1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 #include <linux/smp.h> 47 48 #include <asm/ftrace.h> 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/archrandom.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/interrupt.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/pmc.h> 65 #include <asm/processor.h> 66 #include <asm/cputhreads.h> 67 #include <asm/page.h> 68 #include <asm/hvcall.h> 69 #include <asm/switch_to.h> 70 #include <asm/smp.h> 71 #include <asm/dbell.h> 72 #include <asm/hmi.h> 73 #include <asm/pnv-pci.h> 74 #include <asm/mmu.h> 75 #include <asm/opal.h> 76 #include <asm/xics.h> 77 #include <asm/xive.h> 78 #include <asm/hw_breakpoint.h> 79 #include <asm/kvm_book3s_uvmem.h> 80 #include <asm/ultravisor.h> 81 #include <asm/dtl.h> 82 #include <asm/plpar_wrappers.h> 83 84 #include <trace/events/ipi.h> 85 86 #include "book3s.h" 87 #include "book3s_hv.h" 88 89 #define CREATE_TRACE_POINTS 90 #include "trace_hv.h" 91 92 /* #define EXIT_DEBUG */ 93 /* #define EXIT_DEBUG_SIMPLE */ 94 /* #define EXIT_DEBUG_INT */ 95 96 /* Used to indicate that a guest page fault needs to be handled */ 97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 98 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 100 101 /* Used as a "null" value for timebase values */ 102 #define TB_NIL (~(u64)0) 103 104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 105 106 static int dynamic_mt_modes = 6; 107 module_param(dynamic_mt_modes, int, 0644); 108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 109 static int target_smt_mode; 110 module_param(target_smt_mode, int, 0644); 111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 112 113 static bool one_vm_per_core; 114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 116 117 #ifdef CONFIG_KVM_XICS 118 static const struct kernel_param_ops module_param_ops = { 119 .set = param_set_int, 120 .get = param_get_int, 121 }; 122 123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 125 126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 128 #endif 129 130 /* If set, guests are allowed to create and control nested guests */ 131 static bool nested = true; 132 module_param(nested, bool, S_IRUGO | S_IWUSR); 133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 /* 233 * rcuwait_wake_up contains smp_mb() which orders prior stores that 234 * create pending work vs below loads of cpu fields. The other side 235 * is the barrier in vcpu run that orders setting the cpu fields vs 236 * testing for pending work. 237 */ 238 239 waitp = kvm_arch_vcpu_get_wait(vcpu); 240 if (rcuwait_wake_up(waitp)) 241 ++vcpu->stat.generic.halt_wakeup; 242 243 cpu = READ_ONCE(vcpu->arch.thread_cpu); 244 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 245 return; 246 247 /* CPU points to the first thread of the core */ 248 cpu = vcpu->cpu; 249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 250 smp_send_reschedule(cpu); 251 } 252 253 /* 254 * We use the vcpu_load/put functions to measure stolen time. 255 * 256 * Stolen time is counted as time when either the vcpu is able to 257 * run as part of a virtual core, but the task running the vcore 258 * is preempted or sleeping, or when the vcpu needs something done 259 * in the kernel by the task running the vcpu, but that task is 260 * preempted or sleeping. Those two things have to be counted 261 * separately, since one of the vcpu tasks will take on the job 262 * of running the core, and the other vcpu tasks in the vcore will 263 * sleep waiting for it to do that, but that sleep shouldn't count 264 * as stolen time. 265 * 266 * Hence we accumulate stolen time when the vcpu can run as part of 267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 268 * needs its task to do other things in the kernel (for example, 269 * service a page fault) in busy_stolen. We don't accumulate 270 * stolen time for a vcore when it is inactive, or for a vcpu 271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 272 * a misnomer; it means that the vcpu task is not executing in 273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 274 * the kernel. We don't have any way of dividing up that time 275 * between time that the vcpu is genuinely stopped, time that 276 * the task is actively working on behalf of the vcpu, and time 277 * that the task is preempted, so we don't count any of it as 278 * stolen. 279 * 280 * Updates to busy_stolen are protected by arch.tbacct_lock; 281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 282 * lock. The stolen times are measured in units of timebase ticks. 283 * (Note that the != TB_NIL checks below are purely defensive; 284 * they should never fail.) 285 * 286 * The POWER9 path is simpler, one vcpu per virtual core so the 287 * former case does not exist. If a vcpu is preempted when it is 288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 290 * state in the P9 path. 291 */ 292 293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 294 { 295 unsigned long flags; 296 297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 298 299 spin_lock_irqsave(&vc->stoltb_lock, flags); 300 vc->preempt_tb = tb; 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 305 { 306 unsigned long flags; 307 308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 309 310 spin_lock_irqsave(&vc->stoltb_lock, flags); 311 if (vc->preempt_tb != TB_NIL) { 312 vc->stolen_tb += tb - vc->preempt_tb; 313 vc->preempt_tb = TB_NIL; 314 } 315 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 316 } 317 318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 319 { 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 unsigned long flags; 322 u64 now; 323 324 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 325 if (vcpu->arch.busy_preempt != TB_NIL) { 326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 328 vcpu->arch.busy_preempt = TB_NIL; 329 } 330 return; 331 } 332 333 now = mftb(); 334 335 /* 336 * We can test vc->runner without taking the vcore lock, 337 * because only this task ever sets vc->runner to this 338 * vcpu, and once it is set to this vcpu, only this task 339 * ever sets it to NULL. 340 */ 341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 342 kvmppc_core_end_stolen(vc, now); 343 344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 346 vcpu->arch.busy_preempt != TB_NIL) { 347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 348 vcpu->arch.busy_preempt = TB_NIL; 349 } 350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 351 } 352 353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 354 { 355 struct kvmppc_vcore *vc = vcpu->arch.vcore; 356 unsigned long flags; 357 u64 now; 358 359 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 360 /* 361 * In the P9 path, RUNNABLE is not preemptible 362 * (nor takes host interrupts) 363 */ 364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 365 /* 366 * Account stolen time when preempted while the vcpu task is 367 * running in the kernel (but not in qemu, which is INACTIVE). 368 */ 369 if (task_is_running(current) && 370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 371 vcpu->arch.busy_preempt = mftb(); 372 return; 373 } 374 375 now = mftb(); 376 377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 378 kvmppc_core_start_stolen(vc, now); 379 380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 382 vcpu->arch.busy_preempt = now; 383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 384 } 385 386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 387 { 388 vcpu->arch.pvr = pvr; 389 } 390 391 /* Dummy value used in computing PCR value below */ 392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 393 394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 395 { 396 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 397 struct kvmppc_vcore *vc = vcpu->arch.vcore; 398 399 /* We can (emulate) our own architecture version and anything older */ 400 if (cpu_has_feature(CPU_FTR_ARCH_31)) 401 host_pcr_bit = PCR_ARCH_31; 402 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 403 host_pcr_bit = PCR_ARCH_300; 404 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 405 host_pcr_bit = PCR_ARCH_207; 406 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 407 host_pcr_bit = PCR_ARCH_206; 408 else 409 host_pcr_bit = PCR_ARCH_205; 410 411 /* Determine lowest PCR bit needed to run guest in given PVR level */ 412 guest_pcr_bit = host_pcr_bit; 413 if (arch_compat) { 414 switch (arch_compat) { 415 case PVR_ARCH_205: 416 guest_pcr_bit = PCR_ARCH_205; 417 break; 418 case PVR_ARCH_206: 419 case PVR_ARCH_206p: 420 guest_pcr_bit = PCR_ARCH_206; 421 break; 422 case PVR_ARCH_207: 423 guest_pcr_bit = PCR_ARCH_207; 424 break; 425 case PVR_ARCH_300: 426 guest_pcr_bit = PCR_ARCH_300; 427 break; 428 case PVR_ARCH_31: 429 guest_pcr_bit = PCR_ARCH_31; 430 break; 431 default: 432 return -EINVAL; 433 } 434 } 435 436 /* Check requested PCR bits don't exceed our capabilities */ 437 if (guest_pcr_bit > host_pcr_bit) 438 return -EINVAL; 439 440 spin_lock(&vc->lock); 441 vc->arch_compat = arch_compat; 442 /* 443 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 444 * Also set all reserved PCR bits 445 */ 446 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 447 spin_unlock(&vc->lock); 448 449 return 0; 450 } 451 452 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 453 { 454 int r; 455 456 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 457 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 458 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 459 for (r = 0; r < 16; ++r) 460 pr_err("r%2d = %.16lx r%d = %.16lx\n", 461 r, kvmppc_get_gpr(vcpu, r), 462 r+16, kvmppc_get_gpr(vcpu, r+16)); 463 pr_err("ctr = %.16lx lr = %.16lx\n", 464 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 465 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 466 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 467 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 468 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 469 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 470 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 471 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 472 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 473 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 474 pr_err("fault dar = %.16lx dsisr = %.8x\n", 475 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 476 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 477 for (r = 0; r < vcpu->arch.slb_max; ++r) 478 pr_err(" ESID = %.16llx VSID = %.16llx\n", 479 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 480 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n", 481 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 482 vcpu->arch.last_inst); 483 } 484 485 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 486 { 487 return kvm_get_vcpu_by_id(kvm, id); 488 } 489 490 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 491 { 492 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 493 vpa->yield_count = cpu_to_be32(1); 494 } 495 496 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 497 unsigned long addr, unsigned long len) 498 { 499 /* check address is cacheline aligned */ 500 if (addr & (L1_CACHE_BYTES - 1)) 501 return -EINVAL; 502 spin_lock(&vcpu->arch.vpa_update_lock); 503 if (v->next_gpa != addr || v->len != len) { 504 v->next_gpa = addr; 505 v->len = addr ? len : 0; 506 v->update_pending = 1; 507 } 508 spin_unlock(&vcpu->arch.vpa_update_lock); 509 return 0; 510 } 511 512 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 513 struct reg_vpa { 514 u32 dummy; 515 union { 516 __be16 hword; 517 __be32 word; 518 } length; 519 }; 520 521 static int vpa_is_registered(struct kvmppc_vpa *vpap) 522 { 523 if (vpap->update_pending) 524 return vpap->next_gpa != 0; 525 return vpap->pinned_addr != NULL; 526 } 527 528 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 529 unsigned long flags, 530 unsigned long vcpuid, unsigned long vpa) 531 { 532 struct kvm *kvm = vcpu->kvm; 533 unsigned long len, nb; 534 void *va; 535 struct kvm_vcpu *tvcpu; 536 int err; 537 int subfunc; 538 struct kvmppc_vpa *vpap; 539 540 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 541 if (!tvcpu) 542 return H_PARAMETER; 543 544 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 545 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 546 subfunc == H_VPA_REG_SLB) { 547 /* Registering new area - address must be cache-line aligned */ 548 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 549 return H_PARAMETER; 550 551 /* convert logical addr to kernel addr and read length */ 552 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 553 if (va == NULL) 554 return H_PARAMETER; 555 if (subfunc == H_VPA_REG_VPA) 556 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 557 else 558 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 559 kvmppc_unpin_guest_page(kvm, va, vpa, false); 560 561 /* Check length */ 562 if (len > nb || len < sizeof(struct reg_vpa)) 563 return H_PARAMETER; 564 } else { 565 vpa = 0; 566 len = 0; 567 } 568 569 err = H_PARAMETER; 570 vpap = NULL; 571 spin_lock(&tvcpu->arch.vpa_update_lock); 572 573 switch (subfunc) { 574 case H_VPA_REG_VPA: /* register VPA */ 575 /* 576 * The size of our lppaca is 1kB because of the way we align 577 * it for the guest to avoid crossing a 4kB boundary. We only 578 * use 640 bytes of the structure though, so we should accept 579 * clients that set a size of 640. 580 */ 581 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 582 if (len < sizeof(struct lppaca)) 583 break; 584 vpap = &tvcpu->arch.vpa; 585 err = 0; 586 break; 587 588 case H_VPA_REG_DTL: /* register DTL */ 589 if (len < sizeof(struct dtl_entry)) 590 break; 591 len -= len % sizeof(struct dtl_entry); 592 593 /* Check that they have previously registered a VPA */ 594 err = H_RESOURCE; 595 if (!vpa_is_registered(&tvcpu->arch.vpa)) 596 break; 597 598 vpap = &tvcpu->arch.dtl; 599 err = 0; 600 break; 601 602 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 603 /* Check that they have previously registered a VPA */ 604 err = H_RESOURCE; 605 if (!vpa_is_registered(&tvcpu->arch.vpa)) 606 break; 607 608 vpap = &tvcpu->arch.slb_shadow; 609 err = 0; 610 break; 611 612 case H_VPA_DEREG_VPA: /* deregister VPA */ 613 /* Check they don't still have a DTL or SLB buf registered */ 614 err = H_RESOURCE; 615 if (vpa_is_registered(&tvcpu->arch.dtl) || 616 vpa_is_registered(&tvcpu->arch.slb_shadow)) 617 break; 618 619 vpap = &tvcpu->arch.vpa; 620 err = 0; 621 break; 622 623 case H_VPA_DEREG_DTL: /* deregister DTL */ 624 vpap = &tvcpu->arch.dtl; 625 err = 0; 626 break; 627 628 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 629 vpap = &tvcpu->arch.slb_shadow; 630 err = 0; 631 break; 632 } 633 634 if (vpap) { 635 vpap->next_gpa = vpa; 636 vpap->len = len; 637 vpap->update_pending = 1; 638 } 639 640 spin_unlock(&tvcpu->arch.vpa_update_lock); 641 642 return err; 643 } 644 645 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 646 { 647 struct kvm *kvm = vcpu->kvm; 648 void *va; 649 unsigned long nb; 650 unsigned long gpa; 651 652 /* 653 * We need to pin the page pointed to by vpap->next_gpa, 654 * but we can't call kvmppc_pin_guest_page under the lock 655 * as it does get_user_pages() and down_read(). So we 656 * have to drop the lock, pin the page, then get the lock 657 * again and check that a new area didn't get registered 658 * in the meantime. 659 */ 660 for (;;) { 661 gpa = vpap->next_gpa; 662 spin_unlock(&vcpu->arch.vpa_update_lock); 663 va = NULL; 664 nb = 0; 665 if (gpa) 666 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 667 spin_lock(&vcpu->arch.vpa_update_lock); 668 if (gpa == vpap->next_gpa) 669 break; 670 /* sigh... unpin that one and try again */ 671 if (va) 672 kvmppc_unpin_guest_page(kvm, va, gpa, false); 673 } 674 675 vpap->update_pending = 0; 676 if (va && nb < vpap->len) { 677 /* 678 * If it's now too short, it must be that userspace 679 * has changed the mappings underlying guest memory, 680 * so unregister the region. 681 */ 682 kvmppc_unpin_guest_page(kvm, va, gpa, false); 683 va = NULL; 684 } 685 if (vpap->pinned_addr) 686 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 687 vpap->dirty); 688 vpap->gpa = gpa; 689 vpap->pinned_addr = va; 690 vpap->dirty = false; 691 if (va) 692 vpap->pinned_end = va + vpap->len; 693 } 694 695 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 696 { 697 if (!(vcpu->arch.vpa.update_pending || 698 vcpu->arch.slb_shadow.update_pending || 699 vcpu->arch.dtl.update_pending)) 700 return; 701 702 spin_lock(&vcpu->arch.vpa_update_lock); 703 if (vcpu->arch.vpa.update_pending) { 704 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 705 if (vcpu->arch.vpa.pinned_addr) 706 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 707 } 708 if (vcpu->arch.dtl.update_pending) { 709 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 710 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 711 vcpu->arch.dtl_index = 0; 712 } 713 if (vcpu->arch.slb_shadow.update_pending) 714 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 715 spin_unlock(&vcpu->arch.vpa_update_lock); 716 } 717 718 /* 719 * Return the accumulated stolen time for the vcore up until `now'. 720 * The caller should hold the vcore lock. 721 */ 722 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 723 { 724 u64 p; 725 unsigned long flags; 726 727 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 728 729 spin_lock_irqsave(&vc->stoltb_lock, flags); 730 p = vc->stolen_tb; 731 if (vc->vcore_state != VCORE_INACTIVE && 732 vc->preempt_tb != TB_NIL) 733 p += now - vc->preempt_tb; 734 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 735 return p; 736 } 737 738 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 739 struct lppaca *vpa, 740 unsigned int pcpu, u64 now, 741 unsigned long stolen) 742 { 743 struct dtl_entry *dt; 744 745 dt = vcpu->arch.dtl_ptr; 746 747 if (!dt) 748 return; 749 750 dt->dispatch_reason = 7; 751 dt->preempt_reason = 0; 752 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 753 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 754 dt->ready_to_enqueue_time = 0; 755 dt->waiting_to_ready_time = 0; 756 dt->timebase = cpu_to_be64(now); 757 dt->fault_addr = 0; 758 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 759 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 760 761 ++dt; 762 if (dt == vcpu->arch.dtl.pinned_end) 763 dt = vcpu->arch.dtl.pinned_addr; 764 vcpu->arch.dtl_ptr = dt; 765 /* order writing *dt vs. writing vpa->dtl_idx */ 766 smp_wmb(); 767 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 768 769 /* vcpu->arch.dtl.dirty is set by the caller */ 770 } 771 772 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 773 struct kvmppc_vcore *vc) 774 { 775 struct lppaca *vpa; 776 unsigned long stolen; 777 unsigned long core_stolen; 778 u64 now; 779 unsigned long flags; 780 781 vpa = vcpu->arch.vpa.pinned_addr; 782 if (!vpa) 783 return; 784 785 now = mftb(); 786 787 core_stolen = vcore_stolen_time(vc, now); 788 stolen = core_stolen - vcpu->arch.stolen_logged; 789 vcpu->arch.stolen_logged = core_stolen; 790 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 791 stolen += vcpu->arch.busy_stolen; 792 vcpu->arch.busy_stolen = 0; 793 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 794 795 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 796 797 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen); 798 799 vcpu->arch.vpa.dirty = true; 800 } 801 802 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 803 struct kvmppc_vcore *vc, 804 u64 now) 805 { 806 struct lppaca *vpa; 807 unsigned long stolen; 808 unsigned long stolen_delta; 809 810 vpa = vcpu->arch.vpa.pinned_addr; 811 if (!vpa) 812 return; 813 814 stolen = vc->stolen_tb; 815 stolen_delta = stolen - vcpu->arch.stolen_logged; 816 vcpu->arch.stolen_logged = stolen; 817 818 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 819 820 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 821 822 vcpu->arch.vpa.dirty = true; 823 } 824 825 /* See if there is a doorbell interrupt pending for a vcpu */ 826 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 827 { 828 int thr; 829 struct kvmppc_vcore *vc; 830 831 if (vcpu->arch.doorbell_request) 832 return true; 833 if (cpu_has_feature(CPU_FTR_ARCH_300)) 834 return false; 835 /* 836 * Ensure that the read of vcore->dpdes comes after the read 837 * of vcpu->doorbell_request. This barrier matches the 838 * smp_wmb() in kvmppc_guest_entry_inject(). 839 */ 840 smp_rmb(); 841 vc = vcpu->arch.vcore; 842 thr = vcpu->vcpu_id - vc->first_vcpuid; 843 return !!