cmd); 1233 } 1234 1235 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1236 { 1237 u32 last_inst; 1238 1239 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1240 EMULATE_DONE) { 1241 /* 1242 * Fetch failed, so return to guest and 1243 * try executing it again. 1244 */ 1245 return RESUME_GUEST; 1246 } 1247 1248 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1249 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1250 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1251 return RESUME_HOST; 1252 } else { 1253 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1254 return RESUME_GUEST; 1255 } 1256 } 1257 1258 static void do_nothing(void *x) 1259 { 1260 } 1261 1262 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1263 { 1264 int thr, cpu, pcpu, nthreads; 1265 struct kvm_vcpu *v; 1266 unsigned long dpdes; 1267 1268 nthreads = vcpu->kvm->arch.emul_smt_mode; 1269 dpdes = 0; 1270 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1271 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1272 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1273 if (!v) 1274 continue; 1275 /* 1276 * If the vcpu is currently running on a physical cpu thread, 1277 * interrupt it in order to pull it out of the guest briefly, 1278 * which will update its vcore->dpdes value. 1279 */ 1280 pcpu = READ_ONCE(v->cpu); 1281 if (pcpu >= 0) 1282 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1283 if (kvmppc_doorbell_pending(v)) 1284 dpdes |= 1 << thr; 1285 } 1286 return dpdes; 1287 } 1288 1289 /* 1290 * On POWER9, emulate doorbell-related instructions in order to 1291 * give the guest the illusion of running on a multi-threaded core. 1292 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1293 * and mfspr DPDES. 1294 */ 1295 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1296 { 1297 u32 inst, rb, thr; 1298 unsigned long arg; 1299 struct kvm *kvm = vcpu->kvm; 1300 struct kvm_vcpu *tvcpu; 1301 1302 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1303 return RESUME_GUEST; 1304 if (get_op(inst) != 31) 1305 return EMULATE_FAIL; 1306 rb = get_rb(inst); 1307 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1308 switch (get_xop(inst)) { 1309 case OP_31_XOP_MSGSNDP: 1310 arg = kvmppc_get_gpr(vcpu, rb); 1311 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1312 break; 1313 arg &= 0x7f; 1314 if (arg >= kvm->arch.emul_smt_mode) 1315 break; 1316 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1317 if (!tvcpu) 1318 break; 1319 if (!tvcpu->arch.doorbell_request) { 1320 tvcpu->arch.doorbell_request = 1; 1321 kvmppc_fast_vcpu_kick_hv(tvcpu); 1322 } 1323 break; 1324 case OP_31_XOP_MSGCLRP: 1325 arg = kvmppc_get_gpr(vcpu, rb); 1326 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1327 break; 1328 vcpu->arch.vcore->dpdes = 0; 1329 vcpu->arch.doorbell_request = 0; 1330 break; 1331 case OP_31_XOP_MFSPR: 1332 switch (get_sprn(inst)) { 1333 case SPRN_TIR: 1334 arg = thr; 1335 break; 1336 case SPRN_DPDES: 1337 arg = kvmppc_read_dpdes(vcpu); 1338 break; 1339 default: 1340 return EMULATE_FAIL; 1341 } 1342 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1343 break; 1344 default: 1345 return EMULATE_FAIL; 1346 } 1347 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1348 return RESUME_GUEST; 1349 } 1350 1351 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1352 struct task_struct *tsk) 1353 { 1354 struct kvm_run *run = vcpu->run; 1355 int r = RESUME_HOST; 1356 1357 vcpu->stat.sum_exits++; 1358 1359 /* 1360 * This can happen if an interrupt occurs in the last stages 1361 * of guest entry or the first stages of guest exit (i.e. after 1362 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1363 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1364 * That can happen due to a bug, or due to a machine check 1365 * occurring at just the wrong time. 1366 */ 1367 if (vcpu->arch.shregs.msr & MSR_HV) { 1368 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1369 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1370 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1371 vcpu->arch.shregs.msr); 1372 kvmppc_dump_regs(vcpu); 1373 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1374 run->hw.hardware_exit_reason = vcpu->arch.trap; 1375 return RESUME_HOST; 1376 } 1377 run->exit_reason = KVM_EXIT_UNKNOWN; 1378 run->ready_for_interrupt_injection = 1; 1379 switch (vcpu->arch.trap) { 1380 /* We're good on these - the host merely wanted to get our attention */ 1381 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1382 vcpu->stat.dec_exits++; 1383 r = RESUME_GUEST; 1384 break; 1385 case BOOK3S_INTERRUPT_EXTERNAL: 1386 case BOOK3S_INTERRUPT_H_DOORBELL: 1387 case BOOK3S_INTERRUPT_H_VIRT: 1388 vcpu->stat.ext_intr_exits++; 1389 r = RESUME_GUEST; 1390 break; 1391 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1392 case BOOK3S_INTERRUPT_HMI: 1393 case BOOK3S_INTERRUPT_PERFMON: 1394 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1395 r = RESUME_GUEST; 1396 break; 1397 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1398 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1399 DEFAULT_RATELIMIT_BURST); 1400 /* 1401 * Print the MCE event to host console. Ratelimit so the guest 1402 * can't flood the host log. 1403 */ 1404 if (__ratelimit(&rs)) 1405 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1406 1407 /* 1408 * If the guest can do FWNMI, exit to userspace so it can 1409 * deliver a FWNMI to the guest. 1410 * Otherwise we synthesize a machine check for the guest 1411 * so that it knows that the machine check occurred. 1412 */ 1413 if (!vcpu->kvm->arch.fwnmi_enabled) { 1414 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1415 kvmppc_core_queue_machine_check(vcpu, flags); 1416 r = RESUME_GUEST; 1417 break; 1418 } 1419 1420 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1421 run->exit_reason = KVM_EXIT_NMI; 1422 run->hw.hardware_exit_reason = vcpu->arch.trap; 1423 /* Clear out the old NMI status from run->flags */ 1424 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1425 /* Now set the NMI status */ 1426 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1427 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1428 else 1429 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1430 1431 r = RESUME_HOST; 1432 break; 1433 } 1434 case BOOK3S_INTERRUPT_PROGRAM: 1435 { 1436 ulong flags; 1437 /* 1438 * Normally program interrupts are delivered directly 1439 * to the guest by the hardware, but we can get here 1440 * as a result of a hypervisor emulation interrupt 1441 * (e40) getting turned into a 700 by BML RTAS. 1442 */ 1443 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1444 kvmppc_core_queue_program(vcpu, flags); 1445 r = RESUME_GUEST; 1446 break; 1447 } 1448 case BOOK3S_INTERRUPT_SYSCALL: 1449 { 1450 int i; 1451 1452 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1453 /* 1454 * Guest userspace executed sc 1. This can only be 1455 * reached by the P9 path because the old path 1456 * handles this case in realmode hcall handlers. 1457 */ 1458 if (!kvmhv_vcpu_is_radix(vcpu)) { 1459 /* 1460 * A guest could be running PR KVM, so this 1461 * may be a PR KVM hcall. It must be reflected 1462 * to the guest kernel as a sc interrupt. 1463 */ 1464 kvmppc_core_queue_syscall(vcpu); 1465 } else { 1466 /* 1467 * Radix guests can not run PR KVM or nested HV 1468 * hash guests which might run PR KVM, so this 1469 * is always a privilege fault. Send a program 1470 * check to guest kernel. 1471 */ 1472 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1473 } 1474 r = RESUME_GUEST; 1475 break; 1476 } 1477 1478 /* 1479 * hcall - gather args and set exit_reason. This will next be 1480 * handled by kvmppc_pseries_do_hcall which may be able to deal 1481 * with it and resume guest, or may punt to userspace. 1482 */ 1483 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1484 for (i = 0; i < 9; ++i) 1485 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1486 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1487 vcpu->arch.hcall_needed = 1; 1488 r = RESUME_HOST; 1489 break; 1490 } 1491 /* 1492 * We get these next two if the guest accesses a page which it thinks 1493 * it has mapped but which is not actually present, either because 1494 * it is for an emulated I/O device or because the corresonding 1495 * host page has been paged out. 1496 * 1497 * Any other HDSI/HISI interrupts have been handled already for P7/8 1498 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1499 * fault handling is done here. 1500 */ 1501 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1502 unsigned long vsid; 1503 long err; 1504 1505 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) { 1506 r = RESUME_GUEST; /* Just retry if it's the canary */ 1507 break; 1508 } 1509 1510 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1511 /* 1512 * Radix doesn't require anything, and pre-ISAv3.0 hash 1513 * already attempted to handle this in rmhandlers. The 1514 * hash fault handling below is v3 only (it uses ASDR 1515 * via fault_gpa). 1516 */ 1517 r = RESUME_PAGE_FAULT; 1518 break; 1519 } 1520 1521 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1522 kvmppc_core_queue_data_storage(vcpu, 1523 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1524 r = RESUME_GUEST; 1525 break; 1526 } 1527 1528 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1529 vsid = vcpu->kvm->arch.vrma_slb_v; 1530 else 1531 vsid = vcpu->arch.fault_gpa; 1532 1533 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1534 vsid, vcpu->arch.fault_dsisr, true); 1535 if (err == 0) { 1536 r = RESUME_GUEST; 1537 } else if (err == -1 || err == -2) { 1538 r = RESUME_PAGE_FAULT; 1539 } else { 1540 kvmppc_core_queue_data_storage(vcpu, 1541 vcpu->arch.fault_dar, err); 1542 r = RESUME_GUEST; 1543 } 1544 break; 1545 } 1546 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1547 unsigned long vsid; 1548 long err; 1549 1550 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1551 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1552 DSISR_SRR1_MATCH_64S; 1553 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1554 /* 1555 * Radix doesn't require anything, and pre-ISAv3.0 hash 1556 * already attempted to handle this in rmhandlers. The 1557 * hash fault handling below is v3 only (it uses ASDR 1558 * via fault_gpa). 1559 */ 1560 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1561 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1562 r = RESUME_PAGE_FAULT; 1563 break; 1564 } 1565 1566 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1567 kvmppc_core_queue_inst_storage(vcpu, 1568 vcpu->arch.fault_dsisr); 1569 r = RESUME_GUEST; 1570 break; 1571 } 1572 1573 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1574 vsid = vcpu->kvm->arch.vrma_slb_v; 1575 else 1576 vsid = vcpu->arch.fault_gpa; 1577 1578 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1579 vsid, vcpu->arch.fault_dsisr, false); 1580 if (err == 0) { 1581 r = RESUME_GUEST; 1582 } else if (err == -1) { 1583 r = RESUME_PAGE_FAULT; 1584 } else { 1585 kvmppc_core_queue_inst_storage(vcpu, err); 1586 r = RESUME_GUEST; 1587 } 1588 break; 1589 } 1590 1591 /* 1592 * This occurs if the guest executes an illegal instruction. 1593 * If the guest debug is disabled, generate a program interrupt 1594 * to the guest. If guest debug is enabled, we need to check 1595 * whether the instruction is a software breakpoint instruction. 1596 * Accordingly return to Guest or Host. 1597 */ 1598 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1599 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1600 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1601 swab32(vcpu->arch.emul_inst) : 1602 vcpu->arch.emul_inst; 1603 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1604 r = kvmppc_emulate_debug_inst(vcpu); 1605 } else { 1606 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1607 r = RESUME_GUEST; 1608 } 1609 break; 1610 /* 1611 * This occurs if the guest (kernel or userspace), does something that 1612 * is prohibited by HFSCR. 1613 * On POWER9, this could be a doorbell instruction that we need 1614 * to emulate. 1615 * Otherwise, we just generate a program interrupt to the guest. 1616 */ 1617 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1618 r = EMULATE_FAIL; 1619 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1620 cpu_has_feature(CPU_FTR_ARCH_300)) 1621 r = kvmppc_emulate_doorbell_instr(vcpu); 1622 if (r == EMULATE_FAIL) { 1623 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1624 r = RESUME_GUEST; 1625 } 1626 break; 1627 1628 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1629 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1630 /* 1631 * This occurs for various TM-related instructions that 1632 * we need to emulate on POWER9 DD2.2. We have already 1633 * handled the cases where the guest was in real-suspend 1634 * mode and was transitioning to transactional state. 1635 */ 1636 r = kvmhv_p9_tm_emulation(vcpu); 1637 break; 1638 #endif 1639 1640 case BOOK3S_INTERRUPT_HV_RM_HARD: 1641 r = RESUME_PASSTHROUGH; 1642 break; 1643 default: 1644 kvmppc_dump_regs(vcpu); 1645 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1646 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1647 vcpu->arch.shregs.msr); 1648 run->hw.hardware_exit_reason = vcpu->arch.trap; 1649 r = RESUME_HOST; 1650 break; 1651 } 1652 1653 return r; 1654 } 1655 1656 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1657 { 1658 int r; 1659 int srcu_idx; 1660 1661 vcpu->stat.sum_exits++; 1662 1663 /* 1664 * This can happen if an interrupt occurs in the last stages 1665 * of guest entry or the first stages of guest exit (i.e. after 1666 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1667 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1668 * That can happen due to a bug, or due to a machine check 1669 * occurring at just the wrong time. 1670 */ 1671 if (vcpu->arch.shregs.msr & MSR_HV) { 1672 pr_emerg("KVM trap in HV mode while nested!\n"); 1673 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1674 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1675 vcpu->arch.shregs.msr); 1676 kvmppc_dump_regs(vcpu); 1677 return RESUME_HOST; 1678 } 1679 switch (vcpu->arch.trap) { 1680 /* We're good on these - the host merely wanted to get our attention */ 1681 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1682 vcpu->stat.dec_exits++; 1683 r = RESUME_GUEST; 1684 break; 1685 case BOOK3S_INTERRUPT_EXTERNAL: 1686 vcpu->stat.ext_intr_exits++; 1687 r = RESUME_HOST; 1688 break; 1689 case BOOK3S_INTERRUPT_H_DOORBELL: 1690 case BOOK3S_INTERRUPT_H_VIRT: 1691 vcpu->stat.ext_intr_exits++; 1692 r = RESUME_GUEST; 1693 break; 1694 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1695 case BOOK3S_INTERRUPT_HMI: 1696 case BOOK3S_INTERRUPT_PERFMON: 1697 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1698 r = RESUME_GUEST; 1699 break; 1700 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1701 { 1702 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1703 DEFAULT_RATELIMIT_BURST); 1704 /* Pass the machine check to the L1 guest */ 1705 r = RESUME_HOST; 1706 /* Print the MCE event to host console. */ 1707 if (__ratelimit(&rs)) 1708 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1709 break; 1710 } 1711 /* 1712 * We get these next two if the guest accesses a page which it thinks 1713 * it has mapped but which is not actually present, either because 1714 * it is for an emulated I/O device or because the corresonding 1715 * host page has been paged out. 1716 */ 1717 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1718 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1719 r = kvmhv_nested_page_fault(vcpu); 1720 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1721 break; 1722 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1723 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1724 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1725 DSISR_SRR1_MATCH_64S; 1726 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1727 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1728 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1729 r = kvmhv_nested_page_fault(vcpu); 1730 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1731 break; 1732 1733 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1734 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1735 /* 1736 * This occurs for various TM-related instructions that 1737 * we need to emulate on POWER9 DD2.2. We have already 1738 * handled the cases where the guest was in real-suspend 1739 * mode and was transitioning to transactional state. 1740 */ 1741 r = kvmhv_p9_tm_emulation(vcpu); 1742 break; 1743 #endif 1744 1745 case BOOK3S_INTERRUPT_HV_RM_HARD: 1746 vcpu->arch.trap = 0; 1747 r = RESUME_GUEST; 1748 if (!xics_on_xive()) 1749 kvmppc_xics_rm_complete(vcpu, 0); 1750 break; 1751 default: 1752 r = RESUME_HOST; 1753 break; 1754 } 1755 1756 return r; 1757 } 1758 1759 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1760 struct kvm_sregs *sregs) 1761 { 1762 int i; 1763 1764 memset(sregs, 0, sizeof(struct kvm_sregs)); 1765 sregs->pvr = vcpu->arch.pvr; 1766 for (i = 0; i < vcpu->arch.slb_max; i++) { 1767 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1768 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1775 struct kvm_sregs *sregs) 1776 { 1777 int i, j; 1778 1779 /* Only accept the same PVR as the host's, since we can't spoof it */ 1780 if (sregs->pvr != vcpu->arch.pvr) 1781 return -EINVAL; 1782 1783 j = 0; 1784 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1785 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1786 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1787 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1788 ++j; 1789 } 1790 } 1791 vcpu->arch.slb_max = j; 1792 1793 return 0; 1794 } 1795 1796 /* 1797 * Enforce limits on guest LPCR values based on hardware availability, 1798 * guest configuration, and possibly hypervisor support and security 1799 * concerns. 