xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 
76 #include "book3s.h"
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80 
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84 
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89 
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL	(~(u64)0)
92 
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94 
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101 
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105 
106 static bool one_vm_per_core;
107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
109 
110 #ifdef CONFIG_KVM_XICS
111 static struct kernel_param_ops module_param_ops = {
112 	.set = param_set_int,
113 	.get = param_get_int,
114 };
115 
116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118 
119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121 #endif
122 
123 /* If set, guests are allowed to create and control nested guests */
124 static bool nested = true;
125 module_param(nested, bool, S_IRUGO | S_IWUSR);
126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127 
128 static inline bool nesting_enabled(struct kvm *kvm)
129 {
130 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
131 }
132 
133 /* If set, the threads on each CPU core have to be in the same MMU mode */
134 static bool no_mixing_hpt_and_radix;
135 
136 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
137 
138 /*
139  * RWMR values for POWER8.  These control the rate at which PURR
140  * and SPURR count and should be set according to the number of
141  * online threads in the vcore being run.
142  */
143 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
144 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
145 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
146 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
147 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
151 
152 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
153 	RWMR_RPA_P8_1THREAD,
154 	RWMR_RPA_P8_1THREAD,
155 	RWMR_RPA_P8_2THREAD,
156 	RWMR_RPA_P8_3THREAD,
157 	RWMR_RPA_P8_4THREAD,
158 	RWMR_RPA_P8_5THREAD,
159 	RWMR_RPA_P8_6THREAD,
160 	RWMR_RPA_P8_7THREAD,
161 	RWMR_RPA_P8_8THREAD,
162 };
163 
164 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
165 		int *ip)
166 {
167 	int i = *ip;
168 	struct kvm_vcpu *vcpu;
169 
170 	while (++i < MAX_SMT_THREADS) {
171 		vcpu = READ_ONCE(vc->runnable_threads[i]);
172 		if (vcpu) {
173 			*ip = i;
174 			return vcpu;
175 		}
176 	}
177 	return NULL;
178 }
179 
180 /* Used to traverse the list of runnable threads for a given vcore */
181 #define for_each_runnable_thread(i, vcpu, vc) \
182 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
183 
184 static bool kvmppc_ipi_thread(int cpu)
185 {
186 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
187 
188 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
189 	if (kvmhv_on_pseries())
190 		return false;
191 
192 	/* On POWER9 we can use msgsnd to IPI any cpu */
193 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
194 		msg |= get_hard_smp_processor_id(cpu);
195 		smp_mb();
196 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
197 		return true;
198 	}
199 
200 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
201 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
202 		preempt_disable();
203 		if (cpu_first_thread_sibling(cpu) ==
204 		    cpu_first_thread_sibling(smp_processor_id())) {
205 			msg |= cpu_thread_in_core(cpu);
206 			smp_mb();
207 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
208 			preempt_enable();
209 			return true;
210 		}
211 		preempt_enable();
212 	}
213 
214 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
215 	if (cpu >= 0 && cpu < nr_cpu_ids) {
216 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
217 			xics_wake_cpu(cpu);
218 			return true;
219 		}
220 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
221 		return true;
222 	}
223 #endif
224 
225 	return false;
226 }
227 
228 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
229 {
230 	int cpu;
231 	struct swait_queue_head *wqp;
232 
233 	wqp = kvm_arch_vcpu_wq(vcpu);
234 	if (swq_has_sleeper(wqp)) {
235 		swake_up_one(wqp);
236 		++vcpu->stat.halt_wakeup;
237 	}
238 
239 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
240 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
241 		return;
242 
243 	/* CPU points to the first thread of the core */
244 	cpu = vcpu->cpu;
245 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
246 		smp_send_reschedule(cpu);
247 }
248 
249 /*
250  * We use the vcpu_load/put functions to measure stolen time.
251  * Stolen time is counted as time when either the vcpu is able to
252  * run as part of a virtual core, but the task running the vcore
253  * is preempted or sleeping, or when the vcpu needs something done
254  * in the kernel by the task running the vcpu, but that task is
255  * preempted or sleeping.  Those two things have to be counted
256  * separately, since one of the vcpu tasks will take on the job
257  * of running the core, and the other vcpu tasks in the vcore will
258  * sleep waiting for it to do that, but that sleep shouldn't count
259  * as stolen time.
260  *
261  * Hence we accumulate stolen time when the vcpu can run as part of
262  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
263  * needs its task to do other things in the kernel (for example,
264  * service a page fault) in busy_stolen.  We don't accumulate
265  * stolen time for a vcore when it is inactive, or for a vcpu
266  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
267  * a misnomer; it means that the vcpu task is not executing in
268  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
269  * the kernel.  We don't have any way of dividing up that time
270  * between time that the vcpu is genuinely stopped, time that
271  * the task is actively working on behalf of the vcpu, and time
272  * that the task is preempted, so we don't count any of it as
273  * stolen.
274  *
275  * Updates to busy_stolen are protected by arch.tbacct_lock;
276  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
277  * lock.  The stolen times are measured in units of timebase ticks.
278  * (Note that the != TB_NIL checks below are purely defensive;
279  * they should never fail.)
280  */
281 
282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
283 {
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&vc->stoltb_lock, flags);
287 	vc->preempt_tb = mftb();
288 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
289 }
290 
291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&vc->stoltb_lock, flags);
296 	if (vc->preempt_tb != TB_NIL) {
297 		vc->stolen_tb += mftb() - vc->preempt_tb;
298 		vc->preempt_tb = TB_NIL;
299 	}
300 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
301 }
302 
303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
304 {
305 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
306 	unsigned long flags;
307 
308 	/*
309 	 * We can test vc->runner without taking the vcore lock,
310 	 * because only this task ever sets vc->runner to this
311 	 * vcpu, and once it is set to this vcpu, only this task
312 	 * ever sets it to NULL.
313 	 */
314 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
315 		kvmppc_core_end_stolen(vc);
316 
317 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
318 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
319 	    vcpu->arch.busy_preempt != TB_NIL) {
320 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
321 		vcpu->arch.busy_preempt = TB_NIL;
322 	}
323 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
324 }
325 
326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
327 {
328 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
329 	unsigned long flags;
330 
331 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
332 		kvmppc_core_start_stolen(vc);
333 
334 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
335 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
336 		vcpu->arch.busy_preempt = mftb();
337 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
338 }
339 
340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
341 {
342 	vcpu->arch.pvr = pvr;
343 }
344 
345 /* Dummy value used in computing PCR value below */
346 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
347 
348 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
349 {
350 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
351 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
352 
353 	/* We can (emulate) our own architecture version and anything older */
354 	if (cpu_has_feature(CPU_FTR_ARCH_300))
355 		host_pcr_bit = PCR_ARCH_300;
356 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
357 		host_pcr_bit = PCR_ARCH_207;
358 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
359 		host_pcr_bit = PCR_ARCH_206;
360 	else
361 		host_pcr_bit = PCR_ARCH_205;
362 
363 	/* Determine lowest PCR bit needed to run guest in given PVR level */
364 	guest_pcr_bit = host_pcr_bit;
365 	if (arch_compat) {
366 		switch (arch_compat) {
367 		case PVR_ARCH_205:
368 			guest_pcr_bit = PCR_ARCH_205;
369 			break;
370 		case PVR_ARCH_206:
371 		case PVR_ARCH_206p:
372 			guest_pcr_bit = PCR_ARCH_206;
373 			break;
374 		case PVR_ARCH_207:
375 			guest_pcr_bit = PCR_ARCH_207;
376 			break;
377 		case PVR_ARCH_300:
378 			guest_pcr_bit = PCR_ARCH_300;
379 			break;
380 		default:
381 			return -EINVAL;
382 		}
383 	}
384 
385 	/* Check requested PCR bits don't exceed our capabilities */
386 	if (guest_pcr_bit > host_pcr_bit)
387 		return -EINVAL;
388 
389 	spin_lock(&vc->lock);
390 	vc->arch_compat = arch_compat;
391 	/*
392 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
393 	 * Also set all reserved PCR bits
394 	 */
395 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
396 	spin_unlock(&vc->lock);
397 
398 	return 0;
399 }
400 
401 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
402 {
403 	int r;
404 
405 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
406 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
407 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
408 	for (r = 0; r < 16; ++r)
409 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
410 		       r, kvmppc_get_gpr(vcpu, r),
411 		       r+16, kvmppc_get_gpr(vcpu, r+16));
412 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
413 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
414 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
415 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
416 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
417 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
418 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
419 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
420 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
421 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
422 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
423 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
424 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
425 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
426 	for (r = 0; r < vcpu->arch.slb_max; ++r)
427 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
428 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
429 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
430 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
431 	       vcpu->arch.last_inst);
432 }
433 
434 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
435 {
436 	return kvm_get_vcpu_by_id(kvm, id);
437 }
438 
439 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
440 {
441 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
442 	vpa->yield_count = cpu_to_be32(1);
443 }
444 
445 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
446 		   unsigned long addr, unsigned long len)
447 {
448 	/* check address is cacheline aligned */
449 	if (addr & (L1_CACHE_BYTES - 1))
450 		return -EINVAL;
451 	spin_lock(&vcpu->arch.vpa_update_lock);
452 	if (v->next_gpa != addr || v->len != len) {
453 		v->next_gpa = addr;
454 		v->len = addr ? len : 0;
455 		v->update_pending = 1;
456 	}
457 	spin_unlock(&vcpu->arch.vpa_update_lock);
458 	return 0;
459 }
460 
461 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
462 struct reg_vpa {
463 	u32 dummy;
464 	union {
465 		__be16 hword;
466 		__be32 word;
467 	} length;
468 };
469 
470 static int vpa_is_registered(struct kvmppc_vpa *vpap)
471 {
472 	if (vpap->update_pending)
473 		return vpap->next_gpa != 0;
474 	return vpap->pinned_addr != NULL;
475 }
476 
477 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
478 				       unsigned long flags,
479 				       unsigned long vcpuid, unsigned long vpa)
480 {
481 	struct kvm *kvm = vcpu->kvm;
482 	unsigned long len, nb;
483 	void *va;
484 	struct kvm_vcpu *tvcpu;
485 	int err;
486 	int subfunc;
487 	struct kvmppc_vpa *vpap;
488 
489 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
490 	if (!tvcpu)
491 		return H_PARAMETER;
492 
493 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
494 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
495 	    subfunc == H_VPA_REG_SLB) {
496 		/* Registering new area - address must be cache-line aligned */
497 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
498 			return H_PARAMETER;
499 
500 		/* convert logical addr to kernel addr and read length */
501 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
502 		if (va == NULL)
503 			return H_PARAMETER;
504 		if (subfunc == H_VPA_REG_VPA)
505 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
506 		else
507 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
508 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
509 
510 		/* Check length */
511 		if (len > nb || len < sizeof(struct reg_vpa))
512 			return H_PARAMETER;
513 	} else {
514 		vpa = 0;
515 		len = 0;
516 	}
517 
518 	err = H_PARAMETER;
519 	vpap = NULL;
520 	spin_lock(&tvcpu->arch.vpa_update_lock);
521 
522 	switch (subfunc) {
523 	case H_VPA_REG_VPA:		/* register VPA */
524 		/*
525 		 * The size of our lppaca is 1kB because of the way we align
526 		 * it for the guest to avoid crossing a 4kB boundary. We only
527 		 * use 640 bytes of the structure though, so we should accept
528 		 * clients that set a size of 640.
529 		 */
530 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
531 		if (len < sizeof(struct lppaca))
532 			break;
533 		vpap = &tvcpu->arch.vpa;
534 		err = 0;
535 		break;
536 
537 	case H_VPA_REG_DTL:		/* register DTL */
538 		if (len < sizeof(struct dtl_entry))
539 			break;
540 		len -= len % sizeof(struct dtl_entry);
541 
542 		/* Check that they have previously registered a VPA */
543 		err = H_RESOURCE;
544 		if (!vpa_is_registered(&tvcpu->arch.vpa))
545 			break;
546 
547 		vpap = &tvcpu->arch.dtl;
548 		err = 0;
549 		break;
550 
551 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
552 		/* Check that they have previously registered a VPA */
553 		err = H_RESOURCE;
554 		if (!vpa_is_registered(&tvcpu->arch.vpa))
555 			break;
556 
557 		vpap = &tvcpu->arch.slb_shadow;
558 		err = 0;
559 		break;
560 
561 	case H_VPA_DEREG_VPA:		/* deregister VPA */
562 		/* Check they don't still have a DTL or SLB buf registered */
563 		err = H_RESOURCE;
564 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
565 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
566 			break;
567 
568 		vpap = &tvcpu->arch.vpa;
569 		err = 0;
570 		break;
571 
572 	case H_VPA_DEREG_DTL:		/* deregister DTL */
573 		vpap = &tvcpu->arch.dtl;
574 		err = 0;
575 		break;
576 
577 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
578 		vpap = &tvcpu->arch.slb_shadow;
579 		err = 0;
580 		break;
581 	}
582 
583 	if (vpap) {
584 		vpap->next_gpa = vpa;
585 		vpap->len = len;
586 		vpap->update_pending = 1;
587 	}
588 
589 	spin_unlock(&tvcpu->arch.vpa_update_lock);
590 
591 	return err;
592 }
593 
594 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
595 {
596 	struct kvm *kvm = vcpu->kvm;
597 	void *va;
598 	unsigned long nb;
599 	unsigned long gpa;
600 
601 	/*
602 	 * We need to pin the page pointed to by vpap->next_gpa,
603 	 * but we can't call kvmppc_pin_guest_page under the lock
604 	 * as it does get_user_pages() and down_read().  So we
605 	 * have to drop the lock, pin the page, then get the lock
606 	 * again and check that a new area didn't get registered
607 	 * in the meantime.
608 	 */
609 	for (;;) {
610 		gpa = vpap->next_gpa;
611 		spin_unlock(&vcpu->arch.vpa_update_lock);
612 		va = NULL;
613 		nb = 0;
614 		if (gpa)
615 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
616 		spin_lock(&vcpu->arch.vpa_update_lock);
617 		if (gpa == vpap->next_gpa)
618 			break;
619 		/* sigh... unpin that one and try again */
620 		if (va)
621 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
622 	}
623 
624 	vpap->update_pending = 0;
625 	if (va && nb < vpap->len) {
626 		/*
627 		 * If it's now too short, it must be that userspace
628 		 * has changed the mappings underlying guest memory,
629 		 * so unregister the region.
