1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/interrupt.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/pmc.h> 63 #include <asm/processor.h> 64 #include <asm/cputhreads.h> 65 #include <asm/page.h> 66 #include <asm/hvcall.h> 67 #include <asm/switch_to.h> 68 #include <asm/smp.h> 69 #include <asm/dbell.h> 70 #include <asm/hmi.h> 71 #include <asm/pnv-pci.h> 72 #include <asm/mmu.h> 73 #include <asm/opal.h> 74 #include <asm/xics.h> 75 #include <asm/xive.h> 76 #include <asm/hw_breakpoint.h> 77 #include <asm/kvm_book3s_uvmem.h> 78 #include <asm/ultravisor.h> 79 #include <asm/dtl.h> 80 #include <asm/plpar_wrappers.h> 81 82 #include "book3s.h" 83 84 #define CREATE_TRACE_POINTS 85 #include "trace_hv.h" 86 87 /* #define EXIT_DEBUG */ 88 /* #define EXIT_DEBUG_SIMPLE */ 89 /* #define EXIT_DEBUG_INT */ 90 91 /* Used to indicate that a guest page fault needs to be handled */ 92 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 93 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 94 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 95 96 /* Used as a "null" value for timebase values */ 97 #define TB_NIL (~(u64)0) 98 99 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 100 101 static int dynamic_mt_modes = 6; 102 module_param(dynamic_mt_modes, int, 0644); 103 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 104 static int target_smt_mode; 105 module_param(target_smt_mode, int, 0644); 106 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 107 108 static bool one_vm_per_core; 109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 111 112 #ifdef CONFIG_KVM_XICS 113 static const struct kernel_param_ops module_param_ops = { 114 .set = param_set_int, 115 .get = param_get_int, 116 }; 117 118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 120 121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 123 #endif 124 125 /* If set, guests are allowed to create and control nested guests */ 126 static bool nested = true; 127 module_param(nested, bool, S_IRUGO | S_IWUSR); 128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 129 130 static inline bool nesting_enabled(struct kvm *kvm) 131 { 132 return kvm->arch.nested_enable && kvm_is_radix(kvm); 133 } 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 waitp = kvm_arch_vcpu_get_wait(vcpu); 233 if (rcuwait_wake_up(waitp)) 234 ++vcpu->stat.generic.halt_wakeup; 235 236 cpu = READ_ONCE(vcpu->arch.thread_cpu); 237 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 238 return; 239 240 /* CPU points to the first thread of the core */ 241 cpu = vcpu->cpu; 242 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 243 smp_send_reschedule(cpu); 244 } 245 246 /* 247 * We use the vcpu_load/put functions to measure stolen time. 248 * Stolen time is counted as time when either the vcpu is able to 249 * run as part of a virtual core, but the task running the vcore 250 * is preempted or sleeping, or when the vcpu needs something done 251 * in the kernel by the task running the vcpu, but that task is 252 * preempted or sleeping. Those two things have to be counted 253 * separately, since one of the vcpu tasks will take on the job 254 * of running the core, and the other vcpu tasks in the vcore will 255 * sleep waiting for it to do that, but that sleep shouldn't count 256 * as stolen time. 257 * 258 * Hence we accumulate stolen time when the vcpu can run as part of 259 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 260 * needs its task to do other things in the kernel (for example, 261 * service a page fault) in busy_stolen. We don't accumulate 262 * stolen time for a vcore when it is inactive, or for a vcpu 263 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 264 * a misnomer; it means that the vcpu task is not executing in 265 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 266 * the kernel. We don't have any way of dividing up that time 267 * between time that the vcpu is genuinely stopped, time that 268 * the task is actively working on behalf of the vcpu, and time 269 * that the task is preempted, so we don't count any of it as 270 * stolen. 271 * 272 * Updates to busy_stolen are protected by arch.tbacct_lock; 273 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 274 * lock. The stolen times are measured in units of timebase ticks. 275 * (Note that the != TB_NIL checks below are purely defensive; 276 * they should never fail.) 277 */ 278 279 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 280 { 281 unsigned long flags; 282 283 spin_lock_irqsave(&vc->stoltb_lock, flags); 284 vc->preempt_tb = mftb(); 285 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 286 } 287 288 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 289 { 290 unsigned long flags; 291 292 spin_lock_irqsave(&vc->stoltb_lock, flags); 293 if (vc->preempt_tb != TB_NIL) { 294 vc->stolen_tb += mftb() - vc->preempt_tb; 295 vc->preempt_tb = TB_NIL; 296 } 297 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 298 } 299 300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 301 { 302 struct kvmppc_vcore *vc = vcpu->arch.vcore; 303 unsigned long flags; 304 305 /* 306 * We can test vc->runner without taking the vcore lock, 307 * because only this task ever sets vc->runner to this 308 * vcpu, and once it is set to this vcpu, only this task 309 * ever sets it to NULL. 310 */ 311 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 312 kvmppc_core_end_stolen(vc); 313 314 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 315 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 316 vcpu->arch.busy_preempt != TB_NIL) { 317 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 318 vcpu->arch.busy_preempt = TB_NIL; 319 } 320 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 321 } 322 323 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 324 { 325 struct kvmppc_vcore *vc = vcpu->arch.vcore; 326 unsigned long flags; 327 328 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 329 kvmppc_core_start_stolen(vc); 330 331 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 332 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 333 vcpu->arch.busy_preempt = mftb(); 334 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 335 } 336 337 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 338 { 339 vcpu->arch.pvr = pvr; 340 } 341 342 /* Dummy value used in computing PCR value below */ 343 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 344 345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 346 { 347 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 348 struct kvmppc_vcore *vc = vcpu->arch.vcore; 349 350 /* We can (emulate) our own architecture version and anything older */ 351 if (cpu_has_feature(CPU_FTR_ARCH_31)) 352 host_pcr_bit = PCR_ARCH_31; 353 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 354 host_pcr_bit = PCR_ARCH_300; 355 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 356 host_pcr_bit = PCR_ARCH_207; 357 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 358 host_pcr_bit = PCR_ARCH_206; 359 else 360 host_pcr_bit = PCR_ARCH_205; 361 362 /* Determine lowest PCR bit needed to run guest in given PVR level */ 363 guest_pcr_bit = host_pcr_bit; 364 if (arch_compat) { 365 switch (arch_compat) { 366 case PVR_ARCH_205: 367 guest_pcr_bit = PCR_ARCH_205; 368 break; 369 case PVR_ARCH_206: 370 case PVR_ARCH_206p: 371 guest_pcr_bit = PCR_ARCH_206; 372 break; 373 case PVR_ARCH_207: 374 guest_pcr_bit = PCR_ARCH_207; 375 break; 376 case PVR_ARCH_300: 377 guest_pcr_bit = PCR_ARCH_300; 378 break; 379 case PVR_ARCH_31: 380 guest_pcr_bit = PCR_ARCH_31; 381 break; 382 default: 383 return -EINVAL; 384 } 385 } 386 387 /* Check requested PCR bits don't exceed our capabilities */ 388 if (guest_pcr_bit > host_pcr_bit) 389 return -EINVAL; 390 391 spin_lock(&vc->lock); 392 vc->arch_compat = arch_compat; 393 /* 394 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 395 * Also set all reserved PCR bits 396 */ 397 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 398 spin_unlock(&vc->lock); 399 400 return 0; 401 } 402 403 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 404 { 405 int r; 406 407 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 408 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 409 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 410 for (r = 0; r < 16; ++r) 411 pr_err("r%2d = %.16lx r%d = %.16lx\n", 412 r, kvmppc_get_gpr(vcpu, r), 413 r+16, kvmppc_get_gpr(vcpu, r+16)); 414 pr_err("ctr = %.16lx lr = %.16lx\n", 415 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 416 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 417 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 418 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 419 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 420 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 421 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 422 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 423 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 424 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 425 pr_err("fault dar = %.16lx dsisr = %.8x\n", 426 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 427 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 428 for (r = 0; r < vcpu->arch.slb_max; ++r) 429 pr_err(" ESID = %.16llx VSID = %.16llx\n", 430 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 431 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 432 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 433 vcpu->arch.last_inst); 434 } 435 436 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 437 { 438 return kvm_get_vcpu_by_id(kvm, id); 439 } 440 441 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 442 { 443 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 444 vpa->yield_count = cpu_to_be32(1); 445 } 446 447 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 448 unsigned long addr, unsigned long len) 449 { 450 /* check address is cacheline aligned */ 451 if (addr & (L1_CACHE_BYTES - 1)) 452 return -EINVAL; 453 spin_lock(&vcpu->arch.vpa_update_lock); 454 if (v->next_gpa != addr || v->len != len) { 455 v->next_gpa = addr; 456 v->len = addr ? len : 0; 457 v->update_pending = 1; 458 } 459 spin_unlock(&vcpu->arch.vpa_update_lock); 460 return 0; 461 } 462 463 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 464 struct reg_vpa { 465 u32 dummy; 466 union { 467 __be16 hword; 468 __be32 word; 469 } length; 470 }; 471 472 static int vpa_is_registered(struct kvmppc_vpa *vpap) 473 { 474 if (vpap->update_pending) 475 return vpap->next_gpa != 0; 476 return vpap->pinned_addr != NULL; 477 } 478 479 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 480 unsigned long flags, 481 unsigned long vcpuid, unsigned long vpa) 482 { 483 struct kvm *kvm = vcpu->kvm; 484 unsigned long len, nb; 485 void *va; 486 struct kvm_vcpu *tvcpu; 487 int err; 488 int subfunc; 489 struct kvmppc_vpa *vpap; 490 491 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 492 if (!tvcpu) 493 return H_PARAMETER; 494 495 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 496 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 497 subfunc == H_VPA_REG_SLB) { 498 /* Registering new area - address must be cache-line aligned */ 499 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 500 return H_PARAMETER; 501 502 /* convert logical addr to kernel addr and read length */ 503 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 504 if (va == NULL) 505 return H_PARAMETER; 506 if (subfunc == H_VPA_REG_VPA) 507 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 508 else 509 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 510 kvmppc_unpin_guest_page(kvm, va, vpa, false); 511 512 /* Check length */ 513 if (len > nb || len < sizeof(struct reg_vpa)) 514 return H_PARAMETER; 515 } else { 516 vpa = 0; 517 len = 0; 518 } 519 520 err = H_PARAMETER; 521 vpap = NULL; 522 spin_lock(&tvcpu->arch.vpa_update_lock); 523 524 switch (subfunc) { 525 case H_VPA_REG_VPA: /* register VPA */ 526 /* 527 * The size of our lppaca is 1kB because of the way we align 528 * it for the guest to avoid crossing a 4kB boundary. We only 529 * use 640 bytes of the structure though, so we should accept 530 * clients that set a size of 640. 531 */ 532 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 533 if (len < sizeof(struct lppaca)) 534 break; 535 vpap = &tvcpu->arch.vpa; 536 err = 0; 537 break; 538 539 case H_VPA_REG_DTL: /* register DTL */ 540 if (len < sizeof(struct dtl_entry)) 541 break; 542 len -= len % sizeof(struct dtl_entry); 543 544 /* Check that they have previously registered a VPA */ 545 err = H_RESOURCE; 546 if (!vpa_is_registered(&tvcpu->arch.vpa)) 547 break; 548 549 vpap = &tvcpu->arch.dtl; 550 err = 0; 551 break; 552 553 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 554 /* Check that they have previously registered a VPA */ 555 err = H_RESOURCE; 556 if (!vpa_is_registered(&tvcpu->arch.vpa)) 557 break; 558 559 vpap = &tvcpu->arch.slb_shadow; 560 err = 0; 561 break; 562 563 case H_VPA_DEREG_VPA: /* deregister VPA */ 564 /* Check they don't still have a DTL or SLB buf registered */ 565 err = H_RESOURCE; 566 if (vpa_is_registered(&tvcpu->arch.dtl) || 567 vpa_is_registered(&tvcpu->arch.slb_shadow)) 568 break; 569 570 vpap = &tvcpu->arch.vpa; 571 err = 0; 572 break; 573 574 case H_VPA_DEREG_DTL: /* deregister DTL */ 575 vpap = &tvcpu->arch.dtl; 576 err = 0; 577 break; 578 579 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 580 vpap = &tvcpu->arch.slb_shadow; 581 err = 0; 582 break; 583 } 584 585 if (vpap) { 586 vpap->next_gpa = vpa; 587 vpap->len = len; 588 vpap->update_pending = 1; 589 } 590 591 spin_unlock(&tvcpu->arch.vpa_update_lock); 592 593 return err; 594 } 595 596 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 597 { 598 struct kvm *kvm = vcpu->kvm; 599 void *va; 600 unsigned long nb; 601 unsigned long gpa; 602 603 /* 604 * We need to pin the page pointed to by vpap->next_gpa, 605 * but we can't call kvmppc_pin_guest_page under the lock 606 * as it does get_user_pages() and down_read(). So we 607 * have to drop the lock, pin the page, then get the lock 608 * again and check that a new area didn't get registered 609 * in the meantime. 610 */ 611 for (;;) { 612 gpa = vpap->next_gpa; 613 spin_unlock(&vcpu->arch.vpa_update_lock); 614 va = NULL; 615 nb = 0; 616 if (gpa) 617 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 618 spin_lock(&vcpu->arch.vpa_update_lock); 619 if (gpa == vpap->next_gpa) 620 break; 621 /* sigh... unpin that one and try again */ 622 if (va) 623 kvmppc_unpin_guest_page(kvm, va, gpa, false); 624 } 625 626 vpap->update_pending = 0; 627 if (va && nb < vpap->len) { 628 /* 629 * If it's now too short, it must be that userspace 630 * has changed the mappings underlying guest memory, 631 * so unregister the region. 632 */ 633 kvmppc_unpin_guest_page(kvm, va, gpa, false); 634 va = NULL; 635 } 636 if (vpap->pinned_addr) 637 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 638 vpap->dirty); 639 vpap->gpa = gpa; 640 vpap->pinned_addr = va; 641 vpap->dirty = false; 642 if (va) 643 vpap->pinned_end = va + vpap->len; 644 } 645 646 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 647 { 648 if (!(vcpu->arch.vpa.update_pending || 649 vcpu->arch.slb_shadow.update_pending || 650 vcpu->arch.dtl.update_pending)) 651 return; 652 653 spin_lock(&vcpu->arch.vpa_update_lock); 654 if (vcpu->arch.vpa.update_pending) { 655 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 656 if (vcpu->arch.vpa.pinned_addr) 657 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 658 } 659 if (vcpu->arch.dtl.update_pending) { 660 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 661 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 662 vcpu->arch.dtl_index = 0; 663 } 664 if (vcpu->arch.slb_shadow.update_pending) 665 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 666 spin_unlock(&vcpu->arch.vpa_update_lock); 667 } 668 669 /* 670 * Return the accumulated stolen time for the vcore up until `now'. 671 * The caller should hold the vcore lock. 672 */ 673 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 674 { 675 u64 p; 676 unsigned long flags; 677 678 spin_lock_irqsave(&vc->stoltb_lock, flags); 679 p = vc->stolen_tb; 680 if (vc->vcore_state != VCORE_INACTIVE && 681 vc->preempt_tb != TB_NIL) 682 p += now - vc->preempt_tb; 683 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 684 return p; 685 } 686 687 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 688 struct kvmppc_vcore *vc) 689 { 690 struct dtl_entry *dt; 691 struct lppaca *vpa; 692 unsigned long stolen; 693 unsigned long core_stolen; 694 u64 now; 695 unsigned long flags; 696 697 dt = vcpu->arch.dtl_ptr; 698 vpa = vcpu->arch.vpa.pinned_addr; 699 now = mftb(); 700 core_stolen = vcore_stolen_time(vc, now); 701 stolen = core_stolen - vcpu->arch.stolen_logged; 702 vcpu->arch.stolen_logged = core_stolen; 703 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 704 stolen += vcpu->arch.busy_stolen; 705 vcpu->arch.busy_stolen = 0; 706 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 707 if (!dt || !vpa) 708 return; 709 memset(dt, 0, sizeof(struct dtl_entry)); 710 dt->dispatch_reason = 7; 711 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 712 dt->timebase = cpu_to_be64(now + vc->tb_offset); 713 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 714 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 715 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 716 ++dt; 717 if (dt == vcpu->arch.dtl.pinned_end) 718 dt = vcpu->arch.dtl.pinned_addr; 719 vcpu->arch.dtl_ptr = dt; 720 /* order writing *dt vs. writing vpa->dtl_idx */ 721 smp_wmb(); 722 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 723 vcpu->arch.dtl.dirty = true; 724 } 725 726 /* See if there is a doorbell interrupt pending for a vcpu */ 727 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 728 { 729 int thr; 730 struct kvmppc_vcore *vc; 731 732 if (vcpu->arch.doorbell_request) 733 return true; 734 /* 735 * Ensure that the read of vcore->dpdes comes after the read 736 * of vcpu->doorbell_request. This barrier matches the 737 * smp_wmb() in kvmppc_guest_entry_inject(). 738 */ 739 smp_rmb(); 740 vc = vcpu->arch.vcore; 741 thr = vcpu->vcpu_id - vc->first_vcpuid; 742 return !!(vc->dpdes & (1 << thr)); 743 } 744 745 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 746 { 747 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 748 return true; 749 if ((!vcpu->arch.vcore->arch_compat) && 750 cpu_has_feature(CPU_FTR_ARCH_207S)) 751 return true; 752 return false; 753 } 754 755 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 756 unsigned long resource, unsigned long value1, 757 unsigned long value2) 758 { 759 switch (resource) { 760 case H_SET_MODE_RESOURCE_SET_CIABR: 761 if (!kvmppc_power8_compatible(vcpu)) 762 return H_P2; 763 if (value2) 764 return H_P4; 765 if (mflags) 766 return H_UNSUPPORTED_FLAG_START; 767 /* Guests can't breakpoint the hypervisor */ 768 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 769 return H_P3; 770 vcpu->arch.ciabr = value1; 771 return H_SUCCESS; 772 case H_SET_MODE_RESOURCE_SET_DAWR0: 773 if (!kvmppc_power8_compatible(vcpu)) 774 return H_P2; 775 if (!ppc_breakpoint_available()) 776 return H_P2; 777 if (mflags) 778 return H_UNSUPPORTED_FLAG_START; 779 if (value2 & DABRX_HYP) 780 return H_P4; 781 vcpu->arch.dawr0 = value1; 782 vcpu->arch.dawrx0 = value2; 783 return H_SUCCESS; 784 case H_SET_MODE_RESOURCE_SET_DAWR1: 785 if (!kvmppc_power8_compatible(vcpu)) 786 return H_P2; 787 if (!ppc_breakpoint_available()) 788 return H_P2; 789 if (!cpu_has_feature(CPU_FTR_DAWR1)) 790 return H_P2; 791 if (!vcpu->kvm->arch.dawr1_enabled) 792 return H_FUNCTION; 793 if (mflags) 794 return H_UNSUPPORTED_FLAG_START; 795 if (value2 & DABRX_HYP) 796 return H_P4; 797 vcpu->arch.dawr1 = value1; 798 vcpu->arch.dawrx1 = value2; 799 return H_SUCCESS; 800 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 801 /* 802 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 803 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 804 */ 805 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 806 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 807 return H_UNSUPPORTED_FLAG_START; 808 return H_TOO_HARD; 809 default: 810 return H_TOO_HARD; 811 } 812 } 813 814 /* Copy guest memory in place - must reside within a single memslot */ 815 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 816 unsigned long len) 817 { 818 struct kvm_memory_slot *to_memslot = NULL; 819 struct kvm_memory_slot *from_memslot = NULL; 820 unsigned long to_addr, from_addr; 821 int r; 822 823 /* Get HPA for from address */ 824 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 825 if (!from_memslot) 826 return -EFAULT; 827 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 828 << PAGE_SHIFT)) 829 return -EINVAL; 830 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 831 if (kvm_is_error_hva(from_addr)) 832 return -EFAULT; 833 from_addr |= (from & (PAGE_SIZE - 1)); 834 835 /* Get HPA for to address */ 836 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 837 if (!to_memslot) 838 return -EFAULT; 839 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 840 << PAGE_SHIFT)) 841 return -EINVAL; 842 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 843 if (kvm_is_error_hva(to_addr)) 844 return -EFAULT; 845 to_addr |= (to & (PAGE_SIZE - 1)); 846 847 /* Perform copy */ 848 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 849 len); 850 if (r) 851 return -EFAULT; 852 mark_page_dirty(kvm, to >> PAGE_SHIFT); 853 return 0; 854 } 855 856 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 857 unsigned long dest, unsigned long src) 858 { 859 u64 pg_sz = SZ_4K; /* 4K page size */ 860 u64 pg_mask = SZ_4K - 1; 861 int ret; 862 863 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 864 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 865 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 866 return H_PARAMETER; 867 868 /* dest (and src if copy_page flag set) must be page aligned */ 869 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 870 return H_PARAMETER; 871 872 /* zero and/or copy the page as determined by the flags */ 873 if (flags & H_COPY_PAGE) { 874 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 875 if (ret < 0) 876 return H_PARAMETER; 877 } else if (flags & H_ZERO_PAGE) { 878 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 879 if (ret < 0) 880 return H_PARAMETER; 881 } 882 883 /* We can ignore the remaining flags */ 884 885 return H_SUCCESS; 886 } 887 888 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 889 { 890 struct kvmppc_vcore *vcore = target->arch.vcore; 891 892 /* 893 * We expect to have been called by the real mode handler 894 * (kvmppc_rm_h_confer()) which would have directly returned 895 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 896 * have useful work to do and should not confer) so we don't 897 * recheck that here. 898 * 899 * In the case of the P9 single vcpu per vcore case, the real 900 * mode handler is not called but no other threads are in the 901 * source vcore. 