(vc->dpdes & (1 << thr)); 844 } 845 846 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 847 { 848 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 849 return true; 850 if ((!vcpu->arch.vcore->arch_compat) && 851 cpu_has_feature(CPU_FTR_ARCH_207S)) 852 return true; 853 return false; 854 } 855 856 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 857 unsigned long resource, unsigned long value1, 858 unsigned long value2) 859 { 860 switch (resource) { 861 case H_SET_MODE_RESOURCE_SET_CIABR: 862 if (!kvmppc_power8_compatible(vcpu)) 863 return H_P2; 864 if (value2) 865 return H_P4; 866 if (mflags) 867 return H_UNSUPPORTED_FLAG_START; 868 /* Guests can't breakpoint the hypervisor */ 869 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 870 return H_P3; 871 vcpu->arch.ciabr = value1; 872 return H_SUCCESS; 873 case H_SET_MODE_RESOURCE_SET_DAWR0: 874 if (!kvmppc_power8_compatible(vcpu)) 875 return H_P2; 876 if (!ppc_breakpoint_available()) 877 return H_P2; 878 if (mflags) 879 return H_UNSUPPORTED_FLAG_START; 880 if (value2 & DABRX_HYP) 881 return H_P4; 882 vcpu->arch.dawr0 = value1; 883 vcpu->arch.dawrx0 = value2; 884 return H_SUCCESS; 885 case H_SET_MODE_RESOURCE_SET_DAWR1: 886 if (!kvmppc_power8_compatible(vcpu)) 887 return H_P2; 888 if (!ppc_breakpoint_available()) 889 return H_P2; 890 if (!cpu_has_feature(CPU_FTR_DAWR1)) 891 return H_P2; 892 if (!vcpu->kvm->arch.dawr1_enabled) 893 return H_FUNCTION; 894 if (mflags) 895 return H_UNSUPPORTED_FLAG_START; 896 if (value2 & DABRX_HYP) 897 return H_P4; 898 vcpu->arch.dawr1 = value1; 899 vcpu->arch.dawrx1 = value2; 900 return H_SUCCESS; 901 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 902 /* 903 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 904 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 905 */ 906 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 907 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 908 return H_UNSUPPORTED_FLAG_START; 909 return H_TOO_HARD; 910 default: 911 return H_TOO_HARD; 912 } 913 } 914 915 /* Copy guest memory in place - must reside within a single memslot */ 916 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 917 unsigned long len) 918 { 919 struct kvm_memory_slot *to_memslot = NULL; 920 struct kvm_memory_slot *from_memslot = NULL; 921 unsigned long to_addr, from_addr; 922 int r; 923 924 /* Get HPA for from address */ 925 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 926 if (!from_memslot) 927 return -EFAULT; 928 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 929 << PAGE_SHIFT)) 930 return -EINVAL; 931 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 932 if (kvm_is_error_hva(from_addr)) 933 return -EFAULT; 934 from_addr |= (from & (PAGE_SIZE - 1)); 935 936 /* Get HPA for to address */ 937 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 938 if (!to_memslot) 939 return -EFAULT; 940 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 941 << PAGE_SHIFT)) 942 return -EINVAL; 943 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 944 if (kvm_is_error_hva(to_addr)) 945 return -EFAULT; 946 to_addr |= (to & (PAGE_SIZE - 1)); 947 948 /* Perform copy */ 949 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 950 len); 951 if (r) 952 return -EFAULT; 953 mark_page_dirty(kvm, to >> PAGE_SHIFT); 954 return 0; 955 } 956 957 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 958 unsigned long dest, unsigned long src) 959 { 960 u64 pg_sz = SZ_4K; /* 4K page size */ 961 u64 pg_mask = SZ_4K - 1; 962 int ret; 963 964 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 965 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 966 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 967 return H_PARAMETER; 968 969 /* dest (and src if copy_page flag set) must be page aligned */ 970 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 971 return H_PARAMETER; 972 973 /* zero and/or copy the page as determined by the flags */ 974 if (flags & H_COPY_PAGE) { 975 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 976 if (ret < 0) 977 return H_PARAMETER; 978 } else if (flags & H_ZERO_PAGE) { 979 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 980 if (ret < 0) 981 return H_PARAMETER; 982 } 983 984 /* We can ignore the remaining flags */ 985 986 return H_SUCCESS; 987 } 988 989 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 990 { 991 struct kvmppc_vcore *vcore = target->arch.vcore; 992 993 /* 994 * We expect to have been called by the real mode handler 995 * (kvmppc_rm_h_confer()) which would have directly returned 996 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 997 * have useful work to do and should not confer) so we don't 998 * recheck that here. 999 * 1000 * In the case of the P9 single vcpu per vcore case, the real 1001 * mode handler is not called but no other threads are in the 1002 * source vcore. 1003 */ 1004 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1005 spin_lock(&vcore->lock); 1006 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1007 vcore->vcore_state != VCORE_INACTIVE && 1008 vcore->runner) 1009 target = vcore->runner; 1010 spin_unlock(&vcore->lock); 1011 } 1012 1013 return kvm_vcpu_yield_to(target); 1014 } 1015 1016 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1017 { 1018 int yield_count = 0; 1019 struct lppaca *lppaca; 1020 1021 spin_lock(&vcpu->arch.vpa_update_lock); 1022 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1023 if (lppaca) 1024 yield_count = be32_to_cpu(lppaca->yield_count); 1025 spin_unlock(&vcpu->arch.vpa_update_lock); 1026 return yield_count; 1027 } 1028 1029 /* 1030 * H_RPT_INVALIDATE hcall handler for nested guests. 1031 * 1032 * Handles only nested process-scoped invalidation requests in L0. 1033 */ 1034 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1035 { 1036 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1037 unsigned long pid, pg_sizes, start, end; 1038 1039 /* 1040 * The partition-scoped invalidations aren't handled here in L0. 1041 */ 1042 if (type & H_RPTI_TYPE_NESTED) 1043 return RESUME_HOST; 1044 1045 pid = kvmppc_get_gpr(vcpu, 4); 1046 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1047 start = kvmppc_get_gpr(vcpu, 8); 1048 end = kvmppc_get_gpr(vcpu, 9); 1049 1050 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1051 type, pg_sizes, start, end); 1052 1053 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1054 return RESUME_GUEST; 1055 } 1056 1057 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1058 unsigned long id, unsigned long target, 1059 unsigned long type, unsigned long pg_sizes, 1060 unsigned long start, unsigned long end) 1061 { 1062 if (!kvm_is_radix(vcpu->kvm)) 1063 return H_UNSUPPORTED; 1064 1065 if (end < start) 1066 return H_P5; 1067 1068 /* 1069 * Partition-scoped invalidation for nested guests. 1070 */ 1071 if (type & H_RPTI_TYPE_NESTED) { 1072 if (!nesting_enabled(vcpu->kvm)) 1073 return H_FUNCTION; 1074 1075 /* Support only cores as target */ 1076 if (target != H_RPTI_TARGET_CMMU) 1077 return H_P2; 1078 1079 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1080 start, end); 1081 } 1082 1083 /* 1084 * Process-scoped invalidation for L1 guests. 1085 */ 1086 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1087 type, pg_sizes, start, end); 1088 return H_SUCCESS; 1089 } 1090 1091 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1092 { 1093 struct kvm *kvm = vcpu->kvm; 1094 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1095 unsigned long target, ret = H_SUCCESS; 1096 int yield_count; 1097 struct kvm_vcpu *tvcpu; 1098 int idx, rc; 1099 1100 if (req <= MAX_HCALL_OPCODE && 1101 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1102 return RESUME_HOST; 1103 1104 switch (req) { 1105 case H_REMOVE: 1106 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1107 kvmppc_get_gpr(vcpu, 5), 1108 kvmppc_get_gpr(vcpu, 6)); 1109 if (ret == H_TOO_HARD) 1110 return RESUME_HOST; 1111 break; 1112 case H_ENTER: 1113 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1114 kvmppc_get_gpr(vcpu, 5), 1115 kvmppc_get_gpr(vcpu, 6), 1116 kvmppc_get_gpr(vcpu, 7)); 1117 if (ret == H_TOO_HARD) 1118 return RESUME_HOST; 1119 break; 1120 case H_READ: 1121 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1122 kvmppc_get_gpr(vcpu, 5)); 1123 if (ret == H_TOO_HARD) 1124 return RESUME_HOST; 1125 break; 1126 case H_CLEAR_MOD: 1127 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1128 kvmppc_get_gpr(vcpu, 5)); 1129 if (ret == H_TOO_HARD) 1130 return RESUME_HOST; 1131 break; 1132 case H_CLEAR_REF: 1133 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1134 kvmppc_get_gpr(vcpu, 5)); 1135 if (ret == H_TOO_HARD) 1136 return RESUME_HOST; 1137 break; 1138 case H_PROTECT: 1139 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1140 kvmppc_get_gpr(vcpu, 5), 1141 kvmppc_get_gpr(vcpu, 6)); 1142 if (ret == H_TOO_HARD) 1143 return RESUME_HOST; 1144 break; 1145 case H_BULK_REMOVE: 1146 ret = kvmppc_h_bulk_remove(vcpu); 1147 if (ret == H_TOO_HARD) 1148 return RESUME_HOST; 1149 break; 1150 1151 case H_CEDE: 1152 break; 1153 case H_PROD: 1154 target = kvmppc_get_gpr(vcpu, 4); 1155 tvcpu = kvmppc_find_vcpu(kvm, target); 1156 if (!tvcpu) { 1157 ret = H_PARAMETER; 1158 break; 1159 } 1160 tvcpu->arch.prodded = 1; 1161 smp_mb(); /* This orders prodded store vs ceded load */ 1162 if (tvcpu->arch.ceded) 1163 kvmppc_fast_vcpu_kick_hv(tvcpu); 1164 break; 1165 case H_CONFER: 1166 target = kvmppc_get_gpr(vcpu, 4); 1167 if (target == -1) 1168 break; 1169 tvcpu = kvmppc_find_vcpu(kvm, target); 1170 if (!tvcpu) { 1171 ret = H_PARAMETER; 1172 break; 1173 } 1174 yield_count = kvmppc_get_gpr(vcpu, 5); 1175 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1176 break; 1177 kvm_arch_vcpu_yield_to(tvcpu); 1178 break; 1179 case H_REGISTER_VPA: 1180 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1181 kvmppc_get_gpr(vcpu, 5), 1182 kvmppc_get_gpr(vcpu, 6)); 1183 break; 1184 case H_RTAS: 1185 if (list_empty(&kvm->arch.rtas_tokens)) 1186 return RESUME_HOST; 1187 1188 idx = srcu_read_lock(&kvm->srcu); 1189 rc = kvmppc_rtas_hcall(vcpu); 1190 srcu_read_unlock(&kvm->srcu, idx); 1191 1192 if (rc == -ENOENT) 1193 return RESUME_HOST; 1194 else if (rc == 0) 1195 break; 1196 1197 /* Send the error out to userspace via KVM_RUN */ 1198 return rc; 1199 case H_LOGICAL_CI_LOAD: 1200 ret = kvmppc_h_logical_ci_load(vcpu); 1201 if (ret == H_TOO_HARD) 1202 return RESUME_HOST; 1203 break; 1204 case H_LOGICAL_CI_STORE: 1205 ret = kvmppc_h_logical_ci_store(vcpu); 1206 if (ret == H_TOO_HARD) 1207 return RESUME_HOST; 1208 break; 1209 case H_SET_MODE: 1210 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1211 kvmppc_get_gpr(vcpu, 5), 1212 kvmppc_get_gpr(vcpu, 6), 1213 kvmppc_get_gpr(vcpu, 7)); 1214 if (ret == H_TOO_HARD) 1215 return RESUME_HOST; 1216 break; 1217 case H_XIRR: 1218 case H_CPPR: 1219 case H_EOI: 1220 case H_IPI: 1221 case H_IPOLL: 1222 case H_XIRR_X: 1223 if (kvmppc_xics_enabled(vcpu)) { 1224 if (xics_on_xive()) { 1225 ret = H_NOT_AVAILABLE; 1226 return RESUME_GUEST; 1227 } 1228 ret = kvmppc_xics_hcall(vcpu, req); 1229 break; 1230 } 1231 return RESUME_HOST; 1232 case H_SET_DABR: 1233 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1234 break; 1235 case H_SET_XDABR: 1236 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1237 kvmppc_get_gpr(vcpu, 5)); 1238 break; 1239 #ifdef CONFIG_SPAPR_TCE_IOMMU 1240 case H_GET_TCE: 1241 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1242 kvmppc_get_gpr(vcpu, 5)); 1243 if (ret == H_TOO_HARD) 1244 return RESUME_HOST; 1245 break; 1246 case H_PUT_TCE: 1247 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1248 kvmppc_get_gpr(vcpu, 5), 1249 kvmppc_get_gpr(vcpu, 6)); 1250 if (ret == H_TOO_HARD) 1251 return RESUME_HOST; 1252 break; 1253 case H_PUT_TCE_INDIRECT: 1254 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1255 kvmppc_get_gpr(vcpu, 5), 1256 kvmppc_get_gpr(vcpu, 6), 1257 kvmppc_get_gpr(vcpu, 7)); 1258 if (ret == H_TOO_HARD) 1259 return RESUME_HOST; 1260 break; 1261 case H_STUFF_TCE: 1262 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1263 kvmppc_get_gpr(vcpu, 5), 1264 kvmppc_get_gpr(vcpu, 6), 1265 kvmppc_get_gpr(vcpu, 7)); 1266 if (ret == H_TOO_HARD) 1267 return RESUME_HOST; 1268 break; 1269 #endif 1270 case H_RANDOM: 1271 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1)) 1272 ret = H_HARDWARE; 1273 break; 1274 case H_RPT_INVALIDATE: 1275 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1276 kvmppc_get_gpr(vcpu, 5), 1277 kvmppc_get_gpr(vcpu, 6), 1278 kvmppc_get_gpr(vcpu, 7), 1279 kvmppc_get_gpr(vcpu, 8), 1280 kvmppc_get_gpr(vcpu, 9)); 1281 break; 1282 1283 case H_SET_PARTITION_TABLE: 1284 ret = H_FUNCTION; 1285 if (nesting_enabled(kvm)) 1286 ret = kvmhv_set_partition_table(vcpu); 1287 break; 1288 case H_ENTER_NESTED: 1289 ret = H_FUNCTION; 1290 if (!nesting_enabled(kvm)) 1291 break; 1292 ret = kvmhv_enter_nested_guest(vcpu); 1293 if (ret == H_INTERRUPT) { 1294 kvmppc_set_gpr(vcpu, 3, 0); 1295 vcpu->arch.hcall_needed = 0; 1296 return -EINTR; 1297 } else if (ret == H_TOO_HARD) { 1298 kvmppc_set_gpr(vcpu, 3, 0); 1299 vcpu->arch.hcall_needed = 0; 1300 return RESUME_HOST; 1301 } 1302 break; 1303 case H_TLB_INVALIDATE: 1304 ret = H_FUNCTION; 1305 if (nesting_enabled(kvm)) 1306 ret = kvmhv_do_nested_tlbie(vcpu); 1307 break; 1308 case H_COPY_TOFROM_GUEST: 1309 ret = H_FUNCTION; 1310 if (nesting_enabled(kvm)) 1311 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1312 break; 1313 case H_PAGE_INIT: 1314 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1315 kvmppc_get_gpr(vcpu, 5), 1316 kvmppc_get_gpr(vcpu, 6)); 1317 break; 1318 case H_SVM_PAGE_IN: 1319 ret = H_UNSUPPORTED; 1320 if (kvmppc_get_srr1(vcpu) & MSR_S) 1321 ret = kvmppc_h_svm_page_in(kvm, 1322 kvmppc_get_gpr(vcpu, 4), 1323 kvmppc_get_gpr(vcpu, 5), 1324 kvmppc_get_gpr(vcpu, 6)); 1325 break; 1326 case H_SVM_PAGE_OUT: 1327 ret = H_UNSUPPORTED; 1328 if (kvmppc_get_srr1(vcpu) & MSR_S) 1329 ret = kvmppc_h_svm_page_out(kvm, 1330 kvmppc_get_gpr(vcpu, 4), 1331 kvmppc_get_gpr(vcpu, 5), 1332 kvmppc_get_gpr(vcpu, 6)); 1333 break; 1334 case H_SVM_INIT_START: 1335 ret = H_UNSUPPORTED; 1336 if (kvmppc_get_srr1(vcpu) & MSR_S) 1337 ret = kvmppc_h_svm_init_start(kvm); 1338 break; 1339 case H_SVM_INIT_DONE: 1340 ret = H_UNSUPPORTED; 1341 if (kvmppc_get_srr1(vcpu) & MSR_S) 1342 ret = kvmppc_h_svm_init_done(kvm); 1343 break; 1344 case H_SVM_INIT_ABORT: 1345 /* 1346 * Even if that call is made by the Ultravisor, the SSR1 value 1347 * is the guest context one, with the secure bit clear as it has 1348 * not yet been secured. So we can't check it here. 1349 * Instead the kvm->arch.secure_guest flag is checked inside 1350 * kvmppc_h_svm_init_abort(). 1351 */ 1352 ret = kvmppc_h_svm_init_abort(kvm); 1353 break; 1354 1355 default: 1356 return RESUME_HOST; 1357 } 1358 WARN_ON_ONCE(ret == H_TOO_HARD); 1359 kvmppc_set_gpr(vcpu, 3, ret); 1360 vcpu->arch.hcall_needed = 0; 1361 return RESUME_GUEST; 1362 } 1363 1364 /* 1365 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1366 * handlers in book3s_hv_rmhandlers.S. 1367 * 1368 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1369 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1370 */ 1371 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1372 { 1373 vcpu->arch.shregs.msr |= MSR_EE; 1374 vcpu->arch.ceded = 1; 1375 smp_mb(); 1376 if (vcpu->arch.prodded) { 1377 vcpu->arch.prodded = 0; 1378 smp_mb(); 1379 vcpu->arch.ceded = 0; 1380 } 1381 } 1382 1383 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1384 { 1385 switch (cmd) { 1386 case H_CEDE: 1387 case H_PROD: 1388 case H_CONFER: 1389 case H_REGISTER_VPA: 1390 case H_SET_MODE: 1391 #ifdef CONFIG_SPAPR_TCE_IOMMU 1392 case H_GET_TCE: 1393 case H_PUT_TCE: 1394 case H_PUT_TCE_INDIRECT: 1395 case H_STUFF_TCE: 1396 #endif 1397 case H_LOGICAL_CI_LOAD: 1398 case H_LOGICAL_CI_STORE: 1399 #ifdef CONFIG_KVM_XICS 1400 case H_XIRR: 1401 case H_CPPR: 1402 case H_EOI: 1403 case H_IPI: 1404 case H_IPOLL: 1405 case H_XIRR_X: 1406 #endif 1407 case H_PAGE_INIT: 1408 case H_RPT_INVALIDATE: 1409 return 1; 1410 } 1411 1412 /* See if it's in the real-mode table */ 1413 return kvmppc_hcall_impl_hv_realmode(cmd); 1414 } 1415 1416 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1417 { 1418 ppc_inst_t last_inst; 1419 1420 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1421 EMULATE_DONE) { 1422 /* 1423 * Fetch failed, so return to guest and 1424 * try executing it again. 1425 */ 1426 return RESUME_GUEST; 1427 } 1428 1429 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) { 1430 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1431 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1432 return RESUME_HOST; 1433 } else { 1434 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1435 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1436 return RESUME_GUEST; 1437 } 1438 } 1439 1440 static void do_nothing(void *x) 1441 { 1442 } 1443 1444 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1445 { 1446 int thr, cpu, pcpu, nthreads; 1447 struct kvm_vcpu *v; 1448 unsigned long dpdes; 1449 1450 nthreads = vcpu->kvm->arch.emul_smt_mode; 1451 dpdes = 0; 1452 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1453 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1454 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1455 if (!v) 1456 continue; 1457 /* 1458 * If the vcpu is currently running on a physical cpu thread, 1459 * interrupt it in order to pull it out of the guest briefly, 1460 * which will update its vcore->dpdes value. 1461 */ 1462 pcpu = READ_ONCE(v->cpu); 1463 if (pcpu >= 0) 1464 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1465 if (kvmppc_doorbell_pending(v)) 1466 dpdes |= 1 << thr; 1467 } 1468 return dpdes; 1469 } 1470 1471 /* 1472 * On POWER9, emulate doorbell-related instructions in order to 1473 * give the guest the illusion of running on a multi-threaded core. 1474 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1475 * and mfspr DPDES. 1476 */ 1477 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1478 { 1479 u32 inst, rb, thr; 1480 unsigned long arg; 1481 struct kvm *kvm = vcpu->kvm; 1482 struct kvm_vcpu *tvcpu; 1483 ppc_inst_t pinst; 1484 1485 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE) 1486 return RESUME_GUEST; 1487 inst = ppc_inst_val(pinst); 1488 if (get_op(inst) != 31) 1489 return EMULATE_FAIL; 1490 rb = get_rb(inst); 1491 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1492 switch (get_xop(inst)) { 1493 case OP_31_XOP_MSGSNDP: 1494 arg = kvmppc_get_gpr(vcpu, rb); 1495 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1496 break; 1497 arg &= 0x7f; 1498 if (arg >= kvm->arch.emul_smt_mode) 1499 break; 1500 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1501 if (!tvcpu) 1502 break; 1503 if (!tvcpu->arch.doorbell_request) { 1504 tvcpu->arch.doorbell_request = 1; 1505 kvmppc_fast_vcpu_kick_hv(tvcpu); 1506 } 1507 break; 1508 case OP_31_XOP_MSGCLRP: 1509 arg = kvmppc_get_gpr(vcpu, rb); 1510 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1511 break; 1512 vcpu->arch.vcore->dpdes = 0; 1513 vcpu->arch.doorbell_request = 0; 1514 break; 1515 case OP_31_XOP_MFSPR: 1516 switch (get_sprn(inst)) { 1517 case SPRN_TIR: 1518 arg = thr; 1519 break; 1520 case SPRN_DPDES: 1521 arg = kvmppc_read_dpdes(vcpu); 1522 break; 1523 default: 1524 return EMULATE_FAIL; 1525 } 1526 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1527 break; 1528 default: 1529 return EMULATE_FAIL; 1530 } 1531 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1532 return RESUME_GUEST; 1533 } 1534 1535 /* 1536 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1537 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1538 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1539 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1540 * allow the guest access to continue. 1541 */ 1542 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1543 { 1544 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1545 return EMULATE_FAIL; 1546 1547 vcpu->arch.hfscr |= HFSCR_PM; 1548 1549 return RESUME_GUEST; 1550 } 1551 1552 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1553 { 1554 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1555 return EMULATE_FAIL; 1556 1557 vcpu->arch.hfscr |= HFSCR_EBB; 1558 1559 return RESUME_GUEST; 1560 } 1561 1562 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1563 { 1564 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1565 return EMULATE_FAIL; 1566 1567 vcpu->arch.hfscr |= HFSCR_TM; 1568 1569 return RESUME_GUEST; 1570 } 1571 1572 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1573 struct task_struct *tsk) 1574 { 1575 struct kvm_run *run = vcpu->run; 1576 int r = RESUME_HOST; 1577 1578 vcpu->stat.sum_exits++; 1579 1580 /* 1581 * This can happen if an interrupt occurs in the last stages 1582 * of guest entry or the first stages of guest exit (i.e. after 1583 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1584 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1585 * That can happen due to a bug, or due to a machine check 1586 * occurring at just the wrong time. 1587 */ 1588 if (vcpu->arch.shregs.msr & MSR_HV) { 1589 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1590 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1591 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1592 vcpu->arch.shregs.msr); 1593 kvmppc_dump_regs(vcpu); 1594 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1595 run->hw.hardware_exit_reason = vcpu->arch.trap; 1596 return RESUME_HOST; 1597 } 1598 run->exit_reason = KVM_EXIT_UNKNOWN; 1599 run->ready_for_interrupt_injection = 1; 1600 switch (vcpu->arch.trap) { 1601 /* We're good on these - the host merely wanted to get our attention */ 1602 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1603 WARN_ON_ONCE(1); /* Should never happen */ 1604 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1605 fallthrough; 1606 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1607 vcpu->stat.dec_exits++; 1608 r = RESUME_GUEST; 1609 break; 1610 case BOOK3S_INTERRUPT_EXTERNAL: 1611 case BOOK3S_INTERRUPT_H_DOORBELL: 1612 case BOOK3S_INTERRUPT_H_VIRT: 1613 vcpu->stat.ext_intr_exits++; 1614 r = RESUME_GUEST; 1615 break; 1616 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1617 case BOOK3S_INTERRUPT_HMI: 1618 case BOOK3S_INTERRUPT_PERFMON: 1619 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1620 r = RESUME_GUEST; 1621 break; 1622 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1623 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1624 DEFAULT_RATELIMIT_BURST); 1625 /* 1626 * Print the MCE event to host console. Ratelimit so the guest 1627 * can't flood the host log. 1628 */ 1629 if (__ratelimit(&rs)) 1630 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1631 1632 /* 1633 * If the guest can do FWNMI, exit to userspace so it can 1634 * deliver a FWNMI to the guest. 1635 * Otherwise we synthesize a machine check for the guest 1636 * so that it knows that the machine check occurred. 1637 */ 1638 if (!vcpu->kvm->arch.fwnmi_enabled) { 1639 ulong flags = (vcpu->arch.shregs.msr & 0x083c0000) | 1640 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1641 kvmppc_core_queue_machine_check(vcpu, flags); 1642 r = RESUME_GUEST; 1643 break; 1644 } 1645 1646 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1647 run->exit_reason = KVM_EXIT_NMI; 1648 run->hw.hardware_exit_reason = vcpu->arch.trap; 1649 /* Clear out the old NMI status from run->flags */ 1650 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1651 /* Now set the NMI status */ 1652 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1653 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1654 else 1655 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1656 1657 r = RESUME_HOST; 1658 break; 1659 } 1660 case BOOK3S_INTERRUPT_PROGRAM: 1661 { 1662 ulong flags; 1663 /* 1664 * Normally program interrupts are delivered directly 1665 * to the guest by the hardware, but we can get here 1666 * as a result of a hypervisor emulation interrupt 1667 * (e40) getting turned into a 700 by BML RTAS. 1668 */ 1669 flags = (vcpu->arch.shregs.msr & 0x1f0000ull) | 1670 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1671 kvmppc_core_queue_program(vcpu, flags); 1672 r = RESUME_GUEST; 1673 break; 1674 } 1675 case BOOK3S_INTERRUPT_SYSCALL: 1676 { 1677 int i; 1678 1679 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1680 /* 1681 * Guest userspace executed sc 1. This can only be 1682 * reached by the P9 path because the old path 1683 * handles this case in realmode hcall handlers. 1684 */ 1685 if (!kvmhv_vcpu_is_radix(vcpu)) { 1686 /* 1687 * A guest could be running PR KVM, so this 1688 * may be a PR KVM hcall. It must be reflected 1689 * to the guest kernel as a sc interrupt. 1690 */ 1691 kvmppc_core_queue_syscall(vcpu); 1692 } else { 1693 /* 1694 * Radix guests can not run PR KVM or nested HV 1695 * hash guests which might run PR KVM, so this 1696 * is always a privilege fault. Send a program 1697 * check to guest kernel. 