630 		 */
631 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
632 		va = NULL;
633 	}
634 	if (vpap->pinned_addr)
635 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
636 					vpap->dirty);
637 	vpap->gpa = gpa;
638 	vpap->pinned_addr = va;
639 	vpap->dirty = false;
640 	if (va)
641 		vpap->pinned_end = va + vpap->len;
642 }
643 
644 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
645 {
646 	if (!(vcpu->arch.vpa.update_pending ||
647 	      vcpu->arch.slb_shadow.update_pending ||
648 	      vcpu->arch.dtl.update_pending))
649 		return;
650 
651 	spin_lock(&vcpu->arch.vpa_update_lock);
652 	if (vcpu->arch.vpa.update_pending) {
653 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
654 		if (vcpu->arch.vpa.pinned_addr)
655 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
656 	}
657 	if (vcpu->arch.dtl.update_pending) {
658 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
659 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
660 		vcpu->arch.dtl_index = 0;
661 	}
662 	if (vcpu->arch.slb_shadow.update_pending)
663 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
664 	spin_unlock(&vcpu->arch.vpa_update_lock);
665 }
666 
667 /*
668  * Return the accumulated stolen time for the vcore up until `now'.
669  * The caller should hold the vcore lock.
670  */
671 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
672 {
673 	u64 p;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&vc->stoltb_lock, flags);
677 	p = vc->stolen_tb;
678 	if (vc->vcore_state != VCORE_INACTIVE &&
679 	    vc->preempt_tb != TB_NIL)
680 		p += now - vc->preempt_tb;
681 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
682 	return p;
683 }
684 
685 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
686 				    struct kvmppc_vcore *vc)
687 {
688 	struct dtl_entry *dt;
689 	struct lppaca *vpa;
690 	unsigned long stolen;
691 	unsigned long core_stolen;
692 	u64 now;
693 	unsigned long flags;
694 
695 	dt = vcpu->arch.dtl_ptr;
696 	vpa = vcpu->arch.vpa.pinned_addr;
697 	now = mftb();
698 	core_stolen = vcore_stolen_time(vc, now);
699 	stolen = core_stolen - vcpu->arch.stolen_logged;
700 	vcpu->arch.stolen_logged = core_stolen;
701 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
702 	stolen += vcpu->arch.busy_stolen;
703 	vcpu->arch.busy_stolen = 0;
704 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
705 	if (!dt || !vpa)
706 		return;
707 	memset(dt, 0, sizeof(struct dtl_entry));
708 	dt->dispatch_reason = 7;
709 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
710 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
711 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
712 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
713 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
714 	++dt;
715 	if (dt == vcpu->arch.dtl.pinned_end)
716 		dt = vcpu->arch.dtl.pinned_addr;
717 	vcpu->arch.dtl_ptr = dt;
718 	/* order writing *dt vs. writing vpa->dtl_idx */
719 	smp_wmb();
720 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
721 	vcpu->arch.dtl.dirty = true;
722 }
723 
724 /* See if there is a doorbell interrupt pending for a vcpu */
725 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
726 {
727 	int thr;
728 	struct kvmppc_vcore *vc;
729 
730 	if (vcpu->arch.doorbell_request)
731 		return true;
732 	/*
733 	 * Ensure that the read of vcore->dpdes comes after the read
734 	 * of vcpu->doorbell_request.  This barrier matches the
735 	 * smp_wmb() in kvmppc_guest_entry_inject().
736 	 */
737 	smp_rmb();
738 	vc = vcpu->arch.vcore;
739 	thr = vcpu->vcpu_id - vc->first_vcpuid;
740 	return !!(vc->dpdes & (1 << thr));
741 }
742 
743 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
744 {
745 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
746 		return true;
747 	if ((!vcpu->arch.vcore->arch_compat) &&
748 	    cpu_has_feature(CPU_FTR_ARCH_207S))
749 		return true;
750 	return false;
751 }
752 
753 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
754 			     unsigned long resource, unsigned long value1,
755 			     unsigned long value2)
756 {
757 	switch (resource) {
758 	case H_SET_MODE_RESOURCE_SET_CIABR:
759 		if (!kvmppc_power8_compatible(vcpu))
760 			return H_P2;
761 		if (value2)
762 			return H_P4;
763 		if (mflags)
764 			return H_UNSUPPORTED_FLAG_START;
765 		/* Guests can't breakpoint the hypervisor */
766 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
767 			return H_P3;
768 		vcpu->arch.ciabr  = value1;
769 		return H_SUCCESS;
770 	case H_SET_MODE_RESOURCE_SET_DAWR:
771 		if (!kvmppc_power8_compatible(vcpu))
772 			return H_P2;
773 		if (!ppc_breakpoint_available())
774 			return H_P2;
775 		if (mflags)
776 			return H_UNSUPPORTED_FLAG_START;
777 		if (value2 & DABRX_HYP)
778 			return H_P4;
779 		vcpu->arch.dawr  = value1;
780 		vcpu->arch.dawrx = value2;
781 		return H_SUCCESS;
782 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
783 		/* KVM does not support mflags=2 (AIL=2) */
784 		if (mflags != 0 && mflags != 3)
785 			return H_UNSUPPORTED_FLAG_START;
786 		return H_TOO_HARD;
787 	default:
788 		return H_TOO_HARD;
789 	}
790 }
791 
792 /* Copy guest memory in place - must reside within a single memslot */
793 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
794 				  unsigned long len)
795 {
796 	struct kvm_memory_slot *to_memslot = NULL;
797 	struct kvm_memory_slot *from_memslot = NULL;
798 	unsigned long to_addr, from_addr;
799 	int r;
800 
801 	/* Get HPA for from address */
802 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
803 	if (!from_memslot)
804 		return -EFAULT;
805 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
806 			     << PAGE_SHIFT))
807 		return -EINVAL;
808 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
809 	if (kvm_is_error_hva(from_addr))
810 		return -EFAULT;
811 	from_addr |= (from & (PAGE_SIZE - 1));
812 
813 	/* Get HPA for to address */
814 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
815 	if (!to_memslot)
816 		return -EFAULT;
817 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
818 			   << PAGE_SHIFT))
819 		return -EINVAL;
820 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
821 	if (kvm_is_error_hva(to_addr))
822 		return -EFAULT;
823 	to_addr |= (to & (PAGE_SIZE - 1));
824 
825 	/* Perform copy */
826 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
827 			     len);
828 	if (r)
829 		return -EFAULT;
830 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
831 	return 0;
832 }
833 
834 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
835 			       unsigned long dest, unsigned long src)
836 {
837 	u64 pg_sz = SZ_4K;		/* 4K page size */
838 	u64 pg_mask = SZ_4K - 1;
839 	int ret;
840 
841 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
842 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
843 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
844 		return H_PARAMETER;
845 
846 	/* dest (and src if copy_page flag set) must be page aligned */
847 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
848 		return H_PARAMETER;
849 
850 	/* zero and/or copy the page as determined by the flags */
851 	if (flags & H_COPY_PAGE) {
852 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
853 		if (ret < 0)
854 			return H_PARAMETER;
855 	} else if (flags & H_ZERO_PAGE) {
856 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
857 		if (ret < 0)
858 			return H_PARAMETER;
859 	}
860 
861 	/* We can ignore the remaining flags */
862 
863 	return H_SUCCESS;
864 }
865 
866 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
867 {
868 	struct kvmppc_vcore *vcore = target->arch.vcore;
869 
870 	/*
871 	 * We expect to have been called by the real mode handler
872 	 * (kvmppc_rm_h_confer()) which would have directly returned
873 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
874 	 * have useful work to do and should not confer) so we don't
875 	 * recheck that here.
876 	 */
877 
878 	spin_lock(&vcore->lock);
879 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
880 	    vcore->vcore_state != VCORE_INACTIVE &&
881 	    vcore->runner)
882 		target = vcore->runner;
883 	spin_unlock(&vcore->lock);
884 
885 	return kvm_vcpu_yield_to(target);
886 }
887 
888 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
889 {
890 	int yield_count = 0;
891 	struct lppaca *lppaca;
892 
893 	spin_lock(&vcpu->arch.vpa_update_lock);
894 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
895 	if (lppaca)
896 		yield_count = be32_to_cpu(lppaca->yield_count);
897 	spin_unlock(&vcpu->arch.vpa_update_lock);
898 	return yield_count;
899 }
900 
901 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
902 {
903 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
904 	unsigned long target, ret = H_SUCCESS;
905 	int yield_count;
906 	struct kvm_vcpu *tvcpu;
907 	int idx, rc;
908 
909 	if (req <= MAX_HCALL_OPCODE &&
910 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
911 		return RESUME_HOST;
912 
913 	switch (req) {
914 	case H_CEDE:
915 		break;
916 	case H_PROD:
917 		target = kvmppc_get_gpr(vcpu, 4);
918 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
919 		if (!tvcpu) {
920 			ret = H_PARAMETER;
921 			break;
922 		}
923 		tvcpu->arch.prodded = 1;
924 		smp_mb();
925 		if (tvcpu->arch.ceded)
926 			kvmppc_fast_vcpu_kick_hv(tvcpu);
927 		break;
928 	case H_CONFER:
929 		target = kvmppc_get_gpr(vcpu, 4);
930 		if (target == -1)
931 			break;
932 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
933 		if (!tvcpu) {
934 			ret = H_PARAMETER;
935 			break;
936 		}
937 		yield_count = kvmppc_get_gpr(vcpu, 5);
938 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
939 			break;
940 		kvm_arch_vcpu_yield_to(tvcpu);
941 		break;
942 	case H_REGISTER_VPA:
943 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
944 					kvmppc_get_gpr(vcpu, 5),
945 					kvmppc_get_gpr(vcpu, 6));
946 		break;
947 	case H_RTAS:
948 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
949 			return RESUME_HOST;
950 
951 		idx = srcu_read_lock(&vcpu->kvm->srcu);
952 		rc = kvmppc_rtas_hcall(vcpu);
953 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
954 
955 		if (rc == -ENOENT)
956 			return RESUME_HOST;
957 		else if (rc == 0)
958 			break;
959 
960 		/* Send the error out to userspace via KVM_RUN */
961 		return rc;
962 	case H_LOGICAL_CI_LOAD:
963 		ret = kvmppc_h_logical_ci_load(vcpu);
964 		if (ret == H_TOO_HARD)
965 			return RESUME_HOST;
966 		break;
967 	case H_LOGICAL_CI_STORE:
968 		ret = kvmppc_h_logical_ci_store(vcpu);
969 		if (ret == H_TOO_HARD)
970 			return RESUME_HOST;
971 		break;
972 	case H_SET_MODE:
973 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
974 					kvmppc_get_gpr(vcpu, 5),
975 					kvmppc_get_gpr(vcpu, 6),
976 					kvmppc_get_gpr(vcpu, 7));
977 		if (ret == H_TOO_HARD)
978 			return RESUME_HOST;
979 		break;
980 	case H_XIRR:
981 	case H_CPPR:
982 	case H_EOI:
983 	case H_IPI:
984 	case H_IPOLL:
985 	case H_XIRR_X:
986 		if (kvmppc_xics_enabled(vcpu)) {
987 			if (xics_on_xive()) {
988 				ret = H_NOT_AVAILABLE;
989 				return RESUME_GUEST;
990 			}
991 			ret = kvmppc_xics_hcall(vcpu, req);
992 			break;
993 		}
994 		return RESUME_HOST;
995 	case H_SET_DABR:
996 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
997 		break;
998 	case H_SET_XDABR:
999 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1000 						kvmppc_get_gpr(vcpu, 5));
1001 		break;
1002 #ifdef CONFIG_SPAPR_TCE_IOMMU
1003 	case H_GET_TCE:
1004 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1005 						kvmppc_get_gpr(vcpu, 5));
1006 		if (ret == H_TOO_HARD)
1007 			return RESUME_HOST;
1008 		break;
1009 	case H_PUT_TCE:
1010 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1011 						kvmppc_get_gpr(vcpu, 5),
1012 						kvmppc_get_gpr(vcpu, 6));
1013 		if (ret == H_TOO_HARD)
1014 			return RESUME_HOST;
1015 		break;
1016 	case H_PUT_TCE_INDIRECT:
1017 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1018 						kvmppc_get_gpr(vcpu, 5),
1019 						kvmppc_get_gpr(vcpu, 6),
1020 						kvmppc_get_gpr(vcpu, 7));
1021 		if (ret == H_TOO_HARD)
1022 			return RESUME_HOST;
1023 		break;
1024 	case H_STUFF_TCE:
1025 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1026 						kvmppc_get_gpr(vcpu, 5),
1027 						kvmppc_get_gpr(vcpu, 6),
1028 						kvmppc_get_gpr(vcpu, 7));
1029 		if (ret == H_TOO_HARD)
1030 			return RESUME_HOST;
1031 		break;
1032 #endif
1033 	case H_RANDOM:
1034 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1035 			ret = H_HARDWARE;
1036 		break;
1037 
1038 	case H_SET_PARTITION_TABLE:
1039 		ret = H_FUNCTION;
1040 		if (nesting_enabled(vcpu->kvm))
1041 			ret = kvmhv_set_partition_table(vcpu);
1042 		break;
1043 	case H_ENTER_NESTED:
1044 		ret = H_FUNCTION;
1045 		if (!nesting_enabled(vcpu->kvm))
1046 			break;
1047 		ret = kvmhv_enter_nested_guest(vcpu);
1048 		if (ret == H_INTERRUPT) {
1049 			kvmppc_set_gpr(vcpu, 3, 0);
1050 			vcpu->arch.hcall_needed = 0;
1051 			return -EINTR;
1052 		} else if (ret == H_TOO_HARD) {
1053 			kvmppc_set_gpr(vcpu, 3, 0);
1054 			vcpu->arch.hcall_needed = 0;
1055 			return RESUME_HOST;
1056 		}
1057 		break;
1058 	case H_TLB_INVALIDATE:
1059 		ret = H_FUNCTION;
1060 		if (nesting_enabled(vcpu->kvm))
1061 			ret = kvmhv_do_nested_tlbie(vcpu);
1062 		break;
1063 	case H_COPY_TOFROM_GUEST:
1064 		ret = H_FUNCTION;
1065 		if (nesting_enabled(vcpu->kvm))
1066 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1067 		break;
1068 	case H_PAGE_INIT:
1069 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1070 					 kvmppc_get_gpr(vcpu, 5),
1071 					 kvmppc_get_gpr(vcpu, 6));
1072 		break;
1073 	default:
1074 		return RESUME_HOST;
1075 	}
1076 	kvmppc_set_gpr(vcpu, 3, ret);
1077 	vcpu->arch.hcall_needed = 0;
1078 	return RESUME_GUEST;
1079 }
1080 
1081 /*
1082  * Handle H_CEDE in the nested virtualization case where we haven't
1083  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1084  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1085  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1086  */
1087 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1088 {
1089 	vcpu->arch.shregs.msr |= MSR_EE;
1090 	vcpu->arch.ceded = 1;
1091 	smp_mb();
1092 	if (vcpu->arch.prodded) {
1093 		vcpu->arch.prodded = 0;
1094 		smp_mb();
1095 		vcpu->arch.ceded = 0;
1096 	}
1097 }
1098 
1099 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1100 {
1101 	switch (cmd) {
1102 	case H_CEDE:
1103 	case H_PROD:
1104 	case H_CONFER:
1105 	case H_REGISTER_VPA:
1106 	case H_SET_MODE:
1107 	case H_LOGICAL_CI_LOAD:
1108 	case H_LOGICAL_CI_STORE:
1109 #ifdef CONFIG_KVM_XICS
1110 	case H_XIRR:
1111 	case H_CPPR:
1112 	case H_EOI:
1113 	case H_IPI:
1114 	case H_IPOLL:
1115 	case H_XIRR_X:
1116 #endif
1117 	case H_PAGE_INIT:
1118 		return 1;
1119 	}
1120 
1121 	/* See if it's in the real-mode table */
1122 	return kvmppc_hcall_impl_hv_realmode(cmd);
1123 }
1124 
1125 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1126 					struct kvm_vcpu *vcpu)
1127 {
1128 	u32 last_inst;
1129 
1130 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1131 					EMULATE_DONE) {
1132 		/*
1133 		 * Fetch failed, so return to guest and
1134 		 * try executing it again.