1800 */ 1801 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 1802 { 1803 /* LPCR_TC only applies to HPT guests */ 1804 if (kvm_is_radix(kvm)) 1805 lpcr &= ~LPCR_TC; 1806 1807 /* On POWER8 and above, userspace can modify AIL */ 1808 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 1809 lpcr &= ~LPCR_AIL; 1810 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 1811 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 1812 /* 1813 * On some POWER9s we force AIL off for radix guests to prevent 1814 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 1815 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 1816 * be cached, which the host TLB management does not expect. 1817 */ 1818 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 1819 lpcr &= ~LPCR_AIL; 1820 1821 /* 1822 * On POWER9, allow userspace to enable large decrementer for the 1823 * guest, whether or not the host has it enabled. 1824 */ 1825 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1826 lpcr &= ~LPCR_LD; 1827 1828 return lpcr; 1829 } 1830 1831 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 1832 { 1833 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 1834 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 1835 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 1836 } 1837 } 1838 1839 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1840 bool preserve_top32) 1841 { 1842 struct kvm *kvm = vcpu->kvm; 1843 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1844 u64 mask; 1845 1846 spin_lock(&vc->lock); 1847 1848 /* 1849 * Userspace can only modify 1850 * DPFD (default prefetch depth), ILE (interrupt little-endian), 1851 * TC (translation control), AIL (alternate interrupt location), 1852 * LD (large decrementer). 1853 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 1854 */ 1855 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 1856 1857 /* Broken 32-bit version of LPCR must not clear top bits */ 1858 if (preserve_top32) 1859 mask &= 0xFFFFFFFF; 1860 1861 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 1862 (vc->lpcr & ~mask) | (new_lpcr & mask)); 1863 1864 /* 1865 * If ILE (interrupt little-endian) has changed, update the 1866 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1867 */ 1868 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1869 struct kvm_vcpu *vcpu; 1870 int i; 1871 1872 kvm_for_each_vcpu(i, vcpu, kvm) { 1873 if (vcpu->arch.vcore != vc) 1874 continue; 1875 if (new_lpcr & LPCR_ILE) 1876 vcpu->arch.intr_msr |= MSR_LE; 1877 else 1878 vcpu->arch.intr_msr &= ~MSR_LE; 1879 } 1880 } 1881 1882 vc->lpcr = new_lpcr; 1883 1884 spin_unlock(&vc->lock); 1885 } 1886 1887 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1888 union kvmppc_one_reg *val) 1889 { 1890 int r = 0; 1891 long int i; 1892 1893 switch (id) { 1894 case KVM_REG_PPC_DEBUG_INST: 1895 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1896 break; 1897 case KVM_REG_PPC_HIOR: 1898 *val = get_reg_val(id, 0); 1899 break; 1900 case KVM_REG_PPC_DABR: 1901 *val = get_reg_val(id, vcpu->arch.dabr); 1902 break; 1903 case KVM_REG_PPC_DABRX: 1904 *val = get_reg_val(id, vcpu->arch.dabrx); 1905 break; 1906 case KVM_REG_PPC_DSCR: 1907 *val = get_reg_val(id, vcpu->arch.dscr); 1908 break; 1909 case KVM_REG_PPC_PURR: 1910 *val = get_reg_val(id, vcpu->arch.purr); 1911 break; 1912 case KVM_REG_PPC_SPURR: 1913 *val = get_reg_val(id, vcpu->arch.spurr); 1914 break; 1915 case KVM_REG_PPC_AMR: 1916 *val = get_reg_val(id, vcpu->arch.amr); 1917 break; 1918 case KVM_REG_PPC_UAMOR: 1919 *val = get_reg_val(id, vcpu->arch.uamor); 1920 break; 1921 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 1922 i = id - KVM_REG_PPC_MMCR0; 1923 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1924 break; 1925 case KVM_REG_PPC_MMCR2: 1926 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 1927 break; 1928 case KVM_REG_PPC_MMCRA: 1929 *val = get_reg_val(id, vcpu->arch.mmcra); 1930 break; 1931 case KVM_REG_PPC_MMCRS: 1932 *val = get_reg_val(id, vcpu->arch.mmcrs); 1933 break; 1934 case KVM_REG_PPC_MMCR3: 1935 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 1936 break; 1937 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1938 i = id - KVM_REG_PPC_PMC1; 1939 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1940 break; 1941 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1942 i = id - KVM_REG_PPC_SPMC1; 1943 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1944 break; 1945 case KVM_REG_PPC_SIAR: 1946 *val = get_reg_val(id, vcpu->arch.siar); 1947 break; 1948 case KVM_REG_PPC_SDAR: 1949 *val = get_reg_val(id, vcpu->arch.sdar); 1950 break; 1951 case KVM_REG_PPC_SIER: 1952 *val = get_reg_val(id, vcpu->arch.sier[0]); 1953 break; 1954 case KVM_REG_PPC_SIER2: 1955 *val = get_reg_val(id, vcpu->arch.sier[1]); 1956 break; 1957 case KVM_REG_PPC_SIER3: 1958 *val = get_reg_val(id, vcpu->arch.sier[2]); 1959 break; 1960 case KVM_REG_PPC_IAMR: 1961 *val = get_reg_val(id, vcpu->arch.iamr); 1962 break; 1963 case KVM_REG_PPC_PSPB: 1964 *val = get_reg_val(id, vcpu->arch.pspb); 1965 break; 1966 case KVM_REG_PPC_DPDES: 1967 /* 1968 * On POWER9, where we are emulating msgsndp etc., 1969 * we return 1 bit for each vcpu, which can come from 1970 * either vcore->dpdes or doorbell_request. 1971 * On POWER8, doorbell_request is 0. 1972 */ 1973 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1974 vcpu->arch.doorbell_request); 1975 break; 1976 case KVM_REG_PPC_VTB: 1977 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1978 break; 1979 case KVM_REG_PPC_DAWR: 1980 *val = get_reg_val(id, vcpu->arch.dawr0); 1981 break; 1982 case KVM_REG_PPC_DAWRX: 1983 *val = get_reg_val(id, vcpu->arch.dawrx0); 1984 break; 1985 case KVM_REG_PPC_DAWR1: 1986 *val = get_reg_val(id, vcpu->arch.dawr1); 1987 break; 1988 case KVM_REG_PPC_DAWRX1: 1989 *val = get_reg_val(id, vcpu->arch.dawrx1); 1990 break; 1991 case KVM_REG_PPC_CIABR: 1992 *val = get_reg_val(id, vcpu->arch.ciabr); 1993 break; 1994 case KVM_REG_PPC_CSIGR: 1995 *val = get_reg_val(id, vcpu->arch.csigr); 1996 break; 1997 case KVM_REG_PPC_TACR: 1998 *val = get_reg_val(id, vcpu->arch.tacr); 1999 break; 2000 case KVM_REG_PPC_TCSCR: 2001 *val = get_reg_val(id, vcpu->arch.tcscr); 2002 break; 2003 case KVM_REG_PPC_PID: 2004 *val = get_reg_val(id, vcpu->arch.pid); 2005 break; 2006 case KVM_REG_PPC_ACOP: 2007 *val = get_reg_val(id, vcpu->arch.acop); 2008 break; 2009 case KVM_REG_PPC_WORT: 2010 *val = get_reg_val(id, vcpu->arch.wort); 2011 break; 2012 case KVM_REG_PPC_TIDR: 2013 *val = get_reg_val(id, vcpu->arch.tid); 2014 break; 2015 case KVM_REG_PPC_PSSCR: 2016 *val = get_reg_val(id, vcpu->arch.psscr); 2017 break; 2018 case KVM_REG_PPC_VPA_ADDR: 2019 spin_lock(&vcpu->arch.vpa_update_lock); 2020 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2021 spin_unlock(&vcpu->arch.vpa_update_lock); 2022 break; 2023 case KVM_REG_PPC_VPA_SLB: 2024 spin_lock(&vcpu->arch.vpa_update_lock); 2025 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2026 val->vpaval.length = vcpu->arch.slb_shadow.len; 2027 spin_unlock(&vcpu->arch.vpa_update_lock); 2028 break; 2029 case KVM_REG_PPC_VPA_DTL: 2030 spin_lock(&vcpu->arch.vpa_update_lock); 2031 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2032 val->vpaval.length = vcpu->arch.dtl.len; 2033 spin_unlock(&vcpu->arch.vpa_update_lock); 2034 break; 2035 case KVM_REG_PPC_TB_OFFSET: 2036 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2037 break; 2038 case KVM_REG_PPC_LPCR: 2039 case KVM_REG_PPC_LPCR_64: 2040 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2041 break; 2042 case KVM_REG_PPC_PPR: 2043 *val = get_reg_val(id, vcpu->arch.ppr); 2044 break; 2045 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2046 case KVM_REG_PPC_TFHAR: 2047 *val = get_reg_val(id, vcpu->arch.tfhar); 2048 break; 2049 case KVM_REG_PPC_TFIAR: 2050 *val = get_reg_val(id, vcpu->arch.tfiar); 2051 break; 2052 case KVM_REG_PPC_TEXASR: 2053 *val = get_reg_val(id, vcpu->arch.texasr); 2054 break; 2055 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2056 i = id - KVM_REG_PPC_TM_GPR0; 2057 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2058 break; 2059 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2060 { 2061 int j; 2062 i = id - KVM_REG_PPC_TM_VSR0; 2063 if (i < 32) 2064 for (j = 0; j < TS_FPRWIDTH; j++) 2065 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2066 else { 2067 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2068 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2069 else 2070 r = -ENXIO; 2071 } 2072 break; 2073 } 2074 case KVM_REG_PPC_TM_CR: 2075 *val = get_reg_val(id, vcpu->arch.cr_tm); 2076 break; 2077 case KVM_REG_PPC_TM_XER: 2078 *val = get_reg_val(id, vcpu->arch.xer_tm); 2079 break; 2080 case KVM_REG_PPC_TM_LR: 2081 *val = get_reg_val(id, vcpu->arch.lr_tm); 2082 break; 2083 case KVM_REG_PPC_TM_CTR: 2084 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2085 break; 2086 case KVM_REG_PPC_TM_FPSCR: 2087 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2088 break; 2089 case KVM_REG_PPC_TM_AMR: 2090 *val = get_reg_val(id, vcpu->arch.amr_tm); 2091 break; 2092 case KVM_REG_PPC_TM_PPR: 2093 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2094 break; 2095 case KVM_REG_PPC_TM_VRSAVE: 2096 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2097 break; 2098 case KVM_REG_PPC_TM_VSCR: 2099 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2100 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2101 else 2102 r = -ENXIO; 2103 break; 2104 case KVM_REG_PPC_TM_DSCR: 2105 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2106 break; 2107 case KVM_REG_PPC_TM_TAR: 2108 *val = get_reg_val(id, vcpu->arch.tar_tm); 2109 break; 2110 #endif 2111 case KVM_REG_PPC_ARCH_COMPAT: 2112 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2113 break; 2114 case KVM_REG_PPC_DEC_EXPIRY: 2115 *val = get_reg_val(id, vcpu->arch.dec_expires + 2116 vcpu->arch.vcore->tb_offset); 2117 break; 2118 case KVM_REG_PPC_ONLINE: 2119 *val = get_reg_val(id, vcpu->arch.online); 2120 break; 2121 case KVM_REG_PPC_PTCR: 2122 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2123 break; 2124 default: 2125 r = -EINVAL; 2126 break; 2127 } 2128 2129 return r; 2130 } 2131 2132 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2133 union kvmppc_one_reg *val) 2134 { 2135 int r = 0; 2136 long int i; 2137 unsigned long addr, len; 2138 2139 switch (id) { 2140 case KVM_REG_PPC_HIOR: 2141 /* Only allow this to be set to zero */ 2142 if (set_reg_val(id, *val)) 2143 r = -EINVAL; 2144 break; 2145 case KVM_REG_PPC_DABR: 2146 vcpu->arch.dabr = set_reg_val(id, *val); 2147 break; 2148 case KVM_REG_PPC_DABRX: 2149 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2150 break; 2151 case KVM_REG_PPC_DSCR: 2152 vcpu->arch.dscr = set_reg_val(id, *val); 2153 break; 2154 case KVM_REG_PPC_PURR: 2155 vcpu->arch.purr = set_reg_val(id, *val); 2156 break; 2157 case KVM_REG_PPC_SPURR: 2158 vcpu->arch.spurr = set_reg_val(id, *val); 2159 break; 2160 case KVM_REG_PPC_AMR: 2161 vcpu->arch.amr = set_reg_val(id, *val); 2162 break; 2163 case KVM_REG_PPC_UAMOR: 2164 vcpu->arch.uamor = set_reg_val(id, *val); 2165 break; 2166 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2167 i = id - KVM_REG_PPC_MMCR0; 2168 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2169 break; 2170 case KVM_REG_PPC_MMCR2: 2171 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2172 break; 2173 case KVM_REG_PPC_MMCRA: 2174 vcpu->arch.mmcra = set_reg_val(id, *val); 2175 break; 2176 case KVM_REG_PPC_MMCRS: 2177 vcpu->arch.mmcrs = set_reg_val(id, *val); 2178 break; 2179 case KVM_REG_PPC_MMCR3: 2180 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2181 break; 2182 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2183 i = id - KVM_REG_PPC_PMC1; 2184 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2185 break; 2186 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2187 i = id - KVM_REG_PPC_SPMC1; 2188 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2189 break; 2190 case KVM_REG_PPC_SIAR: 2191 vcpu->arch.siar = set_reg_val(id, *val); 2192 break; 2193 case KVM_REG_PPC_SDAR: 2194 vcpu->arch.sdar = set_reg_val(id, *val); 2195 break; 2196 case KVM_REG_PPC_SIER: 2197 vcpu->arch.sier[0] = set_reg_val(id, *val); 2198 break; 2199 case KVM_REG_PPC_SIER2: 2200 vcpu->arch.sier[1] = set_reg_val(id, *val); 2201 break; 2202 case KVM_REG_PPC_SIER3: 2203 vcpu->arch.sier[2] = set_reg_val(id, *val); 2204 break; 2205 case KVM_REG_PPC_IAMR: 2206 vcpu->arch.iamr = set_reg_val(id, *val); 2207 break; 2208 case KVM_REG_PPC_PSPB: 2209 vcpu->arch.pspb = set_reg_val(id, *val); 2210 break; 2211 case KVM_REG_PPC_DPDES: 2212 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2213 break; 2214 case KVM_REG_PPC_VTB: 2215 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2216 break; 2217 case KVM_REG_PPC_DAWR: 2218 vcpu->arch.dawr0 = set_reg_val(id, *val); 2219 break; 2220 case KVM_REG_PPC_DAWRX: 2221 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2222 break; 2223 case KVM_REG_PPC_DAWR1: 2224 vcpu->arch.dawr1 = set_reg_val(id, *val); 2225 break; 2226 case KVM_REG_PPC_DAWRX1: 2227 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2228 break; 2229 case KVM_REG_PPC_CIABR: 2230 vcpu->arch.ciabr = set_reg_val(id, *val); 2231 /* Don't allow setting breakpoints in hypervisor code */ 2232 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2233 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2234 break; 2235 case KVM_REG_PPC_CSIGR: 2236 vcpu->arch.csigr = set_reg_val(id, *val); 2237 break; 2238 case KVM_REG_PPC_TACR: 2239 vcpu->arch.tacr = set_reg_val(id, *val); 2240 break; 2241 case KVM_REG_PPC_TCSCR: 2242 vcpu->arch.tcscr = set_reg_val(id, *val); 2243 break; 2244 case KVM_REG_PPC_PID: 2245 vcpu->arch.pid = set_reg_val(id, *val); 2246 break; 2247 case KVM_REG_PPC_ACOP: 2248 vcpu->arch.acop = set_reg_val(id, *val); 2249 break; 2250 case KVM_REG_PPC_WORT: 2251 vcpu->arch.wort = set_reg_val(id, *val); 2252 break; 2253 case KVM_REG_PPC_TIDR: 2254 vcpu->arch.tid = set_reg_val(id, *val); 2255 break; 2256 case KVM_REG_PPC_PSSCR: 2257 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2258 break; 2259 case KVM_REG_PPC_VPA_ADDR: 2260 addr = set_reg_val(id, *val); 2261 r = -EINVAL; 2262 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2263 vcpu->arch.dtl.next_gpa)) 2264 break; 2265 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2266 break; 2267 case KVM_REG_PPC_VPA_SLB: 2268 addr = val->vpaval.addr; 2269 len = val->vpaval.length; 2270 r = -EINVAL; 2271 if (addr && !vcpu->arch.vpa.next_gpa) 2272 break; 2273 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2274 break; 2275 case KVM_REG_PPC_VPA_DTL: 2276 addr = val->vpaval.addr; 2277 len = val->vpaval.length; 2278 r = -EINVAL; 2279 if (addr && (len < sizeof(struct dtl_entry) || 2280 !vcpu->arch.vpa.next_gpa)) 2281 break; 2282 len -= len % sizeof(struct dtl_entry); 2283 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2284 break; 2285 case KVM_REG_PPC_TB_OFFSET: 2286 /* round up to multiple of 2^24 */ 2287 vcpu->arch.vcore->tb_offset = 2288 ALIGN(set_reg_val(id, *val), 1UL << 24); 2289 break; 2290 case KVM_REG_PPC_LPCR: 2291 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2292 break; 2293 case KVM_REG_PPC_LPCR_64: 2294 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2295 break; 2296 case KVM_REG_PPC_PPR: 2297 vcpu->arch.ppr = set_reg_val(id, *val); 2298 break; 2299 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2300 case KVM_REG_PPC_TFHAR: 2301 vcpu->arch.tfhar = set_reg_val(id, *val); 2302 break; 2303 case KVM_REG_PPC_TFIAR: 2304 vcpu->arch.tfiar = set_reg_val(id, *val); 2305 break; 2306 case KVM_REG_PPC_TEXASR: 2307 vcpu->arch.texasr = set_reg_val(id, *val); 2308 break; 2309 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2310 i = id - KVM_REG_PPC_TM_GPR0; 2311 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2312 break; 2313 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2314 { 2315 int j; 2316 i = id - KVM_REG_PPC_TM_VSR0; 2317 if (i < 32) 2318 for (j = 0; j < TS_FPRWIDTH; j++) 2319 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2320 else 2321 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2322 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2323 else 2324 r = -ENXIO; 2325 break; 2326 } 2327 case KVM_REG_PPC_TM_CR: 2328 vcpu->arch.cr_tm = set_reg_val(id, *val); 2329 break; 2330 case KVM_REG_PPC_TM_XER: 2331 vcpu->arch.xer_tm = set_reg_val(id, *val); 2332 break; 2333 case KVM_REG_PPC_TM_LR: 2334 vcpu->arch.lr_tm = set_reg_val(id, *val); 2335 break; 2336 case KVM_REG_PPC_TM_CTR: 2337 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2338 break; 2339 case KVM_REG_PPC_TM_FPSCR: 2340 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2341 break; 2342 case KVM_REG_PPC_TM_AMR: 2343 vcpu->arch.amr_tm = set_reg_val(id, *val); 2344 break; 2345 case KVM_REG_PPC_TM_PPR: 2346 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2347 break; 2348 case KVM_REG_PPC_TM_VRSAVE: 2349 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2350 break; 2351 case KVM_REG_PPC_TM_VSCR: 2352 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2353 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2354 else 2355 r = - ENXIO; 2356 break; 2357 case KVM_REG_PPC_TM_DSCR: 2358 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2359 break; 2360 case KVM_REG_PPC_TM_TAR: 2361 vcpu->arch.tar_tm = set_reg_val(id, *val); 2362 break; 2363 #endif 2364 case KVM_REG_PPC_ARCH_COMPAT: 2365 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2366 break; 2367 case KVM_REG_PPC_DEC_EXPIRY: 2368 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2369 vcpu->arch.vcore->tb_offset; 2370 break; 2371 case KVM_REG_PPC_ONLINE: 2372 i = set_reg_val(id, *val); 2373 if (i && !vcpu->arch.online) 2374 atomic_inc(&vcpu->arch.vcore->online_count); 2375 else if (!i && vcpu->arch.online) 2376 atomic_dec(&vcpu->arch.vcore->online_count); 2377 vcpu->arch.online = i; 2378 break; 2379 case KVM_REG_PPC_PTCR: 2380 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2381 break; 2382 default: 2383 r = -EINVAL; 2384 break; 2385 } 2386 2387 return r; 2388 } 2389 2390 /* 2391 * On POWER9, threads are independent and can be in different partitions. 