902 */ 903 904 spin_lock(&vcore->lock); 905 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 906 vcore->vcore_state != VCORE_INACTIVE && 907 vcore->runner) 908 target = vcore->runner; 909 spin_unlock(&vcore->lock); 910 911 return kvm_vcpu_yield_to(target); 912 } 913 914 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 915 { 916 int yield_count = 0; 917 struct lppaca *lppaca; 918 919 spin_lock(&vcpu->arch.vpa_update_lock); 920 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 921 if (lppaca) 922 yield_count = be32_to_cpu(lppaca->yield_count); 923 spin_unlock(&vcpu->arch.vpa_update_lock); 924 return yield_count; 925 } 926 927 /* 928 * H_RPT_INVALIDATE hcall handler for nested guests. 929 * 930 * Handles only nested process-scoped invalidation requests in L0. 931 */ 932 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 933 { 934 unsigned long type = kvmppc_get_gpr(vcpu, 6); 935 unsigned long pid, pg_sizes, start, end; 936 937 /* 938 * The partition-scoped invalidations aren't handled here in L0. 939 */ 940 if (type & H_RPTI_TYPE_NESTED) 941 return RESUME_HOST; 942 943 pid = kvmppc_get_gpr(vcpu, 4); 944 pg_sizes = kvmppc_get_gpr(vcpu, 7); 945 start = kvmppc_get_gpr(vcpu, 8); 946 end = kvmppc_get_gpr(vcpu, 9); 947 948 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 949 type, pg_sizes, start, end); 950 951 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 952 return RESUME_GUEST; 953 } 954 955 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 956 unsigned long id, unsigned long target, 957 unsigned long type, unsigned long pg_sizes, 958 unsigned long start, unsigned long end) 959 { 960 if (!kvm_is_radix(vcpu->kvm)) 961 return H_UNSUPPORTED; 962 963 if (end < start) 964 return H_P5; 965 966 /* 967 * Partition-scoped invalidation for nested guests. 968 */ 969 if (type & H_RPTI_TYPE_NESTED) { 970 if (!nesting_enabled(vcpu->kvm)) 971 return H_FUNCTION; 972 973 /* Support only cores as target */ 974 if (target != H_RPTI_TARGET_CMMU) 975 return H_P2; 976 977 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 978 start, end); 979 } 980 981 /* 982 * Process-scoped invalidation for L1 guests. 983 */ 984 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 985 type, pg_sizes, start, end); 986 return H_SUCCESS; 987 } 988 989 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 990 { 991 struct kvm *kvm = vcpu->kvm; 992 unsigned long req = kvmppc_get_gpr(vcpu, 3); 993 unsigned long target, ret = H_SUCCESS; 994 int yield_count; 995 struct kvm_vcpu *tvcpu; 996 int idx, rc; 997 998 if (req <= MAX_HCALL_OPCODE && 999 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1000 return RESUME_HOST; 1001 1002 switch (req) { 1003 case H_REMOVE: 1004 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1005 kvmppc_get_gpr(vcpu, 5), 1006 kvmppc_get_gpr(vcpu, 6)); 1007 if (ret == H_TOO_HARD) 1008 return RESUME_HOST; 1009 break; 1010 case H_ENTER: 1011 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1012 kvmppc_get_gpr(vcpu, 5), 1013 kvmppc_get_gpr(vcpu, 6), 1014 kvmppc_get_gpr(vcpu, 7)); 1015 if (ret == H_TOO_HARD) 1016 return RESUME_HOST; 1017 break; 1018 case H_READ: 1019 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1020 kvmppc_get_gpr(vcpu, 5)); 1021 if (ret == H_TOO_HARD) 1022 return RESUME_HOST; 1023 break; 1024 case H_CLEAR_MOD: 1025 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1026 kvmppc_get_gpr(vcpu, 5)); 1027 if (ret == H_TOO_HARD) 1028 return RESUME_HOST; 1029 break; 1030 case H_CLEAR_REF: 1031 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1032 kvmppc_get_gpr(vcpu, 5)); 1033 if (ret == H_TOO_HARD) 1034 return RESUME_HOST; 1035 break; 1036 case H_PROTECT: 1037 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1038 kvmppc_get_gpr(vcpu, 5), 1039 kvmppc_get_gpr(vcpu, 6)); 1040 if (ret == H_TOO_HARD) 1041 return RESUME_HOST; 1042 break; 1043 case H_BULK_REMOVE: 1044 ret = kvmppc_h_bulk_remove(vcpu); 1045 if (ret == H_TOO_HARD) 1046 return RESUME_HOST; 1047 break; 1048 1049 case H_CEDE: 1050 break; 1051 case H_PROD: 1052 target = kvmppc_get_gpr(vcpu, 4); 1053 tvcpu = kvmppc_find_vcpu(kvm, target); 1054 if (!tvcpu) { 1055 ret = H_PARAMETER; 1056 break; 1057 } 1058 tvcpu->arch.prodded = 1; 1059 smp_mb(); 1060 if (tvcpu->arch.ceded) 1061 kvmppc_fast_vcpu_kick_hv(tvcpu); 1062 break; 1063 case H_CONFER: 1064 target = kvmppc_get_gpr(vcpu, 4); 1065 if (target == -1) 1066 break; 1067 tvcpu = kvmppc_find_vcpu(kvm, target); 1068 if (!tvcpu) { 1069 ret = H_PARAMETER; 1070 break; 1071 } 1072 yield_count = kvmppc_get_gpr(vcpu, 5); 1073 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1074 break; 1075 kvm_arch_vcpu_yield_to(tvcpu); 1076 break; 1077 case H_REGISTER_VPA: 1078 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1079 kvmppc_get_gpr(vcpu, 5), 1080 kvmppc_get_gpr(vcpu, 6)); 1081 break; 1082 case H_RTAS: 1083 if (list_empty(&kvm->arch.rtas_tokens)) 1084 return RESUME_HOST; 1085 1086 idx = srcu_read_lock(&kvm->srcu); 1087 rc = kvmppc_rtas_hcall(vcpu); 1088 srcu_read_unlock(&kvm->srcu, idx); 1089 1090 if (rc == -ENOENT) 1091 return RESUME_HOST; 1092 else if (rc == 0) 1093 break; 1094 1095 /* Send the error out to userspace via KVM_RUN */ 1096 return rc; 1097 case H_LOGICAL_CI_LOAD: 1098 ret = kvmppc_h_logical_ci_load(vcpu); 1099 if (ret == H_TOO_HARD) 1100 return RESUME_HOST; 1101 break; 1102 case H_LOGICAL_CI_STORE: 1103 ret = kvmppc_h_logical_ci_store(vcpu); 1104 if (ret == H_TOO_HARD) 1105 return RESUME_HOST; 1106 break; 1107 case H_SET_MODE: 1108 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1109 kvmppc_get_gpr(vcpu, 5), 1110 kvmppc_get_gpr(vcpu, 6), 1111 kvmppc_get_gpr(vcpu, 7)); 1112 if (ret == H_TOO_HARD) 1113 return RESUME_HOST; 1114 break; 1115 case H_XIRR: 1116 case H_CPPR: 1117 case H_EOI: 1118 case H_IPI: 1119 case H_IPOLL: 1120 case H_XIRR_X: 1121 if (kvmppc_xics_enabled(vcpu)) { 1122 if (xics_on_xive()) { 1123 ret = H_NOT_AVAILABLE; 1124 return RESUME_GUEST; 1125 } 1126 ret = kvmppc_xics_hcall(vcpu, req); 1127 break; 1128 } 1129 return RESUME_HOST; 1130 case H_SET_DABR: 1131 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1132 break; 1133 case H_SET_XDABR: 1134 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1135 kvmppc_get_gpr(vcpu, 5)); 1136 break; 1137 #ifdef CONFIG_SPAPR_TCE_IOMMU 1138 case H_GET_TCE: 1139 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1140 kvmppc_get_gpr(vcpu, 5)); 1141 if (ret == H_TOO_HARD) 1142 return RESUME_HOST; 1143 break; 1144 case H_PUT_TCE: 1145 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1146 kvmppc_get_gpr(vcpu, 5), 1147 kvmppc_get_gpr(vcpu, 6)); 1148 if (ret == H_TOO_HARD) 1149 return RESUME_HOST; 1150 break; 1151 case H_PUT_TCE_INDIRECT: 1152 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1153 kvmppc_get_gpr(vcpu, 5), 1154 kvmppc_get_gpr(vcpu, 6), 1155 kvmppc_get_gpr(vcpu, 7)); 1156 if (ret == H_TOO_HARD) 1157 return RESUME_HOST; 1158 break; 1159 case H_STUFF_TCE: 1160 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1161 kvmppc_get_gpr(vcpu, 5), 1162 kvmppc_get_gpr(vcpu, 6), 1163 kvmppc_get_gpr(vcpu, 7)); 1164 if (ret == H_TOO_HARD) 1165 return RESUME_HOST; 1166 break; 1167 #endif 1168 case H_RANDOM: 1169 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4])) 1170 ret = H_HARDWARE; 1171 break; 1172 case H_RPT_INVALIDATE: 1173 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1174 kvmppc_get_gpr(vcpu, 5), 1175 kvmppc_get_gpr(vcpu, 6), 1176 kvmppc_get_gpr(vcpu, 7), 1177 kvmppc_get_gpr(vcpu, 8), 1178 kvmppc_get_gpr(vcpu, 9)); 1179 break; 1180 1181 case H_SET_PARTITION_TABLE: 1182 ret = H_FUNCTION; 1183 if (nesting_enabled(kvm)) 1184 ret = kvmhv_set_partition_table(vcpu); 1185 break; 1186 case H_ENTER_NESTED: 1187 ret = H_FUNCTION; 1188 if (!nesting_enabled(kvm)) 1189 break; 1190 ret = kvmhv_enter_nested_guest(vcpu); 1191 if (ret == H_INTERRUPT) { 1192 kvmppc_set_gpr(vcpu, 3, 0); 1193 vcpu->arch.hcall_needed = 0; 1194 return -EINTR; 1195 } else if (ret == H_TOO_HARD) { 1196 kvmppc_set_gpr(vcpu, 3, 0); 1197 vcpu->arch.hcall_needed = 0; 1198 return RESUME_HOST; 1199 } 1200 break; 1201 case H_TLB_INVALIDATE: 1202 ret = H_FUNCTION; 1203 if (nesting_enabled(kvm)) 1204 ret = kvmhv_do_nested_tlbie(vcpu); 1205 break; 1206 case H_COPY_TOFROM_GUEST: 1207 ret = H_FUNCTION; 1208 if (nesting_enabled(kvm)) 1209 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1210 break; 1211 case H_PAGE_INIT: 1212 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1213 kvmppc_get_gpr(vcpu, 5), 1214 kvmppc_get_gpr(vcpu, 6)); 1215 break; 1216 case H_SVM_PAGE_IN: 1217 ret = H_UNSUPPORTED; 1218 if (kvmppc_get_srr1(vcpu) & MSR_S) 1219 ret = kvmppc_h_svm_page_in(kvm, 1220 kvmppc_get_gpr(vcpu, 4), 1221 kvmppc_get_gpr(vcpu, 5), 1222 kvmppc_get_gpr(vcpu, 6)); 1223 break; 1224 case H_SVM_PAGE_OUT: 1225 ret = H_UNSUPPORTED; 1226 if (kvmppc_get_srr1(vcpu) & MSR_S) 1227 ret = kvmppc_h_svm_page_out(kvm, 1228 kvmppc_get_gpr(vcpu, 4), 1229 kvmppc_get_gpr(vcpu, 5), 1230 kvmppc_get_gpr(vcpu, 6)); 1231 break; 1232 case H_SVM_INIT_START: 1233 ret = H_UNSUPPORTED; 1234 if (kvmppc_get_srr1(vcpu) & MSR_S) 1235 ret = kvmppc_h_svm_init_start(kvm); 1236 break; 1237 case H_SVM_INIT_DONE: 1238 ret = H_UNSUPPORTED; 1239 if (kvmppc_get_srr1(vcpu) & MSR_S) 1240 ret = kvmppc_h_svm_init_done(kvm); 1241 break; 1242 case H_SVM_INIT_ABORT: 1243 /* 1244 * Even if that call is made by the Ultravisor, the SSR1 value 1245 * is the guest context one, with the secure bit clear as it has 1246 * not yet been secured. So we can't check it here. 1247 * Instead the kvm->arch.secure_guest flag is checked inside 1248 * kvmppc_h_svm_init_abort(). 1249 */ 1250 ret = kvmppc_h_svm_init_abort(kvm); 1251 break; 1252 1253 default: 1254 return RESUME_HOST; 1255 } 1256 WARN_ON_ONCE(ret == H_TOO_HARD); 1257 kvmppc_set_gpr(vcpu, 3, ret); 1258 vcpu->arch.hcall_needed = 0; 1259 return RESUME_GUEST; 1260 } 1261 1262 /* 1263 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1264 * handlers in book3s_hv_rmhandlers.S. 1265 * 1266 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1267 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1268 */ 1269 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1270 { 1271 vcpu->arch.shregs.msr |= MSR_EE; 1272 vcpu->arch.ceded = 1; 1273 smp_mb(); 1274 if (vcpu->arch.prodded) { 1275 vcpu->arch.prodded = 0; 1276 smp_mb(); 1277 vcpu->arch.ceded = 0; 1278 } 1279 } 1280 1281 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1282 { 1283 switch (cmd) { 1284 case H_CEDE: 1285 case H_PROD: 1286 case H_CONFER: 1287 case H_REGISTER_VPA: 1288 case H_SET_MODE: 1289 case H_LOGICAL_CI_LOAD: 1290 case H_LOGICAL_CI_STORE: 1291 #ifdef CONFIG_KVM_XICS 1292 case H_XIRR: 1293 case H_CPPR: 1294 case H_EOI: 1295 case H_IPI: 1296 case H_IPOLL: 1297 case H_XIRR_X: 1298 #endif 1299 case H_PAGE_INIT: 1300 case H_RPT_INVALIDATE: 1301 return 1; 1302 } 1303 1304 /* See if it's in the real-mode table */ 1305 return kvmppc_hcall_impl_hv_realmode(cmd); 1306 } 1307 1308 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1309 { 1310 u32 last_inst; 1311 1312 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1313 EMULATE_DONE) { 1314 /* 1315 * Fetch failed, so return to guest and 1316 * try executing it again. 1317 */ 1318 return RESUME_GUEST; 1319 } 1320 1321 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1322 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1323 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1324 return RESUME_HOST; 1325 } else { 1326 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1327 return RESUME_GUEST; 1328 } 1329 } 1330 1331 static void do_nothing(void *x) 1332 { 1333 } 1334 1335 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1336 { 1337 int thr, cpu, pcpu, nthreads; 1338 struct kvm_vcpu *v; 1339 unsigned long dpdes; 1340 1341 nthreads = vcpu->kvm->arch.emul_smt_mode; 1342 dpdes = 0; 1343 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1344 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1345 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1346 if (!v) 1347 continue; 1348 /* 1349 * If the vcpu is currently running on a physical cpu thread, 1350 * interrupt it in order to pull it out of the guest briefly, 1351 * which will update its vcore->dpdes value. 1352 */ 1353 pcpu = READ_ONCE(v->cpu); 1354 if (pcpu >= 0) 1355 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1356 if (kvmppc_doorbell_pending(v)) 1357 dpdes |= 1 << thr; 1358 } 1359 return dpdes; 1360 } 1361 1362 /* 1363 * On POWER9, emulate doorbell-related instructions in order to 1364 * give the guest the illusion of running on a multi-threaded core. 1365 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1366 * and mfspr DPDES. 1367 */ 1368 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1369 { 1370 u32 inst, rb, thr; 1371 unsigned long arg; 1372 struct kvm *kvm = vcpu->kvm; 1373 struct kvm_vcpu *tvcpu; 1374 1375 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1376 return RESUME_GUEST; 1377 if (get_op(inst) != 31) 1378 return EMULATE_FAIL; 1379 rb = get_rb(inst); 1380 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1381 switch (get_xop(inst)) { 1382 case OP_31_XOP_MSGSNDP: 1383 arg = kvmppc_get_gpr(vcpu, rb); 1384 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1385 break; 1386 arg &= 0x7f; 1387 if (arg >= kvm->arch.emul_smt_mode) 1388 break; 1389 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1390 if (!tvcpu) 1391 break; 1392 if (!tvcpu->arch.doorbell_request) { 1393 tvcpu->arch.doorbell_request = 1; 1394 kvmppc_fast_vcpu_kick_hv(tvcpu); 1395 } 1396 break; 1397 case OP_31_XOP_MSGCLRP: 1398 arg = kvmppc_get_gpr(vcpu, rb); 1399 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1400 break; 1401 vcpu->arch.vcore->dpdes = 0; 1402 vcpu->arch.doorbell_request = 0; 1403 break; 1404 case OP_31_XOP_MFSPR: 1405 switch (get_sprn(inst)) { 1406 case SPRN_TIR: 1407 arg = thr; 1408 break; 1409 case SPRN_DPDES: 1410 arg = kvmppc_read_dpdes(vcpu); 1411 break; 1412 default: 1413 return EMULATE_FAIL; 1414 } 1415 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1416 break; 1417 default: 1418 return EMULATE_FAIL; 1419 } 1420 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1421 return RESUME_GUEST; 1422 } 1423 1424 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1425 struct task_struct *tsk) 1426 { 1427 struct kvm_run *run = vcpu->run; 1428 int r = RESUME_HOST; 1429 1430 vcpu->stat.sum_exits++; 1431 1432 /* 1433 * This can happen if an interrupt occurs in the last stages 1434 * of guest entry or the first stages of guest exit (i.e. after 1435 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1436 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1437 * That can happen due to a bug, or due to a machine check 1438 * occurring at just the wrong time. 1439 */ 1440 if (vcpu->arch.shregs.msr & MSR_HV) { 1441 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1442 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1443 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1444 vcpu->arch.shregs.msr); 1445 kvmppc_dump_regs(vcpu); 1446 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1447 run->hw.hardware_exit_reason = vcpu->arch.trap; 1448 return RESUME_HOST; 1449 } 1450 run->exit_reason = KVM_EXIT_UNKNOWN; 1451 run->ready_for_interrupt_injection = 1; 1452 switch (vcpu->arch.trap) { 1453 /* We're good on these - the host merely wanted to get our attention */ 1454 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1455 vcpu->stat.dec_exits++; 1456 r = RESUME_GUEST; 1457 break; 1458 case BOOK3S_INTERRUPT_EXTERNAL: 1459 case BOOK3S_INTERRUPT_H_DOORBELL: 1460 case BOOK3S_INTERRUPT_H_VIRT: 1461 vcpu->stat.ext_intr_exits++; 1462 r = RESUME_GUEST; 1463 break; 1464 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1465 case BOOK3S_INTERRUPT_HMI: 1466 case BOOK3S_INTERRUPT_PERFMON: 1467 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1468 r = RESUME_GUEST; 1469 break; 1470 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1471 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1472 DEFAULT_RATELIMIT_BURST); 1473 /* 1474 * Print the MCE event to host console. Ratelimit so the guest 1475 * can't flood the host log. 1476 */ 1477 if (__ratelimit(&rs)) 1478 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1479 1480 /* 1481 * If the guest can do FWNMI, exit to userspace so it can 1482 * deliver a FWNMI to the guest. 1483 * Otherwise we synthesize a machine check for the guest 1484 * so that it knows that the machine check occurred. 1485 */ 1486 if (!vcpu->kvm->arch.fwnmi_enabled) { 1487 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1488 kvmppc_core_queue_machine_check(vcpu, flags); 1489 r = RESUME_GUEST; 1490 break; 1491 } 1492 1493 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1494 run->exit_reason = KVM_EXIT_NMI; 1495 run->hw.hardware_exit_reason = vcpu->arch.trap; 1496 /* Clear out the old NMI status from run->flags */ 1497 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1498 /* Now set the NMI status */ 1499 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1500 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1501 else 1502 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1503 1504 r = RESUME_HOST; 1505 break; 1506 } 1507 case BOOK3S_INTERRUPT_PROGRAM: 1508 { 1509 ulong flags; 1510 /* 1511 * Normally program interrupts are delivered directly 1512 * to the guest by the hardware, but we can get here 1513 * as a result of a hypervisor emulation interrupt 1514 * (e40) getting turned into a 700 by BML RTAS. 1515 */ 1516 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1517 kvmppc_core_queue_program(vcpu, flags); 1518 r = RESUME_GUEST; 1519 break; 1520 } 1521 case BOOK3S_INTERRUPT_SYSCALL: 1522 { 1523 int i; 1524 1525 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1526 /* 1527 * Guest userspace executed sc 1. This can only be 1528 * reached by the P9 path because the old path 1529 * handles this case in realmode hcall handlers. 1530 */ 1531 if (!kvmhv_vcpu_is_radix(vcpu)) { 1532 /* 1533 * A guest could be running PR KVM, so this 1534 * may be a PR KVM hcall. It must be reflected 1535 * to the guest kernel as a sc interrupt. 1536 */ 1537 kvmppc_core_queue_syscall(vcpu); 1538 } else { 1539 /* 1540 * Radix guests can not run PR KVM or nested HV 1541 * hash guests which might run PR KVM, so this 1542 * is always a privilege fault. Send a program 1543 * check to guest kernel. 1544 */ 1545 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1546 } 1547 r = RESUME_GUEST; 1548 break; 1549 } 1550 1551 /* 1552 * hcall - gather args and set exit_reason. This will next be 1553 * handled by kvmppc_pseries_do_hcall which may be able to deal 1554 * with it and resume guest, or may punt to userspace. 1555 */ 1556 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1557 for (i = 0; i < 9; ++i) 1558 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1559 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1560 vcpu->arch.hcall_needed = 1; 1561 r = RESUME_HOST; 1562 break; 1563 } 1564 /* 1565 * We get these next two if the guest accesses a page which it thinks 1566 * it has mapped but which is not actually present, either because 1567 * it is for an emulated I/O device or because the corresonding 1568 * host page has been paged out. 1569 * 1570 * Any other HDSI/HISI interrupts have been handled already for P7/8 1571 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1572 * fault handling is done here. 1573 */ 1574 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1575 unsigned long vsid; 1576 long err; 1577 1578 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) { 1579 r = RESUME_GUEST; /* Just retry if it's the canary */ 1580 break; 1581 } 1582 1583 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1584 /* 1585 * Radix doesn't require anything, and pre-ISAv3.0 hash 1586 * already attempted to handle this in rmhandlers. The 1587 * hash fault handling below is v3 only (it uses ASDR 1588 * via fault_gpa). 1589 */ 1590 r = RESUME_PAGE_FAULT; 1591 break; 1592 } 1593 1594 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1595 kvmppc_core_queue_data_storage(vcpu, 1596 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1597 r = RESUME_GUEST; 1598 break; 1599 } 1600 1601 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1602 vsid = vcpu->kvm->arch.vrma_slb_v; 1603 else 1604 vsid = vcpu->arch.fault_gpa; 1605 1606 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1607 vsid, vcpu->arch.fault_dsisr, true); 1608 if (err == 0) { 1609 r = RESUME_GUEST; 1610 } else if (err == -1 || err == -2) { 1611 r = RESUME_PAGE_FAULT; 1612 } else { 1613 kvmppc_core_queue_data_storage(vcpu, 1614 vcpu->arch.fault_dar, err); 1615 r = RESUME_GUEST; 1616 } 1617 break; 1618 } 1619 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1620 unsigned long vsid; 1621 long err; 1622 1623 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1624 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1625 DSISR_SRR1_MATCH_64S; 1626 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1627 /* 1628 * Radix doesn't require anything, and pre-ISAv3.0 hash 1629 * already attempted to handle this in rmhandlers. The 1630 * hash fault handling below is v3 only (it uses ASDR 1631 * via fault_gpa). 