1135 		 */
1136 		return RESUME_GUEST;
1137 	}
1138 
1139 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1140 		run->exit_reason = KVM_EXIT_DEBUG;
1141 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1142 		return RESUME_HOST;
1143 	} else {
1144 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1145 		return RESUME_GUEST;
1146 	}
1147 }
1148 
1149 static void do_nothing(void *x)
1150 {
1151 }
1152 
1153 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1154 {
1155 	int thr, cpu, pcpu, nthreads;
1156 	struct kvm_vcpu *v;
1157 	unsigned long dpdes;
1158 
1159 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1160 	dpdes = 0;
1161 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1162 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1163 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1164 		if (!v)
1165 			continue;
1166 		/*
1167 		 * If the vcpu is currently running on a physical cpu thread,
1168 		 * interrupt it in order to pull it out of the guest briefly,
1169 		 * which will update its vcore->dpdes value.
1170 		 */
1171 		pcpu = READ_ONCE(v->cpu);
1172 		if (pcpu >= 0)
1173 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1174 		if (kvmppc_doorbell_pending(v))
1175 			dpdes |= 1 << thr;
1176 	}
1177 	return dpdes;
1178 }
1179 
1180 /*
1181  * On POWER9, emulate doorbell-related instructions in order to
1182  * give the guest the illusion of running on a multi-threaded core.
1183  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1184  * and mfspr DPDES.
1185  */
1186 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1187 {
1188 	u32 inst, rb, thr;
1189 	unsigned long arg;
1190 	struct kvm *kvm = vcpu->kvm;
1191 	struct kvm_vcpu *tvcpu;
1192 
1193 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1194 		return RESUME_GUEST;
1195 	if (get_op(inst) != 31)
1196 		return EMULATE_FAIL;
1197 	rb = get_rb(inst);
1198 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1199 	switch (get_xop(inst)) {
1200 	case OP_31_XOP_MSGSNDP:
1201 		arg = kvmppc_get_gpr(vcpu, rb);
1202 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1203 			break;
1204 		arg &= 0x3f;
1205 		if (arg >= kvm->arch.emul_smt_mode)
1206 			break;
1207 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1208 		if (!tvcpu)
1209 			break;
1210 		if (!tvcpu->arch.doorbell_request) {
1211 			tvcpu->arch.doorbell_request = 1;
1212 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1213 		}
1214 		break;
1215 	case OP_31_XOP_MSGCLRP:
1216 		arg = kvmppc_get_gpr(vcpu, rb);
1217 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1218 			break;
1219 		vcpu->arch.vcore->dpdes = 0;
1220 		vcpu->arch.doorbell_request = 0;
1221 		break;
1222 	case OP_31_XOP_MFSPR:
1223 		switch (get_sprn(inst)) {
1224 		case SPRN_TIR:
1225 			arg = thr;
1226 			break;
1227 		case SPRN_DPDES:
1228 			arg = kvmppc_read_dpdes(vcpu);
1229 			break;
1230 		default:
1231 			return EMULATE_FAIL;
1232 		}
1233 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1234 		break;
1235 	default:
1236 		return EMULATE_FAIL;
1237 	}
1238 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1239 	return RESUME_GUEST;
1240 }
1241 
1242 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1243 				 struct task_struct *tsk)
1244 {
1245 	int r = RESUME_HOST;
1246 
1247 	vcpu->stat.sum_exits++;
1248 
1249 	/*
1250 	 * This can happen if an interrupt occurs in the last stages
1251 	 * of guest entry or the first stages of guest exit (i.e. after
1252 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1253 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1254 	 * That can happen due to a bug, or due to a machine check
1255 	 * occurring at just the wrong time.
1256 	 */
1257 	if (vcpu->arch.shregs.msr & MSR_HV) {
1258 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1259 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1260 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1261 			vcpu->arch.shregs.msr);
1262 		kvmppc_dump_regs(vcpu);
1263 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1264 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1265 		return RESUME_HOST;
1266 	}
1267 	run->exit_reason = KVM_EXIT_UNKNOWN;
1268 	run->ready_for_interrupt_injection = 1;
1269 	switch (vcpu->arch.trap) {
1270 	/* We're good on these - the host merely wanted to get our attention */
1271 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1272 		vcpu->stat.dec_exits++;
1273 		r = RESUME_GUEST;
1274 		break;
1275 	case BOOK3S_INTERRUPT_EXTERNAL:
1276 	case BOOK3S_INTERRUPT_H_DOORBELL:
1277 	case BOOK3S_INTERRUPT_H_VIRT:
1278 		vcpu->stat.ext_intr_exits++;
1279 		r = RESUME_GUEST;
1280 		break;
1281 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1282 	case BOOK3S_INTERRUPT_HMI:
1283 	case BOOK3S_INTERRUPT_PERFMON:
1284 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1285 		r = RESUME_GUEST;
1286 		break;
1287 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1288 		/* Print the MCE event to host console. */
1289 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1290 
1291 		/*
1292 		 * If the guest can do FWNMI, exit to userspace so it can
1293 		 * deliver a FWNMI to the guest.
1294 		 * Otherwise we synthesize a machine check for the guest
1295 		 * so that it knows that the machine check occurred.
1296 		 */
1297 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1298 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1299 			kvmppc_core_queue_machine_check(vcpu, flags);
1300 			r = RESUME_GUEST;
1301 			break;
1302 		}
1303 
1304 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1305 		run->exit_reason = KVM_EXIT_NMI;
1306 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1307 		/* Clear out the old NMI status from run->flags */
1308 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1309 		/* Now set the NMI status */
1310 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1311 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1312 		else
1313 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1314 
1315 		r = RESUME_HOST;
1316 		break;
1317 	case BOOK3S_INTERRUPT_PROGRAM:
1318 	{
1319 		ulong flags;
1320 		/*
1321 		 * Normally program interrupts are delivered directly
1322 		 * to the guest by the hardware, but we can get here
1323 		 * as a result of a hypervisor emulation interrupt
1324 		 * (e40) getting turned into a 700 by BML RTAS.
1325 		 */
1326 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1327 		kvmppc_core_queue_program(vcpu, flags);
1328 		r = RESUME_GUEST;
1329 		break;
1330 	}
1331 	case BOOK3S_INTERRUPT_SYSCALL:
1332 	{
1333 		/* hcall - punt to userspace */
1334 		int i;
1335 
1336 		/* hypercall with MSR_PR has already been handled in rmode,
1337 		 * and never reaches here.
1338 		 */
1339 
1340 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1341 		for (i = 0; i < 9; ++i)
1342 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1343 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1344 		vcpu->arch.hcall_needed = 1;
1345 		r = RESUME_HOST;
1346 		break;
1347 	}
1348 	/*
1349 	 * We get these next two if the guest accesses a page which it thinks
1350 	 * it has mapped but which is not actually present, either because
1351 	 * it is for an emulated I/O device or because the corresonding
1352 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1353 	 * have been handled already.
1354 	 */
1355 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1356 		r = RESUME_PAGE_FAULT;
1357 		break;
1358 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1359 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1360 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1361 			DSISR_SRR1_MATCH_64S;
1362 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1363 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1364 		r = RESUME_PAGE_FAULT;
1365 		break;
1366 	/*
1367 	 * This occurs if the guest executes an illegal instruction.
1368 	 * If the guest debug is disabled, generate a program interrupt
1369 	 * to the guest. If guest debug is enabled, we need to check
1370 	 * whether the instruction is a software breakpoint instruction.
1371 	 * Accordingly return to Guest or Host.
1372 	 */
1373 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1374 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1375 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1376 				swab32(vcpu->arch.emul_inst) :
1377 				vcpu->arch.emul_inst;
1378 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1379 			r = kvmppc_emulate_debug_inst(run, vcpu);
1380 		} else {
1381 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1382 			r = RESUME_GUEST;
1383 		}
1384 		break;
1385 	/*
1386 	 * This occurs if the guest (kernel or userspace), does something that
1387 	 * is prohibited by HFSCR.
1388 	 * On POWER9, this could be a doorbell instruction that we need
1389 	 * to emulate.
1390 	 * Otherwise, we just generate a program interrupt to the guest.
1391 	 */
1392 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1393 		r = EMULATE_FAIL;
1394 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1395 		    cpu_has_feature(CPU_FTR_ARCH_300))
1396 			r = kvmppc_emulate_doorbell_instr(vcpu);
1397 		if (r == EMULATE_FAIL) {
1398 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1399 			r = RESUME_GUEST;
1400 		}
1401 		break;
1402 
1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1404 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1405 		/*
1406 		 * This occurs for various TM-related instructions that
1407 		 * we need to emulate on POWER9 DD2.2.  We have already
1408 		 * handled the cases where the guest was in real-suspend
1409 		 * mode and was transitioning to transactional state.
1410 		 */
1411 		r = kvmhv_p9_tm_emulation(vcpu);
1412 		break;
1413 #endif
1414 
1415 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1416 		r = RESUME_PASSTHROUGH;
1417 		break;
1418 	default:
1419 		kvmppc_dump_regs(vcpu);
1420 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1421 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1422 			vcpu->arch.shregs.msr);
1423 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1424 		r = RESUME_HOST;
1425 		break;
1426 	}
1427 
1428 	return r;
1429 }
1430 
1431 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1432 {
1433 	int r;
1434 	int srcu_idx;
1435 
1436 	vcpu->stat.sum_exits++;
1437 
1438 	/*
1439 	 * This can happen if an interrupt occurs in the last stages
1440 	 * of guest entry or the first stages of guest exit (i.e. after
1441 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1442 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1443 	 * That can happen due to a bug, or due to a machine check
1444 	 * occurring at just the wrong time.
1445 	 */
1446 	if (vcpu->arch.shregs.msr & MSR_HV) {
1447 		pr_emerg("KVM trap in HV mode while nested!\n");
1448 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1449 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1450 			 vcpu->arch.shregs.msr);
1451 		kvmppc_dump_regs(vcpu);
1452 		return RESUME_HOST;
1453 	}
1454 	switch (vcpu->arch.trap) {
1455 	/* We're good on these - the host merely wanted to get our attention */
1456 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1457 		vcpu->stat.dec_exits++;
1458 		r = RESUME_GUEST;
1459 		break;
1460 	case BOOK3S_INTERRUPT_EXTERNAL:
1461 		vcpu->stat.ext_intr_exits++;
1462 		r = RESUME_HOST;
1463 		break;
1464 	case BOOK3S_INTERRUPT_H_DOORBELL:
1465 	case BOOK3S_INTERRUPT_H_VIRT:
1466 		vcpu->stat.ext_intr_exits++;
1467 		r = RESUME_GUEST;
1468 		break;
1469 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1470 	case BOOK3S_INTERRUPT_HMI:
1471 	case BOOK3S_INTERRUPT_PERFMON:
1472 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1473 		r = RESUME_GUEST;
1474 		break;
1475 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1476 		/* Pass the machine check to the L1 guest */
1477 		r = RESUME_HOST;
1478 		/* Print the MCE event to host console. */
1479 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1480 		break;
1481 	/*
1482 	 * We get these next two if the guest accesses a page which it thinks
1483 	 * it has mapped but which is not actually present, either because
1484 	 * it is for an emulated I/O device or because the corresonding
1485 	 * host page has been paged out.
1486 	 */
1487 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1488 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1489 		r = kvmhv_nested_page_fault(run, vcpu);
1490 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1491 		break;
1492 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1493 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1494 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1495 					 DSISR_SRR1_MATCH_64S;
1496 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1497 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1498 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1499 		r = kvmhv_nested_page_fault(run, vcpu);
1500 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1501 		break;
1502 
1503 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1505 		/*
1506 		 * This occurs for various TM-related instructions that
1507 		 * we need to emulate on POWER9 DD2.2.  We have already
1508 		 * handled the cases where the guest was in real-suspend
1509 		 * mode and was transitioning to transactional state.
