1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, 0644); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, 0644); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 static bool one_vm_per_core; 107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 109 110 #ifdef CONFIG_KVM_XICS 111 static struct kernel_param_ops module_param_ops = { 112 .set = param_set_int, 113 .get = param_get_int, 114 }; 115 116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 118 119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 121 #endif 122 123 /* If set, guests are allowed to create and control nested guests */ 124 static bool nested = true; 125 module_param(nested, bool, S_IRUGO | S_IWUSR); 126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 127 128 static inline bool nesting_enabled(struct kvm *kvm) 129 { 130 return kvm->arch.nested_enable && kvm_is_radix(kvm); 131 } 132 133 /* If set, the threads on each CPU core have to be in the same MMU mode */ 134 static bool no_mixing_hpt_and_radix; 135 136 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 137 138 /* 139 * RWMR values for POWER8. These control the rate at which PURR 140 * and SPURR count and should be set according to the number of 141 * online threads in the vcore being run. 142 */ 143 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 144 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 145 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 147 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 151 152 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_1THREAD, 155 RWMR_RPA_P8_2THREAD, 156 RWMR_RPA_P8_3THREAD, 157 RWMR_RPA_P8_4THREAD, 158 RWMR_RPA_P8_5THREAD, 159 RWMR_RPA_P8_6THREAD, 160 RWMR_RPA_P8_7THREAD, 161 RWMR_RPA_P8_8THREAD, 162 }; 163 164 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 165 int *ip) 166 { 167 int i = *ip; 168 struct kvm_vcpu *vcpu; 169 170 while (++i < MAX_SMT_THREADS) { 171 vcpu = READ_ONCE(vc->runnable_threads[i]); 172 if (vcpu) { 173 *ip = i; 174 return vcpu; 175 } 176 } 177 return NULL; 178 } 179 180 /* Used to traverse the list of runnable threads for a given vcore */ 181 #define for_each_runnable_thread(i, vcpu, vc) \ 182 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 183 184 static bool kvmppc_ipi_thread(int cpu) 185 { 186 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 187 188 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 189 if (kvmhv_on_pseries()) 190 return false; 191 192 /* On POWER9 we can use msgsnd to IPI any cpu */ 193 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 194 msg |= get_hard_smp_processor_id(cpu); 195 smp_mb(); 196 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 197 return true; 198 } 199 200 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 201 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 202 preempt_disable(); 203 if (cpu_first_thread_sibling(cpu) == 204 cpu_first_thread_sibling(smp_processor_id())) { 205 msg |= cpu_thread_in_core(cpu); 206 smp_mb(); 207 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 208 preempt_enable(); 209 return true; 210 } 211 preempt_enable(); 212 } 213 214 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 215 if (cpu >= 0 && cpu < nr_cpu_ids) { 216 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 217 xics_wake_cpu(cpu); 218 return true; 219 } 220 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 221 return true; 222 } 223 #endif 224 225 return false; 226 } 227 228 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 229 { 230 int cpu; 231 struct swait_queue_head *wqp; 232 233 wqp = kvm_arch_vcpu_wq(vcpu); 234 if (swq_has_sleeper(wqp)) { 235 swake_up_one(wqp); 236 ++vcpu->stat.halt_wakeup; 237 } 238 239 cpu = READ_ONCE(vcpu->arch.thread_cpu); 240 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 241 return; 242 243 /* CPU points to the first thread of the core */ 244 cpu = vcpu->cpu; 245 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 246 smp_send_reschedule(cpu); 247 } 248 249 /* 250 * We use the vcpu_load/put functions to measure stolen time. 251 * Stolen time is counted as time when either the vcpu is able to 252 * run as part of a virtual core, but the task running the vcore 253 * is preempted or sleeping, or when the vcpu needs something done 254 * in the kernel by the task running the vcpu, but that task is 255 * preempted or sleeping. Those two things have to be counted 256 * separately, since one of the vcpu tasks will take on the job 257 * of running the core, and the other vcpu tasks in the vcore will 258 * sleep waiting for it to do that, but that sleep shouldn't count 259 * as stolen time. 260 * 261 * Hence we accumulate stolen time when the vcpu can run as part of 262 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 263 * needs its task to do other things in the kernel (for example, 264 * service a page fault) in busy_stolen. We don't accumulate 265 * stolen time for a vcore when it is inactive, or for a vcpu 266 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 267 * a misnomer; it means that the vcpu task is not executing in 268 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 269 * the kernel. We don't have any way of dividing up that time 270 * between time that the vcpu is genuinely stopped, time that 271 * the task is actively working on behalf of the vcpu, and time 272 * that the task is preempted, so we don't count any of it as 273 * stolen. 274 * 275 * Updates to busy_stolen are protected by arch.tbacct_lock; 276 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 277 * lock. The stolen times are measured in units of timebase ticks. 278 * (Note that the != TB_NIL checks below are purely defensive; 279 * they should never fail.) 280 */ 281 282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 283 { 284 unsigned long flags; 285 286 spin_lock_irqsave(&vc->stoltb_lock, flags); 287 vc->preempt_tb = mftb(); 288 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 289 } 290 291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 292 { 293 unsigned long flags; 294 295 spin_lock_irqsave(&vc->stoltb_lock, flags); 296 if (vc->preempt_tb != TB_NIL) { 297 vc->stolen_tb += mftb() - vc->preempt_tb; 298 vc->preempt_tb = TB_NIL; 299 } 300 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 301 } 302 303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 304 { 305 struct kvmppc_vcore *vc = vcpu->arch.vcore; 306 unsigned long flags; 307 308 /* 309 * We can test vc->runner without taking the vcore lock, 310 * because only this task ever sets vc->runner to this 311 * vcpu, and once it is set to this vcpu, only this task 312 * ever sets it to NULL. 313 */ 314 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 315 kvmppc_core_end_stolen(vc); 316 317 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 318 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 319 vcpu->arch.busy_preempt != TB_NIL) { 320 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 321 vcpu->arch.busy_preempt = TB_NIL; 322 } 323 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 324 } 325 326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 327 { 328 struct kvmppc_vcore *vc = vcpu->arch.vcore; 329 unsigned long flags; 330 331 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 332 kvmppc_core_start_stolen(vc); 333 334 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 335 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 336 vcpu->arch.busy_preempt = mftb(); 337 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 338 } 339 340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 341 { 342 vcpu->arch.pvr = pvr; 343 } 344 345 /* Dummy value used in computing PCR value below */ 346 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 347 348 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 349 { 350 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 351 struct kvmppc_vcore *vc = vcpu->arch.vcore; 352 353 /* We can (emulate) our own architecture version and anything older */ 354 if (cpu_has_feature(CPU_FTR_ARCH_300)) 355 host_pcr_bit = PCR_ARCH_300; 356 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 357 host_pcr_bit = PCR_ARCH_207; 358 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 359 host_pcr_bit = PCR_ARCH_206; 360 else 361 host_pcr_bit = PCR_ARCH_205; 362 363 /* Determine lowest PCR bit needed to run guest in given PVR level */ 364 guest_pcr_bit = host_pcr_bit; 365 if (arch_compat) { 366 switch (arch_compat) { 367 case PVR_ARCH_205: 368 guest_pcr_bit = PCR_ARCH_205; 369 break; 370 case PVR_ARCH_206: 371 case PVR_ARCH_206p: 372 guest_pcr_bit = PCR_ARCH_206; 373 break; 374 case PVR_ARCH_207: 375 guest_pcr_bit = PCR_ARCH_207; 376 break; 377 case PVR_ARCH_300: 378 guest_pcr_bit = PCR_ARCH_300; 379 break; 380 default: 381 return -EINVAL; 382 } 383 } 384 385 /* Check requested PCR bits don't exceed our capabilities */ 386 if (guest_pcr_bit > host_pcr_bit) 387 return -EINVAL; 388 389 spin_lock(&vc->lock); 390 vc->arch_compat = arch_compat; 391 /* 392 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 393 * Also set all reserved PCR bits 394 */ 395 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 396 spin_unlock(&vc->lock); 397 398 return 0; 399 } 400 401 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 402 { 403 int r; 404 405 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 406 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 407 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 408 for (r = 0; r < 16; ++r) 409 pr_err("r%2d = %.16lx r%d = %.16lx\n", 410 r, kvmppc_get_gpr(vcpu, r), 411 r+16, kvmppc_get_gpr(vcpu, r+16)); 412 pr_err("ctr = %.16lx lr = %.16lx\n", 413 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 414 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 415 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 416 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 417 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 418 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 419 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 420 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 421 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 422 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 423 pr_err("fault dar = %.16lx dsisr = %.8x\n", 424 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 425 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 426 for (r = 0; r < vcpu->arch.slb_max; ++r) 427 pr_err(" ESID = %.16llx VSID = %.16llx\n", 428 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 429 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 430 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 431 vcpu->arch.last_inst); 432 } 433 434 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 435 { 436 return kvm_get_vcpu_by_id(kvm, id); 437 } 438 439 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 440 { 441 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 442 vpa->yield_count = cpu_to_be32(1); 443 } 444 445 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 446 unsigned long addr, unsigned long len) 447 { 448 /* check address is cacheline aligned */ 449 if (addr & (L1_CACHE_BYTES - 1)) 450 return -EINVAL; 451 spin_lock(&vcpu->arch.vpa_update_lock); 452 if (v->next_gpa != addr || v->len != len) { 453 v->next_gpa = addr; 454 v->len = addr ? len : 0; 455 v->update_pending = 1; 456 } 457 spin_unlock(&vcpu->arch.vpa_update_lock); 458 return 0; 459 } 460 461 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 462 struct reg_vpa { 463 u32 dummy; 464 union { 465 __be16 hword; 466 __be32 word; 467 } length; 468 }; 469 470 static int vpa_is_registered(struct kvmppc_vpa *vpap) 471 { 472 if (vpap->update_pending) 473 return vpap->next_gpa != 0; 474 return vpap->pinned_addr != NULL; 475 } 476 477 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 478 unsigned long flags, 479 unsigned long vcpuid, unsigned long vpa) 480 { 481 struct kvm *kvm = vcpu->kvm; 482 unsigned long len, nb; 483 void *va; 484 struct kvm_vcpu *tvcpu; 485 int err; 486 int subfunc; 487 struct kvmppc_vpa *vpap; 488 489 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 490 if (!tvcpu) 491 return H_PARAMETER; 492 493 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 494 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 495 subfunc == H_VPA_REG_SLB) { 496 /* Registering new area - address must be cache-line aligned */ 497 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 498 return H_PARAMETER; 499 500 /* convert logical addr to kernel addr and read length */ 501 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 502 if (va == NULL) 503 return H_PARAMETER; 504 if (subfunc == H_VPA_REG_VPA) 505 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 506 else 507 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 508 kvmppc_unpin_guest_page(kvm, va, vpa, false); 509 510 /* Check length */ 511 if (len > nb || len < sizeof(struct reg_vpa)) 512 return H_PARAMETER; 513 } else { 514 vpa = 0; 515 len = 0; 516 } 517 518 err = H_PARAMETER; 519 vpap = NULL; 520 spin_lock(&tvcpu->arch.vpa_update_lock); 521 522 switch (subfunc) { 523 case H_VPA_REG_VPA: /* register VPA */ 524 /* 525 * The size of our lppaca is 1kB because of the way we align 526 * it for the guest to avoid crossing a 4kB boundary. We only 527 * use 640 bytes of the structure though, so we should accept 528 * clients that set a size of 640. 529 */ 530 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 531 if (len < sizeof(struct lppaca)) 532 break; 533 vpap = &tvcpu->arch.vpa; 534 err = 0; 535 break; 536 537 case H_VPA_REG_DTL: /* register DTL */ 538 if (len < sizeof(struct dtl_entry)) 539 break; 540 len -= len % sizeof(struct dtl_entry); 541 542 /* Check that they have previously registered a VPA */ 543 err = H_RESOURCE; 544 if (!vpa_is_registered(&tvcpu->arch.vpa)) 545 break; 546 547 vpap = &tvcpu->arch.dtl; 548 err = 0; 549 break; 550 551 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 552 /* Check that they have previously registered a VPA */ 553 err = H_RESOURCE; 554 if (!vpa_is_registered(&tvcpu->arch.vpa)) 555 break; 556 557 vpap = &tvcpu->arch.slb_shadow; 558 err = 0; 559 break; 560 561 case H_VPA_DEREG_VPA: /* deregister VPA */ 562 /* Check they don't still have a DTL or SLB buf registered */ 563 err = H_RESOURCE; 564 if (vpa_is_registered(&tvcpu->arch.dtl) || 565 vpa_is_registered(&tvcpu->arch.slb_shadow)) 566 break; 567 568 vpap = &tvcpu->arch.vpa; 569 err = 0; 570 break; 571 572 case H_VPA_DEREG_DTL: /* deregister DTL */ 573 vpap = &tvcpu->arch.dtl; 574 err = 0; 575 break; 576 577 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 578 vpap = &tvcpu->arch.slb_shadow; 579 err = 0; 580 break; 581 } 582 583 if (vpap) { 584 vpap->next_gpa = vpa; 585 vpap->len = len; 586 vpap->update_pending = 1; 587 } 588 589 spin_unlock(&tvcpu->arch.vpa_update_lock); 590 591 return err; 592 } 593 594 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 595 { 596 struct kvm *kvm = vcpu->kvm; 597 void *va; 598 unsigned long nb; 599 unsigned long gpa; 600 601 /* 602 * We need to pin the page pointed to by vpap->next_gpa, 603 * but we can't call kvmppc_pin_guest_page under the lock 604 * as it does get_user_pages() and down_read(). So we 605 * have to drop the lock, pin the page, then get the lock 606 * again and check that a new area didn't get registered 607 * in the meantime. 608 */ 609 for (;;) { 610 gpa = vpap->next_gpa; 611 spin_unlock(&vcpu->arch.vpa_update_lock); 612 va = NULL; 613 nb = 0; 614 if (gpa) 615 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 616 spin_lock(&vcpu->arch.vpa_update_lock); 617 if (gpa == vpap->next_gpa) 618 break; 619 /* sigh... unpin that one and try again */ 620 if (va) 621 kvmppc_unpin_guest_page(kvm, va, gpa, false); 622 } 623 624 vpap->update_pending = 0; 625 if (va && nb < vpap->len) { 626 /* 627 * If it's now too short, it must be that userspace 628 * has changed the mappings underlying guest memory, 629 * so unregister the region. 630 */ 631 kvmppc_unpin_guest_page(kvm, va, gpa, false); 632 va = NULL; 633 } 634 if (vpap->pinned_addr) 635 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 636 vpap->dirty); 637 vpap->gpa = gpa; 638 vpap->pinned_addr = va; 639 vpap->dirty = false; 640 if (va) 641 vpap->pinned_end = va + vpap->len; 642 } 643 644 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 645 { 646 if (!(vcpu->arch.vpa.update_pending || 647 vcpu->arch.slb_shadow.update_pending || 648 vcpu->arch.dtl.update_pending)) 649 return; 650 651 spin_lock(&vcpu->arch.vpa_update_lock); 652 if (vcpu->arch.vpa.update_pending) { 653 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 654 if (vcpu->arch.vpa.pinned_addr) 655 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 656 } 657 if (vcpu->arch.dtl.update_pending) { 658 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 659 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 660 vcpu->arch.dtl_index = 0; 661 } 662 if (vcpu->arch.slb_shadow.update_pending) 663 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 664 spin_unlock(&vcpu->arch.vpa_update_lock); 665 } 666 667 /* 668 * Return the accumulated stolen time for the vcore up until `now'. 669 * The caller should hold the vcore lock. 670 */ 671 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 672 { 673 u64 p; 674 unsigned long flags; 675 676 spin_lock_irqsave(&vc->stoltb_lock, flags); 677 p = vc->stolen_tb; 678 if (vc->vcore_state != VCORE_INACTIVE && 679 vc->preempt_tb != TB_NIL) 680 p += now - vc->preempt_tb; 681 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 682 return p; 683 } 684 685 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 686 struct kvmppc_vcore *vc) 687 { 688 struct dtl_entry *dt; 689 struct lppaca *vpa; 690 unsigned long stolen; 691 unsigned long core_stolen; 692 u64 now; 693 unsigned long flags; 694 695 dt = vcpu->arch.dtl_ptr; 696 vpa = vcpu->arch.vpa.pinned_addr; 697 now = mftb(); 698 core_stolen = vcore_stolen_time(vc, now); 699 stolen = core_stolen - vcpu->arch.stolen_logged; 700 vcpu->arch.stolen_logged = core_stolen; 701 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 702 stolen += vcpu->arch.busy_stolen; 703 vcpu->arch.busy_stolen = 0; 704 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 705 if (!dt || !vpa) 706 return; 707 memset(dt, 0, sizeof(struct dtl_entry)); 708 dt->dispatch_reason = 7; 709 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 710 dt->timebase = cpu_to_be64(now + vc->tb_offset); 711 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 712 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 713 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 714 ++dt; 715 if (dt == vcpu->arch.dtl.pinned_end) 716 dt = vcpu->arch.dtl.pinned_addr; 717 vcpu->arch.dtl_ptr = dt; 718 /* order writing *dt vs. writing vpa->dtl_idx */ 719 smp_wmb(); 720 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 721 vcpu->arch.dtl.dirty = true; 722 } 723 724 /* See if there is a doorbell interrupt pending for a vcpu */ 725 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 726 { 727 int thr; 728 struct kvmppc_vcore *vc; 729 730 if (vcpu->arch.doorbell_request) 731 return true; 732 /* 733 * Ensure that the read of vcore->dpdes comes after the read 734 * of vcpu->doorbell_request. This barrier matches the 735 * smp_wmb() in kvmppc_guest_entry_inject(). 736 */ 737 smp_rmb(); 738 vc = vcpu->arch.vcore; 739 thr = vcpu->vcpu_id - vc->first_vcpuid; 740 return !!