1632 */ 1633 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1634 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1635 r = RESUME_PAGE_FAULT; 1636 break; 1637 } 1638 1639 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1640 kvmppc_core_queue_inst_storage(vcpu, 1641 vcpu->arch.fault_dsisr); 1642 r = RESUME_GUEST; 1643 break; 1644 } 1645 1646 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1647 vsid = vcpu->kvm->arch.vrma_slb_v; 1648 else 1649 vsid = vcpu->arch.fault_gpa; 1650 1651 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1652 vsid, vcpu->arch.fault_dsisr, false); 1653 if (err == 0) { 1654 r = RESUME_GUEST; 1655 } else if (err == -1) { 1656 r = RESUME_PAGE_FAULT; 1657 } else { 1658 kvmppc_core_queue_inst_storage(vcpu, err); 1659 r = RESUME_GUEST; 1660 } 1661 break; 1662 } 1663 1664 /* 1665 * This occurs if the guest executes an illegal instruction. 1666 * If the guest debug is disabled, generate a program interrupt 1667 * to the guest. If guest debug is enabled, we need to check 1668 * whether the instruction is a software breakpoint instruction. 1669 * Accordingly return to Guest or Host. 1670 */ 1671 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1672 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1673 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1674 swab32(vcpu->arch.emul_inst) : 1675 vcpu->arch.emul_inst; 1676 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1677 r = kvmppc_emulate_debug_inst(vcpu); 1678 } else { 1679 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1680 r = RESUME_GUEST; 1681 } 1682 break; 1683 1684 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1685 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1686 /* 1687 * This occurs for various TM-related instructions that 1688 * we need to emulate on POWER9 DD2.2. We have already 1689 * handled the cases where the guest was in real-suspend 1690 * mode and was transitioning to transactional state. 1691 */ 1692 r = kvmhv_p9_tm_emulation(vcpu); 1693 if (r != -1) 1694 break; 1695 fallthrough; /* go to facility unavailable handler */ 1696 #endif 1697 1698 /* 1699 * This occurs if the guest (kernel or userspace), does something that 1700 * is prohibited by HFSCR. 1701 * On POWER9, this could be a doorbell instruction that we need 1702 * to emulate. 1703 * Otherwise, we just generate a program interrupt to the guest. 1704 */ 1705 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1706 r = EMULATE_FAIL; 1707 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1708 cpu_has_feature(CPU_FTR_ARCH_300)) 1709 r = kvmppc_emulate_doorbell_instr(vcpu); 1710 if (r == EMULATE_FAIL) { 1711 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1712 r = RESUME_GUEST; 1713 } 1714 break; 1715 1716 case BOOK3S_INTERRUPT_HV_RM_HARD: 1717 r = RESUME_PASSTHROUGH; 1718 break; 1719 default: 1720 kvmppc_dump_regs(vcpu); 1721 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1722 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1723 vcpu->arch.shregs.msr); 1724 run->hw.hardware_exit_reason = vcpu->arch.trap; 1725 r = RESUME_HOST; 1726 break; 1727 } 1728 1729 return r; 1730 } 1731 1732 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1733 { 1734 struct kvm_nested_guest *nested = vcpu->arch.nested; 1735 int r; 1736 int srcu_idx; 1737 1738 vcpu->stat.sum_exits++; 1739 1740 /* 1741 * This can happen if an interrupt occurs in the last stages 1742 * of guest entry or the first stages of guest exit (i.e. after 1743 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1744 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1745 * That can happen due to a bug, or due to a machine check 1746 * occurring at just the wrong time. 1747 */ 1748 if (vcpu->arch.shregs.msr & MSR_HV) { 1749 pr_emerg("KVM trap in HV mode while nested!\n"); 1750 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1751 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1752 vcpu->arch.shregs.msr); 1753 kvmppc_dump_regs(vcpu); 1754 return RESUME_HOST; 1755 } 1756 switch (vcpu->arch.trap) { 1757 /* We're good on these - the host merely wanted to get our attention */ 1758 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1759 vcpu->stat.dec_exits++; 1760 r = RESUME_GUEST; 1761 break; 1762 case BOOK3S_INTERRUPT_EXTERNAL: 1763 vcpu->stat.ext_intr_exits++; 1764 r = RESUME_HOST; 1765 break; 1766 case BOOK3S_INTERRUPT_H_DOORBELL: 1767 case BOOK3S_INTERRUPT_H_VIRT: 1768 vcpu->stat.ext_intr_exits++; 1769 r = RESUME_GUEST; 1770 break; 1771 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1772 case BOOK3S_INTERRUPT_HMI: 1773 case BOOK3S_INTERRUPT_PERFMON: 1774 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1775 r = RESUME_GUEST; 1776 break; 1777 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1778 { 1779 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1780 DEFAULT_RATELIMIT_BURST); 1781 /* Pass the machine check to the L1 guest */ 1782 r = RESUME_HOST; 1783 /* Print the MCE event to host console. */ 1784 if (__ratelimit(&rs)) 1785 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1786 break; 1787 } 1788 /* 1789 * We get these next two if the guest accesses a page which it thinks 1790 * it has mapped but which is not actually present, either because 1791 * it is for an emulated I/O device or because the corresonding 1792 * host page has been paged out. 1793 */ 1794 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1795 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1796 r = kvmhv_nested_page_fault(vcpu); 1797 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1798 break; 1799 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1800 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1801 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1802 DSISR_SRR1_MATCH_64S; 1803 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1804 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1805 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1806 r = kvmhv_nested_page_fault(vcpu); 1807 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1808 break; 1809 1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1811 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1812 /* 1813 * This occurs for various TM-related instructions that 1814 * we need to emulate on POWER9 DD2.2. We have already 1815 * handled the cases where the guest was in real-suspend 1816 * mode and was transitioning to transactional state. 1817 */ 1818 r = kvmhv_p9_tm_emulation(vcpu); 1819 if (r != -1) 1820 break; 1821 fallthrough; /* go to facility unavailable handler */ 1822 #endif 1823 1824 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1825 u64 cause = vcpu->arch.hfscr >> 56; 1826 1827 /* 1828 * Only pass HFU interrupts to the L1 if the facility is 1829 * permitted but disabled by the L1's HFSCR, otherwise 1830 * the interrupt does not make sense to the L1 so turn 1831 * it into a HEAI. 1832 */ 1833 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 1834 (nested->hfscr & (1UL << cause))) { 1835 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 1836 1837 /* 1838 * If the fetch failed, return to guest and 1839 * try executing it again. 1840 */ 1841 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1842 &vcpu->arch.emul_inst); 1843 if (r != EMULATE_DONE) 1844 r = RESUME_GUEST; 1845 else 1846 r = RESUME_HOST; 1847 } else { 1848 r = RESUME_HOST; 1849 } 1850 1851 break; 1852 } 1853 1854 case BOOK3S_INTERRUPT_HV_RM_HARD: 1855 vcpu->arch.trap = 0; 1856 r = RESUME_GUEST; 1857 if (!xics_on_xive()) 1858 kvmppc_xics_rm_complete(vcpu, 0); 1859 break; 1860 case BOOK3S_INTERRUPT_SYSCALL: 1861 { 1862 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1863 1864 /* 1865 * The H_RPT_INVALIDATE hcalls issued by nested 1866 * guests for process-scoped invalidations when 1867 * GTSE=0, are handled here in L0. 1868 */ 1869 if (req == H_RPT_INVALIDATE) { 1870 r = kvmppc_nested_h_rpt_invalidate(vcpu); 1871 break; 1872 } 1873 1874 r = RESUME_HOST; 1875 break; 1876 } 1877 default: 1878 r = RESUME_HOST; 1879 break; 1880 } 1881 1882 return r; 1883 } 1884 1885 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1886 struct kvm_sregs *sregs) 1887 { 1888 int i; 1889 1890 memset(sregs, 0, sizeof(struct kvm_sregs)); 1891 sregs->pvr = vcpu->arch.pvr; 1892 for (i = 0; i < vcpu->arch.slb_max; i++) { 1893 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1894 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1901 struct kvm_sregs *sregs) 1902 { 1903 int i, j; 1904 1905 /* Only accept the same PVR as the host's, since we can't spoof it */ 1906 if (sregs->pvr != vcpu->arch.pvr) 1907 return -EINVAL; 1908 1909 j = 0; 1910 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1911 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1912 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1913 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1914 ++j; 1915 } 1916 } 1917 vcpu->arch.slb_max = j; 1918 1919 return 0; 1920 } 1921 1922 /* 1923 * Enforce limits on guest LPCR values based on hardware availability, 1924 * guest configuration, and possibly hypervisor support and security 1925 * concerns. 1926 */ 1927 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 1928 { 1929 /* LPCR_TC only applies to HPT guests */ 1930 if (kvm_is_radix(kvm)) 1931 lpcr &= ~LPCR_TC; 1932 1933 /* On POWER8 and above, userspace can modify AIL */ 1934 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 1935 lpcr &= ~LPCR_AIL; 1936 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 1937 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 1938 /* 1939 * On some POWER9s we force AIL off for radix guests to prevent 1940 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 1941 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 1942 * be cached, which the host TLB management does not expect. 1943 */ 1944 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 1945 lpcr &= ~LPCR_AIL; 1946 1947 /* 1948 * On POWER9, allow userspace to enable large decrementer for the 1949 * guest, whether or not the host has it enabled. 1950 */ 1951 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1952 lpcr &= ~LPCR_LD; 1953 1954 return lpcr; 1955 } 1956 1957 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 1958 { 1959 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 1960 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 1961 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 1962 } 1963 } 1964 1965 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1966 bool preserve_top32) 1967 { 1968 struct kvm *kvm = vcpu->kvm; 1969 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1970 u64 mask; 1971 1972 spin_lock(&vc->lock); 1973 1974 /* 1975 * Userspace can only modify 1976 * DPFD (default prefetch depth), ILE (interrupt little-endian), 1977 * TC (translation control), AIL (alternate interrupt location), 1978 * LD (large decrementer). 1979 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 1980 */ 1981 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 1982 1983 /* Broken 32-bit version of LPCR must not clear top bits */ 1984 if (preserve_top32) 1985 mask &= 0xFFFFFFFF; 1986 1987 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 1988 (vc->lpcr & ~mask) | (new_lpcr & mask)); 1989 1990 /* 1991 * If ILE (interrupt little-endian) has changed, update the 1992 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1993 */ 1994 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1995 struct kvm_vcpu *vcpu; 1996 int i; 1997 1998 kvm_for_each_vcpu(i, vcpu, kvm) { 1999 if (vcpu->arch.vcore != vc) 2000 continue; 2001 if (new_lpcr & LPCR_ILE) 2002 vcpu->arch.intr_msr |= MSR_LE; 2003 else 2004 vcpu->arch.intr_msr &= ~MSR_LE; 2005 } 2006 } 2007 2008 vc->lpcr = new_lpcr; 2009 2010 spin_unlock(&vc->lock); 2011 } 2012 2013 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2014 union kvmppc_one_reg *val) 2015 { 2016 int r = 0; 2017 long int i; 2018 2019 switch (id) { 2020 case KVM_REG_PPC_DEBUG_INST: 2021 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2022 break; 2023 case KVM_REG_PPC_HIOR: 2024 *val = get_reg_val(id, 0); 2025 break; 2026 case KVM_REG_PPC_DABR: 2027 *val = get_reg_val(id, vcpu->arch.dabr); 2028 break; 2029 case KVM_REG_PPC_DABRX: 2030 *val = get_reg_val(id, vcpu->arch.dabrx); 2031 break; 2032 case KVM_REG_PPC_DSCR: 2033 *val = get_reg_val(id, vcpu->arch.dscr); 2034 break; 2035 case KVM_REG_PPC_PURR: 2036 *val = get_reg_val(id, vcpu->arch.purr); 2037 break; 2038 case KVM_REG_PPC_SPURR: 2039 *val = get_reg_val(id, vcpu->arch.spurr); 2040 break; 2041 case KVM_REG_PPC_AMR: 2042 *val = get_reg_val(id, vcpu->arch.amr); 2043 break; 2044 case KVM_REG_PPC_UAMOR: 2045 *val = get_reg_val(id, vcpu->arch.uamor); 2046 break; 2047 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2048 i = id - KVM_REG_PPC_MMCR0; 2049 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 2050 break; 2051 case KVM_REG_PPC_MMCR2: 2052 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 2053 break; 2054 case KVM_REG_PPC_MMCRA: 2055 *val = get_reg_val(id, vcpu->arch.mmcra); 2056 break; 2057 case KVM_REG_PPC_MMCRS: 2058 *val = get_reg_val(id, vcpu->arch.mmcrs); 2059 break; 2060 case KVM_REG_PPC_MMCR3: 2061 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2062 break; 2063 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2064 i = id - KVM_REG_PPC_PMC1; 2065 *val = get_reg_val(id, vcpu->arch.pmc[i]); 2066 break; 2067 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2068 i = id - KVM_REG_PPC_SPMC1; 2069 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2070 break; 2071 case KVM_REG_PPC_SIAR: 2072 *val = get_reg_val(id, vcpu->arch.siar); 2073 break; 2074 case KVM_REG_PPC_SDAR: 2075 *val = get_reg_val(id, vcpu->arch.sdar); 2076 break; 2077 case KVM_REG_PPC_SIER: 2078 *val = get_reg_val(id, vcpu->arch.sier[0]); 2079 break; 2080 case KVM_REG_PPC_SIER2: 2081 *val = get_reg_val(id, vcpu->arch.sier[1]); 2082 break; 2083 case KVM_REG_PPC_SIER3: 2084 *val = get_reg_val(id, vcpu->arch.sier[2]); 2085 break; 2086 case KVM_REG_PPC_IAMR: 2087 *val = get_reg_val(id, vcpu->arch.iamr); 2088 break; 2089 case KVM_REG_PPC_PSPB: 2090 *val = get_reg_val(id, vcpu->arch.pspb); 2091 break; 2092 case KVM_REG_PPC_DPDES: 2093 /* 2094 * On POWER9, where we are emulating msgsndp etc., 2095 * we return 1 bit for each vcpu, which can come from 2096 * either vcore->dpdes or doorbell_request. 2097 * On POWER8, doorbell_request is 0. 2098 */ 2099 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 2100 vcpu->arch.doorbell_request); 2101 break; 2102 case KVM_REG_PPC_VTB: 2103 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 2104 break; 2105 case KVM_REG_PPC_DAWR: 2106 *val = get_reg_val(id, vcpu->arch.dawr0); 2107 break; 2108 case KVM_REG_PPC_DAWRX: 2109 *val = get_reg_val(id, vcpu->arch.dawrx0); 2110 break; 2111 case KVM_REG_PPC_DAWR1: 2112 *val = get_reg_val(id, vcpu->arch.dawr1); 2113 break; 2114 case KVM_REG_PPC_DAWRX1: 2115 *val = get_reg_val(id, vcpu->arch.dawrx1); 2116 break; 2117 case KVM_REG_PPC_CIABR: 2118 *val = get_reg_val(id, vcpu->arch.ciabr); 2119 break; 2120 case KVM_REG_PPC_CSIGR: 2121 *val = get_reg_val(id, vcpu->arch.csigr); 2122 break; 2123 case KVM_REG_PPC_TACR: 2124 *val = get_reg_val(id, vcpu->arch.tacr); 2125 break; 2126 case KVM_REG_PPC_TCSCR: 2127 *val = get_reg_val(id, vcpu->arch.tcscr); 2128 break; 2129 case KVM_REG_PPC_PID: 2130 *val = get_reg_val(id, vcpu->arch.pid); 2131 break; 2132 case KVM_REG_PPC_ACOP: 2133 *val = get_reg_val(id, vcpu->arch.acop); 2134 break; 2135 case KVM_REG_PPC_WORT: 2136 *val = get_reg_val(id, vcpu->arch.wort); 2137 break; 2138 case KVM_REG_PPC_TIDR: 2139 *val = get_reg_val(id, vcpu->arch.tid); 2140 break; 2141 case KVM_REG_PPC_PSSCR: 2142 *val = get_reg_val(id, vcpu->arch.psscr); 2143 break; 2144 case KVM_REG_PPC_VPA_ADDR: 2145 spin_lock(&vcpu->arch.vpa_update_lock); 2146 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2147 spin_unlock(&vcpu->arch.vpa_update_lock); 2148 break; 2149 case KVM_REG_PPC_VPA_SLB: 2150 spin_lock(&vcpu->arch.vpa_update_lock); 2151 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2152 val->vpaval.length = vcpu->arch.slb_shadow.len; 2153 spin_unlock(&vcpu->arch.vpa_update_lock); 2154 break; 2155 case KVM_REG_PPC_VPA_DTL: 2156 spin_lock(&vcpu->arch.vpa_update_lock); 2157 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2158 val->vpaval.length = vcpu->arch.dtl.len; 2159 spin_unlock(&vcpu->arch.vpa_update_lock); 2160 break; 2161 case KVM_REG_PPC_TB_OFFSET: 2162 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2163 break; 2164 case KVM_REG_PPC_LPCR: 2165 case KVM_REG_PPC_LPCR_64: 2166 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2167 break; 2168 case KVM_REG_PPC_PPR: 2169 *val = get_reg_val(id, vcpu->arch.ppr); 2170 break; 2171 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2172 case KVM_REG_PPC_TFHAR: 2173 *val = get_reg_val(id, vcpu->arch.tfhar); 2174 break; 2175 case KVM_REG_PPC_TFIAR: 2176 *val = get_reg_val(id, vcpu->arch.tfiar); 2177 break; 2178 case KVM_REG_PPC_TEXASR: 2179 *val = get_reg_val(id, vcpu->arch.texasr); 2180 break; 2181 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2182 i = id - KVM_REG_PPC_TM_GPR0; 2183 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2184 break; 2185 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2186 { 2187 int j; 2188 i = id - KVM_REG_PPC_TM_VSR0; 2189 if (i < 32) 2190 for (j = 0; j < TS_FPRWIDTH; j++) 2191 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2192 else { 2193 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2194 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2195 else 2196 r = -ENXIO; 2197 } 2198 break; 2199 } 2200 case KVM_REG_PPC_TM_CR: 2201 *val = get_reg_val(id, vcpu->arch.cr_tm); 2202 break; 2203 case KVM_REG_PPC_TM_XER: 2204 *val = get_reg_val(id, vcpu->arch.xer_tm); 2205 break; 2206 case KVM_REG_PPC_TM_LR: 2207 *val = get_reg_val(id, vcpu->arch.lr_tm); 2208 break; 2209 case KVM_REG_PPC_TM_CTR: 2210 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2211 break; 2212 case KVM_REG_PPC_TM_FPSCR: 2213 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2214 break; 2215 case KVM_REG_PPC_TM_AMR: 2216 *val = get_reg_val(id, vcpu->arch.amr_tm); 2217 break; 2218 case KVM_REG_PPC_TM_PPR: 2219 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2220 break; 2221 case KVM_REG_PPC_TM_VRSAVE: 2222 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2223 break; 2224 case KVM_REG_PPC_TM_VSCR: 2225 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2226 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2227 else 2228 r = -ENXIO; 2229 break; 2230 case KVM_REG_PPC_TM_DSCR: 2231 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2232 break; 2233 case KVM_REG_PPC_TM_TAR: 2234 *val = get_reg_val(id, vcpu->arch.tar_tm); 2235 break; 2236 #endif 2237 case KVM_REG_PPC_ARCH_COMPAT: 2238 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2239 break; 2240 case KVM_REG_PPC_DEC_EXPIRY: 2241 *val = get_reg_val(id, vcpu->arch.dec_expires + 2242 vcpu->arch.vcore->tb_offset); 2243 break; 2244 case KVM_REG_PPC_ONLINE: 2245 *val = get_reg_val(id, vcpu->arch.online); 2246 break; 2247 case KVM_REG_PPC_PTCR: 2248 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2249 break; 2250 default: 2251 r = -EINVAL; 2252 break; 2253 } 2254 2255 return r; 2256 } 2257 2258 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2259 union kvmppc_one_reg *val) 2260 { 2261 int r = 0; 2262 long int i; 2263 unsigned long addr, len; 2264 2265 switch (id) { 2266 case KVM_REG_PPC_HIOR: 2267 /* Only allow this to be set to zero */ 2268 if (set_reg_val(id, *val)) 2269 r = -EINVAL; 2270 break; 2271 case KVM_REG_PPC_DABR: 2272 vcpu->arch.dabr = set_reg_val(id, *val); 2273 break; 2274 case KVM_REG_PPC_DABRX: 2275 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2276 break; 2277 case KVM_REG_PPC_DSCR: 2278 vcpu->arch.dscr = set_reg_val(id, *val); 2279 break; 2280 case KVM_REG_PPC_PURR: 2281 vcpu->arch.purr = set_reg_val(id, *val); 2282 break; 2283 case KVM_REG_PPC_SPURR: 2284 vcpu->arch.spurr = set_reg_val(id, *val); 2285 break; 2286 case KVM_REG_PPC_AMR: 2287 vcpu->arch.amr = set_reg_val(id, *val); 2288 break; 2289 case KVM_REG_PPC_UAMOR: 2290 vcpu->arch.uamor = set_reg_val(id, *val); 2291 break; 2292 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2293 i = id - KVM_REG_PPC_MMCR0; 2294 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2295 break; 2296 case KVM_REG_PPC_MMCR2: 2297 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2298 break; 2299 case KVM_REG_PPC_MMCRA: 2300 vcpu->arch.mmcra = set_reg_val(id, *val); 2301 break; 2302 case KVM_REG_PPC_MMCRS: 2303 vcpu->arch.mmcrs = set_reg_val(id, *val); 2304 break; 2305 case KVM_REG_PPC_MMCR3: 2306 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2307 break; 2308 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2309 i = id - KVM_REG_PPC_PMC1; 2310 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2311 break; 2312 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2313 i = id - KVM_REG_PPC_SPMC1; 2314 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2315 break; 2316 case KVM_REG_PPC_SIAR: 2317 vcpu->arch.siar = set_reg_val(id, *val); 2318 break; 2319 case KVM_REG_PPC_SDAR: 2320 vcpu->arch.sdar = set_reg_val(id, *val); 2321 break; 2322 case KVM_REG_PPC_SIER: 2323 vcpu->arch.sier[0] = set_reg_val(id, *val); 2324 break; 2325 case KVM_REG_PPC_SIER2: 2326 vcpu->arch.sier[1] = set_reg_val(id, *val); 2327 break; 2328 case KVM_REG_PPC_SIER3: 2329 vcpu->arch.sier[2] = set_reg_val(id, *val); 2330 break; 2331 case KVM_REG_PPC_IAMR: 2332 vcpu->arch.iamr = set_reg_val(id, *val); 2333 break; 2334 case KVM_REG_PPC_PSPB: 2335 vcpu->arch.pspb = set_reg_val(id, *val); 2336 break; 2337 case KVM_REG_PPC_DPDES: 2338 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2339 break; 2340 case KVM_REG_PPC_VTB: 2341 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2342 break; 2343 case KVM_REG_PPC_DAWR: 2344 