1510 		 */
1511 		r = kvmhv_p9_tm_emulation(vcpu);
1512 		break;
1513 #endif
1514 
1515 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1516 		vcpu->arch.trap = 0;
1517 		r = RESUME_GUEST;
1518 		if (!xics_on_xive())
1519 			kvmppc_xics_rm_complete(vcpu, 0);
1520 		break;
1521 	default:
1522 		r = RESUME_HOST;
1523 		break;
1524 	}
1525 
1526 	return r;
1527 }
1528 
1529 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1530 					    struct kvm_sregs *sregs)
1531 {
1532 	int i;
1533 
1534 	memset(sregs, 0, sizeof(struct kvm_sregs));
1535 	sregs->pvr = vcpu->arch.pvr;
1536 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1537 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1538 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1545 					    struct kvm_sregs *sregs)
1546 {
1547 	int i, j;
1548 
1549 	/* Only accept the same PVR as the host's, since we can't spoof it */
1550 	if (sregs->pvr != vcpu->arch.pvr)
1551 		return -EINVAL;
1552 
1553 	j = 0;
1554 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1555 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1556 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1557 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1558 			++j;
1559 		}
1560 	}
1561 	vcpu->arch.slb_max = j;
1562 
1563 	return 0;
1564 }
1565 
1566 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1567 		bool preserve_top32)
1568 {
1569 	struct kvm *kvm = vcpu->kvm;
1570 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1571 	u64 mask;
1572 
1573 	spin_lock(&vc->lock);
1574 	/*
1575 	 * If ILE (interrupt little-endian) has changed, update the
1576 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1577 	 */
1578 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1579 		struct kvm_vcpu *vcpu;
1580 		int i;
1581 
1582 		kvm_for_each_vcpu(i, vcpu, kvm) {
1583 			if (vcpu->arch.vcore != vc)
1584 				continue;
1585 			if (new_lpcr & LPCR_ILE)
1586 				vcpu->arch.intr_msr |= MSR_LE;
1587 			else
1588 				vcpu->arch.intr_msr &= ~MSR_LE;
1589 		}
1590 	}
1591 
1592 	/*
1593 	 * Userspace can only modify DPFD (default prefetch depth),
1594 	 * ILE (interrupt little-endian) and TC (translation control).
1595 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1596 	 */
1597 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1598 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1599 		mask |= LPCR_AIL;
1600 	/*
1601 	 * On POWER9, allow userspace to enable large decrementer for the
1602 	 * guest, whether or not the host has it enabled.
1603 	 */
1604 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1605 		mask |= LPCR_LD;
1606 
1607 	/* Broken 32-bit version of LPCR must not clear top bits */
1608 	if (preserve_top32)
1609 		mask &= 0xFFFFFFFF;
1610 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1611 	spin_unlock(&vc->lock);
1612 }
1613 
1614 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1615 				 union kvmppc_one_reg *val)
1616 {
1617 	int r = 0;
1618 	long int i;
1619 
1620 	switch (id) {
1621 	case KVM_REG_PPC_DEBUG_INST:
1622 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1623 		break;
1624 	case KVM_REG_PPC_HIOR:
1625 		*val = get_reg_val(id, 0);
1626 		break;
1627 	case KVM_REG_PPC_DABR:
1628 		*val = get_reg_val(id, vcpu->arch.dabr);
1629 		break;
1630 	case KVM_REG_PPC_DABRX:
1631 		*val = get_reg_val(id, vcpu->arch.dabrx);
1632 		break;
1633 	case KVM_REG_PPC_DSCR:
1634 		*val = get_reg_val(id, vcpu->arch.dscr);
1635 		break;
1636 	case KVM_REG_PPC_PURR:
1637 		*val = get_reg_val(id, vcpu->arch.purr);
1638 		break;
1639 	case KVM_REG_PPC_SPURR:
1640 		*val = get_reg_val(id, vcpu->arch.spurr);
1641 		break;
1642 	case KVM_REG_PPC_AMR:
1643 		*val = get_reg_val(id, vcpu->arch.amr);
1644 		break;
1645 	case KVM_REG_PPC_UAMOR:
1646 		*val = get_reg_val(id, vcpu->arch.uamor);
1647 		break;
1648 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1649 		i = id - KVM_REG_PPC_MMCR0;
1650 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1651 		break;
1652 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1653 		i = id - KVM_REG_PPC_PMC1;
1654 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1655 		break;
1656 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1657 		i = id - KVM_REG_PPC_SPMC1;
1658 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1659 		break;
1660 	case KVM_REG_PPC_SIAR:
1661 		*val = get_reg_val(id, vcpu->arch.siar);
1662 		break;
1663 	case KVM_REG_PPC_SDAR:
1664 		*val = get_reg_val(id, vcpu->arch.sdar);
1665 		break;
1666 	case KVM_REG_PPC_SIER:
1667 		*val = get_reg_val(id, vcpu->arch.sier);
1668 		break;
1669 	case KVM_REG_PPC_IAMR:
1670 		*val = get_reg_val(id, vcpu->arch.iamr);
1671 		break;
1672 	case KVM_REG_PPC_PSPB:
1673 		*val = get_reg_val(id, vcpu->arch.pspb);
1674 		break;
1675 	case KVM_REG_PPC_DPDES:
1676 		/*
1677 		 * On POWER9, where we are emulating msgsndp etc.,
1678 		 * we return 1 bit for each vcpu, which can come from
1679 		 * either vcore->dpdes or doorbell_request.
1680 		 * On POWER8, doorbell_request is 0.
1681 		 */
1682 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1683 				   vcpu->arch.doorbell_request);
1684 		break;
1685 	case KVM_REG_PPC_VTB:
1686 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1687 		break;
1688 	case KVM_REG_PPC_DAWR:
1689 		*val = get_reg_val(id, vcpu->arch.dawr);
1690 		break;
1691 	case KVM_REG_PPC_DAWRX:
1692 		*val = get_reg_val(id, vcpu->arch.dawrx);
1693 		break;
1694 	case KVM_REG_PPC_CIABR:
1695 		*val = get_reg_val(id, vcpu->arch.ciabr);
1696 		break;
1697 	case KVM_REG_PPC_CSIGR:
1698 		*val = get_reg_val(id, vcpu->arch.csigr);
1699 		break;
1700 	case KVM_REG_PPC_TACR:
1701 		*val = get_reg_val(id, vcpu->arch.tacr);
1702 		break;
1703 	case KVM_REG_PPC_TCSCR:
1704 		*val = get_reg_val(id, vcpu->arch.tcscr);
1705 		break;
1706 	case KVM_REG_PPC_PID:
1707 		*val = get_reg_val(id, vcpu->arch.pid);
1708 		break;
1709 	case KVM_REG_PPC_ACOP:
1710 		*val = get_reg_val(id, vcpu->arch.acop);
1711 		break;
1712 	case KVM_REG_PPC_WORT:
1713 		*val = get_reg_val(id, vcpu->arch.wort);
1714 		break;
1715 	case KVM_REG_PPC_TIDR:
1716 		*val = get_reg_val(id, vcpu->arch.tid);
1717 		break;
1718 	case KVM_REG_PPC_PSSCR:
1719 		*val = get_reg_val(id, vcpu->arch.psscr);
1720 		break;
1721 	case KVM_REG_PPC_VPA_ADDR:
1722 		spin_lock(&vcpu->arch.vpa_update_lock);
1723 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1724 		spin_unlock(&vcpu->arch.vpa_update_lock);
1725 		break;
1726 	case KVM_REG_PPC_VPA_SLB:
1727 		spin_lock(&vcpu->arch.vpa_update_lock);
1728 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1729 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1730 		spin_unlock(&vcpu->arch.vpa_update_lock);
1731 		break;
1732 	case KVM_REG_PPC_VPA_DTL:
1733 		spin_lock(&vcpu->arch.vpa_update_lock);
1734 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1735 		val->vpaval.length = vcpu->arch.dtl.len;
1736 		spin_unlock(&vcpu->arch.vpa_update_lock);
1737 		break;
1738 	case KVM_REG_PPC_TB_OFFSET:
1739 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1740 		break;
1741 	case KVM_REG_PPC_LPCR:
1742 	case KVM_REG_PPC_LPCR_64:
1743 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1744 		break;
1745 	case KVM_REG_PPC_PPR:
1746 		*val = get_reg_val(id, vcpu->arch.ppr);
1747 		break;
1748 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1749 	case KVM_REG_PPC_TFHAR:
1750 		*val = get_reg_val(id, vcpu->arch.tfhar);
1751 		break;
1752 	case KVM_REG_PPC_TFIAR:
1753 		*val = get_reg_val(id, vcpu->arch.tfiar);
1754 		break;
1755 	case KVM_REG_PPC_TEXASR:
1756 		*val = get_reg_val(id, vcpu->arch.texasr);
1757 		break;
1758 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1759 		i = id - KVM_REG_PPC_TM_GPR0;
1760 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1761 		break;
1762 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1763 	{
1764 		int j;
1765 		i = id - KVM_REG_PPC_TM_VSR0;
1766 		if (i < 32)
1767 			for (j = 0; j < TS_FPRWIDTH; j++)
1768 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1769 		else {
1770 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1771 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1772 			else
1773 				r = -ENXIO;
1774 		}
1775 		break;
1776 	}
1777 	case KVM_REG_PPC_TM_CR:
1778 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1779 		break;
1780 	case KVM_REG_PPC_TM_XER:
1781 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1782 		break;
1783 	case KVM_REG_PPC_TM_LR:
1784 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1785 		break;
1786 	case KVM_REG_PPC_TM_CTR:
1787 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1788 		break;
1789 	case KVM_REG_PPC_TM_FPSCR:
1790 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1791 		break;
1792 	case KVM_REG_PPC_TM_AMR:
1793 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1794 		break;
1795 	case KVM_REG_PPC_TM_PPR:
1796 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1797 		break;
1798 	case KVM_REG_PPC_TM_VRSAVE:
1799 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1800 		break;
1801 	case KVM_REG_PPC_TM_VSCR:
1802 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1803 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1804 		else
1805 			r = -ENXIO;
1806 		break;
1807 	case KVM_REG_PPC_TM_DSCR:
1808 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1809 		break;
1810 	case KVM_REG_PPC_TM_TAR:
1811 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1812 		break;
1813 #endif
1814 	case KVM_REG_PPC_ARCH_COMPAT:
1815 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1816 		break;
1817 	case KVM_REG_PPC_DEC_EXPIRY:
1818 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1819 				   vcpu->arch.vcore->tb_offset);
1820 		break;
1821 	case KVM_REG_PPC_ONLINE:
1822 		*val = get_reg_val(id, vcpu->arch.online);
1823 		break;
1824 	case KVM_REG_PPC_PTCR:
1825 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1826 		break;
1827 	default:
1828 		r = -EINVAL;
1829 		break;
1830 	}
1831 
1832 	return r;
1833 }
1834 
1835 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1836 				 union kvmppc_one_reg *val)
1837 {
1838 	int r = 0;
1839 	long int i;
1840 	unsigned long addr, len;
1841 
1842 	switch (id) {
1843 	case KVM_REG_PPC_HIOR:
1844 		/* Only allow this to be set to zero */
1845 		if (set_reg_val(id, *val))
1846 			r = -EINVAL;
1847 		break;
1848 	case KVM_REG_PPC_DABR:
1849 		vcpu->arch.dabr = set_reg_val(id, *val);
1850 		break;
1851 	case KVM_REG_PPC_DABRX:
1852 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1853 		break;
1854 	case KVM_REG_PPC_DSCR:
1855 		vcpu->arch.dscr = set_reg_val(id, *val);
1856 		break;
1857 	case KVM_REG_PPC_PURR:
1858 		vcpu->arch.purr = set_reg_val(id, *val);
1859 		break;
1860 	case KVM_REG_PPC_SPURR:
1861 		vcpu->arch.spurr = set_reg_val(id, *val);
1862 		break;
1863 	case KVM_REG_PPC_AMR:
1864 		vcpu->arch.amr = set_reg_val(id, *val);
1865 		break;
1866 	case KVM_REG_PPC_UAMOR:
1867 		vcpu->arch.uamor = set_reg_val(id, *val);
1868 		break;
1869 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1870 		i = id - KVM_REG_PPC_MMCR0;
1871 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1872 		break;
1873 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1874 		i = id - KVM_REG_PPC_PMC1;
1875 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1876 		break;
1877 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1878 		i = id - KVM_REG_PPC_SPMC1;
1879 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1880 		break;
1881 	case KVM_REG_PPC_SIAR:
1882 		vcpu->arch.siar = set_reg_val(id, *val);
1883 		break;
1884 	case KVM_REG_PPC_SDAR:
1885 		vcpu->arch.sdar = set_reg_val(id, *val);
1886 		break;
1887 	case KVM_REG_PPC_SIER:
1888 		vcpu->arch.sier = set_reg_val(id, *val);
1889 		break;
1890 	case KVM_REG_PPC_IAMR:
1891 		vcpu->arch.iamr = set_reg_val(id, *val);
1892 		break;
1893 	case KVM_REG_PPC_PSPB:
1894 		vcpu->arch.pspb = set_reg_val(id, *val);
1895 		break;
1896 	case KVM_REG_PPC_DPDES:
1897 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1898 		break;
1899 	case KVM_REG_PPC_VTB:
1900 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1901 		break;
1902 	case KVM_REG_PPC_DAWR:
1903 		vcpu->arch.dawr = set_reg_val(id, *val);
1904 		break;
1905 	case KVM_REG_PPC_DAWRX:
1906 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1907 		break;
1908 	case KVM_REG_PPC_CIABR:
1909 		vcpu->arch.ciabr = set_reg_val(id, *val);
1910 		/* Don't allow setting breakpoints in hypervisor code */
1911 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1912 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1913 		break;
1914 	case KVM_REG_PPC_CSIGR:
1915 		vcpu->arch.csigr = set_reg_val(id, *val);
1916 		break;
1917 	case KVM_REG_PPC_TACR:
1918 		vcpu->arch.tacr = set_reg_val(id, *val);
1919 		break;
1920 	case KVM_REG_PPC_TCSCR:
1921 		vcpu->arch.tcscr = set_reg_val(id, *val);