(vc->dpdes & (1 << thr)); 741 } 742 743 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 744 { 745 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 746 return true; 747 if ((!vcpu->arch.vcore->arch_compat) && 748 cpu_has_feature(CPU_FTR_ARCH_207S)) 749 return true; 750 return false; 751 } 752 753 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 754 unsigned long resource, unsigned long value1, 755 unsigned long value2) 756 { 757 switch (resource) { 758 case H_SET_MODE_RESOURCE_SET_CIABR: 759 if (!kvmppc_power8_compatible(vcpu)) 760 return H_P2; 761 if (value2) 762 return H_P4; 763 if (mflags) 764 return H_UNSUPPORTED_FLAG_START; 765 /* Guests can't breakpoint the hypervisor */ 766 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 767 return H_P3; 768 vcpu->arch.ciabr = value1; 769 return H_SUCCESS; 770 case H_SET_MODE_RESOURCE_SET_DAWR: 771 if (!kvmppc_power8_compatible(vcpu)) 772 return H_P2; 773 if (!ppc_breakpoint_available()) 774 return H_P2; 775 if (mflags) 776 return H_UNSUPPORTED_FLAG_START; 777 if (value2 & DABRX_HYP) 778 return H_P4; 779 vcpu->arch.dawr = value1; 780 vcpu->arch.dawrx = value2; 781 return H_SUCCESS; 782 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 783 /* KVM does not support mflags=2 (AIL=2) */ 784 if (mflags != 0 && mflags != 3) 785 return H_UNSUPPORTED_FLAG_START; 786 return H_TOO_HARD; 787 default: 788 return H_TOO_HARD; 789 } 790 } 791 792 /* Copy guest memory in place - must reside within a single memslot */ 793 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 794 unsigned long len) 795 { 796 struct kvm_memory_slot *to_memslot = NULL; 797 struct kvm_memory_slot *from_memslot = NULL; 798 unsigned long to_addr, from_addr; 799 int r; 800 801 /* Get HPA for from address */ 802 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 803 if (!from_memslot) 804 return -EFAULT; 805 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 806 << PAGE_SHIFT)) 807 return -EINVAL; 808 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 809 if (kvm_is_error_hva(from_addr)) 810 return -EFAULT; 811 from_addr |= (from & (PAGE_SIZE - 1)); 812 813 /* Get HPA for to address */ 814 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 815 if (!to_memslot) 816 return -EFAULT; 817 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 818 << PAGE_SHIFT)) 819 return -EINVAL; 820 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 821 if (kvm_is_error_hva(to_addr)) 822 return -EFAULT; 823 to_addr |= (to & (PAGE_SIZE - 1)); 824 825 /* Perform copy */ 826 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 827 len); 828 if (r) 829 return -EFAULT; 830 mark_page_dirty(kvm, to >> PAGE_SHIFT); 831 return 0; 832 } 833 834 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 835 unsigned long dest, unsigned long src) 836 { 837 u64 pg_sz = SZ_4K; /* 4K page size */ 838 u64 pg_mask = SZ_4K - 1; 839 int ret; 840 841 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 842 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 843 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 844 return H_PARAMETER; 845 846 /* dest (and src if copy_page flag set) must be page aligned */ 847 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 848 return H_PARAMETER; 849 850 /* zero and/or copy the page as determined by the flags */ 851 if (flags & H_COPY_PAGE) { 852 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 853 if (ret < 0) 854 return H_PARAMETER; 855 } else if (flags & H_ZERO_PAGE) { 856 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 857 if (ret < 0) 858 return H_PARAMETER; 859 } 860 861 /* We can ignore the remaining flags */ 862 863 return H_SUCCESS; 864 } 865 866 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 867 { 868 struct kvmppc_vcore *vcore = target->arch.vcore; 869 870 /* 871 * We expect to have been called by the real mode handler 872 * (kvmppc_rm_h_confer()) which would have directly returned 873 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 874 * have useful work to do and should not confer) so we don't 875 * recheck that here. 876 */ 877 878 spin_lock(&vcore->lock); 879 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 880 vcore->vcore_state != VCORE_INACTIVE && 881 vcore->runner) 882 target = vcore->runner; 883 spin_unlock(&vcore->lock); 884 885 return kvm_vcpu_yield_to(target); 886 } 887 888 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 889 { 890 int yield_count = 0; 891 struct lppaca *lppaca; 892 893 spin_lock(&vcpu->arch.vpa_update_lock); 894 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 895 if (lppaca) 896 yield_count = be32_to_cpu(lppaca->yield_count); 897 spin_unlock(&vcpu->arch.vpa_update_lock); 898 return yield_count; 899 } 900 901 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 902 { 903 unsigned long req = kvmppc_get_gpr(vcpu, 3); 904 unsigned long target, ret = H_SUCCESS; 905 int yield_count; 906 struct kvm_vcpu *tvcpu; 907 int idx, rc; 908 909 if (req <= MAX_HCALL_OPCODE && 910 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 911 return RESUME_HOST; 912 913 switch (req) { 914 case H_CEDE: 915 break; 916 case H_PROD: 917 target = kvmppc_get_gpr(vcpu, 4); 918 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 919 if (!tvcpu) { 920 ret = H_PARAMETER; 921 break; 922 } 923 tvcpu->arch.prodded = 1; 924 smp_mb(); 925 if (tvcpu->arch.ceded) 926 kvmppc_fast_vcpu_kick_hv(tvcpu); 927 break; 928 case H_CONFER: 929 target = kvmppc_get_gpr(vcpu, 4); 930 if (target == -1) 931 break; 932 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 933 if (!tvcpu) { 934 ret = H_PARAMETER; 935 break; 936 } 937 yield_count = kvmppc_get_gpr(vcpu, 5); 938 if (kvmppc_get_yield_count(tvcpu) != yield_count) 939 break; 940 kvm_arch_vcpu_yield_to(tvcpu); 941 break; 942 case H_REGISTER_VPA: 943 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 944 kvmppc_get_gpr(vcpu, 5), 945 kvmppc_get_gpr(vcpu, 6)); 946 break; 947 case H_RTAS: 948 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 949 return RESUME_HOST; 950 951 idx = srcu_read_lock(&vcpu->kvm->srcu); 952 rc = kvmppc_rtas_hcall(vcpu); 953 srcu_read_unlock(&vcpu->kvm->srcu, idx); 954 955 if (rc == -ENOENT) 956 return RESUME_HOST; 957 else if (rc == 0) 958 break; 959 960 /* Send the error out to userspace via KVM_RUN */ 961 return rc; 962 case H_LOGICAL_CI_LOAD: 963 ret = kvmppc_h_logical_ci_load(vcpu); 964 if (ret == H_TOO_HARD) 965 return RESUME_HOST; 966 break; 967 case H_LOGICAL_CI_STORE: 968 ret = kvmppc_h_logical_ci_store(vcpu); 969 if (ret == H_TOO_HARD) 970 return RESUME_HOST; 971 break; 972 case H_SET_MODE: 973 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 974 kvmppc_get_gpr(vcpu, 5), 975 kvmppc_get_gpr(vcpu, 6), 976 kvmppc_get_gpr(vcpu, 7)); 977 if (ret == H_TOO_HARD) 978 return RESUME_HOST; 979 break; 980 case H_XIRR: 981 case H_CPPR: 982 case H_EOI: 983 case H_IPI: 984 case H_IPOLL: 985 case H_XIRR_X: 986 if (kvmppc_xics_enabled(vcpu)) { 987 if (xics_on_xive()) { 988 ret = H_NOT_AVAILABLE; 989 return RESUME_GUEST; 990 } 991 ret = kvmppc_xics_hcall(vcpu, req); 992 break; 993 } 994 return RESUME_HOST; 995 case H_SET_DABR: 996 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 997 break; 998 case H_SET_XDABR: 999 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1000 kvmppc_get_gpr(vcpu, 5)); 1001 break; 1002 #ifdef CONFIG_SPAPR_TCE_IOMMU 1003 case H_GET_TCE: 1004 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1005 kvmppc_get_gpr(vcpu, 5)); 1006 if (ret == H_TOO_HARD) 1007 return RESUME_HOST; 1008 break; 1009 case H_PUT_TCE: 1010 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1011 kvmppc_get_gpr(vcpu, 5), 1012 kvmppc_get_gpr(vcpu, 6)); 1013 if (ret == H_TOO_HARD) 1014 return RESUME_HOST; 1015 break; 1016 case H_PUT_TCE_INDIRECT: 1017 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1018 kvmppc_get_gpr(vcpu, 5), 1019 kvmppc_get_gpr(vcpu, 6), 1020 kvmppc_get_gpr(vcpu, 7)); 1021 if (ret == H_TOO_HARD) 1022 return RESUME_HOST; 1023 break; 1024 case H_STUFF_TCE: 1025 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1026 kvmppc_get_gpr(vcpu, 5), 1027 kvmppc_get_gpr(vcpu, 6), 1028 kvmppc_get_gpr(vcpu, 7)); 1029 if (ret == H_TOO_HARD) 1030 return RESUME_HOST; 1031 break; 1032 #endif 1033 case H_RANDOM: 1034 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1035 ret = H_HARDWARE; 1036 break; 1037 1038 case H_SET_PARTITION_TABLE: 1039 ret = H_FUNCTION; 1040 if (nesting_enabled(vcpu->kvm)) 1041 ret = kvmhv_set_partition_table(vcpu); 1042 break; 1043 case H_ENTER_NESTED: 1044 ret = H_FUNCTION; 1045 if (!nesting_enabled(vcpu->kvm)) 1046 break; 1047 ret = kvmhv_enter_nested_guest(vcpu); 1048 if (ret == H_INTERRUPT) { 1049 kvmppc_set_gpr(vcpu, 3, 0); 1050 vcpu->arch.hcall_needed = 0; 1051 return -EINTR; 1052 } else if (ret == H_TOO_HARD) { 1053 kvmppc_set_gpr(vcpu, 3, 0); 1054 vcpu->arch.hcall_needed = 0; 1055 return RESUME_HOST; 1056 } 1057 break; 1058 case H_TLB_INVALIDATE: 1059 ret = H_FUNCTION; 1060 if (nesting_enabled(vcpu->kvm)) 1061 ret = kvmhv_do_nested_tlbie(vcpu); 1062 break; 1063 case H_COPY_TOFROM_GUEST: 1064 ret = H_FUNCTION; 1065 if (nesting_enabled(vcpu->kvm)) 1066 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1067 break; 1068 case H_PAGE_INIT: 1069 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1070 kvmppc_get_gpr(vcpu, 5), 1071 kvmppc_get_gpr(vcpu, 6)); 1072 break; 1073 default: 1074 return RESUME_HOST; 1075 } 1076 kvmppc_set_gpr(vcpu, 3, ret); 1077 vcpu->arch.hcall_needed = 0; 1078 return RESUME_GUEST; 1079 } 1080 1081 /* 1082 * Handle H_CEDE in the nested virtualization case where we haven't 1083 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1084 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1085 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1086 */ 1087 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1088 { 1089 vcpu->arch.shregs.msr |= MSR_EE; 1090 vcpu->arch.ceded = 1; 1091 smp_mb(); 1092 if (vcpu->arch.prodded) { 1093 vcpu->arch.prodded = 0; 1094 smp_mb(); 1095 vcpu->arch.ceded = 0; 1096 } 1097 } 1098 1099 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1100 { 1101 switch (cmd) { 1102 case H_CEDE: 1103 case H_PROD: 1104 case H_CONFER: 1105 case H_REGISTER_VPA: 1106 case H_SET_MODE: 1107 case H_LOGICAL_CI_LOAD: 1108 case H_LOGICAL_CI_STORE: 1109 #ifdef CONFIG_KVM_XICS 1110 case H_XIRR: 1111 case H_CPPR: 1112 case H_EOI: 1113 case H_IPI: 1114 case H_IPOLL: 1115 case H_XIRR_X: 1116 #endif 1117 case H_PAGE_INIT: 1118 return 1; 1119 } 1120 1121 /* See if it's in the real-mode table */ 1122 return kvmppc_hcall_impl_hv_realmode(cmd); 1123 } 1124 1125 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1126 struct kvm_vcpu *vcpu) 1127 { 1128 u32 last_inst; 1129 1130 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1131 EMULATE_DONE) { 1132 /* 1133 * Fetch failed, so return to guest and 1134 * try executing it again. 1135 */ 1136 return RESUME_GUEST; 1137 } 1138 1139 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1140 run->exit_reason = KVM_EXIT_DEBUG; 1141 run->debug.arch.address = kvmppc_get_pc(vcpu); 1142 return RESUME_HOST; 1143 } else { 1144 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1145 return RESUME_GUEST; 1146 } 1147 } 1148 1149 static void do_nothing(void *x) 1150 { 1151 } 1152 1153 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1154 { 1155 int thr, cpu, pcpu, nthreads; 1156 struct kvm_vcpu *v; 1157 unsigned long dpdes; 1158 1159 nthreads = vcpu->kvm->arch.emul_smt_mode; 1160 dpdes = 0; 1161 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1162 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1163 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1164 if (!v) 1165 continue; 1166 /* 1167 * If the vcpu is currently running on a physical cpu thread, 1168 * interrupt it in order to pull it out of the guest briefly, 1169 * which will update its vcore->dpdes value. 1170 */ 1171 pcpu = READ_ONCE(v->cpu); 1172 if (pcpu >= 0) 1173 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1174 if (kvmppc_doorbell_pending(v)) 1175 dpdes |= 1 << thr; 1176 } 1177 return dpdes; 1178 } 1179 1180 /* 1181 * On POWER9, emulate doorbell-related instructions in order to 1182 * give the guest the illusion of running on a multi-threaded core. 1183 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1184 * and mfspr DPDES. 1185 */ 1186 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1187 { 1188 u32 inst, rb, thr; 1189 unsigned long arg; 1190 struct kvm *kvm = vcpu->kvm; 1191 struct kvm_vcpu *tvcpu; 1192 1193 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1194 return RESUME_GUEST; 1195 if (get_op(inst) != 31) 1196 return EMULATE_FAIL; 1197 rb = get_rb(inst); 1198 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1199 switch (get_xop(inst)) { 1200 case OP_31_XOP_MSGSNDP: 1201 arg = kvmppc_get_gpr(vcpu, rb); 1202 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1203 break; 1204 arg &= 0x3f; 1205 if (arg >= kvm->arch.emul_smt_mode) 1206 break; 1207 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1208 if (!tvcpu) 1209 break; 1210 if (!tvcpu->arch.doorbell_request) { 1211 tvcpu->arch.doorbell_request = 1; 1212 kvmppc_fast_vcpu_kick_hv(tvcpu); 1213 } 1214 break; 1215 case OP_31_XOP_MSGCLRP: 1216 arg = kvmppc_get_gpr(vcpu, rb); 1217 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1218 break; 1219 vcpu->arch.vcore->dpdes = 0; 1220 vcpu->arch.doorbell_request = 0; 1221 break; 1222 case OP_31_XOP_MFSPR: 1223 switch (get_sprn(inst)) { 1224 case SPRN_TIR: 1225 arg = thr; 1226 break; 1227 case SPRN_DPDES: 1228 arg = kvmppc_read_dpdes(vcpu); 1229 break; 1230 default: 1231 return EMULATE_FAIL; 1232 } 1233 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1234 break; 1235 default: 1236 return EMULATE_FAIL; 1237 } 1238 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1239 return RESUME_GUEST; 1240 } 1241 1242 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1243 struct task_struct *tsk) 1244 { 1245 int r = RESUME_HOST; 1246 1247 vcpu->stat.sum_exits++; 1248 1249 /* 1250 * This can happen if an interrupt occurs in the last stages 1251 * of guest entry or the first stages of guest exit (i.e. after 1252 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1253 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1254 * That can happen due to a bug, or due to a machine check 1255 * occurring at just the wrong time. 1256 */ 1257 if (vcpu->arch.shregs.msr & MSR_HV) { 1258 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1259 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1260 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1261 vcpu->arch.shregs.msr); 1262 kvmppc_dump_regs(vcpu); 1263 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1264 run->hw.hardware_exit_reason = vcpu->arch.trap; 1265 return RESUME_HOST; 1266 } 1267 run->exit_reason = KVM_EXIT_UNKNOWN; 1268 run->ready_for_interrupt_injection = 1; 1269 switch (vcpu->arch.trap) { 1270 /* We're good on these - the host merely wanted to get our attention */ 1271 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1272 vcpu->stat.dec_exits++; 1273 r = RESUME_GUEST; 1274 break; 1275 case BOOK3S_INTERRUPT_EXTERNAL: 1276 case BOOK3S_INTERRUPT_H_DOORBELL: 1277 case BOOK3S_INTERRUPT_H_VIRT: 1278 vcpu->stat.ext_intr_exits++; 1279 r = RESUME_GUEST; 1280 break; 1281 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1282 case BOOK3S_INTERRUPT_HMI: 1283 case BOOK3S_INTERRUPT_PERFMON: 1284 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1285 r = RESUME_GUEST; 1286 break; 1287 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1288 /* Print the MCE event to host console. */ 1289 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1290 1291 /* 1292 * If the guest can do FWNMI, exit to userspace so it can 1293 * deliver a FWNMI to the guest. 1294 * Otherwise we synthesize a machine check for the guest 1295 * so that it knows that the machine check occurred. 1296 */ 1297 if (!vcpu->kvm->arch.fwnmi_enabled) { 1298 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1299 kvmppc_core_queue_machine_check(vcpu, flags); 1300 r = RESUME_GUEST; 1301 break; 1302 } 1303 1304 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1305 run->exit_reason = KVM_EXIT_NMI; 1306 run->hw.hardware_exit_reason = vcpu->arch.trap; 1307 /* Clear out the old NMI status from run->flags */ 1308 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1309 /* Now set the NMI status */ 1310 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1311 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1312 else 1313 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1314 1315 r = RESUME_HOST; 1316 break; 1317 case BOOK3S_INTERRUPT_PROGRAM: 1318 { 1319 ulong flags; 1320 /* 1321 * Normally program interrupts are delivered directly 1322 * to the guest by the hardware, but we can get here 1323 * as a result of a hypervisor emulation interrupt 1324 * (e40) getting turned into a 700 by BML RTAS. 1325 */ 1326 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1327 kvmppc_core_queue_program(vcpu, flags); 1328 r = RESUME_GUEST; 1329 break; 1330 } 1331 case BOOK3S_INTERRUPT_SYSCALL: 1332 { 1333 /* hcall - punt to userspace */ 1334 int i; 1335 1336 /* hypercall with MSR_PR has already been handled in rmode, 1337 * and never reaches here. 1338 */ 1339 1340 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1341 for (i = 0; i < 9; ++i) 1342 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1343 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1344 vcpu->arch.hcall_needed = 1; 1345 r = RESUME_HOST; 1346 break; 1347 } 1348 /* 1349 * We get these next two if the guest accesses a page which it thinks 1350 * it has mapped but which is not actually present, either because 1351 * it is for an emulated I/O device or because the corresonding 1352 * host page has been paged out. Any other HDSI/HISI interrupts 1353 * have been handled already. 1354 */ 1355 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1356 r = RESUME_PAGE_FAULT; 1357 break; 1358 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1359 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1360 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1361 DSISR_SRR1_MATCH_64S; 1362 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1363 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1364 r = RESUME_PAGE_FAULT; 1365 break; 1366 /* 1367 * This occurs if the guest executes an illegal instruction. 1368 * If the guest debug is disabled, generate a program interrupt 1369 * to the guest. If guest debug is enabled, we need to check 1370 * whether the instruction is a software breakpoint instruction. 1371 * Accordingly return to Guest or Host. 1372 */ 1373 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1374 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1375 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1376 swab32(vcpu->arch.emul_inst) : 1377 vcpu->arch.emul_inst; 1378 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1379 r = kvmppc_emulate_debug_inst(run, vcpu); 1380 } else { 1381 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1382 r = RESUME_GUEST; 1383 } 1384 break; 1385 /* 1386 * This occurs if the guest (kernel or userspace), does something that 1387 * is prohibited by HFSCR. 1388 * On POWER9, this could be a doorbell instruction that we need 1389 * to emulate. 1390 * Otherwise, we just generate a program interrupt to the guest. 1391 */ 1392 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1393 r = EMULATE_FAIL; 1394 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1395 cpu_has_feature(CPU_FTR_ARCH_300)) 1396 r = kvmppc_emulate_doorbell_instr(vcpu); 1397 if (r == EMULATE_FAIL) { 1398 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1399 r = RESUME_GUEST; 1400 } 1401 break; 1402 1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1404 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1405 /* 1406 * This occurs for various TM-related instructions that 1407 * we need to emulate on POWER9 DD2.2. We have already 1408 * handled the cases where the guest was in real-suspend 1409 * mode and was transitioning to transactional state. 1410 */ 1411 r = kvmhv_p9_tm_emulation(vcpu); 1412 break; 1413 #endif 1414 1415 case BOOK3S_INTERRUPT_HV_RM_HARD: 1416 r = RESUME_PASSTHROUGH; 1417 break; 1418 default: 1419 kvmppc_dump_regs(vcpu); 1420 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1421 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1422 vcpu->arch.shregs.msr); 1423 run->hw.hardware_exit_reason = vcpu->arch.trap; 1424 r = RESUME_HOST; 1425 break; 1426 } 1427 1428 return r; 1429 } 1430 1431 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1432 { 1433 int r; 1434 int srcu_idx; 1435 1436 vcpu->stat.sum_exits++; 1437 1438 /* 1439 * This can happen if an interrupt occurs in the last stages 1440 * of guest entry or the first stages of guest exit (i.e. after 1441 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1442 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1443 * That can happen due to a bug, or due to a machine check 1444 * occurring at just the wrong time. 1445 */ 1446 if (vcpu->arch.shregs.msr & MSR_HV) { 1447 pr_emerg("KVM trap in HV mode while nested!