2392 * Therefore we consider each thread to be a subcore. 2393 * There is a restriction that all threads have to be in the same 2394 * MMU mode (radix or HPT), unfortunately, but since we only support 2395 * HPT guests on a HPT host so far, that isn't an impediment yet. 2396 */ 2397 static int threads_per_vcore(struct kvm *kvm) 2398 { 2399 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2400 return 1; 2401 return threads_per_subcore; 2402 } 2403 2404 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2405 { 2406 struct kvmppc_vcore *vcore; 2407 2408 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2409 2410 if (vcore == NULL) 2411 return NULL; 2412 2413 spin_lock_init(&vcore->lock); 2414 spin_lock_init(&vcore->stoltb_lock); 2415 rcuwait_init(&vcore->wait); 2416 vcore->preempt_tb = TB_NIL; 2417 vcore->lpcr = kvm->arch.lpcr; 2418 vcore->first_vcpuid = id; 2419 vcore->kvm = kvm; 2420 INIT_LIST_HEAD(&vcore->preempt_list); 2421 2422 return vcore; 2423 } 2424 2425 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2426 static struct debugfs_timings_element { 2427 const char *name; 2428 size_t offset; 2429 } timings[] = { 2430 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2431 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2432 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2433 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2434 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2435 }; 2436 2437 #define N_TIMINGS (ARRAY_SIZE(timings)) 2438 2439 struct debugfs_timings_state { 2440 struct kvm_vcpu *vcpu; 2441 unsigned int buflen; 2442 char buf[N_TIMINGS * 100]; 2443 }; 2444 2445 static int debugfs_timings_open(struct inode *inode, struct file *file) 2446 { 2447 struct kvm_vcpu *vcpu = inode->i_private; 2448 struct debugfs_timings_state *p; 2449 2450 p = kzalloc(sizeof(*p), GFP_KERNEL); 2451 if (!p) 2452 return -ENOMEM; 2453 2454 kvm_get_kvm(vcpu->kvm); 2455 p->vcpu = vcpu; 2456 file->private_data = p; 2457 2458 return nonseekable_open(inode, file); 2459 } 2460 2461 static int debugfs_timings_release(struct inode *inode, struct file *file) 2462 { 2463 struct debugfs_timings_state *p = file->private_data; 2464 2465 kvm_put_kvm(p->vcpu->kvm); 2466 kfree(p); 2467 return 0; 2468 } 2469 2470 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2471 size_t len, loff_t *ppos) 2472 { 2473 struct debugfs_timings_state *p = file->private_data; 2474 struct kvm_vcpu *vcpu = p->vcpu; 2475 char *s, *buf_end; 2476 struct kvmhv_tb_accumulator tb; 2477 u64 count; 2478 loff_t pos; 2479 ssize_t n; 2480 int i, loops; 2481 bool ok; 2482 2483 if (!p->buflen) { 2484 s = p->buf; 2485 buf_end = s + sizeof(p->buf); 2486 for (i = 0; i < N_TIMINGS; ++i) { 2487 struct kvmhv_tb_accumulator *acc; 2488 2489 acc = (struct kvmhv_tb_accumulator *) 2490 ((unsigned long)vcpu + timings[i].offset); 2491 ok = false; 2492 for (loops = 0; loops < 1000; ++loops) { 2493 count = acc->seqcount; 2494 if (!(count & 1)) { 2495 smp_rmb(); 2496 tb = *acc; 2497 smp_rmb(); 2498 if (count == acc->seqcount) { 2499 ok = true; 2500 break; 2501 } 2502 } 2503 udelay(1); 2504 } 2505 if (!ok) 2506 snprintf(s, buf_end - s, "%s: stuck\n", 2507 timings[i].name); 2508 else 2509 snprintf(s, buf_end - s, 2510 "%s: %llu %llu %llu %llu\n", 2511 timings[i].name, count / 2, 2512 tb_to_ns(tb.tb_total), 2513 tb_to_ns(tb.tb_min), 2514 tb_to_ns(tb.tb_max)); 2515 s += strlen(s); 2516 } 2517 p->buflen = s - p->buf; 2518 } 2519 2520 pos = *ppos; 2521 if (pos >= p->buflen) 2522 return 0; 2523 if (len > p->buflen - pos) 2524 len = p->buflen - pos; 2525 n = copy_to_user(buf, p->buf + pos, len); 2526 if (n) { 2527 if (n == len) 2528 return -EFAULT; 2529 len -= n; 2530 } 2531 *ppos = pos + len; 2532 return len; 2533 } 2534 2535 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2536 size_t len, loff_t *ppos) 2537 { 2538 return -EACCES; 2539 } 2540 2541 static const struct file_operations debugfs_timings_ops = { 2542 .owner = THIS_MODULE, 2543 .open = debugfs_timings_open, 2544 .release = debugfs_timings_release, 2545 .read = debugfs_timings_read, 2546 .write = debugfs_timings_write, 2547 .llseek = generic_file_llseek, 2548 }; 2549 2550 /* Create a debugfs directory for the vcpu */ 2551 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2552 { 2553 char buf[16]; 2554 struct kvm *kvm = vcpu->kvm; 2555 2556 snprintf(buf, sizeof(buf), "vcpu%u", id); 2557 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2558 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2559 &debugfs_timings_ops); 2560 } 2561 2562 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2563 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2564 { 2565 } 2566 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2567 2568 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2569 { 2570 int err; 2571 int core; 2572 struct kvmppc_vcore *vcore; 2573 struct kvm *kvm; 2574 unsigned int id; 2575 2576 kvm = vcpu->kvm; 2577 id = vcpu->vcpu_id; 2578 2579 vcpu->arch.shared = &vcpu->arch.shregs; 2580 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2581 /* 2582 * The shared struct is never shared on HV, 2583 * so we can always use host endianness 2584 */ 2585 #ifdef __BIG_ENDIAN__ 2586 vcpu->arch.shared_big_endian = true; 2587 #else 2588 vcpu->arch.shared_big_endian = false; 2589 #endif 2590 #endif 2591 vcpu->arch.mmcr[0] = MMCR0_FC; 2592 vcpu->arch.ctrl = CTRL_RUNLATCH; 2593 /* default to host PVR, since we can't spoof it */ 2594 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2595 spin_lock_init(&vcpu->arch.vpa_update_lock); 2596 spin_lock_init(&vcpu->arch.tbacct_lock); 2597 vcpu->arch.busy_preempt = TB_NIL; 2598 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2599 2600 /* 2601 * Set the default HFSCR for the guest from the host value. 2602 * This value is only used on POWER9. 2603 * On POWER9, we want to virtualize the doorbell facility, so we 2604 * don't set the HFSCR_MSGP bit, and that causes those instructions 2605 * to trap and then we emulate them. 2606 */ 2607 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2608 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; 2609 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2610 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2611 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2612 vcpu->arch.hfscr |= HFSCR_TM; 2613 } 2614 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2615 vcpu->arch.hfscr |= HFSCR_TM; 2616 2617 kvmppc_mmu_book3s_hv_init(vcpu); 2618 2619 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2620 2621 init_waitqueue_head(&vcpu->arch.cpu_run); 2622 2623 mutex_lock(&kvm->lock); 2624 vcore = NULL; 2625 err = -EINVAL; 2626 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2627 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2628 pr_devel("KVM: VCPU ID too high\n"); 2629 core = KVM_MAX_VCORES; 2630 } else { 2631 BUG_ON(kvm->arch.smt_mode != 1); 2632 core = kvmppc_pack_vcpu_id(kvm, id); 2633 } 2634 } else { 2635 core = id / kvm->arch.smt_mode; 2636 } 2637 if (core < KVM_MAX_VCORES) { 2638 vcore = kvm->arch.vcores[core]; 2639 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2640 pr_devel("KVM: collision on id %u", id); 2641 vcore = NULL; 2642 } else if (!vcore) { 2643 /* 2644 * Take mmu_setup_lock for mutual exclusion 2645 * with kvmppc_update_lpcr(). 2646 */ 2647 err = -ENOMEM; 2648 vcore = kvmppc_vcore_create(kvm, 2649 id & ~(kvm->arch.smt_mode - 1)); 2650 mutex_lock(&kvm->arch.mmu_setup_lock); 2651 kvm->arch.vcores[core] = vcore; 2652 kvm->arch.online_vcores++; 2653 mutex_unlock(&kvm->arch.mmu_setup_lock); 2654 } 2655 } 2656 mutex_unlock(&kvm->lock); 2657 2658 if (!vcore) 2659 return err; 2660 2661 spin_lock(&vcore->lock); 2662 ++vcore->num_threads; 2663 spin_unlock(&vcore->lock); 2664 vcpu->arch.vcore = vcore; 2665 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2666 vcpu->arch.thread_cpu = -1; 2667 vcpu->arch.prev_cpu = -1; 2668 2669 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2670 kvmppc_sanity_check(vcpu); 2671 2672 debugfs_vcpu_init(vcpu, id); 2673 2674 return 0; 2675 } 2676 2677 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2678 unsigned long flags) 2679 { 2680 int err; 2681 int esmt = 0; 2682 2683 if (flags) 2684 return -EINVAL; 2685 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2686 return -EINVAL; 2687 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2688 /* 2689 * On POWER8 (or POWER7), the threading mode is "strict", 2690 * so we pack smt_mode vcpus per vcore. 2691 */ 2692 if (smt_mode > threads_per_subcore) 2693 return -EINVAL; 2694 } else { 2695 /* 2696 * On POWER9, the threading mode is "loose", 2697 * so each vcpu gets its own vcore. 2698 */ 2699 esmt = smt_mode; 2700 smt_mode = 1; 2701 } 2702 mutex_lock(&kvm->lock); 2703 err = -EBUSY; 2704 if (!kvm->arch.online_vcores) { 2705 kvm->arch.smt_mode = smt_mode; 2706 kvm->arch.emul_smt_mode = esmt; 2707 err = 0; 2708 } 2709 mutex_unlock(&kvm->lock); 2710 2711 return err; 2712 } 2713 2714 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2715 { 2716 if (vpa->pinned_addr) 2717 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2718 vpa->dirty); 2719 } 2720 2721 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2722 { 2723 spin_lock(&vcpu->arch.vpa_update_lock); 2724 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2725 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2726 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2727 spin_unlock(&vcpu->arch.vpa_update_lock); 2728 } 2729 2730 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2731 { 2732 /* Indicate we want to get back into the guest */ 2733 return 1; 2734 } 2735 2736 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2737 { 2738 unsigned long dec_nsec, now; 2739 2740 now = get_tb(); 2741 if (now > vcpu->arch.dec_expires) { 2742 /* decrementer has already gone negative */ 2743 kvmppc_core_queue_dec(vcpu); 2744 kvmppc_core_prepare_to_enter(vcpu); 2745 return; 2746 } 2747 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2748 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2749 vcpu->arch.timer_running = 1; 2750 } 2751 2752 extern int __kvmppc_vcore_entry(void); 2753 2754 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2755 struct kvm_vcpu *vcpu) 2756 { 2757 u64 now; 2758 2759 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2760 return; 2761 spin_lock_irq(&vcpu->arch.tbacct_lock); 2762 now = mftb(); 2763 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2764 vcpu->arch.stolen_logged; 2765 vcpu->arch.busy_preempt = now; 2766 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2767 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2768 --vc->n_runnable; 2769 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2770 } 2771 2772 static int kvmppc_grab_hwthread(int cpu) 2773 { 2774 struct paca_struct *tpaca; 2775 long timeout = 10000; 2776 2777 tpaca = paca_ptrs[cpu]; 2778 2779 /* Ensure the thread won't go into the kernel if it wakes */ 2780 tpaca->kvm_hstate.kvm_vcpu = NULL; 2781 tpaca->kvm_hstate.kvm_vcore = NULL; 2782 tpaca->kvm_hstate.napping = 0; 2783 smp_wmb(); 2784 tpaca->kvm_hstate.hwthread_req = 1; 2785 2786 /* 2787 * If the thread is already executing in the kernel (e.g. handling 2788 * a stray interrupt), wait for it to get back to nap mode. 2789 * The smp_mb() is to ensure that our setting of hwthread_req 2790 * is visible before we look at hwthread_state, so if this 2791 * races with the code at system_reset_pSeries and the thread 2792 * misses our setting of hwthread_req, we are sure to see its 2793 * setting of hwthread_state, and vice versa. 2794 */ 2795 smp_mb(); 2796 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2797 if (--timeout <= 0) { 2798 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2799 return -EBUSY; 2800 } 2801 udelay(1); 2802 } 2803 return 0; 2804 } 2805 2806 static void kvmppc_release_hwthread(int cpu) 2807 { 2808 struct paca_struct *tpaca; 2809 2810 tpaca = paca_ptrs[cpu]; 2811 tpaca->kvm_hstate.hwthread_req = 0; 2812 tpaca->kvm_hstate.kvm_vcpu = NULL; 2813 tpaca->kvm_hstate.kvm_vcore = NULL; 2814 tpaca->kvm_hstate.kvm_split_mode = NULL; 2815 } 2816 2817 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2818 { 2819 struct kvm_nested_guest *nested = vcpu->arch.nested; 2820 cpumask_t *cpu_in_guest; 2821 int i; 2822 2823 cpu = cpu_first_thread_sibling(cpu); 2824 if (nested) { 2825 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2826 cpu_in_guest = &nested->cpu_in_guest; 2827 } else { 2828 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2829 cpu_in_guest = &kvm->arch.cpu_in_guest; 2830 } 2831 /* 2832 * Make sure setting of bit in need_tlb_flush precedes 2833 * testing of cpu_in_guest bits. The matching barrier on 2834 * the other side is the first smp_mb() in kvmppc_run_core(). 2835 */ 2836 smp_mb(); 2837 for (i = 0; i < threads_per_core; ++i) 2838 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2839 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2840 } 2841 2842 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2843 { 2844 struct kvm_nested_guest *nested = vcpu->arch.nested; 2845 struct kvm *kvm = vcpu->kvm; 2846 int prev_cpu; 2847 2848 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2849 return; 2850 2851 if (nested) 2852 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2853 else 2854 prev_cpu = vcpu->arch.prev_cpu; 2855 2856 /* 2857 * With radix, the guest can do TLB invalidations itself, 2858 * and it could choose to use the local form (tlbiel) if 2859 * it is invalidating a translation that has only ever been 2860 * used on one vcpu. However, that doesn't mean it has 2861 * only ever been used on one physical cpu, since vcpus 2862 * can move around between pcpus. To cope with this, when 2863 * a vcpu moves from one pcpu to another, we need to tell 2864 * any vcpus running on the same core as this vcpu previously 2865 * ran to flush the TLB. The TLB is shared between threads, 2866 * so we use a single bit in .need_tlb_flush for all 4 threads. 2867 */ 2868 if (prev_cpu != pcpu) { 2869 if (prev_cpu >= 0 && 2870 cpu_first_thread_sibling(prev_cpu) != 2871 cpu_first_thread_sibling(pcpu)) 2872 radix_flush_cpu(kvm, prev_cpu, vcpu); 2873 if (nested) 2874 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2875 else 2876 vcpu->arch.prev_cpu = pcpu; 2877 } 2878 } 2879 2880 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2881 { 2882 int cpu; 2883 struct paca_struct *tpaca; 2884 struct kvm *kvm = vc->kvm; 2885 2886 cpu = vc->pcpu; 2887 if (vcpu) { 2888 if (vcpu->arch.timer_running) { 2889 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2890 vcpu->arch.timer_running = 0; 2891 } 2892 cpu += vcpu->arch.ptid; 2893 vcpu->cpu = vc->pcpu; 2894 vcpu->arch.thread_cpu = cpu; 2895 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2896 } 2897 tpaca = paca_ptrs[cpu]; 2898 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2899 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2900 tpaca->kvm_hstate.fake_suspend = 0; 2901 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2902 smp_wmb(); 2903 tpaca->kvm_hstate.kvm_vcore = vc; 2904 if (cpu != smp_processor_id()) 2905 kvmppc_ipi_thread(cpu); 2906 } 2907 2908 static void kvmppc_wait_for_nap(int n_threads) 2909 { 2910 int cpu = smp_processor_id(); 2911 int i, loops; 2912 2913 if (n_threads <= 1) 2914 return; 2915 for (loops = 0; loops < 1000000; ++loops) { 2916 /* 2917 * Check if all threads are finished. 2918 * We set the vcore pointer when starting a thread 2919 * and the thread clears it when finished, so we look 2920 * for any threads that still have a non-NULL vcore ptr. 2921 */ 2922 for (i = 1; i < n_threads; ++i) 2923 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2924 break; 2925 if (i == n_threads) { 2926 HMT_medium(); 2927 return; 2928 } 2929 HMT_low(); 2930 } 2931 HMT_medium(); 2932 for (i = 1; i < n_threads; ++i) 2933 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2934 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2935 } 2936 2937 /* 2938 * Check that we are on thread 0 and that any other threads in 2939 * this core are off-line. Then grab the threads so they can't 2940 * enter the kernel. 