1922 		break;
1923 	case KVM_REG_PPC_PID:
1924 		vcpu->arch.pid = set_reg_val(id, *val);
1925 		break;
1926 	case KVM_REG_PPC_ACOP:
1927 		vcpu->arch.acop = set_reg_val(id, *val);
1928 		break;
1929 	case KVM_REG_PPC_WORT:
1930 		vcpu->arch.wort = set_reg_val(id, *val);
1931 		break;
1932 	case KVM_REG_PPC_TIDR:
1933 		vcpu->arch.tid = set_reg_val(id, *val);
1934 		break;
1935 	case KVM_REG_PPC_PSSCR:
1936 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1937 		break;
1938 	case KVM_REG_PPC_VPA_ADDR:
1939 		addr = set_reg_val(id, *val);
1940 		r = -EINVAL;
1941 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1942 			      vcpu->arch.dtl.next_gpa))
1943 			break;
1944 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1945 		break;
1946 	case KVM_REG_PPC_VPA_SLB:
1947 		addr = val->vpaval.addr;
1948 		len = val->vpaval.length;
1949 		r = -EINVAL;
1950 		if (addr && !vcpu->arch.vpa.next_gpa)
1951 			break;
1952 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1953 		break;
1954 	case KVM_REG_PPC_VPA_DTL:
1955 		addr = val->vpaval.addr;
1956 		len = val->vpaval.length;
1957 		r = -EINVAL;
1958 		if (addr && (len < sizeof(struct dtl_entry) ||
1959 			     !vcpu->arch.vpa.next_gpa))
1960 			break;
1961 		len -= len % sizeof(struct dtl_entry);
1962 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1963 		break;
1964 	case KVM_REG_PPC_TB_OFFSET:
1965 		/* round up to multiple of 2^24 */
1966 		vcpu->arch.vcore->tb_offset =
1967 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1968 		break;
1969 	case KVM_REG_PPC_LPCR:
1970 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1971 		break;
1972 	case KVM_REG_PPC_LPCR_64:
1973 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1974 		break;
1975 	case KVM_REG_PPC_PPR:
1976 		vcpu->arch.ppr = set_reg_val(id, *val);
1977 		break;
1978 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1979 	case KVM_REG_PPC_TFHAR:
1980 		vcpu->arch.tfhar = set_reg_val(id, *val);
1981 		break;
1982 	case KVM_REG_PPC_TFIAR:
1983 		vcpu->arch.tfiar = set_reg_val(id, *val);
1984 		break;
1985 	case KVM_REG_PPC_TEXASR:
1986 		vcpu->arch.texasr = set_reg_val(id, *val);
1987 		break;
1988 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1989 		i = id - KVM_REG_PPC_TM_GPR0;
1990 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1991 		break;
1992 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1993 	{
1994 		int j;
1995 		i = id - KVM_REG_PPC_TM_VSR0;
1996 		if (i < 32)
1997 			for (j = 0; j < TS_FPRWIDTH; j++)
1998 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1999 		else
2000 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2001 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2002 			else
2003 				r = -ENXIO;
2004 		break;
2005 	}
2006 	case KVM_REG_PPC_TM_CR:
2007 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2008 		break;
2009 	case KVM_REG_PPC_TM_XER:
2010 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2011 		break;
2012 	case KVM_REG_PPC_TM_LR:
2013 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2014 		break;
2015 	case KVM_REG_PPC_TM_CTR:
2016 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2017 		break;
2018 	case KVM_REG_PPC_TM_FPSCR:
2019 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2020 		break;
2021 	case KVM_REG_PPC_TM_AMR:
2022 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2023 		break;
2024 	case KVM_REG_PPC_TM_PPR:
2025 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2026 		break;
2027 	case KVM_REG_PPC_TM_VRSAVE:
2028 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2029 		break;
2030 	case KVM_REG_PPC_TM_VSCR:
2031 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2032 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2033 		else
2034 			r = - ENXIO;
2035 		break;
2036 	case KVM_REG_PPC_TM_DSCR:
2037 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2038 		break;
2039 	case KVM_REG_PPC_TM_TAR:
2040 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2041 		break;
2042 #endif
2043 	case KVM_REG_PPC_ARCH_COMPAT:
2044 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2045 		break;
2046 	case KVM_REG_PPC_DEC_EXPIRY:
2047 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2048 			vcpu->arch.vcore->tb_offset;
2049 		break;
2050 	case KVM_REG_PPC_ONLINE:
2051 		i = set_reg_val(id, *val);
2052 		if (i && !vcpu->arch.online)
2053 			atomic_inc(&vcpu->arch.vcore->online_count);
2054 		else if (!i && vcpu->arch.online)
2055 			atomic_dec(&vcpu->arch.vcore->online_count);
2056 		vcpu->arch.online = i;
2057 		break;
2058 	case KVM_REG_PPC_PTCR:
2059 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2060 		break;
2061 	default:
2062 		r = -EINVAL;
2063 		break;
2064 	}
2065 
2066 	return r;
2067 }
2068 
2069 /*
2070  * On POWER9, threads are independent and can be in different partitions.
2071  * Therefore we consider each thread to be a subcore.
2072  * There is a restriction that all threads have to be in the same
2073  * MMU mode (radix or HPT), unfortunately, but since we only support
2074  * HPT guests on a HPT host so far, that isn't an impediment yet.
2075  */
2076 static int threads_per_vcore(struct kvm *kvm)
2077 {
2078 	if (kvm->arch.threads_indep)
2079 		return 1;
2080 	return threads_per_subcore;
2081 }
2082 
2083 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2084 {
2085 	struct kvmppc_vcore *vcore;
2086 
2087 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2088 
2089 	if (vcore == NULL)
2090 		return NULL;
2091 
2092 	spin_lock_init(&vcore->lock);
2093 	spin_lock_init(&vcore->stoltb_lock);
2094 	init_swait_queue_head(&vcore->wq);
2095 	vcore->preempt_tb = TB_NIL;
2096 	vcore->lpcr = kvm->arch.lpcr;
2097 	vcore->first_vcpuid = id;
2098 	vcore->kvm = kvm;
2099 	INIT_LIST_HEAD(&vcore->preempt_list);
2100 
2101 	return vcore;
2102 }
2103 
2104 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2105 static struct debugfs_timings_element {
2106 	const char *name;
2107 	size_t offset;
2108 } timings[] = {
2109 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2110 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2111 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2112 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2113 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2114 };
2115 
2116 #define N_TIMINGS	(ARRAY_SIZE(timings))
2117 
2118 struct debugfs_timings_state {
2119 	struct kvm_vcpu	*vcpu;
2120 	unsigned int	buflen;
2121 	char		buf[N_TIMINGS * 100];
2122 };
2123 
2124 static int debugfs_timings_open(struct inode *inode, struct file *file)
2125 {
2126 	struct kvm_vcpu *vcpu = inode->i_private;
2127 	struct debugfs_timings_state *p;
2128 
2129 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2130 	if (!p)
2131 		return -ENOMEM;
2132 
2133 	kvm_get_kvm(vcpu->kvm);
2134 	p->vcpu = vcpu;
2135 	file->private_data = p;
2136 
2137 	return nonseekable_open(inode, file);
2138 }
2139 
2140 static int debugfs_timings_release(struct inode *inode, struct file *file)
2141 {
2142 	struct debugfs_timings_state *p = file->private_data;
2143 
2144 	kvm_put_kvm(p->vcpu->kvm);
2145 	kfree(p);
2146 	return 0;
2147 }
2148 
2149 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2150 				    size_t len, loff_t *ppos)
2151 {
2152 	struct debugfs_timings_state *p = file->private_data;
2153 	struct kvm_vcpu *vcpu = p->vcpu;
2154 	char *s, *buf_end;
2155 	struct kvmhv_tb_accumulator tb;
2156 	u64 count;
2157 	loff_t pos;
2158 	ssize_t n;
2159 	int i, loops;
2160 	bool ok;
2161 
2162 	if (!p->buflen) {
2163 		s = p->buf;
2164 		buf_end = s + sizeof(p->buf);
2165 		for (i = 0; i < N_TIMINGS; ++i) {
2166 			struct kvmhv_tb_accumulator *acc;
2167 
2168 			acc = (struct kvmhv_tb_accumulator *)
2169 				((unsigned long)vcpu + timings[i].offset);
2170 			ok = false;
2171 			for (loops = 0; loops < 1000; ++loops) {
2172 				count = acc->seqcount;
2173 				if (!(count & 1)) {
2174 					smp_rmb();
2175 					tb = *acc;
2176 					smp_rmb();
2177 					if (count == acc->seqcount) {
2178 						ok = true;
2179 						break;
2180 					}
2181 				}
2182 				udelay(1);
2183 			}
2184 			if (!ok)
2185 				snprintf(s, buf_end - s, "%s: stuck\n",
2186 					timings[i].name);
2187 			else
2188 				snprintf(s, buf_end - s,
2189 					"%s: %llu %llu %llu %llu\n",
2190 					timings[i].name, count / 2,
2191 					tb_to_ns(tb.tb_total),
2192 					tb_to_ns(tb.tb_min),
2193 					tb_to_ns(tb.tb_max));
2194 			s += strlen(s);
2195 		}
2196 		p->buflen = s - p->buf;
2197 	}
2198 
2199 	pos = *ppos;
2200 	if (pos >= p->buflen)
2201 		return 0;
2202 	if (len > p->buflen - pos)
2203 		len = p->buflen - pos;
2204 	n = copy_to_user(buf, p->buf + pos, len);
2205 	if (n) {
2206 		if (n == len)
2207 			return -EFAULT;
2208 		len -= n;
2209 	}
2210 	*ppos = pos + len;
2211 	return len;
2212 }
2213 
2214 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2215 				     size_t len, loff_t *ppos)
2216 {
2217 	return -EACCES;
2218 }
2219 
2220 static const struct file_operations debugfs_timings_ops = {
2221 	.owner	 = THIS_MODULE,
2222 	.open	 = debugfs_timings_open,
2223 	.release = debugfs_timings_release,
2224 	.read	 = debugfs_timings_read,
2225 	.write	 = debugfs_timings_write,
2226 	.llseek	 = generic_file_llseek,
2227 };
2228 
2229 /* Create a debugfs directory for the vcpu */
2230 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2231 {
2232 	char buf[16];
2233 	struct kvm *kvm = vcpu->kvm;
2234 
2235 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2236 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2237 		return;
2238 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2239 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2240 		return;
2241 	vcpu->arch.debugfs_timings =
2242 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2243 				    vcpu, &debugfs_timings_ops);
2244 }
2245 
2246 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2247 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2248 {
2249 }
2250 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2251 
2252 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2253 						   unsigned int id)
2254 {
2255 	struct kvm_vcpu *vcpu;
2256 	int err;
2257 	int core;
2258 	struct kvmppc_vcore *vcore;
2259 
2260 	err = -ENOMEM;
2261 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2262 	if (!vcpu)
2263 		goto out;
2264 
2265 	err = kvm_vcpu_init(vcpu, kvm, id);
2266 	if (err)
2267 		goto free_vcpu;
2268 
2269 	vcpu->arch.shared = &vcpu->arch.shregs;
2270 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2271 	/*
2272 	 * The shared struct is never shared on HV,
2273 	 * so we can always use host endianness
2274 	 */
2275 #ifdef __BIG_ENDIAN__
2276 	vcpu->arch.shared_big_endian = true;
2277 #else
2278 	vcpu->arch.shared_big_endian = false;
2279 #endif
2280 #endif
2281 	vcpu->arch.mmcr[0] = MMCR0_FC;
2282 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2283 	/* default to host PVR, since we can't spoof it */
2284 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2285 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2286 	spin_lock_init(&vcpu->arch.tbacct_lock);
2287 	vcpu->arch.busy_preempt = TB_NIL;
2288 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2289 
2290 	/*
2291 	 * Set the default HFSCR for the guest from the host value.
2292 	 * This value is only used on POWER9.
2293 	 * On POWER9, we want to virtualize the doorbell facility, so we
2294 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2295 	 * to trap and then we emulate them.
2296 	 */
2297 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2298 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2299 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2300 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2301 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2302 			vcpu->arch.hfscr |= HFSCR_TM;
2303 	}
2304 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2305 		vcpu->arch.hfscr |= HFSCR_TM;
2306 
2307 	kvmppc_mmu_book3s_hv_init(vcpu);
2308 
2309 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2310 
2311 	init_waitqueue_head(&vcpu->arch.cpu_run);
2312 
2313 	mutex_lock(&kvm->lock);
2314 	vcore = NULL;
2315 	err = -EINVAL;
2316 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2317 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2318 			pr_devel("KVM: VCPU ID too high\n");
2319 			core = KVM_MAX_VCORES;
2320 		} else {
2321 			BUG_ON(kvm->arch.smt_mode != 1);
2322 			core = kvmppc_pack_vcpu_id(kvm, id);
2323 		}
2324 	} else {
2325 		core = id / kvm->arch.smt_mode;
2326 	}
2327 	if (core < KVM_MAX_VCORES) {
2328 		vcore = kvm->arch.vcores[core];
2329 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2330 			pr_devel("KVM: collision on id %u", id);
2331 			vcore = NULL;
2332 		} else if (!vcore) {
2333 			/*
2334 			 * Take mmu_setup_lock for mutual exclusion
2335 			 * with kvmppc_update_lpcr().