\n"); 1448 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1449 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1450 vcpu->arch.shregs.msr); 1451 kvmppc_dump_regs(vcpu); 1452 return RESUME_HOST; 1453 } 1454 switch (vcpu->arch.trap) { 1455 /* We're good on these - the host merely wanted to get our attention */ 1456 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1457 vcpu->stat.dec_exits++; 1458 r = RESUME_GUEST; 1459 break; 1460 case BOOK3S_INTERRUPT_EXTERNAL: 1461 vcpu->stat.ext_intr_exits++; 1462 r = RESUME_HOST; 1463 break; 1464 case BOOK3S_INTERRUPT_H_DOORBELL: 1465 case BOOK3S_INTERRUPT_H_VIRT: 1466 vcpu->stat.ext_intr_exits++; 1467 r = RESUME_GUEST; 1468 break; 1469 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1470 case BOOK3S_INTERRUPT_HMI: 1471 case BOOK3S_INTERRUPT_PERFMON: 1472 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1473 r = RESUME_GUEST; 1474 break; 1475 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1476 /* Pass the machine check to the L1 guest */ 1477 r = RESUME_HOST; 1478 /* Print the MCE event to host console. */ 1479 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1480 break; 1481 /* 1482 * We get these next two if the guest accesses a page which it thinks 1483 * it has mapped but which is not actually present, either because 1484 * it is for an emulated I/O device or because the corresonding 1485 * host page has been paged out. 1486 */ 1487 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1488 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1489 r = kvmhv_nested_page_fault(run, vcpu); 1490 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1491 break; 1492 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1493 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1494 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1495 DSISR_SRR1_MATCH_64S; 1496 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1497 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1498 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1499 r = kvmhv_nested_page_fault(run, vcpu); 1500 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1501 break; 1502 1503 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1504 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1505 /* 1506 * This occurs for various TM-related instructions that 1507 * we need to emulate on POWER9 DD2.2. We have already 1508 * handled the cases where the guest was in real-suspend 1509 * mode and was transitioning to transactional state. 1510 */ 1511 r = kvmhv_p9_tm_emulation(vcpu); 1512 break; 1513 #endif 1514 1515 case BOOK3S_INTERRUPT_HV_RM_HARD: 1516 vcpu->arch.trap = 0; 1517 r = RESUME_GUEST; 1518 if (!xics_on_xive()) 1519 kvmppc_xics_rm_complete(vcpu, 0); 1520 break; 1521 default: 1522 r = RESUME_HOST; 1523 break; 1524 } 1525 1526 return r; 1527 } 1528 1529 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1530 struct kvm_sregs *sregs) 1531 { 1532 int i; 1533 1534 memset(sregs, 0, sizeof(struct kvm_sregs)); 1535 sregs->pvr = vcpu->arch.pvr; 1536 for (i = 0; i < vcpu->arch.slb_max; i++) { 1537 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1538 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1539 } 1540 1541 return 0; 1542 } 1543 1544 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1545 struct kvm_sregs *sregs) 1546 { 1547 int i, j; 1548 1549 /* Only accept the same PVR as the host's, since we can't spoof it */ 1550 if (sregs->pvr != vcpu->arch.pvr) 1551 return -EINVAL; 1552 1553 j = 0; 1554 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1555 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1556 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1557 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1558 ++j; 1559 } 1560 } 1561 vcpu->arch.slb_max = j; 1562 1563 return 0; 1564 } 1565 1566 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1567 bool preserve_top32) 1568 { 1569 struct kvm *kvm = vcpu->kvm; 1570 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1571 u64 mask; 1572 1573 spin_lock(&vc->lock); 1574 /* 1575 * If ILE (interrupt little-endian) has changed, update the 1576 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1577 */ 1578 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1579 struct kvm_vcpu *vcpu; 1580 int i; 1581 1582 kvm_for_each_vcpu(i, vcpu, kvm) { 1583 if (vcpu->arch.vcore != vc) 1584 continue; 1585 if (new_lpcr & LPCR_ILE) 1586 vcpu->arch.intr_msr |= MSR_LE; 1587 else 1588 vcpu->arch.intr_msr &= ~MSR_LE; 1589 } 1590 } 1591 1592 /* 1593 * Userspace can only modify DPFD (default prefetch depth), 1594 * ILE (interrupt little-endian) and TC (translation control). 1595 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1596 */ 1597 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1598 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1599 mask |= LPCR_AIL; 1600 /* 1601 * On POWER9, allow userspace to enable large decrementer for the 1602 * guest, whether or not the host has it enabled. 1603 */ 1604 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1605 mask |= LPCR_LD; 1606 1607 /* Broken 32-bit version of LPCR must not clear top bits */ 1608 if (preserve_top32) 1609 mask &= 0xFFFFFFFF; 1610 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1611 spin_unlock(&vc->lock); 1612 } 1613 1614 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1615 union kvmppc_one_reg *val) 1616 { 1617 int r = 0; 1618 long int i; 1619 1620 switch (id) { 1621 case KVM_REG_PPC_DEBUG_INST: 1622 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1623 break; 1624 case KVM_REG_PPC_HIOR: 1625 *val = get_reg_val(id, 0); 1626 break; 1627 case KVM_REG_PPC_DABR: 1628 *val = get_reg_val(id, vcpu->arch.dabr); 1629 break; 1630 case KVM_REG_PPC_DABRX: 1631 *val = get_reg_val(id, vcpu->arch.dabrx); 1632 break; 1633 case KVM_REG_PPC_DSCR: 1634 *val = get_reg_val(id, vcpu->arch.dscr); 1635 break; 1636 case KVM_REG_PPC_PURR: 1637 *val = get_reg_val(id, vcpu->arch.purr); 1638 break; 1639 case KVM_REG_PPC_SPURR: 1640 *val = get_reg_val(id, vcpu->arch.spurr); 1641 break; 1642 case KVM_REG_PPC_AMR: 1643 *val = get_reg_val(id, vcpu->arch.amr); 1644 break; 1645 case KVM_REG_PPC_UAMOR: 1646 *val = get_reg_val(id, vcpu->arch.uamor); 1647 break; 1648 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1649 i = id - KVM_REG_PPC_MMCR0; 1650 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1651 break; 1652 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1653 i = id - KVM_REG_PPC_PMC1; 1654 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1655 break; 1656 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1657 i = id - KVM_REG_PPC_SPMC1; 1658 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1659 break; 1660 case KVM_REG_PPC_SIAR: 1661 *val = get_reg_val(id, vcpu->arch.siar); 1662 break; 1663 case KVM_REG_PPC_SDAR: 1664 *val = get_reg_val(id, vcpu->arch.sdar); 1665 break; 1666 case KVM_REG_PPC_SIER: 1667 *val = get_reg_val(id, vcpu->arch.sier); 1668 break; 1669 case KVM_REG_PPC_IAMR: 1670 *val = get_reg_val(id, vcpu->arch.iamr); 1671 break; 1672 case KVM_REG_PPC_PSPB: 1673 *val = get_reg_val(id, vcpu->arch.pspb); 1674 break; 1675 case KVM_REG_PPC_DPDES: 1676 /* 1677 * On POWER9, where we are emulating msgsndp etc., 1678 * we return 1 bit for each vcpu, which can come from 1679 * either vcore->dpdes or doorbell_request. 1680 * On POWER8, doorbell_request is 0. 1681 */ 1682 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1683 vcpu->arch.doorbell_request); 1684 break; 1685 case KVM_REG_PPC_VTB: 1686 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1687 break; 1688 case KVM_REG_PPC_DAWR: 1689 *val = get_reg_val(id, vcpu->arch.dawr); 1690 break; 1691 case KVM_REG_PPC_DAWRX: 1692 *val = get_reg_val(id, vcpu->arch.dawrx); 1693 break; 1694 case KVM_REG_PPC_CIABR: 1695 *val = get_reg_val(id, vcpu->arch.ciabr); 1696 break; 1697 case KVM_REG_PPC_CSIGR: 1698 *val = get_reg_val(id, vcpu->arch.csigr); 1699 break; 1700 case KVM_REG_PPC_TACR: 1701 *val = get_reg_val(id, vcpu->arch.tacr); 1702 break; 1703 case KVM_REG_PPC_TCSCR: 1704 *val = get_reg_val(id, vcpu->arch.tcscr); 1705 break; 1706 case KVM_REG_PPC_PID: 1707 *val = get_reg_val(id, vcpu->arch.pid); 1708 break; 1709 case KVM_REG_PPC_ACOP: 1710 *val = get_reg_val(id, vcpu->arch.acop); 1711 break; 1712 case KVM_REG_PPC_WORT: 1713 *val = get_reg_val(id, vcpu->arch.wort); 1714 break; 1715 case KVM_REG_PPC_TIDR: 1716 *val = get_reg_val(id, vcpu->arch.tid); 1717 break; 1718 case KVM_REG_PPC_PSSCR: 1719 *val = get_reg_val(id, vcpu->arch.psscr); 1720 break; 1721 case KVM_REG_PPC_VPA_ADDR: 1722 spin_lock(&vcpu->arch.vpa_update_lock); 1723 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1724 spin_unlock(&vcpu->arch.vpa_update_lock); 1725 break; 1726 case KVM_REG_PPC_VPA_SLB: 1727 spin_lock(&vcpu->arch.vpa_update_lock); 1728 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1729 val->vpaval.length = vcpu->arch.slb_shadow.len; 1730 spin_unlock(&vcpu->arch.vpa_update_lock); 1731 break; 1732 case KVM_REG_PPC_VPA_DTL: 1733 spin_lock(&vcpu->arch.vpa_update_lock); 1734 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1735 val->vpaval.length = vcpu->arch.dtl.len; 1736 spin_unlock(&vcpu->arch.vpa_update_lock); 1737 break; 1738 case KVM_REG_PPC_TB_OFFSET: 1739 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1740 break; 1741 case KVM_REG_PPC_LPCR: 1742 case KVM_REG_PPC_LPCR_64: 1743 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1744 break; 1745 case KVM_REG_PPC_PPR: 1746 *val = get_reg_val(id, vcpu->arch.ppr); 1747 break; 1748 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1749 case KVM_REG_PPC_TFHAR: 1750 *val = get_reg_val(id, vcpu->arch.tfhar); 1751 break; 1752 case KVM_REG_PPC_TFIAR: 1753 *val = get_reg_val(id, vcpu->arch.tfiar); 1754 break; 1755 case KVM_REG_PPC_TEXASR: 1756 *val = get_reg_val(id, vcpu->arch.texasr); 1757 break; 1758 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1759 i = id - KVM_REG_PPC_TM_GPR0; 1760 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1761 break; 1762 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1763 { 1764 int j; 1765 i = id - KVM_REG_PPC_TM_VSR0; 1766 if (i < 32) 1767 for (j = 0; j < TS_FPRWIDTH; j++) 1768 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1769 else { 1770 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1771 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1772 else 1773 r = -ENXIO; 1774 } 1775 break; 1776 } 1777 case KVM_REG_PPC_TM_CR: 1778 *val = get_reg_val(id, vcpu->arch.cr_tm); 1779 break; 1780 case KVM_REG_PPC_TM_XER: 1781 *val = get_reg_val(id, vcpu->arch.xer_tm); 1782 break; 1783 case KVM_REG_PPC_TM_LR: 1784 *val = get_reg_val(id, vcpu->arch.lr_tm); 1785 break; 1786 case KVM_REG_PPC_TM_CTR: 1787 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1788 break; 1789 case KVM_REG_PPC_TM_FPSCR: 1790 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1791 break; 1792 case KVM_REG_PPC_TM_AMR: 1793 *val = get_reg_val(id, vcpu->arch.amr_tm); 1794 break; 1795 case KVM_REG_PPC_TM_PPR: 1796 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1797 break; 1798 case KVM_REG_PPC_TM_VRSAVE: 1799 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1800 break; 1801 case KVM_REG_PPC_TM_VSCR: 1802 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1803 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1804 else 1805 r = -ENXIO; 1806 break; 1807 case KVM_REG_PPC_TM_DSCR: 1808 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1809 break; 1810 case KVM_REG_PPC_TM_TAR: 1811 *val = get_reg_val(id, vcpu->arch.tar_tm); 1812 break; 1813 #endif 1814 case KVM_REG_PPC_ARCH_COMPAT: 1815 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1816 break; 1817 case KVM_REG_PPC_DEC_EXPIRY: 1818 *val = get_reg_val(id, vcpu->arch.dec_expires + 1819 vcpu->arch.vcore->tb_offset); 1820 break; 1821 case KVM_REG_PPC_ONLINE: 1822 *val = get_reg_val(id, vcpu->arch.online); 1823 break; 1824 case KVM_REG_PPC_PTCR: 1825 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1826 break; 1827 default: 1828 r = -EINVAL; 1829 break; 1830 } 1831 1832 return r; 1833 } 1834 1835 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1836 union kvmppc_one_reg *val) 1837 { 1838 int r = 0; 1839 long int i; 1840 unsigned long addr, len; 1841 1842 switch (id) { 1843 case KVM_REG_PPC_HIOR: 1844 /* Only allow this to be set to zero */ 1845 if (set_reg_val(id, *val)) 1846 r = -EINVAL; 1847 break; 1848 case KVM_REG_PPC_DABR: 1849 vcpu->arch.dabr = set_reg_val(id, *val); 1850 break; 1851 case KVM_REG_PPC_DABRX: 1852 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1853 break; 1854 case KVM_REG_PPC_DSCR: 1855 vcpu->arch.dscr = set_reg_val(id, *val); 1856 break; 1857 case KVM_REG_PPC_PURR: 1858 vcpu->arch.purr = set_reg_val(id, *val); 1859 break; 1860 case KVM_REG_PPC_SPURR: 1861 vcpu->arch.spurr = set_reg_val(id, *val); 1862 break; 1863 case KVM_REG_PPC_AMR: 1864 vcpu->arch.amr = set_reg_val(id, *val); 1865 break; 1866 case KVM_REG_PPC_UAMOR: 1867 vcpu->arch.uamor = set_reg_val(id, *val); 1868 break; 1869 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1870 i = id - KVM_REG_PPC_MMCR0; 1871 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1872 break; 1873 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1874 i = id - KVM_REG_PPC_PMC1; 1875 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1876 break; 1877 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1878 i = id - KVM_REG_PPC_SPMC1; 1879 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1880 break; 1881 case KVM_REG_PPC_SIAR: 1882 vcpu->arch.siar = set_reg_val(id, *val); 1883 break; 1884 case KVM_REG_PPC_SDAR: 1885 vcpu->arch.sdar = set_reg_val(id, *val); 1886 break; 1887 case KVM_REG_PPC_SIER: 1888 vcpu->arch.sier = set_reg_val(id, *val); 1889 break; 1890 case KVM_REG_PPC_IAMR: 1891 vcpu->arch.iamr = set_reg_val(id, *val); 1892 break; 1893 case KVM_REG_PPC_PSPB: 1894 vcpu->arch.pspb = set_reg_val(id, *val); 1895 break; 1896 case KVM_REG_PPC_DPDES: 1897 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1898 break; 1899 case KVM_REG_PPC_VTB: 1900 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1901 break; 1902 case KVM_REG_PPC_DAWR: 1903 vcpu->arch.dawr = set_reg_val(id, *val); 1904 break; 1905 case KVM_REG_PPC_DAWRX: 1906 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1907 break; 1908 case KVM_REG_PPC_CIABR: 1909 vcpu->arch.ciabr = set_reg_val(id, *val); 1910 /* Don't allow setting breakpoints in hypervisor code */ 1911 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1912 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1913 break; 1914 case KVM_REG_PPC_CSIGR: 1915 vcpu->arch.csigr = set_reg_val(id, *val); 1916 break; 1917 case KVM_REG_PPC_TACR: 1918 vcpu->arch.tacr = set_reg_val(id, *val); 1919 break; 1920 case KVM_REG_PPC_TCSCR: 1921 vcpu->arch.tcscr = set_reg_val(id, *val); 1922 break; 1923 case KVM_REG_PPC_PID: 1924 vcpu->arch.pid = set_reg_val(id, *val); 1925 break; 1926 case KVM_REG_PPC_ACOP: 1927 vcpu->arch.acop = set_reg_val(id, *val); 1928 break; 1929 case KVM_REG_PPC_WORT: 1930 vcpu->arch.wort = set_reg_val(id, *val); 1931 break; 1932 case KVM_REG_PPC_TIDR: 1933 vcpu->arch.tid = set_reg_val(id, *val); 1934 break; 1935 case KVM_REG_PPC_PSSCR: 1936 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1937 break; 1938 case KVM_REG_PPC_VPA_ADDR: 1939 addr = set_reg_val(id, *val); 1940 r = -EINVAL; 1941 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1942 vcpu->arch.dtl.next_gpa)) 1943 break; 1944 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1945 break; 1946 case KVM_REG_PPC_VPA_SLB: 1947 addr = val->vpaval.addr; 1948 len = val->vpaval.length; 1949 r = -EINVAL; 1950 if (addr && !vcpu->arch.vpa.next_gpa) 1951 break; 1952 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1953 break; 1954 case KVM_REG_PPC_VPA_DTL: 1955 addr = val->vpaval.addr; 1956 len = val->vpaval.length; 1957 r = -EINVAL; 1958 if (addr && (len < sizeof(struct dtl_entry) || 1959 !vcpu->arch.vpa.next_gpa)) 1960 break; 1961 len -= len % sizeof(struct dtl_entry); 1962 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1963 break; 1964 case KVM_REG_PPC_TB_OFFSET: 1965 /* round up to multiple of 2^24 */ 1966 vcpu->arch.vcore->tb_offset = 1967 ALIGN(set_reg_val(id, *val), 1UL << 24); 1968 break; 1969 case KVM_REG_PPC_LPCR: 1970 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1971 break; 1972 case KVM_REG_PPC_LPCR_64: 1973 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1974 break; 1975 case KVM_REG_PPC_PPR: 1976 vcpu->arch.ppr = set_reg_val(id, *val); 1977 break; 1978 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1979 case KVM_REG_PPC_TFHAR: 1980 vcpu->arch.tfhar = set_reg_val(id, *val); 1981 break; 1982 case KVM_REG_PPC_TFIAR: 1983 vcpu->arch.tfiar = set_reg_val(id, *val); 1984 break; 1985 case KVM_REG_PPC_TEXASR: 1986 vcpu->arch.texasr = set_reg_val(id, *val); 1987 break; 1988 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1989 i = id - KVM_REG_PPC_TM_GPR0; 1990 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1991 break; 1992 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1993 { 1994 int j; 1995 i = id - KVM_REG_PPC_TM_VSR0; 1996 if (i < 32) 1997 for (j = 0; j < TS_FPRWIDTH; j++) 1998 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1999 else 2000 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2001 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2002 else 2003 r = -ENXIO; 2004 break; 2005 } 2006 case KVM_REG_PPC_TM_CR: 2007 vcpu->arch.cr_tm = set_reg_val(id, *val); 2008 break; 2009 case KVM_REG_PPC_TM_XER: 2010 vcpu->arch.xer_tm = set_reg_val(id, *val); 2011 break; 2012 case KVM_REG_PPC_TM_LR: 2013 vcpu->arch.lr_tm = set_reg_val(id, *val); 2014 break; 2015 case KVM_REG_PPC_TM_CTR: 2016 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2017 break; 2018 case KVM_REG_PPC_TM_FPSCR: 2019 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2020 break; 2021 case KVM_REG_PPC_TM_AMR: 2022 vcpu->arch.amr_tm = set_reg_val(id, *val); 2023 break; 2024 case KVM_REG_PPC_TM_PPR: 2025 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2026 break; 2027 case KVM_REG_PPC_TM_VRSAVE: 2028 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2029 break; 2030 case KVM_REG_PPC_TM_VSCR: 2031 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2032 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2033 else 2034 r = - ENXIO; 2035 break; 2036 case KVM_REG_PPC_TM_DSCR: 2037 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2038 break; 2039 case KVM_REG_PPC_TM_TAR: 2040 vcpu->arch.tar_tm = set_reg_val(id, *val); 2041 break; 2042 #endif 2043 case KVM_REG_PPC_ARCH_COMPAT: 2044 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2045 break; 2046 case KVM_REG_PPC_DEC_EXPIRY: 2047 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2048 vcpu->arch.vcore->tb_offset; 2049 break; 2050 case KVM_REG_PPC_ONLINE: 2051 i = set_reg_val(id, *val); 2052 if (i && !vcpu->arch.online) 2053 atomic_inc(&vcpu->arch.vcore->online_count); 2054 else if (!i && vcpu->arch.online) 2055 atomic_dec(&vcpu->arch.vcore->online_count); 2056 vcpu->arch.online = i; 2057 break; 2058 case KVM_REG_PPC_PTCR: 2059 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2060 break; 2061 default: 2062 r = -EINVAL; 2063 break; 2064 } 2065 2066 return r; 2067 } 2068 2069 /* 2070 * On POWER9, threads are independent and can be in different partitions. 2071 * Therefore we consider each thread to be a subcore. 