2941 */ 2942 static int on_primary_thread(void) 2943 { 2944 int cpu = smp_processor_id(); 2945 int thr; 2946 2947 /* Are we on a primary subcore? */ 2948 if (cpu_thread_in_subcore(cpu)) 2949 return 0; 2950 2951 thr = 0; 2952 while (++thr < threads_per_subcore) 2953 if (cpu_online(cpu + thr)) 2954 return 0; 2955 2956 /* Grab all hw threads so they can't go into the kernel */ 2957 for (thr = 1; thr < threads_per_subcore; ++thr) { 2958 if (kvmppc_grab_hwthread(cpu + thr)) { 2959 /* Couldn't grab one; let the others go */ 2960 do { 2961 kvmppc_release_hwthread(cpu + thr); 2962 } while (--thr > 0); 2963 return 0; 2964 } 2965 } 2966 return 1; 2967 } 2968 2969 /* 2970 * A list of virtual cores for each physical CPU. 2971 * These are vcores that could run but their runner VCPU tasks are 2972 * (or may be) preempted. 2973 */ 2974 struct preempted_vcore_list { 2975 struct list_head list; 2976 spinlock_t lock; 2977 }; 2978 2979 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2980 2981 static void init_vcore_lists(void) 2982 { 2983 int cpu; 2984 2985 for_each_possible_cpu(cpu) { 2986 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2987 spin_lock_init(&lp->lock); 2988 INIT_LIST_HEAD(&lp->list); 2989 } 2990 } 2991 2992 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2993 { 2994 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2995 2996 vc->vcore_state = VCORE_PREEMPT; 2997 vc->pcpu = smp_processor_id(); 2998 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2999 spin_lock(&lp->lock); 3000 list_add_tail(&vc->preempt_list, &lp->list); 3001 spin_unlock(&lp->lock); 3002 } 3003 3004 /* Start accumulating stolen time */ 3005 kvmppc_core_start_stolen(vc); 3006 } 3007 3008 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3009 { 3010 struct preempted_vcore_list *lp; 3011 3012 kvmppc_core_end_stolen(vc); 3013 if (!list_empty(&vc->preempt_list)) { 3014 lp = &per_cpu(preempted_vcores, vc->pcpu); 3015 spin_lock(&lp->lock); 3016 list_del_init(&vc->preempt_list); 3017 spin_unlock(&lp->lock); 3018 } 3019 vc->vcore_state = VCORE_INACTIVE; 3020 } 3021 3022 /* 3023 * This stores information about the virtual cores currently 3024 * assigned to a physical core. 3025 */ 3026 struct core_info { 3027 int n_subcores; 3028 int max_subcore_threads; 3029 int total_threads; 3030 int subcore_threads[MAX_SUBCORES]; 3031 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3032 }; 3033 3034 /* 3035 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3036 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3037 */ 3038 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3039 3040 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3041 { 3042 memset(cip, 0, sizeof(*cip)); 3043 cip->n_subcores = 1; 3044 cip->max_subcore_threads = vc->num_threads; 3045 cip->total_threads = vc->num_threads; 3046 cip->subcore_threads[0] = vc->num_threads; 3047 cip->vc[0] = vc; 3048 } 3049 3050 static bool subcore_config_ok(int n_subcores, int n_threads) 3051 { 3052 /* 3053 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3054 * split-core mode, with one thread per subcore. 3055 */ 3056 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3057 return n_subcores <= 4 && n_threads == 1; 3058 3059 /* On POWER8, can only dynamically split if unsplit to begin with */ 3060 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3061 return false; 3062 if (n_subcores > MAX_SUBCORES) 3063 return false; 3064 if (n_subcores > 1) { 3065 if (!(dynamic_mt_modes & 2)) 3066 n_subcores = 4; 3067 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3068 return false; 3069 } 3070 3071 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3072 } 3073 3074 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3075 { 3076 vc->entry_exit_map = 0; 3077 vc->in_guest = 0; 3078 vc->napping_threads = 0; 3079 vc->conferring_threads = 0; 3080 vc->tb_offset_applied = 0; 3081 } 3082 3083 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3084 { 3085 int n_threads = vc->num_threads; 3086 int sub; 3087 3088 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3089 return false; 3090 3091 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3092 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3093 return false; 3094 3095 if (n_threads < cip->max_subcore_threads) 3096 n_threads = cip->max_subcore_threads; 3097 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3098 return false; 3099 cip->max_subcore_threads = n_threads; 3100 3101 sub = cip->n_subcores; 3102 ++cip->n_subcores; 3103 cip->total_threads += vc->num_threads; 3104 cip->subcore_threads[sub] = vc->num_threads; 3105 cip->vc[sub] = vc; 3106 init_vcore_to_run(vc); 3107 list_del_init(&vc->preempt_list); 3108 3109 return true; 3110 } 3111 3112 /* 3113 * Work out whether it is possible to piggyback the execution of 3114 * vcore *pvc onto the execution of the other vcores described in *cip. 3115 */ 3116 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3117 int target_threads) 3118 { 3119 if (cip->total_threads + pvc->num_threads > target_threads) 3120 return false; 3121 3122 return can_dynamic_split(pvc, cip); 3123 } 3124 3125 static void prepare_threads(struct kvmppc_vcore *vc) 3126 { 3127 int i; 3128 struct kvm_vcpu *vcpu; 3129 3130 for_each_runnable_thread(i, vcpu, vc) { 3131 if (signal_pending(vcpu->arch.run_task)) 3132 vcpu->arch.ret = -EINTR; 3133 else if (vcpu->arch.vpa.update_pending || 3134 vcpu->arch.slb_shadow.update_pending || 3135 vcpu->arch.dtl.update_pending) 3136 vcpu->arch.ret = RESUME_GUEST; 3137 else 3138 continue; 3139 kvmppc_remove_runnable(vc, vcpu); 3140 wake_up(&vcpu->arch.cpu_run); 3141 } 3142 } 3143 3144 static void collect_piggybacks(struct core_info *cip, int target_threads) 3145 { 3146 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3147 struct kvmppc_vcore *pvc, *vcnext; 3148 3149 spin_lock(&lp->lock); 3150 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3151 if (!spin_trylock(&pvc->lock)) 3152 continue; 3153 prepare_threads(pvc); 3154 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3155 list_del_init(&pvc->preempt_list); 3156 if (pvc->runner == NULL) { 3157 pvc->vcore_state = VCORE_INACTIVE; 3158 kvmppc_core_end_stolen(pvc); 3159 } 3160 spin_unlock(&pvc->lock); 3161 continue; 3162 } 3163 if (!can_piggyback(pvc, cip, target_threads)) { 3164 spin_unlock(&pvc->lock); 3165 continue; 3166 } 3167 kvmppc_core_end_stolen(pvc); 3168 pvc->vcore_state = VCORE_PIGGYBACK; 3169 if (cip->total_threads >= target_threads) 3170 break; 3171 } 3172 spin_unlock(&lp->lock); 3173 } 3174 3175 static bool recheck_signals_and_mmu(struct core_info *cip) 3176 { 3177 int sub, i; 3178 struct kvm_vcpu *vcpu; 3179 struct kvmppc_vcore *vc; 3180 3181 for (sub = 0; sub < cip->n_subcores; ++sub) { 3182 vc = cip->vc[sub]; 3183 if (!vc->kvm->arch.mmu_ready) 3184 return true; 3185 for_each_runnable_thread(i, vcpu, vc) 3186 if (signal_pending(vcpu->arch.run_task)) 3187 return true; 3188 } 3189 return false; 3190 } 3191 3192 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3193 { 3194 int still_running = 0, i; 3195 u64 now; 3196 long ret; 3197 struct kvm_vcpu *vcpu; 3198 3199 spin_lock(&vc->lock); 3200 now = get_tb(); 3201 for_each_runnable_thread(i, vcpu, vc) { 3202 /* 3203 * It's safe to unlock the vcore in the loop here, because 3204 * for_each_runnable_thread() is safe against removal of 3205 * the vcpu, and the vcore state is VCORE_EXITING here, 3206 * so any vcpus becoming runnable will have their arch.trap 3207 * set to zero and can't actually run in the guest. 3208 */ 3209 spin_unlock(&vc->lock); 3210 /* cancel pending dec exception if dec is positive */ 3211 if (now < vcpu->arch.dec_expires && 3212 kvmppc_core_pending_dec(vcpu)) 3213 kvmppc_core_dequeue_dec(vcpu); 3214 3215 trace_kvm_guest_exit(vcpu); 3216 3217 ret = RESUME_GUEST; 3218 if (vcpu->arch.trap) 3219 ret = kvmppc_handle_exit_hv(vcpu, 3220 vcpu->arch.run_task); 3221 3222 vcpu->arch.ret = ret; 3223 vcpu->arch.trap = 0; 3224 3225 spin_lock(&vc->lock); 3226 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3227 if (vcpu->arch.pending_exceptions) 3228 kvmppc_core_prepare_to_enter(vcpu); 3229 if (vcpu->arch.ceded) 3230 kvmppc_set_timer(vcpu); 3231 else 3232 ++still_running; 3233 } else { 3234 kvmppc_remove_runnable(vc, vcpu); 3235 wake_up(&vcpu->arch.cpu_run); 3236 } 3237 } 3238 if (!is_master) { 3239 if (still_running > 0) { 3240 kvmppc_vcore_preempt(vc); 3241 } else if (vc->runner) { 3242 vc->vcore_state = VCORE_PREEMPT; 3243 kvmppc_core_start_stolen(vc); 3244 } else { 3245 vc->vcore_state = VCORE_INACTIVE; 3246 } 3247 if (vc->n_runnable > 0 && vc->runner == NULL) { 3248 /* make sure there's a candidate runner awake */ 3249 i = -1; 3250 vcpu = next_runnable_thread(vc, &i); 3251 wake_up(&vcpu->arch.cpu_run); 3252 } 3253 } 3254 spin_unlock(&vc->lock); 3255 } 3256 3257 /* 3258 * Clear core from the list of active host cores as we are about to 3259 * enter the guest. Only do this if it is the primary thread of the 3260 * core (not if a subcore) that is entering the guest. 3261 */ 3262 static inline int kvmppc_clear_host_core(unsigned int cpu) 3263 { 3264 int core; 3265 3266 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3267 return 0; 3268 /* 3269 * Memory barrier can be omitted here as we will do a smp_wmb() 3270 * later in kvmppc_start_thread and we need ensure that state is 3271 * visible to other CPUs only after we enter guest. 3272 */ 3273 core = cpu >> threads_shift; 3274 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3275 return 0; 3276 } 3277 3278 /* 3279 * Advertise this core as an active host core since we exited the guest 3280 * Only need to do this if it is the primary thread of the core that is 3281 * exiting. 3282 */ 3283 static inline int kvmppc_set_host_core(unsigned int cpu) 3284 { 3285 int core; 3286 3287 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3288 return 0; 3289 3290 /* 3291 * Memory barrier can be omitted here because we do a spin_unlock 3292 * immediately after this which provides the memory barrier. 3293 */ 3294 core = cpu >> threads_shift; 3295 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3296 return 0; 3297 } 3298 3299 static void set_irq_happened(int trap) 3300 { 3301 switch (trap) { 3302 case BOOK3S_INTERRUPT_EXTERNAL: 3303 local_paca->irq_happened |= PACA_IRQ_EE; 3304 break; 3305 case BOOK3S_INTERRUPT_H_DOORBELL: 3306 local_paca->irq_happened |= PACA_IRQ_DBELL; 3307 break; 3308 case BOOK3S_INTERRUPT_HMI: 3309 local_paca->irq_happened |= PACA_IRQ_HMI; 3310 break; 3311 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3312 replay_system_reset(); 3313 break; 3314 } 3315 } 3316 3317 /* 3318 * Run a set of guest threads on a physical core. 3319 * Called with vc->lock held. 3320 */ 3321 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3322 { 3323 struct kvm_vcpu *vcpu; 3324 int i; 3325 int srcu_idx; 3326 struct core_info core_info; 3327 struct kvmppc_vcore *pvc; 3328 struct kvm_split_mode split_info, *sip; 3329 int split, subcore_size, active; 3330 int sub; 3331 bool thr0_done; 3332 unsigned long cmd_bit, stat_bit; 3333 int pcpu, thr; 3334 int target_threads; 3335 int controlled_threads; 3336 int trap; 3337 bool is_power8; 3338 3339 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3340 return; 3341 3342 /* 3343 * Remove from the list any threads that have a signal pending 3344 * or need a VPA update done 3345 */ 3346 prepare_threads(vc); 3347 3348 /* if the runner is no longer runnable, let the caller pick a new one */ 3349 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3350 return; 3351 3352 /* 3353 * Initialize *vc. 3354 */ 3355 init_vcore_to_run(vc); 3356 vc->preempt_tb = TB_NIL; 3357 3358 /* 3359 * Number of threads that we will be controlling: the same as 3360 * the number of threads per subcore, except on POWER9, 3361 * where it's 1 because the threads are (mostly) independent. 3362 */ 3363 controlled_threads = threads_per_vcore(vc->kvm); 3364 3365 /* 3366 * Make sure we are running on primary threads, and that secondary 3367 * threads are offline. Also check if the number of threads in this 3368 * guest are greater than the current system threads per guest. 3369 */ 3370 if ((controlled_threads > 1) && 3371 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3372 for_each_runnable_thread(i, vcpu, vc) { 3373 vcpu->arch.ret = -EBUSY; 3374 kvmppc_remove_runnable(vc, vcpu); 3375 wake_up(&vcpu->arch.cpu_run); 3376 } 3377 goto out; 3378 } 3379 3380 /* 3381 * See if we could run any other vcores on the physical core 3382 * along with this one. 3383 */ 3384 init_core_info(&core_info, vc); 3385 pcpu = smp_processor_id(); 3386 target_threads = controlled_threads; 3387 if (target_smt_mode && target_smt_mode < target_threads) 3388 target_threads = target_smt_mode; 3389 if (vc->num_threads < target_threads) 3390 collect_piggybacks(&core_info, target_threads); 3391 3392 /* 3393 * Hard-disable interrupts, and check resched flag and signals. 3394 * If we need to reschedule or deliver a signal, clean up 3395 * and return without going into the guest(s). 3396 * If the mmu_ready flag has been cleared, don't go into the 3397 * guest because that means a HPT resize operation is in progress. 3398 */ 3399 local_irq_disable(); 3400 hard_irq_disable(); 3401 if (lazy_irq_pending() || need_resched() || 3402 recheck_signals_and_mmu(&core_info)) { 3403 local_irq_enable(); 3404 vc->vcore_state = VCORE_INACTIVE; 3405 /* Unlock all except the primary vcore */ 3406 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3407 pvc = core_info.vc[sub]; 3408 /* Put back on to the preempted vcores list */ 3409 kvmppc_vcore_preempt(pvc); 3410 spin_unlock(&pvc->lock); 3411 } 3412 for (i = 0; i < controlled_threads; ++i) 3413 kvmppc_release_hwthread(pcpu + i); 3414 return; 3415 } 3416 3417 kvmppc_clear_host_core(pcpu); 3418 3419 /* Decide on micro-threading (split-core) mode */ 3420 subcore_size = threads_per_subcore; 3421 cmd_bit = stat_bit = 0; 3422 split = core_info.n_subcores; 3423 sip = NULL; 3424 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3425 3426 if (split > 1) { 3427 sip = &split_info; 3428 memset(&split_info, 0, sizeof(split_info)); 3429 for (sub = 0; sub < core_info.n_subcores; ++sub) 3430 split_info.vc[sub] = core_info.vc[sub]; 3431 3432 if (is_power8) { 3433 if (split == 2 && (dynamic_mt_modes & 2)) { 3434 cmd_bit = HID0_POWER8_1TO2LPAR; 3435 stat_bit = HID0_POWER8_2LPARMODE; 3436 } else { 3437 split = 4; 3438 cmd_bit = HID0_POWER8_1TO4LPAR; 3439 stat_bit = HID0_POWER8_4LPARMODE; 3440 } 3441 subcore_size = MAX_SMT_THREADS / split; 3442 split_info.rpr = mfspr(SPRN_RPR); 3443 split_info.pmmar = mfspr(SPRN_PMMAR); 3444 split_info.ldbar = mfspr(SPRN_LDBAR); 3445 split_info.subcore_size = subcore_size; 3446 } else { 3447 split_info.subcore_size = 1; 3448 } 3449 3450 /* order writes to split_info before kvm_split_mode pointer */ 3451 smp_wmb(); 3452 } 3453 3454 for (thr = 0; thr < controlled_threads; ++thr) { 3455 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3456 3457 paca->kvm_hstate.napping = 0; 3458 paca->kvm_hstate.kvm_split_mode = sip; 3459 } 3460 3461 /* Initiate micro-threading (split-core) on POWER8 if required */ 3462 if (cmd_bit) { 3463 unsigned long hid0 = mfspr(SPRN_HID0); 3464 3465 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3466 mb(); 3467 mtspr(SPRN_HID0, hid0); 3468 isync(); 3469 for (;;) { 3470 hid0 = mfspr(SPRN_HID0); 3471 if (hid0 & stat_bit) 3472 break; 3473 cpu_relax(); 3474 } 3475 } 3476 3477 /* 3478 * On POWER8, set RWMR register. 3479 * Since it only affects PURR and SPURR, it doesn't affect 3480 * the host, so we don't save/restore the host value. 3481 */ 3482 if (is_power8) { 3483 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3484 int n_online = atomic_read(&vc->online_count); 3485 3486 /* 3487 * Use the 8-thread value if we're doing split-core 3488 * or if the vcore's online count looks bogus. 3489 */ 3490 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3491 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3492 rwmr_val = p8_rwmr_values[n_online]; 3493 mtspr(SPRN_RWMR, rwmr_val); 3494 } 3495 3496 /* Start all the threads */ 3497 active = 0; 3498 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3499 thr = is_power8 ? subcore_thread_map[sub] : sub; 3500 thr0_done = false; 3501 active |= 1 << thr; 3502 pvc = core_info.vc[sub]; 3503 pvc->pcpu = pcpu + thr; 3504 for_each_runnable_thread(i, vcpu, pvc) { 3505 kvmppc_start_thread(vcpu, pvc); 3506 kvmppc_create_dtl_entry(vcpu, pvc); 3507 trace_kvm_guest_enter(vcpu); 3508 if (!vcpu->arch.ptid) 3509 thr0_done = true; 3510 active |= 1 << (thr + vcpu->arch.ptid); 3511 } 3512 /* 3513 * We need to start the first thread of each subcore 3514 * even if it doesn't have a vcpu. 3515 */ 3516 if (!thr0_done) 3517 kvmppc_start_thread(NULL, pvc); 3518 } 3519 3520 /* 3521 * Ensure that split_info.do_nap is set after setting 3522 * the vcore pointer in the PACA of the secondaries. 3523 */ 3524 smp_mb(); 3525 3526 /* 3527 * When doing micro-threading, poke the inactive threads as well. 3528 * This gets them to the nap instruction after kvm_do_nap, 3529 * which reduces the time taken to unsplit later. 