2336 			 */
2337 			err = -ENOMEM;
2338 			vcore = kvmppc_vcore_create(kvm,
2339 					id & ~(kvm->arch.smt_mode - 1));
2340 			mutex_lock(&kvm->arch.mmu_setup_lock);
2341 			kvm->arch.vcores[core] = vcore;
2342 			kvm->arch.online_vcores++;
2343 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2344 		}
2345 	}
2346 	mutex_unlock(&kvm->lock);
2347 
2348 	if (!vcore)
2349 		goto free_vcpu;
2350 
2351 	spin_lock(&vcore->lock);
2352 	++vcore->num_threads;
2353 	spin_unlock(&vcore->lock);
2354 	vcpu->arch.vcore = vcore;
2355 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2356 	vcpu->arch.thread_cpu = -1;
2357 	vcpu->arch.prev_cpu = -1;
2358 
2359 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2360 	kvmppc_sanity_check(vcpu);
2361 
2362 	debugfs_vcpu_init(vcpu, id);
2363 
2364 	return vcpu;
2365 
2366 free_vcpu:
2367 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2368 out:
2369 	return ERR_PTR(err);
2370 }
2371 
2372 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2373 			      unsigned long flags)
2374 {
2375 	int err;
2376 	int esmt = 0;
2377 
2378 	if (flags)
2379 		return -EINVAL;
2380 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2381 		return -EINVAL;
2382 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2383 		/*
2384 		 * On POWER8 (or POWER7), the threading mode is "strict",
2385 		 * so we pack smt_mode vcpus per vcore.
2386 		 */
2387 		if (smt_mode > threads_per_subcore)
2388 			return -EINVAL;
2389 	} else {
2390 		/*
2391 		 * On POWER9, the threading mode is "loose",
2392 		 * so each vcpu gets its own vcore.
2393 		 */
2394 		esmt = smt_mode;
2395 		smt_mode = 1;
2396 	}
2397 	mutex_lock(&kvm->lock);
2398 	err = -EBUSY;
2399 	if (!kvm->arch.online_vcores) {
2400 		kvm->arch.smt_mode = smt_mode;
2401 		kvm->arch.emul_smt_mode = esmt;
2402 		err = 0;
2403 	}
2404 	mutex_unlock(&kvm->lock);
2405 
2406 	return err;
2407 }
2408 
2409 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2410 {
2411 	if (vpa->pinned_addr)
2412 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2413 					vpa->dirty);
2414 }
2415 
2416 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2417 {
2418 	spin_lock(&vcpu->arch.vpa_update_lock);
2419 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2420 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2421 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2422 	spin_unlock(&vcpu->arch.vpa_update_lock);
2423 	kvm_vcpu_uninit(vcpu);
2424 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2425 }
2426 
2427 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2428 {
2429 	/* Indicate we want to get back into the guest */
2430 	return 1;
2431 }
2432 
2433 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2434 {
2435 	unsigned long dec_nsec, now;
2436 
2437 	now = get_tb();
2438 	if (now > vcpu->arch.dec_expires) {
2439 		/* decrementer has already gone negative */
2440 		kvmppc_core_queue_dec(vcpu);
2441 		kvmppc_core_prepare_to_enter(vcpu);
2442 		return;
2443 	}
2444 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2445 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2446 	vcpu->arch.timer_running = 1;
2447 }
2448 
2449 extern int __kvmppc_vcore_entry(void);
2450 
2451 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2452 				   struct kvm_vcpu *vcpu)
2453 {
2454 	u64 now;
2455 
2456 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2457 		return;
2458 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2459 	now = mftb();
2460 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2461 		vcpu->arch.stolen_logged;
2462 	vcpu->arch.busy_preempt = now;
2463 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2464 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2465 	--vc->n_runnable;
2466 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2467 }
2468 
2469 static int kvmppc_grab_hwthread(int cpu)
2470 {
2471 	struct paca_struct *tpaca;
2472 	long timeout = 10000;
2473 
2474 	tpaca = paca_ptrs[cpu];
2475 
2476 	/* Ensure the thread won't go into the kernel if it wakes */
2477 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2478 	tpaca->kvm_hstate.kvm_vcore = NULL;
2479 	tpaca->kvm_hstate.napping = 0;
2480 	smp_wmb();
2481 	tpaca->kvm_hstate.hwthread_req = 1;
2482 
2483 	/*
2484 	 * If the thread is already executing in the kernel (e.g. handling
2485 	 * a stray interrupt), wait for it to get back to nap mode.
2486 	 * The smp_mb() is to ensure that our setting of hwthread_req
2487 	 * is visible before we look at hwthread_state, so if this
2488 	 * races with the code at system_reset_pSeries and the thread
2489 	 * misses our setting of hwthread_req, we are sure to see its
2490 	 * setting of hwthread_state, and vice versa.
2491 	 */
2492 	smp_mb();
2493 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2494 		if (--timeout <= 0) {
2495 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2496 			return -EBUSY;
2497 		}
2498 		udelay(1);
2499 	}
2500 	return 0;
2501 }
2502 
2503 static void kvmppc_release_hwthread(int cpu)
2504 {
2505 	struct paca_struct *tpaca;
2506 
2507 	tpaca = paca_ptrs[cpu];
2508 	tpaca->kvm_hstate.hwthread_req = 0;
2509 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2510 	tpaca->kvm_hstate.kvm_vcore = NULL;
2511 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2512 }
2513 
2514 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2515 {
2516 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2517 	cpumask_t *cpu_in_guest;
2518 	int i;
2519 
2520 	cpu = cpu_first_thread_sibling(cpu);
2521 	if (nested) {
2522 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2523 		cpu_in_guest = &nested->cpu_in_guest;
2524 	} else {
2525 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2526 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2527 	}
2528 	/*
2529 	 * Make sure setting of bit in need_tlb_flush precedes
2530 	 * testing of cpu_in_guest bits.  The matching barrier on
2531 	 * the other side is the first smp_mb() in kvmppc_run_core().
2532 	 */
2533 	smp_mb();
2534 	for (i = 0; i < threads_per_core; ++i)
2535 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2536 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2537 }
2538 
2539 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2540 {
2541 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2542 	struct kvm *kvm = vcpu->kvm;
2543 	int prev_cpu;
2544 
2545 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2546 		return;
2547 
2548 	if (nested)
2549 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2550 	else
2551 		prev_cpu = vcpu->arch.prev_cpu;
2552 
2553 	/*
2554 	 * With radix, the guest can do TLB invalidations itself,
2555 	 * and it could choose to use the local form (tlbiel) if
2556 	 * it is invalidating a translation that has only ever been
2557 	 * used on one vcpu.  However, that doesn't mean it has
2558 	 * only ever been used on one physical cpu, since vcpus
2559 	 * can move around between pcpus.  To cope with this, when
2560 	 * a vcpu moves from one pcpu to another, we need to tell
2561 	 * any vcpus running on the same core as this vcpu previously
2562 	 * ran to flush the TLB.  The TLB is shared between threads,
2563 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2564 	 */
2565 	if (prev_cpu != pcpu) {
2566 		if (prev_cpu >= 0 &&
2567 		    cpu_first_thread_sibling(prev_cpu) !=
2568 		    cpu_first_thread_sibling(pcpu))
2569 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2570 		if (nested)
2571 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2572 		else
2573 			vcpu->arch.prev_cpu = pcpu;
2574 	}
2575 }
2576 
2577 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2578 {
2579 	int cpu;
2580 	struct paca_struct *tpaca;
2581 	struct kvm *kvm = vc->kvm;
2582 
2583 	cpu = vc->pcpu;
2584 	if (vcpu) {
2585 		if (vcpu->arch.timer_running) {
2586 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2587 			vcpu->arch.timer_running = 0;
2588 		}
2589 		cpu += vcpu->arch.ptid;
2590 		vcpu->cpu = vc->pcpu;
2591 		vcpu->arch.thread_cpu = cpu;
2592 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2593 	}
2594 	tpaca = paca_ptrs[cpu];
2595 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2596 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2597 	tpaca->kvm_hstate.fake_suspend = 0;
2598 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2599 	smp_wmb();
2600 	tpaca->kvm_hstate.kvm_vcore = vc;
2601 	if (cpu != smp_processor_id())
2602 		kvmppc_ipi_thread(cpu);
2603 }
2604 
2605 static void kvmppc_wait_for_nap(int n_threads)
2606 {
2607 	int cpu = smp_processor_id();
2608 	int i, loops;
2609 
2610 	if (n_threads <= 1)
2611 		return;
2612 	for (loops = 0; loops < 1000000; ++loops) {
2613 		/*
2614 		 * Check if all threads are finished.
2615 		 * We set the vcore pointer when starting a thread
2616 		 * and the thread clears it when finished, so we look
2617 		 * for any threads that still have a non-NULL vcore ptr.
2618 		 */
2619 		for (i = 1; i < n_threads; ++i)
2620 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2621 				break;
2622 		if (i == n_threads) {
2623 			HMT_medium();
2624 			return;
2625 		}
2626 		HMT_low();
2627 	}
2628 	HMT_medium();
2629 	for (i = 1; i < n_threads; ++i)
2630 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2631 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2632 }
2633 
2634 /*
2635  * Check that we are on thread 0 and that any other threads in
2636  * this core are off-line.  Then grab the threads so they can't
2637  * enter the kernel.
2638  */
2639 static int on_primary_thread(void)
2640 {
2641 	int cpu = smp_processor_id();
2642 	int thr;
2643 
2644 	/* Are we on a primary subcore? */
2645 	if (cpu_thread_in_subcore(cpu))
2646 		return 0;
2647 
2648 	thr = 0;
2649 	while (++thr < threads_per_subcore)
2650 		if (cpu_online(cpu + thr))
2651 			return 0;
2652 
2653 	/* Grab all hw threads so they can't go into the kernel */
2654 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2655 		if (kvmppc_grab_hwthread(cpu + thr)) {
2656 			/* Couldn't grab one; let the others go */
2657 			do {
2658 				kvmppc_release_hwthread(cpu + thr);
2659 			} while (--thr > 0);
2660 			return 0;
2661 		}
2662 	}
2663 	return 1;
2664 }
2665 
2666 /*
2667  * A list of virtual cores for each physical CPU.
2668  * These are vcores that could run but their runner VCPU tasks are
2669  * (or may be) preempted.
2670  */
2671 struct preempted_vcore_list {
2672 	struct list_head	list;
2673 	spinlock_t		lock;
2674 };
2675 
2676 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2677 
2678 static void init_vcore_lists(void)
2679 {
2680 	int cpu;
2681 
2682 	for_each_possible_cpu(cpu) {
2683 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2684 		spin_lock_init(&lp->lock);
2685 		INIT_LIST_HEAD(&lp->list);
2686 	}
2687 }
2688 
2689 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2690 {
2691 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2692 
2693 	vc->vcore_state = VCORE_PREEMPT;
2694 	vc->pcpu = smp_processor_id();
2695 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2696 		spin_lock(&lp->lock);
2697 		list_add_tail(&vc->preempt_list, &lp->list);
2698 		spin_unlock(&lp->lock);
2699 	}
2700 
2701 	/* Start accumulating stolen time */
2702 	kvmppc_core_start_stolen(vc);
2703 }
2704 
2705 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2706 {
2707 	struct preempted_vcore_list *lp;
2708 
2709 	kvmppc_core_end_stolen(vc);
2710 	if (!list_empty(&vc->preempt_list)) {
2711 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2712 		spin_lock(&lp->lock);
2713 		list_del_init(&vc->preempt_list);
2714 		spin_unlock(&lp->lock);
2715 	}
2716 	vc->vcore_state = VCORE_INACTIVE;
2717 }
2718 
2719 /*
2720  * This stores information about the virtual cores currently
2721  * assigned to a physical core.
2722  */
2723 struct core_info {
2724 	int		n_subcores;
2725 	int		max_subcore_threads;
2726 	int		total_threads;
2727 	int		subcore_threads[MAX_SUBCORES];
2728 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2729 };
2730 
2731 /*
2732  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2733  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2734  */
2735 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2736 
2737 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2738 {
2739 	memset(cip, 0, sizeof(*cip));
2740 	cip->n_subcores = 1;
2741 	cip->max_subcore_threads = vc->num_threads;
2742 	cip->total_threads = vc->num_threads;
2743 	cip->subcore_threads[0] = vc->num_threads;
2744 	cip->vc[0] = vc;
2745 }
2746 
2747 static bool subcore_config_ok(int n_subcores, int n_threads)
2748 {
2749 	/*
2750 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2751 	 * split-core mode, with one thread per subcore.
2752 	 */
2753 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2754 		return n_subcores <= 4 && n_threads == 1;
2755 
2756 	/* On POWER8, can only dynamically split if unsplit to begin with */
2757 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2758 		return false;
2759 	if (n_subcores > MAX_SUBCORES)
2760 		return false;
2761 	if (n_subcores > 1) {
2762 		if (!(dynamic_mt_modes & 2))
2763 			n_subcores = 4;
2764 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2765 			return false;
2766 	}
2767 
2768 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2769 }
2770 
2771 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2772 {
2773 	vc->entry_exit_map = 0;
2774 	vc->in_guest = 0;
2775 	vc->napping_threads = 0;
2776 	vc->conferring_threads = 0;
2777 	vc->tb_offset_applied = 0;
2778 }
2779 
2780 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2781 {
2782 	int n_threads = vc->num_threads;
2783 	int sub;
2784 
2785 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2786 		return false;
2787 
2788 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2789 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2790 		return false;
2791 
2792 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2793 	if (no_mixing_hpt_and_radix &&
2794 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2795 		return false;
2796 
2797 	if (n_threads < cip->max_subcore_threads)
2798 		n_threads = cip->max_subcore_threads;
2799 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2800 		return false;
2801 	cip->max_subcore_threads = n_threads;
2802 
2803 	sub = cip->n_subcores;
2804 	++cip->n_subcores;
2805 	cip->total_threads += vc->num_threads;
2806 	cip->subcore_threads[sub] = vc->num_threads;
2807 	cip->vc[sub] = vc;
2808 	init_vcore_to_run(vc);
2809 	list_del_init(&vc->preempt_list);
2810 
2811 	return true;
2812 }
2813 
2814 /*
2815  * Work out whether it is possible to piggyback the execution of
2816  * vcore *pvc onto the execution of the other vcores described in *cip.