2072 * There is a restriction that all threads have to be in the same 2073 * MMU mode (radix or HPT), unfortunately, but since we only support 2074 * HPT guests on a HPT host so far, that isn't an impediment yet. 2075 */ 2076 static int threads_per_vcore(struct kvm *kvm) 2077 { 2078 if (kvm->arch.threads_indep) 2079 return 1; 2080 return threads_per_subcore; 2081 } 2082 2083 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2084 { 2085 struct kvmppc_vcore *vcore; 2086 2087 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2088 2089 if (vcore == NULL) 2090 return NULL; 2091 2092 spin_lock_init(&vcore->lock); 2093 spin_lock_init(&vcore->stoltb_lock); 2094 init_swait_queue_head(&vcore->wq); 2095 vcore->preempt_tb = TB_NIL; 2096 vcore->lpcr = kvm->arch.lpcr; 2097 vcore->first_vcpuid = id; 2098 vcore->kvm = kvm; 2099 INIT_LIST_HEAD(&vcore->preempt_list); 2100 2101 return vcore; 2102 } 2103 2104 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2105 static struct debugfs_timings_element { 2106 const char *name; 2107 size_t offset; 2108 } timings[] = { 2109 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2110 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2111 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2112 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2113 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2114 }; 2115 2116 #define N_TIMINGS (ARRAY_SIZE(timings)) 2117 2118 struct debugfs_timings_state { 2119 struct kvm_vcpu *vcpu; 2120 unsigned int buflen; 2121 char buf[N_TIMINGS * 100]; 2122 }; 2123 2124 static int debugfs_timings_open(struct inode *inode, struct file *file) 2125 { 2126 struct kvm_vcpu *vcpu = inode->i_private; 2127 struct debugfs_timings_state *p; 2128 2129 p = kzalloc(sizeof(*p), GFP_KERNEL); 2130 if (!p) 2131 return -ENOMEM; 2132 2133 kvm_get_kvm(vcpu->kvm); 2134 p->vcpu = vcpu; 2135 file->private_data = p; 2136 2137 return nonseekable_open(inode, file); 2138 } 2139 2140 static int debugfs_timings_release(struct inode *inode, struct file *file) 2141 { 2142 struct debugfs_timings_state *p = file->private_data; 2143 2144 kvm_put_kvm(p->vcpu->kvm); 2145 kfree(p); 2146 return 0; 2147 } 2148 2149 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2150 size_t len, loff_t *ppos) 2151 { 2152 struct debugfs_timings_state *p = file->private_data; 2153 struct kvm_vcpu *vcpu = p->vcpu; 2154 char *s, *buf_end; 2155 struct kvmhv_tb_accumulator tb; 2156 u64 count; 2157 loff_t pos; 2158 ssize_t n; 2159 int i, loops; 2160 bool ok; 2161 2162 if (!p->buflen) { 2163 s = p->buf; 2164 buf_end = s + sizeof(p->buf); 2165 for (i = 0; i < N_TIMINGS; ++i) { 2166 struct kvmhv_tb_accumulator *acc; 2167 2168 acc = (struct kvmhv_tb_accumulator *) 2169 ((unsigned long)vcpu + timings[i].offset); 2170 ok = false; 2171 for (loops = 0; loops < 1000; ++loops) { 2172 count = acc->seqcount; 2173 if (!(count & 1)) { 2174 smp_rmb(); 2175 tb = *acc; 2176 smp_rmb(); 2177 if (count == acc->seqcount) { 2178 ok = true; 2179 break; 2180 } 2181 } 2182 udelay(1); 2183 } 2184 if (!ok) 2185 snprintf(s, buf_end - s, "%s: stuck\n", 2186 timings[i].name); 2187 else 2188 snprintf(s, buf_end - s, 2189 "%s: %llu %llu %llu %llu\n", 2190 timings[i].name, count / 2, 2191 tb_to_ns(tb.tb_total), 2192 tb_to_ns(tb.tb_min), 2193 tb_to_ns(tb.tb_max)); 2194 s += strlen(s); 2195 } 2196 p->buflen = s - p->buf; 2197 } 2198 2199 pos = *ppos; 2200 if (pos >= p->buflen) 2201 return 0; 2202 if (len > p->buflen - pos) 2203 len = p->buflen - pos; 2204 n = copy_to_user(buf, p->buf + pos, len); 2205 if (n) { 2206 if (n == len) 2207 return -EFAULT; 2208 len -= n; 2209 } 2210 *ppos = pos + len; 2211 return len; 2212 } 2213 2214 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2215 size_t len, loff_t *ppos) 2216 { 2217 return -EACCES; 2218 } 2219 2220 static const struct file_operations debugfs_timings_ops = { 2221 .owner = THIS_MODULE, 2222 .open = debugfs_timings_open, 2223 .release = debugfs_timings_release, 2224 .read = debugfs_timings_read, 2225 .write = debugfs_timings_write, 2226 .llseek = generic_file_llseek, 2227 }; 2228 2229 /* Create a debugfs directory for the vcpu */ 2230 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2231 { 2232 char buf[16]; 2233 struct kvm *kvm = vcpu->kvm; 2234 2235 snprintf(buf, sizeof(buf), "vcpu%u", id); 2236 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2237 return; 2238 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2239 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2240 return; 2241 vcpu->arch.debugfs_timings = 2242 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2243 vcpu, &debugfs_timings_ops); 2244 } 2245 2246 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2247 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2248 { 2249 } 2250 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2251 2252 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 2253 unsigned int id) 2254 { 2255 struct kvm_vcpu *vcpu; 2256 int err; 2257 int core; 2258 struct kvmppc_vcore *vcore; 2259 2260 err = -ENOMEM; 2261 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2262 if (!vcpu) 2263 goto out; 2264 2265 err = kvm_vcpu_init(vcpu, kvm, id); 2266 if (err) 2267 goto free_vcpu; 2268 2269 vcpu->arch.shared = &vcpu->arch.shregs; 2270 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2271 /* 2272 * The shared struct is never shared on HV, 2273 * so we can always use host endianness 2274 */ 2275 #ifdef __BIG_ENDIAN__ 2276 vcpu->arch.shared_big_endian = true; 2277 #else 2278 vcpu->arch.shared_big_endian = false; 2279 #endif 2280 #endif 2281 vcpu->arch.mmcr[0] = MMCR0_FC; 2282 vcpu->arch.ctrl = CTRL_RUNLATCH; 2283 /* default to host PVR, since we can't spoof it */ 2284 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2285 spin_lock_init(&vcpu->arch.vpa_update_lock); 2286 spin_lock_init(&vcpu->arch.tbacct_lock); 2287 vcpu->arch.busy_preempt = TB_NIL; 2288 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2289 2290 /* 2291 * Set the default HFSCR for the guest from the host value. 2292 * This value is only used on POWER9. 2293 * On POWER9, we want to virtualize the doorbell facility, so we 2294 * don't set the HFSCR_MSGP bit, and that causes those instructions 2295 * to trap and then we emulate them. 2296 */ 2297 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2298 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2299 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2300 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2301 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2302 vcpu->arch.hfscr |= HFSCR_TM; 2303 } 2304 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2305 vcpu->arch.hfscr |= HFSCR_TM; 2306 2307 kvmppc_mmu_book3s_hv_init(vcpu); 2308 2309 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2310 2311 init_waitqueue_head(&vcpu->arch.cpu_run); 2312 2313 mutex_lock(&kvm->lock); 2314 vcore = NULL; 2315 err = -EINVAL; 2316 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2317 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2318 pr_devel("KVM: VCPU ID too high\n"); 2319 core = KVM_MAX_VCORES; 2320 } else { 2321 BUG_ON(kvm->arch.smt_mode != 1); 2322 core = kvmppc_pack_vcpu_id(kvm, id); 2323 } 2324 } else { 2325 core = id / kvm->arch.smt_mode; 2326 } 2327 if (core < KVM_MAX_VCORES) { 2328 vcore = kvm->arch.vcores[core]; 2329 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2330 pr_devel("KVM: collision on id %u", id); 2331 vcore = NULL; 2332 } else if (!vcore) { 2333 /* 2334 * Take mmu_setup_lock for mutual exclusion 2335 * with kvmppc_update_lpcr(). 2336 */ 2337 err = -ENOMEM; 2338 vcore = kvmppc_vcore_create(kvm, 2339 id & ~(kvm->arch.smt_mode - 1)); 2340 mutex_lock(&kvm->arch.mmu_setup_lock); 2341 kvm->arch.vcores[core] = vcore; 2342 kvm->arch.online_vcores++; 2343 mutex_unlock(&kvm->arch.mmu_setup_lock); 2344 } 2345 } 2346 mutex_unlock(&kvm->lock); 2347 2348 if (!vcore) 2349 goto free_vcpu; 2350 2351 spin_lock(&vcore->lock); 2352 ++vcore->num_threads; 2353 spin_unlock(&vcore->lock); 2354 vcpu->arch.vcore = vcore; 2355 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2356 vcpu->arch.thread_cpu = -1; 2357 vcpu->arch.prev_cpu = -1; 2358 2359 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2360 kvmppc_sanity_check(vcpu); 2361 2362 debugfs_vcpu_init(vcpu, id); 2363 2364 return vcpu; 2365 2366 free_vcpu: 2367 kmem_cache_free(kvm_vcpu_cache, vcpu); 2368 out: 2369 return ERR_PTR(err); 2370 } 2371 2372 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2373 unsigned long flags) 2374 { 2375 int err; 2376 int esmt = 0; 2377 2378 if (flags) 2379 return -EINVAL; 2380 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2381 return -EINVAL; 2382 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2383 /* 2384 * On POWER8 (or POWER7), the threading mode is "strict", 2385 * so we pack smt_mode vcpus per vcore. 2386 */ 2387 if (smt_mode > threads_per_subcore) 2388 return -EINVAL; 2389 } else { 2390 /* 2391 * On POWER9, the threading mode is "loose", 2392 * so each vcpu gets its own vcore. 2393 */ 2394 esmt = smt_mode; 2395 smt_mode = 1; 2396 } 2397 mutex_lock(&kvm->lock); 2398 err = -EBUSY; 2399 if (!kvm->arch.online_vcores) { 2400 kvm->arch.smt_mode = smt_mode; 2401 kvm->arch.emul_smt_mode = esmt; 2402 err = 0; 2403 } 2404 mutex_unlock(&kvm->lock); 2405 2406 return err; 2407 } 2408 2409 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2410 { 2411 if (vpa->pinned_addr) 2412 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2413 vpa->dirty); 2414 } 2415 2416 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2417 { 2418 spin_lock(&vcpu->arch.vpa_update_lock); 2419 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2420 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2421 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2422 spin_unlock(&vcpu->arch.vpa_update_lock); 2423 kvm_vcpu_uninit(vcpu); 2424 kmem_cache_free(kvm_vcpu_cache, vcpu); 2425 } 2426 2427 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2428 { 2429 /* Indicate we want to get back into the guest */ 2430 return 1; 2431 } 2432 2433 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2434 { 2435 unsigned long dec_nsec, now; 2436 2437 now = get_tb(); 2438 if (now > vcpu->arch.dec_expires) { 2439 /* decrementer has already gone negative */ 2440 kvmppc_core_queue_dec(vcpu); 2441 kvmppc_core_prepare_to_enter(vcpu); 2442 return; 2443 } 2444 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2445 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2446 vcpu->arch.timer_running = 1; 2447 } 2448 2449 extern int __kvmppc_vcore_entry(void); 2450 2451 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2452 struct kvm_vcpu *vcpu) 2453 { 2454 u64 now; 2455 2456 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2457 return; 2458 spin_lock_irq(&vcpu->arch.tbacct_lock); 2459 now = mftb(); 2460 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2461 vcpu->arch.stolen_logged; 2462 vcpu->arch.busy_preempt = now; 2463 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2464 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2465 --vc->n_runnable; 2466 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2467 } 2468 2469 static int kvmppc_grab_hwthread(int cpu) 2470 { 2471 struct paca_struct *tpaca; 2472 long timeout = 10000; 2473 2474 tpaca = paca_ptrs[cpu]; 2475 2476 /* Ensure the thread won't go into the kernel if it wakes */ 2477 tpaca->kvm_hstate.kvm_vcpu = NULL; 2478 tpaca->kvm_hstate.kvm_vcore = NULL; 2479 tpaca->kvm_hstate.napping = 0; 2480 smp_wmb(); 2481 tpaca->kvm_hstate.hwthread_req = 1; 2482 2483 /* 2484 * If the thread is already executing in the kernel (e.g. handling 2485 * a stray interrupt), wait for it to get back to nap mode. 2486 * The smp_mb() is to ensure that our setting of hwthread_req 2487 * is visible before we look at hwthread_state, so if this 2488 * races with the code at system_reset_pSeries and the thread 2489 * misses our setting of hwthread_req, we are sure to see its 2490 * setting of hwthread_state, and vice versa. 2491 */ 2492 smp_mb(); 2493 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2494 if (--timeout <= 0) { 2495 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2496 return -EBUSY; 2497 } 2498 udelay(1); 2499 } 2500 return 0; 2501 } 2502 2503 static void kvmppc_release_hwthread(int cpu) 2504 { 2505 struct paca_struct *tpaca; 2506 2507 tpaca = paca_ptrs[cpu]; 2508 tpaca->kvm_hstate.hwthread_req = 0; 2509 tpaca->kvm_hstate.kvm_vcpu = NULL; 2510 tpaca->kvm_hstate.kvm_vcore = NULL; 2511 tpaca->kvm_hstate.kvm_split_mode = NULL; 2512 } 2513 2514 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2515 { 2516 struct kvm_nested_guest *nested = vcpu->arch.nested; 2517 cpumask_t *cpu_in_guest; 2518 int i; 2519 2520 cpu = cpu_first_thread_sibling(cpu); 2521 if (nested) { 2522 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2523 cpu_in_guest = &nested->cpu_in_guest; 2524 } else { 2525 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2526 cpu_in_guest = &kvm->arch.cpu_in_guest; 2527 } 2528 /* 2529 * Make sure setting of bit in need_tlb_flush precedes 2530 * testing of cpu_in_guest bits. The matching barrier on 2531 * the other side is the first smp_mb() in kvmppc_run_core(). 2532 */ 2533 smp_mb(); 2534 for (i = 0; i < threads_per_core; ++i) 2535 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2536 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2537 } 2538 2539 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2540 { 2541 struct kvm_nested_guest *nested = vcpu->arch.nested; 2542 struct kvm *kvm = vcpu->kvm; 2543 int prev_cpu; 2544 2545 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2546 return; 2547 2548 if (nested) 2549 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2550 else 2551 prev_cpu = vcpu->arch.prev_cpu; 2552 2553 /* 2554 * With radix, the guest can do TLB invalidations itself, 2555 * and it could choose to use the local form (tlbiel) if 2556 * it is invalidating a translation that has only ever been 2557 * used on one vcpu. However, that doesn't mean it has 2558 * only ever been used on one physical cpu, since vcpus 2559 * can move around between pcpus. To cope with this, when 2560 * a vcpu moves from one pcpu to another, we need to tell 2561 * any vcpus running on the same core as this vcpu previously 2562 * ran to flush the TLB. The TLB is shared between threads, 2563 * so we use a single bit in .need_tlb_flush for all 4 threads. 2564 */ 2565 if (prev_cpu != pcpu) { 2566 if (prev_cpu >= 0 && 2567 cpu_first_thread_sibling(prev_cpu) != 2568 cpu_first_thread_sibling(pcpu)) 2569 radix_flush_cpu(kvm, prev_cpu, vcpu); 2570 if (nested) 2571 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2572 else 2573 vcpu->arch.prev_cpu = pcpu; 2574 } 2575 } 2576 2577 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2578 { 2579 int cpu; 2580 struct paca_struct *tpaca; 2581 struct kvm *kvm = vc->kvm; 2582 2583 cpu = vc->pcpu; 2584 if (vcpu) { 2585 if (vcpu->arch.timer_running) { 2586 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2587 vcpu->arch.timer_running = 0; 2588 } 2589 cpu += vcpu->arch.ptid; 2590 vcpu->cpu = vc->pcpu; 2591 vcpu->arch.thread_cpu = cpu; 2592 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2593 } 2594 tpaca = paca_ptrs[cpu]; 2595 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2596 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2597 tpaca->kvm_hstate.fake_suspend = 0; 2598 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2599 smp_wmb(); 2600 tpaca->kvm_hstate.kvm_vcore = vc; 2601 if (cpu != smp_processor_id()) 2602 kvmppc_ipi_thread(cpu); 2603 } 2604 2605 static void kvmppc_wait_for_nap(int n_threads) 2606 { 2607 int cpu = smp_processor_id(); 2608 int i, loops; 2609 2610 if (n_threads <= 1) 2611 return; 2612 for (loops = 0; loops < 1000000; ++loops) { 2613 /* 2614 * Check if all threads are finished. 2615 * We set the vcore pointer when starting a thread 2616 * and the thread clears it when finished, so we look 2617 * for any threads that still have a non-NULL vcore ptr. 2618 */ 2619 for (i = 1; i < n_threads; ++i) 2620 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2621 break; 2622 if (i == n_threads) { 2623 HMT_medium(); 2624 return; 2625 } 2626 HMT_low(); 2627 } 2628 HMT_medium(); 2629 for (i = 1; i < n_threads; ++i) 2630 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2631 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2632 } 2633 2634 /* 2635 * Check that we are on thread 0 and that any other threads in 2636 * this core are off-line. Then grab the threads so they can't 2637 * enter the kernel. 2638 */ 2639 static int on_primary_thread(void) 2640 { 2641 int cpu = smp_processor_id(); 2642 int thr; 2643 2644 /* Are we on a primary subcore? */ 2645 if (cpu_thread_in_subcore(cpu)) 2646 return 0; 2647 2648 thr = 0; 2649 while (++thr < threads_per_subcore) 2650 if (cpu_online(cpu + thr)) 2651 return 0; 2652 2653 /* Grab all hw threads so they can't go into the kernel */ 2654 for (thr = 1; thr < threads_per_subcore; ++thr) { 2655 if (kvmppc_grab_hwthread(cpu + thr)) { 2656 /* Couldn't grab one; let the others go */ 2657 do { 2658 kvmppc_release_hwthread(cpu + thr); 2659 } while (--thr > 0); 2660 return 0; 2661 } 2662 } 2663 return 1; 2664 } 2665 2666 /* 2667 * A list of virtual cores for each physical CPU. 2668 * These are vcores that could run but their runner VCPU tasks are 2669 * (or may be) preempted. 2670 */ 2671 struct preempted_vcore_list { 2672 struct list_head list; 2673 spinlock_t lock; 2674 }; 2675 2676 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2677 2678 static void init_vcore_lists(void) 2679 { 2680 int cpu; 2681 2682 for_each_possible_cpu(cpu) { 2683 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2684 spin_lock_init(&lp->lock); 2685 INIT_LIST_HEAD(&lp->list); 2686 } 2687 } 2688 2689 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2690 { 2691 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2692 2693 vc->vcore_state = VCORE_PREEMPT; 2694 vc->pcpu = smp_processor_id(); 2695 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2696 spin_lock(&lp->lock); 2697 list_add_tail(&vc->preempt_list, &lp->list); 2698 spin_unlock(&lp->lock); 2699 } 2700 2701 /* Start accumulating stolen time */ 2702 kvmppc_core_start_stolen(vc); 2703 } 2704 2705 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2706 { 2707 struct preempted_vcore_list *lp; 2708 2709 kvmppc_core_end_stolen(vc); 2710 if (!list_empty(&vc->preempt_list)) { 2711 lp = &per_cpu(preempted_vcores, vc->pcpu); 2712 spin_lock(&lp->lock); 2713 list_del_init(&vc->preempt_list); 2714 spin_unlock(&lp->lock); 2715 } 2716 vc->vcore_state = VCORE_INACTIVE; 2717 } 2718 2719 /* 2720 * This stores information about the virtual cores currently 2721 * assigned to a physical core. 2722 */ 2723 struct core_info { 2724 int n_subcores; 2725 int max_subcore_threads; 2726 int total_threads; 2727 int subcore_threads[MAX_SUBCORES]; 2728 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2729 }; 2730 2731 /* 2732 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2733 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2734 */ 2735 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2736 2737 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2738 { 2739 memset(cip, 0, sizeof(*cip)); 2740 cip->n_subcores = 1; 2741 cip->max_subcore_threads = vc->num_threads; 2742 cip->total_threads = vc->num_threads; 2743 cip->subcore_threads[0] = vc->num_threads; 2744 cip->vc[0] = vc; 2745 } 2746 2747 static bool subcore_config_ok(int n_subcores, int n_threads) 2748 { 2749 /* 2750 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2751 * split-core mode, with one thread per subcore. 2752 */ 2753 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2754 return n_subcores <= 4 && n_threads == 1; 2755 2756 /* On POWER8, can only dynamically split if unsplit to begin with */ 2757 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2758 return false; 2759 if (n_subcores > MAX_SUBCORES) 2760 return false; 2761 if (n_subcores > 1) { 2762 if (!