3530 */ 3531 if (cmd_bit) { 3532 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3533 for (thr = 1; thr < threads_per_subcore; ++thr) 3534 if (!(active & (1 << thr))) 3535 kvmppc_ipi_thread(pcpu + thr); 3536 } 3537 3538 vc->vcore_state = VCORE_RUNNING; 3539 preempt_disable(); 3540 3541 trace_kvmppc_run_core(vc, 0); 3542 3543 for (sub = 0; sub < core_info.n_subcores; ++sub) 3544 spin_unlock(&core_info.vc[sub]->lock); 3545 3546 guest_enter_irqoff(); 3547 3548 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3549 3550 this_cpu_disable_ftrace(); 3551 3552 /* 3553 * Interrupts will be enabled once we get into the guest, 3554 * so tell lockdep that we're about to enable interrupts. 3555 */ 3556 trace_hardirqs_on(); 3557 3558 trap = __kvmppc_vcore_entry(); 3559 3560 trace_hardirqs_off(); 3561 3562 this_cpu_enable_ftrace(); 3563 3564 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3565 3566 set_irq_happened(trap); 3567 3568 spin_lock(&vc->lock); 3569 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3570 vc->vcore_state = VCORE_EXITING; 3571 3572 /* wait for secondary threads to finish writing their state to memory */ 3573 kvmppc_wait_for_nap(controlled_threads); 3574 3575 /* Return to whole-core mode if we split the core earlier */ 3576 if (cmd_bit) { 3577 unsigned long hid0 = mfspr(SPRN_HID0); 3578 unsigned long loops = 0; 3579 3580 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3581 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3582 mb(); 3583 mtspr(SPRN_HID0, hid0); 3584 isync(); 3585 for (;;) { 3586 hid0 = mfspr(SPRN_HID0); 3587 if (!(hid0 & stat_bit)) 3588 break; 3589 cpu_relax(); 3590 ++loops; 3591 } 3592 split_info.do_nap = 0; 3593 } 3594 3595 kvmppc_set_host_core(pcpu); 3596 3597 guest_exit_irqoff(); 3598 3599 local_irq_enable(); 3600 3601 /* Let secondaries go back to the offline loop */ 3602 for (i = 0; i < controlled_threads; ++i) { 3603 kvmppc_release_hwthread(pcpu + i); 3604 if (sip && sip->napped[i]) 3605 kvmppc_ipi_thread(pcpu + i); 3606 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3607 } 3608 3609 spin_unlock(&vc->lock); 3610 3611 /* make sure updates to secondary vcpu structs are visible now */ 3612 smp_mb(); 3613 3614 preempt_enable(); 3615 3616 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3617 pvc = core_info.vc[sub]; 3618 post_guest_process(pvc, pvc == vc); 3619 } 3620 3621 spin_lock(&vc->lock); 3622 3623 out: 3624 vc->vcore_state = VCORE_INACTIVE; 3625 trace_kvmppc_run_core(vc, 1); 3626 } 3627 3628 static void load_spr_state(struct kvm_vcpu *vcpu) 3629 { 3630 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3631 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3632 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3633 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3634 mtspr(SPRN_TAR, vcpu->arch.tar); 3635 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3636 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3637 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3638 mtspr(SPRN_WORT, vcpu->arch.wort); 3639 mtspr(SPRN_TIDR, vcpu->arch.tid); 3640 mtspr(SPRN_AMR, vcpu->arch.amr); 3641 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3642 3643 /* 3644 * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI] 3645 * clear (or hstate set appropriately to catch those registers 3646 * being clobbered if we take a MCE or SRESET), so those are done 3647 * later. 3648 */ 3649 3650 if (!(vcpu->arch.ctrl & 1)) 3651 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3652 } 3653 3654 static void store_spr_state(struct kvm_vcpu *vcpu) 3655 { 3656 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3657 3658 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3659 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3660 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3661 vcpu->arch.tar = mfspr(SPRN_TAR); 3662 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3663 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3664 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3665 vcpu->arch.wort = mfspr(SPRN_WORT); 3666 vcpu->arch.tid = mfspr(SPRN_TIDR); 3667 vcpu->arch.amr = mfspr(SPRN_AMR); 3668 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3669 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3670 } 3671 3672 /* 3673 * Privileged (non-hypervisor) host registers to save. 3674 */ 3675 struct p9_host_os_sprs { 3676 unsigned long dscr; 3677 unsigned long tidr; 3678 unsigned long iamr; 3679 unsigned long amr; 3680 unsigned long fscr; 3681 }; 3682 3683 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs) 3684 { 3685 host_os_sprs->dscr = mfspr(SPRN_DSCR); 3686 host_os_sprs->tidr = mfspr(SPRN_TIDR); 3687 host_os_sprs->iamr = mfspr(SPRN_IAMR); 3688 host_os_sprs->amr = mfspr(SPRN_AMR); 3689 host_os_sprs->fscr = mfspr(SPRN_FSCR); 3690 } 3691 3692 /* vcpu guest regs must already be saved */ 3693 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu, 3694 struct p9_host_os_sprs *host_os_sprs) 3695 { 3696 mtspr(SPRN_PSPB, 0); 3697 mtspr(SPRN_WORT, 0); 3698 mtspr(SPRN_UAMOR, 0); 3699 3700 mtspr(SPRN_DSCR, host_os_sprs->dscr); 3701 mtspr(SPRN_TIDR, host_os_sprs->tidr); 3702 mtspr(SPRN_IAMR, host_os_sprs->iamr); 3703 3704 if (host_os_sprs->amr != vcpu->arch.amr) 3705 mtspr(SPRN_AMR, host_os_sprs->amr); 3706 3707 if (host_os_sprs->fscr != vcpu->arch.fscr) 3708 mtspr(SPRN_FSCR, host_os_sprs->fscr); 3709 3710 /* Save guest CTRL register, set runlatch to 1 */ 3711 if (!(vcpu->arch.ctrl & 1)) 3712 mtspr(SPRN_CTRLT, 1); 3713 } 3714 3715 static inline bool hcall_is_xics(unsigned long req) 3716 { 3717 return req == H_EOI || req == H_CPPR || req == H_IPI || 3718 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 3719 } 3720 3721 /* 3722 * Guest entry for POWER9 and later CPUs. 3723 */ 3724 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3725 unsigned long lpcr) 3726 { 3727 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3728 struct p9_host_os_sprs host_os_sprs; 3729 s64 dec; 3730 u64 tb; 3731 int trap, save_pmu; 3732 3733 WARN_ON_ONCE(vcpu->arch.ceded); 3734 3735 dec = mfspr(SPRN_DEC); 3736 tb = mftb(); 3737 if (dec < 0) 3738 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3739 local_paca->kvm_hstate.dec_expires = dec + tb; 3740 if (local_paca->kvm_hstate.dec_expires < time_limit) 3741 time_limit = local_paca->kvm_hstate.dec_expires; 3742 3743 save_p9_host_os_sprs(&host_os_sprs); 3744 3745 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3746 3747 kvmppc_subcore_enter_guest(); 3748 3749 vc->entry_exit_map = 1; 3750 vc->in_guest = 1; 3751 3752 if (vcpu->arch.vpa.pinned_addr) { 3753 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3754 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3755 lp->yield_count = cpu_to_be32(yield_count); 3756 vcpu->arch.vpa.dirty = 1; 3757 } 3758 3759 if (cpu_has_feature(CPU_FTR_TM) || 3760 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3761 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3762 3763 kvmhv_load_guest_pmu(vcpu); 3764 3765 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3766 load_fp_state(&vcpu->arch.fp); 3767 #ifdef CONFIG_ALTIVEC 3768 load_vr_state(&vcpu->arch.vr); 3769 #endif 3770 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3771 3772 load_spr_state(vcpu); 3773 3774 /* 3775 * When setting DEC, we must always deal with irq_work_raise via NMI vs 3776 * setting DEC. The problem occurs right as we switch into guest mode 3777 * if a NMI hits and sets pending work and sets DEC, then that will 3778 * apply to the guest and not bring us back to the host. 3779 * 3780 * irq_work_raise could check a flag (or possibly LPCR[HDICE] for 3781 * example) and set HDEC to 1? That wouldn't solve the nested hv 3782 * case which needs to abort the hcall or zero the time limit. 3783 * 3784 * XXX: Another day's problem. 3785 */ 3786 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3787 3788 if (kvmhv_on_pseries()) { 3789 /* 3790 * We need to save and restore the guest visible part of the 3791 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3792 * doesn't do this for us. Note only required if pseries since 3793 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 3794 */ 3795 unsigned long host_psscr; 3796 /* call our hypervisor to load up HV regs and go */ 3797 struct hv_guest_state hvregs; 3798 3799 host_psscr = mfspr(SPRN_PSSCR_PR); 3800 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3801 kvmhv_save_hv_regs(vcpu, &hvregs); 3802 hvregs.lpcr = lpcr; 3803 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3804 hvregs.version = HV_GUEST_STATE_VERSION; 3805 if (vcpu->arch.nested) { 3806 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3807 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3808 } else { 3809 hvregs.lpid = vcpu->kvm->arch.lpid; 3810 hvregs.vcpu_token = vcpu->vcpu_id; 3811 } 3812 hvregs.hdec_expiry = time_limit; 3813 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3814 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3815 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3816 __pa(&vcpu->arch.regs)); 3817 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3818 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3819 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3820 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3821 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3822 mtspr(SPRN_PSSCR_PR, host_psscr); 3823 3824 /* H_CEDE has to be handled now, not later */ 3825 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3826 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3827 kvmppc_cede(vcpu); 3828 kvmppc_set_gpr(vcpu, 3, 0); 3829 trap = 0; 3830 } 3831 } else { 3832 kvmppc_xive_push_vcpu(vcpu); 3833 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr); 3834 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3835 !(vcpu->arch.shregs.msr & MSR_PR)) { 3836 unsigned long req = kvmppc_get_gpr(vcpu, 3); 3837 3838 /* H_CEDE has to be handled now, not later */ 3839 if (req == H_CEDE) { 3840 kvmppc_cede(vcpu); 3841 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */ 3842 kvmppc_set_gpr(vcpu, 3, 0); 3843 trap = 0; 3844 3845 /* XICS hcalls must be handled before xive is pulled */ 3846 } else if (hcall_is_xics(req)) { 3847 int ret; 3848 3849 ret = kvmppc_xive_xics_hcall(vcpu, req); 3850 if (ret != H_TOO_HARD) { 3851 kvmppc_set_gpr(vcpu, 3, ret); 3852 trap = 0; 3853 } 3854 } 3855 } 3856 kvmppc_xive_pull_vcpu(vcpu); 3857 3858 if (kvm_is_radix(vcpu->kvm)) 3859 vcpu->arch.slb_max = 0; 3860 } 3861 3862 dec = mfspr(SPRN_DEC); 3863 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3864 dec = (s32) dec; 3865 tb = mftb(); 3866 vcpu->arch.dec_expires = dec + tb; 3867 vcpu->cpu = -1; 3868 vcpu->arch.thread_cpu = -1; 3869 3870 store_spr_state(vcpu); 3871 3872 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 3873 3874 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3875 store_fp_state(&vcpu->arch.fp); 3876 #ifdef CONFIG_ALTIVEC 3877 store_vr_state(&vcpu->arch.vr); 3878 #endif 3879 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3880 3881 if (cpu_has_feature(CPU_FTR_TM) || 3882 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3883 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3884 3885 save_pmu = 1; 3886 if (vcpu->arch.vpa.pinned_addr) { 3887 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3888 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3889 lp->yield_count = cpu_to_be32(yield_count); 3890 vcpu->arch.vpa.dirty = 1; 3891 save_pmu = lp->pmcregs_in_use; 3892 } 3893 /* Must save pmu if this guest is capable of running nested guests */ 3894 save_pmu |= nesting_enabled(vcpu->kvm); 3895 3896 kvmhv_save_guest_pmu(vcpu, save_pmu); 3897 3898 vc->entry_exit_map = 0x101; 3899 vc->in_guest = 0; 3900 3901 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3902 /* We may have raced with new irq work */ 3903 if (test_irq_work_pending()) 3904 set_dec(1); 3905 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3906 3907 kvmhv_load_host_pmu(); 3908 3909 kvmppc_subcore_exit_guest(); 3910 3911 return trap; 3912 } 3913 3914 /* 3915 * Wait for some other vcpu thread to execute us, and 3916 * wake us up when we need to handle something in the host. 3917 */ 3918 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3919 struct kvm_vcpu *vcpu, int wait_state) 3920 { 3921 DEFINE_WAIT(wait); 3922 3923 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3924 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3925 spin_unlock(&vc->lock); 3926 schedule(); 3927 spin_lock(&vc->lock); 3928 } 3929 finish_wait(&vcpu->arch.cpu_run, &wait); 3930 } 3931 3932 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3933 { 3934 if (!halt_poll_ns_grow) 3935 return; 3936 3937 vc->halt_poll_ns *= halt_poll_ns_grow; 3938 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3939 vc->halt_poll_ns = halt_poll_ns_grow_start; 3940 } 3941 3942 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3943 { 3944 if (halt_poll_ns_shrink == 0) 3945 vc->halt_poll_ns = 0; 3946 else 3947 vc->halt_poll_ns /= halt_poll_ns_shrink; 3948 } 3949 3950 #ifdef CONFIG_KVM_XICS 3951 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3952 { 3953 if (!xics_on_xive()) 3954 return false; 3955 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3956 vcpu->arch.xive_saved_state.cppr; 3957 } 3958 #else 3959 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3960 { 3961 return false; 3962 } 3963 #endif /* CONFIG_KVM_XICS */ 3964 3965 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3966 { 3967 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3968 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3969 return true; 3970 3971 return false; 3972 } 3973 3974 /* 3975 * Check to see if any of the runnable vcpus on the vcore have pending 3976 * exceptions or are no longer ceded 3977 */ 3978 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3979 { 3980 struct kvm_vcpu *vcpu; 3981 int i; 3982 3983 for_each_runnable_thread(i, vcpu, vc) { 3984 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3985 return 1; 3986 } 3987 3988 return 0; 3989 } 3990 3991 /* 3992 * All the vcpus in this vcore are idle, so wait for a decrementer 3993 * or external interrupt to one of the vcpus. vc->lock is held. 3994 */ 3995 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3996 { 3997 ktime_t cur, start_poll, start_wait; 3998 int do_sleep = 1; 3999 u64 block_ns; 4000 4001 /* Poll for pending exceptions and ceded state */ 4002 cur = start_poll = ktime_get(); 4003 if (vc->halt_poll_ns) { 4004 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4005 ++vc->runner->stat.halt_attempted_poll; 4006 4007 vc->vcore_state = VCORE_POLLING; 4008 spin_unlock(&vc->lock); 4009 4010 do { 4011 if (kvmppc_vcore_check_block(vc)) { 4012 do_sleep = 0; 4013 break; 4014 } 4015 cur = ktime_get(); 4016 } while (single_task_running() && ktime_before(cur, stop)); 4017 4018 spin_lock(&vc->lock); 4019 vc->vcore_state = VCORE_INACTIVE; 4020 4021 if (!do_sleep) { 4022 ++vc->runner->stat.halt_successful_poll; 4023 goto out; 4024 } 4025 } 4026 4027 prepare_to_rcuwait(&vc->wait); 4028 set_current_state(TASK_INTERRUPTIBLE); 4029 if (kvmppc_vcore_check_block(vc)) { 4030 finish_rcuwait(&vc->wait); 4031 do_sleep = 0; 4032 /* If we polled, count this as a successful poll */ 4033 if (vc->halt_poll_ns) 4034 ++vc->runner->stat.halt_successful_poll; 4035 goto out; 4036 } 4037 4038 start_wait = ktime_get(); 4039 4040 vc->vcore_state = VCORE_SLEEPING; 4041 trace_kvmppc_vcore_blocked(vc, 0); 4042 spin_unlock(&vc->lock); 4043 schedule(); 4044 finish_rcuwait(&vc->wait); 4045 spin_lock(&vc->lock); 4046 vc->vcore_state = VCORE_INACTIVE; 4047 trace_kvmppc_vcore_blocked(vc, 1); 4048 ++vc->runner->stat.halt_successful_wait; 4049 4050 cur = ktime_get(); 4051 4052 out: 4053 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4054 4055 /* Attribute wait time */ 4056 if (do_sleep) { 4057 vc->runner->stat.halt_wait_ns += 4058 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4059 /* Attribute failed poll time */ 4060 if (vc->halt_poll_ns) 4061 vc->runner->stat.halt_poll_fail_ns += 4062 ktime_to_ns(start_wait) - 4063 ktime_to_ns(start_poll); 4064 } else { 4065 /* Attribute successful poll time */ 4066 if (vc->halt_poll_ns) 4067 vc->runner->stat.halt_poll_success_ns += 4068 ktime_to_ns(cur) - 4069 ktime_to_ns(start_poll); 4070 } 4071 4072 /* Adjust poll time */ 4073 if (halt_poll_ns) { 4074 if (block_ns <= vc->halt_poll_ns) 4075 ; 4076 /* We slept and blocked for longer than the max halt time */ 4077 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4078 shrink_halt_poll_ns(vc); 4079 /* We slept and our poll time is too small */ 4080 else if (vc->halt_poll_ns < halt_poll_ns && 4081 block_ns < halt_poll_ns) 4082 grow_halt_poll_ns(vc); 4083 if (vc->halt_poll_ns > halt_poll_ns) 4084 vc->halt_poll_ns = halt_poll_ns; 4085 } else 4086 vc->halt_poll_ns = 0; 4087 4088 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4089 } 4090 4091 /* 4092 * This never fails for a radix guest, as none of the operations it does 4093 * for a radix guest can fail or have a way to report failure. 