2817  */
2818 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2819 			  int target_threads)
2820 {
2821 	if (cip->total_threads + pvc->num_threads > target_threads)
2822 		return false;
2823 
2824 	return can_dynamic_split(pvc, cip);
2825 }
2826 
2827 static void prepare_threads(struct kvmppc_vcore *vc)
2828 {
2829 	int i;
2830 	struct kvm_vcpu *vcpu;
2831 
2832 	for_each_runnable_thread(i, vcpu, vc) {
2833 		if (signal_pending(vcpu->arch.run_task))
2834 			vcpu->arch.ret = -EINTR;
2835 		else if (vcpu->arch.vpa.update_pending ||
2836 			 vcpu->arch.slb_shadow.update_pending ||
2837 			 vcpu->arch.dtl.update_pending)
2838 			vcpu->arch.ret = RESUME_GUEST;
2839 		else
2840 			continue;
2841 		kvmppc_remove_runnable(vc, vcpu);
2842 		wake_up(&vcpu->arch.cpu_run);
2843 	}
2844 }
2845 
2846 static void collect_piggybacks(struct core_info *cip, int target_threads)
2847 {
2848 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2849 	struct kvmppc_vcore *pvc, *vcnext;
2850 
2851 	spin_lock(&lp->lock);
2852 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2853 		if (!spin_trylock(&pvc->lock))
2854 			continue;
2855 		prepare_threads(pvc);
2856 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2857 			list_del_init(&pvc->preempt_list);
2858 			if (pvc->runner == NULL) {
2859 				pvc->vcore_state = VCORE_INACTIVE;
2860 				kvmppc_core_end_stolen(pvc);
2861 			}
2862 			spin_unlock(&pvc->lock);
2863 			continue;
2864 		}
2865 		if (!can_piggyback(pvc, cip, target_threads)) {
2866 			spin_unlock(&pvc->lock);
2867 			continue;
2868 		}
2869 		kvmppc_core_end_stolen(pvc);
2870 		pvc->vcore_state = VCORE_PIGGYBACK;
2871 		if (cip->total_threads >= target_threads)
2872 			break;
2873 	}
2874 	spin_unlock(&lp->lock);
2875 }
2876 
2877 static bool recheck_signals_and_mmu(struct core_info *cip)
2878 {
2879 	int sub, i;
2880 	struct kvm_vcpu *vcpu;
2881 	struct kvmppc_vcore *vc;
2882 
2883 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2884 		vc = cip->vc[sub];
2885 		if (!vc->kvm->arch.mmu_ready)
2886 			return true;
2887 		for_each_runnable_thread(i, vcpu, vc)
2888 			if (signal_pending(vcpu->arch.run_task))
2889 				return true;
2890 	}
2891 	return false;
2892 }
2893 
2894 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2895 {
2896 	int still_running = 0, i;
2897 	u64 now;
2898 	long ret;
2899 	struct kvm_vcpu *vcpu;
2900 
2901 	spin_lock(&vc->lock);
2902 	now = get_tb();
2903 	for_each_runnable_thread(i, vcpu, vc) {
2904 		/*
2905 		 * It's safe to unlock the vcore in the loop here, because
2906 		 * for_each_runnable_thread() is safe against removal of
2907 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2908 		 * so any vcpus becoming runnable will have their arch.trap
2909 		 * set to zero and can't actually run in the guest.
2910 		 */
2911 		spin_unlock(&vc->lock);
2912 		/* cancel pending dec exception if dec is positive */
2913 		if (now < vcpu->arch.dec_expires &&
2914 		    kvmppc_core_pending_dec(vcpu))
2915 			kvmppc_core_dequeue_dec(vcpu);
2916 
2917 		trace_kvm_guest_exit(vcpu);
2918 
2919 		ret = RESUME_GUEST;
2920 		if (vcpu->arch.trap)
2921 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2922 						    vcpu->arch.run_task);
2923 
2924 		vcpu->arch.ret = ret;
2925 		vcpu->arch.trap = 0;
2926 
2927 		spin_lock(&vc->lock);
2928 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2929 			if (vcpu->arch.pending_exceptions)
2930 				kvmppc_core_prepare_to_enter(vcpu);
2931 			if (vcpu->arch.ceded)
2932 				kvmppc_set_timer(vcpu);
2933 			else
2934 				++still_running;
2935 		} else {
2936 			kvmppc_remove_runnable(vc, vcpu);
2937 			wake_up(&vcpu->arch.cpu_run);
2938 		}
2939 	}
2940 	if (!is_master) {
2941 		if (still_running > 0) {
2942 			kvmppc_vcore_preempt(vc);
2943 		} else if (vc->runner) {
2944 			vc->vcore_state = VCORE_PREEMPT;
2945 			kvmppc_core_start_stolen(vc);
2946 		} else {
2947 			vc->vcore_state = VCORE_INACTIVE;
2948 		}
2949 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2950 			/* make sure there's a candidate runner awake */
2951 			i = -1;
2952 			vcpu = next_runnable_thread(vc, &i);
2953 			wake_up(&vcpu->arch.cpu_run);
2954 		}
2955 	}
2956 	spin_unlock(&vc->lock);
2957 }
2958 
2959 /*
2960  * Clear core from the list of active host cores as we are about to
2961  * enter the guest. Only do this if it is the primary thread of the
2962  * core (not if a subcore) that is entering the guest.
2963  */
2964 static inline int kvmppc_clear_host_core(unsigned int cpu)
2965 {
2966 	int core;
2967 
2968 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2969 		return 0;
2970 	/*
2971 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2972 	 * later in kvmppc_start_thread and we need ensure that state is
2973 	 * visible to other CPUs only after we enter guest.
2974 	 */
2975 	core = cpu >> threads_shift;
2976 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2977 	return 0;
2978 }
2979 
2980 /*
2981  * Advertise this core as an active host core since we exited the guest
2982  * Only need to do this if it is the primary thread of the core that is
2983  * exiting.
2984  */
2985 static inline int kvmppc_set_host_core(unsigned int cpu)
2986 {
2987 	int core;
2988 
2989 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2990 		return 0;
2991 
2992 	/*
2993 	 * Memory barrier can be omitted here because we do a spin_unlock
2994 	 * immediately after this which provides the memory barrier.
2995 	 */
2996 	core = cpu >> threads_shift;
2997 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2998 	return 0;
2999 }
3000 
3001 static void set_irq_happened(int trap)
3002 {
3003 	switch (trap) {
3004 	case BOOK3S_INTERRUPT_EXTERNAL:
3005 		local_paca->irq_happened |= PACA_IRQ_EE;
3006 		break;
3007 	case BOOK3S_INTERRUPT_H_DOORBELL:
3008 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3009 		break;
3010 	case BOOK3S_INTERRUPT_HMI:
3011 		local_paca->irq_happened |= PACA_IRQ_HMI;
3012 		break;
3013 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3014 		replay_system_reset();
3015 		break;
3016 	}
3017 }
3018 
3019 /*
3020  * Run a set of guest threads on a physical core.
3021  * Called with vc->lock held.
3022  */
3023 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3024 {
3025 	struct kvm_vcpu *vcpu;
3026 	int i;
3027 	int srcu_idx;
3028 	struct core_info core_info;
3029 	struct kvmppc_vcore *pvc;
3030 	struct kvm_split_mode split_info, *sip;
3031 	int split, subcore_size, active;
3032 	int sub;
3033 	bool thr0_done;
3034 	unsigned long cmd_bit, stat_bit;
3035 	int pcpu, thr;
3036 	int target_threads;
3037 	int controlled_threads;
3038 	int trap;
3039 	bool is_power8;
3040 	bool hpt_on_radix;
3041 
3042 	/*
3043 	 * Remove from the list any threads that have a signal pending
3044 	 * or need a VPA update done
3045 	 */
3046 	prepare_threads(vc);
3047 
3048 	/* if the runner is no longer runnable, let the caller pick a new one */
3049 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3050 		return;
3051 
3052 	/*
3053 	 * Initialize *vc.
3054 	 */
3055 	init_vcore_to_run(vc);
3056 	vc->preempt_tb = TB_NIL;
3057 
3058 	/*
3059 	 * Number of threads that we will be controlling: the same as
3060 	 * the number of threads per subcore, except on POWER9,
3061 	 * where it's 1 because the threads are (mostly) independent.
3062 	 */
3063 	controlled_threads = threads_per_vcore(vc->kvm);
3064 
3065 	/*
3066 	 * Make sure we are running on primary threads, and that secondary
3067 	 * threads are offline.  Also check if the number of threads in this
3068 	 * guest are greater than the current system threads per guest.
3069 	 * On POWER9, we need to be not in independent-threads mode if
3070 	 * this is a HPT guest on a radix host machine where the
3071 	 * CPU threads may not be in different MMU modes.
3072 	 */
3073 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3074 		!kvm_is_radix(vc->kvm);
3075 	if (((controlled_threads > 1) &&
3076 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3077 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3078 		for_each_runnable_thread(i, vcpu, vc) {
3079 			vcpu->arch.ret = -EBUSY;
3080 			kvmppc_remove_runnable(vc, vcpu);
3081 			wake_up(&vcpu->arch.cpu_run);
3082 		}
3083 		goto out;
3084 	}
3085 
3086 	/*
3087 	 * See if we could run any other vcores on the physical core
3088 	 * along with this one.
3089 	 */
3090 	init_core_info(&core_info, vc);
3091 	pcpu = smp_processor_id();
3092 	target_threads = controlled_threads;
3093 	if (target_smt_mode && target_smt_mode < target_threads)
3094 		target_threads = target_smt_mode;
3095 	if (vc->num_threads < target_threads)
3096 		collect_piggybacks(&core_info, target_threads);
3097 
3098 	/*
3099 	 * On radix, arrange for TLB flushing if necessary.
3100 	 * This has to be done before disabling interrupts since
3101 	 * it uses smp_call_function().
3102 	 */
3103 	pcpu = smp_processor_id();
3104 	if (kvm_is_radix(vc->kvm)) {
3105 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3106 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3107 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3108 	}
3109 
3110 	/*
3111 	 * Hard-disable interrupts, and check resched flag and signals.
3112 	 * If we need to reschedule or deliver a signal, clean up
3113 	 * and return without going into the guest(s).
3114 	 * If the mmu_ready flag has been cleared, don't go into the
3115 	 * guest because that means a HPT resize operation is in progress.
3116 	 */
3117 	local_irq_disable();
3118 	hard_irq_disable();
3119 	if (lazy_irq_pending() || need_resched() ||
3120 	    recheck_signals_and_mmu(&core_info)) {
3121 		local_irq_enable();
3122 		vc->vcore_state = VCORE_INACTIVE;
3123 		/* Unlock all except the primary vcore */
3124 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3125 			pvc = core_info.vc[sub];
3126 			/* Put back on to the preempted vcores list */
3127 			kvmppc_vcore_preempt(pvc);
3128 			spin_unlock(&pvc->lock);
3129 		}
3130 		for (i = 0; i < controlled_threads; ++i)
3131 			kvmppc_release_hwthread(pcpu + i);
3132 		return;
3133 	}
3134 
3135 	kvmppc_clear_host_core(pcpu);
3136 
3137 	/* Decide on micro-threading (split-core) mode */
3138 	subcore_size = threads_per_subcore;
3139 	cmd_bit = stat_bit = 0;
3140 	split = core_info.n_subcores;
3141 	sip = NULL;
3142 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3143 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3144 
3145 	if (split > 1 || hpt_on_radix) {
3146 		sip = &split_info;
3147 		memset(&split_info, 0, sizeof(split_info));
3148 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3149 			split_info.vc[sub] = core_info.vc[sub];
3150 
3151 		if (is_power8) {
3152 			if (split == 2 && (dynamic_mt_modes & 2)) {
3153 				cmd_bit = HID0_POWER8_1TO2LPAR;
3154 				stat_bit = HID0_POWER8_2LPARMODE;
3155 			} else {
3156 				split = 4;
3157 				cmd_bit = HID0_POWER8_1TO4LPAR;
3158 				stat_bit = HID0_POWER8_4LPARMODE;
3159 			}
3160 			subcore_size = MAX_SMT_THREADS / split;
3161 			split_info.rpr = mfspr(SPRN_RPR);
3162 			split_info.pmmar = mfspr(SPRN_PMMAR);
3163 			split_info.ldbar = mfspr(SPRN_LDBAR);
3164 			split_info.subcore_size = subcore_size;
3165 		} else {
3166 			split_info.subcore_size = 1;
3167 			if (hpt_on_radix) {
3168 				/* Use the split_info for LPCR/LPIDR changes */
3169 				split_info.lpcr_req = vc->lpcr;
3170 				split_info.lpidr_req = vc->kvm->arch.lpid;
3171 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3172 				split_info.do_set = 1;
3173 			}
3174 		}
3175 
3176 		/* order writes to split_info before kvm_split_mode pointer */
3177 		smp_wmb();
3178 	}
3179 
3180 	for (thr = 0; thr < controlled_threads; ++thr) {
3181 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3182 
3183 		paca->kvm_hstate.tid = thr;
3184 		paca->kvm_hstate.napping = 0;
3185 		paca->kvm_hstate.kvm_split_mode = sip;
3186 	}
3187 
3188 	/* Initiate micro-threading (split-core) on POWER8 if required */
3189 	if (cmd_bit) {
3190 		unsigned long hid0 = mfspr(SPRN_HID0);
3191 
3192 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3193 		mb();
3194 		mtspr(SPRN_HID0, hid0);
3195 		isync();
3196 		for (;;) {
3197 			hid0 = mfspr(SPRN_HID0);
3198 			if (hid0 & stat_bit)
3199 				break;
3200 			cpu_relax();
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * On POWER8, set RWMR register.
3206 	 * Since it only affects PURR and SPURR, it doesn't affect
3207 	 * the host, so we don't save/restore the host value.
3208 	 */
3209 	if (is_power8) {
3210 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3211 		int n_online = atomic_read(&vc->online_count);
3212 
3213 		/*
3214 		 * Use the 8-thread value if we're doing split-core
3215 		 * or if the vcore's online count looks bogus.