1698 */ 1699 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1700 } 1701 r = RESUME_GUEST; 1702 break; 1703 } 1704 1705 /* 1706 * hcall - gather args and set exit_reason. This will next be 1707 * handled by kvmppc_pseries_do_hcall which may be able to deal 1708 * with it and resume guest, or may punt to userspace. 1709 */ 1710 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1711 for (i = 0; i < 9; ++i) 1712 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1713 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1714 vcpu->arch.hcall_needed = 1; 1715 r = RESUME_HOST; 1716 break; 1717 } 1718 /* 1719 * We get these next two if the guest accesses a page which it thinks 1720 * it has mapped but which is not actually present, either because 1721 * it is for an emulated I/O device or because the corresonding 1722 * host page has been paged out. 1723 * 1724 * Any other HDSI/HISI interrupts have been handled already for P7/8 1725 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1726 * fault handling is done here. 1727 */ 1728 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1729 unsigned long vsid; 1730 long err; 1731 1732 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1733 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1734 r = RESUME_GUEST; /* Just retry if it's the canary */ 1735 break; 1736 } 1737 1738 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1739 /* 1740 * Radix doesn't require anything, and pre-ISAv3.0 hash 1741 * already attempted to handle this in rmhandlers. The 1742 * hash fault handling below is v3 only (it uses ASDR 1743 * via fault_gpa). 1744 */ 1745 r = RESUME_PAGE_FAULT; 1746 break; 1747 } 1748 1749 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1750 kvmppc_core_queue_data_storage(vcpu, 1751 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1752 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1753 r = RESUME_GUEST; 1754 break; 1755 } 1756 1757 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1758 vsid = vcpu->kvm->arch.vrma_slb_v; 1759 else 1760 vsid = vcpu->arch.fault_gpa; 1761 1762 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1763 vsid, vcpu->arch.fault_dsisr, true); 1764 if (err == 0) { 1765 r = RESUME_GUEST; 1766 } else if (err == -1 || err == -2) { 1767 r = RESUME_PAGE_FAULT; 1768 } else { 1769 kvmppc_core_queue_data_storage(vcpu, 1770 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1771 vcpu->arch.fault_dar, err); 1772 r = RESUME_GUEST; 1773 } 1774 break; 1775 } 1776 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1777 unsigned long vsid; 1778 long err; 1779 1780 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1781 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1782 DSISR_SRR1_MATCH_64S; 1783 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1784 /* 1785 * Radix doesn't require anything, and pre-ISAv3.0 hash 1786 * already attempted to handle this in rmhandlers. The 1787 * hash fault handling below is v3 only (it uses ASDR 1788 * via fault_gpa). 1789 */ 1790 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1791 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1792 r = RESUME_PAGE_FAULT; 1793 break; 1794 } 1795 1796 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1797 kvmppc_core_queue_inst_storage(vcpu, 1798 vcpu->arch.fault_dsisr | 1799 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1800 r = RESUME_GUEST; 1801 break; 1802 } 1803 1804 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1805 vsid = vcpu->kvm->arch.vrma_slb_v; 1806 else 1807 vsid = vcpu->arch.fault_gpa; 1808 1809 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1810 vsid, vcpu->arch.fault_dsisr, false); 1811 if (err == 0) { 1812 r = RESUME_GUEST; 1813 } else if (err == -1) { 1814 r = RESUME_PAGE_FAULT; 1815 } else { 1816 kvmppc_core_queue_inst_storage(vcpu, 1817 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1818 r = RESUME_GUEST; 1819 } 1820 break; 1821 } 1822 1823 /* 1824 * This occurs if the guest executes an illegal instruction. 1825 * If the guest debug is disabled, generate a program interrupt 1826 * to the guest. If guest debug is enabled, we need to check 1827 * whether the instruction is a software breakpoint instruction. 1828 * Accordingly return to Guest or Host. 1829 */ 1830 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1831 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1832 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1833 swab32(vcpu->arch.emul_inst) : 1834 vcpu->arch.emul_inst; 1835 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1836 r = kvmppc_emulate_debug_inst(vcpu); 1837 } else { 1838 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1839 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1840 r = RESUME_GUEST; 1841 } 1842 break; 1843 1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1845 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1846 /* 1847 * This occurs for various TM-related instructions that 1848 * we need to emulate on POWER9 DD2.2. We have already 1849 * handled the cases where the guest was in real-suspend 1850 * mode and was transitioning to transactional state. 1851 */ 1852 r = kvmhv_p9_tm_emulation(vcpu); 1853 if (r != -1) 1854 break; 1855 fallthrough; /* go to facility unavailable handler */ 1856 #endif 1857 1858 /* 1859 * This occurs if the guest (kernel or userspace), does something that 1860 * is prohibited by HFSCR. 1861 * On POWER9, this could be a doorbell instruction that we need 1862 * to emulate. 1863 * Otherwise, we just generate a program interrupt to the guest. 1864 */ 1865 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1866 u64 cause = vcpu->arch.hfscr >> 56; 1867 1868 r = EMULATE_FAIL; 1869 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1870 if (cause == FSCR_MSGP_LG) 1871 r = kvmppc_emulate_doorbell_instr(vcpu); 1872 if (cause == FSCR_PM_LG) 1873 r = kvmppc_pmu_unavailable(vcpu); 1874 if (cause == FSCR_EBB_LG) 1875 r = kvmppc_ebb_unavailable(vcpu); 1876 if (cause == FSCR_TM_LG) 1877 r = kvmppc_tm_unavailable(vcpu); 1878 } 1879 if (r == EMULATE_FAIL) { 1880 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1881 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1882 r = RESUME_GUEST; 1883 } 1884 break; 1885 } 1886 1887 case BOOK3S_INTERRUPT_HV_RM_HARD: 1888 r = RESUME_PASSTHROUGH; 1889 break; 1890 default: 1891 kvmppc_dump_regs(vcpu); 1892 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1893 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1894 vcpu->arch.shregs.msr); 1895 run->hw.hardware_exit_reason = vcpu->arch.trap; 1896 r = RESUME_HOST; 1897 break; 1898 } 1899 1900 return r; 1901 } 1902 1903 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1904 { 1905 int r; 1906 int srcu_idx; 1907 1908 vcpu->stat.sum_exits++; 1909 1910 /* 1911 * This can happen if an interrupt occurs in the last stages 1912 * of guest entry or the first stages of guest exit (i.e. after 1913 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1914 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1915 * That can happen due to a bug, or due to a machine check 1916 * occurring at just the wrong time. 1917 */ 1918 if (vcpu->arch.shregs.msr & MSR_HV) { 1919 pr_emerg("KVM trap in HV mode while nested!\n"); 1920 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1921 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1922 vcpu->arch.shregs.msr); 1923 kvmppc_dump_regs(vcpu); 1924 return RESUME_HOST; 1925 } 1926 switch (vcpu->arch.trap) { 1927 /* We're good on these - the host merely wanted to get our attention */ 1928 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1929 vcpu->stat.dec_exits++; 1930 r = RESUME_GUEST; 1931 break; 1932 case BOOK3S_INTERRUPT_EXTERNAL: 1933 vcpu->stat.ext_intr_exits++; 1934 r = RESUME_HOST; 1935 break; 1936 case BOOK3S_INTERRUPT_H_DOORBELL: 1937 case BOOK3S_INTERRUPT_H_VIRT: 1938 vcpu->stat.ext_intr_exits++; 1939 r = RESUME_GUEST; 1940 break; 1941 /* These need to go to the nested HV */ 1942 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1943 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1944 vcpu->stat.dec_exits++; 1945 r = RESUME_HOST; 1946 break; 1947 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1948 case BOOK3S_INTERRUPT_HMI: 1949 case BOOK3S_INTERRUPT_PERFMON: 1950 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1951 r = RESUME_GUEST; 1952 break; 1953 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1954 { 1955 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1956 DEFAULT_RATELIMIT_BURST); 1957 /* Pass the machine check to the L1 guest */ 1958 r = RESUME_HOST; 1959 /* Print the MCE event to host console. */ 1960 if (__ratelimit(&rs)) 1961 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1962 break; 1963 } 1964 /* 1965 * We get these next two if the guest accesses a page which it thinks 1966 * it has mapped but which is not actually present, either because 1967 * it is for an emulated I/O device or because the corresonding 1968 * host page has been paged out. 1969 */ 1970 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1971 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1972 r = kvmhv_nested_page_fault(vcpu); 1973 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1974 break; 1975 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1976 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1977 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1978 DSISR_SRR1_MATCH_64S; 1979 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1980 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1981 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1982 r = kvmhv_nested_page_fault(vcpu); 1983 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1984 break; 1985 1986 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1987 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1988 /* 1989 * This occurs for various TM-related instructions that 1990 * we need to emulate on POWER9 DD2.2. We have already 1991 * handled the cases where the guest was in real-suspend 1992 * mode and was transitioning to transactional state. 1993 */ 1994 r = kvmhv_p9_tm_emulation(vcpu); 1995 if (r != -1) 1996 break; 1997 fallthrough; /* go to facility unavailable handler */ 1998 #endif 1999 2000 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 2001 u64 cause = vcpu->arch.hfscr >> 56; 2002 2003 /* 2004 * Only pass HFU interrupts to the L1 if the facility is 2005 * permitted but disabled by the L1's HFSCR, otherwise 2006 * the interrupt does not make sense to the L1 so turn 2007 * it into a HEAI. 2008 */ 2009 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 2010 (vcpu->arch.nested_hfscr & (1UL << cause))) { 2011 ppc_inst_t pinst; 2012 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 2013 2014 /* 2015 * If the fetch failed, return to guest and 2016 * try executing it again. 2017 */ 2018 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst); 2019 vcpu->arch.emul_inst = ppc_inst_val(pinst); 2020 if (r != EMULATE_DONE) 2021 r = RESUME_GUEST; 2022 else 2023 r = RESUME_HOST; 2024 } else { 2025 r = RESUME_HOST; 2026 } 2027 2028 break; 2029 } 2030 2031 case BOOK3S_INTERRUPT_HV_RM_HARD: 2032 vcpu->arch.trap = 0; 2033 r = RESUME_GUEST; 2034 if (!xics_on_xive()) 2035 kvmppc_xics_rm_complete(vcpu, 0); 2036 break; 2037 case BOOK3S_INTERRUPT_SYSCALL: 2038 { 2039 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2040 2041 /* 2042 * The H_RPT_INVALIDATE hcalls issued by nested 2043 * guests for process-scoped invalidations when 2044 * GTSE=0, are handled here in L0. 2045 */ 2046 if (req == H_RPT_INVALIDATE) { 2047 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2048 break; 2049 } 2050 2051 r = RESUME_HOST; 2052 break; 2053 } 2054 default: 2055 r = RESUME_HOST; 2056 break; 2057 } 2058 2059 return r; 2060 } 2061 2062 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2063 struct kvm_sregs *sregs) 2064 { 2065 int i; 2066 2067 memset(sregs, 0, sizeof(struct kvm_sregs)); 2068 sregs->pvr = vcpu->arch.pvr; 2069 for (i = 0; i < vcpu->arch.slb_max; i++) { 2070 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2071 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2078 struct kvm_sregs *sregs) 2079 { 2080 int i, j; 2081 2082 /* Only accept the same PVR as the host's, since we can't spoof it */ 2083 if (sregs->pvr != vcpu->arch.pvr) 2084 return -EINVAL; 2085 2086 j = 0; 2087 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2088 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2089 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2090 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2091 ++j; 2092 } 2093 } 2094 vcpu->arch.slb_max = j; 2095 2096 return 0; 2097 } 2098 2099 /* 2100 * Enforce limits on guest LPCR values based on hardware availability, 2101 * guest configuration, and possibly hypervisor support and security 2102 * concerns. 2103 */ 2104 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2105 { 2106 /* LPCR_TC only applies to HPT guests */ 2107 if (kvm_is_radix(kvm)) 2108 lpcr &= ~LPCR_TC; 2109 2110 /* On POWER8 and above, userspace can modify AIL */ 2111 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2112 lpcr &= ~LPCR_AIL; 2113 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2114 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2115 /* 2116 * On some POWER9s we force AIL off for radix guests to prevent 2117 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2118 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2119 * be cached, which the host TLB management does not expect. 2120 */ 2121 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2122 lpcr &= ~LPCR_AIL; 2123 2124 /* 2125 * On POWER9, allow userspace to enable large decrementer for the 2126 * guest, whether or not the host has it enabled. 2127 */ 2128 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2129 lpcr &= ~LPCR_LD; 2130 2131 return lpcr; 2132 } 2133 2134 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2135 { 2136 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2137 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2138 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2139 } 2140 } 2141 2142 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2143 bool preserve_top32) 2144 { 2145 struct kvm *kvm = vcpu->kvm; 2146 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2147 u64 mask; 2148 2149 spin_lock(&vc->lock); 2150 2151 /* 2152 * Userspace can only modify 2153 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2154 * TC (translation control), AIL (alternate interrupt location), 2155 * LD (large decrementer). 2156 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2157 */ 2158 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2159 2160 /* Broken 32-bit version of LPCR must not clear top bits */ 2161 if (preserve_top32) 2162 mask &= 0xFFFFFFFF; 2163 2164 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2165 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2166 2167 /* 2168 * If ILE (interrupt little-endian) has changed, update the 2169 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2170 */ 2171 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2172 struct kvm_vcpu *vcpu; 2173 unsigned long i; 2174 2175 kvm_for_each_vcpu(i, vcpu, kvm) { 2176 if (vcpu->arch.vcore != vc) 2177 continue; 2178 if (new_lpcr & LPCR_ILE) 2179 vcpu->arch.intr_msr |= MSR_LE; 2180 else 2181 vcpu->arch.intr_msr &= ~MSR_LE; 2182 } 2183 } 2184 2185 vc->lpcr = new_lpcr; 2186 2187 spin_unlock(&vc->lock); 2188 } 2189 2190 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2191 union kvmppc_one_reg *val) 2192 { 2193 int r = 0; 2194 long int i; 2195 2196 switch (id) { 2197 case KVM_REG_PPC_DEBUG_INST: 2198 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2199 break; 2200 case KVM_REG_PPC_HIOR: 2201 *val = get_reg_val(id, 0); 2202 break; 2203 case KVM_REG_PPC_DABR: 2204 *val = get_reg_val(id, vcpu->arch.dabr); 2205 break; 2206 case KVM_REG_PPC_DABRX: 2207 *val = get_reg_val(id, vcpu->arch.dabrx); 2208 break; 2209 case KVM_REG_PPC_DSCR: 2210 *val = get_reg_val(id, vcpu->arch.dscr); 2211 break; 2212 case KVM_REG_PPC_PURR: 2213 *val = get_reg_val(id, vcpu->arch.purr); 2214 break; 2215 case KVM_REG_PPC_SPURR: 2216 *val = get_reg_val(id, vcpu->arch.spurr); 2217 break; 2218 case KVM_REG_PPC_AMR: 2219 *val = get_reg_val(id, vcpu->arch.amr); 2220 break; 2221 case KVM_REG_PPC_UAMOR: 2222 *val = get_reg_val(id, vcpu->arch.uamor); 2223 break; 2224 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2225 i = id - KVM_REG_PPC_MMCR0; 2226 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 2227 break; 2228 case KVM_REG_PPC_MMCR2: 2229 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 2230 break; 2231 case KVM_REG_PPC_MMCRA: 2232 *val = get_reg_val(id, vcpu->arch.mmcra); 2233 break; 2234 case KVM_REG_PPC_MMCRS: 2235 *val = get_reg_val(id, vcpu->arch.mmcrs); 2236 break; 2237 case KVM_REG_PPC_MMCR3: 2238 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2239 break; 2240 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2241 i = id - KVM_REG_PPC_PMC1; 2242 *val = get_reg_val(id, vcpu->arch.pmc[i]); 2243 break; 2244 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2245 i = id - KVM_REG_PPC_SPMC1; 2246 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2247 break; 2248 case KVM_REG_PPC_SIAR: 2249 *val = get_reg_val(id, vcpu->arch.siar); 2250 break; 2251 case KVM_REG_PPC_SDAR: 2252 *val = get_reg_val(id, vcpu->arch.sdar); 2253 break; 2254 case KVM_REG_PPC_SIER: 2255 *val = get_reg_val(id, vcpu->arch.sier[0]); 2256 break; 2257 case KVM_REG_PPC_SIER2: 2258 *val = get_reg_val(id, vcpu->arch.sier[1]); 2259 break; 2260 case KVM_REG_PPC_SIER3: 2261 *val = get_reg_val(id, vcpu->arch.sier[2]); 2262 break; 2263 case KVM_REG_PPC_IAMR: 2264 *val = get_reg_val(id, vcpu->arch.iamr); 2265 break; 2266 case KVM_REG_PPC_PSPB: 2267 *val = get_reg_val(id, vcpu->arch.pspb); 2268 break; 2269 case KVM_REG_PPC_DPDES: 2270 /* 2271 * On POWER9, where we are emulating msgsndp etc., 2272 * we return 1 bit for each vcpu, which can come from 2273 * either vcore->dpdes or doorbell_request. 2274 * On POWER8, doorbell_request is 0. 2275 */ 2276 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2277 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2278 else 2279 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2280 break; 2281 case KVM_REG_PPC_VTB: 2282 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 2283 break; 2284 case KVM_REG_PPC_DAWR: 2285 *val = get_reg_val(id, vcpu->arch.dawr0); 2286 break; 2287 case KVM_REG_PPC_DAWRX: 2288 *val = get_reg_val(id, vcpu->arch.dawrx0); 2289 break; 2290 case KVM_REG_PPC_DAWR1: 2291 *val = get_reg_val(id, vcpu->arch.dawr1); 2292 break; 2293 case KVM_REG_PPC_DAWRX1: 2294 *val = get_reg_val(id, vcpu->arch.dawrx1); 2295 break; 2296 case KVM_REG_PPC_CIABR: 2297 *val = get_reg_val(id, vcpu->arch.ciabr); 2298 break; 2299 case KVM_REG_PPC_CSIGR: 2300 *val = get_reg_val(id, vcpu->arch.csigr); 2301 break; 2302 case KVM_REG_PPC_TACR: 2303 *val = get_reg_val(id, vcpu->arch.tacr); 2304 break; 2305 case KVM_REG_PPC_TCSCR: 2306 *val = get_reg_val(id, vcpu->arch.tcscr); 2307 break; 2308 case KVM_REG_PPC_PID: 2309 *val = get_reg_val(id, vcpu->arch.pid); 2310 break; 2311 case KVM_REG_PPC_ACOP: 2312 *val = get_reg_val(id, vcpu->arch.acop); 2313 break; 2314 case KVM_REG_PPC_WORT: 2315 *val = get_reg_val(id, vcpu->arch.wort); 2316 break; 2317 case KVM_REG_PPC_TIDR: 2318 *val = get_reg_val(id, vcpu->arch.tid); 2319 break; 2320 case KVM_REG_PPC_PSSCR: 2321 *val = get_reg_val(id, vcpu->arch.psscr); 2322 break; 2323 case KVM_REG_PPC_VPA_ADDR: 2324 spin_lock(&vcpu->arch.vpa_update_lock); 2325 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2326 spin_unlock(&vcpu->arch.vpa_update_lock); 2327 break; 2328 case KVM_REG_PPC_VPA_SLB: 2329 spin_lock(&vcpu->arch.vpa_update_lock); 2330 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2331 val->vpaval.length = vcpu->arch.slb_shadow.len; 2332 spin_unlock(&vcpu->arch.vpa_update_lock); 2333 break; 2334 case KVM_REG_PPC_VPA_DTL: 2335 spin_lock(&vcpu->arch.vpa_update_lock); 2336 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2337 val->vpaval.length = vcpu->arch.dtl.len; 2338 spin_unlock(&vcpu->arch.vpa_update_lock); 2339 break; 2340 case KVM_REG_PPC_TB_OFFSET: 2341 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2342 break; 2343 case KVM_REG_PPC_LPCR: 2344 case KVM_REG_PPC_LPCR_64: 2345 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2346 break; 2347 case KVM_REG_PPC_PPR: 2348 *val = get_reg_val(id, vcpu->arch.ppr); 2349 break; 2350 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2351 case KVM_REG_PPC_TFHAR: 2352 *val = get_reg_val(id, vcpu->arch.tfhar); 2353 break; 2354 case KVM_REG_PPC_TFIAR: 2355 *val = get_reg_val(id, vcpu->arch.tfiar); 2356 break; 2357 case KVM_REG_PPC_TEXASR: 2358 *val = get_reg_val(id, vcpu->arch.texasr); 2359 break; 2360 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2361 i = id - KVM_REG_PPC_TM_GPR0; 2362 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2363 break; 2364 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2365 { 2366 int j; 2367 i = id - KVM_REG_PPC_TM_VSR0; 2368 if (i < 32) 2369 for (j = 0; j < TS_FPRWIDTH; j++) 2370 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2371 else { 2372 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2373 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2374 else 2375 r = -ENXIO; 2376 } 2377 break; 2378 } 2379 case KVM_REG_PPC_TM_CR: 2380 *val = get_reg_val(id, vcpu->arch.cr_tm); 2381 break; 2382 case KVM_REG_PPC_TM_XER: 2383 *val = get_reg_val(id, vcpu->arch.xer_tm); 2384 break; 2385 case KVM_REG_PPC_TM_LR: 2386 *val = get_reg_val(id, vcpu->arch.lr_tm); 2387 break; 2388 case KVM_REG_PPC_TM_CTR: 2389 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2390 break; 2391 case KVM_REG_PPC_TM_FPSCR: 2392 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2393 break; 2394 case KVM_REG_PPC_TM_AMR: 2395 *val = get_reg_val(id, vcpu->arch.amr_tm); 2396 break; 2397 case KVM_REG_PPC_TM_PPR: 2398 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2399 break; 2400 case KVM_REG_PPC_TM_VRSAVE: 2401 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2402 break; 2403 case KVM_REG_PPC_TM_VSCR: 2404 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2405 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2406 else 2407 r = -ENXIO; 2408 break; 2409 case KVM_REG_PPC_TM_DSCR: 2410 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2411 break; 2412 case KVM_REG_PPC_TM_TAR: 2413 *val = get_reg_val(id, vcpu->arch.tar_tm); 2414 break; 2415 #endif 2416 case KVM_REG_PPC_ARCH_COMPAT: 2417 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2418 break; 2419 case KVM_REG_PPC_DEC_EXPIRY: 