4094 */ 4095 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4096 { 4097 int r = 0; 4098 struct kvm *kvm = vcpu->kvm; 4099 4100 mutex_lock(&kvm->arch.mmu_setup_lock); 4101 if (!kvm->arch.mmu_ready) { 4102 if (!kvm_is_radix(kvm)) 4103 r = kvmppc_hv_setup_htab_rma(vcpu); 4104 if (!r) { 4105 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4106 kvmppc_setup_partition_table(kvm); 4107 kvm->arch.mmu_ready = 1; 4108 } 4109 } 4110 mutex_unlock(&kvm->arch.mmu_setup_lock); 4111 return r; 4112 } 4113 4114 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4115 { 4116 struct kvm_run *run = vcpu->run; 4117 int n_ceded, i, r; 4118 struct kvmppc_vcore *vc; 4119 struct kvm_vcpu *v; 4120 4121 trace_kvmppc_run_vcpu_enter(vcpu); 4122 4123 run->exit_reason = 0; 4124 vcpu->arch.ret = RESUME_GUEST; 4125 vcpu->arch.trap = 0; 4126 kvmppc_update_vpas(vcpu); 4127 4128 /* 4129 * Synchronize with other threads in this virtual core 4130 */ 4131 vc = vcpu->arch.vcore; 4132 spin_lock(&vc->lock); 4133 vcpu->arch.ceded = 0; 4134 vcpu->arch.run_task = current; 4135 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4136 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4137 vcpu->arch.busy_preempt = TB_NIL; 4138 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4139 ++vc->n_runnable; 4140 4141 /* 4142 * This happens the first time this is called for a vcpu. 4143 * If the vcore is already running, we may be able to start 4144 * this thread straight away and have it join in. 4145 */ 4146 if (!signal_pending(current)) { 4147 if ((vc->vcore_state == VCORE_PIGGYBACK || 4148 vc->vcore_state == VCORE_RUNNING) && 4149 !VCORE_IS_EXITING(vc)) { 4150 kvmppc_create_dtl_entry(vcpu, vc); 4151 kvmppc_start_thread(vcpu, vc); 4152 trace_kvm_guest_enter(vcpu); 4153 } else if (vc->vcore_state == VCORE_SLEEPING) { 4154 rcuwait_wake_up(&vc->wait); 4155 } 4156 4157 } 4158 4159 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4160 !signal_pending(current)) { 4161 /* See if the MMU is ready to go */ 4162 if (!vcpu->kvm->arch.mmu_ready) { 4163 spin_unlock(&vc->lock); 4164 r = kvmhv_setup_mmu(vcpu); 4165 spin_lock(&vc->lock); 4166 if (r) { 4167 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4168 run->fail_entry. 4169 hardware_entry_failure_reason = 0; 4170 vcpu->arch.ret = r; 4171 break; 4172 } 4173 } 4174 4175 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4176 kvmppc_vcore_end_preempt(vc); 4177 4178 if (vc->vcore_state != VCORE_INACTIVE) { 4179 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4180 continue; 4181 } 4182 for_each_runnable_thread(i, v, vc) { 4183 kvmppc_core_prepare_to_enter(v); 4184 if (signal_pending(v->arch.run_task)) { 4185 kvmppc_remove_runnable(vc, v); 4186 v->stat.signal_exits++; 4187 v->run->exit_reason = KVM_EXIT_INTR; 4188 v->arch.ret = -EINTR; 4189 wake_up(&v->arch.cpu_run); 4190 } 4191 } 4192 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4193 break; 4194 n_ceded = 0; 4195 for_each_runnable_thread(i, v, vc) { 4196 if (!kvmppc_vcpu_woken(v)) 4197 n_ceded += v->arch.ceded; 4198 else 4199 v->arch.ceded = 0; 4200 } 4201 vc->runner = vcpu; 4202 if (n_ceded == vc->n_runnable) { 4203 kvmppc_vcore_blocked(vc); 4204 } else if (need_resched()) { 4205 kvmppc_vcore_preempt(vc); 4206 /* Let something else run */ 4207 cond_resched_lock(&vc->lock); 4208 if (vc->vcore_state == VCORE_PREEMPT) 4209 kvmppc_vcore_end_preempt(vc); 4210 } else { 4211 kvmppc_run_core(vc); 4212 } 4213 vc->runner = NULL; 4214 } 4215 4216 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4217 (vc->vcore_state == VCORE_RUNNING || 4218 vc->vcore_state == VCORE_EXITING || 4219 vc->vcore_state == VCORE_PIGGYBACK)) 4220 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4221 4222 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4223 kvmppc_vcore_end_preempt(vc); 4224 4225 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4226 kvmppc_remove_runnable(vc, vcpu); 4227 vcpu->stat.signal_exits++; 4228 run->exit_reason = KVM_EXIT_INTR; 4229 vcpu->arch.ret = -EINTR; 4230 } 4231 4232 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4233 /* Wake up some vcpu to run the core */ 4234 i = -1; 4235 v = next_runnable_thread(vc, &i); 4236 wake_up(&v->arch.cpu_run); 4237 } 4238 4239 trace_kvmppc_run_vcpu_exit(vcpu); 4240 spin_unlock(&vc->lock); 4241 return vcpu->arch.ret; 4242 } 4243 4244 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4245 unsigned long lpcr) 4246 { 4247 struct kvm_run *run = vcpu->run; 4248 int trap, r, pcpu; 4249 int srcu_idx; 4250 struct kvmppc_vcore *vc; 4251 struct kvm *kvm = vcpu->kvm; 4252 struct kvm_nested_guest *nested = vcpu->arch.nested; 4253 4254 trace_kvmppc_run_vcpu_enter(vcpu); 4255 4256 run->exit_reason = 0; 4257 vcpu->arch.ret = RESUME_GUEST; 4258 vcpu->arch.trap = 0; 4259 4260 vc = vcpu->arch.vcore; 4261 vcpu->arch.ceded = 0; 4262 vcpu->arch.run_task = current; 4263 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4264 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4265 vcpu->arch.busy_preempt = TB_NIL; 4266 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4267 vc->runnable_threads[0] = vcpu; 4268 vc->n_runnable = 1; 4269 vc->runner = vcpu; 4270 4271 /* See if the MMU is ready to go */ 4272 if (!kvm->arch.mmu_ready) { 4273 r = kvmhv_setup_mmu(vcpu); 4274 if (r) { 4275 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4276 run->fail_entry.hardware_entry_failure_reason = 0; 4277 vcpu->arch.ret = r; 4278 return r; 4279 } 4280 } 4281 4282 if (need_resched()) 4283 cond_resched(); 4284 4285 kvmppc_update_vpas(vcpu); 4286 4287 init_vcore_to_run(vc); 4288 vc->preempt_tb = TB_NIL; 4289 4290 preempt_disable(); 4291 pcpu = smp_processor_id(); 4292 vc->pcpu = pcpu; 4293 if (kvm_is_radix(kvm)) 4294 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4295 4296 local_irq_disable(); 4297 hard_irq_disable(); 4298 if (signal_pending(current)) 4299 goto sigpend; 4300 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4301 goto out; 4302 4303 if (!nested) { 4304 kvmppc_core_prepare_to_enter(vcpu); 4305 if (vcpu->arch.doorbell_request) { 4306 vc->dpdes = 1; 4307 smp_wmb(); 4308 vcpu->arch.doorbell_request = 0; 4309 } 4310 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4311 &vcpu->arch.pending_exceptions)) 4312 lpcr |= LPCR_MER; 4313 } else if (vcpu->arch.pending_exceptions || 4314 vcpu->arch.doorbell_request || 4315 xive_interrupt_pending(vcpu)) { 4316 vcpu->arch.ret = RESUME_HOST; 4317 goto out; 4318 } 4319 4320 kvmppc_clear_host_core(pcpu); 4321 4322 local_paca->kvm_hstate.napping = 0; 4323 local_paca->kvm_hstate.kvm_split_mode = NULL; 4324 kvmppc_start_thread(vcpu, vc); 4325 kvmppc_create_dtl_entry(vcpu, vc); 4326 trace_kvm_guest_enter(vcpu); 4327 4328 vc->vcore_state = VCORE_RUNNING; 4329 trace_kvmppc_run_core(vc, 0); 4330 4331 guest_enter_irqoff(); 4332 4333 srcu_idx = srcu_read_lock(&kvm->srcu); 4334 4335 this_cpu_disable_ftrace(); 4336 4337 /* Tell lockdep that we're about to enable interrupts */ 4338 trace_hardirqs_on(); 4339 4340 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4341 vcpu->arch.trap = trap; 4342 4343 trace_hardirqs_off(); 4344 4345 this_cpu_enable_ftrace(); 4346 4347 srcu_read_unlock(&kvm->srcu, srcu_idx); 4348 4349 set_irq_happened(trap); 4350 4351 kvmppc_set_host_core(pcpu); 4352 4353 guest_exit_irqoff(); 4354 4355 local_irq_enable(); 4356 4357 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4358 4359 preempt_enable(); 4360 4361 /* 4362 * cancel pending decrementer exception if DEC is now positive, or if 4363 * entering a nested guest in which case the decrementer is now owned 4364 * by L2 and the L1 decrementer is provided in hdec_expires 4365 */ 4366 if (kvmppc_core_pending_dec(vcpu) && 4367 ((get_tb() < vcpu->arch.dec_expires) || 4368 (trap == BOOK3S_INTERRUPT_SYSCALL && 4369 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4370 kvmppc_core_dequeue_dec(vcpu); 4371 4372 trace_kvm_guest_exit(vcpu); 4373 r = RESUME_GUEST; 4374 if (trap) { 4375 if (!nested) 4376 r = kvmppc_handle_exit_hv(vcpu, current); 4377 else 4378 r = kvmppc_handle_nested_exit(vcpu); 4379 } 4380 vcpu->arch.ret = r; 4381 4382 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4383 !kvmppc_vcpu_woken(vcpu)) { 4384 kvmppc_set_timer(vcpu); 4385 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4386 if (signal_pending(current)) { 4387 vcpu->stat.signal_exits++; 4388 run->exit_reason = KVM_EXIT_INTR; 4389 vcpu->arch.ret = -EINTR; 4390 break; 4391 } 4392 spin_lock(&vc->lock); 4393 kvmppc_vcore_blocked(vc); 4394 spin_unlock(&vc->lock); 4395 } 4396 } 4397 vcpu->arch.ceded = 0; 4398 4399 vc->vcore_state = VCORE_INACTIVE; 4400 trace_kvmppc_run_core(vc, 1); 4401 4402 done: 4403 kvmppc_remove_runnable(vc, vcpu); 4404 trace_kvmppc_run_vcpu_exit(vcpu); 4405 4406 return vcpu->arch.ret; 4407 4408 sigpend: 4409 vcpu->stat.signal_exits++; 4410 run->exit_reason = KVM_EXIT_INTR; 4411 vcpu->arch.ret = -EINTR; 4412 out: 4413 local_irq_enable(); 4414 preempt_enable(); 4415 goto done; 4416 } 4417 4418 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4419 { 4420 struct kvm_run *run = vcpu->run; 4421 int r; 4422 int srcu_idx; 4423 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4424 unsigned long user_tar = 0; 4425 unsigned int user_vrsave; 4426 struct kvm *kvm; 4427 4428 if (!vcpu->arch.sane) { 4429 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4430 return -EINVAL; 4431 } 4432 4433 /* 4434 * Don't allow entry with a suspended transaction, because 4435 * the guest entry/exit code will lose it. 4436 * If the guest has TM enabled, save away their TM-related SPRs 4437 * (they will get restored by the TM unavailable interrupt). 4438 */ 4439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4440 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4441 (current->thread.regs->msr & MSR_TM)) { 4442 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4443 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4444 run->fail_entry.hardware_entry_failure_reason = 0; 4445 return -EINVAL; 4446 } 4447 /* Enable TM so we can read the TM SPRs */ 4448 mtmsr(mfmsr() | MSR_TM); 4449 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4450 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4451 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4452 current->thread.regs->msr &= ~MSR_TM; 4453 } 4454 #endif 4455 4456 /* 4457 * Force online to 1 for the sake of old userspace which doesn't 4458 * set it. 4459 */ 4460 if (!vcpu->arch.online) { 4461 atomic_inc(&vcpu->arch.vcore->online_count); 4462 vcpu->arch.online = 1; 4463 } 4464 4465 kvmppc_core_prepare_to_enter(vcpu); 4466 4467 /* No need to go into the guest when all we'll do is come back out */ 4468 if (signal_pending(current)) { 4469 run->exit_reason = KVM_EXIT_INTR; 4470 return -EINTR; 4471 } 4472 4473 kvm = vcpu->kvm; 4474 atomic_inc(&kvm->arch.vcpus_running); 4475 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4476 smp_mb(); 4477 4478 flush_all_to_thread(current); 4479 4480 /* Save userspace EBB and other register values */ 4481 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4482 ebb_regs[0] = mfspr(SPRN_EBBHR); 4483 ebb_regs[1] = mfspr(SPRN_EBBRR); 4484 ebb_regs[2] = mfspr(SPRN_BESCR); 4485 user_tar = mfspr(SPRN_TAR); 4486 } 4487 user_vrsave = mfspr(SPRN_VRSAVE); 4488 4489 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4490 vcpu->arch.pgdir = kvm->mm->pgd; 4491 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4492 4493 do { 4494 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4495 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4496 vcpu->arch.vcore->lpcr); 4497 else 4498 r = kvmppc_run_vcpu(vcpu); 4499 4500 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4501 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4502 /* 4503 * These should have been caught reflected 4504 * into the guest by now. Final sanity check: 4505 * don't allow userspace to execute hcalls in 4506 * the hypervisor. 4507 */ 4508 r = RESUME_GUEST; 4509 continue; 4510 } 4511 trace_kvm_hcall_enter(vcpu); 4512 r = kvmppc_pseries_do_hcall(vcpu); 4513 trace_kvm_hcall_exit(vcpu, r); 4514 kvmppc_core_prepare_to_enter(vcpu); 4515 } else if (r == RESUME_PAGE_FAULT) { 4516 srcu_idx = srcu_read_lock(&kvm->srcu); 4517 r = kvmppc_book3s_hv_page_fault(vcpu, 4518 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4519 srcu_read_unlock(&kvm->srcu, srcu_idx); 4520 } else if (r == RESUME_PASSTHROUGH) { 4521 if (WARN_ON(xics_on_xive())) 4522 r = H_SUCCESS; 4523 else 4524 r = kvmppc_xics_rm_complete(vcpu, 0); 4525 } 4526 } while (is_kvmppc_resume_guest(r)); 4527 4528 /* Restore userspace EBB and other register values */ 4529 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4530 mtspr(SPRN_EBBHR, ebb_regs[0]); 4531 mtspr(SPRN_EBBRR, ebb_regs[1]); 4532 mtspr(SPRN_BESCR, ebb_regs[2]); 4533 mtspr(SPRN_TAR, user_tar); 4534 } 4535 mtspr(SPRN_VRSAVE, user_vrsave); 4536 4537 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4538 atomic_dec(&kvm->arch.vcpus_running); 4539 return r; 4540 } 4541 4542 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4543 int shift, int sllp) 4544 { 4545 (*sps)->page_shift = shift; 4546 (*sps)->slb_enc = sllp; 4547 (*sps)->enc[0].page_shift = shift; 4548 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4549 /* 4550 * Add 16MB MPSS support (may get filtered out by userspace) 4551 */ 4552 if (shift != 24) { 4553 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4554 if (penc != -1) { 4555 (*sps)->enc[1].page_shift = 24; 4556 (*sps)->enc[1].pte_enc = penc; 4557 } 4558 } 4559 (*sps)++; 4560 } 4561 4562 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4563 struct kvm_ppc_smmu_info *info) 4564 { 4565 struct kvm_ppc_one_seg_page_size *sps; 4566 4567 /* 4568 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4569 * POWER7 doesn't support keys for instruction accesses, 4570 * POWER8 and POWER9 do. 4571 */ 4572 info->data_keys = 32; 4573 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4574 4575 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4576 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4577 info->slb_size = 32; 4578 4579 /* We only support these sizes for now, and no muti-size segments */ 4580 sps = &info->sps[0]; 4581 kvmppc_add_seg_page_size(&sps, 12, 0); 4582 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4583 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4584 4585 /* If running as a nested hypervisor, we don't support HPT guests */ 4586 if (kvmhv_on_pseries()) 4587 info->flags |= KVM_PPC_NO_HASH; 4588 4589 return 0; 4590 } 4591 4592 /* 4593 * Get (and clear) the dirty memory log for a memory slot. 4594 */ 4595 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4596 struct kvm_dirty_log *log) 4597 { 4598 struct kvm_memslots *slots; 4599 struct kvm_memory_slot *memslot; 4600 int i, r; 4601 unsigned long n; 4602 unsigned long *buf, *p; 4603 struct kvm_vcpu *vcpu; 4604 4605 mutex_lock(&kvm->slots_lock); 4606 4607 r = -EINVAL; 4608 if (log->slot >= KVM_USER_MEM_SLOTS) 4609 goto out; 4610 4611 slots = kvm_memslots(kvm); 4612 memslot = id_to_memslot(slots, log->slot); 4613 r = -ENOENT; 4614 if (!memslot || !memslot->dirty_bitmap) 4615 goto out; 4616 4617 /* 4618 * Use second half of bitmap area because both HPT and radix 4619 * accumulate bits in the first half. 4620 */ 4621 n = kvm_dirty_bitmap_bytes(memslot); 4622 buf = memslot->dirty_bitmap + n / sizeof(long); 4623 memset(buf, 0, n); 4624 4625 if (kvm_is_radix(kvm)) 4626 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4627 else 4628 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4629 if (r) 4630 goto out; 4631 4632 /* 4633 * We accumulate dirty bits in the first half of the 4634 * memslot's dirty_bitmap area, for when pages are paged 4635 * out or modified by the host directly. Pick up these 4636 * bits and add them to the map. 4637 */ 4638 p = memslot->dirty_bitmap; 4639 for (i = 0; i < n / sizeof(long); ++i) 4640 buf[i] |= xchg(&p[i], 0); 4641 4642 /* Harvest dirty bits from VPA and DTL updates */ 4643 /* Note: we never modify the SLB shadow buffer areas */ 4644 kvm_for_each_vcpu(i, vcpu, kvm) { 4645 spin_lock(&vcpu->arch.vpa_update_lock); 4646 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4647 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4648 spin_unlock(&vcpu->arch.vpa_update_lock); 4649 } 4650 4651 r = -EFAULT; 4652 if (copy_to_user(log->dirty_bitmap, buf, n)) 4653 goto out; 4654 4655 r = 0; 4656 out: 4657 mutex_unlock(&kvm->slots_lock); 4658 return r; 4659 } 4660 4661 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4662 { 4663 vfree(slot->arch.rmap); 4664 slot->arch.rmap = NULL; 4665 } 4666 4667 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4668 struct kvm_memory_slot *slot, 4669 const struct kvm_userspace_memory_region *mem, 4670 enum kvm_mr_change change) 4671 { 4672 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4673 4674 if (change == KVM_MR_CREATE) { 4675 slot->arch.rmap = vzalloc(array_size(npages, 4676 sizeof(*slot->arch.rmap))); 4677 if (!slot->arch.rmap) 4678 return -ENOMEM; 4679 } 4680 4681 return 0; 4682 } 4683 4684 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4685 const struct kvm_userspace_memory_region *mem, 4686 const struct kvm_memory_slot *old, 4687 const struct kvm_memory_slot *new, 4688 enum kvm_mr_change change) 4689 { 4690 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4691 4692 /* 4693 * If we are making a new memslot, it might make 4694 * some address that was previously cached as emulated 4695 * MMIO be no longer emulated MMIO, so invalidate 4696 * all the caches of emulated MMIO translations. 