vcpu->arch.dawr0 = set_reg_val(id, *val); 2345 break; 2346 case KVM_REG_PPC_DAWRX: 2347 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2348 break; 2349 case KVM_REG_PPC_DAWR1: 2350 vcpu->arch.dawr1 = set_reg_val(id, *val); 2351 break; 2352 case KVM_REG_PPC_DAWRX1: 2353 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2354 break; 2355 case KVM_REG_PPC_CIABR: 2356 vcpu->arch.ciabr = set_reg_val(id, *val); 2357 /* Don't allow setting breakpoints in hypervisor code */ 2358 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2359 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2360 break; 2361 case KVM_REG_PPC_CSIGR: 2362 vcpu->arch.csigr = set_reg_val(id, *val); 2363 break; 2364 case KVM_REG_PPC_TACR: 2365 vcpu->arch.tacr = set_reg_val(id, *val); 2366 break; 2367 case KVM_REG_PPC_TCSCR: 2368 vcpu->arch.tcscr = set_reg_val(id, *val); 2369 break; 2370 case KVM_REG_PPC_PID: 2371 vcpu->arch.pid = set_reg_val(id, *val); 2372 break; 2373 case KVM_REG_PPC_ACOP: 2374 vcpu->arch.acop = set_reg_val(id, *val); 2375 break; 2376 case KVM_REG_PPC_WORT: 2377 vcpu->arch.wort = set_reg_val(id, *val); 2378 break; 2379 case KVM_REG_PPC_TIDR: 2380 vcpu->arch.tid = set_reg_val(id, *val); 2381 break; 2382 case KVM_REG_PPC_PSSCR: 2383 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2384 break; 2385 case KVM_REG_PPC_VPA_ADDR: 2386 addr = set_reg_val(id, *val); 2387 r = -EINVAL; 2388 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2389 vcpu->arch.dtl.next_gpa)) 2390 break; 2391 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2392 break; 2393 case KVM_REG_PPC_VPA_SLB: 2394 addr = val->vpaval.addr; 2395 len = val->vpaval.length; 2396 r = -EINVAL; 2397 if (addr && !vcpu->arch.vpa.next_gpa) 2398 break; 2399 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2400 break; 2401 case KVM_REG_PPC_VPA_DTL: 2402 addr = val->vpaval.addr; 2403 len = val->vpaval.length; 2404 r = -EINVAL; 2405 if (addr && (len < sizeof(struct dtl_entry) || 2406 !vcpu->arch.vpa.next_gpa)) 2407 break; 2408 len -= len % sizeof(struct dtl_entry); 2409 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2410 break; 2411 case KVM_REG_PPC_TB_OFFSET: 2412 /* round up to multiple of 2^24 */ 2413 vcpu->arch.vcore->tb_offset = 2414 ALIGN(set_reg_val(id, *val), 1UL << 24); 2415 break; 2416 case KVM_REG_PPC_LPCR: 2417 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2418 break; 2419 case KVM_REG_PPC_LPCR_64: 2420 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2421 break; 2422 case KVM_REG_PPC_PPR: 2423 vcpu->arch.ppr = set_reg_val(id, *val); 2424 break; 2425 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2426 case KVM_REG_PPC_TFHAR: 2427 vcpu->arch.tfhar = set_reg_val(id, *val); 2428 break; 2429 case KVM_REG_PPC_TFIAR: 2430 vcpu->arch.tfiar = set_reg_val(id, *val); 2431 break; 2432 case KVM_REG_PPC_TEXASR: 2433 vcpu->arch.texasr = set_reg_val(id, *val); 2434 break; 2435 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2436 i = id - KVM_REG_PPC_TM_GPR0; 2437 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2438 break; 2439 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2440 { 2441 int j; 2442 i = id - KVM_REG_PPC_TM_VSR0; 2443 if (i < 32) 2444 for (j = 0; j < TS_FPRWIDTH; j++) 2445 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2446 else 2447 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2448 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2449 else 2450 r = -ENXIO; 2451 break; 2452 } 2453 case KVM_REG_PPC_TM_CR: 2454 vcpu->arch.cr_tm = set_reg_val(id, *val); 2455 break; 2456 case KVM_REG_PPC_TM_XER: 2457 vcpu->arch.xer_tm = set_reg_val(id, *val); 2458 break; 2459 case KVM_REG_PPC_TM_LR: 2460 vcpu->arch.lr_tm = set_reg_val(id, *val); 2461 break; 2462 case KVM_REG_PPC_TM_CTR: 2463 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2464 break; 2465 case KVM_REG_PPC_TM_FPSCR: 2466 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2467 break; 2468 case KVM_REG_PPC_TM_AMR: 2469 vcpu->arch.amr_tm = set_reg_val(id, *val); 2470 break; 2471 case KVM_REG_PPC_TM_PPR: 2472 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2473 break; 2474 case KVM_REG_PPC_TM_VRSAVE: 2475 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2476 break; 2477 case KVM_REG_PPC_TM_VSCR: 2478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2479 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2480 else 2481 r = - ENXIO; 2482 break; 2483 case KVM_REG_PPC_TM_DSCR: 2484 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2485 break; 2486 case KVM_REG_PPC_TM_TAR: 2487 vcpu->arch.tar_tm = set_reg_val(id, *val); 2488 break; 2489 #endif 2490 case KVM_REG_PPC_ARCH_COMPAT: 2491 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2492 break; 2493 case KVM_REG_PPC_DEC_EXPIRY: 2494 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2495 vcpu->arch.vcore->tb_offset; 2496 break; 2497 case KVM_REG_PPC_ONLINE: 2498 i = set_reg_val(id, *val); 2499 if (i && !vcpu->arch.online) 2500 atomic_inc(&vcpu->arch.vcore->online_count); 2501 else if (!i && vcpu->arch.online) 2502 atomic_dec(&vcpu->arch.vcore->online_count); 2503 vcpu->arch.online = i; 2504 break; 2505 case KVM_REG_PPC_PTCR: 2506 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2507 break; 2508 default: 2509 r = -EINVAL; 2510 break; 2511 } 2512 2513 return r; 2514 } 2515 2516 /* 2517 * On POWER9, threads are independent and can be in different partitions. 2518 * Therefore we consider each thread to be a subcore. 2519 * There is a restriction that all threads have to be in the same 2520 * MMU mode (radix or HPT), unfortunately, but since we only support 2521 * HPT guests on a HPT host so far, that isn't an impediment yet. 2522 */ 2523 static int threads_per_vcore(struct kvm *kvm) 2524 { 2525 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2526 return 1; 2527 return threads_per_subcore; 2528 } 2529 2530 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2531 { 2532 struct kvmppc_vcore *vcore; 2533 2534 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2535 2536 if (vcore == NULL) 2537 return NULL; 2538 2539 spin_lock_init(&vcore->lock); 2540 spin_lock_init(&vcore->stoltb_lock); 2541 rcuwait_init(&vcore->wait); 2542 vcore->preempt_tb = TB_NIL; 2543 vcore->lpcr = kvm->arch.lpcr; 2544 vcore->first_vcpuid = id; 2545 vcore->kvm = kvm; 2546 INIT_LIST_HEAD(&vcore->preempt_list); 2547 2548 return vcore; 2549 } 2550 2551 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2552 static struct debugfs_timings_element { 2553 const char *name; 2554 size_t offset; 2555 } timings[] = { 2556 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2557 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2558 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2559 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2560 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2561 }; 2562 2563 #define N_TIMINGS (ARRAY_SIZE(timings)) 2564 2565 struct debugfs_timings_state { 2566 struct kvm_vcpu *vcpu; 2567 unsigned int buflen; 2568 char buf[N_TIMINGS * 100]; 2569 }; 2570 2571 static int debugfs_timings_open(struct inode *inode, struct file *file) 2572 { 2573 struct kvm_vcpu *vcpu = inode->i_private; 2574 struct debugfs_timings_state *p; 2575 2576 p = kzalloc(sizeof(*p), GFP_KERNEL); 2577 if (!p) 2578 return -ENOMEM; 2579 2580 kvm_get_kvm(vcpu->kvm); 2581 p->vcpu = vcpu; 2582 file->private_data = p; 2583 2584 return nonseekable_open(inode, file); 2585 } 2586 2587 static int debugfs_timings_release(struct inode *inode, struct file *file) 2588 { 2589 struct debugfs_timings_state *p = file->private_data; 2590 2591 kvm_put_kvm(p->vcpu->kvm); 2592 kfree(p); 2593 return 0; 2594 } 2595 2596 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2597 size_t len, loff_t *ppos) 2598 { 2599 struct debugfs_timings_state *p = file->private_data; 2600 struct kvm_vcpu *vcpu = p->vcpu; 2601 char *s, *buf_end; 2602 struct kvmhv_tb_accumulator tb; 2603 u64 count; 2604 loff_t pos; 2605 ssize_t n; 2606 int i, loops; 2607 bool ok; 2608 2609 if (!p->buflen) { 2610 s = p->buf; 2611 buf_end = s + sizeof(p->buf); 2612 for (i = 0; i < N_TIMINGS; ++i) { 2613 struct kvmhv_tb_accumulator *acc; 2614 2615 acc = (struct kvmhv_tb_accumulator *) 2616 ((unsigned long)vcpu + timings[i].offset); 2617 ok = false; 2618 for (loops = 0; loops < 1000; ++loops) { 2619 count = acc->seqcount; 2620 if (!(count & 1)) { 2621 smp_rmb(); 2622 tb = *acc; 2623 smp_rmb(); 2624 if (count == acc->seqcount) { 2625 ok = true; 2626 break; 2627 } 2628 } 2629 udelay(1); 2630 } 2631 if (!ok) 2632 snprintf(s, buf_end - s, "%s: stuck\n", 2633 timings[i].name); 2634 else 2635 snprintf(s, buf_end - s, 2636 "%s: %llu %llu %llu %llu\n", 2637 timings[i].name, count / 2, 2638 tb_to_ns(tb.tb_total), 2639 tb_to_ns(tb.tb_min), 2640 tb_to_ns(tb.tb_max)); 2641 s += strlen(s); 2642 } 2643 p->buflen = s - p->buf; 2644 } 2645 2646 pos = *ppos; 2647 if (pos >= p->buflen) 2648 return 0; 2649 if (len > p->buflen - pos) 2650 len = p->buflen - pos; 2651 n = copy_to_user(buf, p->buf + pos, len); 2652 if (n) { 2653 if (n == len) 2654 return -EFAULT; 2655 len -= n; 2656 } 2657 *ppos = pos + len; 2658 return len; 2659 } 2660 2661 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2662 size_t len, loff_t *ppos) 2663 { 2664 return -EACCES; 2665 } 2666 2667 static const struct file_operations debugfs_timings_ops = { 2668 .owner = THIS_MODULE, 2669 .open = debugfs_timings_open, 2670 .release = debugfs_timings_release, 2671 .read = debugfs_timings_read, 2672 .write = debugfs_timings_write, 2673 .llseek = generic_file_llseek, 2674 }; 2675 2676 /* Create a debugfs directory for the vcpu */ 2677 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2678 { 2679 char buf[16]; 2680 struct kvm *kvm = vcpu->kvm; 2681 2682 snprintf(buf, sizeof(buf), "vcpu%u", id); 2683 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2684 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2685 &debugfs_timings_ops); 2686 } 2687 2688 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2689 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2690 { 2691 } 2692 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2693 2694 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2695 { 2696 int err; 2697 int core; 2698 struct kvmppc_vcore *vcore; 2699 struct kvm *kvm; 2700 unsigned int id; 2701 2702 kvm = vcpu->kvm; 2703 id = vcpu->vcpu_id; 2704 2705 vcpu->arch.shared = &vcpu->arch.shregs; 2706 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2707 /* 2708 * The shared struct is never shared on HV, 2709 * so we can always use host endianness 2710 */ 2711 #ifdef __BIG_ENDIAN__ 2712 vcpu->arch.shared_big_endian = true; 2713 #else 2714 vcpu->arch.shared_big_endian = false; 2715 #endif 2716 #endif 2717 vcpu->arch.mmcr[0] = MMCR0_FC; 2718 vcpu->arch.ctrl = CTRL_RUNLATCH; 2719 /* default to host PVR, since we can't spoof it */ 2720 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2721 spin_lock_init(&vcpu->arch.vpa_update_lock); 2722 spin_lock_init(&vcpu->arch.tbacct_lock); 2723 vcpu->arch.busy_preempt = TB_NIL; 2724 vcpu->arch.shregs.msr = MSR_ME; 2725 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2726 2727 /* 2728 * Set the default HFSCR for the guest from the host value. 2729 * This value is only used on POWER9. 2730 * On POWER9, we want to virtualize the doorbell facility, so we 2731 * don't set the HFSCR_MSGP bit, and that causes those instructions 2732 * to trap and then we emulate them. 2733 */ 2734 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2735 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; 2736 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2737 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2738 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2739 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2740 vcpu->arch.hfscr |= HFSCR_TM; 2741 #endif 2742 } 2743 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2744 vcpu->arch.hfscr |= HFSCR_TM; 2745 2746 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; 2747 2748 kvmppc_mmu_book3s_hv_init(vcpu); 2749 2750 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2751 2752 init_waitqueue_head(&vcpu->arch.cpu_run); 2753 2754 mutex_lock(&kvm->lock); 2755 vcore = NULL; 2756 err = -EINVAL; 2757 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2758 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2759 pr_devel("KVM: VCPU ID too high\n"); 2760 core = KVM_MAX_VCORES; 2761 } else { 2762 BUG_ON(kvm->arch.smt_mode != 1); 2763 core = kvmppc_pack_vcpu_id(kvm, id); 2764 } 2765 } else { 2766 core = id / kvm->arch.smt_mode; 2767 } 2768 if (core < KVM_MAX_VCORES) { 2769 vcore = kvm->arch.vcores[core]; 2770 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2771 pr_devel("KVM: collision on id %u", id); 2772 vcore = NULL; 2773 } else if (!vcore) { 2774 /* 2775 * Take mmu_setup_lock for mutual exclusion 2776 * with kvmppc_update_lpcr(). 2777 */ 2778 err = -ENOMEM; 2779 vcore = kvmppc_vcore_create(kvm, 2780 id & ~(kvm->arch.smt_mode - 1)); 2781 mutex_lock(&kvm->arch.mmu_setup_lock); 2782 kvm->arch.vcores[core] = vcore; 2783 kvm->arch.online_vcores++; 2784 mutex_unlock(&kvm->arch.mmu_setup_lock); 2785 } 2786 } 2787 mutex_unlock(&kvm->lock); 2788 2789 if (!vcore) 2790 return err; 2791 2792 spin_lock(&vcore->lock); 2793 ++vcore->num_threads; 2794 spin_unlock(&vcore->lock); 2795 vcpu->arch.vcore = vcore; 2796 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2797 vcpu->arch.thread_cpu = -1; 2798 vcpu->arch.prev_cpu = -1; 2799 2800 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2801 kvmppc_sanity_check(vcpu); 2802 2803 debugfs_vcpu_init(vcpu, id); 2804 2805 return 0; 2806 } 2807 2808 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2809 unsigned long flags) 2810 { 2811 int err; 2812 int esmt = 0; 2813 2814 if (flags) 2815 return -EINVAL; 2816 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2817 return -EINVAL; 2818 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2819 /* 2820 * On POWER8 (or POWER7), the threading mode is "strict", 2821 * so we pack smt_mode vcpus per vcore. 2822 */ 2823 if (smt_mode > threads_per_subcore) 2824 return -EINVAL; 2825 } else { 2826 /* 2827 * On POWER9, the threading mode is "loose", 2828 * so each vcpu gets its own vcore. 2829 */ 2830 esmt = smt_mode; 2831 smt_mode = 1; 2832 } 2833 mutex_lock(&kvm->lock); 2834 err = -EBUSY; 2835 if (!kvm->arch.online_vcores) { 2836 kvm->arch.smt_mode = smt_mode; 2837 kvm->arch.emul_smt_mode = esmt; 2838 err = 0; 2839 } 2840 mutex_unlock(&kvm->lock); 2841 2842 return err; 2843 } 2844 2845 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2846 { 2847 if (vpa->pinned_addr) 2848 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2849 vpa->dirty); 2850 } 2851 2852 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2853 { 2854 spin_lock(&vcpu->arch.vpa_update_lock); 2855 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2856 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2857 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2858 spin_unlock(&vcpu->arch.vpa_update_lock); 2859 } 2860 2861 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2862 { 2863 /* Indicate we want to get back into the guest */ 2864 return 1; 2865 } 2866 2867 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2868 { 2869 unsigned long dec_nsec, now; 2870 2871 now = get_tb(); 2872 if (now > vcpu->arch.dec_expires) { 2873 /* decrementer has already gone negative */ 2874 kvmppc_core_queue_dec(vcpu); 2875 kvmppc_core_prepare_to_enter(vcpu); 2876 return; 2877 } 2878 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2879 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2880 vcpu->arch.timer_running = 1; 2881 } 2882 2883 extern int __kvmppc_vcore_entry(void); 2884 2885 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2886 struct kvm_vcpu *vcpu) 2887 { 2888 u64 now; 2889 2890 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2891 return; 2892 spin_lock_irq(&vcpu->arch.tbacct_lock); 2893 now = mftb(); 2894 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2895 vcpu->arch.stolen_logged; 2896 vcpu->arch.busy_preempt = now; 2897 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2898 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2899 --vc->n_runnable; 2900 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2901 } 2902 2903 static int kvmppc_grab_hwthread(int cpu) 2904 { 2905 struct paca_struct *tpaca; 2906 long timeout = 10000; 2907 2908 tpaca = paca_ptrs[cpu]; 2909 2910 /* Ensure the thread won't go into the kernel if it wakes */ 2911 tpaca->kvm_hstate.kvm_vcpu = NULL; 2912 tpaca->kvm_hstate.kvm_vcore = NULL; 2913 tpaca->kvm_hstate.napping = 0; 2914 smp_wmb(); 2915 tpaca->kvm_hstate.hwthread_req = 1; 2916 2917 /* 2918 * If the thread is already executing in the kernel (e.g. handling 2919 * a stray interrupt), wait for it to get back to nap mode. 2920 * The smp_mb() is to ensure that our setting of hwthread_req 2921 * is visible before we look at hwthread_state, so if this 2922 * races with the code at system_reset_pSeries and the thread 2923 * misses our setting of hwthread_req, we are sure to see its 2924 * setting of hwthread_state, and vice versa. 2925 */ 2926 smp_mb(); 2927 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2928 if (--timeout <= 0) { 2929 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2930 return -EBUSY; 2931 } 2932 udelay(1); 2933 } 2934 return 0; 2935 } 2936 2937 static void kvmppc_release_hwthread(int cpu) 2938 { 2939 struct paca_struct *tpaca; 2940 2941 tpaca = paca_ptrs[cpu]; 2942 tpaca->kvm_hstate.hwthread_req = 0; 2943 tpaca->kvm_hstate.kvm_vcpu = NULL; 2944 tpaca->kvm_hstate.kvm_vcore = NULL; 2945 tpaca->kvm_hstate.kvm_split_mode = NULL; 2946 } 2947 2948 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2949 { 2950 struct kvm_nested_guest *nested = vcpu->arch.nested; 2951 cpumask_t *cpu_in_guest; 2952 int i; 2953 2954 cpu = cpu_first_tlb_thread_sibling(cpu); 2955 if (nested) { 2956 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2957 cpu_in_guest = &nested->cpu_in_guest; 2958 } else { 2959 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2960 cpu_in_guest = &kvm->arch.cpu_in_guest; 2961 } 2962 /* 2963 * Make sure setting of bit in need_tlb_flush precedes 2964 * testing of cpu_in_guest bits. The matching barrier on 2965 * the other side is the first smp_mb() in kvmppc_run_core(). 2966 */ 2967 smp_mb(); 2968 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 2969 i += cpu_tlb_thread_sibling_step()) 2970 if (cpumask_test_cpu(i, cpu_in_guest)) 2971 smp_call_function_single(i, do_nothing, NULL, 1); 2972 } 2973 2974 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2975 { 2976 struct kvm_nested_guest *nested = vcpu->arch.nested; 2977 struct kvm *kvm = vcpu->kvm; 2978 int prev_cpu; 2979 2980 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2981 return; 2982 2983 if (nested) 2984 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2985 else 2986 prev_cpu = vcpu->arch.prev_cpu; 2987 2988 /* 2989 * With radix, the guest can do TLB invalidations itself, 2990 * and it could choose to use the local form (tlbiel) if 2991 * it is invalidating a translation that has only ever been 2992 * used on one vcpu. However, that doesn't mean it has 2993 * only ever been used on one physical cpu, since vcpus 2994 * can move around between pcpus. To cope with this, when 2995 * a vcpu moves from one pcpu to another, we need to tell 2996 * any vcpus running on the same core as this vcpu previously 2997 * ran to flush the TLB. The TLB is shared between threads, 2998 * so we use a single bit in .need_tlb_flush for all 4 threads. 2999 */ 3000 if (prev_cpu != pcpu) { 3001 if (prev_cpu >= 0 && 3002 cpu_first_tlb_thread_sibling(prev_cpu) != 3003 cpu_first_tlb_thread_sibling(pcpu)) 3004 radix_flush_cpu(kvm, prev_cpu, vcpu); 3005 if (nested) 3006 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3007 else 3008 vcpu->arch.prev_cpu = pcpu; 3009 } 3010 } 3011 3012 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3013 { 3014 int cpu; 3015 struct paca_struct *tpaca; 3016 struct kvm *kvm = vc->kvm; 3017 3018 cpu = vc->pcpu; 3019 if (vcpu) { 3020 if (vcpu->arch.timer_running) { 3021 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3022 vcpu->arch.timer_running = 0; 3023 } 3024 cpu += vcpu->arch.ptid; 3025 vcpu->cpu = vc->pcpu; 3026 vcpu->arch.thread_cpu = cpu; 3027 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 3028 } 3029 tpaca = paca_ptrs[cpu]; 3030 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3031 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3032 tpaca->kvm_hstate.fake_suspend = 0; 3033 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3034 smp_wmb(); 3035 tpaca->kvm_hstate.kvm_vcore = vc; 3036 if (cpu != smp_processor_id()) 3037 kvmppc_ipi_thread(cpu); 3038 } 3039 3040 static void kvmppc_wait_for_nap(int n_threads) 3041 { 3042 int cpu = smp_processor_id(); 3043 int i, loops; 3044 3045 if (n_threads <= 1) 3046 return; 3047 for (loops = 0; loops < 1000000; ++loops) { 3048 /* 3049 * Check if all threads are finished. 3050 * We set the vcore pointer when starting a thread 3051 * and the thread clears it when finished, so we look 3052 * for any threads that still have a non-NULL vcore ptr. 3053 */ 3054 for (i = 1; i < n_threads; ++i) 3055 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3056 break; 3057 if (i == n_threads) { 3058 HMT_medium(); 3059 return; 3060 } 3061 HMT_low(); 3062 } 3063 HMT_medium(); 3064 for (i = 1; i < n_threads; ++i) 3065 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3066 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3067 } 3068 3069 /* 3070 * Check that we are on thread 0 and that any other threads in 3071 * this core are off-line. Then grab the threads so they can't 3072 * enter the kernel. 