2420 *val = get_reg_val(id, vcpu->arch.dec_expires); 2421 break; 2422 case KVM_REG_PPC_ONLINE: 2423 *val = get_reg_val(id, vcpu->arch.online); 2424 break; 2425 case KVM_REG_PPC_PTCR: 2426 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2427 break; 2428 default: 2429 r = -EINVAL; 2430 break; 2431 } 2432 2433 return r; 2434 } 2435 2436 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2437 union kvmppc_one_reg *val) 2438 { 2439 int r = 0; 2440 long int i; 2441 unsigned long addr, len; 2442 2443 switch (id) { 2444 case KVM_REG_PPC_HIOR: 2445 /* Only allow this to be set to zero */ 2446 if (set_reg_val(id, *val)) 2447 r = -EINVAL; 2448 break; 2449 case KVM_REG_PPC_DABR: 2450 vcpu->arch.dabr = set_reg_val(id, *val); 2451 break; 2452 case KVM_REG_PPC_DABRX: 2453 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2454 break; 2455 case KVM_REG_PPC_DSCR: 2456 vcpu->arch.dscr = set_reg_val(id, *val); 2457 break; 2458 case KVM_REG_PPC_PURR: 2459 vcpu->arch.purr = set_reg_val(id, *val); 2460 break; 2461 case KVM_REG_PPC_SPURR: 2462 vcpu->arch.spurr = set_reg_val(id, *val); 2463 break; 2464 case KVM_REG_PPC_AMR: 2465 vcpu->arch.amr = set_reg_val(id, *val); 2466 break; 2467 case KVM_REG_PPC_UAMOR: 2468 vcpu->arch.uamor = set_reg_val(id, *val); 2469 break; 2470 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2471 i = id - KVM_REG_PPC_MMCR0; 2472 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2473 break; 2474 case KVM_REG_PPC_MMCR2: 2475 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2476 break; 2477 case KVM_REG_PPC_MMCRA: 2478 vcpu->arch.mmcra = set_reg_val(id, *val); 2479 break; 2480 case KVM_REG_PPC_MMCRS: 2481 vcpu->arch.mmcrs = set_reg_val(id, *val); 2482 break; 2483 case KVM_REG_PPC_MMCR3: 2484 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2485 break; 2486 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2487 i = id - KVM_REG_PPC_PMC1; 2488 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2489 break; 2490 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2491 i = id - KVM_REG_PPC_SPMC1; 2492 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2493 break; 2494 case KVM_REG_PPC_SIAR: 2495 vcpu->arch.siar = set_reg_val(id, *val); 2496 break; 2497 case KVM_REG_PPC_SDAR: 2498 vcpu->arch.sdar = set_reg_val(id, *val); 2499 break; 2500 case KVM_REG_PPC_SIER: 2501 vcpu->arch.sier[0] = set_reg_val(id, *val); 2502 break; 2503 case KVM_REG_PPC_SIER2: 2504 vcpu->arch.sier[1] = set_reg_val(id, *val); 2505 break; 2506 case KVM_REG_PPC_SIER3: 2507 vcpu->arch.sier[2] = set_reg_val(id, *val); 2508 break; 2509 case KVM_REG_PPC_IAMR: 2510 vcpu->arch.iamr = set_reg_val(id, *val); 2511 break; 2512 case KVM_REG_PPC_PSPB: 2513 vcpu->arch.pspb = set_reg_val(id, *val); 2514 break; 2515 case KVM_REG_PPC_DPDES: 2516 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2517 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2518 else 2519 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2520 break; 2521 case KVM_REG_PPC_VTB: 2522 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2523 break; 2524 case KVM_REG_PPC_DAWR: 2525 vcpu->arch.dawr0 = set_reg_val(id, *val); 2526 break; 2527 case KVM_REG_PPC_DAWRX: 2528 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2529 break; 2530 case KVM_REG_PPC_DAWR1: 2531 vcpu->arch.dawr1 = set_reg_val(id, *val); 2532 break; 2533 case KVM_REG_PPC_DAWRX1: 2534 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2535 break; 2536 case KVM_REG_PPC_CIABR: 2537 vcpu->arch.ciabr = set_reg_val(id, *val); 2538 /* Don't allow setting breakpoints in hypervisor code */ 2539 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2540 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2541 break; 2542 case KVM_REG_PPC_CSIGR: 2543 vcpu->arch.csigr = set_reg_val(id, *val); 2544 break; 2545 case KVM_REG_PPC_TACR: 2546 vcpu->arch.tacr = set_reg_val(id, *val); 2547 break; 2548 case KVM_REG_PPC_TCSCR: 2549 vcpu->arch.tcscr = set_reg_val(id, *val); 2550 break; 2551 case KVM_REG_PPC_PID: 2552 vcpu->arch.pid = set_reg_val(id, *val); 2553 break; 2554 case KVM_REG_PPC_ACOP: 2555 vcpu->arch.acop = set_reg_val(id, *val); 2556 break; 2557 case KVM_REG_PPC_WORT: 2558 vcpu->arch.wort = set_reg_val(id, *val); 2559 break; 2560 case KVM_REG_PPC_TIDR: 2561 vcpu->arch.tid = set_reg_val(id, *val); 2562 break; 2563 case KVM_REG_PPC_PSSCR: 2564 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2565 break; 2566 case KVM_REG_PPC_VPA_ADDR: 2567 addr = set_reg_val(id, *val); 2568 r = -EINVAL; 2569 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2570 vcpu->arch.dtl.next_gpa)) 2571 break; 2572 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2573 break; 2574 case KVM_REG_PPC_VPA_SLB: 2575 addr = val->vpaval.addr; 2576 len = val->vpaval.length; 2577 r = -EINVAL; 2578 if (addr && !vcpu->arch.vpa.next_gpa) 2579 break; 2580 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2581 break; 2582 case KVM_REG_PPC_VPA_DTL: 2583 addr = val->vpaval.addr; 2584 len = val->vpaval.length; 2585 r = -EINVAL; 2586 if (addr && (len < sizeof(struct dtl_entry) || 2587 !vcpu->arch.vpa.next_gpa)) 2588 break; 2589 len -= len % sizeof(struct dtl_entry); 2590 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2591 break; 2592 case KVM_REG_PPC_TB_OFFSET: 2593 { 2594 /* round up to multiple of 2^24 */ 2595 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2596 2597 /* 2598 * Now that we know the timebase offset, update the 2599 * decrementer expiry with a guest timebase value. If 2600 * the userspace does not set DEC_EXPIRY, this ensures 2601 * a migrated vcpu at least starts with an expired 2602 * decrementer, which is better than a large one that 2603 * causes a hang. 2604 */ 2605 if (!vcpu->arch.dec_expires && tb_offset) 2606 vcpu->arch.dec_expires = get_tb() + tb_offset; 2607 2608 vcpu->arch.vcore->tb_offset = tb_offset; 2609 break; 2610 } 2611 case KVM_REG_PPC_LPCR: 2612 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2613 break; 2614 case KVM_REG_PPC_LPCR_64: 2615 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2616 break; 2617 case KVM_REG_PPC_PPR: 2618 vcpu->arch.ppr = set_reg_val(id, *val); 2619 break; 2620 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2621 case KVM_REG_PPC_TFHAR: 2622 vcpu->arch.tfhar = set_reg_val(id, *val); 2623 break; 2624 case KVM_REG_PPC_TFIAR: 2625 vcpu->arch.tfiar = set_reg_val(id, *val); 2626 break; 2627 case KVM_REG_PPC_TEXASR: 2628 vcpu->arch.texasr = set_reg_val(id, *val); 2629 break; 2630 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2631 i = id - KVM_REG_PPC_TM_GPR0; 2632 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2633 break; 2634 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2635 { 2636 int j; 2637 i = id - KVM_REG_PPC_TM_VSR0; 2638 if (i < 32) 2639 for (j = 0; j < TS_FPRWIDTH; j++) 2640 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2641 else 2642 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2643 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2644 else 2645 r = -ENXIO; 2646 break; 2647 } 2648 case KVM_REG_PPC_TM_CR: 2649 vcpu->arch.cr_tm = set_reg_val(id, *val); 2650 break; 2651 case KVM_REG_PPC_TM_XER: 2652 vcpu->arch.xer_tm = set_reg_val(id, *val); 2653 break; 2654 case KVM_REG_PPC_TM_LR: 2655 vcpu->arch.lr_tm = set_reg_val(id, *val); 2656 break; 2657 case KVM_REG_PPC_TM_CTR: 2658 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2659 break; 2660 case KVM_REG_PPC_TM_FPSCR: 2661 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2662 break; 2663 case KVM_REG_PPC_TM_AMR: 2664 vcpu->arch.amr_tm = set_reg_val(id, *val); 2665 break; 2666 case KVM_REG_PPC_TM_PPR: 2667 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2668 break; 2669 case KVM_REG_PPC_TM_VRSAVE: 2670 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2671 break; 2672 case KVM_REG_PPC_TM_VSCR: 2673 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2674 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2675 else 2676 r = - ENXIO; 2677 break; 2678 case KVM_REG_PPC_TM_DSCR: 2679 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2680 break; 2681 case KVM_REG_PPC_TM_TAR: 2682 vcpu->arch.tar_tm = set_reg_val(id, *val); 2683 break; 2684 #endif 2685 case KVM_REG_PPC_ARCH_COMPAT: 2686 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2687 break; 2688 case KVM_REG_PPC_DEC_EXPIRY: 2689 vcpu->arch.dec_expires = set_reg_val(id, *val); 2690 break; 2691 case KVM_REG_PPC_ONLINE: 2692 i = set_reg_val(id, *val); 2693 if (i && !vcpu->arch.online) 2694 atomic_inc(&vcpu->arch.vcore->online_count); 2695 else if (!i && vcpu->arch.online) 2696 atomic_dec(&vcpu->arch.vcore->online_count); 2697 vcpu->arch.online = i; 2698 break; 2699 case KVM_REG_PPC_PTCR: 2700 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2701 break; 2702 default: 2703 r = -EINVAL; 2704 break; 2705 } 2706 2707 return r; 2708 } 2709 2710 /* 2711 * On POWER9, threads are independent and can be in different partitions. 2712 * Therefore we consider each thread to be a subcore. 2713 * There is a restriction that all threads have to be in the same 2714 * MMU mode (radix or HPT), unfortunately, but since we only support 2715 * HPT guests on a HPT host so far, that isn't an impediment yet. 2716 */ 2717 static int threads_per_vcore(struct kvm *kvm) 2718 { 2719 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2720 return 1; 2721 return threads_per_subcore; 2722 } 2723 2724 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2725 { 2726 struct kvmppc_vcore *vcore; 2727 2728 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2729 2730 if (vcore == NULL) 2731 return NULL; 2732 2733 spin_lock_init(&vcore->lock); 2734 spin_lock_init(&vcore->stoltb_lock); 2735 rcuwait_init(&vcore->wait); 2736 vcore->preempt_tb = TB_NIL; 2737 vcore->lpcr = kvm->arch.lpcr; 2738 vcore->first_vcpuid = id; 2739 vcore->kvm = kvm; 2740 INIT_LIST_HEAD(&vcore->preempt_list); 2741 2742 return vcore; 2743 } 2744 2745 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2746 static struct debugfs_timings_element { 2747 const char *name; 2748 size_t offset; 2749 } timings[] = { 2750 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2751 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2752 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2753 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2754 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2755 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2756 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2757 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2758 #else 2759 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2760 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2761 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2762 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2763 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2764 #endif 2765 }; 2766 2767 #define N_TIMINGS (ARRAY_SIZE(timings)) 2768 2769 struct debugfs_timings_state { 2770 struct kvm_vcpu *vcpu; 2771 unsigned int buflen; 2772 char buf[N_TIMINGS * 100]; 2773 }; 2774 2775 static int debugfs_timings_open(struct inode *inode, struct file *file) 2776 { 2777 struct kvm_vcpu *vcpu = inode->i_private; 2778 struct debugfs_timings_state *p; 2779 2780 p = kzalloc(sizeof(*p), GFP_KERNEL); 2781 if (!p) 2782 return -ENOMEM; 2783 2784 kvm_get_kvm(vcpu->kvm); 2785 p->vcpu = vcpu; 2786 file->private_data = p; 2787 2788 return nonseekable_open(inode, file); 2789 } 2790 2791 static int debugfs_timings_release(struct inode *inode, struct file *file) 2792 { 2793 struct debugfs_timings_state *p = file->private_data; 2794 2795 kvm_put_kvm(p->vcpu->kvm); 2796 kfree(p); 2797 return 0; 2798 } 2799 2800 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2801 size_t len, loff_t *ppos) 2802 { 2803 struct debugfs_timings_state *p = file->private_data; 2804 struct kvm_vcpu *vcpu = p->vcpu; 2805 char *s, *buf_end; 2806 struct kvmhv_tb_accumulator tb; 2807 u64 count; 2808 loff_t pos; 2809 ssize_t n; 2810 int i, loops; 2811 bool ok; 2812 2813 if (!p->buflen) { 2814 s = p->buf; 2815 buf_end = s + sizeof(p->buf); 2816 for (i = 0; i < N_TIMINGS; ++i) { 2817 struct kvmhv_tb_accumulator *acc; 2818 2819 acc = (struct kvmhv_tb_accumulator *) 2820 ((unsigned long)vcpu + timings[i].offset); 2821 ok = false; 2822 for (loops = 0; loops < 1000; ++loops) { 2823 count = acc->seqcount; 2824 if (!(count & 1)) { 2825 smp_rmb(); 2826 tb = *acc; 2827 smp_rmb(); 2828 if (count == acc->seqcount) { 2829 ok = true; 2830 break; 2831 } 2832 } 2833 udelay(1); 2834 } 2835 if (!ok) 2836 snprintf(s, buf_end - s, "%s: stuck\n", 2837 timings[i].name); 2838 else 2839 snprintf(s, buf_end - s, 2840 "%s: %llu %llu %llu %llu\n", 2841 timings[i].name, count / 2, 2842 tb_to_ns(tb.tb_total), 2843 tb_to_ns(tb.tb_min), 2844 tb_to_ns(tb.tb_max)); 2845 s += strlen(s); 2846 } 2847 p->buflen = s - p->buf; 2848 } 2849 2850 pos = *ppos; 2851 if (pos >= p->buflen) 2852 return 0; 2853 if (len > p->buflen - pos) 2854 len = p->buflen - pos; 2855 n = copy_to_user(buf, p->buf + pos, len); 2856 if (n) { 2857 if (n == len) 2858 return -EFAULT; 2859 len -= n; 2860 } 2861 *ppos = pos + len; 2862 return len; 2863 } 2864 2865 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2866 size_t len, loff_t *ppos) 2867 { 2868 return -EACCES; 2869 } 2870 2871 static const struct file_operations debugfs_timings_ops = { 2872 .owner = THIS_MODULE, 2873 .open = debugfs_timings_open, 2874 .release = debugfs_timings_release, 2875 .read = debugfs_timings_read, 2876 .write = debugfs_timings_write, 2877 .llseek = generic_file_llseek, 2878 }; 2879 2880 /* Create a debugfs directory for the vcpu */ 2881 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2882 { 2883 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2884 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2885 &debugfs_timings_ops); 2886 return 0; 2887 } 2888 2889 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2890 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2891 { 2892 return 0; 2893 } 2894 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2895 2896 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2897 { 2898 int err; 2899 int core; 2900 struct kvmppc_vcore *vcore; 2901 struct kvm *kvm; 2902 unsigned int id; 2903 2904 kvm = vcpu->kvm; 2905 id = vcpu->vcpu_id; 2906 2907 vcpu->arch.shared = &vcpu->arch.shregs; 2908 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2909 /* 2910 * The shared struct is never shared on HV, 2911 * so we can always use host endianness 2912 */ 2913 #ifdef __BIG_ENDIAN__ 2914 vcpu->arch.shared_big_endian = true; 2915 #else 2916 vcpu->arch.shared_big_endian = false; 2917 #endif 2918 #endif 2919 vcpu->arch.mmcr[0] = MMCR0_FC; 2920 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2921 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT; 2922 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE; 2923 } 2924 2925 vcpu->arch.ctrl = CTRL_RUNLATCH; 2926 /* default to host PVR, since we can't spoof it */ 2927 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2928 spin_lock_init(&vcpu->arch.vpa_update_lock); 2929 spin_lock_init(&vcpu->arch.tbacct_lock); 2930 vcpu->arch.busy_preempt = TB_NIL; 2931 vcpu->arch.shregs.msr = MSR_ME; 2932 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2933 2934 /* 2935 * Set the default HFSCR for the guest from the host value. 2936 * This value is only used on POWER9 and later. 2937 * On >= POWER9, we want to virtualize the doorbell facility, so we 2938 * don't set the HFSCR_MSGP bit, and that causes those instructions 2939 * to trap and then we emulate them. 2940 */ 2941 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2942 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2943 2944 /* On POWER10 and later, allow prefixed instructions */ 2945 if (cpu_has_feature(CPU_FTR_ARCH_31)) 2946 vcpu->arch.hfscr |= HFSCR_PREFIX; 2947 2948 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2949 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2950 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2951 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2952 vcpu->arch.hfscr |= HFSCR_TM; 2953 #endif 2954 } 2955 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2956 vcpu->arch.hfscr |= HFSCR_TM; 2957 2958 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; 2959 2960 /* 2961 * PM, EBB, TM are demand-faulted so start with it clear. 2962 */ 2963 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM); 2964 2965 kvmppc_mmu_book3s_hv_init(vcpu); 2966 2967 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2968 2969 init_waitqueue_head(&vcpu->arch.cpu_run); 2970 2971 mutex_lock(&kvm->lock); 2972 vcore = NULL; 2973 err = -EINVAL; 2974 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2975 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2976 pr_devel("KVM: VCPU ID too high\n"); 2977 core = KVM_MAX_VCORES; 2978 } else { 2979 BUG_ON(kvm->arch.smt_mode != 1); 2980 core = kvmppc_pack_vcpu_id(kvm, id); 2981 } 2982 } else { 2983 core = id / kvm->arch.smt_mode; 2984 } 2985 if (core < KVM_MAX_VCORES) { 2986 vcore = kvm->arch.vcores[core]; 2987 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2988 pr_devel("KVM: collision on id %u", id); 2989 vcore = NULL; 2990 } else if (!vcore) { 2991 /* 2992 * Take mmu_setup_lock for mutual exclusion 2993 * with kvmppc_update_lpcr(). 2994 */ 2995 err = -ENOMEM; 2996 vcore = kvmppc_vcore_create(kvm, 2997 id & ~(kvm->arch.smt_mode - 1)); 2998 mutex_lock(&kvm->arch.mmu_setup_lock); 2999 kvm->arch.vcores[core] = vcore; 3000 kvm->arch.online_vcores++; 3001 mutex_unlock(&kvm->arch.mmu_setup_lock); 3002 } 3003 } 3004 mutex_unlock(&kvm->lock); 3005 3006 if (!vcore) 3007 return err; 3008 3009 spin_lock(&vcore->lock); 3010 ++vcore->num_threads; 3011 spin_unlock(&vcore->lock); 3012 vcpu->arch.vcore = vcore; 3013 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 3014 vcpu->arch.thread_cpu = -1; 3015 vcpu->arch.prev_cpu = -1; 3016 3017 vcpu->arch.cpu_type = KVM_CPU_3S_64; 3018 kvmppc_sanity_check(vcpu); 3019 3020 return 0; 3021 } 3022 3023 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3024 unsigned long flags) 3025 { 3026 int err; 3027 int esmt = 0; 3028 3029 if (flags) 3030 return -EINVAL; 3031 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3032 return -EINVAL; 3033 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3034 /* 3035 * On POWER8 (or POWER7), the threading mode is "strict", 3036 * so we pack smt_mode vcpus per vcore. 3037 */ 3038 if (smt_mode > threads_per_subcore) 3039 return -EINVAL; 3040 } else { 3041 /* 3042 * On POWER9, the threading mode is "loose", 3043 * so each vcpu gets its own vcore. 3044 */ 3045 esmt = smt_mode; 3046 smt_mode = 1; 3047 } 3048 mutex_lock(&kvm->lock); 3049 err = -EBUSY; 3050 if (!kvm->arch.online_vcores) { 3051 kvm->arch.smt_mode = smt_mode; 3052 kvm->arch.emul_smt_mode = esmt; 3053 err = 0; 3054 } 3055 mutex_unlock(&kvm->lock); 3056 3057 return err; 3058 } 3059 3060 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3061 { 3062 if (vpa->pinned_addr) 3063 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3064 vpa->dirty); 3065 } 3066 3067 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3068 { 3069 spin_lock(&vcpu->arch.vpa_update_lock); 3070 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3071 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3072 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3073 spin_unlock(&vcpu->arch.vpa_update_lock); 3074 } 3075 3076 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3077 { 3078 /* Indicate we want to get back into the guest */ 3079 return 1; 3080 } 3081 3082 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3083 { 3084 unsigned long dec_nsec, now; 3085 3086 now = get_tb(); 3087 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3088 /* decrementer has already gone negative */ 3089 kvmppc_core_queue_dec(vcpu); 3090 kvmppc_core_prepare_to_enter(vcpu); 3091 return; 3092 } 3093 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3094 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3095 vcpu->arch.timer_running = 1; 3096 } 3097 3098 extern int __kvmppc_vcore_entry(void); 3099 3100 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3101 struct kvm_vcpu *vcpu, u64 tb) 3102 { 3103 u64 now; 3104 3105 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3106 return; 3107 spin_lock_irq(&vcpu->arch.tbacct_lock); 3108 now = tb; 3109 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3110 vcpu->arch.stolen_logged; 3111 vcpu->arch.busy_preempt = now; 3112 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3113 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3114 --vc->n_runnable; 3115 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3116 } 3117 3118 static int kvmppc_grab_hwthread(int cpu) 3119 { 3120 struct paca_struct *tpaca; 3121 long timeout = 10000; 3122 3123 tpaca = paca_ptrs[cpu]; 3124 3125 /* Ensure the thread won't go into the kernel if it wakes */ 3126 tpaca->kvm_hstate.kvm_vcpu = NULL; 3127 tpaca->kvm_hstate.kvm_vcore = NULL; 3128 tpaca->kvm_hstate.napping = 0; 3129 smp_wmb(); 3130 tpaca->kvm_hstate.hwthread_req = 1; 3131 3132 /* 3133 * If the thread is already executing in the kernel (e.g. handling 3134 * a stray interrupt), wait for it to get back to nap mode. 3135 * The smp_mb() is to ensure that our setting of hwthread_req 3136 * is visible before we look at hwthread_state, so if this 3137 * races with the code at system_reset_pSeries and the thread 3138 * misses our setting of hwthread_req, we are sure to see its 3139 * setting of hwthread_state, and vice versa. 3140 */ 3141 smp_mb(); 3142 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3143 if (--timeout <= 0) { 3144 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3145 return -EBUSY; 3146 } 3147 udelay(1); 3148 } 3149 return 0; 3150 } 3151 3152 static void kvmppc_release_hwthread(int cpu) 3153 { 3154 struct paca_struct *tpaca; 3155 3156 tpaca = paca_ptrs[cpu]; 3157 tpaca->kvm_hstate.hwthread_req = 0; 3158 tpaca->kvm_hstate.kvm_vcpu = NULL; 3159 tpaca->kvm_hstate.kvm_vcore = NULL; 3160 tpaca->kvm_hstate.kvm_split_mode = NULL; 3161 } 3162 3163 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3164 3165 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3166 { 3167 struct kvm_nested_guest *nested = vcpu->arch.nested; 3168 cpumask_t *need_tlb_flush; 3169 int i; 3170 3171 if (nested) 3172 need_tlb_flush = &nested->need_tlb_flush; 3173 else 3174 need_tlb_flush = &kvm->arch.need_tlb_flush; 3175 3176 cpu = cpu_first_tlb_thread_sibling(cpu); 3177 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3178 i += cpu_tlb_thread_sibling_step()) 3179 cpumask_set_cpu(i, need_tlb_flush); 3180 3181 /* 3182 * Make sure setting of bit in need_tlb_flush precedes testing of 3183 * cpu_in_guest. The matching barrier on the other side is hwsync 3184 * when switching to guest MMU mode, which happens between 3185 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3186 * being tested. 