4697 */ 4698 if (npages) 4699 atomic64_inc(&kvm->arch.mmio_update); 4700 4701 /* 4702 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4703 * have already called kvm_arch_flush_shadow_memslot() to 4704 * flush shadow mappings. For KVM_MR_CREATE we have no 4705 * previous mappings. So the only case to handle is 4706 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4707 * has been changed. 4708 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4709 * to get rid of any THP PTEs in the partition-scoped page tables 4710 * so we can track dirtiness at the page level; we flush when 4711 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4712 * using THP PTEs. 4713 */ 4714 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4715 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4716 kvmppc_radix_flush_memslot(kvm, old); 4717 /* 4718 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4719 */ 4720 if (!kvm->arch.secure_guest) 4721 return; 4722 4723 switch (change) { 4724 case KVM_MR_CREATE: 4725 /* 4726 * @TODO kvmppc_uvmem_memslot_create() can fail and 4727 * return error. Fix this. 4728 */ 4729 kvmppc_uvmem_memslot_create(kvm, new); 4730 break; 4731 case KVM_MR_DELETE: 4732 kvmppc_uvmem_memslot_delete(kvm, old); 4733 break; 4734 default: 4735 /* TODO: Handle KVM_MR_MOVE */ 4736 break; 4737 } 4738 } 4739 4740 /* 4741 * Update LPCR values in kvm->arch and in vcores. 4742 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4743 * of kvm->arch.lpcr update). 4744 */ 4745 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4746 { 4747 long int i; 4748 u32 cores_done = 0; 4749 4750 if ((kvm->arch.lpcr & mask) == lpcr) 4751 return; 4752 4753 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4754 4755 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4756 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4757 if (!vc) 4758 continue; 4759 4760 spin_lock(&vc->lock); 4761 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4762 verify_lpcr(kvm, vc->lpcr); 4763 spin_unlock(&vc->lock); 4764 if (++cores_done >= kvm->arch.online_vcores) 4765 break; 4766 } 4767 } 4768 4769 void kvmppc_setup_partition_table(struct kvm *kvm) 4770 { 4771 unsigned long dw0, dw1; 4772 4773 if (!kvm_is_radix(kvm)) { 4774 /* PS field - page size for VRMA */ 4775 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4776 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4777 /* HTABSIZE and HTABORG fields */ 4778 dw0 |= kvm->arch.sdr1; 4779 4780 /* Second dword as set by userspace */ 4781 dw1 = kvm->arch.process_table; 4782 } else { 4783 dw0 = PATB_HR | radix__get_tree_size() | 4784 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4785 dw1 = PATB_GR | kvm->arch.process_table; 4786 } 4787 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4788 } 4789 4790 /* 4791 * Set up HPT (hashed page table) and RMA (real-mode area). 4792 * Must be called with kvm->arch.mmu_setup_lock held. 4793 */ 4794 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4795 { 4796 int err = 0; 4797 struct kvm *kvm = vcpu->kvm; 4798 unsigned long hva; 4799 struct kvm_memory_slot *memslot; 4800 struct vm_area_struct *vma; 4801 unsigned long lpcr = 0, senc; 4802 unsigned long psize, porder; 4803 int srcu_idx; 4804 4805 /* Allocate hashed page table (if not done already) and reset it */ 4806 if (!kvm->arch.hpt.virt) { 4807 int order = KVM_DEFAULT_HPT_ORDER; 4808 struct kvm_hpt_info info; 4809 4810 err = kvmppc_allocate_hpt(&info, order); 4811 /* If we get here, it means userspace didn't specify a 4812 * size explicitly. So, try successively smaller 4813 * sizes if the default failed. */ 4814 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4815 err = kvmppc_allocate_hpt(&info, order); 4816 4817 if (err < 0) { 4818 pr_err("KVM: Couldn't alloc HPT\n"); 4819 goto out; 4820 } 4821 4822 kvmppc_set_hpt(kvm, &info); 4823 } 4824 4825 /* Look up the memslot for guest physical address 0 */ 4826 srcu_idx = srcu_read_lock(&kvm->srcu); 4827 memslot = gfn_to_memslot(kvm, 0); 4828 4829 /* We must have some memory at 0 by now */ 4830 err = -EINVAL; 4831 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4832 goto out_srcu; 4833 4834 /* Look up the VMA for the start of this memory slot */ 4835 hva = memslot->userspace_addr; 4836 mmap_read_lock(kvm->mm); 4837 vma = find_vma(kvm->mm, hva); 4838 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4839 goto up_out; 4840 4841 psize = vma_kernel_pagesize(vma); 4842 4843 mmap_read_unlock(kvm->mm); 4844 4845 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4846 if (psize >= 0x1000000) 4847 psize = 0x1000000; 4848 else if (psize >= 0x10000) 4849 psize = 0x10000; 4850 else 4851 psize = 0x1000; 4852 porder = __ilog2(psize); 4853 4854 senc = slb_pgsize_encoding(psize); 4855 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4856 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4857 /* Create HPTEs in the hash page table for the VRMA */ 4858 kvmppc_map_vrma(vcpu, memslot, porder); 4859 4860 /* Update VRMASD field in the LPCR */ 4861 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4862 /* the -4 is to account for senc values starting at 0x10 */ 4863 lpcr = senc << (LPCR_VRMASD_SH - 4); 4864 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4865 } 4866 4867 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4868 smp_wmb(); 4869 err = 0; 4870 out_srcu: 4871 srcu_read_unlock(&kvm->srcu, srcu_idx); 4872 out: 4873 return err; 4874 4875 up_out: 4876 mmap_read_unlock(kvm->mm); 4877 goto out_srcu; 4878 } 4879 4880 /* 4881 * Must be called with kvm->arch.mmu_setup_lock held and 4882 * mmu_ready = 0 and no vcpus running. 4883 */ 4884 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4885 { 4886 if (nesting_enabled(kvm)) 4887 kvmhv_release_all_nested(kvm); 4888 kvmppc_rmap_reset(kvm); 4889 kvm->arch.process_table = 0; 4890 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 4891 spin_lock(&kvm->mmu_lock); 4892 kvm->arch.radix = 0; 4893 spin_unlock(&kvm->mmu_lock); 4894 kvmppc_free_radix(kvm); 4895 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4896 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4897 return 0; 4898 } 4899 4900 /* 4901 * Must be called with kvm->arch.mmu_setup_lock held and 4902 * mmu_ready = 0 and no vcpus running. 4903 */ 4904 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4905 { 4906 int err; 4907 4908 err = kvmppc_init_vm_radix(kvm); 4909 if (err) 4910 return err; 4911 kvmppc_rmap_reset(kvm); 4912 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 4913 spin_lock(&kvm->mmu_lock); 4914 kvm->arch.radix = 1; 4915 spin_unlock(&kvm->mmu_lock); 4916 kvmppc_free_hpt(&kvm->arch.hpt); 4917 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4918 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4919 return 0; 4920 } 4921 4922 #ifdef CONFIG_KVM_XICS 4923 /* 4924 * Allocate a per-core structure for managing state about which cores are 4925 * running in the host versus the guest and for exchanging data between 4926 * real mode KVM and CPU running in the host. 4927 * This is only done for the first VM. 4928 * The allocated structure stays even if all VMs have stopped. 4929 * It is only freed when the kvm-hv module is unloaded. 4930 * It's OK for this routine to fail, we just don't support host 4931 * core operations like redirecting H_IPI wakeups. 4932 */ 4933 void kvmppc_alloc_host_rm_ops(void) 4934 { 4935 struct kvmppc_host_rm_ops *ops; 4936 unsigned long l_ops; 4937 int cpu, core; 4938 int size; 4939 4940 /* Not the first time here ? */ 4941 if (kvmppc_host_rm_ops_hv != NULL) 4942 return; 4943 4944 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4945 if (!ops) 4946 return; 4947 4948 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4949 ops->rm_core = kzalloc(size, GFP_KERNEL); 4950 4951 if (!ops->rm_core) { 4952 kfree(ops); 4953 return; 4954 } 4955 4956 cpus_read_lock(); 4957 4958 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4959 if (!cpu_online(cpu)) 4960 continue; 4961 4962 core = cpu >> threads_shift; 4963 ops->rm_core[core].rm_state.in_host = 1; 4964 } 4965 4966 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4967 4968 /* 4969 * Make the contents of the kvmppc_host_rm_ops structure visible 4970 * to other CPUs before we assign it to the global variable. 4971 * Do an atomic assignment (no locks used here), but if someone 4972 * beats us to it, just free our copy and return. 4973 */ 4974 smp_wmb(); 4975 l_ops = (unsigned long) ops; 4976 4977 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4978 cpus_read_unlock(); 4979 kfree(ops->rm_core); 4980 kfree(ops); 4981 return; 4982 } 4983 4984 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4985 "ppc/kvm_book3s:prepare", 4986 kvmppc_set_host_core, 4987 kvmppc_clear_host_core); 4988 cpus_read_unlock(); 4989 } 4990 4991 void kvmppc_free_host_rm_ops(void) 4992 { 4993 if (kvmppc_host_rm_ops_hv) { 4994 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4995 kfree(kvmppc_host_rm_ops_hv->rm_core); 4996 kfree(kvmppc_host_rm_ops_hv); 4997 kvmppc_host_rm_ops_hv = NULL; 4998 } 4999 } 5000 #endif 5001 5002 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5003 { 5004 unsigned long lpcr, lpid; 5005 char buf[32]; 5006 int ret; 5007 5008 mutex_init(&kvm->arch.uvmem_lock); 5009 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5010 mutex_init(&kvm->arch.mmu_setup_lock); 5011 5012 /* Allocate the guest's logical partition ID */ 5013 5014 lpid = kvmppc_alloc_lpid(); 5015 if ((long)lpid < 0) 5016 return -ENOMEM; 5017 kvm->arch.lpid = lpid; 5018 5019 kvmppc_alloc_host_rm_ops(); 5020 5021 kvmhv_vm_nested_init(kvm); 5022 5023 /* 5024 * Since we don't flush the TLB when tearing down a VM, 5025 * and this lpid might have previously been used, 5026 * make sure we flush on each core before running the new VM. 5027 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5028 * does this flush for us. 5029 */ 5030 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5031 cpumask_setall(&kvm->arch.need_tlb_flush); 5032 5033 /* Start out with the default set of hcalls enabled */ 5034 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5035 sizeof(kvm->arch.enabled_hcalls)); 5036 5037 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5038 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5039 5040 /* Init LPCR for virtual RMA mode */ 5041 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5042 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5043 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5044 lpcr &= LPCR_PECE | LPCR_LPES; 5045 } else { 5046 lpcr = 0; 5047 } 5048 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5049 LPCR_VPM0 | LPCR_VPM1; 5050 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5051 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5052 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5053 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5054 lpcr |= LPCR_ONL; 5055 /* 5056 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5057 * Set HVICE bit to enable hypervisor virtualization interrupts. 5058 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5059 * be unnecessary but better safe than sorry in case we re-enable 5060 * EE in HV mode with this LPCR still set) 5061 */ 5062 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5063 lpcr &= ~LPCR_VPM0; 5064 lpcr |= LPCR_HVICE | LPCR_HEIC; 5065 5066 /* 5067 * If xive is enabled, we route 0x500 interrupts directly 5068 * to the guest. 5069 */ 5070 if (xics_on_xive()) 5071 lpcr |= LPCR_LPES; 5072 } 5073 5074 /* 5075 * If the host uses radix, the guest starts out as radix. 5076 */ 5077 if (radix_enabled()) { 5078 kvm->arch.radix = 1; 5079 kvm->arch.mmu_ready = 1; 5080 lpcr &= ~LPCR_VPM1; 5081 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5082 ret = kvmppc_init_vm_radix(kvm); 5083 if (ret) { 5084 kvmppc_free_lpid(kvm->arch.lpid); 5085 return ret; 5086 } 5087 kvmppc_setup_partition_table(kvm); 5088 } 5089 5090 verify_lpcr(kvm, lpcr); 5091 kvm->arch.lpcr = lpcr; 5092 5093 /* Initialization for future HPT resizes */ 5094 kvm->arch.resize_hpt = NULL; 5095 5096 /* 5097 * Work out how many sets the TLB has, for the use of 5098 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5099 */ 5100 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5101 /* 5102 * P10 will flush all the congruence class with a single tlbiel 5103 */ 5104 kvm->arch.tlb_sets = 1; 5105 } else if (radix_enabled()) 5106 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5107 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5108 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5109 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5110 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5111 else 5112 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5113 5114 /* 5115 * Track that we now have a HV mode VM active. This blocks secondary 5116 * CPU threads from coming online. 5117 */ 5118 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5119 kvm_hv_vm_activated(); 5120 5121 /* 5122 * Initialize smt_mode depending on processor. 5123 * POWER8 and earlier have to use "strict" threading, where 5124 * all vCPUs in a vcore have to run on the same (sub)core, 5125 * whereas on POWER9 the threads can each run a different 5126 * guest. 5127 */ 5128 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5129 kvm->arch.smt_mode = threads_per_subcore; 5130 else 5131 kvm->arch.smt_mode = 1; 5132 kvm->arch.emul_smt_mode = 1; 5133 5134 /* 5135 * Create a debugfs directory for the VM 5136 */ 5137 snprintf(buf, sizeof(buf), "vm%d", current->pid); 5138 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 5139 kvmppc_mmu_debugfs_init(kvm); 5140 if (radix_enabled()) 5141 kvmhv_radix_debugfs_init(kvm); 5142 5143 return 0; 5144 } 5145 5146 static void kvmppc_free_vcores(struct kvm *kvm) 5147 { 5148 long int i; 5149 5150 for (i = 0; i < KVM_MAX_VCORES; ++i) 5151 kfree(kvm->arch.vcores[i]); 5152 kvm->arch.online_vcores = 0; 5153 } 5154 5155 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5156 { 5157 debugfs_remove_recursive(kvm->arch.debugfs_dir); 5158 5159 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5160 kvm_hv_vm_deactivated(); 5161 5162 kvmppc_free_vcores(kvm); 5163 5164 5165 if (kvm_is_radix(kvm)) 5166 kvmppc_free_radix(kvm); 5167 else 5168 kvmppc_free_hpt(&kvm->arch.hpt); 5169 5170 /* Perform global invalidation and return lpid to the pool */ 5171 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5172 if (nesting_enabled(kvm)) 5173 kvmhv_release_all_nested(kvm); 5174 kvm->arch.process_table = 0; 5175 if (kvm->arch.secure_guest) 5176 uv_svm_terminate(kvm->arch.lpid); 5177 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5178 } 5179 5180 kvmppc_free_lpid(kvm->arch.lpid); 5181 5182 kvmppc_free_pimap(kvm); 5183 } 5184 5185 /* We don't need to emulate any privileged instructions or dcbz */ 5186 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5187 unsigned int inst, int *advance) 5188 { 5189 return EMULATE_FAIL; 5190 } 5191 5192 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5193 ulong spr_val) 5194 { 5195 return EMULATE_FAIL; 5196 } 5197 5198 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5199 ulong *spr_val) 5200 { 5201 return EMULATE_FAIL; 5202 } 5203 5204 static int kvmppc_core_check_processor_compat_hv(void) 5205 { 5206 if (cpu_has_feature(CPU_FTR_HVMODE) && 5207 cpu_has_feature(CPU_FTR_ARCH_206)) 5208 return 0; 5209 5210 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5211 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5212 return 0; 5213 5214 return -EIO; 5215 } 5216 5217 #ifdef CONFIG_KVM_XICS 5218 5219 void kvmppc_free_pimap(struct kvm *kvm) 5220 { 5221 kfree(kvm->arch.pimap); 5222 } 5223 5224 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5225 { 5226 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5227 } 5228 5229 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5230 { 5231 struct irq_desc *desc; 5232 struct kvmppc_irq_map *irq_map; 5233 struct kvmppc_passthru_irqmap *pimap; 5234 struct irq_chip *chip; 5235 int i, rc = 0; 5236 5237 if (!kvm_irq_bypass) 5238 return 1; 5239 5240 desc = irq_to_desc(host_irq); 5241 if (!desc) 5242 return -EIO; 5243 5244 mutex_lock(&kvm->lock); 5245 5246 pimap = kvm->arch.pimap; 5247 if (pimap == NULL) { 5248 /* First call, allocate structure to hold IRQ map */ 5249 pimap = kvmppc_alloc_pimap(); 5250 if (pimap == NULL) { 5251 mutex_unlock(&kvm->lock); 5252 return -ENOMEM; 5253 } 5254 kvm->arch.pimap = pimap; 5255 } 5256 5257 /* 5258 * For now, we only support interrupts for which the EOI operation 5259 * is an OPAL call followed by a write to XIRR, since that's 5260 * what our real-mode EOI code does, or a XIVE interrupt 5261 */ 5262 chip = irq_data_get_irq_chip(&desc->irq_data); 5263 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5264 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5265 host_irq, guest_gsi); 5266 mutex_unlock(&kvm->lock); 5267 return -ENOENT; 5268 } 5269 5270 /* 5271 * See if we already have an entry for this guest IRQ number. 5272 * If it's mapped to a hardware IRQ number, that's an error, 5273 * otherwise re-use this entry. 