3073 */ 3074 static int on_primary_thread(void) 3075 { 3076 int cpu = smp_processor_id(); 3077 int thr; 3078 3079 /* Are we on a primary subcore? */ 3080 if (cpu_thread_in_subcore(cpu)) 3081 return 0; 3082 3083 thr = 0; 3084 while (++thr < threads_per_subcore) 3085 if (cpu_online(cpu + thr)) 3086 return 0; 3087 3088 /* Grab all hw threads so they can't go into the kernel */ 3089 for (thr = 1; thr < threads_per_subcore; ++thr) { 3090 if (kvmppc_grab_hwthread(cpu + thr)) { 3091 /* Couldn't grab one; let the others go */ 3092 do { 3093 kvmppc_release_hwthread(cpu + thr); 3094 } while (--thr > 0); 3095 return 0; 3096 } 3097 } 3098 return 1; 3099 } 3100 3101 /* 3102 * A list of virtual cores for each physical CPU. 3103 * These are vcores that could run but their runner VCPU tasks are 3104 * (or may be) preempted. 3105 */ 3106 struct preempted_vcore_list { 3107 struct list_head list; 3108 spinlock_t lock; 3109 }; 3110 3111 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3112 3113 static void init_vcore_lists(void) 3114 { 3115 int cpu; 3116 3117 for_each_possible_cpu(cpu) { 3118 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3119 spin_lock_init(&lp->lock); 3120 INIT_LIST_HEAD(&lp->list); 3121 } 3122 } 3123 3124 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3125 { 3126 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3127 3128 vc->vcore_state = VCORE_PREEMPT; 3129 vc->pcpu = smp_processor_id(); 3130 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3131 spin_lock(&lp->lock); 3132 list_add_tail(&vc->preempt_list, &lp->list); 3133 spin_unlock(&lp->lock); 3134 } 3135 3136 /* Start accumulating stolen time */ 3137 kvmppc_core_start_stolen(vc); 3138 } 3139 3140 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3141 { 3142 struct preempted_vcore_list *lp; 3143 3144 kvmppc_core_end_stolen(vc); 3145 if (!list_empty(&vc->preempt_list)) { 3146 lp = &per_cpu(preempted_vcores, vc->pcpu); 3147 spin_lock(&lp->lock); 3148 list_del_init(&vc->preempt_list); 3149 spin_unlock(&lp->lock); 3150 } 3151 vc->vcore_state = VCORE_INACTIVE; 3152 } 3153 3154 /* 3155 * This stores information about the virtual cores currently 3156 * assigned to a physical core. 3157 */ 3158 struct core_info { 3159 int n_subcores; 3160 int max_subcore_threads; 3161 int total_threads; 3162 int subcore_threads[MAX_SUBCORES]; 3163 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3164 }; 3165 3166 /* 3167 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3168 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3169 */ 3170 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3171 3172 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3173 { 3174 memset(cip, 0, sizeof(*cip)); 3175 cip->n_subcores = 1; 3176 cip->max_subcore_threads = vc->num_threads; 3177 cip->total_threads = vc->num_threads; 3178 cip->subcore_threads[0] = vc->num_threads; 3179 cip->vc[0] = vc; 3180 } 3181 3182 static bool subcore_config_ok(int n_subcores, int n_threads) 3183 { 3184 /* 3185 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3186 * split-core mode, with one thread per subcore. 3187 */ 3188 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3189 return n_subcores <= 4 && n_threads == 1; 3190 3191 /* On POWER8, can only dynamically split if unsplit to begin with */ 3192 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3193 return false; 3194 if (n_subcores > MAX_SUBCORES) 3195 return false; 3196 if (n_subcores > 1) { 3197 if (!(dynamic_mt_modes & 2)) 3198 n_subcores = 4; 3199 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3200 return false; 3201 } 3202 3203 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3204 } 3205 3206 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3207 { 3208 vc->entry_exit_map = 0; 3209 vc->in_guest = 0; 3210 vc->napping_threads = 0; 3211 vc->conferring_threads = 0; 3212 vc->tb_offset_applied = 0; 3213 } 3214 3215 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3216 { 3217 int n_threads = vc->num_threads; 3218 int sub; 3219 3220 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3221 return false; 3222 3223 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3224 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3225 return false; 3226 3227 if (n_threads < cip->max_subcore_threads) 3228 n_threads = cip->max_subcore_threads; 3229 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3230 return false; 3231 cip->max_subcore_threads = n_threads; 3232 3233 sub = cip->n_subcores; 3234 ++cip->n_subcores; 3235 cip->total_threads += vc->num_threads; 3236 cip->subcore_threads[sub] = vc->num_threads; 3237 cip->vc[sub] = vc; 3238 init_vcore_to_run(vc); 3239 list_del_init(&vc->preempt_list); 3240 3241 return true; 3242 } 3243 3244 /* 3245 * Work out whether it is possible to piggyback the execution of 3246 * vcore *pvc onto the execution of the other vcores described in *cip. 3247 */ 3248 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3249 int target_threads) 3250 { 3251 if (cip->total_threads + pvc->num_threads > target_threads) 3252 return false; 3253 3254 return can_dynamic_split(pvc, cip); 3255 } 3256 3257 static void prepare_threads(struct kvmppc_vcore *vc) 3258 { 3259 int i; 3260 struct kvm_vcpu *vcpu; 3261 3262 for_each_runnable_thread(i, vcpu, vc) { 3263 if (signal_pending(vcpu->arch.run_task)) 3264 vcpu->arch.ret = -EINTR; 3265 else if (vcpu->arch.vpa.update_pending || 3266 vcpu->arch.slb_shadow.update_pending || 3267 vcpu->arch.dtl.update_pending) 3268 vcpu->arch.ret = RESUME_GUEST; 3269 else 3270 continue; 3271 kvmppc_remove_runnable(vc, vcpu); 3272 wake_up(&vcpu->arch.cpu_run); 3273 } 3274 } 3275 3276 static void collect_piggybacks(struct core_info *cip, int target_threads) 3277 { 3278 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3279 struct kvmppc_vcore *pvc, *vcnext; 3280 3281 spin_lock(&lp->lock); 3282 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3283 if (!spin_trylock(&pvc->lock)) 3284 continue; 3285 prepare_threads(pvc); 3286 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3287 list_del_init(&pvc->preempt_list); 3288 if (pvc->runner == NULL) { 3289 pvc->vcore_state = VCORE_INACTIVE; 3290 kvmppc_core_end_stolen(pvc); 3291 } 3292 spin_unlock(&pvc->lock); 3293 continue; 3294 } 3295 if (!can_piggyback(pvc, cip, target_threads)) { 3296 spin_unlock(&pvc->lock); 3297 continue; 3298 } 3299 kvmppc_core_end_stolen(pvc); 3300 pvc->vcore_state = VCORE_PIGGYBACK; 3301 if (cip->total_threads >= target_threads) 3302 break; 3303 } 3304 spin_unlock(&lp->lock); 3305 } 3306 3307 static bool recheck_signals_and_mmu(struct core_info *cip) 3308 { 3309 int sub, i; 3310 struct kvm_vcpu *vcpu; 3311 struct kvmppc_vcore *vc; 3312 3313 for (sub = 0; sub < cip->n_subcores; ++sub) { 3314 vc = cip->vc[sub]; 3315 if (!vc->kvm->arch.mmu_ready) 3316 return true; 3317 for_each_runnable_thread(i, vcpu, vc) 3318 if (signal_pending(vcpu->arch.run_task)) 3319 return true; 3320 } 3321 return false; 3322 } 3323 3324 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3325 { 3326 int still_running = 0, i; 3327 u64 now; 3328 long ret; 3329 struct kvm_vcpu *vcpu; 3330 3331 spin_lock(&vc->lock); 3332 now = get_tb(); 3333 for_each_runnable_thread(i, vcpu, vc) { 3334 /* 3335 * It's safe to unlock the vcore in the loop here, because 3336 * for_each_runnable_thread() is safe against removal of 3337 * the vcpu, and the vcore state is VCORE_EXITING here, 3338 * so any vcpus becoming runnable will have their arch.trap 3339 * set to zero and can't actually run in the guest. 3340 */ 3341 spin_unlock(&vc->lock); 3342 /* cancel pending dec exception if dec is positive */ 3343 if (now < vcpu->arch.dec_expires && 3344 kvmppc_core_pending_dec(vcpu)) 3345 kvmppc_core_dequeue_dec(vcpu); 3346 3347 trace_kvm_guest_exit(vcpu); 3348 3349 ret = RESUME_GUEST; 3350 if (vcpu->arch.trap) 3351 ret = kvmppc_handle_exit_hv(vcpu, 3352 vcpu->arch.run_task); 3353 3354 vcpu->arch.ret = ret; 3355 vcpu->arch.trap = 0; 3356 3357 spin_lock(&vc->lock); 3358 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3359 if (vcpu->arch.pending_exceptions) 3360 kvmppc_core_prepare_to_enter(vcpu); 3361 if (vcpu->arch.ceded) 3362 kvmppc_set_timer(vcpu); 3363 else 3364 ++still_running; 3365 } else { 3366 kvmppc_remove_runnable(vc, vcpu); 3367 wake_up(&vcpu->arch.cpu_run); 3368 } 3369 } 3370 if (!is_master) { 3371 if (still_running > 0) { 3372 kvmppc_vcore_preempt(vc); 3373 } else if (vc->runner) { 3374 vc->vcore_state = VCORE_PREEMPT; 3375 kvmppc_core_start_stolen(vc); 3376 } else { 3377 vc->vcore_state = VCORE_INACTIVE; 3378 } 3379 if (vc->n_runnable > 0 && vc->runner == NULL) { 3380 /* make sure there's a candidate runner awake */ 3381 i = -1; 3382 vcpu = next_runnable_thread(vc, &i); 3383 wake_up(&vcpu->arch.cpu_run); 3384 } 3385 } 3386 spin_unlock(&vc->lock); 3387 } 3388 3389 /* 3390 * Clear core from the list of active host cores as we are about to 3391 * enter the guest. Only do this if it is the primary thread of the 3392 * core (not if a subcore) that is entering the guest. 3393 */ 3394 static inline int kvmppc_clear_host_core(unsigned int cpu) 3395 { 3396 int core; 3397 3398 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3399 return 0; 3400 /* 3401 * Memory barrier can be omitted here as we will do a smp_wmb() 3402 * later in kvmppc_start_thread and we need ensure that state is 3403 * visible to other CPUs only after we enter guest. 3404 */ 3405 core = cpu >> threads_shift; 3406 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3407 return 0; 3408 } 3409 3410 /* 3411 * Advertise this core as an active host core since we exited the guest 3412 * Only need to do this if it is the primary thread of the core that is 3413 * exiting. 3414 */ 3415 static inline int kvmppc_set_host_core(unsigned int cpu) 3416 { 3417 int core; 3418 3419 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3420 return 0; 3421 3422 /* 3423 * Memory barrier can be omitted here because we do a spin_unlock 3424 * immediately after this which provides the memory barrier. 3425 */ 3426 core = cpu >> threads_shift; 3427 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3428 return 0; 3429 } 3430 3431 static void set_irq_happened(int trap) 3432 { 3433 switch (trap) { 3434 case BOOK3S_INTERRUPT_EXTERNAL: 3435 local_paca->irq_happened |= PACA_IRQ_EE; 3436 break; 3437 case BOOK3S_INTERRUPT_H_DOORBELL: 3438 local_paca->irq_happened |= PACA_IRQ_DBELL; 3439 break; 3440 case BOOK3S_INTERRUPT_HMI: 3441 local_paca->irq_happened |= PACA_IRQ_HMI; 3442 break; 3443 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3444 replay_system_reset(); 3445 break; 3446 } 3447 } 3448 3449 /* 3450 * Run a set of guest threads on a physical core. 3451 * Called with vc->lock held. 3452 */ 3453 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3454 { 3455 struct kvm_vcpu *vcpu; 3456 int i; 3457 int srcu_idx; 3458 struct core_info core_info; 3459 struct kvmppc_vcore *pvc; 3460 struct kvm_split_mode split_info, *sip; 3461 int split, subcore_size, active; 3462 int sub; 3463 bool thr0_done; 3464 unsigned long cmd_bit, stat_bit; 3465 int pcpu, thr; 3466 int target_threads; 3467 int controlled_threads; 3468 int trap; 3469 bool is_power8; 3470 3471 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3472 return; 3473 3474 /* 3475 * Remove from the list any threads that have a signal pending 3476 * or need a VPA update done 3477 */ 3478 prepare_threads(vc); 3479 3480 /* if the runner is no longer runnable, let the caller pick a new one */ 3481 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3482 return; 3483 3484 /* 3485 * Initialize *vc. 3486 */ 3487 init_vcore_to_run(vc); 3488 vc->preempt_tb = TB_NIL; 3489 3490 /* 3491 * Number of threads that we will be controlling: the same as 3492 * the number of threads per subcore, except on POWER9, 3493 * where it's 1 because the threads are (mostly) independent. 3494 */ 3495 controlled_threads = threads_per_vcore(vc->kvm); 3496 3497 /* 3498 * Make sure we are running on primary threads, and that secondary 3499 * threads are offline. Also check if the number of threads in this 3500 * guest are greater than the current system threads per guest. 3501 */ 3502 if ((controlled_threads > 1) && 3503 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3504 for_each_runnable_thread(i, vcpu, vc) { 3505 vcpu->arch.ret = -EBUSY; 3506 kvmppc_remove_runnable(vc, vcpu); 3507 wake_up(&vcpu->arch.cpu_run); 3508 } 3509 goto out; 3510 } 3511 3512 /* 3513 * See if we could run any other vcores on the physical core 3514 * along with this one. 3515 */ 3516 init_core_info(&core_info, vc); 3517 pcpu = smp_processor_id(); 3518 target_threads = controlled_threads; 3519 if (target_smt_mode && target_smt_mode < target_threads) 3520 target_threads = target_smt_mode; 3521 if (vc->num_threads < target_threads) 3522 collect_piggybacks(&core_info, target_threads); 3523 3524 /* 3525 * Hard-disable interrupts, and check resched flag and signals. 3526 * If we need to reschedule or deliver a signal, clean up 3527 * and return without going into the guest(s). 3528 * If the mmu_ready flag has been cleared, don't go into the 3529 * guest because that means a HPT resize operation is in progress. 3530 */ 3531 local_irq_disable(); 3532 hard_irq_disable(); 3533 if (lazy_irq_pending() || need_resched() || 3534 recheck_signals_and_mmu(&core_info)) { 3535 local_irq_enable(); 3536 vc->vcore_state = VCORE_INACTIVE; 3537 /* Unlock all except the primary vcore */ 3538 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3539 pvc = core_info.vc[sub]; 3540 /* Put back on to the preempted vcores list */ 3541 kvmppc_vcore_preempt(pvc); 3542 spin_unlock(&pvc->lock); 3543 } 3544 for (i = 0; i < controlled_threads; ++i) 3545 kvmppc_release_hwthread(pcpu + i); 3546 return; 3547 } 3548 3549 kvmppc_clear_host_core(pcpu); 3550 3551 /* Decide on micro-threading (split-core) mode */ 3552 subcore_size = threads_per_subcore; 3553 cmd_bit = stat_bit = 0; 3554 split = core_info.n_subcores; 3555 sip = NULL; 3556 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3557 3558 if (split > 1) { 3559 sip = &split_info; 3560 memset(&split_info, 0, sizeof(split_info)); 3561 for (sub = 0; sub < core_info.n_subcores; ++sub) 3562 split_info.vc[sub] = core_info.vc[sub]; 3563 3564 if (is_power8) { 3565 if (split == 2 && (dynamic_mt_modes & 2)) { 3566 cmd_bit = HID0_POWER8_1TO2LPAR; 3567 stat_bit = HID0_POWER8_2LPARMODE; 3568 } else { 3569 split = 4; 3570 cmd_bit = HID0_POWER8_1TO4LPAR; 3571 stat_bit = HID0_POWER8_4LPARMODE; 3572 } 3573 subcore_size = MAX_SMT_THREADS / split; 3574 split_info.rpr = mfspr(SPRN_RPR); 3575 split_info.pmmar = mfspr(SPRN_PMMAR); 3576 split_info.ldbar = mfspr(SPRN_LDBAR); 3577 split_info.subcore_size = subcore_size; 3578 } else { 3579 split_info.subcore_size = 1; 3580 } 3581 3582 /* order writes to split_info before kvm_split_mode pointer */ 3583 smp_wmb(); 3584 } 3585 3586 for (thr = 0; thr < controlled_threads; ++thr) { 3587 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3588 3589 paca->kvm_hstate.napping = 0; 3590 paca->kvm_hstate.kvm_split_mode = sip; 3591 } 3592 3593 /* Initiate micro-threading (split-core) on POWER8 if required */ 3594 if (cmd_bit) { 3595 unsigned long hid0 = mfspr(SPRN_HID0); 3596 3597 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3598 mb(); 3599 mtspr(SPRN_HID0, hid0); 3600 isync(); 3601 for (;;) { 3602 hid0 = mfspr(SPRN_HID0); 3603 if (hid0 & stat_bit) 3604 break; 3605 cpu_relax(); 3606 } 3607 } 3608 3609 /* 3610 * On POWER8, set RWMR register. 3611 * Since it only affects PURR and SPURR, it doesn't affect 3612 * the host, so we don't save/restore the host value. 3613 */ 3614 if (is_power8) { 3615 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3616 int n_online = atomic_read(&vc->online_count); 3617 3618 /* 3619 * Use the 8-thread value if we're doing split-core 3620 * or if the vcore's online count looks bogus. 3621 */ 3622 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3623 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3624 rwmr_val = p8_rwmr_values[n_online]; 3625 mtspr(SPRN_RWMR, rwmr_val); 3626 } 3627 3628 /* Start all the threads */ 3629 active = 0; 3630 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3631 thr = is_power8 ? subcore_thread_map[sub] : sub; 3632 thr0_done = false; 3633 active |= 1 << thr; 3634 pvc = core_info.vc[sub]; 3635 pvc->pcpu = pcpu + thr; 3636 for_each_runnable_thread(i, vcpu, pvc) { 3637 kvmppc_start_thread(vcpu, pvc); 3638 kvmppc_create_dtl_entry(vcpu, pvc); 3639 trace_kvm_guest_enter(vcpu); 3640 if (!vcpu->arch.ptid) 3641 thr0_done = true; 3642 active |= 1 << (thr + vcpu->arch.ptid); 3643 } 3644 /* 3645 * We need to start the first thread of each subcore 3646 * even if it doesn't have a vcpu. 3647 */ 3648 if (!thr0_done) 3649 kvmppc_start_thread(NULL, pvc); 3650 } 3651 3652 /* 3653 * Ensure that split_info.do_nap is set after setting 3654 * the vcore pointer in the PACA of the secondaries. 3655 */ 3656 smp_mb(); 3657 3658 /* 3659 * When doing micro-threading, poke the inactive threads as well. 3660 * This gets them to the nap instruction after kvm_do_nap, 3661 * which reduces the time taken to unsplit later. 3662 */ 3663 if (cmd_bit) { 3664 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3665 for (thr = 1; thr < threads_per_subcore; ++thr) 3666 if (!(active & (1 << thr))) 3667 kvmppc_ipi_thread(pcpu + thr); 3668 } 3669 3670 vc->vcore_state = VCORE_RUNNING; 3671 preempt_disable(); 3672 3673 trace_kvmppc_run_core(vc, 0); 3674 3675 for (sub = 0; sub < core_info.n_subcores; ++sub) 3676 spin_unlock(&core_info.vc[sub]->lock); 3677 3678 guest_enter_irqoff(); 3679 3680 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3681 3682 this_cpu_disable_ftrace(); 3683 3684 /* 3685 * Interrupts will be enabled once we get into the guest, 3686 * so tell lockdep that we're about to enable interrupts. 3687 */ 3688 trace_hardirqs_on(); 3689 3690 trap = __kvmppc_vcore_entry(); 3691 3692 trace_hardirqs_off(); 3693 3694 this_cpu_enable_ftrace(); 3695 3696 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3697 3698 set_irq_happened(trap); 3699 3700 spin_lock(&vc->lock); 3701 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3702 vc->vcore_state = VCORE_EXITING; 3703 3704 /* wait for secondary threads to finish writing their state to memory */ 3705 kvmppc_wait_for_nap(controlled_threads); 3706 3707 /* Return to whole-core mode if we split the core earlier */ 3708 if (cmd_bit) { 3709 unsigned long hid0 = mfspr(SPRN_HID0); 3710 unsigned long loops = 0; 3711 3712 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3713 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3714 mb(); 3715 mtspr(SPRN_HID0, hid0); 3716 isync(); 3717 for (;;) { 3718 hid0 = mfspr(SPRN_HID0); 3719 if (!(hid0 & stat_bit)) 3720 break; 3721 cpu_relax(); 3722 ++loops; 3723 } 3724 split_info.do_nap = 0; 3725 } 3726 3727 kvmppc_set_host_core(pcpu); 3728 3729 context_tracking_guest_exit(); 3730 if (!vtime_accounting_enabled_this_cpu()) { 3731 local_irq_enable(); 3732 /* 3733 * Service IRQs here before vtime_account_guest_exit() so any 3734 * ticks that occurred while running the guest are accounted to 3735 * the guest. If vtime accounting is enabled, accounting uses 3736 * TB rather than ticks, so it can be done without enabling 3737 * interrupts here, which has the problem that it accounts 3738 * interrupt processing overhead to the host. 3739 */ 3740 local_irq_disable(); 3741 } 3742 vtime_account_guest_exit(); 3743 3744 local_irq_enable(); 3745 3746 /* Let secondaries go back to the offline loop */ 3747 for (i = 0; i < controlled_threads; ++i) { 3748 kvmppc_release_hwthread(pcpu + i); 3749 if (sip && sip->napped[i]) 3750 kvmppc_ipi_thread(pcpu + i); 3751 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3752 } 3753 3754 spin_unlock(&vc->lock); 3755 3756 /* make sure updates to secondary vcpu structs are visible now */ 3757 smp_mb(); 3758 3759 preempt_enable(); 3760 3761 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3762 pvc = core_info.vc[sub]; 3763 post_guest_process(pvc, pvc == vc); 3764 } 3765 3766 spin_lock(&vc->lock); 3767 3768 out: 3769 vc->vcore_state = VCORE_INACTIVE; 3770 trace_kvmppc_run_core(vc, 1); 3771 } 3772 3773 static void load_spr_state(struct kvm_vcpu *vcpu) 3774 { 3775 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3776 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3777 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3778 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3779 mtspr(SPRN_TAR, vcpu->arch.tar); 3780 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3781 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3782 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3783 mtspr(SPRN_TIDR, vcpu->arch.tid); 3784 mtspr(SPRN_AMR, vcpu->arch.amr); 3785 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3786 3787 /* 3788 * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI] 3789 * clear (or hstate set appropriately to catch those registers 3790 * being clobbered if we take a MCE or SRESET), so those are done 3791 * later. 3792 */ 3793 3794 if (!(vcpu->arch.ctrl & 1)) 3795 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3796 } 3797 3798 static void store_spr_state(struct kvm_vcpu *vcpu) 3799 { 3800 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3801 3802 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3803 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3804 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3805 vcpu->arch.tar = mfspr(SPRN_TAR); 3806 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3807 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3808 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3809 vcpu->arch.tid = mfspr(SPRN_TIDR); 3810 vcpu->arch.amr = mfspr(SPRN_AMR); 3811 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3812 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3813 } 3814 3815 /* 3816 * Privileged (non-hypervisor) host registers to save. 3817 */ 3818 struct p9_host_os_sprs { 3819 unsigned long dscr; 3820 unsigned long tidr; 3821 unsigned long iamr; 3822 unsigned long amr; 3823 unsigned long fscr; 3824 }; 3825 3826 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs) 3827 { 3828 host_os_sprs->dscr = mfspr(SPRN_DSCR); 3829 host_os_sprs->tidr = mfspr(SPRN_TIDR); 3830 host_os_sprs->iamr = mfspr(SPRN_IAMR); 3831 host_os_sprs->amr = mfspr(SPRN_AMR); 3832 host_os_sprs->fscr = mfspr(SPRN_FSCR); 3833 } 3834 3835 /* vcpu guest regs must already be saved */ 3836 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu, 3837 struct p9_host_os_sprs *host_os_sprs) 3838 { 3839 mtspr(SPRN_PSPB, 0); 3840 mtspr(SPRN_UAMOR, 0); 3841 3842 mtspr(SPRN_DSCR, host_os_sprs->dscr); 3843 mtspr(SPRN_TIDR, host_os_sprs->tidr); 3844 mtspr(SPRN_IAMR, host_os_sprs->iamr); 3845 3846 if (host_os_sprs->amr != vcpu->arch.amr) 3847 mtspr(SPRN_AMR, host_os_sprs->amr); 3848 3849 if (host_os_sprs->fscr != vcpu->arch.fscr) 3850 mtspr(SPRN_FSCR, host_os_sprs->fscr); 3851 3852 /* Save guest CTRL register, set runlatch to 1 */ 3853 if (!