3187 */ 3188 smp_mb(); 3189 3190 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3191 i += cpu_tlb_thread_sibling_step()) { 3192 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3193 3194 if (running == kvm) 3195 smp_call_function_single(i, do_nothing, NULL, 1); 3196 } 3197 } 3198 3199 static void do_migrate_away_vcpu(void *arg) 3200 { 3201 struct kvm_vcpu *vcpu = arg; 3202 struct kvm *kvm = vcpu->kvm; 3203 3204 /* 3205 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3206 * ptesync sequence on the old CPU before migrating to a new one, in 3207 * case we interrupted the guest between a tlbie ; eieio ; 3208 * tlbsync; ptesync sequence. 3209 * 3210 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3211 */ 3212 if (kvm->arch.lpcr & LPCR_GTSE) 3213 asm volatile("eieio; tlbsync; ptesync"); 3214 else 3215 asm volatile("ptesync"); 3216 } 3217 3218 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3219 { 3220 struct kvm_nested_guest *nested = vcpu->arch.nested; 3221 struct kvm *kvm = vcpu->kvm; 3222 int prev_cpu; 3223 3224 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3225 return; 3226 3227 if (nested) 3228 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3229 else 3230 prev_cpu = vcpu->arch.prev_cpu; 3231 3232 /* 3233 * With radix, the guest can do TLB invalidations itself, 3234 * and it could choose to use the local form (tlbiel) if 3235 * it is invalidating a translation that has only ever been 3236 * used on one vcpu. However, that doesn't mean it has 3237 * only ever been used on one physical cpu, since vcpus 3238 * can move around between pcpus. To cope with this, when 3239 * a vcpu moves from one pcpu to another, we need to tell 3240 * any vcpus running on the same core as this vcpu previously 3241 * ran to flush the TLB. 3242 */ 3243 if (prev_cpu != pcpu) { 3244 if (prev_cpu >= 0) { 3245 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3246 cpu_first_tlb_thread_sibling(pcpu)) 3247 radix_flush_cpu(kvm, prev_cpu, vcpu); 3248 3249 smp_call_function_single(prev_cpu, 3250 do_migrate_away_vcpu, vcpu, 1); 3251 } 3252 if (nested) 3253 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3254 else 3255 vcpu->arch.prev_cpu = pcpu; 3256 } 3257 } 3258 3259 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3260 { 3261 int cpu; 3262 struct paca_struct *tpaca; 3263 3264 cpu = vc->pcpu; 3265 if (vcpu) { 3266 if (vcpu->arch.timer_running) { 3267 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3268 vcpu->arch.timer_running = 0; 3269 } 3270 cpu += vcpu->arch.ptid; 3271 vcpu->cpu = vc->pcpu; 3272 vcpu->arch.thread_cpu = cpu; 3273 } 3274 tpaca = paca_ptrs[cpu]; 3275 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3276 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3277 tpaca->kvm_hstate.fake_suspend = 0; 3278 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3279 smp_wmb(); 3280 tpaca->kvm_hstate.kvm_vcore = vc; 3281 if (cpu != smp_processor_id()) 3282 kvmppc_ipi_thread(cpu); 3283 } 3284 3285 static void kvmppc_wait_for_nap(int n_threads) 3286 { 3287 int cpu = smp_processor_id(); 3288 int i, loops; 3289 3290 if (n_threads <= 1) 3291 return; 3292 for (loops = 0; loops < 1000000; ++loops) { 3293 /* 3294 * Check if all threads are finished. 3295 * We set the vcore pointer when starting a thread 3296 * and the thread clears it when finished, so we look 3297 * for any threads that still have a non-NULL vcore ptr. 3298 */ 3299 for (i = 1; i < n_threads; ++i) 3300 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3301 break; 3302 if (i == n_threads) { 3303 HMT_medium(); 3304 return; 3305 } 3306 HMT_low(); 3307 } 3308 HMT_medium(); 3309 for (i = 1; i < n_threads; ++i) 3310 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3311 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3312 } 3313 3314 /* 3315 * Check that we are on thread 0 and that any other threads in 3316 * this core are off-line. Then grab the threads so they can't 3317 * enter the kernel. 3318 */ 3319 static int on_primary_thread(void) 3320 { 3321 int cpu = smp_processor_id(); 3322 int thr; 3323 3324 /* Are we on a primary subcore? */ 3325 if (cpu_thread_in_subcore(cpu)) 3326 return 0; 3327 3328 thr = 0; 3329 while (++thr < threads_per_subcore) 3330 if (cpu_online(cpu + thr)) 3331 return 0; 3332 3333 /* Grab all hw threads so they can't go into the kernel */ 3334 for (thr = 1; thr < threads_per_subcore; ++thr) { 3335 if (kvmppc_grab_hwthread(cpu + thr)) { 3336 /* Couldn't grab one; let the others go */ 3337 do { 3338 kvmppc_release_hwthread(cpu + thr); 3339 } while (--thr > 0); 3340 return 0; 3341 } 3342 } 3343 return 1; 3344 } 3345 3346 /* 3347 * A list of virtual cores for each physical CPU. 3348 * These are vcores that could run but their runner VCPU tasks are 3349 * (or may be) preempted. 3350 */ 3351 struct preempted_vcore_list { 3352 struct list_head list; 3353 spinlock_t lock; 3354 }; 3355 3356 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3357 3358 static void init_vcore_lists(void) 3359 { 3360 int cpu; 3361 3362 for_each_possible_cpu(cpu) { 3363 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3364 spin_lock_init(&lp->lock); 3365 INIT_LIST_HEAD(&lp->list); 3366 } 3367 } 3368 3369 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3370 { 3371 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3372 3373 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3374 3375 vc->vcore_state = VCORE_PREEMPT; 3376 vc->pcpu = smp_processor_id(); 3377 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3378 spin_lock(&lp->lock); 3379 list_add_tail(&vc->preempt_list, &lp->list); 3380 spin_unlock(&lp->lock); 3381 } 3382 3383 /* Start accumulating stolen time */ 3384 kvmppc_core_start_stolen(vc, mftb()); 3385 } 3386 3387 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3388 { 3389 struct preempted_vcore_list *lp; 3390 3391 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3392 3393 kvmppc_core_end_stolen(vc, mftb()); 3394 if (!list_empty(&vc->preempt_list)) { 3395 lp = &per_cpu(preempted_vcores, vc->pcpu); 3396 spin_lock(&lp->lock); 3397 list_del_init(&vc->preempt_list); 3398 spin_unlock(&lp->lock); 3399 } 3400 vc->vcore_state = VCORE_INACTIVE; 3401 } 3402 3403 /* 3404 * This stores information about the virtual cores currently 3405 * assigned to a physical core. 3406 */ 3407 struct core_info { 3408 int n_subcores; 3409 int max_subcore_threads; 3410 int total_threads; 3411 int subcore_threads[MAX_SUBCORES]; 3412 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3413 }; 3414 3415 /* 3416 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3417 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3418 */ 3419 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3420 3421 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3422 { 3423 memset(cip, 0, sizeof(*cip)); 3424 cip->n_subcores = 1; 3425 cip->max_subcore_threads = vc->num_threads; 3426 cip->total_threads = vc->num_threads; 3427 cip->subcore_threads[0] = vc->num_threads; 3428 cip->vc[0] = vc; 3429 } 3430 3431 static bool subcore_config_ok(int n_subcores, int n_threads) 3432 { 3433 /* 3434 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3435 * split-core mode, with one thread per subcore. 3436 */ 3437 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3438 return n_subcores <= 4 && n_threads == 1; 3439 3440 /* On POWER8, can only dynamically split if unsplit to begin with */ 3441 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3442 return false; 3443 if (n_subcores > MAX_SUBCORES) 3444 return false; 3445 if (n_subcores > 1) { 3446 if (!(dynamic_mt_modes & 2)) 3447 n_subcores = 4; 3448 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3449 return false; 3450 } 3451 3452 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3453 } 3454 3455 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3456 { 3457 vc->entry_exit_map = 0; 3458 vc->in_guest = 0; 3459 vc->napping_threads = 0; 3460 vc->conferring_threads = 0; 3461 vc->tb_offset_applied = 0; 3462 } 3463 3464 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3465 { 3466 int n_threads = vc->num_threads; 3467 int sub; 3468 3469 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3470 return false; 3471 3472 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3473 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3474 return false; 3475 3476 if (n_threads < cip->max_subcore_threads) 3477 n_threads = cip->max_subcore_threads; 3478 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3479 return false; 3480 cip->max_subcore_threads = n_threads; 3481 3482 sub = cip->n_subcores; 3483 ++cip->n_subcores; 3484 cip->total_threads += vc->num_threads; 3485 cip->subcore_threads[sub] = vc->num_threads; 3486 cip->vc[sub] = vc; 3487 init_vcore_to_run(vc); 3488 list_del_init(&vc->preempt_list); 3489 3490 return true; 3491 } 3492 3493 /* 3494 * Work out whether it is possible to piggyback the execution of 3495 * vcore *pvc onto the execution of the other vcores described in *cip. 3496 */ 3497 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3498 int target_threads) 3499 { 3500 if (cip->total_threads + pvc->num_threads > target_threads) 3501 return false; 3502 3503 return can_dynamic_split(pvc, cip); 3504 } 3505 3506 static void prepare_threads(struct kvmppc_vcore *vc) 3507 { 3508 int i; 3509 struct kvm_vcpu *vcpu; 3510 3511 for_each_runnable_thread(i, vcpu, vc) { 3512 if (signal_pending(vcpu->arch.run_task)) 3513 vcpu->arch.ret = -EINTR; 3514 else if (vcpu->arch.vpa.update_pending || 3515 vcpu->arch.slb_shadow.update_pending || 3516 vcpu->arch.dtl.update_pending) 3517 vcpu->arch.ret = RESUME_GUEST; 3518 else 3519 continue; 3520 kvmppc_remove_runnable(vc, vcpu, mftb()); 3521 wake_up(&vcpu->arch.cpu_run); 3522 } 3523 } 3524 3525 static void collect_piggybacks(struct core_info *cip, int target_threads) 3526 { 3527 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3528 struct kvmppc_vcore *pvc, *vcnext; 3529 3530 spin_lock(&lp->lock); 3531 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3532 if (!spin_trylock(&pvc->lock)) 3533 continue; 3534 prepare_threads(pvc); 3535 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3536 list_del_init(&pvc->preempt_list); 3537 if (pvc->runner == NULL) { 3538 pvc->vcore_state = VCORE_INACTIVE; 3539 kvmppc_core_end_stolen(pvc, mftb()); 3540 } 3541 spin_unlock(&pvc->lock); 3542 continue; 3543 } 3544 if (!can_piggyback(pvc, cip, target_threads)) { 3545 spin_unlock(&pvc->lock); 3546 continue; 3547 } 3548 kvmppc_core_end_stolen(pvc, mftb()); 3549 pvc->vcore_state = VCORE_PIGGYBACK; 3550 if (cip->total_threads >= target_threads) 3551 break; 3552 } 3553 spin_unlock(&lp->lock); 3554 } 3555 3556 static bool recheck_signals_and_mmu(struct core_info *cip) 3557 { 3558 int sub, i; 3559 struct kvm_vcpu *vcpu; 3560 struct kvmppc_vcore *vc; 3561 3562 for (sub = 0; sub < cip->n_subcores; ++sub) { 3563 vc = cip->vc[sub]; 3564 if (!vc->kvm->arch.mmu_ready) 3565 return true; 3566 for_each_runnable_thread(i, vcpu, vc) 3567 if (signal_pending(vcpu->arch.run_task)) 3568 return true; 3569 } 3570 return false; 3571 } 3572 3573 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3574 { 3575 int still_running = 0, i; 3576 u64 now; 3577 long ret; 3578 struct kvm_vcpu *vcpu; 3579 3580 spin_lock(&vc->lock); 3581 now = get_tb(); 3582 for_each_runnable_thread(i, vcpu, vc) { 3583 /* 3584 * It's safe to unlock the vcore in the loop here, because 3585 * for_each_runnable_thread() is safe against removal of 3586 * the vcpu, and the vcore state is VCORE_EXITING here, 3587 * so any vcpus becoming runnable will have their arch.trap 3588 * set to zero and can't actually run in the guest. 3589 */ 3590 spin_unlock(&vc->lock); 3591 /* cancel pending dec exception if dec is positive */ 3592 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3593 kvmppc_core_pending_dec(vcpu)) 3594 kvmppc_core_dequeue_dec(vcpu); 3595 3596 trace_kvm_guest_exit(vcpu); 3597 3598 ret = RESUME_GUEST; 3599 if (vcpu->arch.trap) 3600 ret = kvmppc_handle_exit_hv(vcpu, 3601 vcpu->arch.run_task); 3602 3603 vcpu->arch.ret = ret; 3604 vcpu->arch.trap = 0; 3605 3606 spin_lock(&vc->lock); 3607 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3608 if (vcpu->arch.pending_exceptions) 3609 kvmppc_core_prepare_to_enter(vcpu); 3610 if (vcpu->arch.ceded) 3611 kvmppc_set_timer(vcpu); 3612 else 3613 ++still_running; 3614 } else { 3615 kvmppc_remove_runnable(vc, vcpu, mftb()); 3616 wake_up(&vcpu->arch.cpu_run); 3617 } 3618 } 3619 if (!is_master) { 3620 if (still_running > 0) { 3621 kvmppc_vcore_preempt(vc); 3622 } else if (vc->runner) { 3623 vc->vcore_state = VCORE_PREEMPT; 3624 kvmppc_core_start_stolen(vc, mftb()); 3625 } else { 3626 vc->vcore_state = VCORE_INACTIVE; 3627 } 3628 if (vc->n_runnable > 0 && vc->runner == NULL) { 3629 /* make sure there's a candidate runner awake */ 3630 i = -1; 3631 vcpu = next_runnable_thread(vc, &i); 3632 wake_up(&vcpu->arch.cpu_run); 3633 } 3634 } 3635 spin_unlock(&vc->lock); 3636 } 3637 3638 /* 3639 * Clear core from the list of active host cores as we are about to 3640 * enter the guest. Only do this if it is the primary thread of the 3641 * core (not if a subcore) that is entering the guest. 3642 */ 3643 static inline int kvmppc_clear_host_core(unsigned int cpu) 3644 { 3645 int core; 3646 3647 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3648 return 0; 3649 /* 3650 * Memory barrier can be omitted here as we will do a smp_wmb() 3651 * later in kvmppc_start_thread and we need ensure that state is 3652 * visible to other CPUs only after we enter guest. 3653 */ 3654 core = cpu >> threads_shift; 3655 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3656 return 0; 3657 } 3658 3659 /* 3660 * Advertise this core as an active host core since we exited the guest 3661 * Only need to do this if it is the primary thread of the core that is 3662 * exiting. 3663 */ 3664 static inline int kvmppc_set_host_core(unsigned int cpu) 3665 { 3666 int core; 3667 3668 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3669 return 0; 3670 3671 /* 3672 * Memory barrier can be omitted here because we do a spin_unlock 3673 * immediately after this which provides the memory barrier. 3674 */ 3675 core = cpu >> threads_shift; 3676 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3677 return 0; 3678 } 3679 3680 static void set_irq_happened(int trap) 3681 { 3682 switch (trap) { 3683 case BOOK3S_INTERRUPT_EXTERNAL: 3684 local_paca->irq_happened |= PACA_IRQ_EE; 3685 break; 3686 case BOOK3S_INTERRUPT_H_DOORBELL: 3687 local_paca->irq_happened |= PACA_IRQ_DBELL; 3688 break; 3689 case BOOK3S_INTERRUPT_HMI: 3690 local_paca->irq_happened |= PACA_IRQ_HMI; 3691 break; 3692 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3693 replay_system_reset(); 3694 break; 3695 } 3696 } 3697 3698 /* 3699 * Run a set of guest threads on a physical core. 3700 * Called with vc->lock held. 3701 */ 3702 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3703 { 3704 struct kvm_vcpu *vcpu; 3705 int i; 3706 int srcu_idx; 3707 struct core_info core_info; 3708 struct kvmppc_vcore *pvc; 3709 struct kvm_split_mode split_info, *sip; 3710 int split, subcore_size, active; 3711 int sub; 3712 bool thr0_done; 3713 unsigned long cmd_bit, stat_bit; 3714 int pcpu, thr; 3715 int target_threads; 3716 int controlled_threads; 3717 int trap; 3718 bool is_power8; 3719 3720 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3721 return; 3722 3723 /* 3724 * Remove from the list any threads that have a signal pending 3725 * or need a VPA update done 3726 */ 3727 prepare_threads(vc); 3728 3729 /* if the runner is no longer runnable, let the caller pick a new one */ 3730 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3731 return; 3732 3733 /* 3734 * Initialize *vc. 3735 */ 3736 init_vcore_to_run(vc); 3737 vc->preempt_tb = TB_NIL; 3738 3739 /* 3740 * Number of threads that we will be controlling: the same as 3741 * the number of threads per subcore, except on POWER9, 3742 * where it's 1 because the threads are (mostly) independent. 3743 */ 3744 controlled_threads = threads_per_vcore(vc->kvm); 3745 3746 /* 3747 * Make sure we are running on primary threads, and that secondary 3748 * threads are offline. Also check if the number of threads in this 3749 * guest are greater than the current system threads per guest. 3750 */ 3751 if ((controlled_threads > 1) && 3752 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3753 for_each_runnable_thread(i, vcpu, vc) { 3754 vcpu->arch.ret = -EBUSY; 3755 kvmppc_remove_runnable(vc, vcpu, mftb()); 3756 wake_up(&vcpu->arch.cpu_run); 3757 } 3758 goto out; 3759 } 3760 3761 /* 3762 * See if we could run any other vcores on the physical core 3763 * along with this one. 3764 */ 3765 init_core_info(&core_info, vc); 3766 pcpu = smp_processor_id(); 3767 target_threads = controlled_threads; 3768 if (target_smt_mode && target_smt_mode < target_threads) 3769 target_threads = target_smt_mode; 3770 if (vc->num_threads < target_threads) 3771 collect_piggybacks(&core_info, target_threads); 3772 3773 /* 3774 * Hard-disable interrupts, and check resched flag and signals. 3775 * If we need to reschedule or deliver a signal, clean up 3776 * and return without going into the guest(s). 3777 * If the mmu_ready flag has been cleared, don't go into the 3778 * guest because that means a HPT resize operation is in progress. 3779 */ 3780 local_irq_disable(); 3781 hard_irq_disable(); 3782 if (lazy_irq_pending() || need_resched() || 3783 recheck_signals_and_mmu(&core_info)) { 3784 local_irq_enable(); 3785 vc->vcore_state = VCORE_INACTIVE; 3786 /* Unlock all except the primary vcore */ 3787 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3788 pvc = core_info.vc[sub]; 3789 /* Put back on to the preempted vcores list */ 3790 kvmppc_vcore_preempt(pvc); 3791 spin_unlock(&pvc->lock); 3792 } 3793 for (i = 0; i < controlled_threads; ++i) 3794 kvmppc_release_hwthread(pcpu + i); 3795 return; 3796 } 3797 3798 kvmppc_clear_host_core(pcpu); 3799 3800 /* Decide on micro-threading (split-core) mode */ 3801 subcore_size = threads_per_subcore; 3802 cmd_bit = stat_bit = 0; 3803 split = core_info.n_subcores; 3804 sip = NULL; 3805 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3806 3807 if (split > 1) { 3808 sip = &split_info; 3809 memset(&split_info, 0, sizeof(split_info)); 3810 for (sub = 0; sub < core_info.n_subcores; ++sub) 3811 split_info.vc[sub] = core_info.vc[sub]; 3812 3813 if (is_power8) { 3814 if (split == 2 && (dynamic_mt_modes & 2)) { 3815 cmd_bit = HID0_POWER8_1TO2LPAR; 3816 stat_bit = HID0_POWER8_2LPARMODE; 3817 } else { 3818 split = 4; 3819 cmd_bit = HID0_POWER8_1TO4LPAR; 3820 stat_bit = HID0_POWER8_4LPARMODE; 3821 } 3822 subcore_size = MAX_SMT_THREADS / split; 3823 split_info.rpr = mfspr(SPRN_RPR); 3824 split_info.pmmar = mfspr(SPRN_PMMAR); 3825 split_info.ldbar = mfspr(SPRN_LDBAR); 3826 split_info.subcore_size = subcore_size; 3827 } else { 3828 split_info.subcore_size = 1; 3829 } 3830 3831 /* order writes to split_info before kvm_split_mode pointer */ 3832 smp_wmb(); 3833 } 3834 3835 for (thr = 0; thr < controlled_threads; ++thr) { 3836 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3837 3838 paca->kvm_hstate.napping = 0; 3839 paca->kvm_hstate.kvm_split_mode = sip; 3840 } 3841 3842 /* Initiate micro-threading (split-core) on POWER8 if required */ 3843 if (cmd_bit) { 3844 unsigned long hid0 = mfspr(SPRN_HID0); 3845 3846 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3847 mb(); 3848 mtspr(SPRN_HID0, hid0); 3849 isync(); 3850 for (;;) { 3851 hid0 = mfspr(SPRN_HID0); 3852 if (hid0 & stat_bit) 3853 break; 3854 cpu_relax(); 3855 } 3856 } 3857 3858 /* 3859 * On POWER8, set RWMR register. 3860 * Since it only affects PURR and SPURR, it doesn't affect 3861 * the host, so we don't save/restore the host value. 3862 */ 3863 if (is_power8) { 3864 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3865 int n_online = atomic_read(&vc->online_count); 3866 3867 /* 3868 * Use the 8-thread value if we're doing split-core 3869 * or if the vcore's online count looks bogus. 3870 */ 3871 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3872 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3873 rwmr_val = p8_rwmr_values[n_online]; 3874 mtspr(SPRN_RWMR, rwmr_val); 3875 } 3876 3877 /* Start all the threads */ 3878 active = 0; 3879 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3880 thr = is_power8 ? subcore_thread_map[sub] : sub; 3881 thr0_done = false; 3882 active |= 1 << thr; 3883 pvc = core_info.vc[sub]; 3884 pvc->pcpu = pcpu + thr; 3885 for_each_runnable_thread(i, vcpu, pvc) { 3886 /* 3887 * XXX: is kvmppc_start_thread called too late here? 3888 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3889 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3890 * kick is called after new exceptions become available 3891 * and exceptions are checked earlier than here, by 3892 * kvmppc_core_prepare_to_enter. 3893 */ 3894 kvmppc_start_thread(vcpu, pvc); 3895 kvmppc_update_vpa_dispatch(vcpu, pvc); 3896 trace_kvm_guest_enter(vcpu); 3897 if (!vcpu->arch.ptid) 3898 thr0_done = true; 3899 active |= 1 << (thr + vcpu->arch.ptid); 3900 } 3901 /* 3902 * We need to start the first thread of each subcore 3903 * even if it doesn't have a vcpu. 3904 */ 3905 if (!thr0_done) 3906 kvmppc_start_thread(NULL, pvc); 3907 } 3908 3909 /* 3910 * Ensure that split_info.do_nap is set after setting 3911 * the vcore pointer in the PACA of the secondaries. 3912 */ 3913 smp_mb(); 3914 3915 /* 3916 * When doing micro-threading, poke the inactive threads as well. 3917 * This gets them to the nap instruction after kvm_do_nap, 3918 * which reduces the time taken to unsplit later. 3919 */ 3920 if (cmd_bit) { 3921 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3922 for (thr = 1; thr < threads_per_subcore; ++thr) 3923 if (!(active & (1 << thr))) 3924 kvmppc_ipi_thread(pcpu + thr); 3925 } 3926 3927 vc->vcore_state = VCORE_RUNNING; 3928 preempt_disable(); 3929 3930 trace_kvmppc_run_core(vc, 0); 3931 3932 for (sub = 0; sub < core_info.n_subcores; ++sub) 3933 spin_unlock(&core_info.vc[sub]->lock); 3934 3935 guest_timing_enter_irqoff(); 3936 3937 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3938 3939 guest_state_enter_irqoff(); 3940 this_cpu_disable_ftrace(); 3941 3942 trap = __kvmppc_vcore_entry(); 3943 3944 this_cpu_enable_ftrace(); 3945 guest_state_exit_irqoff(); 3946 3947 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3948 3949 set_irq_happened(trap); 3950 3951 spin_lock(&vc->lock); 3952 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3953 vc->vcore_state = VCORE_EXITING; 3954 3955 /* wait for secondary threads to finish writing their state to memory */ 3956 kvmppc_wait_for_nap(controlled_threads); 3957 3958 /* Return to whole-core mode if we split the core earlier */ 3959 if (cmd_bit) { 3960 unsigned long hid0 = mfspr(SPRN_HID0); 3961 unsigned long loops = 0; 3962 3963 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3964 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3965 mb(); 3966 mtspr(SPRN_HID0, hid0); 3967 isync(); 3968 for (;;) { 3969 hid0 = mfspr(SPRN_HID0); 3970 if (!