5274 */ 5275 for (i = 0; i < pimap->n_mapped; i++) { 5276 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5277 if (pimap->mapped[i].r_hwirq) { 5278 mutex_unlock(&kvm->lock); 5279 return -EINVAL; 5280 } 5281 break; 5282 } 5283 } 5284 5285 if (i == KVMPPC_PIRQ_MAPPED) { 5286 mutex_unlock(&kvm->lock); 5287 return -EAGAIN; /* table is full */ 5288 } 5289 5290 irq_map = &pimap->mapped[i]; 5291 5292 irq_map->v_hwirq = guest_gsi; 5293 irq_map->desc = desc; 5294 5295 /* 5296 * Order the above two stores before the next to serialize with 5297 * the KVM real mode handler. 5298 */ 5299 smp_wmb(); 5300 irq_map->r_hwirq = desc->irq_data.hwirq; 5301 5302 if (i == pimap->n_mapped) 5303 pimap->n_mapped++; 5304 5305 if (xics_on_xive()) 5306 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5307 else 5308 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5309 if (rc) 5310 irq_map->r_hwirq = 0; 5311 5312 mutex_unlock(&kvm->lock); 5313 5314 return 0; 5315 } 5316 5317 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5318 { 5319 struct irq_desc *desc; 5320 struct kvmppc_passthru_irqmap *pimap; 5321 int i, rc = 0; 5322 5323 if (!kvm_irq_bypass) 5324 return 0; 5325 5326 desc = irq_to_desc(host_irq); 5327 if (!desc) 5328 return -EIO; 5329 5330 mutex_lock(&kvm->lock); 5331 if (!kvm->arch.pimap) 5332 goto unlock; 5333 5334 pimap = kvm->arch.pimap; 5335 5336 for (i = 0; i < pimap->n_mapped; i++) { 5337 if (guest_gsi == pimap->mapped[i].v_hwirq) 5338 break; 5339 } 5340 5341 if (i == pimap->n_mapped) { 5342 mutex_unlock(&kvm->lock); 5343 return -ENODEV; 5344 } 5345 5346 if (xics_on_xive()) 5347 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5348 else 5349 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5350 5351 /* invalidate the entry (what do do on error from the above ?) */ 5352 pimap->mapped[i].r_hwirq = 0; 5353 5354 /* 5355 * We don't free this structure even when the count goes to 5356 * zero. The structure is freed when we destroy the VM. 5357 */ 5358 unlock: 5359 mutex_unlock(&kvm->lock); 5360 return rc; 5361 } 5362 5363 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5364 struct irq_bypass_producer *prod) 5365 { 5366 int ret = 0; 5367 struct kvm_kernel_irqfd *irqfd = 5368 container_of(cons, struct kvm_kernel_irqfd, consumer); 5369 5370 irqfd->producer = prod; 5371 5372 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5373 if (ret) 5374 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5375 prod->irq, irqfd->gsi, ret); 5376 5377 return ret; 5378 } 5379 5380 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5381 struct irq_bypass_producer *prod) 5382 { 5383 int ret; 5384 struct kvm_kernel_irqfd *irqfd = 5385 container_of(cons, struct kvm_kernel_irqfd, consumer); 5386 5387 irqfd->producer = NULL; 5388 5389 /* 5390 * When producer of consumer is unregistered, we change back to 5391 * default external interrupt handling mode - KVM real mode 5392 * will switch back to host. 5393 */ 5394 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5395 if (ret) 5396 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5397 prod->irq, irqfd->gsi, ret); 5398 } 5399 #endif 5400 5401 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5402 unsigned int ioctl, unsigned long arg) 5403 { 5404 struct kvm *kvm __maybe_unused = filp->private_data; 5405 void __user *argp = (void __user *)arg; 5406 long r; 5407 5408 switch (ioctl) { 5409 5410 case KVM_PPC_ALLOCATE_HTAB: { 5411 u32 htab_order; 5412 5413 /* If we're a nested hypervisor, we currently only support radix */ 5414 if (kvmhv_on_pseries()) { 5415 r = -EOPNOTSUPP; 5416 break; 5417 } 5418 5419 r = -EFAULT; 5420 if (get_user(htab_order, (u32 __user *)argp)) 5421 break; 5422 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5423 if (r) 5424 break; 5425 r = 0; 5426 break; 5427 } 5428 5429 case KVM_PPC_GET_HTAB_FD: { 5430 struct kvm_get_htab_fd ghf; 5431 5432 r = -EFAULT; 5433 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5434 break; 5435 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5436 break; 5437 } 5438 5439 case KVM_PPC_RESIZE_HPT_PREPARE: { 5440 struct kvm_ppc_resize_hpt rhpt; 5441 5442 r = -EFAULT; 5443 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5444 break; 5445 5446 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5447 break; 5448 } 5449 5450 case KVM_PPC_RESIZE_HPT_COMMIT: { 5451 struct kvm_ppc_resize_hpt rhpt; 5452 5453 r = -EFAULT; 5454 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5455 break; 5456 5457 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5458 break; 5459 } 5460 5461 default: 5462 r = -ENOTTY; 5463 } 5464 5465 return r; 5466 } 5467 5468 /* 5469 * List of hcall numbers to enable by default. 5470 * For compatibility with old userspace, we enable by default 5471 * all hcalls that were implemented before the hcall-enabling 5472 * facility was added. Note this list should not include H_RTAS. 5473 */ 5474 static unsigned int default_hcall_list[] = { 5475 H_REMOVE, 5476 H_ENTER, 5477 H_READ, 5478 H_PROTECT, 5479 H_BULK_REMOVE, 5480 #ifdef CONFIG_SPAPR_TCE_IOMMU 5481 H_GET_TCE, 5482 H_PUT_TCE, 5483 #endif 5484 H_SET_DABR, 5485 H_SET_XDABR, 5486 H_CEDE, 5487 H_PROD, 5488 H_CONFER, 5489 H_REGISTER_VPA, 5490 #ifdef CONFIG_KVM_XICS 5491 H_EOI, 5492 H_CPPR, 5493 H_IPI, 5494 H_IPOLL, 5495 H_XIRR, 5496 H_XIRR_X, 5497 #endif 5498 0 5499 }; 5500 5501 static void init_default_hcalls(void) 5502 { 5503 int i; 5504 unsigned int hcall; 5505 5506 for (i = 0; default_hcall_list[i]; ++i) { 5507 hcall = default_hcall_list[i]; 5508 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5509 __set_bit(hcall / 4, default_enabled_hcalls); 5510 } 5511 } 5512 5513 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5514 { 5515 unsigned long lpcr; 5516 int radix; 5517 int err; 5518 5519 /* If not on a POWER9, reject it */ 5520 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5521 return -ENODEV; 5522 5523 /* If any unknown flags set, reject it */ 5524 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5525 return -EINVAL; 5526 5527 /* GR (guest radix) bit in process_table field must match */ 5528 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5529 if (!!(cfg->process_table & PATB_GR) != radix) 5530 return -EINVAL; 5531 5532 /* Process table size field must be reasonable, i.e. <= 24 */ 5533 if ((cfg->process_table & PRTS_MASK) > 24) 5534 return -EINVAL; 5535 5536 /* We can change a guest to/from radix now, if the host is radix */ 5537 if (radix && !radix_enabled()) 5538 return -EINVAL; 5539 5540 /* If we're a nested hypervisor, we currently only support radix */ 5541 if (kvmhv_on_pseries() && !radix) 5542 return -EINVAL; 5543 5544 mutex_lock(&kvm->arch.mmu_setup_lock); 5545 if (radix != kvm_is_radix(kvm)) { 5546 if (kvm->arch.mmu_ready) { 5547 kvm->arch.mmu_ready = 0; 5548 /* order mmu_ready vs. vcpus_running */ 5549 smp_mb(); 5550 if (atomic_read(&kvm->arch.vcpus_running)) { 5551 kvm->arch.mmu_ready = 1; 5552 err = -EBUSY; 5553 goto out_unlock; 5554 } 5555 } 5556 if (radix) 5557 err = kvmppc_switch_mmu_to_radix(kvm); 5558 else 5559 err = kvmppc_switch_mmu_to_hpt(kvm); 5560 if (err) 5561 goto out_unlock; 5562 } 5563 5564 kvm->arch.process_table = cfg->process_table; 5565 kvmppc_setup_partition_table(kvm); 5566 5567 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5568 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5569 err = 0; 5570 5571 out_unlock: 5572 mutex_unlock(&kvm->arch.mmu_setup_lock); 5573 return err; 5574 } 5575 5576 static int kvmhv_enable_nested(struct kvm *kvm) 5577 { 5578 if (!nested) 5579 return -EPERM; 5580 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5581 return -ENODEV; 5582 if (!radix_enabled()) 5583 return -ENODEV; 5584 5585 /* kvm == NULL means the caller is testing if the capability exists */ 5586 if (kvm) 5587 kvm->arch.nested_enable = true; 5588 return 0; 5589 } 5590 5591 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5592 int size) 5593 { 5594 int rc = -EINVAL; 5595 5596 if (kvmhv_vcpu_is_radix(vcpu)) { 5597 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5598 5599 if (rc > 0) 5600 rc = -EINVAL; 5601 } 5602 5603 /* For now quadrants are the only way to access nested guest memory */ 5604 if (rc && vcpu->arch.nested) 5605 rc = -EAGAIN; 5606 5607 return rc; 5608 } 5609 5610 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5611 int size) 5612 { 5613 int rc = -EINVAL; 5614 5615 if (kvmhv_vcpu_is_radix(vcpu)) { 5616 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5617 5618 if (rc > 0) 5619 rc = -EINVAL; 5620 } 5621 5622 /* For now quadrants are the only way to access nested guest memory */ 5623 if (rc && vcpu->arch.nested) 5624 rc = -EAGAIN; 5625 5626 return rc; 5627 } 5628 5629 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5630 { 5631 unpin_vpa(kvm, vpa); 5632 vpa->gpa = 0; 5633 vpa->pinned_addr = NULL; 5634 vpa->dirty = false; 5635 vpa->update_pending = 0; 5636 } 5637 5638 /* 5639 * Enable a guest to become a secure VM, or test whether 5640 * that could be enabled. 5641 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5642 * tested (kvm == NULL) or enabled (kvm != NULL). 5643 */ 5644 static int kvmhv_enable_svm(struct kvm *kvm) 5645 { 5646 if (!kvmppc_uvmem_available()) 5647 return -EINVAL; 5648 if (kvm) 5649 kvm->arch.svm_enabled = 1; 5650 return 0; 5651 } 5652 5653 /* 5654 * IOCTL handler to turn off secure mode of guest 5655 * 5656 * - Release all device pages 5657 * - Issue ucall to terminate the guest on the UV side 5658 * - Unpin the VPA pages. 5659 * - Reinit the partition scoped page tables 5660 */ 5661 static int kvmhv_svm_off(struct kvm *kvm) 5662 { 5663 struct kvm_vcpu *vcpu; 5664 int mmu_was_ready; 5665 int srcu_idx; 5666 int ret = 0; 5667 int i; 5668 5669 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5670 return ret; 5671 5672 mutex_lock(&kvm->arch.mmu_setup_lock); 5673 mmu_was_ready = kvm->arch.mmu_ready; 5674 if (kvm->arch.mmu_ready) { 5675 kvm->arch.mmu_ready = 0; 5676 /* order mmu_ready vs. vcpus_running */ 5677 smp_mb(); 5678 if (atomic_read(&kvm->arch.vcpus_running)) { 5679 kvm->arch.mmu_ready = 1; 5680 ret = -EBUSY; 5681 goto out; 5682 } 5683 } 5684 5685 srcu_idx = srcu_read_lock(&kvm->srcu); 5686 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5687 struct kvm_memory_slot *memslot; 5688 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5689 5690 if (!slots) 5691 continue; 5692 5693 kvm_for_each_memslot(memslot, slots) { 5694 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5695 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5696 } 5697 } 5698 srcu_read_unlock(&kvm->srcu, srcu_idx); 5699 5700 ret = uv_svm_terminate(kvm->arch.lpid); 5701 if (ret != U_SUCCESS) { 5702 ret = -EINVAL; 5703 goto out; 5704 } 5705 5706 /* 5707 * When secure guest is reset, all the guest pages are sent 5708 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5709 * chance to run and unpin their VPA pages. Unpinning of all 5710 * VPA pages is done here explicitly so that VPA pages 5711 * can be migrated to the secure side. 5712 * 5713 * This is required to for the secure SMP guest to reboot 5714 * correctly. 5715 */ 5716 kvm_for_each_vcpu(i, vcpu, kvm) { 5717 spin_lock(&vcpu->arch.vpa_update_lock); 5718 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5719 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5720 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5721 spin_unlock(&vcpu->arch.vpa_update_lock); 5722 } 5723 5724 kvmppc_setup_partition_table(kvm); 5725 kvm->arch.secure_guest = 0; 5726 kvm->arch.mmu_ready = mmu_was_ready; 5727 out: 5728 mutex_unlock(&kvm->arch.mmu_setup_lock); 5729 return ret; 5730 } 5731 5732 static int kvmhv_enable_dawr1(struct kvm *kvm) 5733 { 5734 if (!cpu_has_feature(CPU_FTR_DAWR1)) 5735 return -ENODEV; 5736 5737 /* kvm == NULL means the caller is testing if the capability exists */ 5738 if (kvm) 5739 kvm->arch.dawr1_enabled = true; 5740 return 0; 5741 } 5742 5743 static bool kvmppc_hash_v3_possible(void) 5744 { 5745 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5746 return false; 5747 5748 if (!cpu_has_feature(CPU_FTR_HVMODE)) 5749 return false; 5750 5751 /* 5752 * POWER9 chips before version 2.02 can't have some threads in 5753 * HPT mode and some in radix mode on the same core. 5754 */ 5755 if (radix_enabled()) { 5756 unsigned int pvr = mfspr(SPRN_PVR); 5757 if ((pvr >> 16) == PVR_POWER9 && 5758 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5759 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5760 return false; 5761 } 5762 5763 return true; 5764 } 5765 5766 static struct kvmppc_ops kvm_ops_hv = { 5767 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5768 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5769 .get_one_reg = kvmppc_get_one_reg_hv, 5770 .set_one_reg = kvmppc_set_one_reg_hv, 5771 .vcpu_load = kvmppc_core_vcpu_load_hv, 5772 .vcpu_put = kvmppc_core_vcpu_put_hv, 5773 .inject_interrupt = kvmppc_inject_interrupt_hv, 5774 .set_msr = kvmppc_set_msr_hv, 5775 .vcpu_run = kvmppc_vcpu_run_hv, 5776 .vcpu_create = kvmppc_core_vcpu_create_hv, 5777 .vcpu_free = kvmppc_core_vcpu_free_hv, 5778 .check_requests = kvmppc_core_check_requests_hv, 5779 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5780 .flush_memslot = kvmppc_core_flush_memslot_hv, 5781 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5782 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5783 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 5784 .age_gfn = kvm_age_gfn_hv, 5785 .test_age_gfn = kvm_test_age_gfn_hv, 5786 .set_spte_gfn = kvm_set_spte_gfn_hv, 5787 .free_memslot = kvmppc_core_free_memslot_hv, 5788 .init_vm = kvmppc_core_init_vm_hv, 5789 .destroy_vm = kvmppc_core_destroy_vm_hv, 5790 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5791 .emulate_op = kvmppc_core_emulate_op_hv, 5792 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5793 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5794 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5795 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5796 .hcall_implemented = kvmppc_hcall_impl_hv, 5797 #ifdef CONFIG_KVM_XICS 5798 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5799 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5800 #endif 5801 .configure_mmu = kvmhv_configure_mmu, 5802 .get_rmmu_info = kvmhv_get_rmmu_info, 5803 .set_smt_mode = kvmhv_set_smt_mode, 5804 .enable_nested = kvmhv_enable_nested, 5805 .load_from_eaddr = kvmhv_load_from_eaddr, 5806 .store_to_eaddr = kvmhv_store_to_eaddr, 5807 .enable_svm = kvmhv_enable_svm, 5808 .svm_off = kvmhv_svm_off, 5809 .enable_dawr1 = kvmhv_enable_dawr1, 5810 .hash_v3_possible = kvmppc_hash_v3_possible, 5811 }; 5812 5813 static int kvm_init_subcore_bitmap(void) 5814 { 5815 int i, j; 5816 int nr_cores = cpu_nr_cores(); 5817 struct sibling_subcore_state *sibling_subcore_state; 5818 5819 for (i = 0; i < nr_cores; i++) { 5820 int first_cpu = i * threads_per_core; 5821 int node = cpu_to_node(first_cpu); 5822 5823 /* Ignore if it is already allocated. */ 5824 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5825 continue; 5826 5827 sibling_subcore_state = 5828 kzalloc_node(sizeof(struct sibling_subcore_state), 5829 GFP_KERNEL, node); 5830 if (!sibling_subcore_state) 5831 return -ENOMEM; 5832 5833 5834 for (j = 0; j < threads_per_core; j++) { 5835 int cpu = first_cpu + j; 5836 5837 paca_ptrs[cpu]->sibling_subcore_state = 5838 sibling_subcore_state; 5839 } 5840 } 5841 return 0; 5842 } 5843 5844 static int kvmppc_radix_possible(void) 5845 { 5846 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5847 } 5848 5849 static int kvmppc_book3s_init_hv(void) 5850 { 5851 int r; 5852 5853 if (!tlbie_capable) { 5854 pr_err("KVM-HV: Host does not support TLBIE\n"); 5855 return -ENODEV; 5856 } 5857 5858 /* 5859 * FIXME!! Do we need to check on all cpus ? 5860 */ 5861 r = kvmppc_core_check_processor_compat_hv(); 5862 if (r < 0) 5863 return -ENODEV; 5864 5865 r = kvmhv_nested_init(); 5866 if (r) 5867 return r; 5868 5869 r = kvm_init_subcore_bitmap(); 5870 if (r) 5871 return r; 5872 5873 /* 5874 * We need a way of accessing the XICS interrupt controller, 5875 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5876 * indirectly, via OPAL. 5877 */ 5878 #ifdef CONFIG_SMP 5879 if (!xics_on_xive() && !kvmhv_on_pseries() && 5880 !local_paca->kvm_hstate.xics_phys) { 5881 struct device_node *np; 5882 5883 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5884 if (!np) { 5885 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5886 return -ENODEV; 5887 } 5888 /* presence of intc confirmed - node can be dropped again */ 5889 of_node_put(np); 5890 } 5891 #endif 5892 5893 kvm_ops_hv.owner = THIS_MODULE; 5894 kvmppc_hv_ops = &kvm_ops_hv; 5895 5896 init_default_hcalls(); 5897 5898 init_vcore_lists(); 5899 5900 r = kvmppc_mmu_hv_init(); 5901 if (r) 5902 return r; 5903 5904 if (kvmppc_radix_possible()) 5905 r = kvmppc_radix_init(); 5906 5907 r = kvmppc_uvmem_init(); 5908 if (r < 0) 5909 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5910 5911 return r; 5912 } 5913 5914 static void kvmppc_book3s_exit_hv(void) 5915 { 5916 kvmppc_uvmem_free(); 5917 kvmppc_free_host_rm_ops(); 5918 if (kvmppc_radix_possible()) 5919 kvmppc_radix_exit(); 5920 kvmppc_hv_ops = NULL; 5921 kvmhv_nested_exit(); 5922 } 5923 5924 module_init(kvmppc_book3s_init_hv); 5925 module_exit(kvmppc_book3s_exit_hv); 5926 MODULE_LICENSE("GPL"); 5927 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5928 MODULE_ALIAS("devname:kvm"); 5929