(vcpu->arch.ctrl & 1)) 3854 mtspr(SPRN_CTRLT, 1); 3855 } 3856 3857 static inline bool hcall_is_xics(unsigned long req) 3858 { 3859 return req == H_EOI || req == H_CPPR || req == H_IPI || 3860 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 3861 } 3862 3863 /* 3864 * Guest entry for POWER9 and later CPUs. 3865 */ 3866 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3867 unsigned long lpcr) 3868 { 3869 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3870 struct p9_host_os_sprs host_os_sprs; 3871 s64 dec; 3872 u64 tb; 3873 int trap, save_pmu; 3874 3875 WARN_ON_ONCE(vcpu->arch.ceded); 3876 3877 dec = mfspr(SPRN_DEC); 3878 tb = mftb(); 3879 if (dec < 0) 3880 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3881 local_paca->kvm_hstate.dec_expires = dec + tb; 3882 if (local_paca->kvm_hstate.dec_expires < time_limit) 3883 time_limit = local_paca->kvm_hstate.dec_expires; 3884 3885 save_p9_host_os_sprs(&host_os_sprs); 3886 3887 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3888 3889 kvmppc_subcore_enter_guest(); 3890 3891 vc->entry_exit_map = 1; 3892 vc->in_guest = 1; 3893 3894 if (vcpu->arch.vpa.pinned_addr) { 3895 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3896 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3897 lp->yield_count = cpu_to_be32(yield_count); 3898 vcpu->arch.vpa.dirty = 1; 3899 } 3900 3901 if (cpu_has_feature(CPU_FTR_TM) || 3902 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3903 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3904 3905 #ifdef CONFIG_PPC_PSERIES 3906 if (kvmhv_on_pseries()) { 3907 barrier(); 3908 if (vcpu->arch.vpa.pinned_addr) { 3909 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3910 get_lppaca()->pmcregs_in_use = lp->pmcregs_in_use; 3911 } else { 3912 get_lppaca()->pmcregs_in_use = 1; 3913 } 3914 barrier(); 3915 } 3916 #endif 3917 kvmhv_load_guest_pmu(vcpu); 3918 3919 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3920 load_fp_state(&vcpu->arch.fp); 3921 #ifdef CONFIG_ALTIVEC 3922 load_vr_state(&vcpu->arch.vr); 3923 #endif 3924 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3925 3926 load_spr_state(vcpu); 3927 3928 /* 3929 * When setting DEC, we must always deal with irq_work_raise via NMI vs 3930 * setting DEC. The problem occurs right as we switch into guest mode 3931 * if a NMI hits and sets pending work and sets DEC, then that will 3932 * apply to the guest and not bring us back to the host. 3933 * 3934 * irq_work_raise could check a flag (or possibly LPCR[HDICE] for 3935 * example) and set HDEC to 1? That wouldn't solve the nested hv 3936 * case which needs to abort the hcall or zero the time limit. 3937 * 3938 * XXX: Another day's problem. 3939 */ 3940 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3941 3942 if (kvmhv_on_pseries()) { 3943 /* 3944 * We need to save and restore the guest visible part of the 3945 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3946 * doesn't do this for us. Note only required if pseries since 3947 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 3948 */ 3949 unsigned long host_psscr; 3950 /* call our hypervisor to load up HV regs and go */ 3951 struct hv_guest_state hvregs; 3952 3953 host_psscr = mfspr(SPRN_PSSCR_PR); 3954 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3955 kvmhv_save_hv_regs(vcpu, &hvregs); 3956 hvregs.lpcr = lpcr; 3957 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3958 hvregs.version = HV_GUEST_STATE_VERSION; 3959 if (vcpu->arch.nested) { 3960 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3961 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3962 } else { 3963 hvregs.lpid = vcpu->kvm->arch.lpid; 3964 hvregs.vcpu_token = vcpu->vcpu_id; 3965 } 3966 hvregs.hdec_expiry = time_limit; 3967 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3968 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3969 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3970 __pa(&vcpu->arch.regs)); 3971 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3972 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3973 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3974 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3975 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3976 mtspr(SPRN_PSSCR_PR, host_psscr); 3977 3978 /* H_CEDE has to be handled now, not later */ 3979 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3980 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3981 kvmppc_cede(vcpu); 3982 kvmppc_set_gpr(vcpu, 3, 0); 3983 trap = 0; 3984 } 3985 } else { 3986 kvmppc_xive_push_vcpu(vcpu); 3987 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr); 3988 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3989 !(vcpu->arch.shregs.msr & MSR_PR)) { 3990 unsigned long req = kvmppc_get_gpr(vcpu, 3); 3991 3992 /* H_CEDE has to be handled now, not later */ 3993 if (req == H_CEDE) { 3994 kvmppc_cede(vcpu); 3995 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */ 3996 kvmppc_set_gpr(vcpu, 3, 0); 3997 trap = 0; 3998 3999 /* XICS hcalls must be handled before xive is pulled */ 4000 } else if (hcall_is_xics(req)) { 4001 int ret; 4002 4003 ret = kvmppc_xive_xics_hcall(vcpu, req); 4004 if (ret != H_TOO_HARD) { 4005 kvmppc_set_gpr(vcpu, 3, ret); 4006 trap = 0; 4007 } 4008 } 4009 } 4010 kvmppc_xive_pull_vcpu(vcpu); 4011 4012 if (kvm_is_radix(vcpu->kvm)) 4013 vcpu->arch.slb_max = 0; 4014 } 4015 4016 dec = mfspr(SPRN_DEC); 4017 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4018 dec = (s32) dec; 4019 tb = mftb(); 4020 vcpu->arch.dec_expires = dec + tb; 4021 vcpu->cpu = -1; 4022 vcpu->arch.thread_cpu = -1; 4023 4024 store_spr_state(vcpu); 4025 4026 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4027 4028 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 4029 store_fp_state(&vcpu->arch.fp); 4030 #ifdef CONFIG_ALTIVEC 4031 store_vr_state(&vcpu->arch.vr); 4032 #endif 4033 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 4034 4035 if (cpu_has_feature(CPU_FTR_TM) || 4036 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 4037 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 4038 4039 save_pmu = 1; 4040 if (vcpu->arch.vpa.pinned_addr) { 4041 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4042 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4043 lp->yield_count = cpu_to_be32(yield_count); 4044 vcpu->arch.vpa.dirty = 1; 4045 save_pmu = lp->pmcregs_in_use; 4046 } 4047 /* Must save pmu if this guest is capable of running nested guests */ 4048 save_pmu |= nesting_enabled(vcpu->kvm); 4049 4050 kvmhv_save_guest_pmu(vcpu, save_pmu); 4051 #ifdef CONFIG_PPC_PSERIES 4052 if (kvmhv_on_pseries()) { 4053 barrier(); 4054 get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse(); 4055 barrier(); 4056 } 4057 #endif 4058 4059 vc->entry_exit_map = 0x101; 4060 vc->in_guest = 0; 4061 4062 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 4063 /* We may have raced with new irq work */ 4064 if (test_irq_work_pending()) 4065 set_dec(1); 4066 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 4067 4068 kvmhv_load_host_pmu(); 4069 4070 kvmppc_subcore_exit_guest(); 4071 4072 return trap; 4073 } 4074 4075 /* 4076 * Wait for some other vcpu thread to execute us, and 4077 * wake us up when we need to handle something in the host. 4078 */ 4079 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4080 struct kvm_vcpu *vcpu, int wait_state) 4081 { 4082 DEFINE_WAIT(wait); 4083 4084 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4085 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4086 spin_unlock(&vc->lock); 4087 schedule(); 4088 spin_lock(&vc->lock); 4089 } 4090 finish_wait(&vcpu->arch.cpu_run, &wait); 4091 } 4092 4093 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4094 { 4095 if (!halt_poll_ns_grow) 4096 return; 4097 4098 vc->halt_poll_ns *= halt_poll_ns_grow; 4099 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4100 vc->halt_poll_ns = halt_poll_ns_grow_start; 4101 } 4102 4103 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4104 { 4105 if (halt_poll_ns_shrink == 0) 4106 vc->halt_poll_ns = 0; 4107 else 4108 vc->halt_poll_ns /= halt_poll_ns_shrink; 4109 } 4110 4111 #ifdef CONFIG_KVM_XICS 4112 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4113 { 4114 if (!xics_on_xive()) 4115 return false; 4116 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4117 vcpu->arch.xive_saved_state.cppr; 4118 } 4119 #else 4120 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4121 { 4122 return false; 4123 } 4124 #endif /* CONFIG_KVM_XICS */ 4125 4126 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4127 { 4128 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4129 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4130 return true; 4131 4132 return false; 4133 } 4134 4135 /* 4136 * Check to see if any of the runnable vcpus on the vcore have pending 4137 * exceptions or are no longer ceded 4138 */ 4139 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4140 { 4141 struct kvm_vcpu *vcpu; 4142 int i; 4143 4144 for_each_runnable_thread(i, vcpu, vc) { 4145 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4146 return 1; 4147 } 4148 4149 return 0; 4150 } 4151 4152 /* 4153 * All the vcpus in this vcore are idle, so wait for a decrementer 4154 * or external interrupt to one of the vcpus. vc->lock is held. 4155 */ 4156 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4157 { 4158 ktime_t cur, start_poll, start_wait; 4159 int do_sleep = 1; 4160 u64 block_ns; 4161 4162 /* Poll for pending exceptions and ceded state */ 4163 cur = start_poll = ktime_get(); 4164 if (vc->halt_poll_ns) { 4165 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4166 ++vc->runner->stat.generic.halt_attempted_poll; 4167 4168 vc->vcore_state = VCORE_POLLING; 4169 spin_unlock(&vc->lock); 4170 4171 do { 4172 if (kvmppc_vcore_check_block(vc)) { 4173 do_sleep = 0; 4174 break; 4175 } 4176 cur = ktime_get(); 4177 } while (kvm_vcpu_can_poll(cur, stop)); 4178 4179 spin_lock(&vc->lock); 4180 vc->vcore_state = VCORE_INACTIVE; 4181 4182 if (!do_sleep) { 4183 ++vc->runner->stat.generic.halt_successful_poll; 4184 goto out; 4185 } 4186 } 4187 4188 prepare_to_rcuwait(&vc->wait); 4189 set_current_state(TASK_INTERRUPTIBLE); 4190 if (kvmppc_vcore_check_block(vc)) { 4191 finish_rcuwait(&vc->wait); 4192 do_sleep = 0; 4193 /* If we polled, count this as a successful poll */ 4194 if (vc->halt_poll_ns) 4195 ++vc->runner->stat.generic.halt_successful_poll; 4196 goto out; 4197 } 4198 4199 start_wait = ktime_get(); 4200 4201 vc->vcore_state = VCORE_SLEEPING; 4202 trace_kvmppc_vcore_blocked(vc, 0); 4203 spin_unlock(&vc->lock); 4204 schedule(); 4205 finish_rcuwait(&vc->wait); 4206 spin_lock(&vc->lock); 4207 vc->vcore_state = VCORE_INACTIVE; 4208 trace_kvmppc_vcore_blocked(vc, 1); 4209 ++vc->runner->stat.halt_successful_wait; 4210 4211 cur = ktime_get(); 4212 4213 out: 4214 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4215 4216 /* Attribute wait time */ 4217 if (do_sleep) { 4218 vc->runner->stat.generic.halt_wait_ns += 4219 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4220 KVM_STATS_LOG_HIST_UPDATE( 4221 vc->runner->stat.generic.halt_wait_hist, 4222 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4223 /* Attribute failed poll time */ 4224 if (vc->halt_poll_ns) { 4225 vc->runner->stat.generic.halt_poll_fail_ns += 4226 ktime_to_ns(start_wait) - 4227 ktime_to_ns(start_poll); 4228 KVM_STATS_LOG_HIST_UPDATE( 4229 vc->runner->stat.generic.halt_poll_fail_hist, 4230 ktime_to_ns(start_wait) - 4231 ktime_to_ns(start_poll)); 4232 } 4233 } else { 4234 /* Attribute successful poll time */ 4235 if (vc->halt_poll_ns) { 4236 vc->runner->stat.generic.halt_poll_success_ns += 4237 ktime_to_ns(cur) - 4238 ktime_to_ns(start_poll); 4239 KVM_STATS_LOG_HIST_UPDATE( 4240 vc->runner->stat.generic.halt_poll_success_hist, 4241 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4242 } 4243 } 4244 4245 /* Adjust poll time */ 4246 if (halt_poll_ns) { 4247 if (block_ns <= vc->halt_poll_ns) 4248 ; 4249 /* We slept and blocked for longer than the max halt time */ 4250 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4251 shrink_halt_poll_ns(vc); 4252 /* We slept and our poll time is too small */ 4253 else if (vc->halt_poll_ns < halt_poll_ns && 4254 block_ns < halt_poll_ns) 4255 grow_halt_poll_ns(vc); 4256 if (vc->halt_poll_ns > halt_poll_ns) 4257 vc->halt_poll_ns = halt_poll_ns; 4258 } else 4259 vc->halt_poll_ns = 0; 4260 4261 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4262 } 4263 4264 /* 4265 * This never fails for a radix guest, as none of the operations it does 4266 * for a radix guest can fail or have a way to report failure. 4267 */ 4268 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4269 { 4270 int r = 0; 4271 struct kvm *kvm = vcpu->kvm; 4272 4273 mutex_lock(&kvm->arch.mmu_setup_lock); 4274 if (!kvm->arch.mmu_ready) { 4275 if (!kvm_is_radix(kvm)) 4276 r = kvmppc_hv_setup_htab_rma(vcpu); 4277 if (!r) { 4278 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4279 kvmppc_setup_partition_table(kvm); 4280 kvm->arch.mmu_ready = 1; 4281 } 4282 } 4283 mutex_unlock(&kvm->arch.mmu_setup_lock); 4284 return r; 4285 } 4286 4287 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4288 { 4289 struct kvm_run *run = vcpu->run; 4290 int n_ceded, i, r; 4291 struct kvmppc_vcore *vc; 4292 struct kvm_vcpu *v; 4293 4294 trace_kvmppc_run_vcpu_enter(vcpu); 4295 4296 run->exit_reason = 0; 4297 vcpu->arch.ret = RESUME_GUEST; 4298 vcpu->arch.trap = 0; 4299 kvmppc_update_vpas(vcpu); 4300 4301 /* 4302 * Synchronize with other threads in this virtual core 4303 */ 4304 vc = vcpu->arch.vcore; 4305 spin_lock(&vc->lock); 4306 vcpu->arch.ceded = 0; 4307 vcpu->arch.run_task = current; 4308 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4309 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4310 vcpu->arch.busy_preempt = TB_NIL; 4311 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4312 ++vc->n_runnable; 4313 4314 /* 4315 * This happens the first time this is called for a vcpu. 4316 * If the vcore is already running, we may be able to start 4317 * this thread straight away and have it join in. 4318 */ 4319 if (!signal_pending(current)) { 4320 if ((vc->vcore_state == VCORE_PIGGYBACK || 4321 vc->vcore_state == VCORE_RUNNING) && 4322 !VCORE_IS_EXITING(vc)) { 4323 kvmppc_create_dtl_entry(vcpu, vc); 4324 kvmppc_start_thread(vcpu, vc); 4325 trace_kvm_guest_enter(vcpu); 4326 } else if (vc->vcore_state == VCORE_SLEEPING) { 4327 rcuwait_wake_up(&vc->wait); 4328 } 4329 4330 } 4331 4332 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4333 !signal_pending(current)) { 4334 /* See if the MMU is ready to go */ 4335 if (!vcpu->kvm->arch.mmu_ready) { 4336 spin_unlock(&vc->lock); 4337 r = kvmhv_setup_mmu(vcpu); 4338 spin_lock(&vc->lock); 4339 if (r) { 4340 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4341 run->fail_entry. 4342 hardware_entry_failure_reason = 0; 4343 vcpu->arch.ret = r; 4344 break; 4345 } 4346 } 4347 4348 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4349 kvmppc_vcore_end_preempt(vc); 4350 4351 if (vc->vcore_state != VCORE_INACTIVE) { 4352 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4353 continue; 4354 } 4355 for_each_runnable_thread(i, v, vc) { 4356 kvmppc_core_prepare_to_enter(v); 4357 if (signal_pending(v->arch.run_task)) { 4358 kvmppc_remove_runnable(vc, v); 4359 v->stat.signal_exits++; 4360 v->run->exit_reason = KVM_EXIT_INTR; 4361 v->arch.ret = -EINTR; 4362 wake_up(&v->arch.cpu_run); 4363 } 4364 } 4365 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4366 break; 4367 n_ceded = 0; 4368 for_each_runnable_thread(i, v, vc) { 4369 if (!kvmppc_vcpu_woken(v)) 4370 n_ceded += v->arch.ceded; 4371 else 4372 v->arch.ceded = 0; 4373 } 4374 vc->runner = vcpu; 4375 if (n_ceded == vc->n_runnable) { 4376 kvmppc_vcore_blocked(vc); 4377 } else if (need_resched()) { 4378 kvmppc_vcore_preempt(vc); 4379 /* Let something else run */ 4380 cond_resched_lock(&vc->lock); 4381 if (vc->vcore_state == VCORE_PREEMPT) 4382 kvmppc_vcore_end_preempt(vc); 4383 } else { 4384 kvmppc_run_core(vc); 4385 } 4386 vc->runner = NULL; 4387 } 4388 4389 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4390 (vc->vcore_state == VCORE_RUNNING || 4391 vc->vcore_state == VCORE_EXITING || 4392 vc->vcore_state == VCORE_PIGGYBACK)) 4393 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4394 4395 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4396 kvmppc_vcore_end_preempt(vc); 4397 4398 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4399 kvmppc_remove_runnable(vc, vcpu); 4400 vcpu->stat.signal_exits++; 4401 run->exit_reason = KVM_EXIT_INTR; 4402 vcpu->arch.ret = -EINTR; 4403 } 4404 4405 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4406 /* Wake up some vcpu to run the core */ 4407 i = -1; 4408 v = next_runnable_thread(vc, &i); 4409 wake_up(&v->arch.cpu_run); 4410 } 4411 4412 trace_kvmppc_run_vcpu_exit(vcpu); 4413 spin_unlock(&vc->lock); 4414 return vcpu->arch.ret; 4415 } 4416 4417 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4418 unsigned long lpcr) 4419 { 4420 struct kvm_run *run = vcpu->run; 4421 int trap, r, pcpu; 4422 int srcu_idx; 4423 struct kvmppc_vcore *vc; 4424 struct kvm *kvm = vcpu->kvm; 4425 struct kvm_nested_guest *nested = vcpu->arch.nested; 4426 4427 trace_kvmppc_run_vcpu_enter(vcpu); 4428 4429 run->exit_reason = 0; 4430 vcpu->arch.ret = RESUME_GUEST; 4431 vcpu->arch.trap = 0; 4432 4433 vc = vcpu->arch.vcore; 4434 vcpu->arch.ceded = 0; 4435 vcpu->arch.run_task = current; 4436 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4437 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4438 vcpu->arch.busy_preempt = TB_NIL; 4439 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4440 vc->runnable_threads[0] = vcpu; 4441 vc->n_runnable = 1; 4442 vc->runner = vcpu; 4443 4444 /* See if the MMU is ready to go */ 4445 if (!kvm->arch.mmu_ready) { 4446 r = kvmhv_setup_mmu(vcpu); 4447 if (r) { 4448 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4449 run->fail_entry.hardware_entry_failure_reason = 0; 4450 vcpu->arch.ret = r; 4451 return r; 4452 } 4453 } 4454 4455 if (need_resched()) 4456 cond_resched(); 4457 4458 kvmppc_update_vpas(vcpu); 4459 4460 init_vcore_to_run(vc); 4461 vc->preempt_tb = TB_NIL; 4462 4463 preempt_disable(); 4464 pcpu = smp_processor_id(); 4465 vc->pcpu = pcpu; 4466 if (kvm_is_radix(kvm)) 4467 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4468 4469 local_irq_disable(); 4470 hard_irq_disable(); 4471 if (signal_pending(current)) 4472 goto sigpend; 4473 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4474 goto out; 4475 4476 if (!nested) { 4477 kvmppc_core_prepare_to_enter(vcpu); 4478 if (vcpu->arch.doorbell_request) { 4479 vc->dpdes = 1; 4480 smp_wmb(); 4481 vcpu->arch.doorbell_request = 0; 4482 } 4483 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4484 &vcpu->arch.pending_exceptions)) 4485 lpcr |= LPCR_MER; 4486 } else if (vcpu->arch.pending_exceptions || 4487 vcpu->arch.doorbell_request || 4488 xive_interrupt_pending(vcpu)) { 4489 vcpu->arch.ret = RESUME_HOST; 4490 goto out; 4491 } 4492 4493 kvmppc_clear_host_core(pcpu); 4494 4495 local_paca->kvm_hstate.napping = 0; 4496 local_paca->kvm_hstate.kvm_split_mode = NULL; 4497 kvmppc_start_thread(vcpu, vc); 4498 kvmppc_create_dtl_entry(vcpu, vc); 4499 trace_kvm_guest_enter(vcpu); 4500 4501 vc->vcore_state = VCORE_RUNNING; 4502 trace_kvmppc_run_core(vc, 0); 4503 4504 guest_enter_irqoff(); 4505 4506 srcu_idx = srcu_read_lock(&kvm->srcu); 4507 4508 this_cpu_disable_ftrace(); 4509 4510 /* Tell lockdep that we're about to enable interrupts */ 4511 trace_hardirqs_on(); 4512 4513 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4514 vcpu->arch.trap = trap; 4515 4516 trace_hardirqs_off(); 4517 4518 this_cpu_enable_ftrace(); 4519 4520 srcu_read_unlock(&kvm->srcu, srcu_idx); 4521 4522 set_irq_happened(trap); 4523 4524 kvmppc_set_host_core(pcpu); 4525 4526 context_tracking_guest_exit(); 4527 if (!vtime_accounting_enabled_this_cpu()) { 4528 local_irq_enable(); 4529 /* 4530 * Service IRQs here before vtime_account_guest_exit() so any 4531 * ticks that occurred while running the guest are accounted to 4532 * the guest. If vtime accounting is enabled, accounting uses 4533 * TB rather than ticks, so it can be done without enabling 4534 * interrupts here, which has the problem that it accounts 4535 * interrupt processing overhead to the host. 4536 */ 4537 local_irq_disable(); 4538 } 4539 vtime_account_guest_exit(); 4540 4541 local_irq_enable(); 4542 4543 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4544 4545 preempt_enable(); 4546 4547 /* 4548 * cancel pending decrementer exception if DEC is now positive, or if 4549 * entering a nested guest in which case the decrementer is now owned 4550 * by L2 and the L1 decrementer is provided in hdec_expires 4551 */ 4552 if (kvmppc_core_pending_dec(vcpu) && 4553 ((get_tb() < vcpu->arch.dec_expires) || 4554 (trap == BOOK3S_INTERRUPT_SYSCALL && 4555 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4556 kvmppc_core_dequeue_dec(vcpu); 4557 4558 trace_kvm_guest_exit(vcpu); 4559 r = RESUME_GUEST; 4560 if (trap) { 4561 if (!nested) 4562 r = kvmppc_handle_exit_hv(vcpu, current); 4563 else 4564 r = kvmppc_handle_nested_exit(vcpu); 4565 } 4566 vcpu->arch.ret = r; 4567 4568 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4569 !kvmppc_vcpu_woken(vcpu)) { 4570 kvmppc_set_timer(vcpu); 4571 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4572 if (signal_pending(current)) { 4573 vcpu->stat.signal_exits++; 4574 run->exit_reason = KVM_EXIT_INTR; 4575 vcpu->arch.ret = -EINTR; 4576 break; 4577 } 4578 spin_lock(&vc->lock); 4579 kvmppc_vcore_blocked(vc); 4580 spin_unlock(&vc->lock); 4581 } 4582 } 4583 vcpu->arch.ceded = 0; 4584 4585 vc->vcore_state = VCORE_INACTIVE; 4586 trace_kvmppc_run_core(vc, 1); 4587 4588 done: 4589 kvmppc_remove_runnable(vc, vcpu); 4590 trace_kvmppc_run_vcpu_exit(vcpu); 4591 4592 return vcpu->arch.ret; 4593 4594 sigpend: 4595 vcpu->stat.signal_exits++; 4596 run->exit_reason = KVM_EXIT_INTR; 4597 vcpu->arch.ret = -EINTR; 4598 out: 4599 local_irq_enable(); 4600 preempt_enable(); 4601 goto done; 4602 } 4603 4604 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4605 { 4606 struct kvm_run *run = vcpu->run; 4607 int r; 4608 int srcu_idx; 4609 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4610 unsigned long user_tar = 0; 4611 unsigned int user_vrsave; 4612 struct kvm *kvm; 4613 4614 if (!vcpu->arch.sane) { 4615 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4616 return -EINVAL; 4617 } 4618 4619 /* 4620 * Don't allow entry with a suspended transaction, because 4621 * the guest entry/exit code will lose it. 4622 * If the guest has TM enabled, save away their TM-related SPRs 4623 * (they will get restored by the TM unavailable interrupt). 