(hid0 & stat_bit)) 3971 break; 3972 cpu_relax(); 3973 ++loops; 3974 } 3975 split_info.do_nap = 0; 3976 } 3977 3978 kvmppc_set_host_core(pcpu); 3979 3980 if (!vtime_accounting_enabled_this_cpu()) { 3981 local_irq_enable(); 3982 /* 3983 * Service IRQs here before guest_timing_exit_irqoff() so any 3984 * ticks that occurred while running the guest are accounted to 3985 * the guest. If vtime accounting is enabled, accounting uses 3986 * TB rather than ticks, so it can be done without enabling 3987 * interrupts here, which has the problem that it accounts 3988 * interrupt processing overhead to the host. 3989 */ 3990 local_irq_disable(); 3991 } 3992 guest_timing_exit_irqoff(); 3993 3994 local_irq_enable(); 3995 3996 /* Let secondaries go back to the offline loop */ 3997 for (i = 0; i < controlled_threads; ++i) { 3998 kvmppc_release_hwthread(pcpu + i); 3999 if (sip && sip->napped[i]) 4000 kvmppc_ipi_thread(pcpu + i); 4001 } 4002 4003 spin_unlock(&vc->lock); 4004 4005 /* make sure updates to secondary vcpu structs are visible now */ 4006 smp_mb(); 4007 4008 preempt_enable(); 4009 4010 for (sub = 0; sub < core_info.n_subcores; ++sub) { 4011 pvc = core_info.vc[sub]; 4012 post_guest_process(pvc, pvc == vc); 4013 } 4014 4015 spin_lock(&vc->lock); 4016 4017 out: 4018 vc->vcore_state = VCORE_INACTIVE; 4019 trace_kvmppc_run_core(vc, 1); 4020 } 4021 4022 static inline bool hcall_is_xics(unsigned long req) 4023 { 4024 return req == H_EOI || req == H_CPPR || req == H_IPI || 4025 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4026 } 4027 4028 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4029 { 4030 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4031 if (lp) { 4032 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4033 lp->yield_count = cpu_to_be32(yield_count); 4034 vcpu->arch.vpa.dirty = 1; 4035 } 4036 } 4037 4038 /* call our hypervisor to load up HV regs and go */ 4039 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4040 { 4041 struct kvmppc_vcore *vc = vcpu->arch.vcore; 4042 unsigned long host_psscr; 4043 unsigned long msr; 4044 struct hv_guest_state hvregs; 4045 struct p9_host_os_sprs host_os_sprs; 4046 s64 dec; 4047 int trap; 4048 4049 msr = mfmsr(); 4050 4051 save_p9_host_os_sprs(&host_os_sprs); 4052 4053 /* 4054 * We need to save and restore the guest visible part of the 4055 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4056 * doesn't do this for us. Note only required if pseries since 4057 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4058 */ 4059 host_psscr = mfspr(SPRN_PSSCR_PR); 4060 4061 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4062 if (lazy_irq_pending()) 4063 return 0; 4064 4065 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4066 msr = mfmsr(); /* TM restore can update msr */ 4067 4068 if (vcpu->arch.psscr != host_psscr) 4069 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4070 4071 kvmhv_save_hv_regs(vcpu, &hvregs); 4072 hvregs.lpcr = lpcr; 4073 hvregs.amor = ~0; 4074 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4075 hvregs.version = HV_GUEST_STATE_VERSION; 4076 if (vcpu->arch.nested) { 4077 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4078 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4079 } else { 4080 hvregs.lpid = vcpu->kvm->arch.lpid; 4081 hvregs.vcpu_token = vcpu->vcpu_id; 4082 } 4083 hvregs.hdec_expiry = time_limit; 4084 4085 /* 4086 * When setting DEC, we must always deal with irq_work_raise 4087 * via NMI vs setting DEC. The problem occurs right as we 4088 * switch into guest mode if a NMI hits and sets pending work 4089 * and sets DEC, then that will apply to the guest and not 4090 * bring us back to the host. 4091 * 4092 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4093 * for example) and set HDEC to 1? That wouldn't solve the 4094 * nested hv case which needs to abort the hcall or zero the 4095 * time limit. 4096 * 4097 * XXX: Another day's problem. 4098 */ 4099 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4100 4101 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4102 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4103 switch_pmu_to_guest(vcpu, &host_os_sprs); 4104 accumulate_time(vcpu, &vcpu->arch.in_guest); 4105 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4106 __pa(&vcpu->arch.regs)); 4107 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4108 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4109 switch_pmu_to_host(vcpu, &host_os_sprs); 4110 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4111 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4112 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4113 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4114 4115 store_vcpu_state(vcpu); 4116 4117 dec = mfspr(SPRN_DEC); 4118 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4119 dec = (s32) dec; 4120 *tb = mftb(); 4121 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset); 4122 4123 timer_rearm_host_dec(*tb); 4124 4125 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4126 if (vcpu->arch.psscr != host_psscr) 4127 mtspr(SPRN_PSSCR_PR, host_psscr); 4128 4129 return trap; 4130 } 4131 4132 /* 4133 * Guest entry for POWER9 and later CPUs. 4134 */ 4135 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4136 unsigned long lpcr, u64 *tb) 4137 { 4138 struct kvm *kvm = vcpu->kvm; 4139 struct kvm_nested_guest *nested = vcpu->arch.nested; 4140 u64 next_timer; 4141 int trap; 4142 4143 next_timer = timer_get_next_tb(); 4144 if (*tb >= next_timer) 4145 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4146 if (next_timer < time_limit) 4147 time_limit = next_timer; 4148 else if (*tb >= time_limit) /* nested time limit */ 4149 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4150 4151 vcpu->arch.ceded = 0; 4152 4153 vcpu_vpa_increment_dispatch(vcpu); 4154 4155 if (kvmhv_on_pseries()) { 4156 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4157 4158 /* H_CEDE has to be handled now, not later */ 4159 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4160 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4161 kvmppc_cede(vcpu); 4162 kvmppc_set_gpr(vcpu, 3, 0); 4163 trap = 0; 4164 } 4165 4166 } else if (nested) { 4167 __this_cpu_write(cpu_in_guest, kvm); 4168 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4169 __this_cpu_write(cpu_in_guest, NULL); 4170 4171 } else { 4172 kvmppc_xive_push_vcpu(vcpu); 4173 4174 __this_cpu_write(cpu_in_guest, kvm); 4175 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4176 __this_cpu_write(cpu_in_guest, NULL); 4177 4178 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4179 !(vcpu->arch.shregs.msr & MSR_PR)) { 4180 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4181 4182 /* 4183 * XIVE rearm and XICS hcalls must be handled 4184 * before xive context is pulled (is this 4185 * true?) 4186 */ 4187 if (req == H_CEDE) { 4188 /* H_CEDE has to be handled now */ 4189 kvmppc_cede(vcpu); 4190 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4191 /* 4192 * Pending escalation so abort 4193 * the cede. 4194 */ 4195 vcpu->arch.ceded = 0; 4196 } 4197 kvmppc_set_gpr(vcpu, 3, 0); 4198 trap = 0; 4199 4200 } else if (req == H_ENTER_NESTED) { 4201 /* 4202 * L2 should not run with the L1 4203 * context so rearm and pull it. 4204 */ 4205 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4206 /* 4207 * Pending escalation so abort 4208 * H_ENTER_NESTED. 4209 */ 4210 kvmppc_set_gpr(vcpu, 3, 0); 4211 trap = 0; 4212 } 4213 4214 } else if (hcall_is_xics(req)) { 4215 int ret; 4216 4217 ret = kvmppc_xive_xics_hcall(vcpu, req); 4218 if (ret != H_TOO_HARD) { 4219 kvmppc_set_gpr(vcpu, 3, ret); 4220 trap = 0; 4221 } 4222 } 4223 } 4224 kvmppc_xive_pull_vcpu(vcpu); 4225 4226 if (kvm_is_radix(kvm)) 4227 vcpu->arch.slb_max = 0; 4228 } 4229 4230 vcpu_vpa_increment_dispatch(vcpu); 4231 4232 return trap; 4233 } 4234 4235 /* 4236 * Wait for some other vcpu thread to execute us, and 4237 * wake us up when we need to handle something in the host. 4238 */ 4239 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4240 struct kvm_vcpu *vcpu, int wait_state) 4241 { 4242 DEFINE_WAIT(wait); 4243 4244 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4245 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4246 spin_unlock(&vc->lock); 4247 schedule(); 4248 spin_lock(&vc->lock); 4249 } 4250 finish_wait(&vcpu->arch.cpu_run, &wait); 4251 } 4252 4253 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4254 { 4255 if (!halt_poll_ns_grow) 4256 return; 4257 4258 vc->halt_poll_ns *= halt_poll_ns_grow; 4259 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4260 vc->halt_poll_ns = halt_poll_ns_grow_start; 4261 } 4262 4263 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4264 { 4265 if (halt_poll_ns_shrink == 0) 4266 vc->halt_poll_ns = 0; 4267 else 4268 vc->halt_poll_ns /= halt_poll_ns_shrink; 4269 } 4270 4271 #ifdef CONFIG_KVM_XICS 4272 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4273 { 4274 if (!xics_on_xive()) 4275 return false; 4276 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4277 vcpu->arch.xive_saved_state.cppr; 4278 } 4279 #else 4280 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4281 { 4282 return false; 4283 } 4284 #endif /* CONFIG_KVM_XICS */ 4285 4286 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4287 { 4288 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4289 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4290 return true; 4291 4292 return false; 4293 } 4294 4295 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4296 { 4297 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4298 return true; 4299 return false; 4300 } 4301 4302 /* 4303 * Check to see if any of the runnable vcpus on the vcore have pending 4304 * exceptions or are no longer ceded 4305 */ 4306 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4307 { 4308 struct kvm_vcpu *vcpu; 4309 int i; 4310 4311 for_each_runnable_thread(i, vcpu, vc) { 4312 if (kvmppc_vcpu_check_block(vcpu)) 4313 return 1; 4314 } 4315 4316 return 0; 4317 } 4318 4319 /* 4320 * All the vcpus in this vcore are idle, so wait for a decrementer 4321 * or external interrupt to one of the vcpus. vc->lock is held. 4322 */ 4323 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4324 { 4325 ktime_t cur, start_poll, start_wait; 4326 int do_sleep = 1; 4327 u64 block_ns; 4328 4329 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4330 4331 /* Poll for pending exceptions and ceded state */ 4332 cur = start_poll = ktime_get(); 4333 if (vc->halt_poll_ns) { 4334 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4335 ++vc->runner->stat.generic.halt_attempted_poll; 4336 4337 vc->vcore_state = VCORE_POLLING; 4338 spin_unlock(&vc->lock); 4339 4340 do { 4341 if (kvmppc_vcore_check_block(vc)) { 4342 do_sleep = 0; 4343 break; 4344 } 4345 cur = ktime_get(); 4346 } while (kvm_vcpu_can_poll(cur, stop)); 4347 4348 spin_lock(&vc->lock); 4349 vc->vcore_state = VCORE_INACTIVE; 4350 4351 if (!do_sleep) { 4352 ++vc->runner->stat.generic.halt_successful_poll; 4353 goto out; 4354 } 4355 } 4356 4357 prepare_to_rcuwait(&vc->wait); 4358 set_current_state(TASK_INTERRUPTIBLE); 4359 if (kvmppc_vcore_check_block(vc)) { 4360 finish_rcuwait(&vc->wait); 4361 do_sleep = 0; 4362 /* If we polled, count this as a successful poll */ 4363 if (vc->halt_poll_ns) 4364 ++vc->runner->stat.generic.halt_successful_poll; 4365 goto out; 4366 } 4367 4368 start_wait = ktime_get(); 4369 4370 vc->vcore_state = VCORE_SLEEPING; 4371 trace_kvmppc_vcore_blocked(vc->runner, 0); 4372 spin_unlock(&vc->lock); 4373 schedule(); 4374 finish_rcuwait(&vc->wait); 4375 spin_lock(&vc->lock); 4376 vc->vcore_state = VCORE_INACTIVE; 4377 trace_kvmppc_vcore_blocked(vc->runner, 1); 4378 ++vc->runner->stat.halt_successful_wait; 4379 4380 cur = ktime_get(); 4381 4382 out: 4383 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4384 4385 /* Attribute wait time */ 4386 if (do_sleep) { 4387 vc->runner->stat.generic.halt_wait_ns += 4388 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4389 KVM_STATS_LOG_HIST_UPDATE( 4390 vc->runner->stat.generic.halt_wait_hist, 4391 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4392 /* Attribute failed poll time */ 4393 if (vc->halt_poll_ns) { 4394 vc->runner->stat.generic.halt_poll_fail_ns += 4395 ktime_to_ns(start_wait) - 4396 ktime_to_ns(start_poll); 4397 KVM_STATS_LOG_HIST_UPDATE( 4398 vc->runner->stat.generic.halt_poll_fail_hist, 4399 ktime_to_ns(start_wait) - 4400 ktime_to_ns(start_poll)); 4401 } 4402 } else { 4403 /* Attribute successful poll time */ 4404 if (vc->halt_poll_ns) { 4405 vc->runner->stat.generic.halt_poll_success_ns += 4406 ktime_to_ns(cur) - 4407 ktime_to_ns(start_poll); 4408 KVM_STATS_LOG_HIST_UPDATE( 4409 vc->runner->stat.generic.halt_poll_success_hist, 4410 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4411 } 4412 } 4413 4414 /* Adjust poll time */ 4415 if (halt_poll_ns) { 4416 if (block_ns <= vc->halt_poll_ns) 4417 ; 4418 /* We slept and blocked for longer than the max halt time */ 4419 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4420 shrink_halt_poll_ns(vc); 4421 /* We slept and our poll time is too small */ 4422 else if (vc->halt_poll_ns < halt_poll_ns && 4423 block_ns < halt_poll_ns) 4424 grow_halt_poll_ns(vc); 4425 if (vc->halt_poll_ns > halt_poll_ns) 4426 vc->halt_poll_ns = halt_poll_ns; 4427 } else 4428 vc->halt_poll_ns = 0; 4429 4430 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4431 } 4432 4433 /* 4434 * This never fails for a radix guest, as none of the operations it does 4435 * for a radix guest can fail or have a way to report failure. 4436 */ 4437 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4438 { 4439 int r = 0; 4440 struct kvm *kvm = vcpu->kvm; 4441 4442 mutex_lock(&kvm->arch.mmu_setup_lock); 4443 if (!kvm->arch.mmu_ready) { 4444 if (!kvm_is_radix(kvm)) 4445 r = kvmppc_hv_setup_htab_rma(vcpu); 4446 if (!r) { 4447 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4448 kvmppc_setup_partition_table(kvm); 4449 kvm->arch.mmu_ready = 1; 4450 } 4451 } 4452 mutex_unlock(&kvm->arch.mmu_setup_lock); 4453 return r; 4454 } 4455 4456 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4457 { 4458 struct kvm_run *run = vcpu->run; 4459 int n_ceded, i, r; 4460 struct kvmppc_vcore *vc; 4461 struct kvm_vcpu *v; 4462 4463 trace_kvmppc_run_vcpu_enter(vcpu); 4464 4465 run->exit_reason = 0; 4466 vcpu->arch.ret = RESUME_GUEST; 4467 vcpu->arch.trap = 0; 4468 kvmppc_update_vpas(vcpu); 4469 4470 /* 4471 * Synchronize with other threads in this virtual core 4472 */ 4473 vc = vcpu->arch.vcore; 4474 spin_lock(&vc->lock); 4475 vcpu->arch.ceded = 0; 4476 vcpu->arch.run_task = current; 4477 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4478 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4479 vcpu->arch.busy_preempt = TB_NIL; 4480 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4481 ++vc->n_runnable; 4482 4483 /* 4484 * This happens the first time this is called for a vcpu. 4485 * If the vcore is already running, we may be able to start 4486 * this thread straight away and have it join in. 4487 */ 4488 if (!signal_pending(current)) { 4489 if ((vc->vcore_state == VCORE_PIGGYBACK || 4490 vc->vcore_state == VCORE_RUNNING) && 4491 !VCORE_IS_EXITING(vc)) { 4492 kvmppc_update_vpa_dispatch(vcpu, vc); 4493 kvmppc_start_thread(vcpu, vc); 4494 trace_kvm_guest_enter(vcpu); 4495 } else if (vc->vcore_state == VCORE_SLEEPING) { 4496 rcuwait_wake_up(&vc->wait); 4497 } 4498 4499 } 4500 4501 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4502 !signal_pending(current)) { 4503 /* See if the MMU is ready to go */ 4504 if (!vcpu->kvm->arch.mmu_ready) { 4505 spin_unlock(&vc->lock); 4506 r = kvmhv_setup_mmu(vcpu); 4507 spin_lock(&vc->lock); 4508 if (r) { 4509 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4510 run->fail_entry. 4511 hardware_entry_failure_reason = 0; 4512 vcpu->arch.ret = r; 4513 break; 4514 } 4515 } 4516 4517 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4518 kvmppc_vcore_end_preempt(vc); 4519 4520 if (vc->vcore_state != VCORE_INACTIVE) { 4521 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4522 continue; 4523 } 4524 for_each_runnable_thread(i, v, vc) { 4525 kvmppc_core_prepare_to_enter(v); 4526 if (signal_pending(v->arch.run_task)) { 4527 kvmppc_remove_runnable(vc, v, mftb()); 4528 v->stat.signal_exits++; 4529 v->run->exit_reason = KVM_EXIT_INTR; 4530 v->arch.ret = -EINTR; 4531 wake_up(&v->arch.cpu_run); 4532 } 4533 } 4534 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4535 break; 4536 n_ceded = 0; 4537 for_each_runnable_thread(i, v, vc) { 4538 if (!kvmppc_vcpu_woken(v)) 4539 n_ceded += v->arch.ceded; 4540 else 4541 v->arch.ceded = 0; 4542 } 4543 vc->runner = vcpu; 4544 if (n_ceded == vc->n_runnable) { 4545 kvmppc_vcore_blocked(vc); 4546 } else if (need_resched()) { 4547 kvmppc_vcore_preempt(vc); 4548 /* Let something else run */ 4549 cond_resched_lock(&vc->lock); 4550 if (vc->vcore_state == VCORE_PREEMPT) 4551 kvmppc_vcore_end_preempt(vc); 4552 } else { 4553 kvmppc_run_core(vc); 4554 } 4555 vc->runner = NULL; 4556 } 4557 4558 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4559 (vc->vcore_state == VCORE_RUNNING || 4560 vc->vcore_state == VCORE_EXITING || 4561 vc->vcore_state == VCORE_PIGGYBACK)) 4562 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4563 4564 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4565 kvmppc_vcore_end_preempt(vc); 4566 4567 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4568 kvmppc_remove_runnable(vc, vcpu, mftb()); 4569 vcpu->stat.signal_exits++; 4570 run->exit_reason = KVM_EXIT_INTR; 4571 vcpu->arch.ret = -EINTR; 4572 } 4573 4574 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4575 /* Wake up some vcpu to run the core */ 4576 i = -1; 4577 v = next_runnable_thread(vc, &i); 4578 wake_up(&v->arch.cpu_run); 4579 } 4580 4581 trace_kvmppc_run_vcpu_exit(vcpu); 4582 spin_unlock(&vc->lock); 4583 return vcpu->arch.ret; 4584 } 4585 4586 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4587 unsigned long lpcr) 4588 { 4589 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4590 struct kvm_run *run = vcpu->run; 4591 int trap, r, pcpu; 4592 int srcu_idx; 4593 struct kvmppc_vcore *vc; 4594 struct kvm *kvm = vcpu->kvm; 4595 struct kvm_nested_guest *nested = vcpu->arch.nested; 4596 unsigned long flags; 4597 u64 tb; 4598 4599 trace_kvmppc_run_vcpu_enter(vcpu); 4600 4601 run->exit_reason = 0; 4602 vcpu->arch.ret = RESUME_GUEST; 4603 vcpu->arch.trap = 0; 4604 4605 vc = vcpu->arch.vcore; 4606 vcpu->arch.ceded = 0; 4607 vcpu->arch.run_task = current; 4608 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4609 4610 /* See if the MMU is ready to go */ 4611 if (unlikely(!kvm->arch.mmu_ready)) { 4612 r = kvmhv_setup_mmu(vcpu); 4613 if (r) { 4614 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4615 run->fail_entry.hardware_entry_failure_reason = 0; 4616 vcpu->arch.ret = r; 4617 return r; 4618 } 4619 } 4620 4621 if (need_resched()) 4622 cond_resched(); 4623 4624 kvmppc_update_vpas(vcpu); 4625 4626 preempt_disable(); 4627 pcpu = smp_processor_id(); 4628 if (kvm_is_radix(kvm)) 4629 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4630 4631 /* flags save not required, but irq_pmu has no disable/enable API */ 4632 powerpc_local_irq_pmu_save(flags); 4633 4634 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4635 4636 if (signal_pending(current)) 4637 goto sigpend; 4638 if (need_resched() || !kvm->arch.mmu_ready) 4639 goto out; 4640 4641 vcpu->cpu = pcpu; 4642 vcpu->arch.thread_cpu = pcpu; 4643 vc->pcpu = pcpu; 4644 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4645 local_paca->kvm_hstate.ptid = 0; 4646 local_paca->kvm_hstate.fake_suspend = 0; 4647 4648 /* 4649 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4650 * doorbells below. The other side is when these fields are set vs 4651 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4652 * kick a vCPU to notice the pending interrupt. 