(dynamic_mt_modes & 2)) 2763 n_subcores = 4; 2764 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2765 return false; 2766 } 2767 2768 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2769 } 2770 2771 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2772 { 2773 vc->entry_exit_map = 0; 2774 vc->in_guest = 0; 2775 vc->napping_threads = 0; 2776 vc->conferring_threads = 0; 2777 vc->tb_offset_applied = 0; 2778 } 2779 2780 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2781 { 2782 int n_threads = vc->num_threads; 2783 int sub; 2784 2785 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2786 return false; 2787 2788 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2789 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2790 return false; 2791 2792 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2793 if (no_mixing_hpt_and_radix && 2794 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2795 return false; 2796 2797 if (n_threads < cip->max_subcore_threads) 2798 n_threads = cip->max_subcore_threads; 2799 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2800 return false; 2801 cip->max_subcore_threads = n_threads; 2802 2803 sub = cip->n_subcores; 2804 ++cip->n_subcores; 2805 cip->total_threads += vc->num_threads; 2806 cip->subcore_threads[sub] = vc->num_threads; 2807 cip->vc[sub] = vc; 2808 init_vcore_to_run(vc); 2809 list_del_init(&vc->preempt_list); 2810 2811 return true; 2812 } 2813 2814 /* 2815 * Work out whether it is possible to piggyback the execution of 2816 * vcore *pvc onto the execution of the other vcores described in *cip. 2817 */ 2818 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2819 int target_threads) 2820 { 2821 if (cip->total_threads + pvc->num_threads > target_threads) 2822 return false; 2823 2824 return can_dynamic_split(pvc, cip); 2825 } 2826 2827 static void prepare_threads(struct kvmppc_vcore *vc) 2828 { 2829 int i; 2830 struct kvm_vcpu *vcpu; 2831 2832 for_each_runnable_thread(i, vcpu, vc) { 2833 if (signal_pending(vcpu->arch.run_task)) 2834 vcpu->arch.ret = -EINTR; 2835 else if (vcpu->arch.vpa.update_pending || 2836 vcpu->arch.slb_shadow.update_pending || 2837 vcpu->arch.dtl.update_pending) 2838 vcpu->arch.ret = RESUME_GUEST; 2839 else 2840 continue; 2841 kvmppc_remove_runnable(vc, vcpu); 2842 wake_up(&vcpu->arch.cpu_run); 2843 } 2844 } 2845 2846 static void collect_piggybacks(struct core_info *cip, int target_threads) 2847 { 2848 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2849 struct kvmppc_vcore *pvc, *vcnext; 2850 2851 spin_lock(&lp->lock); 2852 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2853 if (!spin_trylock(&pvc->lock)) 2854 continue; 2855 prepare_threads(pvc); 2856 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2857 list_del_init(&pvc->preempt_list); 2858 if (pvc->runner == NULL) { 2859 pvc->vcore_state = VCORE_INACTIVE; 2860 kvmppc_core_end_stolen(pvc); 2861 } 2862 spin_unlock(&pvc->lock); 2863 continue; 2864 } 2865 if (!can_piggyback(pvc, cip, target_threads)) { 2866 spin_unlock(&pvc->lock); 2867 continue; 2868 } 2869 kvmppc_core_end_stolen(pvc); 2870 pvc->vcore_state = VCORE_PIGGYBACK; 2871 if (cip->total_threads >= target_threads) 2872 break; 2873 } 2874 spin_unlock(&lp->lock); 2875 } 2876 2877 static bool recheck_signals_and_mmu(struct core_info *cip) 2878 { 2879 int sub, i; 2880 struct kvm_vcpu *vcpu; 2881 struct kvmppc_vcore *vc; 2882 2883 for (sub = 0; sub < cip->n_subcores; ++sub) { 2884 vc = cip->vc[sub]; 2885 if (!vc->kvm->arch.mmu_ready) 2886 return true; 2887 for_each_runnable_thread(i, vcpu, vc) 2888 if (signal_pending(vcpu->arch.run_task)) 2889 return true; 2890 } 2891 return false; 2892 } 2893 2894 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2895 { 2896 int still_running = 0, i; 2897 u64 now; 2898 long ret; 2899 struct kvm_vcpu *vcpu; 2900 2901 spin_lock(&vc->lock); 2902 now = get_tb(); 2903 for_each_runnable_thread(i, vcpu, vc) { 2904 /* 2905 * It's safe to unlock the vcore in the loop here, because 2906 * for_each_runnable_thread() is safe against removal of 2907 * the vcpu, and the vcore state is VCORE_EXITING here, 2908 * so any vcpus becoming runnable will have their arch.trap 2909 * set to zero and can't actually run in the guest. 2910 */ 2911 spin_unlock(&vc->lock); 2912 /* cancel pending dec exception if dec is positive */ 2913 if (now < vcpu->arch.dec_expires && 2914 kvmppc_core_pending_dec(vcpu)) 2915 kvmppc_core_dequeue_dec(vcpu); 2916 2917 trace_kvm_guest_exit(vcpu); 2918 2919 ret = RESUME_GUEST; 2920 if (vcpu->arch.trap) 2921 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2922 vcpu->arch.run_task); 2923 2924 vcpu->arch.ret = ret; 2925 vcpu->arch.trap = 0; 2926 2927 spin_lock(&vc->lock); 2928 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2929 if (vcpu->arch.pending_exceptions) 2930 kvmppc_core_prepare_to_enter(vcpu); 2931 if (vcpu->arch.ceded) 2932 kvmppc_set_timer(vcpu); 2933 else 2934 ++still_running; 2935 } else { 2936 kvmppc_remove_runnable(vc, vcpu); 2937 wake_up(&vcpu->arch.cpu_run); 2938 } 2939 } 2940 if (!is_master) { 2941 if (still_running > 0) { 2942 kvmppc_vcore_preempt(vc); 2943 } else if (vc->runner) { 2944 vc->vcore_state = VCORE_PREEMPT; 2945 kvmppc_core_start_stolen(vc); 2946 } else { 2947 vc->vcore_state = VCORE_INACTIVE; 2948 } 2949 if (vc->n_runnable > 0 && vc->runner == NULL) { 2950 /* make sure there's a candidate runner awake */ 2951 i = -1; 2952 vcpu = next_runnable_thread(vc, &i); 2953 wake_up(&vcpu->arch.cpu_run); 2954 } 2955 } 2956 spin_unlock(&vc->lock); 2957 } 2958 2959 /* 2960 * Clear core from the list of active host cores as we are about to 2961 * enter the guest. Only do this if it is the primary thread of the 2962 * core (not if a subcore) that is entering the guest. 2963 */ 2964 static inline int kvmppc_clear_host_core(unsigned int cpu) 2965 { 2966 int core; 2967 2968 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2969 return 0; 2970 /* 2971 * Memory barrier can be omitted here as we will do a smp_wmb() 2972 * later in kvmppc_start_thread and we need ensure that state is 2973 * visible to other CPUs only after we enter guest. 2974 */ 2975 core = cpu >> threads_shift; 2976 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2977 return 0; 2978 } 2979 2980 /* 2981 * Advertise this core as an active host core since we exited the guest 2982 * Only need to do this if it is the primary thread of the core that is 2983 * exiting. 2984 */ 2985 static inline int kvmppc_set_host_core(unsigned int cpu) 2986 { 2987 int core; 2988 2989 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2990 return 0; 2991 2992 /* 2993 * Memory barrier can be omitted here because we do a spin_unlock 2994 * immediately after this which provides the memory barrier. 2995 */ 2996 core = cpu >> threads_shift; 2997 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2998 return 0; 2999 } 3000 3001 static void set_irq_happened(int trap) 3002 { 3003 switch (trap) { 3004 case BOOK3S_INTERRUPT_EXTERNAL: 3005 local_paca->irq_happened |= PACA_IRQ_EE; 3006 break; 3007 case BOOK3S_INTERRUPT_H_DOORBELL: 3008 local_paca->irq_happened |= PACA_IRQ_DBELL; 3009 break; 3010 case BOOK3S_INTERRUPT_HMI: 3011 local_paca->irq_happened |= PACA_IRQ_HMI; 3012 break; 3013 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3014 replay_system_reset(); 3015 break; 3016 } 3017 } 3018 3019 /* 3020 * Run a set of guest threads on a physical core. 3021 * Called with vc->lock held. 3022 */ 3023 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3024 { 3025 struct kvm_vcpu *vcpu; 3026 int i; 3027 int srcu_idx; 3028 struct core_info core_info; 3029 struct kvmppc_vcore *pvc; 3030 struct kvm_split_mode split_info, *sip; 3031 int split, subcore_size, active; 3032 int sub; 3033 bool thr0_done; 3034 unsigned long cmd_bit, stat_bit; 3035 int pcpu, thr; 3036 int target_threads; 3037 int controlled_threads; 3038 int trap; 3039 bool is_power8; 3040 bool hpt_on_radix; 3041 3042 /* 3043 * Remove from the list any threads that have a signal pending 3044 * or need a VPA update done 3045 */ 3046 prepare_threads(vc); 3047 3048 /* if the runner is no longer runnable, let the caller pick a new one */ 3049 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3050 return; 3051 3052 /* 3053 * Initialize *vc. 3054 */ 3055 init_vcore_to_run(vc); 3056 vc->preempt_tb = TB_NIL; 3057 3058 /* 3059 * Number of threads that we will be controlling: the same as 3060 * the number of threads per subcore, except on POWER9, 3061 * where it's 1 because the threads are (mostly) independent. 3062 */ 3063 controlled_threads = threads_per_vcore(vc->kvm); 3064 3065 /* 3066 * Make sure we are running on primary threads, and that secondary 3067 * threads are offline. Also check if the number of threads in this 3068 * guest are greater than the current system threads per guest. 3069 * On POWER9, we need to be not in independent-threads mode if 3070 * this is a HPT guest on a radix host machine where the 3071 * CPU threads may not be in different MMU modes. 3072 */ 3073 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3074 !kvm_is_radix(vc->kvm); 3075 if (((controlled_threads > 1) && 3076 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3077 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3078 for_each_runnable_thread(i, vcpu, vc) { 3079 vcpu->arch.ret = -EBUSY; 3080 kvmppc_remove_runnable(vc, vcpu); 3081 wake_up(&vcpu->arch.cpu_run); 3082 } 3083 goto out; 3084 } 3085 3086 /* 3087 * See if we could run any other vcores on the physical core 3088 * along with this one. 3089 */ 3090 init_core_info(&core_info, vc); 3091 pcpu = smp_processor_id(); 3092 target_threads = controlled_threads; 3093 if (target_smt_mode && target_smt_mode < target_threads) 3094 target_threads = target_smt_mode; 3095 if (vc->num_threads < target_threads) 3096 collect_piggybacks(&core_info, target_threads); 3097 3098 /* 3099 * On radix, arrange for TLB flushing if necessary. 3100 * This has to be done before disabling interrupts since 3101 * it uses smp_call_function(). 3102 */ 3103 pcpu = smp_processor_id(); 3104 if (kvm_is_radix(vc->kvm)) { 3105 for (sub = 0; sub < core_info.n_subcores; ++sub) 3106 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3107 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3108 } 3109 3110 /* 3111 * Hard-disable interrupts, and check resched flag and signals. 3112 * If we need to reschedule or deliver a signal, clean up 3113 * and return without going into the guest(s). 3114 * If the mmu_ready flag has been cleared, don't go into the 3115 * guest because that means a HPT resize operation is in progress. 3116 */ 3117 local_irq_disable(); 3118 hard_irq_disable(); 3119 if (lazy_irq_pending() || need_resched() || 3120 recheck_signals_and_mmu(&core_info)) { 3121 local_irq_enable(); 3122 vc->vcore_state = VCORE_INACTIVE; 3123 /* Unlock all except the primary vcore */ 3124 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3125 pvc = core_info.vc[sub]; 3126 /* Put back on to the preempted vcores list */ 3127 kvmppc_vcore_preempt(pvc); 3128 spin_unlock(&pvc->lock); 3129 } 3130 for (i = 0; i < controlled_threads; ++i) 3131 kvmppc_release_hwthread(pcpu + i); 3132 return; 3133 } 3134 3135 kvmppc_clear_host_core(pcpu); 3136 3137 /* Decide on micro-threading (split-core) mode */ 3138 subcore_size = threads_per_subcore; 3139 cmd_bit = stat_bit = 0; 3140 split = core_info.n_subcores; 3141 sip = NULL; 3142 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3143 && !cpu_has_feature(CPU_FTR_ARCH_300); 3144 3145 if (split > 1 || hpt_on_radix) { 3146 sip = &split_info; 3147 memset(&split_info, 0, sizeof(split_info)); 3148 for (sub = 0; sub < core_info.n_subcores; ++sub) 3149 split_info.vc[sub] = core_info.vc[sub]; 3150 3151 if (is_power8) { 3152 if (split == 2 && (dynamic_mt_modes & 2)) { 3153 cmd_bit = HID0_POWER8_1TO2LPAR; 3154 stat_bit = HID0_POWER8_2LPARMODE; 3155 } else { 3156 split = 4; 3157 cmd_bit = HID0_POWER8_1TO4LPAR; 3158 stat_bit = HID0_POWER8_4LPARMODE; 3159 } 3160 subcore_size = MAX_SMT_THREADS / split; 3161 split_info.rpr = mfspr(SPRN_RPR); 3162 split_info.pmmar = mfspr(SPRN_PMMAR); 3163 split_info.ldbar = mfspr(SPRN_LDBAR); 3164 split_info.subcore_size = subcore_size; 3165 } else { 3166 split_info.subcore_size = 1; 3167 if (hpt_on_radix) { 3168 /* Use the split_info for LPCR/LPIDR changes */ 3169 split_info.lpcr_req = vc->lpcr; 3170 split_info.lpidr_req = vc->kvm->arch.lpid; 3171 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3172 split_info.do_set = 1; 3173 } 3174 } 3175 3176 /* order writes to split_info before kvm_split_mode pointer */ 3177 smp_wmb(); 3178 } 3179 3180 for (thr = 0; thr < controlled_threads; ++thr) { 3181 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3182 3183 paca->kvm_hstate.tid = thr; 3184 paca->kvm_hstate.napping = 0; 3185 paca->kvm_hstate.kvm_split_mode = sip; 3186 } 3187 3188 /* Initiate micro-threading (split-core) on POWER8 if required */ 3189 if (cmd_bit) { 3190 unsigned long hid0 = mfspr(SPRN_HID0); 3191 3192 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3193 mb(); 3194 mtspr(SPRN_HID0, hid0); 3195 isync(); 3196 for (;;) { 3197 hid0 = mfspr(SPRN_HID0); 3198 if (hid0 & stat_bit) 3199 break; 3200 cpu_relax(); 3201 } 3202 } 3203 3204 /* 3205 * On POWER8, set RWMR register. 3206 * Since it only affects PURR and SPURR, it doesn't affect 3207 * the host, so we don't save/restore the host value. 3208 */ 3209 if (is_power8) { 3210 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3211 int n_online = atomic_read(&vc->online_count); 3212 3213 /* 3214 * Use the 8-thread value if we're doing split-core 3215 * or if the vcore's online count looks bogus. 3216 */ 3217 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3218 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3219 rwmr_val = p8_rwmr_values[n_online]; 3220 mtspr(SPRN_RWMR, rwmr_val); 3221 } 3222 3223 /* Start all the threads */ 3224 active = 0; 3225 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3226 thr = is_power8 ? subcore_thread_map[sub] : sub; 3227 thr0_done = false; 3228 active |= 1 << thr; 3229 pvc = core_info.vc[sub]; 3230 pvc->pcpu = pcpu + thr; 3231 for_each_runnable_thread(i, vcpu, pvc) { 3232 kvmppc_start_thread(vcpu, pvc); 3233 kvmppc_create_dtl_entry(vcpu, pvc); 3234 trace_kvm_guest_enter(vcpu); 3235 if (!vcpu->arch.ptid) 3236 thr0_done = true; 3237 active |= 1 << (thr + vcpu->arch.ptid); 3238 } 3239 /* 3240 * We need to start the first thread of each subcore 3241 * even if it doesn't have a vcpu. 3242 */ 3243 if (!thr0_done) 3244 kvmppc_start_thread(NULL, pvc); 3245 } 3246 3247 /* 3248 * Ensure that split_info.do_nap is set after setting 3249 * the vcore pointer in the PACA of the secondaries. 3250 */ 3251 smp_mb(); 3252 3253 /* 3254 * When doing micro-threading, poke the inactive threads as well. 3255 * This gets them to the nap instruction after kvm_do_nap, 3256 * which reduces the time taken to unsplit later. 3257 * For POWER9 HPT guest on radix host, we need all the secondary 3258 * threads woken up so they can do the LPCR/LPIDR change. 3259 */ 3260 if (cmd_bit || hpt_on_radix) { 3261 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3262 for (thr = 1; thr < threads_per_subcore; ++thr) 3263 if (!(active & (1 << thr))) 3264 kvmppc_ipi_thread(pcpu + thr); 3265 } 3266 3267 vc->vcore_state = VCORE_RUNNING; 3268 preempt_disable(); 3269 3270 trace_kvmppc_run_core(vc, 0); 3271 3272 for (sub = 0; sub < core_info.n_subcores; ++sub) 3273 spin_unlock(&core_info.vc[sub]->lock); 3274 3275 guest_enter_irqoff(); 3276 3277 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3278 3279 this_cpu_disable_ftrace(); 3280 3281 /* 3282 * Interrupts will be enabled once we get into the guest, 3283 * so tell lockdep that we're about to enable interrupts. 3284 */ 3285 trace_hardirqs_on(); 3286 3287 trap = __kvmppc_vcore_entry(); 3288 3289 trace_hardirqs_off(); 3290 3291 this_cpu_enable_ftrace(); 3292 3293 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3294 3295 set_irq_happened(trap); 3296 3297 spin_lock(&vc->lock); 3298 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3299 vc->vcore_state = VCORE_EXITING; 3300 3301 /* wait for secondary threads to finish writing their state to memory */ 3302 kvmppc_wait_for_nap(controlled_threads); 3303 3304 /* Return to whole-core mode if we split the core earlier */ 3305 if (cmd_bit) { 3306 unsigned long hid0 = mfspr(SPRN_HID0); 3307 unsigned long loops = 0; 3308 3309 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3310 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3311 mb(); 3312 mtspr(SPRN_HID0, hid0); 3313 isync(); 3314 for (;;) { 3315 hid0 = mfspr(SPRN_HID0); 3316 if (!(hid0 & stat_bit)) 3317 break; 3318 cpu_relax(); 3319 ++loops; 3320 } 3321 } else if (hpt_on_radix) { 3322 /* Wait for all threads to have seen final sync */ 3323 for (thr = 1; thr < controlled_threads; ++thr) { 3324 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3325 3326 while (paca->kvm_hstate.kvm_split_mode) { 3327 HMT_low(); 3328 barrier(); 3329 } 3330 HMT_medium(); 3331 } 3332 } 3333 split_info.do_nap = 0; 3334 3335 kvmppc_set_host_core(pcpu); 3336 3337 local_irq_enable(); 3338 guest_exit(); 3339 3340 /* Let secondaries go back to the offline loop */ 3341 for (i = 0; i < controlled_threads; ++i) { 3342 kvmppc_release_hwthread(pcpu + i); 3343 if (sip && sip->napped[i]) 3344 kvmppc_ipi_thread(pcpu + i); 3345 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3346 } 3347 3348 spin_unlock(&vc->lock); 3349 3350 /* make sure updates to secondary vcpu structs are visible now */ 3351 smp_mb(); 3352 3353 preempt_enable(); 3354 3355 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3356 pvc = core_info.vc[sub]; 3357 post_guest_process(pvc, pvc == vc); 3358 } 3359 3360 spin_lock(&vc->lock); 3361 3362 out: 3363 vc->vcore_state = VCORE_INACTIVE; 3364 trace_kvmppc_run_core(vc, 1); 3365 } 3366 3367 /* 3368 * Load up hypervisor-mode registers on P9. 3369 */ 3370 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3371 unsigned long lpcr) 3372 { 3373 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3374 s64 hdec; 3375 u64 tb, purr, spurr; 3376 int trap; 3377 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3378 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3379 unsigned long host_dawr = mfspr(SPRN_DAWR); 3380 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3381 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3382 unsigned long host_pidr = mfspr(SPRN_PID); 3383 3384 hdec = time_limit - mftb(); 3385 if (hdec < 0) 3386 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3387 mtspr(SPRN_HDEC, hdec); 3388 3389 if (vc->tb_offset) { 3390 u64 new_tb = mftb() + vc->tb_offset; 3391 mtspr(SPRN_TBU40, new_tb); 3392 tb = mftb(); 3393 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3394 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3395 vc->tb_offset_applied = vc->tb_offset; 3396 } 3397 3398 if (vc->pcr) 3399 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3400 mtspr(SPRN_DPDES, vc->dpdes); 3401 mtspr(SPRN_VTB, vc->vtb); 3402 3403 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3404 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3405 mtspr(SPRN_PURR, vcpu->arch.purr); 3406 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3407 3408 if (dawr_enabled()) { 3409 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3410 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3411 } 3412 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3413 mtspr(SPRN_IC, vcpu->arch.ic); 3414 mtspr(SPRN_PID, vcpu->arch.pid); 3415 3416 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3417 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3418 3419 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3420 3421 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3422 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3423 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3424 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3425 3426 mtspr(SPRN_AMOR, ~0UL); 3427 3428 mtspr(SPRN_LPCR, lpcr); 3429 isync(); 3430 3431 kvmppc_xive_push_vcpu(vcpu); 3432 3433 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3434 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3435 3436 trap = __kvmhv_vcpu_entry_p9(vcpu); 3437 3438 /* Advance host PURR/SPURR by the amount used by guest */ 3439 purr = mfspr(SPRN_PURR); 3440 spurr = mfspr(SPRN_SPURR); 3441 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3442 purr - vcpu->arch.purr); 3443 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3444 spurr - vcpu->arch.spurr); 3445 vcpu->arch.purr = purr; 3446 vcpu->arch.spurr = spurr; 3447 3448 vcpu->arch.ic = mfspr(SPRN_IC); 3449 vcpu->arch.pid = mfspr(SPRN_PID); 3450 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3451 3452 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3453 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3454 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3455 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3456 3457 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3458 mtspr(SPRN_PSSCR, host_psscr | 3459 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3460 mtspr(SPRN_HFSCR, host_hfscr); 3461 mtspr(SPRN_CIABR, host_ciabr); 3462 mtspr(SPRN_DAWR, host_dawr); 3463 mtspr(SPRN_DAWRX, host_dawrx); 3464 mtspr(SPRN_PID, host_pidr); 3465 3466 /* 3467 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3468 * case we interrupted the guest between a tlbie and a ptesync. 