4624 */ 4625 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4626 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4627 (current->thread.regs->msr & MSR_TM)) { 4628 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4629 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4630 run->fail_entry.hardware_entry_failure_reason = 0; 4631 return -EINVAL; 4632 } 4633 /* Enable TM so we can read the TM SPRs */ 4634 mtmsr(mfmsr() | MSR_TM); 4635 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4636 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4637 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4638 current->thread.regs->msr &= ~MSR_TM; 4639 } 4640 #endif 4641 4642 /* 4643 * Force online to 1 for the sake of old userspace which doesn't 4644 * set it. 4645 */ 4646 if (!vcpu->arch.online) { 4647 atomic_inc(&vcpu->arch.vcore->online_count); 4648 vcpu->arch.online = 1; 4649 } 4650 4651 kvmppc_core_prepare_to_enter(vcpu); 4652 4653 /* No need to go into the guest when all we'll do is come back out */ 4654 if (signal_pending(current)) { 4655 run->exit_reason = KVM_EXIT_INTR; 4656 return -EINTR; 4657 } 4658 4659 kvm = vcpu->kvm; 4660 atomic_inc(&kvm->arch.vcpus_running); 4661 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4662 smp_mb(); 4663 4664 flush_all_to_thread(current); 4665 4666 /* Save userspace EBB and other register values */ 4667 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4668 ebb_regs[0] = mfspr(SPRN_EBBHR); 4669 ebb_regs[1] = mfspr(SPRN_EBBRR); 4670 ebb_regs[2] = mfspr(SPRN_BESCR); 4671 user_tar = mfspr(SPRN_TAR); 4672 } 4673 user_vrsave = mfspr(SPRN_VRSAVE); 4674 4675 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4676 vcpu->arch.pgdir = kvm->mm->pgd; 4677 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4678 4679 do { 4680 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4681 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4682 vcpu->arch.vcore->lpcr); 4683 else 4684 r = kvmppc_run_vcpu(vcpu); 4685 4686 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4687 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4688 /* 4689 * These should have been caught reflected 4690 * into the guest by now. Final sanity check: 4691 * don't allow userspace to execute hcalls in 4692 * the hypervisor. 4693 */ 4694 r = RESUME_GUEST; 4695 continue; 4696 } 4697 trace_kvm_hcall_enter(vcpu); 4698 r = kvmppc_pseries_do_hcall(vcpu); 4699 trace_kvm_hcall_exit(vcpu, r); 4700 kvmppc_core_prepare_to_enter(vcpu); 4701 } else if (r == RESUME_PAGE_FAULT) { 4702 srcu_idx = srcu_read_lock(&kvm->srcu); 4703 r = kvmppc_book3s_hv_page_fault(vcpu, 4704 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4705 srcu_read_unlock(&kvm->srcu, srcu_idx); 4706 } else if (r == RESUME_PASSTHROUGH) { 4707 if (WARN_ON(xics_on_xive())) 4708 r = H_SUCCESS; 4709 else 4710 r = kvmppc_xics_rm_complete(vcpu, 0); 4711 } 4712 } while (is_kvmppc_resume_guest(r)); 4713 4714 /* Restore userspace EBB and other register values */ 4715 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4716 mtspr(SPRN_EBBHR, ebb_regs[0]); 4717 mtspr(SPRN_EBBRR, ebb_regs[1]); 4718 mtspr(SPRN_BESCR, ebb_regs[2]); 4719 mtspr(SPRN_TAR, user_tar); 4720 } 4721 mtspr(SPRN_VRSAVE, user_vrsave); 4722 4723 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4724 atomic_dec(&kvm->arch.vcpus_running); 4725 4726 srr_regs_clobbered(); 4727 4728 return r; 4729 } 4730 4731 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4732 int shift, int sllp) 4733 { 4734 (*sps)->page_shift = shift; 4735 (*sps)->slb_enc = sllp; 4736 (*sps)->enc[0].page_shift = shift; 4737 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4738 /* 4739 * Add 16MB MPSS support (may get filtered out by userspace) 4740 */ 4741 if (shift != 24) { 4742 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4743 if (penc != -1) { 4744 (*sps)->enc[1].page_shift = 24; 4745 (*sps)->enc[1].pte_enc = penc; 4746 } 4747 } 4748 (*sps)++; 4749 } 4750 4751 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4752 struct kvm_ppc_smmu_info *info) 4753 { 4754 struct kvm_ppc_one_seg_page_size *sps; 4755 4756 /* 4757 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4758 * POWER7 doesn't support keys for instruction accesses, 4759 * POWER8 and POWER9 do. 4760 */ 4761 info->data_keys = 32; 4762 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4763 4764 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4765 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4766 info->slb_size = 32; 4767 4768 /* We only support these sizes for now, and no muti-size segments */ 4769 sps = &info->sps[0]; 4770 kvmppc_add_seg_page_size(&sps, 12, 0); 4771 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4772 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4773 4774 /* If running as a nested hypervisor, we don't support HPT guests */ 4775 if (kvmhv_on_pseries()) 4776 info->flags |= KVM_PPC_NO_HASH; 4777 4778 return 0; 4779 } 4780 4781 /* 4782 * Get (and clear) the dirty memory log for a memory slot. 4783 */ 4784 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4785 struct kvm_dirty_log *log) 4786 { 4787 struct kvm_memslots *slots; 4788 struct kvm_memory_slot *memslot; 4789 int i, r; 4790 unsigned long n; 4791 unsigned long *buf, *p; 4792 struct kvm_vcpu *vcpu; 4793 4794 mutex_lock(&kvm->slots_lock); 4795 4796 r = -EINVAL; 4797 if (log->slot >= KVM_USER_MEM_SLOTS) 4798 goto out; 4799 4800 slots = kvm_memslots(kvm); 4801 memslot = id_to_memslot(slots, log->slot); 4802 r = -ENOENT; 4803 if (!memslot || !memslot->dirty_bitmap) 4804 goto out; 4805 4806 /* 4807 * Use second half of bitmap area because both HPT and radix 4808 * accumulate bits in the first half. 4809 */ 4810 n = kvm_dirty_bitmap_bytes(memslot); 4811 buf = memslot->dirty_bitmap + n / sizeof(long); 4812 memset(buf, 0, n); 4813 4814 if (kvm_is_radix(kvm)) 4815 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4816 else 4817 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4818 if (r) 4819 goto out; 4820 4821 /* 4822 * We accumulate dirty bits in the first half of the 4823 * memslot's dirty_bitmap area, for when pages are paged 4824 * out or modified by the host directly. Pick up these 4825 * bits and add them to the map. 4826 */ 4827 p = memslot->dirty_bitmap; 4828 for (i = 0; i < n / sizeof(long); ++i) 4829 buf[i] |= xchg(&p[i], 0); 4830 4831 /* Harvest dirty bits from VPA and DTL updates */ 4832 /* Note: we never modify the SLB shadow buffer areas */ 4833 kvm_for_each_vcpu(i, vcpu, kvm) { 4834 spin_lock(&vcpu->arch.vpa_update_lock); 4835 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4836 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4837 spin_unlock(&vcpu->arch.vpa_update_lock); 4838 } 4839 4840 r = -EFAULT; 4841 if (copy_to_user(log->dirty_bitmap, buf, n)) 4842 goto out; 4843 4844 r = 0; 4845 out: 4846 mutex_unlock(&kvm->slots_lock); 4847 return r; 4848 } 4849 4850 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4851 { 4852 vfree(slot->arch.rmap); 4853 slot->arch.rmap = NULL; 4854 } 4855 4856 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4857 struct kvm_memory_slot *slot, 4858 const struct kvm_userspace_memory_region *mem, 4859 enum kvm_mr_change change) 4860 { 4861 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4862 4863 if (change == KVM_MR_CREATE) { 4864 slot->arch.rmap = vzalloc(array_size(npages, 4865 sizeof(*slot->arch.rmap))); 4866 if (!slot->arch.rmap) 4867 return -ENOMEM; 4868 } 4869 4870 return 0; 4871 } 4872 4873 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4874 const struct kvm_userspace_memory_region *mem, 4875 const struct kvm_memory_slot *old, 4876 const struct kvm_memory_slot *new, 4877 enum kvm_mr_change change) 4878 { 4879 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4880 4881 /* 4882 * If we are making a new memslot, it might make 4883 * some address that was previously cached as emulated 4884 * MMIO be no longer emulated MMIO, so invalidate 4885 * all the caches of emulated MMIO translations. 4886 */ 4887 if (npages) 4888 atomic64_inc(&kvm->arch.mmio_update); 4889 4890 /* 4891 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4892 * have already called kvm_arch_flush_shadow_memslot() to 4893 * flush shadow mappings. For KVM_MR_CREATE we have no 4894 * previous mappings. So the only case to handle is 4895 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4896 * has been changed. 4897 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4898 * to get rid of any THP PTEs in the partition-scoped page tables 4899 * so we can track dirtiness at the page level; we flush when 4900 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4901 * using THP PTEs. 4902 */ 4903 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4904 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4905 kvmppc_radix_flush_memslot(kvm, old); 4906 /* 4907 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4908 */ 4909 if (!kvm->arch.secure_guest) 4910 return; 4911 4912 switch (change) { 4913 case KVM_MR_CREATE: 4914 /* 4915 * @TODO kvmppc_uvmem_memslot_create() can fail and 4916 * return error. Fix this. 4917 */ 4918 kvmppc_uvmem_memslot_create(kvm, new); 4919 break; 4920 case KVM_MR_DELETE: 4921 kvmppc_uvmem_memslot_delete(kvm, old); 4922 break; 4923 default: 4924 /* TODO: Handle KVM_MR_MOVE */ 4925 break; 4926 } 4927 } 4928 4929 /* 4930 * Update LPCR values in kvm->arch and in vcores. 4931 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4932 * of kvm->arch.lpcr update). 4933 */ 4934 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4935 { 4936 long int i; 4937 u32 cores_done = 0; 4938 4939 if ((kvm->arch.lpcr & mask) == lpcr) 4940 return; 4941 4942 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4943 4944 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4945 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4946 if (!vc) 4947 continue; 4948 4949 spin_lock(&vc->lock); 4950 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4951 verify_lpcr(kvm, vc->lpcr); 4952 spin_unlock(&vc->lock); 4953 if (++cores_done >= kvm->arch.online_vcores) 4954 break; 4955 } 4956 } 4957 4958 void kvmppc_setup_partition_table(struct kvm *kvm) 4959 { 4960 unsigned long dw0, dw1; 4961 4962 if (!kvm_is_radix(kvm)) { 4963 /* PS field - page size for VRMA */ 4964 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4965 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4966 /* HTABSIZE and HTABORG fields */ 4967 dw0 |= kvm->arch.sdr1; 4968 4969 /* Second dword as set by userspace */ 4970 dw1 = kvm->arch.process_table; 4971 } else { 4972 dw0 = PATB_HR | radix__get_tree_size() | 4973 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4974 dw1 = PATB_GR | kvm->arch.process_table; 4975 } 4976 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4977 } 4978 4979 /* 4980 * Set up HPT (hashed page table) and RMA (real-mode area). 4981 * Must be called with kvm->arch.mmu_setup_lock held. 4982 */ 4983 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4984 { 4985 int err = 0; 4986 struct kvm *kvm = vcpu->kvm; 4987 unsigned long hva; 4988 struct kvm_memory_slot *memslot; 4989 struct vm_area_struct *vma; 4990 unsigned long lpcr = 0, senc; 4991 unsigned long psize, porder; 4992 int srcu_idx; 4993 4994 /* Allocate hashed page table (if not done already) and reset it */ 4995 if (!kvm->arch.hpt.virt) { 4996 int order = KVM_DEFAULT_HPT_ORDER; 4997 struct kvm_hpt_info info; 4998 4999 err = kvmppc_allocate_hpt(&info, order); 5000 /* If we get here, it means userspace didn't specify a 5001 * size explicitly. So, try successively smaller 5002 * sizes if the default failed. */ 5003 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5004 err = kvmppc_allocate_hpt(&info, order); 5005 5006 if (err < 0) { 5007 pr_err("KVM: Couldn't alloc HPT\n"); 5008 goto out; 5009 } 5010 5011 kvmppc_set_hpt(kvm, &info); 5012 } 5013 5014 /* Look up the memslot for guest physical address 0 */ 5015 srcu_idx = srcu_read_lock(&kvm->srcu); 5016 memslot = gfn_to_memslot(kvm, 0); 5017 5018 /* We must have some memory at 0 by now */ 5019 err = -EINVAL; 5020 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5021 goto out_srcu; 5022 5023 /* Look up the VMA for the start of this memory slot */ 5024 hva = memslot->userspace_addr; 5025 mmap_read_lock(kvm->mm); 5026 vma = vma_lookup(kvm->mm, hva); 5027 if (!vma || (vma->vm_flags & VM_IO)) 5028 goto up_out; 5029 5030 psize = vma_kernel_pagesize(vma); 5031 5032 mmap_read_unlock(kvm->mm); 5033 5034 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5035 if (psize >= 0x1000000) 5036 psize = 0x1000000; 5037 else if (psize >= 0x10000) 5038 psize = 0x10000; 5039 else 5040 psize = 0x1000; 5041 porder = __ilog2(psize); 5042 5043 senc = slb_pgsize_encoding(psize); 5044 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5045 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5046 /* Create HPTEs in the hash page table for the VRMA */ 5047 kvmppc_map_vrma(vcpu, memslot, porder); 5048 5049 /* Update VRMASD field in the LPCR */ 5050 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5051 /* the -4 is to account for senc values starting at 0x10 */ 5052 lpcr = senc << (LPCR_VRMASD_SH - 4); 5053 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5054 } 5055 5056 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5057 smp_wmb(); 5058 err = 0; 5059 out_srcu: 5060 srcu_read_unlock(&kvm->srcu, srcu_idx); 5061 out: 5062 return err; 5063 5064 up_out: 5065 mmap_read_unlock(kvm->mm); 5066 goto out_srcu; 5067 } 5068 5069 /* 5070 * Must be called with kvm->arch.mmu_setup_lock held and 5071 * mmu_ready = 0 and no vcpus running. 5072 */ 5073 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5074 { 5075 if (nesting_enabled(kvm)) 5076 kvmhv_release_all_nested(kvm); 5077 kvmppc_rmap_reset(kvm); 5078 kvm->arch.process_table = 0; 5079 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5080 spin_lock(&kvm->mmu_lock); 5081 kvm->arch.radix = 0; 5082 spin_unlock(&kvm->mmu_lock); 5083 kvmppc_free_radix(kvm); 5084 kvmppc_update_lpcr(kvm, LPCR_VPM1, 5085 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 5086 return 0; 5087 } 5088 5089 /* 5090 * Must be called with kvm->arch.mmu_setup_lock held and 5091 * mmu_ready = 0 and no vcpus running. 5092 */ 5093 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5094 { 5095 int err; 5096 5097 err = kvmppc_init_vm_radix(kvm); 5098 if (err) 5099 return err; 5100 kvmppc_rmap_reset(kvm); 5101 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5102 spin_lock(&kvm->mmu_lock); 5103 kvm->arch.radix = 1; 5104 spin_unlock(&kvm->mmu_lock); 5105 kvmppc_free_hpt(&kvm->arch.hpt); 5106 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 5107 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 5108 return 0; 5109 } 5110 5111 #ifdef CONFIG_KVM_XICS 5112 /* 5113 * Allocate a per-core structure for managing state about which cores are 5114 * running in the host versus the guest and for exchanging data between 5115 * real mode KVM and CPU running in the host. 5116 * This is only done for the first VM. 5117 * The allocated structure stays even if all VMs have stopped. 5118 * It is only freed when the kvm-hv module is unloaded. 5119 * It's OK for this routine to fail, we just don't support host 5120 * core operations like redirecting H_IPI wakeups. 5121 */ 5122 void kvmppc_alloc_host_rm_ops(void) 5123 { 5124 struct kvmppc_host_rm_ops *ops; 5125 unsigned long l_ops; 5126 int cpu, core; 5127 int size; 5128 5129 /* Not the first time here ? */ 5130 if (kvmppc_host_rm_ops_hv != NULL) 5131 return; 5132 5133 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5134 if (!ops) 5135 return; 5136 5137 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5138 ops->rm_core = kzalloc(size, GFP_KERNEL); 5139 5140 if (!ops->rm_core) { 5141 kfree(ops); 5142 return; 5143 } 5144 5145 cpus_read_lock(); 5146 5147 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5148 if (!cpu_online(cpu)) 5149 continue; 5150 5151 core = cpu >> threads_shift; 5152 ops->rm_core[core].rm_state.in_host = 1; 5153 } 5154 5155 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5156 5157 /* 5158 * Make the contents of the kvmppc_host_rm_ops structure visible 5159 * to other CPUs before we assign it to the global variable. 5160 * Do an atomic assignment (no locks used here), but if someone 5161 * beats us to it, just free our copy and return. 5162 */ 5163 smp_wmb(); 5164 l_ops = (unsigned long) ops; 5165 5166 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5167 cpus_read_unlock(); 5168 kfree(ops->rm_core); 5169 kfree(ops); 5170 return; 5171 } 5172 5173 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5174 "ppc/kvm_book3s:prepare", 5175 kvmppc_set_host_core, 5176 kvmppc_clear_host_core); 5177 cpus_read_unlock(); 5178 } 5179 5180 void kvmppc_free_host_rm_ops(void) 5181 { 5182 if (kvmppc_host_rm_ops_hv) { 5183 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5184 kfree(kvmppc_host_rm_ops_hv->rm_core); 5185 kfree(kvmppc_host_rm_ops_hv); 5186 kvmppc_host_rm_ops_hv = NULL; 5187 } 5188 } 5189 #endif 5190 5191 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5192 { 5193 unsigned long lpcr, lpid; 5194 char buf[32]; 5195 int ret; 5196 5197 mutex_init(&kvm->arch.uvmem_lock); 5198 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5199 mutex_init(&kvm->arch.mmu_setup_lock); 5200 5201 /* Allocate the guest's logical partition ID */ 5202 5203 lpid = kvmppc_alloc_lpid(); 5204 if ((long)lpid < 0) 5205 return -ENOMEM; 5206 kvm->arch.lpid = lpid; 5207 5208 kvmppc_alloc_host_rm_ops(); 5209 5210 kvmhv_vm_nested_init(kvm); 5211 5212 /* 5213 * Since we don't flush the TLB when tearing down a VM, 5214 * and this lpid might have previously been used, 5215 * make sure we flush on each core before running the new VM. 5216 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5217 * does this flush for us. 5218 */ 5219 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5220 cpumask_setall(&kvm->arch.need_tlb_flush); 5221 5222 /* Start out with the default set of hcalls enabled */ 5223 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5224 sizeof(kvm->arch.enabled_hcalls)); 5225 5226 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5227 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5228 5229 /* Init LPCR for virtual RMA mode */ 5230 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5231 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5232 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5233 lpcr &= LPCR_PECE | LPCR_LPES; 5234 } else { 5235 lpcr = 0; 5236 } 5237 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5238 LPCR_VPM0 | LPCR_VPM1; 5239 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5240 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5241 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5242 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5243 lpcr |= LPCR_ONL; 5244 /* 5245 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5246 * Set HVICE bit to enable hypervisor virtualization interrupts. 5247 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5248 * be unnecessary but better safe than sorry in case we re-enable 5249 * EE in HV mode with this LPCR still set) 5250 */ 5251 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5252 lpcr &= ~LPCR_VPM0; 5253 lpcr |= LPCR_HVICE | LPCR_HEIC; 5254 5255 /* 5256 * If xive is enabled, we route 0x500 interrupts directly 5257 * to the guest. 5258 */ 5259 if (xics_on_xive()) 5260 lpcr |= LPCR_LPES; 5261 } 5262 5263 /* 5264 * If the host uses radix, the guest starts out as radix. 5265 */ 5266 if (radix_enabled()) { 5267 kvm->arch.radix = 1; 5268 kvm->arch.mmu_ready = 1; 5269 lpcr &= ~LPCR_VPM1; 5270 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5271 ret = kvmppc_init_vm_radix(kvm); 5272 if (ret) { 5273 kvmppc_free_lpid(kvm->arch.lpid); 5274 return ret; 5275 } 5276 kvmppc_setup_partition_table(kvm); 5277 } 5278 5279 verify_lpcr(kvm, lpcr); 5280 kvm->arch.lpcr = lpcr; 5281 5282 /* Initialization for future HPT resizes */ 5283 kvm->arch.resize_hpt = NULL; 5284 5285 /* 5286 * Work out how many sets the TLB has, for the use of 5287 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5288 */ 5289 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5290 /* 5291 * P10 will flush all the congruence class with a single tlbiel 5292 */ 5293 kvm->arch.tlb_sets = 1; 5294 } else if (radix_enabled()) 5295 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5296 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5297 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5298 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5299 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5300 else 5301 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5302 5303 /* 5304 * Track that we now have a HV mode VM active. This blocks secondary 5305 * CPU threads from coming online. 