4653 */ 4654 smp_mb(); 4655 4656 if (!nested) { 4657 kvmppc_core_prepare_to_enter(vcpu); 4658 if (vcpu->arch.shregs.msr & MSR_EE) { 4659 if (xive_interrupt_pending(vcpu)) 4660 kvmppc_inject_interrupt_hv(vcpu, 4661 BOOK3S_INTERRUPT_EXTERNAL, 0); 4662 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4663 &vcpu->arch.pending_exceptions)) { 4664 lpcr |= LPCR_MER; 4665 } 4666 } else if (vcpu->arch.pending_exceptions || 4667 vcpu->arch.doorbell_request || 4668 xive_interrupt_pending(vcpu)) { 4669 vcpu->arch.ret = RESUME_HOST; 4670 goto out; 4671 } 4672 4673 if (vcpu->arch.timer_running) { 4674 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4675 vcpu->arch.timer_running = 0; 4676 } 4677 4678 tb = mftb(); 4679 4680 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset); 4681 4682 trace_kvm_guest_enter(vcpu); 4683 4684 guest_timing_enter_irqoff(); 4685 4686 srcu_idx = srcu_read_lock(&kvm->srcu); 4687 4688 guest_state_enter_irqoff(); 4689 this_cpu_disable_ftrace(); 4690 4691 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4692 vcpu->arch.trap = trap; 4693 4694 this_cpu_enable_ftrace(); 4695 guest_state_exit_irqoff(); 4696 4697 srcu_read_unlock(&kvm->srcu, srcu_idx); 4698 4699 set_irq_happened(trap); 4700 4701 vcpu->cpu = -1; 4702 vcpu->arch.thread_cpu = -1; 4703 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4704 4705 if (!vtime_accounting_enabled_this_cpu()) { 4706 powerpc_local_irq_pmu_restore(flags); 4707 /* 4708 * Service IRQs here before guest_timing_exit_irqoff() so any 4709 * ticks that occurred while running the guest are accounted to 4710 * the guest. If vtime accounting is enabled, accounting uses 4711 * TB rather than ticks, so it can be done without enabling 4712 * interrupts here, which has the problem that it accounts 4713 * interrupt processing overhead to the host. 4714 */ 4715 powerpc_local_irq_pmu_save(flags); 4716 } 4717 guest_timing_exit_irqoff(); 4718 4719 powerpc_local_irq_pmu_restore(flags); 4720 4721 preempt_enable(); 4722 4723 /* 4724 * cancel pending decrementer exception if DEC is now positive, or if 4725 * entering a nested guest in which case the decrementer is now owned 4726 * by L2 and the L1 decrementer is provided in hdec_expires 4727 */ 4728 if (kvmppc_core_pending_dec(vcpu) && 4729 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4730 (trap == BOOK3S_INTERRUPT_SYSCALL && 4731 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4732 kvmppc_core_dequeue_dec(vcpu); 4733 4734 trace_kvm_guest_exit(vcpu); 4735 r = RESUME_GUEST; 4736 if (trap) { 4737 if (!nested) 4738 r = kvmppc_handle_exit_hv(vcpu, current); 4739 else 4740 r = kvmppc_handle_nested_exit(vcpu); 4741 } 4742 vcpu->arch.ret = r; 4743 4744 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4745 kvmppc_set_timer(vcpu); 4746 4747 prepare_to_rcuwait(wait); 4748 for (;;) { 4749 set_current_state(TASK_INTERRUPTIBLE); 4750 if (signal_pending(current)) { 4751 vcpu->stat.signal_exits++; 4752 run->exit_reason = KVM_EXIT_INTR; 4753 vcpu->arch.ret = -EINTR; 4754 break; 4755 } 4756 4757 if (kvmppc_vcpu_check_block(vcpu)) 4758 break; 4759 4760 trace_kvmppc_vcore_blocked(vcpu, 0); 4761 schedule(); 4762 trace_kvmppc_vcore_blocked(vcpu, 1); 4763 } 4764 finish_rcuwait(wait); 4765 } 4766 vcpu->arch.ceded = 0; 4767 4768 done: 4769 trace_kvmppc_run_vcpu_exit(vcpu); 4770 4771 return vcpu->arch.ret; 4772 4773 sigpend: 4774 vcpu->stat.signal_exits++; 4775 run->exit_reason = KVM_EXIT_INTR; 4776 vcpu->arch.ret = -EINTR; 4777 out: 4778 vcpu->cpu = -1; 4779 vcpu->arch.thread_cpu = -1; 4780 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4781 powerpc_local_irq_pmu_restore(flags); 4782 preempt_enable(); 4783 goto done; 4784 } 4785 4786 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4787 { 4788 struct kvm_run *run = vcpu->run; 4789 int r; 4790 int srcu_idx; 4791 struct kvm *kvm; 4792 unsigned long msr; 4793 4794 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4795 4796 if (!vcpu->arch.sane) { 4797 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4798 return -EINVAL; 4799 } 4800 4801 /* No need to go into the guest when all we'll do is come back out */ 4802 if (signal_pending(current)) { 4803 run->exit_reason = KVM_EXIT_INTR; 4804 return -EINTR; 4805 } 4806 4807 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4808 /* 4809 * Don't allow entry with a suspended transaction, because 4810 * the guest entry/exit code will lose it. 4811 */ 4812 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4813 (current->thread.regs->msr & MSR_TM)) { 4814 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4815 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4816 run->fail_entry.hardware_entry_failure_reason = 0; 4817 return -EINVAL; 4818 } 4819 } 4820 #endif 4821 4822 /* 4823 * Force online to 1 for the sake of old userspace which doesn't 4824 * set it. 4825 */ 4826 if (!vcpu->arch.online) { 4827 atomic_inc(&vcpu->arch.vcore->online_count); 4828 vcpu->arch.online = 1; 4829 } 4830 4831 kvmppc_core_prepare_to_enter(vcpu); 4832 4833 kvm = vcpu->kvm; 4834 atomic_inc(&kvm->arch.vcpus_running); 4835 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4836 smp_mb(); 4837 4838 msr = 0; 4839 if (IS_ENABLED(CONFIG_PPC_FPU)) 4840 msr |= MSR_FP; 4841 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4842 msr |= MSR_VEC; 4843 if (cpu_has_feature(CPU_FTR_VSX)) 4844 msr |= MSR_VSX; 4845 if ((cpu_has_feature(CPU_FTR_TM) || 4846 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4847 (vcpu->arch.hfscr & HFSCR_TM)) 4848 msr |= MSR_TM; 4849 msr = msr_check_and_set(msr); 4850 4851 kvmppc_save_user_regs(); 4852 4853 kvmppc_save_current_sprs(); 4854 4855 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4856 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4857 vcpu->arch.pgdir = kvm->mm->pgd; 4858 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4859 4860 do { 4861 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4862 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4863 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4864 vcpu->arch.vcore->lpcr); 4865 else 4866 r = kvmppc_run_vcpu(vcpu); 4867 4868 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4869 accumulate_time(vcpu, &vcpu->arch.hcall); 4870 4871 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4872 /* 4873 * These should have been caught reflected 4874 * into the guest by now. Final sanity check: 4875 * don't allow userspace to execute hcalls in 4876 * the hypervisor. 4877 */ 4878 r = RESUME_GUEST; 4879 continue; 4880 } 4881 trace_kvm_hcall_enter(vcpu); 4882 r = kvmppc_pseries_do_hcall(vcpu); 4883 trace_kvm_hcall_exit(vcpu, r); 4884 kvmppc_core_prepare_to_enter(vcpu); 4885 } else if (r == RESUME_PAGE_FAULT) { 4886 accumulate_time(vcpu, &vcpu->arch.pg_fault); 4887 srcu_idx = srcu_read_lock(&kvm->srcu); 4888 r = kvmppc_book3s_hv_page_fault(vcpu, 4889 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4890 srcu_read_unlock(&kvm->srcu, srcu_idx); 4891 } else if (r == RESUME_PASSTHROUGH) { 4892 if (WARN_ON(xics_on_xive())) 4893 r = H_SUCCESS; 4894 else 4895 r = kvmppc_xics_rm_complete(vcpu, 0); 4896 } 4897 } while (is_kvmppc_resume_guest(r)); 4898 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 4899 4900 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4901 atomic_dec(&kvm->arch.vcpus_running); 4902 4903 srr_regs_clobbered(); 4904 4905 end_timing(vcpu); 4906 4907 return r; 4908 } 4909 4910 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4911 int shift, int sllp) 4912 { 4913 (*sps)->page_shift = shift; 4914 (*sps)->slb_enc = sllp; 4915 (*sps)->enc[0].page_shift = shift; 4916 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4917 /* 4918 * Add 16MB MPSS support (may get filtered out by userspace) 4919 */ 4920 if (shift != 24) { 4921 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4922 if (penc != -1) { 4923 (*sps)->enc[1].page_shift = 24; 4924 (*sps)->enc[1].pte_enc = penc; 4925 } 4926 } 4927 (*sps)++; 4928 } 4929 4930 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4931 struct kvm_ppc_smmu_info *info) 4932 { 4933 struct kvm_ppc_one_seg_page_size *sps; 4934 4935 /* 4936 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4937 * POWER7 doesn't support keys for instruction accesses, 4938 * POWER8 and POWER9 do. 4939 */ 4940 info->data_keys = 32; 4941 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4942 4943 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4944 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4945 info->slb_size = 32; 4946 4947 /* We only support these sizes for now, and no muti-size segments */ 4948 sps = &info->sps[0]; 4949 kvmppc_add_seg_page_size(&sps, 12, 0); 4950 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4951 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4952 4953 /* If running as a nested hypervisor, we don't support HPT guests */ 4954 if (kvmhv_on_pseries()) 4955 info->flags |= KVM_PPC_NO_HASH; 4956 4957 return 0; 4958 } 4959 4960 /* 4961 * Get (and clear) the dirty memory log for a memory slot. 4962 */ 4963 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4964 struct kvm_dirty_log *log) 4965 { 4966 struct kvm_memslots *slots; 4967 struct kvm_memory_slot *memslot; 4968 int r; 4969 unsigned long n, i; 4970 unsigned long *buf, *p; 4971 struct kvm_vcpu *vcpu; 4972 4973 mutex_lock(&kvm->slots_lock); 4974 4975 r = -EINVAL; 4976 if (log->slot >= KVM_USER_MEM_SLOTS) 4977 goto out; 4978 4979 slots = kvm_memslots(kvm); 4980 memslot = id_to_memslot(slots, log->slot); 4981 r = -ENOENT; 4982 if (!memslot || !memslot->dirty_bitmap) 4983 goto out; 4984 4985 /* 4986 * Use second half of bitmap area because both HPT and radix 4987 * accumulate bits in the first half. 4988 */ 4989 n = kvm_dirty_bitmap_bytes(memslot); 4990 buf = memslot->dirty_bitmap + n / sizeof(long); 4991 memset(buf, 0, n); 4992 4993 if (kvm_is_radix(kvm)) 4994 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4995 else 4996 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4997 if (r) 4998 goto out; 4999 5000 /* 5001 * We accumulate dirty bits in the first half of the 5002 * memslot's dirty_bitmap area, for when pages are paged 5003 * out or modified by the host directly. Pick up these 5004 * bits and add them to the map. 5005 */ 5006 p = memslot->dirty_bitmap; 5007 for (i = 0; i < n / sizeof(long); ++i) 5008 buf[i] |= xchg(&p[i], 0); 5009 5010 /* Harvest dirty bits from VPA and DTL updates */ 5011 /* Note: we never modify the SLB shadow buffer areas */ 5012 kvm_for_each_vcpu(i, vcpu, kvm) { 5013 spin_lock(&vcpu->arch.vpa_update_lock); 5014 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 5015 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 5016 spin_unlock(&vcpu->arch.vpa_update_lock); 5017 } 5018 5019 r = -EFAULT; 5020 if (copy_to_user(log->dirty_bitmap, buf, n)) 5021 goto out; 5022 5023 r = 0; 5024 out: 5025 mutex_unlock(&kvm->slots_lock); 5026 return r; 5027 } 5028 5029 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5030 { 5031 vfree(slot->arch.rmap); 5032 slot->arch.rmap = NULL; 5033 } 5034 5035 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5036 const struct kvm_memory_slot *old, 5037 struct kvm_memory_slot *new, 5038 enum kvm_mr_change change) 5039 { 5040 if (change == KVM_MR_CREATE) { 5041 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5042 5043 if ((size >> PAGE_SHIFT) > totalram_pages()) 5044 return -ENOMEM; 5045 5046 new->arch.rmap = vzalloc(size); 5047 if (!new->arch.rmap) 5048 return -ENOMEM; 5049 } else if (change != KVM_MR_DELETE) { 5050 new->arch.rmap = old->arch.rmap; 5051 } 5052 5053 return 0; 5054 } 5055 5056 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5057 struct kvm_memory_slot *old, 5058 const struct kvm_memory_slot *new, 5059 enum kvm_mr_change change) 5060 { 5061 /* 5062 * If we are creating or modifying a memslot, it might make 5063 * some address that was previously cached as emulated 5064 * MMIO be no longer emulated MMIO, so invalidate 5065 * all the caches of emulated MMIO translations. 5066 */ 5067 if (change != KVM_MR_DELETE) 5068 atomic64_inc(&kvm->arch.mmio_update); 5069 5070 /* 5071 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5072 * have already called kvm_arch_flush_shadow_memslot() to 5073 * flush shadow mappings. For KVM_MR_CREATE we have no 5074 * previous mappings. So the only case to handle is 5075 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5076 * has been changed. 5077 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5078 * to get rid of any THP PTEs in the partition-scoped page tables 5079 * so we can track dirtiness at the page level; we flush when 5080 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5081 * using THP PTEs. 5082 */ 5083 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5084 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5085 kvmppc_radix_flush_memslot(kvm, old); 5086 /* 5087 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5088 */ 5089 if (!kvm->arch.secure_guest) 5090 return; 5091 5092 switch (change) { 5093 case KVM_MR_CREATE: 5094 /* 5095 * @TODO kvmppc_uvmem_memslot_create() can fail and 5096 * return error. Fix this. 5097 */ 5098 kvmppc_uvmem_memslot_create(kvm, new); 5099 break; 5100 case KVM_MR_DELETE: 5101 kvmppc_uvmem_memslot_delete(kvm, old); 5102 break; 5103 default: 5104 /* TODO: Handle KVM_MR_MOVE */ 5105 break; 5106 } 5107 } 5108 5109 /* 5110 * Update LPCR values in kvm->arch and in vcores. 5111 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5112 * of kvm->arch.lpcr update). 5113 */ 5114 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5115 { 5116 long int i; 5117 u32 cores_done = 0; 5118 5119 if ((kvm->arch.lpcr & mask) == lpcr) 5120 return; 5121 5122 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5123 5124 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5125 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5126 if (!vc) 5127 continue; 5128 5129 spin_lock(&vc->lock); 5130 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5131 verify_lpcr(kvm, vc->lpcr); 5132 spin_unlock(&vc->lock); 5133 if (++cores_done >= kvm->arch.online_vcores) 5134 break; 5135 } 5136 } 5137 5138 void kvmppc_setup_partition_table(struct kvm *kvm) 5139 { 5140 unsigned long dw0, dw1; 5141 5142 if (!kvm_is_radix(kvm)) { 5143 /* PS field - page size for VRMA */ 5144 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5145 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5146 /* HTABSIZE and HTABORG fields */ 5147 dw0 |= kvm->arch.sdr1; 5148 5149 /* Second dword as set by userspace */ 5150 dw1 = kvm->arch.process_table; 5151 } else { 5152 dw0 = PATB_HR | radix__get_tree_size() | 5153 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5154 dw1 = PATB_GR | kvm->arch.process_table; 5155 } 5156 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5157 } 5158 5159 /* 5160 * Set up HPT (hashed page table) and RMA (real-mode area). 5161 * Must be called with kvm->arch.mmu_setup_lock held. 5162 */ 5163 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5164 { 5165 int err = 0; 5166 struct kvm *kvm = vcpu->kvm; 5167 unsigned long hva; 5168 struct kvm_memory_slot *memslot; 5169 struct vm_area_struct *vma; 5170 unsigned long lpcr = 0, senc; 5171 unsigned long psize, porder; 5172 int srcu_idx; 5173 5174 /* Allocate hashed page table (if not done already) and reset it */ 5175 if (!kvm->arch.hpt.virt) { 5176 int order = KVM_DEFAULT_HPT_ORDER; 5177 struct kvm_hpt_info info; 5178 5179 err = kvmppc_allocate_hpt(&info, order); 5180 /* If we get here, it means userspace didn't specify a 5181 * size explicitly. So, try successively smaller 5182 * sizes if the default failed. */ 5183 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5184 err = kvmppc_allocate_hpt(&info, order); 5185 5186 if (err < 0) { 5187 pr_err("KVM: Couldn't alloc HPT\n"); 5188 goto out; 5189 } 5190 5191 kvmppc_set_hpt(kvm, &info); 5192 } 5193 5194 /* Look up the memslot for guest physical address 0 */ 5195 srcu_idx = srcu_read_lock(&kvm->srcu); 5196 memslot = gfn_to_memslot(kvm, 0); 5197 5198 /* We must have some memory at 0 by now */ 5199 err = -EINVAL; 5200 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5201 goto out_srcu; 5202 5203 /* Look up the VMA for the start of this memory slot */ 5204 hva = memslot->userspace_addr; 5205 mmap_read_lock(kvm->mm); 5206 vma = vma_lookup(kvm->mm, hva); 5207 if (!vma || (vma->vm_flags & VM_IO)) 5208 goto up_out; 5209 5210 psize = vma_kernel_pagesize(vma); 5211 5212 mmap_read_unlock(kvm->mm); 5213 5214 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5215 if (psize >= 0x1000000) 5216 psize = 0x1000000; 5217 else if (psize >= 0x10000) 5218 psize = 0x10000; 5219 else 5220 psize = 0x1000; 5221 porder = __ilog2(psize); 5222 5223 senc = slb_pgsize_encoding(psize); 5224 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5225 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5226 /* Create HPTEs in the hash page table for the VRMA */ 5227 kvmppc_map_vrma(vcpu, memslot, porder); 5228 5229 /* Update VRMASD field in the LPCR */ 5230 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5231 /* the -4 is to account for senc values starting at 0x10 */ 5232 lpcr = senc << (LPCR_VRMASD_SH - 4); 5233 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5234 } 5235 5236 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5237 smp_wmb(); 5238 err = 0; 5239 out_srcu: 5240 srcu_read_unlock(&kvm->srcu, srcu_idx); 5241 out: 5242 return err; 5243 5244 up_out: 5245 mmap_read_unlock(kvm->mm); 5246 goto out_srcu; 5247 } 5248 5249 /* 5250 * Must be called with kvm->arch.mmu_setup_lock held and 5251 * mmu_ready = 0 and no vcpus running. 5252 */ 5253 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5254 { 5255 unsigned long lpcr, lpcr_mask; 5256 5257 if (nesting_enabled(kvm)) 5258 kvmhv_release_all_nested(kvm); 5259 kvmppc_rmap_reset(kvm); 5260 kvm->arch.process_table = 0; 5261 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5262 spin_lock(&kvm->mmu_lock); 5263 kvm->arch.radix = 0; 5264 spin_unlock(&kvm->mmu_lock); 5265 kvmppc_free_radix(kvm); 5266 5267 lpcr = LPCR_VPM1; 5268 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5269 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5270 lpcr_mask |= LPCR_HAIL; 5271 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5272 5273 return 0; 5274 } 5275 5276 /* 5277 * Must be called with kvm->arch.mmu_setup_lock held and 5278 * mmu_ready = 0 and no vcpus running. 5279 */ 5280 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5281 { 5282 unsigned long lpcr, lpcr_mask; 5283 int err; 5284 5285 err = kvmppc_init_vm_radix(kvm); 5286 if (err) 5287 return err; 5288 kvmppc_rmap_reset(kvm); 5289 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5290 spin_lock(&kvm->mmu_lock); 5291 kvm->arch.radix = 1; 5292 spin_unlock(&kvm->mmu_lock); 5293 kvmppc_free_hpt(&kvm->arch.hpt); 5294 5295 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5296 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5297 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5298 lpcr_mask |= LPCR_HAIL; 5299 if (cpu_has_feature(CPU_FTR_HVMODE) && 5300 (kvm->arch.host_lpcr & LPCR_HAIL)) 5301 lpcr |= LPCR_HAIL; 5302 } 5303 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5304 5305 return 0; 5306 } 5307 5308 #ifdef CONFIG_KVM_XICS 5309 /* 5310 * Allocate a per-core structure for managing state about which cores are 5311 * running in the host versus the guest and for exchanging data between 5312 * real mode KVM and CPU running in the host. 5313 * This is only done for the first VM. 5314 * The allocated structure stays even if all VMs have stopped. 5315 * It is only freed when the kvm-hv module is unloaded. 5316 * It's OK for this routine to fail, we just don't support host 5317 * core operations like redirecting H_IPI wakeups. 5318 */ 5319 void kvmppc_alloc_host_rm_ops(void) 5320 { 5321 struct kvmppc_host_rm_ops *ops; 5322 unsigned long l_ops; 5323 int cpu, core; 5324 int size; 5325 5326 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5327 return; 5328 5329 /* Not the first time here ? */ 5330 if (kvmppc_host_rm_ops_hv != NULL) 5331 return; 5332 5333 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5334 if (!ops) 5335 return; 5336 5337 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5338 ops->rm_core = kzalloc(size, GFP_KERNEL); 5339 5340 if (!ops->rm_core) { 5341 kfree(ops); 5342 return; 5343 } 5344 5345 cpus_read_lock(); 5346 5347 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5348 if (!cpu_online(cpu)) 5349 continue; 5350 5351 core = cpu >> threads_shift; 5352 ops->rm_core[core].rm_state.in_host = 1; 5353 } 5354 5355 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5356 5357 /* 5358 * Make the contents of the kvmppc_host_rm_ops structure visible 5359 * to other CPUs before we assign it to the global variable. 5360 * Do an atomic assignment (no locks used here), but if someone 5361 * beats us to it, just free our copy and return. 5362 */ 5363 smp_wmb(); 5364 l_ops = (unsigned long) ops; 5365 5366 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5367 cpus_read_unlock(); 5368 kfree(ops->rm_core); 5369 kfree(ops); 5370 return; 5371 } 5372 5373 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5374 "ppc/kvm_book3s:prepare", 5375 kvmppc_set_host_core, 5376 kvmppc_clear_host_core); 5377 cpus_read_unlock(); 5378 } 5379 5380 void kvmppc_free_host_rm_ops(void) 5381 { 5382 if (kvmppc_host_rm_ops_hv) { 5383 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5384 kfree(kvmppc_host_rm_ops_hv->rm_core); 5385 kfree(kvmppc_host_rm_ops_hv); 5386 kvmppc_host_rm_ops_hv = NULL; 5387 } 5388 } 5389 #endif 5390 5391 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5392 { 5393 unsigned long lpcr, lpid; 5394 int ret; 5395 5396 mutex_init(&kvm->arch.uvmem_lock); 5397 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5398 mutex_init(&kvm->arch.mmu_setup_lock); 5399 5400 /* Allocate the guest's logical partition ID */ 5401 5402 lpid = kvmppc_alloc_lpid(); 5403 if ((long)lpid < 0) 5404 return -ENOMEM; 5405 kvm->arch.lpid = lpid; 5406 5407 kvmppc_alloc_host_rm_ops(); 5408 5409 kvmhv_vm_nested_init(kvm); 5410 5411 /* 5412 * Since we don't flush the TLB when tearing down a VM, 5413 * and this lpid might have previously been used, 5414 * make sure we flush on each core before running the new VM. 5415 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5416 * does this flush for us. 5417 */ 5418 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5419 cpumask_setall(&kvm->arch.need_tlb_flush); 5420 5421 /* Start out with the default set of hcalls enabled */ 5422 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5423 sizeof(kvm->arch.enabled_hcalls)); 5424 5425 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5426 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5427 5428 /* Init LPCR for virtual RMA mode */ 5429 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5430 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5431 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5432 lpcr &= LPCR_PECE | LPCR_LPES; 5433 } else { 5434 /* 5435 * The L2 LPES mode will be set by the L0 according to whether 5436 * or not it needs to take external interrupts in HV mode. 5437 */ 5438 lpcr = 0; 5439 } 5440 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5441 LPCR_VPM0 | LPCR_VPM1; 5442 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5443 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5444 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5445 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5446 lpcr |= LPCR_ONL; 5447 /* 5448 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5449 * Set HVICE bit to enable hypervisor virtualization interrupts. 5450 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5451 * be unnecessary but better safe than sorry in case we re-enable 5452 * EE in HV mode with this LPCR still set) 5453 */ 5454 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5455 lpcr &= ~LPCR_VPM0; 5456 lpcr |= LPCR_HVICE | LPCR_HEIC; 5457 5458 /* 5459 * If xive is enabled, we route 0x500 interrupts directly 5460 * to the guest. 5461 */ 5462 if (xics_on_xive()) 5463 lpcr |= LPCR_LPES; 5464 } 5465 5466 /* 5467 * If the host uses radix, the guest starts out as radix. 5468 */ 5469 if (radix_enabled()) { 5470 kvm->arch.radix = 1; 5471 kvm->arch.mmu_ready = 1; 5472 lpcr &= ~LPCR_VPM1; 5473 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5474 if (cpu_has_feature(CPU_FTR_HVMODE) && 5475 cpu_has_feature(CPU_FTR_ARCH_31) && 5476 (kvm->arch.host_lpcr & LPCR_HAIL)) 5477 lpcr |= LPCR_HAIL; 5478 ret = kvmppc_init_vm_radix(kvm); 5479 if (ret) { 5480 kvmppc_free_lpid(kvm->arch.lpid); 5481 return ret; 5482 } 5483 kvmppc_setup_partition_table(kvm); 5484 } 5485 5486 verify_lpcr(kvm, lpcr); 5487 kvm->arch.lpcr = lpcr; 5488 5489 /* Initialization for future HPT resizes */ 5490 kvm->arch.resize_hpt = NULL; 5491 5492 /* 5493 * Work out how many sets the TLB has, for the use of 5494 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5495 */ 5496 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5497 /* 5498 * P10 will flush all the congruence class with a single tlbiel 5499 */ 5500 kvm->arch.tlb_sets = 1; 5501 } else if (radix_enabled()) 5502 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5503 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5504 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5505 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5506 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5507 else 5508 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5509 5510 /* 5511 * Track that we now have a HV mode VM active. This blocks secondary 5512 * CPU threads from coming online. 