3469 */ 3470 asm volatile("eieio; tlbsync; ptesync"); 3471 3472 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3473 isync(); 3474 3475 vc->dpdes = mfspr(SPRN_DPDES); 3476 vc->vtb = mfspr(SPRN_VTB); 3477 mtspr(SPRN_DPDES, 0); 3478 if (vc->pcr) 3479 mtspr(SPRN_PCR, PCR_MASK); 3480 3481 if (vc->tb_offset_applied) { 3482 u64 new_tb = mftb() - vc->tb_offset_applied; 3483 mtspr(SPRN_TBU40, new_tb); 3484 tb = mftb(); 3485 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3486 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3487 vc->tb_offset_applied = 0; 3488 } 3489 3490 mtspr(SPRN_HDEC, 0x7fffffff); 3491 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3492 3493 return trap; 3494 } 3495 3496 /* 3497 * Virtual-mode guest entry for POWER9 and later when the host and 3498 * guest are both using the radix MMU. The LPIDR has already been set. 3499 */ 3500 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3501 unsigned long lpcr) 3502 { 3503 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3504 unsigned long host_dscr = mfspr(SPRN_DSCR); 3505 unsigned long host_tidr = mfspr(SPRN_TIDR); 3506 unsigned long host_iamr = mfspr(SPRN_IAMR); 3507 unsigned long host_amr = mfspr(SPRN_AMR); 3508 s64 dec; 3509 u64 tb; 3510 int trap, save_pmu; 3511 3512 dec = mfspr(SPRN_DEC); 3513 tb = mftb(); 3514 if (dec < 512) 3515 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3516 local_paca->kvm_hstate.dec_expires = dec + tb; 3517 if (local_paca->kvm_hstate.dec_expires < time_limit) 3518 time_limit = local_paca->kvm_hstate.dec_expires; 3519 3520 vcpu->arch.ceded = 0; 3521 3522 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3523 3524 kvmppc_subcore_enter_guest(); 3525 3526 vc->entry_exit_map = 1; 3527 vc->in_guest = 1; 3528 3529 if (vcpu->arch.vpa.pinned_addr) { 3530 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3531 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3532 lp->yield_count = cpu_to_be32(yield_count); 3533 vcpu->arch.vpa.dirty = 1; 3534 } 3535 3536 if (cpu_has_feature(CPU_FTR_TM) || 3537 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3538 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3539 3540 kvmhv_load_guest_pmu(vcpu); 3541 3542 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3543 load_fp_state(&vcpu->arch.fp); 3544 #ifdef CONFIG_ALTIVEC 3545 load_vr_state(&vcpu->arch.vr); 3546 #endif 3547 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3548 3549 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3550 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3551 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3552 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3553 mtspr(SPRN_TAR, vcpu->arch.tar); 3554 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3555 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3556 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3557 mtspr(SPRN_WORT, vcpu->arch.wort); 3558 mtspr(SPRN_TIDR, vcpu->arch.tid); 3559 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3560 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3561 mtspr(SPRN_AMR, vcpu->arch.amr); 3562 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3563 3564 if (!(vcpu->arch.ctrl & 1)) 3565 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3566 3567 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3568 3569 if (kvmhv_on_pseries()) { 3570 /* 3571 * We need to save and restore the guest visible part of the 3572 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3573 * doesn't do this for us. Note only required if pseries since 3574 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3575 */ 3576 unsigned long host_psscr; 3577 /* call our hypervisor to load up HV regs and go */ 3578 struct hv_guest_state hvregs; 3579 3580 host_psscr = mfspr(SPRN_PSSCR_PR); 3581 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3582 kvmhv_save_hv_regs(vcpu, &hvregs); 3583 hvregs.lpcr = lpcr; 3584 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3585 hvregs.version = HV_GUEST_STATE_VERSION; 3586 if (vcpu->arch.nested) { 3587 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3588 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3589 } else { 3590 hvregs.lpid = vcpu->kvm->arch.lpid; 3591 hvregs.vcpu_token = vcpu->vcpu_id; 3592 } 3593 hvregs.hdec_expiry = time_limit; 3594 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3595 __pa(&vcpu->arch.regs)); 3596 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3597 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3598 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3599 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3600 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3601 mtspr(SPRN_PSSCR_PR, host_psscr); 3602 3603 /* H_CEDE has to be handled now, not later */ 3604 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3605 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3606 kvmppc_nested_cede(vcpu); 3607 trap = 0; 3608 } 3609 } else { 3610 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3611 } 3612 3613 vcpu->arch.slb_max = 0; 3614 dec = mfspr(SPRN_DEC); 3615 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3616 dec = (s32) dec; 3617 tb = mftb(); 3618 vcpu->arch.dec_expires = dec + tb; 3619 vcpu->cpu = -1; 3620 vcpu->arch.thread_cpu = -1; 3621 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3622 3623 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3624 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3625 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3626 vcpu->arch.tar = mfspr(SPRN_TAR); 3627 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3628 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3629 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3630 vcpu->arch.wort = mfspr(SPRN_WORT); 3631 vcpu->arch.tid = mfspr(SPRN_TIDR); 3632 vcpu->arch.amr = mfspr(SPRN_AMR); 3633 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3634 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3635 3636 mtspr(SPRN_PSPB, 0); 3637 mtspr(SPRN_WORT, 0); 3638 mtspr(SPRN_UAMOR, 0); 3639 mtspr(SPRN_DSCR, host_dscr); 3640 mtspr(SPRN_TIDR, host_tidr); 3641 mtspr(SPRN_IAMR, host_iamr); 3642 mtspr(SPRN_PSPB, 0); 3643 3644 if (host_amr != vcpu->arch.amr) 3645 mtspr(SPRN_AMR, host_amr); 3646 3647 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3648 store_fp_state(&vcpu->arch.fp); 3649 #ifdef CONFIG_ALTIVEC 3650 store_vr_state(&vcpu->arch.vr); 3651 #endif 3652 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3653 3654 if (cpu_has_feature(CPU_FTR_TM) || 3655 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3656 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3657 3658 save_pmu = 1; 3659 if (vcpu->arch.vpa.pinned_addr) { 3660 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3661 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3662 lp->yield_count = cpu_to_be32(yield_count); 3663 vcpu->arch.vpa.dirty = 1; 3664 save_pmu = lp->pmcregs_in_use; 3665 } 3666 /* Must save pmu if this guest is capable of running nested guests */ 3667 save_pmu |= nesting_enabled(vcpu->kvm); 3668 3669 kvmhv_save_guest_pmu(vcpu, save_pmu); 3670 3671 vc->entry_exit_map = 0x101; 3672 vc->in_guest = 0; 3673 3674 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3675 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3676 3677 kvmhv_load_host_pmu(); 3678 3679 kvmppc_subcore_exit_guest(); 3680 3681 return trap; 3682 } 3683 3684 /* 3685 * Wait for some other vcpu thread to execute us, and 3686 * wake us up when we need to handle something in the host. 3687 */ 3688 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3689 struct kvm_vcpu *vcpu, int wait_state) 3690 { 3691 DEFINE_WAIT(wait); 3692 3693 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3694 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3695 spin_unlock(&vc->lock); 3696 schedule(); 3697 spin_lock(&vc->lock); 3698 } 3699 finish_wait(&vcpu->arch.cpu_run, &wait); 3700 } 3701 3702 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3703 { 3704 if (!halt_poll_ns_grow) 3705 return; 3706 3707 vc->halt_poll_ns *= halt_poll_ns_grow; 3708 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3709 vc->halt_poll_ns = halt_poll_ns_grow_start; 3710 } 3711 3712 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3713 { 3714 if (halt_poll_ns_shrink == 0) 3715 vc->halt_poll_ns = 0; 3716 else 3717 vc->halt_poll_ns /= halt_poll_ns_shrink; 3718 } 3719 3720 #ifdef CONFIG_KVM_XICS 3721 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3722 { 3723 if (!xics_on_xive()) 3724 return false; 3725 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3726 vcpu->arch.xive_saved_state.cppr; 3727 } 3728 #else 3729 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3730 { 3731 return false; 3732 } 3733 #endif /* CONFIG_KVM_XICS */ 3734 3735 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3736 { 3737 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3738 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3739 return true; 3740 3741 return false; 3742 } 3743 3744 /* 3745 * Check to see if any of the runnable vcpus on the vcore have pending 3746 * exceptions or are no longer ceded 3747 */ 3748 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3749 { 3750 struct kvm_vcpu *vcpu; 3751 int i; 3752 3753 for_each_runnable_thread(i, vcpu, vc) { 3754 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3755 return 1; 3756 } 3757 3758 return 0; 3759 } 3760 3761 /* 3762 * All the vcpus in this vcore are idle, so wait for a decrementer 3763 * or external interrupt to one of the vcpus. vc->lock is held. 3764 */ 3765 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3766 { 3767 ktime_t cur, start_poll, start_wait; 3768 int do_sleep = 1; 3769 u64 block_ns; 3770 DECLARE_SWAITQUEUE(wait); 3771 3772 /* Poll for pending exceptions and ceded state */ 3773 cur = start_poll = ktime_get(); 3774 if (vc->halt_poll_ns) { 3775 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3776 ++vc->runner->stat.halt_attempted_poll; 3777 3778 vc->vcore_state = VCORE_POLLING; 3779 spin_unlock(&vc->lock); 3780 3781 do { 3782 if (kvmppc_vcore_check_block(vc)) { 3783 do_sleep = 0; 3784 break; 3785 } 3786 cur = ktime_get(); 3787 } while (single_task_running() && ktime_before(cur, stop)); 3788 3789 spin_lock(&vc->lock); 3790 vc->vcore_state = VCORE_INACTIVE; 3791 3792 if (!do_sleep) { 3793 ++vc->runner->stat.halt_successful_poll; 3794 goto out; 3795 } 3796 } 3797 3798 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3799 3800 if (kvmppc_vcore_check_block(vc)) { 3801 finish_swait(&vc->wq, &wait); 3802 do_sleep = 0; 3803 /* If we polled, count this as a successful poll */ 3804 if (vc->halt_poll_ns) 3805 ++vc->runner->stat.halt_successful_poll; 3806 goto out; 3807 } 3808 3809 start_wait = ktime_get(); 3810 3811 vc->vcore_state = VCORE_SLEEPING; 3812 trace_kvmppc_vcore_blocked(vc, 0); 3813 spin_unlock(&vc->lock); 3814 schedule(); 3815 finish_swait(&vc->wq, &wait); 3816 spin_lock(&vc->lock); 3817 vc->vcore_state = VCORE_INACTIVE; 3818 trace_kvmppc_vcore_blocked(vc, 1); 3819 ++vc->runner->stat.halt_successful_wait; 3820 3821 cur = ktime_get(); 3822 3823 out: 3824 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3825 3826 /* Attribute wait time */ 3827 if (do_sleep) { 3828 vc->runner->stat.halt_wait_ns += 3829 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3830 /* Attribute failed poll time */ 3831 if (vc->halt_poll_ns) 3832 vc->runner->stat.halt_poll_fail_ns += 3833 ktime_to_ns(start_wait) - 3834 ktime_to_ns(start_poll); 3835 } else { 3836 /* Attribute successful poll time */ 3837 if (vc->halt_poll_ns) 3838 vc->runner->stat.halt_poll_success_ns += 3839 ktime_to_ns(cur) - 3840 ktime_to_ns(start_poll); 3841 } 3842 3843 /* Adjust poll time */ 3844 if (halt_poll_ns) { 3845 if (block_ns <= vc->halt_poll_ns) 3846 ; 3847 /* We slept and blocked for longer than the max halt time */ 3848 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3849 shrink_halt_poll_ns(vc); 3850 /* We slept and our poll time is too small */ 3851 else if (vc->halt_poll_ns < halt_poll_ns && 3852 block_ns < halt_poll_ns) 3853 grow_halt_poll_ns(vc); 3854 if (vc->halt_poll_ns > halt_poll_ns) 3855 vc->halt_poll_ns = halt_poll_ns; 3856 } else 3857 vc->halt_poll_ns = 0; 3858 3859 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3860 } 3861 3862 /* 3863 * This never fails for a radix guest, as none of the operations it does 3864 * for a radix guest can fail or have a way to report failure. 3865 * kvmhv_run_single_vcpu() relies on this fact. 3866 */ 3867 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3868 { 3869 int r = 0; 3870 struct kvm *kvm = vcpu->kvm; 3871 3872 mutex_lock(&kvm->arch.mmu_setup_lock); 3873 if (!kvm->arch.mmu_ready) { 3874 if (!kvm_is_radix(kvm)) 3875 r = kvmppc_hv_setup_htab_rma(vcpu); 3876 if (!r) { 3877 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3878 kvmppc_setup_partition_table(kvm); 3879 kvm->arch.mmu_ready = 1; 3880 } 3881 } 3882 mutex_unlock(&kvm->arch.mmu_setup_lock); 3883 return r; 3884 } 3885 3886 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3887 { 3888 int n_ceded, i, r; 3889 struct kvmppc_vcore *vc; 3890 struct kvm_vcpu *v; 3891 3892 trace_kvmppc_run_vcpu_enter(vcpu); 3893 3894 kvm_run->exit_reason = 0; 3895 vcpu->arch.ret = RESUME_GUEST; 3896 vcpu->arch.trap = 0; 3897 kvmppc_update_vpas(vcpu); 3898 3899 /* 3900 * Synchronize with other threads in this virtual core 3901 */ 3902 vc = vcpu->arch.vcore; 3903 spin_lock(&vc->lock); 3904 vcpu->arch.ceded = 0; 3905 vcpu->arch.run_task = current; 3906 vcpu->arch.kvm_run = kvm_run; 3907 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3908 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3909 vcpu->arch.busy_preempt = TB_NIL; 3910 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3911 ++vc->n_runnable; 3912 3913 /* 3914 * This happens the first time this is called for a vcpu. 3915 * If the vcore is already running, we may be able to start 3916 * this thread straight away and have it join in. 3917 */ 3918 if (!signal_pending(current)) { 3919 if ((vc->vcore_state == VCORE_PIGGYBACK || 3920 vc->vcore_state == VCORE_RUNNING) && 3921 !VCORE_IS_EXITING(vc)) { 3922 kvmppc_create_dtl_entry(vcpu, vc); 3923 kvmppc_start_thread(vcpu, vc); 3924 trace_kvm_guest_enter(vcpu); 3925 } else if (vc->vcore_state == VCORE_SLEEPING) { 3926 swake_up_one(&vc->wq); 3927 } 3928 3929 } 3930 3931 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3932 !signal_pending(current)) { 3933 /* See if the MMU is ready to go */ 3934 if (!vcpu->kvm->arch.mmu_ready) { 3935 spin_unlock(&vc->lock); 3936 r = kvmhv_setup_mmu(vcpu); 3937 spin_lock(&vc->lock); 3938 if (r) { 3939 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3940 kvm_run->fail_entry. 3941 hardware_entry_failure_reason = 0; 3942 vcpu->arch.ret = r; 3943 break; 3944 } 3945 } 3946 3947 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3948 kvmppc_vcore_end_preempt(vc); 3949 3950 if (vc->vcore_state != VCORE_INACTIVE) { 3951 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3952 continue; 3953 } 3954 for_each_runnable_thread(i, v, vc) { 3955 kvmppc_core_prepare_to_enter(v); 3956 if (signal_pending(v->arch.run_task)) { 3957 kvmppc_remove_runnable(vc, v); 3958 v->stat.signal_exits++; 3959 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3960 v->arch.ret = -EINTR; 3961 wake_up(&v->arch.cpu_run); 3962 } 3963 } 3964 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3965 break; 3966 n_ceded = 0; 3967 for_each_runnable_thread(i, v, vc) { 3968 if (!kvmppc_vcpu_woken(v)) 3969 n_ceded += v->arch.ceded; 3970 else 3971 v->arch.ceded = 0; 3972 } 3973 vc->runner = vcpu; 3974 if (n_ceded == vc->n_runnable) { 3975 kvmppc_vcore_blocked(vc); 3976 } else if (need_resched()) { 3977 kvmppc_vcore_preempt(vc); 3978 /* Let something else run */ 3979 cond_resched_lock(&vc->lock); 3980 if (vc->vcore_state == VCORE_PREEMPT) 3981 kvmppc_vcore_end_preempt(vc); 3982 } else { 3983 kvmppc_run_core(vc); 3984 } 3985 vc->runner = NULL; 3986 } 3987 3988 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3989 (vc->vcore_state == VCORE_RUNNING || 3990 vc->vcore_state == VCORE_EXITING || 3991 vc->vcore_state == VCORE_PIGGYBACK)) 3992 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3993 3994 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3995 kvmppc_vcore_end_preempt(vc); 3996 3997 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3998 kvmppc_remove_runnable(vc, vcpu); 3999 vcpu->stat.signal_exits++; 4000 kvm_run->exit_reason = KVM_EXIT_INTR; 4001 vcpu->arch.ret = -EINTR; 4002 } 4003 4004 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4005 /* Wake up some vcpu to run the core */ 4006 i = -1; 4007 v = next_runnable_thread(vc, &i); 4008 wake_up(&v->arch.cpu_run); 4009 } 4010 4011 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4012 spin_unlock(&vc->lock); 4013 return vcpu->arch.ret; 4014 } 4015 4016 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4017 struct kvm_vcpu *vcpu, u64 time_limit, 4018 unsigned long lpcr) 4019 { 4020 int trap, r, pcpu; 4021 int srcu_idx, lpid; 4022 struct kvmppc_vcore *vc; 4023 struct kvm *kvm = vcpu->kvm; 4024 struct kvm_nested_guest *nested = vcpu->arch.nested; 4025 4026 trace_kvmppc_run_vcpu_enter(vcpu); 4027 4028 kvm_run->exit_reason = 0; 4029 vcpu->arch.ret = RESUME_GUEST; 4030 vcpu->arch.trap = 0; 4031 4032 vc = vcpu->arch.vcore; 4033 vcpu->arch.ceded = 0; 4034 vcpu->arch.run_task = current; 4035 vcpu->arch.kvm_run = kvm_run; 4036 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4037 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4038 vcpu->arch.busy_preempt = TB_NIL; 4039 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4040 vc->runnable_threads[0] = vcpu; 4041 vc->n_runnable = 1; 4042 vc->runner = vcpu; 4043 4044 /* See if the MMU is ready to go */ 4045 if (!kvm->arch.mmu_ready) 4046 kvmhv_setup_mmu(vcpu); 4047 4048 if (need_resched()) 4049 cond_resched(); 4050 4051 kvmppc_update_vpas(vcpu); 4052 4053 init_vcore_to_run(vc); 4054 vc->preempt_tb = TB_NIL; 4055 4056 preempt_disable(); 4057 pcpu = smp_processor_id(); 4058 vc->pcpu = pcpu; 4059 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4060 4061 local_irq_disable(); 4062 hard_irq_disable(); 4063 if (signal_pending(current)) 4064 goto sigpend; 4065 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4066 goto out; 4067 4068 if (!nested) { 4069 kvmppc_core_prepare_to_enter(vcpu); 4070 if (vcpu->arch.doorbell_request) { 4071 vc->dpdes = 1; 4072 smp_wmb(); 4073 vcpu->arch.doorbell_request = 0; 4074 } 4075 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4076 &vcpu->arch.pending_exceptions)) 4077 lpcr |= LPCR_MER; 4078 } else if (vcpu->arch.pending_exceptions || 4079 vcpu->arch.doorbell_request || 4080 xive_interrupt_pending(vcpu)) { 4081 vcpu->arch.ret = RESUME_HOST; 4082 goto out; 4083 } 4084 4085 kvmppc_clear_host_core(pcpu); 4086 4087 local_paca->kvm_hstate.tid = 0; 4088 local_paca->kvm_hstate.napping = 0; 4089 local_paca->kvm_hstate.kvm_split_mode = NULL; 4090 kvmppc_start_thread(vcpu, vc); 4091 kvmppc_create_dtl_entry(vcpu, vc); 4092 trace_kvm_guest_enter(vcpu); 4093 4094 vc->vcore_state = VCORE_RUNNING; 4095 trace_kvmppc_run_core(vc, 0); 4096 4097 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4098 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4099 mtspr(SPRN_LPID, lpid); 4100 isync(); 4101 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4102 } 4103 4104 guest_enter_irqoff(); 4105 4106 srcu_idx = srcu_read_lock(&kvm->srcu); 4107 4108 this_cpu_disable_ftrace(); 4109 4110 /* Tell lockdep that we're about to enable interrupts */ 4111 trace_hardirqs_on(); 4112 4113 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4114 vcpu->arch.trap = trap; 4115 4116 trace_hardirqs_off(); 4117 4118 this_cpu_enable_ftrace(); 4119 4120 srcu_read_unlock(&kvm->srcu, srcu_idx); 4121 4122 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4123 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4124 isync(); 4125 } 4126 4127 set_irq_happened(trap); 4128 4129 kvmppc_set_host_core(pcpu); 4130 4131 local_irq_enable(); 4132 guest_exit(); 4133 4134 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4135 4136 preempt_enable(); 4137 4138 /* 4139 * cancel pending decrementer exception if DEC is now positive, or if 4140 * entering a nested guest in which case the decrementer is now owned 4141 * by L2 and the L1 decrementer is provided in hdec_expires 4142 */ 4143 if (kvmppc_core_pending_dec(vcpu) && 4144 ((get_tb() < vcpu->arch.dec_expires) || 4145 (trap == BOOK3S_INTERRUPT_SYSCALL && 4146 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4147 kvmppc_core_dequeue_dec(vcpu); 4148 4149 trace_kvm_guest_exit(vcpu); 4150 r = RESUME_GUEST; 4151 if (trap) { 4152 if (!nested) 4153 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4154 else 4155 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4156 } 4157 vcpu->arch.ret = r; 4158 4159 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4160 !kvmppc_vcpu_woken(vcpu)) { 4161 kvmppc_set_timer(vcpu); 4162 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4163 if (signal_pending(current)) { 4164 vcpu->stat.signal_exits++; 4165 kvm_run->exit_reason = KVM_EXIT_INTR; 4166 vcpu->arch.ret = -EINTR; 4167 break; 4168 } 4169 spin_lock(&vc->lock); 4170 kvmppc_vcore_blocked(vc); 4171 spin_unlock(&vc->lock); 4172 } 4173 } 4174 vcpu->arch.ceded = 0; 4175 4176 vc->vcore_state = VCORE_INACTIVE; 4177 trace_kvmppc_run_core(vc, 1); 4178 4179 done: 4180 kvmppc_remove_runnable(vc, vcpu); 4181 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4182 4183 return vcpu->arch.ret; 4184 4185 sigpend: 4186 vcpu->stat.signal_exits++; 4187 kvm_run->exit_reason = KVM_EXIT_INTR; 4188 vcpu->arch.ret = -EINTR; 4189 out: 4190 local_irq_enable(); 4191 preempt_enable(); 4192 goto done; 4193 } 4194 4195 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4196 { 4197 int r; 4198 int srcu_idx; 4199 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4200 unsigned long user_tar = 0; 4201 unsigned int user_vrsave; 4202 struct kvm *kvm; 4203 4204 if (!vcpu->arch.sane) { 4205 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4206 return -EINVAL; 4207 } 4208 4209 /* 4210 * Don't allow entry with a suspended transaction, because 4211 * the guest entry/exit code will lose it. 4212 * If the guest has TM enabled, save away their TM-related SPRs 4213 * (they will get restored by the TM unavailable interrupt). 