5306 */ 5307 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5308 kvm_hv_vm_activated(); 5309 5310 /* 5311 * Initialize smt_mode depending on processor. 5312 * POWER8 and earlier have to use "strict" threading, where 5313 * all vCPUs in a vcore have to run on the same (sub)core, 5314 * whereas on POWER9 the threads can each run a different 5315 * guest. 5316 */ 5317 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5318 kvm->arch.smt_mode = threads_per_subcore; 5319 else 5320 kvm->arch.smt_mode = 1; 5321 kvm->arch.emul_smt_mode = 1; 5322 5323 /* 5324 * Create a debugfs directory for the VM 5325 */ 5326 snprintf(buf, sizeof(buf), "vm%d", current->pid); 5327 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 5328 kvmppc_mmu_debugfs_init(kvm); 5329 if (radix_enabled()) 5330 kvmhv_radix_debugfs_init(kvm); 5331 5332 return 0; 5333 } 5334 5335 static void kvmppc_free_vcores(struct kvm *kvm) 5336 { 5337 long int i; 5338 5339 for (i = 0; i < KVM_MAX_VCORES; ++i) 5340 kfree(kvm->arch.vcores[i]); 5341 kvm->arch.online_vcores = 0; 5342 } 5343 5344 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5345 { 5346 debugfs_remove_recursive(kvm->arch.debugfs_dir); 5347 5348 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5349 kvm_hv_vm_deactivated(); 5350 5351 kvmppc_free_vcores(kvm); 5352 5353 5354 if (kvm_is_radix(kvm)) 5355 kvmppc_free_radix(kvm); 5356 else 5357 kvmppc_free_hpt(&kvm->arch.hpt); 5358 5359 /* Perform global invalidation and return lpid to the pool */ 5360 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5361 if (nesting_enabled(kvm)) 5362 kvmhv_release_all_nested(kvm); 5363 kvm->arch.process_table = 0; 5364 if (kvm->arch.secure_guest) 5365 uv_svm_terminate(kvm->arch.lpid); 5366 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5367 } 5368 5369 kvmppc_free_lpid(kvm->arch.lpid); 5370 5371 kvmppc_free_pimap(kvm); 5372 } 5373 5374 /* We don't need to emulate any privileged instructions or dcbz */ 5375 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5376 unsigned int inst, int *advance) 5377 { 5378 return EMULATE_FAIL; 5379 } 5380 5381 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5382 ulong spr_val) 5383 { 5384 return EMULATE_FAIL; 5385 } 5386 5387 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5388 ulong *spr_val) 5389 { 5390 return EMULATE_FAIL; 5391 } 5392 5393 static int kvmppc_core_check_processor_compat_hv(void) 5394 { 5395 if (cpu_has_feature(CPU_FTR_HVMODE) && 5396 cpu_has_feature(CPU_FTR_ARCH_206)) 5397 return 0; 5398 5399 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5400 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5401 return 0; 5402 5403 return -EIO; 5404 } 5405 5406 #ifdef CONFIG_KVM_XICS 5407 5408 void kvmppc_free_pimap(struct kvm *kvm) 5409 { 5410 kfree(kvm->arch.pimap); 5411 } 5412 5413 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5414 { 5415 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5416 } 5417 5418 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5419 { 5420 struct irq_desc *desc; 5421 struct kvmppc_irq_map *irq_map; 5422 struct kvmppc_passthru_irqmap *pimap; 5423 struct irq_chip *chip; 5424 int i, rc = 0; 5425 struct irq_data *host_data; 5426 5427 if (!kvm_irq_bypass) 5428 return 1; 5429 5430 desc = irq_to_desc(host_irq); 5431 if (!desc) 5432 return -EIO; 5433 5434 mutex_lock(&kvm->lock); 5435 5436 pimap = kvm->arch.pimap; 5437 if (pimap == NULL) { 5438 /* First call, allocate structure to hold IRQ map */ 5439 pimap = kvmppc_alloc_pimap(); 5440 if (pimap == NULL) { 5441 mutex_unlock(&kvm->lock); 5442 return -ENOMEM; 5443 } 5444 kvm->arch.pimap = pimap; 5445 } 5446 5447 /* 5448 * For now, we only support interrupts for which the EOI operation 5449 * is an OPAL call followed by a write to XIRR, since that's 5450 * what our real-mode EOI code does, or a XIVE interrupt 5451 */ 5452 chip = irq_data_get_irq_chip(&desc->irq_data); 5453 if (!chip || !is_pnv_opal_msi(chip)) { 5454 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5455 host_irq, guest_gsi); 5456 mutex_unlock(&kvm->lock); 5457 return -ENOENT; 5458 } 5459 5460 /* 5461 * See if we already have an entry for this guest IRQ number. 5462 * If it's mapped to a hardware IRQ number, that's an error, 5463 * otherwise re-use this entry. 5464 */ 5465 for (i = 0; i < pimap->n_mapped; i++) { 5466 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5467 if (pimap->mapped[i].r_hwirq) { 5468 mutex_unlock(&kvm->lock); 5469 return -EINVAL; 5470 } 5471 break; 5472 } 5473 } 5474 5475 if (i == KVMPPC_PIRQ_MAPPED) { 5476 mutex_unlock(&kvm->lock); 5477 return -EAGAIN; /* table is full */ 5478 } 5479 5480 irq_map = &pimap->mapped[i]; 5481 5482 irq_map->v_hwirq = guest_gsi; 5483 irq_map->desc = desc; 5484 5485 /* 5486 * Order the above two stores before the next to serialize with 5487 * the KVM real mode handler. 5488 */ 5489 smp_wmb(); 5490 5491 /* 5492 * The 'host_irq' number is mapped in the PCI-MSI domain but 5493 * the underlying calls, which will EOI the interrupt in real 5494 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5495 */ 5496 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5497 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5498 5499 if (i == pimap->n_mapped) 5500 pimap->n_mapped++; 5501 5502 if (xics_on_xive()) 5503 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5504 else 5505 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5506 if (rc) 5507 irq_map->r_hwirq = 0; 5508 5509 mutex_unlock(&kvm->lock); 5510 5511 return 0; 5512 } 5513 5514 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5515 { 5516 struct irq_desc *desc; 5517 struct kvmppc_passthru_irqmap *pimap; 5518 int i, rc = 0; 5519 5520 if (!kvm_irq_bypass) 5521 return 0; 5522 5523 desc = irq_to_desc(host_irq); 5524 if (!desc) 5525 return -EIO; 5526 5527 mutex_lock(&kvm->lock); 5528 if (!kvm->arch.pimap) 5529 goto unlock; 5530 5531 pimap = kvm->arch.pimap; 5532 5533 for (i = 0; i < pimap->n_mapped; i++) { 5534 if (guest_gsi == pimap->mapped[i].v_hwirq) 5535 break; 5536 } 5537 5538 if (i == pimap->n_mapped) { 5539 mutex_unlock(&kvm->lock); 5540 return -ENODEV; 5541 } 5542 5543 if (xics_on_xive()) 5544 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5545 else 5546 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5547 5548 /* invalidate the entry (what do do on error from the above ?) */ 5549 pimap->mapped[i].r_hwirq = 0; 5550 5551 /* 5552 * We don't free this structure even when the count goes to 5553 * zero. The structure is freed when we destroy the VM. 5554 */ 5555 unlock: 5556 mutex_unlock(&kvm->lock); 5557 return rc; 5558 } 5559 5560 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5561 struct irq_bypass_producer *prod) 5562 { 5563 int ret = 0; 5564 struct kvm_kernel_irqfd *irqfd = 5565 container_of(cons, struct kvm_kernel_irqfd, consumer); 5566 5567 irqfd->producer = prod; 5568 5569 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5570 if (ret) 5571 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5572 prod->irq, irqfd->gsi, ret); 5573 5574 return ret; 5575 } 5576 5577 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5578 struct irq_bypass_producer *prod) 5579 { 5580 int ret; 5581 struct kvm_kernel_irqfd *irqfd = 5582 container_of(cons, struct kvm_kernel_irqfd, consumer); 5583 5584 irqfd->producer = NULL; 5585 5586 /* 5587 * When producer of consumer is unregistered, we change back to 5588 * default external interrupt handling mode - KVM real mode 5589 * will switch back to host. 5590 */ 5591 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5592 if (ret) 5593 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5594 prod->irq, irqfd->gsi, ret); 5595 } 5596 #endif 5597 5598 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5599 unsigned int ioctl, unsigned long arg) 5600 { 5601 struct kvm *kvm __maybe_unused = filp->private_data; 5602 void __user *argp = (void __user *)arg; 5603 long r; 5604 5605 switch (ioctl) { 5606 5607 case KVM_PPC_ALLOCATE_HTAB: { 5608 u32 htab_order; 5609 5610 /* If we're a nested hypervisor, we currently only support radix */ 5611 if (kvmhv_on_pseries()) { 5612 r = -EOPNOTSUPP; 5613 break; 5614 } 5615 5616 r = -EFAULT; 5617 if (get_user(htab_order, (u32 __user *)argp)) 5618 break; 5619 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5620 if (r) 5621 break; 5622 r = 0; 5623 break; 5624 } 5625 5626 case KVM_PPC_GET_HTAB_FD: { 5627 struct kvm_get_htab_fd ghf; 5628 5629 r = -EFAULT; 5630 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5631 break; 5632 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5633 break; 5634 } 5635 5636 case KVM_PPC_RESIZE_HPT_PREPARE: { 5637 struct kvm_ppc_resize_hpt rhpt; 5638 5639 r = -EFAULT; 5640 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5641 break; 5642 5643 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5644 break; 5645 } 5646 5647 case KVM_PPC_RESIZE_HPT_COMMIT: { 5648 struct kvm_ppc_resize_hpt rhpt; 5649 5650 r = -EFAULT; 5651 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5652 break; 5653 5654 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5655 break; 5656 } 5657 5658 default: 5659 r = -ENOTTY; 5660 } 5661 5662 return r; 5663 } 5664 5665 /* 5666 * List of hcall numbers to enable by default. 5667 * For compatibility with old userspace, we enable by default 5668 * all hcalls that were implemented before the hcall-enabling 5669 * facility was added. Note this list should not include H_RTAS. 5670 */ 5671 static unsigned int default_hcall_list[] = { 5672 H_REMOVE, 5673 H_ENTER, 5674 H_READ, 5675 H_PROTECT, 5676 H_BULK_REMOVE, 5677 #ifdef CONFIG_SPAPR_TCE_IOMMU 5678 H_GET_TCE, 5679 H_PUT_TCE, 5680 #endif 5681 H_SET_DABR, 5682 H_SET_XDABR, 5683 H_CEDE, 5684 H_PROD, 5685 H_CONFER, 5686 H_REGISTER_VPA, 5687 #ifdef CONFIG_KVM_XICS 5688 H_EOI, 5689 H_CPPR, 5690 H_IPI, 5691 H_IPOLL, 5692 H_XIRR, 5693 H_XIRR_X, 5694 #endif 5695 0 5696 }; 5697 5698 static void init_default_hcalls(void) 5699 { 5700 int i; 5701 unsigned int hcall; 5702 5703 for (i = 0; default_hcall_list[i]; ++i) { 5704 hcall = default_hcall_list[i]; 5705 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5706 __set_bit(hcall / 4, default_enabled_hcalls); 5707 } 5708 } 5709 5710 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5711 { 5712 unsigned long lpcr; 5713 int radix; 5714 int err; 5715 5716 /* If not on a POWER9, reject it */ 5717 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5718 return -ENODEV; 5719 5720 /* If any unknown flags set, reject it */ 5721 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5722 return -EINVAL; 5723 5724 /* GR (guest radix) bit in process_table field must match */ 5725 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5726 if (!!(cfg->process_table & PATB_GR) != radix) 5727 return -EINVAL; 5728 5729 /* Process table size field must be reasonable, i.e. <= 24 */ 5730 if ((cfg->process_table & PRTS_MASK) > 24) 5731 return -EINVAL; 5732 5733 /* We can change a guest to/from radix now, if the host is radix */ 5734 if (radix && !radix_enabled()) 5735 return -EINVAL; 5736 5737 /* If we're a nested hypervisor, we currently only support radix */ 5738 if (kvmhv_on_pseries() && !radix) 5739 return -EINVAL; 5740 5741 mutex_lock(&kvm->arch.mmu_setup_lock); 5742 if (radix != kvm_is_radix(kvm)) { 5743 if (kvm->arch.mmu_ready) { 5744 kvm->arch.mmu_ready = 0; 5745 /* order mmu_ready vs. vcpus_running */ 5746 smp_mb(); 5747 if (atomic_read(&kvm->arch.vcpus_running)) { 5748 kvm->arch.mmu_ready = 1; 5749 err = -EBUSY; 5750 goto out_unlock; 5751 } 5752 } 5753 if (radix) 5754 err = kvmppc_switch_mmu_to_radix(kvm); 5755 else 5756 err = kvmppc_switch_mmu_to_hpt(kvm); 5757 if (err) 5758 goto out_unlock; 5759 } 5760 5761 kvm->arch.process_table = cfg->process_table; 5762 kvmppc_setup_partition_table(kvm); 5763 5764 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5765 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5766 err = 0; 5767 5768 out_unlock: 5769 mutex_unlock(&kvm->arch.mmu_setup_lock); 5770 return err; 5771 } 5772 5773 static int kvmhv_enable_nested(struct kvm *kvm) 5774 { 5775 if (!nested) 5776 return -EPERM; 5777 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5778 return -ENODEV; 5779 if (!radix_enabled()) 5780 return -ENODEV; 5781 5782 /* kvm == NULL means the caller is testing if the capability exists */ 5783 if (kvm) 5784 kvm->arch.nested_enable = true; 5785 return 0; 5786 } 5787 5788 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5789 int size) 5790 { 5791 int rc = -EINVAL; 5792 5793 if (kvmhv_vcpu_is_radix(vcpu)) { 5794 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5795 5796 if (rc > 0) 5797 rc = -EINVAL; 5798 } 5799 5800 /* For now quadrants are the only way to access nested guest memory */ 5801 if (rc && vcpu->arch.nested) 5802 rc = -EAGAIN; 5803 5804 return rc; 5805 } 5806 5807 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5808 int size) 5809 { 5810 int rc = -EINVAL; 5811 5812 if (kvmhv_vcpu_is_radix(vcpu)) { 5813 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5814 5815 if (rc > 0) 5816 rc = -EINVAL; 5817 } 5818 5819 /* For now quadrants are the only way to access nested guest memory */ 5820 if (rc && vcpu->arch.nested) 5821 rc = -EAGAIN; 5822 5823 return rc; 5824 } 5825 5826 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5827 { 5828 unpin_vpa(kvm, vpa); 5829 vpa->gpa = 0; 5830 vpa->pinned_addr = NULL; 5831 vpa->dirty = false; 5832 vpa->update_pending = 0; 5833 } 5834 5835 /* 5836 * Enable a guest to become a secure VM, or test whether 5837 * that could be enabled. 5838 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5839 * tested (kvm == NULL) or enabled (kvm != NULL). 5840 */ 5841 static int kvmhv_enable_svm(struct kvm *kvm) 5842 { 5843 if (!kvmppc_uvmem_available()) 5844 return -EINVAL; 5845 if (kvm) 5846 kvm->arch.svm_enabled = 1; 5847 return 0; 5848 } 5849 5850 /* 5851 * IOCTL handler to turn off secure mode of guest 5852 * 5853 * - Release all device pages 5854 * - Issue ucall to terminate the guest on the UV side 5855 * - Unpin the VPA pages. 5856 * - Reinit the partition scoped page tables 5857 */ 5858 static int kvmhv_svm_off(struct kvm *kvm) 5859 { 5860 struct kvm_vcpu *vcpu; 5861 int mmu_was_ready; 5862 int srcu_idx; 5863 int ret = 0; 5864 int i; 5865 5866 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5867 return ret; 5868 5869 mutex_lock(&kvm->arch.mmu_setup_lock); 5870 mmu_was_ready = kvm->arch.mmu_ready; 5871 if (kvm->arch.mmu_ready) { 5872 kvm->arch.mmu_ready = 0; 5873 /* order mmu_ready vs. vcpus_running */ 5874 smp_mb(); 5875 if (atomic_read(&kvm->arch.vcpus_running)) { 5876 kvm->arch.mmu_ready = 1; 5877 ret = -EBUSY; 5878 goto out; 5879 } 5880 } 5881 5882 srcu_idx = srcu_read_lock(&kvm->srcu); 5883 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5884 struct kvm_memory_slot *memslot; 5885 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5886 5887 if (!slots) 5888 continue; 5889 5890 kvm_for_each_memslot(memslot, slots) { 5891 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5892 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5893 } 5894 } 5895 srcu_read_unlock(&kvm->srcu, srcu_idx); 5896 5897 ret = uv_svm_terminate(kvm->arch.lpid); 5898 if (ret != U_SUCCESS) { 5899 ret = -EINVAL; 5900 goto out; 5901 } 5902 5903 /* 5904 * When secure guest is reset, all the guest pages are sent 5905 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5906 * chance to run and unpin their VPA pages. Unpinning of all 5907 * VPA pages is done here explicitly so that VPA pages 5908 * can be migrated to the secure side. 5909 * 5910 * This is required to for the secure SMP guest to reboot 5911 * correctly. 5912 */ 5913 kvm_for_each_vcpu(i, vcpu, kvm) { 5914 spin_lock(&vcpu->arch.vpa_update_lock); 5915 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5916 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5917 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5918 spin_unlock(&vcpu->arch.vpa_update_lock); 5919 } 5920 5921 kvmppc_setup_partition_table(kvm); 5922 kvm->arch.secure_guest = 0; 5923 kvm->arch.mmu_ready = mmu_was_ready; 5924 out: 5925 mutex_unlock(&kvm->arch.mmu_setup_lock); 5926 return ret; 5927 } 5928 5929 static int kvmhv_enable_dawr1(struct kvm *kvm) 5930 { 5931 if (!cpu_has_feature(CPU_FTR_DAWR1)) 5932 return -ENODEV; 5933 5934 /* kvm == NULL means the caller is testing if the capability exists */ 5935 if (kvm) 5936 kvm->arch.dawr1_enabled = true; 5937 return 0; 5938 } 5939 5940 static bool kvmppc_hash_v3_possible(void) 5941 { 5942 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5943 return false; 5944 5945 if (!cpu_has_feature(CPU_FTR_HVMODE)) 5946 return false; 5947 5948 /* 5949 * POWER9 chips before version 2.02 can't have some threads in 5950 * HPT mode and some in radix mode on the same core. 5951 */ 5952 if (radix_enabled()) { 5953 unsigned int pvr = mfspr(SPRN_PVR); 5954 if ((pvr >> 16) == PVR_POWER9 && 5955 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5956 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5957 return false; 5958 } 5959 5960 return true; 5961 } 5962 5963 static struct kvmppc_ops kvm_ops_hv = { 5964 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5965 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5966 .get_one_reg = kvmppc_get_one_reg_hv, 5967 .set_one_reg = kvmppc_set_one_reg_hv, 5968 .vcpu_load = kvmppc_core_vcpu_load_hv, 5969 .vcpu_put = kvmppc_core_vcpu_put_hv, 5970 .inject_interrupt = kvmppc_inject_interrupt_hv, 5971 .set_msr = kvmppc_set_msr_hv, 5972 .vcpu_run = kvmppc_vcpu_run_hv, 5973 .vcpu_create = kvmppc_core_vcpu_create_hv, 5974 .vcpu_free = kvmppc_core_vcpu_free_hv, 5975 .check_requests = kvmppc_core_check_requests_hv, 5976 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5977 .flush_memslot = kvmppc_core_flush_memslot_hv, 5978 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5979 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5980 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 5981 .age_gfn = kvm_age_gfn_hv, 5982 .test_age_gfn = kvm_test_age_gfn_hv, 5983 .set_spte_gfn = kvm_set_spte_gfn_hv, 5984 .free_memslot = kvmppc_core_free_memslot_hv, 5985 .init_vm = kvmppc_core_init_vm_hv, 5986 .destroy_vm = kvmppc_core_destroy_vm_hv, 5987 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5988 .emulate_op = kvmppc_core_emulate_op_hv, 5989 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5990 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5991 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5992 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5993 .hcall_implemented = kvmppc_hcall_impl_hv, 5994 #ifdef CONFIG_KVM_XICS 5995 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5996 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5997 #endif 5998 .configure_mmu = kvmhv_configure_mmu, 5999 .get_rmmu_info = kvmhv_get_rmmu_info, 6000 .set_smt_mode = kvmhv_set_smt_mode, 6001 .enable_nested = kvmhv_enable_nested, 6002 .load_from_eaddr = kvmhv_load_from_eaddr, 6003 .store_to_eaddr = kvmhv_store_to_eaddr, 6004 .enable_svm = kvmhv_enable_svm, 6005 .svm_off = kvmhv_svm_off, 6006 .enable_dawr1 = kvmhv_enable_dawr1, 6007 .hash_v3_possible = kvmppc_hash_v3_possible, 6008 }; 6009 6010 static int kvm_init_subcore_bitmap(void) 6011 { 6012 int i, j; 6013 int nr_cores = cpu_nr_cores(); 6014 struct sibling_subcore_state *sibling_subcore_state; 6015 6016 for (i = 0; i < nr_cores; i++) { 6017 int first_cpu = i * threads_per_core; 6018 int node = cpu_to_node(first_cpu); 6019 6020 /* Ignore if it is already allocated. */ 6021 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6022 continue; 6023 6024 sibling_subcore_state = 6025 kzalloc_node(sizeof(struct sibling_subcore_state), 6026 GFP_KERNEL, node); 6027 if (!sibling_subcore_state) 6028 return -ENOMEM; 6029 6030 6031 for (j = 0; j < threads_per_core; j++) { 6032 int cpu = first_cpu + j; 6033 6034 paca_ptrs[cpu]->sibling_subcore_state = 6035 sibling_subcore_state; 6036 } 6037 } 6038 return 0; 6039 } 6040 6041 static int kvmppc_radix_possible(void) 6042 { 6043 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6044 } 6045 6046 static int kvmppc_book3s_init_hv(void) 6047 { 6048 int r; 6049 6050 if (!tlbie_capable) { 6051 pr_err("KVM-HV: Host does not support TLBIE\n"); 6052 return -ENODEV; 6053 } 6054 6055 /* 6056 * FIXME!! Do we need to check on all cpus ? 6057 */ 6058 r = kvmppc_core_check_processor_compat_hv(); 6059 if (r < 0) 6060 return -ENODEV; 6061 6062 r = kvmhv_nested_init(); 6063 if (r) 6064 return r; 6065 6066 r = kvm_init_subcore_bitmap(); 6067 if (r) 6068 return r; 6069 6070 /* 6071 * We need a way of accessing the XICS interrupt controller, 6072 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6073 * indirectly, via OPAL. 6074 */ 6075 #ifdef CONFIG_SMP 6076 if (!xics_on_xive() && !kvmhv_on_pseries() && 6077 !local_paca->kvm_hstate.xics_phys) { 6078 struct device_node *np; 6079 6080 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6081 if (!np) { 6082 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6083 return -ENODEV; 6084 } 6085 /* presence of intc confirmed - node can be dropped again */ 6086 of_node_put(np); 6087 } 6088 #endif 6089 6090 kvm_ops_hv.owner = THIS_MODULE; 6091 kvmppc_hv_ops = &kvm_ops_hv; 6092 6093 init_default_hcalls(); 6094 6095 init_vcore_lists(); 6096 6097 r = kvmppc_mmu_hv_init(); 6098 if (r) 6099 return r; 6100 6101 if (kvmppc_radix_possible()) 6102 r = kvmppc_radix_init(); 6103 6104 r = kvmppc_uvmem_init(); 6105 if (r < 0) 6106 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6107 6108 return r; 6109 } 6110 6111 static void kvmppc_book3s_exit_hv(void) 6112 { 6113 kvmppc_uvmem_free(); 6114 kvmppc_free_host_rm_ops(); 6115 if (kvmppc_radix_possible()) 6116 kvmppc_radix_exit(); 6117 kvmppc_hv_ops = NULL; 6118 kvmhv_nested_exit(); 6119 } 6120 6121 module_init(kvmppc_book3s_init_hv); 6122 module_exit(kvmppc_book3s_exit_hv); 6123 MODULE_LICENSE("GPL"); 6124 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6125 MODULE_ALIAS("devname:kvm"); 6126