5513 */ 5514 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5515 kvm_hv_vm_activated(); 5516 5517 /* 5518 * Initialize smt_mode depending on processor. 5519 * POWER8 and earlier have to use "strict" threading, where 5520 * all vCPUs in a vcore have to run on the same (sub)core, 5521 * whereas on POWER9 the threads can each run a different 5522 * guest. 5523 */ 5524 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5525 kvm->arch.smt_mode = threads_per_subcore; 5526 else 5527 kvm->arch.smt_mode = 1; 5528 kvm->arch.emul_smt_mode = 1; 5529 5530 return 0; 5531 } 5532 5533 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5534 { 5535 kvmppc_mmu_debugfs_init(kvm); 5536 if (radix_enabled()) 5537 kvmhv_radix_debugfs_init(kvm); 5538 return 0; 5539 } 5540 5541 static void kvmppc_free_vcores(struct kvm *kvm) 5542 { 5543 long int i; 5544 5545 for (i = 0; i < KVM_MAX_VCORES; ++i) 5546 kfree(kvm->arch.vcores[i]); 5547 kvm->arch.online_vcores = 0; 5548 } 5549 5550 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5551 { 5552 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5553 kvm_hv_vm_deactivated(); 5554 5555 kvmppc_free_vcores(kvm); 5556 5557 5558 if (kvm_is_radix(kvm)) 5559 kvmppc_free_radix(kvm); 5560 else 5561 kvmppc_free_hpt(&kvm->arch.hpt); 5562 5563 /* Perform global invalidation and return lpid to the pool */ 5564 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5565 if (nesting_enabled(kvm)) 5566 kvmhv_release_all_nested(kvm); 5567 kvm->arch.process_table = 0; 5568 if (kvm->arch.secure_guest) 5569 uv_svm_terminate(kvm->arch.lpid); 5570 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5571 } 5572 5573 kvmppc_free_lpid(kvm->arch.lpid); 5574 5575 kvmppc_free_pimap(kvm); 5576 } 5577 5578 /* We don't need to emulate any privileged instructions or dcbz */ 5579 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5580 unsigned int inst, int *advance) 5581 { 5582 return EMULATE_FAIL; 5583 } 5584 5585 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5586 ulong spr_val) 5587 { 5588 return EMULATE_FAIL; 5589 } 5590 5591 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5592 ulong *spr_val) 5593 { 5594 return EMULATE_FAIL; 5595 } 5596 5597 static int kvmppc_core_check_processor_compat_hv(void) 5598 { 5599 if (cpu_has_feature(CPU_FTR_HVMODE) && 5600 cpu_has_feature(CPU_FTR_ARCH_206)) 5601 return 0; 5602 5603 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5604 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5605 return 0; 5606 5607 return -EIO; 5608 } 5609 5610 #ifdef CONFIG_KVM_XICS 5611 5612 void kvmppc_free_pimap(struct kvm *kvm) 5613 { 5614 kfree(kvm->arch.pimap); 5615 } 5616 5617 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5618 { 5619 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5620 } 5621 5622 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5623 { 5624 struct irq_desc *desc; 5625 struct kvmppc_irq_map *irq_map; 5626 struct kvmppc_passthru_irqmap *pimap; 5627 struct irq_chip *chip; 5628 int i, rc = 0; 5629 struct irq_data *host_data; 5630 5631 if (!kvm_irq_bypass) 5632 return 1; 5633 5634 desc = irq_to_desc(host_irq); 5635 if (!desc) 5636 return -EIO; 5637 5638 mutex_lock(&kvm->lock); 5639 5640 pimap = kvm->arch.pimap; 5641 if (pimap == NULL) { 5642 /* First call, allocate structure to hold IRQ map */ 5643 pimap = kvmppc_alloc_pimap(); 5644 if (pimap == NULL) { 5645 mutex_unlock(&kvm->lock); 5646 return -ENOMEM; 5647 } 5648 kvm->arch.pimap = pimap; 5649 } 5650 5651 /* 5652 * For now, we only support interrupts for which the EOI operation 5653 * is an OPAL call followed by a write to XIRR, since that's 5654 * what our real-mode EOI code does, or a XIVE interrupt 5655 */ 5656 chip = irq_data_get_irq_chip(&desc->irq_data); 5657 if (!chip || !is_pnv_opal_msi(chip)) { 5658 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5659 host_irq, guest_gsi); 5660 mutex_unlock(&kvm->lock); 5661 return -ENOENT; 5662 } 5663 5664 /* 5665 * See if we already have an entry for this guest IRQ number. 5666 * If it's mapped to a hardware IRQ number, that's an error, 5667 * otherwise re-use this entry. 5668 */ 5669 for (i = 0; i < pimap->n_mapped; i++) { 5670 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5671 if (pimap->mapped[i].r_hwirq) { 5672 mutex_unlock(&kvm->lock); 5673 return -EINVAL; 5674 } 5675 break; 5676 } 5677 } 5678 5679 if (i == KVMPPC_PIRQ_MAPPED) { 5680 mutex_unlock(&kvm->lock); 5681 return -EAGAIN; /* table is full */ 5682 } 5683 5684 irq_map = &pimap->mapped[i]; 5685 5686 irq_map->v_hwirq = guest_gsi; 5687 irq_map->desc = desc; 5688 5689 /* 5690 * Order the above two stores before the next to serialize with 5691 * the KVM real mode handler. 5692 */ 5693 smp_wmb(); 5694 5695 /* 5696 * The 'host_irq' number is mapped in the PCI-MSI domain but 5697 * the underlying calls, which will EOI the interrupt in real 5698 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5699 */ 5700 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5701 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5702 5703 if (i == pimap->n_mapped) 5704 pimap->n_mapped++; 5705 5706 if (xics_on_xive()) 5707 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5708 else 5709 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5710 if (rc) 5711 irq_map->r_hwirq = 0; 5712 5713 mutex_unlock(&kvm->lock); 5714 5715 return 0; 5716 } 5717 5718 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5719 { 5720 struct irq_desc *desc; 5721 struct kvmppc_passthru_irqmap *pimap; 5722 int i, rc = 0; 5723 5724 if (!kvm_irq_bypass) 5725 return 0; 5726 5727 desc = irq_to_desc(host_irq); 5728 if (!desc) 5729 return -EIO; 5730 5731 mutex_lock(&kvm->lock); 5732 if (!kvm->arch.pimap) 5733 goto unlock; 5734 5735 pimap = kvm->arch.pimap; 5736 5737 for (i = 0; i < pimap->n_mapped; i++) { 5738 if (guest_gsi == pimap->mapped[i].v_hwirq) 5739 break; 5740 } 5741 5742 if (i == pimap->n_mapped) { 5743 mutex_unlock(&kvm->lock); 5744 return -ENODEV; 5745 } 5746 5747 if (xics_on_xive()) 5748 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5749 else 5750 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5751 5752 /* invalidate the entry (what to do on error from the above ?) */ 5753 pimap->mapped[i].r_hwirq = 0; 5754 5755 /* 5756 * We don't free this structure even when the count goes to 5757 * zero. The structure is freed when we destroy the VM. 5758 */ 5759 unlock: 5760 mutex_unlock(&kvm->lock); 5761 return rc; 5762 } 5763 5764 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5765 struct irq_bypass_producer *prod) 5766 { 5767 int ret = 0; 5768 struct kvm_kernel_irqfd *irqfd = 5769 container_of(cons, struct kvm_kernel_irqfd, consumer); 5770 5771 irqfd->producer = prod; 5772 5773 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5774 if (ret) 5775 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5776 prod->irq, irqfd->gsi, ret); 5777 5778 return ret; 5779 } 5780 5781 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5782 struct irq_bypass_producer *prod) 5783 { 5784 int ret; 5785 struct kvm_kernel_irqfd *irqfd = 5786 container_of(cons, struct kvm_kernel_irqfd, consumer); 5787 5788 irqfd->producer = NULL; 5789 5790 /* 5791 * When producer of consumer is unregistered, we change back to 5792 * default external interrupt handling mode - KVM real mode 5793 * will switch back to host. 5794 */ 5795 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5796 if (ret) 5797 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5798 prod->irq, irqfd->gsi, ret); 5799 } 5800 #endif 5801 5802 static int kvm_arch_vm_ioctl_hv(struct file *filp, 5803 unsigned int ioctl, unsigned long arg) 5804 { 5805 struct kvm *kvm __maybe_unused = filp->private_data; 5806 void __user *argp = (void __user *)arg; 5807 int r; 5808 5809 switch (ioctl) { 5810 5811 case KVM_PPC_ALLOCATE_HTAB: { 5812 u32 htab_order; 5813 5814 /* If we're a nested hypervisor, we currently only support radix */ 5815 if (kvmhv_on_pseries()) { 5816 r = -EOPNOTSUPP; 5817 break; 5818 } 5819 5820 r = -EFAULT; 5821 if (get_user(htab_order, (u32 __user *)argp)) 5822 break; 5823 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5824 if (r) 5825 break; 5826 r = 0; 5827 break; 5828 } 5829 5830 case KVM_PPC_GET_HTAB_FD: { 5831 struct kvm_get_htab_fd ghf; 5832 5833 r = -EFAULT; 5834 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5835 break; 5836 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5837 break; 5838 } 5839 5840 case KVM_PPC_RESIZE_HPT_PREPARE: { 5841 struct kvm_ppc_resize_hpt rhpt; 5842 5843 r = -EFAULT; 5844 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5845 break; 5846 5847 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5848 break; 5849 } 5850 5851 case KVM_PPC_RESIZE_HPT_COMMIT: { 5852 struct kvm_ppc_resize_hpt rhpt; 5853 5854 r = -EFAULT; 5855 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5856 break; 5857 5858 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5859 break; 5860 } 5861 5862 default: 5863 r = -ENOTTY; 5864 } 5865 5866 return r; 5867 } 5868 5869 /* 5870 * List of hcall numbers to enable by default. 5871 * For compatibility with old userspace, we enable by default 5872 * all hcalls that were implemented before the hcall-enabling 5873 * facility was added. Note this list should not include H_RTAS. 5874 */ 5875 static unsigned int default_hcall_list[] = { 5876 H_REMOVE, 5877 H_ENTER, 5878 H_READ, 5879 H_PROTECT, 5880 H_BULK_REMOVE, 5881 #ifdef CONFIG_SPAPR_TCE_IOMMU 5882 H_GET_TCE, 5883 H_PUT_TCE, 5884 #endif 5885 H_SET_DABR, 5886 H_SET_XDABR, 5887 H_CEDE, 5888 H_PROD, 5889 H_CONFER, 5890 H_REGISTER_VPA, 5891 #ifdef CONFIG_KVM_XICS 5892 H_EOI, 5893 H_CPPR, 5894 H_IPI, 5895 H_IPOLL, 5896 H_XIRR, 5897 H_XIRR_X, 5898 #endif 5899 0 5900 }; 5901 5902 static void init_default_hcalls(void) 5903 { 5904 int i; 5905 unsigned int hcall; 5906 5907 for (i = 0; default_hcall_list[i]; ++i) { 5908 hcall = default_hcall_list[i]; 5909 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5910 __set_bit(hcall / 4, default_enabled_hcalls); 5911 } 5912 } 5913 5914 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5915 { 5916 unsigned long lpcr; 5917 int radix; 5918 int err; 5919 5920 /* If not on a POWER9, reject it */ 5921 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5922 return -ENODEV; 5923 5924 /* If any unknown flags set, reject it */ 5925 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5926 return -EINVAL; 5927 5928 /* GR (guest radix) bit in process_table field must match */ 5929 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5930 if (!!(cfg->process_table & PATB_GR) != radix) 5931 return -EINVAL; 5932 5933 /* Process table size field must be reasonable, i.e. <= 24 */ 5934 if ((cfg->process_table & PRTS_MASK) > 24) 5935 return -EINVAL; 5936 5937 /* We can change a guest to/from radix now, if the host is radix */ 5938 if (radix && !radix_enabled()) 5939 return -EINVAL; 5940 5941 /* If we're a nested hypervisor, we currently only support radix */ 5942 if (kvmhv_on_pseries() && !radix) 5943 return -EINVAL; 5944 5945 mutex_lock(&kvm->arch.mmu_setup_lock); 5946 if (radix != kvm_is_radix(kvm)) { 5947 if (kvm->arch.mmu_ready) { 5948 kvm->arch.mmu_ready = 0; 5949 /* order mmu_ready vs. vcpus_running */ 5950 smp_mb(); 5951 if (atomic_read(&kvm->arch.vcpus_running)) { 5952 kvm->arch.mmu_ready = 1; 5953 err = -EBUSY; 5954 goto out_unlock; 5955 } 5956 } 5957 if (radix) 5958 err = kvmppc_switch_mmu_to_radix(kvm); 5959 else 5960 err = kvmppc_switch_mmu_to_hpt(kvm); 5961 if (err) 5962 goto out_unlock; 5963 } 5964 5965 kvm->arch.process_table = cfg->process_table; 5966 kvmppc_setup_partition_table(kvm); 5967 5968 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5969 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5970 err = 0; 5971 5972 out_unlock: 5973 mutex_unlock(&kvm->arch.mmu_setup_lock); 5974 return err; 5975 } 5976 5977 static int kvmhv_enable_nested(struct kvm *kvm) 5978 { 5979 if (!nested) 5980 return -EPERM; 5981 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5982 return -ENODEV; 5983 if (!radix_enabled()) 5984 return -ENODEV; 5985 5986 /* kvm == NULL means the caller is testing if the capability exists */ 5987 if (kvm) 5988 kvm->arch.nested_enable = true; 5989 return 0; 5990 } 5991 5992 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5993 int size) 5994 { 5995 int rc = -EINVAL; 5996 5997 if (kvmhv_vcpu_is_radix(vcpu)) { 5998 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5999 6000 if (rc > 0) 6001 rc = -EINVAL; 6002 } 6003 6004 /* For now quadrants are the only way to access nested guest memory */ 6005 if (rc && vcpu->arch.nested) 6006 rc = -EAGAIN; 6007 6008 return rc; 6009 } 6010 6011 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6012 int size) 6013 { 6014 int rc = -EINVAL; 6015 6016 if (kvmhv_vcpu_is_radix(vcpu)) { 6017 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 6018 6019 if (rc > 0) 6020 rc = -EINVAL; 6021 } 6022 6023 /* For now quadrants are the only way to access nested guest memory */ 6024 if (rc && vcpu->arch.nested) 6025 rc = -EAGAIN; 6026 6027 return rc; 6028 } 6029 6030 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6031 { 6032 unpin_vpa(kvm, vpa); 6033 vpa->gpa = 0; 6034 vpa->pinned_addr = NULL; 6035 vpa->dirty = false; 6036 vpa->update_pending = 0; 6037 } 6038 6039 /* 6040 * Enable a guest to become a secure VM, or test whether 6041 * that could be enabled. 6042 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6043 * tested (kvm == NULL) or enabled (kvm != NULL). 6044 */ 6045 static int kvmhv_enable_svm(struct kvm *kvm) 6046 { 6047 if (!kvmppc_uvmem_available()) 6048 return -EINVAL; 6049 if (kvm) 6050 kvm->arch.svm_enabled = 1; 6051 return 0; 6052 } 6053 6054 /* 6055 * IOCTL handler to turn off secure mode of guest 6056 * 6057 * - Release all device pages 6058 * - Issue ucall to terminate the guest on the UV side 6059 * - Unpin the VPA pages. 6060 * - Reinit the partition scoped page tables 6061 */ 6062 static int kvmhv_svm_off(struct kvm *kvm) 6063 { 6064 struct kvm_vcpu *vcpu; 6065 int mmu_was_ready; 6066 int srcu_idx; 6067 int ret = 0; 6068 unsigned long i; 6069 6070 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6071 return ret; 6072 6073 mutex_lock(&kvm->arch.mmu_setup_lock); 6074 mmu_was_ready = kvm->arch.mmu_ready; 6075 if (kvm->arch.mmu_ready) { 6076 kvm->arch.mmu_ready = 0; 6077 /* order mmu_ready vs. vcpus_running */ 6078 smp_mb(); 6079 if (atomic_read(&kvm->arch.vcpus_running)) { 6080 kvm->arch.mmu_ready = 1; 6081 ret = -EBUSY; 6082 goto out; 6083 } 6084 } 6085 6086 srcu_idx = srcu_read_lock(&kvm->srcu); 6087 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6088 struct kvm_memory_slot *memslot; 6089 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6090 int bkt; 6091 6092 if (!slots) 6093 continue; 6094 6095 kvm_for_each_memslot(memslot, bkt, slots) { 6096 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6097 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6098 } 6099 } 6100 srcu_read_unlock(&kvm->srcu, srcu_idx); 6101 6102 ret = uv_svm_terminate(kvm->arch.lpid); 6103 if (ret != U_SUCCESS) { 6104 ret = -EINVAL; 6105 goto out; 6106 } 6107 6108 /* 6109 * When secure guest is reset, all the guest pages are sent 6110 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6111 * chance to run and unpin their VPA pages. Unpinning of all 6112 * VPA pages is done here explicitly so that VPA pages 6113 * can be migrated to the secure side. 6114 * 6115 * This is required to for the secure SMP guest to reboot 6116 * correctly. 6117 */ 6118 kvm_for_each_vcpu(i, vcpu, kvm) { 6119 spin_lock(&vcpu->arch.vpa_update_lock); 6120 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6121 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6122 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6123 spin_unlock(&vcpu->arch.vpa_update_lock); 6124 } 6125 6126 kvmppc_setup_partition_table(kvm); 6127 kvm->arch.secure_guest = 0; 6128 kvm->arch.mmu_ready = mmu_was_ready; 6129 out: 6130 mutex_unlock(&kvm->arch.mmu_setup_lock); 6131 return ret; 6132 } 6133 6134 static int kvmhv_enable_dawr1(struct kvm *kvm) 6135 { 6136 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6137 return -ENODEV; 6138 6139 /* kvm == NULL means the caller is testing if the capability exists */ 6140 if (kvm) 6141 kvm->arch.dawr1_enabled = true; 6142 return 0; 6143 } 6144 6145 static bool kvmppc_hash_v3_possible(void) 6146 { 6147 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6148 return false; 6149 6150 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6151 return false; 6152 6153 /* 6154 * POWER9 chips before version 2.02 can't have some threads in 6155 * HPT mode and some in radix mode on the same core. 6156 */ 6157 if (radix_enabled()) { 6158 unsigned int pvr = mfspr(SPRN_PVR); 6159 if ((pvr >> 16) == PVR_POWER9 && 6160 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6161 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6162 return false; 6163 } 6164 6165 return true; 6166 } 6167 6168 static struct kvmppc_ops kvm_ops_hv = { 6169 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6170 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6171 .get_one_reg = kvmppc_get_one_reg_hv, 6172 .set_one_reg = kvmppc_set_one_reg_hv, 6173 .vcpu_load = kvmppc_core_vcpu_load_hv, 6174 .vcpu_put = kvmppc_core_vcpu_put_hv, 6175 .inject_interrupt = kvmppc_inject_interrupt_hv, 6176 .set_msr = kvmppc_set_msr_hv, 6177 .vcpu_run = kvmppc_vcpu_run_hv, 6178 .vcpu_create = kvmppc_core_vcpu_create_hv, 6179 .vcpu_free = kvmppc_core_vcpu_free_hv, 6180 .check_requests = kvmppc_core_check_requests_hv, 6181 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6182 .flush_memslot = kvmppc_core_flush_memslot_hv, 6183 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6184 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6185 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6186 .age_gfn = kvm_age_gfn_hv, 6187 .test_age_gfn = kvm_test_age_gfn_hv, 6188 .set_spte_gfn = kvm_set_spte_gfn_hv, 6189 .free_memslot = kvmppc_core_free_memslot_hv, 6190 .init_vm = kvmppc_core_init_vm_hv, 6191 .destroy_vm = kvmppc_core_destroy_vm_hv, 6192 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6193 .emulate_op = kvmppc_core_emulate_op_hv, 6194 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6195 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6196 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6197 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6198 .hcall_implemented = kvmppc_hcall_impl_hv, 6199 #ifdef CONFIG_KVM_XICS 6200 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6201 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6202 #endif 6203 .configure_mmu = kvmhv_configure_mmu, 6204 .get_rmmu_info = kvmhv_get_rmmu_info, 6205 .set_smt_mode = kvmhv_set_smt_mode, 6206 .enable_nested = kvmhv_enable_nested, 6207 .load_from_eaddr = kvmhv_load_from_eaddr, 6208 .store_to_eaddr = kvmhv_store_to_eaddr, 6209 .enable_svm = kvmhv_enable_svm, 6210 .svm_off = kvmhv_svm_off, 6211 .enable_dawr1 = kvmhv_enable_dawr1, 6212 .hash_v3_possible = kvmppc_hash_v3_possible, 6213 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6214 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6215 }; 6216 6217 static int kvm_init_subcore_bitmap(void) 6218 { 6219 int i, j; 6220 int nr_cores = cpu_nr_cores(); 6221 struct sibling_subcore_state *sibling_subcore_state; 6222 6223 for (i = 0; i < nr_cores; i++) { 6224 int first_cpu = i * threads_per_core; 6225 int node = cpu_to_node(first_cpu); 6226 6227 /* Ignore if it is already allocated. */ 6228 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6229 continue; 6230 6231 sibling_subcore_state = 6232 kzalloc_node(sizeof(struct sibling_subcore_state), 6233 GFP_KERNEL, node); 6234 if (!sibling_subcore_state) 6235 return -ENOMEM; 6236 6237 6238 for (j = 0; j < threads_per_core; j++) { 6239 int cpu = first_cpu + j; 6240 6241 paca_ptrs[cpu]->sibling_subcore_state = 6242 sibling_subcore_state; 6243 } 6244 } 6245 return 0; 6246 } 6247 6248 static int kvmppc_radix_possible(void) 6249 { 6250 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6251 } 6252 6253 static int kvmppc_book3s_init_hv(void) 6254 { 6255 int r; 6256 6257 if (!tlbie_capable) { 6258 pr_err("KVM-HV: Host does not support TLBIE\n"); 6259 return -ENODEV; 6260 } 6261 6262 /* 6263 * FIXME!! Do we need to check on all cpus ? 6264 */ 6265 r = kvmppc_core_check_processor_compat_hv(); 6266 if (r < 0) 6267 return -ENODEV; 6268 6269 r = kvmhv_nested_init(); 6270 if (r) 6271 return r; 6272 6273 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6274 r = kvm_init_subcore_bitmap(); 6275 if (r) 6276 goto err; 6277 } 6278 6279 /* 6280 * We need a way of accessing the XICS interrupt controller, 6281 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6282 * indirectly, via OPAL. 6283 */ 6284 #ifdef CONFIG_SMP 6285 if (!xics_on_xive() && !kvmhv_on_pseries() && 6286 !local_paca->kvm_hstate.xics_phys) { 6287 struct device_node *np; 6288 6289 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6290 if (!np) { 6291 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6292 r = -ENODEV; 6293 goto err; 6294 } 6295 /* presence of intc confirmed - node can be dropped again */ 6296 of_node_put(np); 6297 } 6298 #endif 6299 6300 init_default_hcalls(); 6301 6302 init_vcore_lists(); 6303 6304 r = kvmppc_mmu_hv_init(); 6305 if (r) 6306 goto err; 6307 6308 if (kvmppc_radix_possible()) { 6309 r = kvmppc_radix_init(); 6310 if (r) 6311 goto err; 6312 } 6313 6314 r = kvmppc_uvmem_init(); 6315 if (r < 0) { 6316 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6317 return r; 6318 } 6319 6320 kvm_ops_hv.owner = THIS_MODULE; 6321 kvmppc_hv_ops = &kvm_ops_hv; 6322 6323 return 0; 6324 6325 err: 6326 kvmhv_nested_exit(); 6327 kvmppc_radix_exit(); 6328 6329 return r; 6330 } 6331 6332 static void kvmppc_book3s_exit_hv(void) 6333 { 6334 kvmppc_uvmem_free(); 6335 kvmppc_free_host_rm_ops(); 6336 if (kvmppc_radix_possible()) 6337 kvmppc_radix_exit(); 6338 kvmppc_hv_ops = NULL; 6339 kvmhv_nested_exit(); 6340 } 6341 6342 module_init(kvmppc_book3s_init_hv); 6343 module_exit(kvmppc_book3s_exit_hv); 6344 MODULE_LICENSE("GPL"); 6345 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6346 MODULE_ALIAS("devname:kvm"); 6347