4214 */ 4215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4216 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4217 (current->thread.regs->msr & MSR_TM)) { 4218 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4219 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4220 run->fail_entry.hardware_entry_failure_reason = 0; 4221 return -EINVAL; 4222 } 4223 /* Enable TM so we can read the TM SPRs */ 4224 mtmsr(mfmsr() | MSR_TM); 4225 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4226 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4227 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4228 current->thread.regs->msr &= ~MSR_TM; 4229 } 4230 #endif 4231 4232 /* 4233 * Force online to 1 for the sake of old userspace which doesn't 4234 * set it. 4235 */ 4236 if (!vcpu->arch.online) { 4237 atomic_inc(&vcpu->arch.vcore->online_count); 4238 vcpu->arch.online = 1; 4239 } 4240 4241 kvmppc_core_prepare_to_enter(vcpu); 4242 4243 /* No need to go into the guest when all we'll do is come back out */ 4244 if (signal_pending(current)) { 4245 run->exit_reason = KVM_EXIT_INTR; 4246 return -EINTR; 4247 } 4248 4249 kvm = vcpu->kvm; 4250 atomic_inc(&kvm->arch.vcpus_running); 4251 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4252 smp_mb(); 4253 4254 flush_all_to_thread(current); 4255 4256 /* Save userspace EBB and other register values */ 4257 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4258 ebb_regs[0] = mfspr(SPRN_EBBHR); 4259 ebb_regs[1] = mfspr(SPRN_EBBRR); 4260 ebb_regs[2] = mfspr(SPRN_BESCR); 4261 user_tar = mfspr(SPRN_TAR); 4262 } 4263 user_vrsave = mfspr(SPRN_VRSAVE); 4264 4265 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4266 vcpu->arch.pgdir = current->mm->pgd; 4267 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4268 4269 do { 4270 /* 4271 * The early POWER9 chips that can't mix radix and HPT threads 4272 * on the same core also need the workaround for the problem 4273 * where the TLB would prefetch entries in the guest exit path 4274 * for radix guests using the guest PIDR value and LPID 0. 4275 * The workaround is in the old path (kvmppc_run_vcpu()) 4276 * but not the new path (kvmhv_run_single_vcpu()). 4277 */ 4278 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4279 !no_mixing_hpt_and_radix) 4280 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4281 vcpu->arch.vcore->lpcr); 4282 else 4283 r = kvmppc_run_vcpu(run, vcpu); 4284 4285 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4286 !(vcpu->arch.shregs.msr & MSR_PR)) { 4287 trace_kvm_hcall_enter(vcpu); 4288 r = kvmppc_pseries_do_hcall(vcpu); 4289 trace_kvm_hcall_exit(vcpu, r); 4290 kvmppc_core_prepare_to_enter(vcpu); 4291 } else if (r == RESUME_PAGE_FAULT) { 4292 srcu_idx = srcu_read_lock(&kvm->srcu); 4293 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4294 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4295 srcu_read_unlock(&kvm->srcu, srcu_idx); 4296 } else if (r == RESUME_PASSTHROUGH) { 4297 if (WARN_ON(xics_on_xive())) 4298 r = H_SUCCESS; 4299 else 4300 r = kvmppc_xics_rm_complete(vcpu, 0); 4301 } 4302 } while (is_kvmppc_resume_guest(r)); 4303 4304 /* Restore userspace EBB and other register values */ 4305 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4306 mtspr(SPRN_EBBHR, ebb_regs[0]); 4307 mtspr(SPRN_EBBRR, ebb_regs[1]); 4308 mtspr(SPRN_BESCR, ebb_regs[2]); 4309 mtspr(SPRN_TAR, user_tar); 4310 mtspr(SPRN_FSCR, current->thread.fscr); 4311 } 4312 mtspr(SPRN_VRSAVE, user_vrsave); 4313 4314 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4315 atomic_dec(&kvm->arch.vcpus_running); 4316 return r; 4317 } 4318 4319 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4320 int shift, int sllp) 4321 { 4322 (*sps)->page_shift = shift; 4323 (*sps)->slb_enc = sllp; 4324 (*sps)->enc[0].page_shift = shift; 4325 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4326 /* 4327 * Add 16MB MPSS support (may get filtered out by userspace) 4328 */ 4329 if (shift != 24) { 4330 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4331 if (penc != -1) { 4332 (*sps)->enc[1].page_shift = 24; 4333 (*sps)->enc[1].pte_enc = penc; 4334 } 4335 } 4336 (*sps)++; 4337 } 4338 4339 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4340 struct kvm_ppc_smmu_info *info) 4341 { 4342 struct kvm_ppc_one_seg_page_size *sps; 4343 4344 /* 4345 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4346 * POWER7 doesn't support keys for instruction accesses, 4347 * POWER8 and POWER9 do. 4348 */ 4349 info->data_keys = 32; 4350 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4351 4352 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4353 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4354 info->slb_size = 32; 4355 4356 /* We only support these sizes for now, and no muti-size segments */ 4357 sps = &info->sps[0]; 4358 kvmppc_add_seg_page_size(&sps, 12, 0); 4359 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4360 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4361 4362 /* If running as a nested hypervisor, we don't support HPT guests */ 4363 if (kvmhv_on_pseries()) 4364 info->flags |= KVM_PPC_NO_HASH; 4365 4366 return 0; 4367 } 4368 4369 /* 4370 * Get (and clear) the dirty memory log for a memory slot. 4371 */ 4372 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4373 struct kvm_dirty_log *log) 4374 { 4375 struct kvm_memslots *slots; 4376 struct kvm_memory_slot *memslot; 4377 int i, r; 4378 unsigned long n; 4379 unsigned long *buf, *p; 4380 struct kvm_vcpu *vcpu; 4381 4382 mutex_lock(&kvm->slots_lock); 4383 4384 r = -EINVAL; 4385 if (log->slot >= KVM_USER_MEM_SLOTS) 4386 goto out; 4387 4388 slots = kvm_memslots(kvm); 4389 memslot = id_to_memslot(slots, log->slot); 4390 r = -ENOENT; 4391 if (!memslot->dirty_bitmap) 4392 goto out; 4393 4394 /* 4395 * Use second half of bitmap area because both HPT and radix 4396 * accumulate bits in the first half. 4397 */ 4398 n = kvm_dirty_bitmap_bytes(memslot); 4399 buf = memslot->dirty_bitmap + n / sizeof(long); 4400 memset(buf, 0, n); 4401 4402 if (kvm_is_radix(kvm)) 4403 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4404 else 4405 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4406 if (r) 4407 goto out; 4408 4409 /* 4410 * We accumulate dirty bits in the first half of the 4411 * memslot's dirty_bitmap area, for when pages are paged 4412 * out or modified by the host directly. Pick up these 4413 * bits and add them to the map. 4414 */ 4415 p = memslot->dirty_bitmap; 4416 for (i = 0; i < n / sizeof(long); ++i) 4417 buf[i] |= xchg(&p[i], 0); 4418 4419 /* Harvest dirty bits from VPA and DTL updates */ 4420 /* Note: we never modify the SLB shadow buffer areas */ 4421 kvm_for_each_vcpu(i, vcpu, kvm) { 4422 spin_lock(&vcpu->arch.vpa_update_lock); 4423 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4424 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4425 spin_unlock(&vcpu->arch.vpa_update_lock); 4426 } 4427 4428 r = -EFAULT; 4429 if (copy_to_user(log->dirty_bitmap, buf, n)) 4430 goto out; 4431 4432 r = 0; 4433 out: 4434 mutex_unlock(&kvm->slots_lock); 4435 return r; 4436 } 4437 4438 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4439 struct kvm_memory_slot *dont) 4440 { 4441 if (!dont || free->arch.rmap != dont->arch.rmap) { 4442 vfree(free->arch.rmap); 4443 free->arch.rmap = NULL; 4444 } 4445 } 4446 4447 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4448 unsigned long npages) 4449 { 4450 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4451 if (!slot->arch.rmap) 4452 return -ENOMEM; 4453 4454 return 0; 4455 } 4456 4457 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4458 struct kvm_memory_slot *memslot, 4459 const struct kvm_userspace_memory_region *mem) 4460 { 4461 return 0; 4462 } 4463 4464 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4465 const struct kvm_userspace_memory_region *mem, 4466 const struct kvm_memory_slot *old, 4467 const struct kvm_memory_slot *new, 4468 enum kvm_mr_change change) 4469 { 4470 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4471 4472 /* 4473 * If we are making a new memslot, it might make 4474 * some address that was previously cached as emulated 4475 * MMIO be no longer emulated MMIO, so invalidate 4476 * all the caches of emulated MMIO translations. 4477 */ 4478 if (npages) 4479 atomic64_inc(&kvm->arch.mmio_update); 4480 4481 /* 4482 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4483 * have already called kvm_arch_flush_shadow_memslot() to 4484 * flush shadow mappings. For KVM_MR_CREATE we have no 4485 * previous mappings. So the only case to handle is 4486 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4487 * has been changed. 4488 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4489 * to get rid of any THP PTEs in the partition-scoped page tables 4490 * so we can track dirtiness at the page level; we flush when 4491 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4492 * using THP PTEs. 4493 */ 4494 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4495 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4496 kvmppc_radix_flush_memslot(kvm, old); 4497 } 4498 4499 /* 4500 * Update LPCR values in kvm->arch and in vcores. 4501 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4502 * of kvm->arch.lpcr update). 4503 */ 4504 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4505 { 4506 long int i; 4507 u32 cores_done = 0; 4508 4509 if ((kvm->arch.lpcr & mask) == lpcr) 4510 return; 4511 4512 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4513 4514 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4515 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4516 if (!vc) 4517 continue; 4518 spin_lock(&vc->lock); 4519 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4520 spin_unlock(&vc->lock); 4521 if (++cores_done >= kvm->arch.online_vcores) 4522 break; 4523 } 4524 } 4525 4526 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4527 { 4528 return; 4529 } 4530 4531 void kvmppc_setup_partition_table(struct kvm *kvm) 4532 { 4533 unsigned long dw0, dw1; 4534 4535 if (!kvm_is_radix(kvm)) { 4536 /* PS field - page size for VRMA */ 4537 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4538 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4539 /* HTABSIZE and HTABORG fields */ 4540 dw0 |= kvm->arch.sdr1; 4541 4542 /* Second dword as set by userspace */ 4543 dw1 = kvm->arch.process_table; 4544 } else { 4545 dw0 = PATB_HR | radix__get_tree_size() | 4546 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4547 dw1 = PATB_GR | kvm->arch.process_table; 4548 } 4549 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4550 } 4551 4552 /* 4553 * Set up HPT (hashed page table) and RMA (real-mode area). 4554 * Must be called with kvm->arch.mmu_setup_lock held. 4555 */ 4556 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4557 { 4558 int err = 0; 4559 struct kvm *kvm = vcpu->kvm; 4560 unsigned long hva; 4561 struct kvm_memory_slot *memslot; 4562 struct vm_area_struct *vma; 4563 unsigned long lpcr = 0, senc; 4564 unsigned long psize, porder; 4565 int srcu_idx; 4566 4567 /* Allocate hashed page table (if not done already) and reset it */ 4568 if (!kvm->arch.hpt.virt) { 4569 int order = KVM_DEFAULT_HPT_ORDER; 4570 struct kvm_hpt_info info; 4571 4572 err = kvmppc_allocate_hpt(&info, order); 4573 /* If we get here, it means userspace didn't specify a 4574 * size explicitly. So, try successively smaller 4575 * sizes if the default failed. */ 4576 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4577 err = kvmppc_allocate_hpt(&info, order); 4578 4579 if (err < 0) { 4580 pr_err("KVM: Couldn't alloc HPT\n"); 4581 goto out; 4582 } 4583 4584 kvmppc_set_hpt(kvm, &info); 4585 } 4586 4587 /* Look up the memslot for guest physical address 0 */ 4588 srcu_idx = srcu_read_lock(&kvm->srcu); 4589 memslot = gfn_to_memslot(kvm, 0); 4590 4591 /* We must have some memory at 0 by now */ 4592 err = -EINVAL; 4593 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4594 goto out_srcu; 4595 4596 /* Look up the VMA for the start of this memory slot */ 4597 hva = memslot->userspace_addr; 4598 down_read(¤t->mm->mmap_sem); 4599 vma = find_vma(current->mm, hva); 4600 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4601 goto up_out; 4602 4603 psize = vma_kernel_pagesize(vma); 4604 4605 up_read(¤t->mm->mmap_sem); 4606 4607 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4608 if (psize >= 0x1000000) 4609 psize = 0x1000000; 4610 else if (psize >= 0x10000) 4611 psize = 0x10000; 4612 else 4613 psize = 0x1000; 4614 porder = __ilog2(psize); 4615 4616 senc = slb_pgsize_encoding(psize); 4617 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4618 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4619 /* Create HPTEs in the hash page table for the VRMA */ 4620 kvmppc_map_vrma(vcpu, memslot, porder); 4621 4622 /* Update VRMASD field in the LPCR */ 4623 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4624 /* the -4 is to account for senc values starting at 0x10 */ 4625 lpcr = senc << (LPCR_VRMASD_SH - 4); 4626 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4627 } 4628 4629 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4630 smp_wmb(); 4631 err = 0; 4632 out_srcu: 4633 srcu_read_unlock(&kvm->srcu, srcu_idx); 4634 out: 4635 return err; 4636 4637 up_out: 4638 up_read(¤t->mm->mmap_sem); 4639 goto out_srcu; 4640 } 4641 4642 /* 4643 * Must be called with kvm->arch.mmu_setup_lock held and 4644 * mmu_ready = 0 and no vcpus running. 4645 */ 4646 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4647 { 4648 if (nesting_enabled(kvm)) 4649 kvmhv_release_all_nested(kvm); 4650 kvmppc_rmap_reset(kvm); 4651 kvm->arch.process_table = 0; 4652 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4653 spin_lock(&kvm->mmu_lock); 4654 kvm->arch.radix = 0; 4655 spin_unlock(&kvm->mmu_lock); 4656 kvmppc_free_radix(kvm); 4657 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4658 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4659 return 0; 4660 } 4661 4662 /* 4663 * Must be called with kvm->arch.mmu_setup_lock held and 4664 * mmu_ready = 0 and no vcpus running. 4665 */ 4666 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4667 { 4668 int err; 4669 4670 err = kvmppc_init_vm_radix(kvm); 4671 if (err) 4672 return err; 4673 kvmppc_rmap_reset(kvm); 4674 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4675 spin_lock(&kvm->mmu_lock); 4676 kvm->arch.radix = 1; 4677 spin_unlock(&kvm->mmu_lock); 4678 kvmppc_free_hpt(&kvm->arch.hpt); 4679 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4680 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4681 return 0; 4682 } 4683 4684 #ifdef CONFIG_KVM_XICS 4685 /* 4686 * Allocate a per-core structure for managing state about which cores are 4687 * running in the host versus the guest and for exchanging data between 4688 * real mode KVM and CPU running in the host. 4689 * This is only done for the first VM. 4690 * The allocated structure stays even if all VMs have stopped. 4691 * It is only freed when the kvm-hv module is unloaded. 4692 * It's OK for this routine to fail, we just don't support host 4693 * core operations like redirecting H_IPI wakeups. 4694 */ 4695 void kvmppc_alloc_host_rm_ops(void) 4696 { 4697 struct kvmppc_host_rm_ops *ops; 4698 unsigned long l_ops; 4699 int cpu, core; 4700 int size; 4701 4702 /* Not the first time here ? */ 4703 if (kvmppc_host_rm_ops_hv != NULL) 4704 return; 4705 4706 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4707 if (!ops) 4708 return; 4709 4710 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4711 ops->rm_core = kzalloc(size, GFP_KERNEL); 4712 4713 if (!ops->rm_core) { 4714 kfree(ops); 4715 return; 4716 } 4717 4718 cpus_read_lock(); 4719 4720 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4721 if (!cpu_online(cpu)) 4722 continue; 4723 4724 core = cpu >> threads_shift; 4725 ops->rm_core[core].rm_state.in_host = 1; 4726 } 4727 4728 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4729 4730 /* 4731 * Make the contents of the kvmppc_host_rm_ops structure visible 4732 * to other CPUs before we assign it to the global variable. 4733 * Do an atomic assignment (no locks used here), but if someone 4734 * beats us to it, just free our copy and return. 4735 */ 4736 smp_wmb(); 4737 l_ops = (unsigned long) ops; 4738 4739 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4740 cpus_read_unlock(); 4741 kfree(ops->rm_core); 4742 kfree(ops); 4743 return; 4744 } 4745 4746 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4747 "ppc/kvm_book3s:prepare", 4748 kvmppc_set_host_core, 4749 kvmppc_clear_host_core); 4750 cpus_read_unlock(); 4751 } 4752 4753 void kvmppc_free_host_rm_ops(void) 4754 { 4755 if (kvmppc_host_rm_ops_hv) { 4756 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4757 kfree(kvmppc_host_rm_ops_hv->rm_core); 4758 kfree(kvmppc_host_rm_ops_hv); 4759 kvmppc_host_rm_ops_hv = NULL; 4760 } 4761 } 4762 #endif 4763 4764 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4765 { 4766 unsigned long lpcr, lpid; 4767 char buf[32]; 4768 int ret; 4769 4770 mutex_init(&kvm->arch.mmu_setup_lock); 4771 4772 /* Allocate the guest's logical partition ID */ 4773 4774 lpid = kvmppc_alloc_lpid(); 4775 if ((long)lpid < 0) 4776 return -ENOMEM; 4777 kvm->arch.lpid = lpid; 4778 4779 kvmppc_alloc_host_rm_ops(); 4780 4781 kvmhv_vm_nested_init(kvm); 4782 4783 /* 4784 * Since we don't flush the TLB when tearing down a VM, 4785 * and this lpid might have previously been used, 4786 * make sure we flush on each core before running the new VM. 4787 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4788 * does this flush for us. 4789 */ 4790 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4791 cpumask_setall(&kvm->arch.need_tlb_flush); 4792 4793 /* Start out with the default set of hcalls enabled */ 4794 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4795 sizeof(kvm->arch.enabled_hcalls)); 4796 4797 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4798 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4799 4800 /* Init LPCR for virtual RMA mode */ 4801 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4802 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4803 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4804 lpcr &= LPCR_PECE | LPCR_LPES; 4805 } else { 4806 lpcr = 0; 4807 } 4808 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4809 LPCR_VPM0 | LPCR_VPM1; 4810 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4811 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4812 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4813 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4814 lpcr |= LPCR_ONL; 4815 /* 4816 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4817 * Set HVICE bit to enable hypervisor virtualization interrupts. 4818 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4819 * be unnecessary but better safe than sorry in case we re-enable 4820 * EE in HV mode with this LPCR still set) 4821 */ 4822 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4823 lpcr &= ~LPCR_VPM0; 4824 lpcr |= LPCR_HVICE | LPCR_HEIC; 4825 4826 /* 4827 * If xive is enabled, we route 0x500 interrupts directly 4828 * to the guest. 4829 */ 4830 if (xics_on_xive()) 4831 lpcr |= LPCR_LPES; 4832 } 4833 4834 /* 4835 * If the host uses radix, the guest starts out as radix. 4836 */ 4837 if (radix_enabled()) { 4838 kvm->arch.radix = 1; 4839 kvm->arch.mmu_ready = 1; 4840 lpcr &= ~LPCR_VPM1; 4841 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4842 ret = kvmppc_init_vm_radix(kvm); 4843 if (ret) { 4844 kvmppc_free_lpid(kvm->arch.lpid); 4845 return ret; 4846 } 4847 kvmppc_setup_partition_table(kvm); 4848 } 4849 4850 kvm->arch.lpcr = lpcr; 4851 4852 /* Initialization for future HPT resizes */ 4853 kvm->arch.resize_hpt = NULL; 4854 4855 /* 4856 * Work out how many sets the TLB has, for the use of 4857 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4858 */ 4859 if (radix_enabled()) 4860 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4861 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4862 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4863 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4864 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4865 else 4866 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4867 4868 /* 4869 * Track that we now have a HV mode VM active. This blocks secondary 4870 * CPU threads from coming online. 4871 * On POWER9, we only need to do this if the "indep_threads_mode" 4872 * module parameter has been set to N. 4873 */ 4874 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4875 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4876 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4877 kvm->arch.threads_indep = true; 4878 } else { 4879 kvm->arch.threads_indep = indep_threads_mode; 4880 } 4881 } 4882 if (!kvm->arch.threads_indep) 4883 kvm_hv_vm_activated(); 4884 4885 /* 4886 * Initialize smt_mode depending on processor. 4887 * POWER8 and earlier have to use "strict" threading, where 4888 * all vCPUs in a vcore have to run on the same (sub)core, 4889 * whereas on POWER9 the threads can each run a different 4890 * guest. 4891 */ 4892 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4893 kvm->arch.smt_mode = threads_per_subcore; 4894 else 4895 kvm->arch.smt_mode = 1; 4896 kvm->arch.emul_smt_mode = 1; 4897 4898 /* 4899 * Create a debugfs directory for the VM 4900 */ 4901 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4902 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4903 kvmppc_mmu_debugfs_init(kvm); 4904 if (radix_enabled()) 4905 kvmhv_radix_debugfs_init(kvm); 4906 4907 return 0; 4908 } 4909 4910 static void kvmppc_free_vcores(struct kvm *kvm) 4911 { 4912 long int i; 4913 4914 for (i = 0; i < KVM_MAX_VCORES; ++i) 4915 kfree(kvm->arch.vcores[i]); 4916 kvm->arch.online_vcores = 0; 4917 } 4918 4919 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4920 { 4921 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4922 4923 if (!kvm->arch.threads_indep) 4924 kvm_hv_vm_deactivated(); 4925 4926 kvmppc_free_vcores(kvm); 4927 4928 4929 if (kvm_is_radix(kvm)) 4930 kvmppc_free_radix(kvm); 4931 else 4932 kvmppc_free_hpt(&kvm->arch.hpt); 4933 4934 /* Perform global invalidation and return lpid to the pool */ 4935 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4936 if (nesting_enabled(kvm)) 4937 kvmhv_release_all_nested(kvm); 4938 kvm->arch.process_table = 0; 4939 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4940 } 4941 kvmppc_free_lpid(kvm->arch.lpid); 4942 4943 kvmppc_free_pimap(kvm); 4944 } 4945 4946 /* We don't need to emulate any privileged instructions or dcbz */ 4947 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4948 unsigned int inst, int *advance) 4949 { 4950 return EMULATE_FAIL; 4951 } 4952 4953 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4954 ulong spr_val) 4955 { 4956 return EMULATE_FAIL; 4957 } 4958 4959 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4960 ulong *spr_val) 4961 { 4962 return EMULATE_FAIL; 4963 } 4964 4965 static int kvmppc_core_check_processor_compat_hv(void) 4966 { 4967 if (cpu_has_feature(CPU_FTR_HVMODE) && 4968 cpu_has_feature(CPU_FTR_ARCH_206)) 4969 return 0; 4970 4971 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 4972 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 4973 return 0; 4974 4975 return -EIO; 4976 } 4977 4978 #ifdef CONFIG_KVM_XICS 4979 4980 void kvmppc_free_pimap(struct kvm *kvm) 4981 { 4982 kfree(kvm->arch.pimap); 4983 } 4984 4985 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 4986 { 4987 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4988 } 4989 4990 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4991 { 4992 struct irq_desc *desc; 4993 struct kvmppc_irq_map *irq_map; 4994 struct kvmppc_passthru_irqmap *pimap; 4995 struct irq_chip *chip; 4996 int i, rc = 0; 4997 4998 if (!kvm_irq_bypass) 4999 return 1; 5000 5001 desc = irq_to_desc(host_irq); 5002 if (!desc) 5003 return -EIO; 5004 5005 mutex_lock(&kvm->lock); 5006 5007 pimap = kvm->arch.pimap; 5008 if (pimap == NULL) { 5009 /* First call, allocate structure to hold IRQ map */ 5010 pimap = kvmppc_alloc_pimap(); 5011 if (pimap == NULL) { 5012 mutex_unlock(&kvm->lock); 5013 return -ENOMEM; 5014 } 5015 kvm->arch.pimap = pimap; 5016 } 5017 5018 /* 5019 * For now, we only support interrupts for which the EOI operation 5020 * is an OPAL call followed by a write to XIRR, since that's 5021 * what our real-mode EOI code does, or a XIVE interrupt 5022 */ 5023 chip = irq_data_get_irq_chip(&desc->irq_data); 5024 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5025 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5026 host_irq, guest_gsi); 5027 mutex_unlock(&kvm->lock); 5028 return -ENOENT; 5029 } 5030 5031 /* 5032 * See if we already have an entry for this guest IRQ number. 5033 * If it's mapped to a hardware IRQ number, that's an error, 5034 * otherwise re-use this entry. 5035 */ 5036 for (i = 0; i < pimap->n_mapped; i++) { 5037 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5038 if (pimap->mapped[i].r_hwirq) { 5039 mutex_unlock(&kvm->lock); 5040 return -EINVAL; 5041 } 5042 break; 5043 } 5044 } 5045 5046 if (i == KVMPPC_PIRQ_MAPPED) { 5047 mutex_unlock(&kvm->lock); 5048 return -EAGAIN; /* table is full */ 5049 } 5050 5051 irq_map = &pimap->mapped[i]; 5052 5053 irq_map->v_hwirq = guest_gsi; 5054 irq_map->desc = desc; 5055 5056 /* 5057 * Order the above two stores before the next to serialize with 5058 * the KVM real mode handler. 5059 */ 5060 smp_wmb(); 5061 irq_map->r_hwirq = desc->irq_data.hwirq; 5062 5063 if (i == pimap->n_mapped) 5064 pimap->n_mapped++; 5065 5066 if (xics_on_xive()) 5067 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5068 else 5069 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5070 if (rc) 5071 irq_map->r_hwirq = 0; 5072 5073 mutex_unlock(&kvm->lock); 5074 5075 return 0; 5076 } 5077 5078 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5079 { 5080 struct irq_desc *desc; 5081 struct kvmppc_passthru_irqmap *pimap; 5082 int i, rc = 0; 5083 5084 if (!kvm_irq_bypass) 5085 return 0; 5086 5087 desc = irq_to_desc(host_irq); 5088 if (!desc) 5089 return -EIO; 5090 5091 mutex_lock(&kvm->lock); 5092 if (!kvm->arch.pimap) 5093 goto unlock; 5094 5095 pimap = kvm->arch.pimap; 5096 5097 for (i = 0; i < pimap->n_mapped; i++) { 5098 if (guest_gsi == pimap->mapped[i].v_hwirq) 5099 break; 5100 } 5101 5102 if (i == pimap->n_mapped) { 5103 mutex_unlock(&kvm->lock); 5104 return -ENODEV; 5105 } 5106 5107 if (xics_on_xive()) 5108 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5109 else 5110 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5111 5112 /* invalidate the entry (what do do on error from the above ?) */ 5113 pimap->mapped[i].r_hwirq = 0; 5114 5115 /* 5116 * We don't free this structure even when the count goes to 5117 * zero. The structure is freed when we destroy the VM. 5118 */ 5119 unlock: 5120 mutex_unlock(&kvm->lock); 5121 return rc; 5122 } 5123 5124 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5125 struct irq_bypass_producer *prod) 5126 { 5127 int ret = 0; 5128 struct kvm_kernel_irqfd *irqfd = 5129 container_of(cons, struct kvm_kernel_irqfd, consumer); 5130 5131 irqfd->producer = prod; 5132 5133 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5134 if (ret) 5135 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5136 prod->irq, irqfd->gsi, ret); 5137 5138 return ret; 5139 } 5140 5141 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5142 struct irq_bypass_producer *prod) 5143 { 5144 int ret; 5145 struct kvm_kernel_irqfd *irqfd = 5146 container_of(cons, struct kvm_kernel_irqfd, consumer); 5147 5148 irqfd->producer = NULL; 5149 5150 /* 5151 * When producer of consumer is unregistered, we change back to 5152 * default external interrupt handling mode - KVM real mode 5153 * will switch back to host. 5154 */ 5155 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5156 if (ret) 5157 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5158 prod->irq, irqfd->gsi, ret); 5159 } 5160 #endif 5161 5162 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5163 unsigned int ioctl, unsigned long arg) 5164 { 5165 struct kvm *kvm __maybe_unused = filp->private_data; 5166 void __user *argp = (void __user *)arg; 5167 long r; 5168 5169 switch (ioctl) { 5170 5171 case KVM_PPC_ALLOCATE_HTAB: { 5172 u32 htab_order; 5173 5174 r = -EFAULT; 5175 if (get_user(htab_order, (u32 __user *)argp)) 5176 break; 5177 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5178 if (r) 5179 break; 5180 r = 0; 5181 break; 5182 } 5183 5184 case KVM_PPC_GET_HTAB_FD: { 5185 struct kvm_get_htab_fd ghf; 5186 5187 r = -EFAULT; 5188 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5189 break; 5190 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5191 break; 5192 } 5193 5194 case KVM_PPC_RESIZE_HPT_PREPARE: { 5195 struct kvm_ppc_resize_hpt rhpt; 5196 5197 r = -EFAULT; 5198 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5199 break; 5200 5201 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5202 break; 5203 } 5204 5205 case KVM_PPC_RESIZE_HPT_COMMIT: { 5206 struct kvm_ppc_resize_hpt rhpt; 5207 5208 r = -EFAULT; 5209 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5210 break; 5211 5212 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5213 break; 5214 } 5215 5216 default: 5217 r = -ENOTTY; 5218 } 5219 5220 return r; 5221 } 5222 5223 /* 5224 * List of hcall numbers to enable by default. 5225 * For compatibility with old userspace, we enable by default 5226 * all hcalls that were implemented before the hcall-enabling 5227 * facility was added. Note this list should not include H_RTAS. 5228 */ 5229 static unsigned int default_hcall_list[] = { 5230 H_REMOVE, 5231 H_ENTER, 5232 H_READ, 5233 H_PROTECT, 5234 H_BULK_REMOVE, 5235 H_GET_TCE, 5236 H_PUT_TCE, 5237 H_SET_DABR, 5238 H_SET_XDABR, 5239 H_CEDE, 5240 H_PROD, 5241 H_CONFER, 5242 H_REGISTER_VPA, 5243 #ifdef CONFIG_KVM_XICS 5244 H_EOI, 5245 H_CPPR, 5246 H_IPI, 5247 H_IPOLL, 5248 H_XIRR, 5249 H_XIRR_X, 5250 #endif 5251 0 5252 }; 5253 5254 static void init_default_hcalls(void) 5255 { 5256 int i; 5257 unsigned int hcall; 5258 5259 for (i = 0; default_hcall_list[i]; ++i) { 5260 hcall = default_hcall_list[i]; 5261 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5262 __set_bit(hcall / 4, default_enabled_hcalls); 5263 } 5264 } 5265 5266 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5267 { 5268 unsigned long lpcr; 5269 int radix; 5270 int err; 5271 5272 /* If not on a POWER9, reject it */ 5273 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5274 return -ENODEV; 5275 5276 /* If any unknown flags set, reject it */ 5277 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5278 return -EINVAL; 5279 5280 /* GR (guest radix) bit in process_table field must match */ 5281 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5282 if (!!(cfg->process_table & PATB_GR) != radix) 5283 return -EINVAL; 5284 5285 /* Process table size field must be reasonable, i.e. <= 24 */ 5286 if ((cfg->process_table & PRTS_MASK) > 24) 5287 return -EINVAL; 5288 5289 /* We can change a guest to/from radix now, if the host is radix */ 5290 if (radix && !radix_enabled()) 5291 return -EINVAL; 5292 5293 /* If we're a nested hypervisor, we currently only support radix */ 5294 if (kvmhv_on_pseries() && !radix) 5295 return -EINVAL; 5296 5297 mutex_lock(&kvm->arch.mmu_setup_lock); 5298 if (radix != kvm_is_radix(kvm)) { 5299 if (kvm->arch.mmu_ready) { 5300 kvm->arch.mmu_ready = 0; 5301 /* order mmu_ready vs. vcpus_running */ 5302 smp_mb(); 5303 if (atomic_read(&kvm->arch.vcpus_running)) { 5304 kvm->arch.mmu_ready = 1; 5305 err = -EBUSY; 5306 goto out_unlock; 5307 } 5308 } 5309 if (radix) 5310 err = kvmppc_switch_mmu_to_radix(kvm); 5311 else 5312 err = kvmppc_switch_mmu_to_hpt(kvm); 5313 if (err) 5314 goto out_unlock; 5315 } 5316 5317 kvm->arch.process_table = cfg->process_table; 5318 kvmppc_setup_partition_table(kvm); 5319 5320 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5321 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5322 err = 0; 5323 5324 out_unlock: 5325 mutex_unlock(&kvm->arch.mmu_setup_lock); 5326 return err; 5327 } 5328 5329 static int kvmhv_enable_nested(struct kvm *kvm) 5330 { 5331 if (!nested) 5332 return -EPERM; 5333 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5334 return -ENODEV; 5335 5336 /* kvm == NULL means the caller is testing if the capability exists */ 5337 if (kvm) 5338 kvm->arch.nested_enable = true; 5339 return 0; 5340 } 5341 5342 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5343 int size) 5344 { 5345 int rc = -EINVAL; 5346 5347 if (kvmhv_vcpu_is_radix(vcpu)) { 5348 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5349 5350 if (rc > 0) 5351 rc = -EINVAL; 5352 } 5353 5354 /* For now quadrants are the only way to access nested guest memory */ 5355 if (rc && vcpu->arch.nested) 5356 rc = -EAGAIN; 5357 5358 return rc; 5359 } 5360 5361 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5362 int size) 5363 { 5364 int rc = -EINVAL; 5365 5366 if (kvmhv_vcpu_is_radix(vcpu)) { 5367 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5368 5369 if (rc > 0) 5370 rc = -EINVAL; 5371 } 5372 5373 /* For now quadrants are the only way to access nested guest memory */ 5374 if (rc && vcpu->arch.nested) 5375 rc = -EAGAIN; 5376 5377 return rc; 5378 } 5379 5380 static struct kvmppc_ops kvm_ops_hv = { 5381 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5382 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5383 .get_one_reg = kvmppc_get_one_reg_hv, 5384 .set_one_reg = kvmppc_set_one_reg_hv, 5385 .vcpu_load = kvmppc_core_vcpu_load_hv, 5386 .vcpu_put = kvmppc_core_vcpu_put_hv, 5387 .inject_interrupt = kvmppc_inject_interrupt_hv, 5388 .set_msr = kvmppc_set_msr_hv, 5389 .vcpu_run = kvmppc_vcpu_run_hv, 5390 .vcpu_create = kvmppc_core_vcpu_create_hv, 5391 .vcpu_free = kvmppc_core_vcpu_free_hv, 5392 .check_requests = kvmppc_core_check_requests_hv, 5393 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5394 .flush_memslot = kvmppc_core_flush_memslot_hv, 5395 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5396 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5397 .unmap_hva_range = kvm_unmap_hva_range_hv, 5398 .age_hva = kvm_age_hva_hv, 5399 .test_age_hva = kvm_test_age_hva_hv, 5400 .set_spte_hva = kvm_set_spte_hva_hv, 5401 .mmu_destroy = kvmppc_mmu_destroy_hv, 5402 .free_memslot = kvmppc_core_free_memslot_hv, 5403 .create_memslot = kvmppc_core_create_memslot_hv, 5404 .init_vm = kvmppc_core_init_vm_hv, 5405 .destroy_vm = kvmppc_core_destroy_vm_hv, 5406 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5407 .emulate_op = kvmppc_core_emulate_op_hv, 5408 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5409 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5410 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5411 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5412 .hcall_implemented = kvmppc_hcall_impl_hv, 5413 #ifdef CONFIG_KVM_XICS 5414 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5415 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5416 #endif 5417 .configure_mmu = kvmhv_configure_mmu, 5418 .get_rmmu_info = kvmhv_get_rmmu_info, 5419 .set_smt_mode = kvmhv_set_smt_mode, 5420 .enable_nested = kvmhv_enable_nested, 5421 .load_from_eaddr = kvmhv_load_from_eaddr, 5422 .store_to_eaddr = kvmhv_store_to_eaddr, 5423 }; 5424 5425 static int kvm_init_subcore_bitmap(void) 5426 { 5427 int i, j; 5428 int nr_cores = cpu_nr_cores(); 5429 struct sibling_subcore_state *sibling_subcore_state; 5430 5431 for (i = 0; i < nr_cores; i++) { 5432 int first_cpu = i * threads_per_core; 5433 int node = cpu_to_node(first_cpu); 5434 5435 /* Ignore if it is already allocated. */ 5436 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5437 continue; 5438 5439 sibling_subcore_state = 5440 kzalloc_node(sizeof(struct sibling_subcore_state), 5441 GFP_KERNEL, node); 5442 if (!sibling_subcore_state) 5443 return -ENOMEM; 5444 5445 5446 for (j = 0; j < threads_per_core; j++) { 5447 int cpu = first_cpu + j; 5448 5449 paca_ptrs[cpu]->sibling_subcore_state = 5450 sibling_subcore_state; 5451 } 5452 } 5453 return 0; 5454 } 5455 5456 static int kvmppc_radix_possible(void) 5457 { 5458 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5459 } 5460 5461 static int kvmppc_book3s_init_hv(void) 5462 { 5463 int r; 5464 5465 if (!tlbie_capable) { 5466 pr_err("KVM-HV: Host does not support TLBIE\n"); 5467 return -ENODEV; 5468 } 5469 5470 /* 5471 * FIXME!! Do we need to check on all cpus ? 5472 */ 5473 r = kvmppc_core_check_processor_compat_hv(); 5474 if (r < 0) 5475 return -ENODEV; 5476 5477 r = kvmhv_nested_init(); 5478 if (r) 5479 return r; 5480 5481 r = kvm_init_subcore_bitmap(); 5482 if (r) 5483 return r; 5484 5485 /* 5486 * We need a way of accessing the XICS interrupt controller, 5487 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5488 * indirectly, via OPAL. 5489 */ 5490 #ifdef CONFIG_SMP 5491 if (!xics_on_xive() && !kvmhv_on_pseries() && 5492 !local_paca->kvm_hstate.xics_phys) { 5493 struct device_node *np; 5494 5495 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5496 if (!np) { 5497 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5498 return -ENODEV; 5499 } 5500 /* presence of intc confirmed - node can be dropped again */ 5501 of_node_put(np); 5502 } 5503 #endif 5504 5505 kvm_ops_hv.owner = THIS_MODULE; 5506 kvmppc_hv_ops = &kvm_ops_hv; 5507 5508 init_default_hcalls(); 5509 5510 init_vcore_lists(); 5511 5512 r = kvmppc_mmu_hv_init(); 5513 if (r) 5514 return r; 5515 5516 if (kvmppc_radix_possible()) 5517 r = kvmppc_radix_init(); 5518 5519 /* 5520 * POWER9 chips before version 2.02 can't have some threads in 5521 * HPT mode and some in radix mode on the same core. 5522 */ 5523 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5524 unsigned int pvr = mfspr(SPRN_PVR); 5525 if ((pvr >> 16) == PVR_POWER9 && 5526 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5527 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5528 no_mixing_hpt_and_radix = true; 5529 } 5530 5531 return r; 5532 } 5533 5534 static void kvmppc_book3s_exit_hv(void) 5535 { 5536 kvmppc_free_host_rm_ops(); 5537 if (kvmppc_radix_possible()) 5538 kvmppc_radix_exit(); 5539 kvmppc_hv_ops = NULL; 5540 kvmhv_nested_exit(); 5541 } 5542 5543 module_init(kvmppc_book3s_init_hv); 5544 module_exit(kvmppc_book3s_exit_hv); 5545 MODULE_LICENSE("GPL"); 5546 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5547 MODULE_ALIAS("devname:kvm"); 5548