3216 		 */
3217 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3218 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3219 			rwmr_val = p8_rwmr_values[n_online];
3220 		mtspr(SPRN_RWMR, rwmr_val);
3221 	}
3222 
3223 	/* Start all the threads */
3224 	active = 0;
3225 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3226 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3227 		thr0_done = false;
3228 		active |= 1 << thr;
3229 		pvc = core_info.vc[sub];
3230 		pvc->pcpu = pcpu + thr;
3231 		for_each_runnable_thread(i, vcpu, pvc) {
3232 			kvmppc_start_thread(vcpu, pvc);
3233 			kvmppc_create_dtl_entry(vcpu, pvc);
3234 			trace_kvm_guest_enter(vcpu);
3235 			if (!vcpu->arch.ptid)
3236 				thr0_done = true;
3237 			active |= 1 << (thr + vcpu->arch.ptid);
3238 		}
3239 		/*
3240 		 * We need to start the first thread of each subcore
3241 		 * even if it doesn't have a vcpu.
3242 		 */
3243 		if (!thr0_done)
3244 			kvmppc_start_thread(NULL, pvc);
3245 	}
3246 
3247 	/*
3248 	 * Ensure that split_info.do_nap is set after setting
3249 	 * the vcore pointer in the PACA of the secondaries.
3250 	 */
3251 	smp_mb();
3252 
3253 	/*
3254 	 * When doing micro-threading, poke the inactive threads as well.
3255 	 * This gets them to the nap instruction after kvm_do_nap,
3256 	 * which reduces the time taken to unsplit later.
3257 	 * For POWER9 HPT guest on radix host, we need all the secondary
3258 	 * threads woken up so they can do the LPCR/LPIDR change.
3259 	 */
3260 	if (cmd_bit || hpt_on_radix) {
3261 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3262 		for (thr = 1; thr < threads_per_subcore; ++thr)
3263 			if (!(active & (1 << thr)))
3264 				kvmppc_ipi_thread(pcpu + thr);
3265 	}
3266 
3267 	vc->vcore_state = VCORE_RUNNING;
3268 	preempt_disable();
3269 
3270 	trace_kvmppc_run_core(vc, 0);
3271 
3272 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3273 		spin_unlock(&core_info.vc[sub]->lock);
3274 
3275 	guest_enter_irqoff();
3276 
3277 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3278 
3279 	this_cpu_disable_ftrace();
3280 
3281 	/*
3282 	 * Interrupts will be enabled once we get into the guest,
3283 	 * so tell lockdep that we're about to enable interrupts.
3284 	 */
3285 	trace_hardirqs_on();
3286 
3287 	trap = __kvmppc_vcore_entry();
3288 
3289 	trace_hardirqs_off();
3290 
3291 	this_cpu_enable_ftrace();
3292 
3293 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3294 
3295 	set_irq_happened(trap);
3296 
3297 	spin_lock(&vc->lock);
3298 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3299 	vc->vcore_state = VCORE_EXITING;
3300 
3301 	/* wait for secondary threads to finish writing their state to memory */
3302 	kvmppc_wait_for_nap(controlled_threads);
3303 
3304 	/* Return to whole-core mode if we split the core earlier */
3305 	if (cmd_bit) {
3306 		unsigned long hid0 = mfspr(SPRN_HID0);
3307 		unsigned long loops = 0;
3308 
3309 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3310 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3311 		mb();
3312 		mtspr(SPRN_HID0, hid0);
3313 		isync();
3314 		for (;;) {
3315 			hid0 = mfspr(SPRN_HID0);
3316 			if (!(hid0 & stat_bit))
3317 				break;
3318 			cpu_relax();
3319 			++loops;
3320 		}
3321 	} else if (hpt_on_radix) {
3322 		/* Wait for all threads to have seen final sync */
3323 		for (thr = 1; thr < controlled_threads; ++thr) {
3324 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3325 
3326 			while (paca->kvm_hstate.kvm_split_mode) {
3327 				HMT_low();
3328 				barrier();
3329 			}
3330 			HMT_medium();
3331 		}
3332 	}
3333 	split_info.do_nap = 0;
3334 
3335 	kvmppc_set_host_core(pcpu);
3336 
3337 	local_irq_enable();
3338 	guest_exit();
3339 
3340 	/* Let secondaries go back to the offline loop */
3341 	for (i = 0; i < controlled_threads; ++i) {
3342 		kvmppc_release_hwthread(pcpu + i);
3343 		if (sip && sip->napped[i])
3344 			kvmppc_ipi_thread(pcpu + i);
3345 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3346 	}
3347 
3348 	spin_unlock(&vc->lock);
3349 
3350 	/* make sure updates to secondary vcpu structs are visible now */
3351 	smp_mb();
3352 
3353 	preempt_enable();
3354 
3355 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3356 		pvc = core_info.vc[sub];
3357 		post_guest_process(pvc, pvc == vc);
3358 	}
3359 
3360 	spin_lock(&vc->lock);
3361 
3362  out:
3363 	vc->vcore_state = VCORE_INACTIVE;
3364 	trace_kvmppc_run_core(vc, 1);
3365 }
3366 
3367 /*
3368  * Load up hypervisor-mode registers on P9.
3369  */
3370 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3371 				     unsigned long lpcr)
3372 {
3373 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3374 	s64 hdec;
3375 	u64 tb, purr, spurr;
3376 	int trap;
3377 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3378 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3379 	unsigned long host_dawr = mfspr(SPRN_DAWR);
3380 	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3381 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3382 	unsigned long host_pidr = mfspr(SPRN_PID);
3383 
3384 	hdec = time_limit - mftb();
3385 	if (hdec < 0)
3386 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3387 	mtspr(SPRN_HDEC, hdec);
3388 
3389 	if (vc->tb_offset) {
3390 		u64 new_tb = mftb() + vc->tb_offset;
3391 		mtspr(SPRN_TBU40, new_tb);
3392 		tb = mftb();
3393 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3394 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3395 		vc->tb_offset_applied = vc->tb_offset;
3396 	}
3397 
3398 	if (vc->pcr)
3399 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3400 	mtspr(SPRN_DPDES, vc->dpdes);
3401 	mtspr(SPRN_VTB, vc->vtb);
3402 
3403 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3404 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3405 	mtspr(SPRN_PURR, vcpu->arch.purr);
3406 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3407 
3408 	if (dawr_enabled()) {
3409 		mtspr(SPRN_DAWR, vcpu->arch.dawr);
3410 		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3411 	}
3412 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3413 	mtspr(SPRN_IC, vcpu->arch.ic);
3414 	mtspr(SPRN_PID, vcpu->arch.pid);
3415 
3416 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3417 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3418 
3419 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3420 
3421 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3422 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3423 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3424 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3425 
3426 	mtspr(SPRN_AMOR, ~0UL);
3427 
3428 	mtspr(SPRN_LPCR, lpcr);
3429 	isync();
3430 
3431 	kvmppc_xive_push_vcpu(vcpu);
3432 
3433 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3434 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3435 
3436 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3437 
3438 	/* Advance host PURR/SPURR by the amount used by guest */
3439 	purr = mfspr(SPRN_PURR);
3440 	spurr = mfspr(SPRN_SPURR);
3441 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3442 	      purr - vcpu->arch.purr);
3443 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3444 	      spurr - vcpu->arch.spurr);
3445 	vcpu->arch.purr = purr;
3446 	vcpu->arch.spurr = spurr;
3447 
3448 	vcpu->arch.ic = mfspr(SPRN_IC);
3449 	vcpu->arch.pid = mfspr(SPRN_PID);
3450 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3451 
3452 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3453 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3454 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3455 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3456 
3457 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3458 	mtspr(SPRN_PSSCR, host_psscr |
3459 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3460 	mtspr(SPRN_HFSCR, host_hfscr);
3461 	mtspr(SPRN_CIABR, host_ciabr);
3462 	mtspr(SPRN_DAWR, host_dawr);
3463 	mtspr(SPRN_DAWRX, host_dawrx);
3464 	mtspr(SPRN_PID, host_pidr);
3465 
3466 	/*
3467 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3468 	 * case we interrupted the guest between a tlbie and a ptesync.
3469 	 */
3470 	asm volatile("eieio; tlbsync; ptesync");
3471 
3472 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3473 	isync();
3474 
3475 	vc->dpdes = mfspr(SPRN_DPDES);
3476 	vc->vtb = mfspr(SPRN_VTB);
3477 	mtspr(SPRN_DPDES, 0);
3478 	if (vc->pcr)
3479 		mtspr(SPRN_PCR, PCR_MASK);
3480 
3481 	if (vc->tb_offset_applied) {
3482 		u64 new_tb = mftb() - vc->tb_offset_applied;
3483 		mtspr(SPRN_TBU40, new_tb);
3484 		tb = mftb();
3485 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3486 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3487 		vc->tb_offset_applied = 0;
3488 	}
3489 
3490 	mtspr(SPRN_HDEC, 0x7fffffff);
3491 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3492 
3493 	return trap;
3494 }
3495 
3496 /*
3497  * Virtual-mode guest entry for POWER9 and later when the host and
3498  * guest are both using the radix MMU.  The LPIDR has already been set.
3499  */
3500 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3501 			 unsigned long lpcr)
3502 {
3503 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3504 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3505 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3506 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3507 	unsigned long host_amr = mfspr(SPRN_AMR);
3508 	s64 dec;
3509 	u64 tb;
3510 	int trap, save_pmu;
3511 
3512 	dec = mfspr(SPRN_DEC);
3513 	tb = mftb();
3514 	if (dec < 512)
3515 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3516 	local_paca->kvm_hstate.dec_expires = dec + tb;
3517 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3518 		time_limit = local_paca->kvm_hstate.dec_expires;
3519 
3520 	vcpu->arch.ceded = 0;
3521 
3522 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3523 
3524 	kvmppc_subcore_enter_guest();
3525 
3526 	vc->entry_exit_map = 1;
3527 	vc->in_guest = 1;
3528 
3529 	if (vcpu->arch.vpa.pinned_addr) {
3530 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3531 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3532 		lp->yield_count = cpu_to_be32(yield_count);
3533 		vcpu->arch.vpa.dirty = 1;
3534 	}
3535 
3536 	if (cpu_has_feature(CPU_FTR_TM) ||
3537 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3538 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3539 
3540 	kvmhv_load_guest_pmu(vcpu);
3541 
3542 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3543 	load_fp_state(&vcpu->arch.fp);
3544 #ifdef CONFIG_ALTIVEC
3545 	load_vr_state(&vcpu->arch.vr);
3546 #endif
3547 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3548 
3549 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3550 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3551 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3552 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3553 	mtspr(SPRN_TAR, vcpu->arch.tar);
3554 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3555 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3556 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3557 	mtspr(SPRN_WORT, vcpu->arch.wort);
3558 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3559 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3560 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3561 	mtspr(SPRN_AMR, vcpu->arch.amr);
3562 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3563 
3564 	if (!(vcpu->arch.ctrl & 1))
3565 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3566 
3567 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3568 
3569 	if (kvmhv_on_pseries()) {
3570 		/*
3571 		 * We need to save and restore the guest visible part of the
3572 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3573 		 * doesn't do this for us. Note only required if pseries since
3574 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3575 		 */
3576 		unsigned long host_psscr;
3577 		/* call our hypervisor to load up HV regs and go */
3578 		struct hv_guest_state hvregs;
3579 
3580 		host_psscr = mfspr(SPRN_PSSCR_PR);
3581 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3582 		kvmhv_save_hv_regs(vcpu, &hvregs);
3583 		hvregs.lpcr = lpcr;
3584 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3585 		hvregs.version = HV_GUEST_STATE_VERSION;
3586 		if (vcpu->arch.nested) {
3587 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3588 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3589 		} else {
3590 			hvregs.lpid = vcpu->kvm->arch.lpid;
3591 			hvregs.vcpu_token = vcpu->vcpu_id;
3592 		}
3593 		hvregs.hdec_expiry = time_limit;
3594 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3595 					  __pa(&vcpu->arch.regs));
3596 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3597 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3598 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3599 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3600 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3601 		mtspr(SPRN_PSSCR_PR, host_psscr);
3602 
3603 		/* H_CEDE has to be handled now, not later */
3604 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3605 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3606 			kvmppc_nested_cede(vcpu);
3607 			trap = 0;
3608 		}
3609 	} else {
3610 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3611 	}
3612 
3613 	vcpu->arch.slb_max = 0;
3614 	dec = mfspr(SPRN_DEC);
3615 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3616 		dec = (s32) dec;
3617 	tb = mftb();
3618 	vcpu->arch.dec_expires = dec + tb;
3619 	vcpu->cpu = -1;
3620 	vcpu->arch.thread_cpu = -1;
3621 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3622 
3623 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3624 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3625 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3626 	vcpu->arch.tar = mfspr(SPRN_TAR);
3627 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3628 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3629 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3630 	vcpu->arch.wort = mfspr(SPRN_WORT);
3631 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3632 	vcpu->arch.amr = mfspr(SPRN_AMR);
3633 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3634 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3635 
3636 	mtspr(SPRN_PSPB, 0);
3637 	mtspr(SPRN_WORT, 0);
3638 	mtspr(SPRN_UAMOR, 0);
3639 	mtspr(SPRN_DSCR, host_dscr);
3640 	mtspr(SPRN_TIDR, host_tidr);
3641 	mtspr(SPRN_IAMR, host_iamr);
3642 	mtspr(SPRN_PSPB, 0);
3643 
3644 	if (host_amr != vcpu->arch.amr)
3645 		mtspr(SPRN_AMR, host_amr);
3646 
3647 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3648 	store_fp_state(&vcpu->arch.fp);
3649 #ifdef CONFIG_ALTIVEC
3650 	store_vr_state(&vcpu->arch.vr);
3651 #endif
3652 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3653 
3654 	if (cpu_has_feature(CPU_FTR_TM) ||
3655 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3656 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3657 
3658 	save_pmu = 1;
3659 	if (vcpu->arch.vpa.pinned_addr) {
3660 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3661 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3662 		lp->yield_count = cpu_to_be32(yield_count);
3663 		vcpu->arch.vpa.dirty = 1;
3664 		save_pmu = lp->pmcregs_in_use;
3665 	}
3666 	/* Must save pmu if this guest is capable of running nested guests */
3667 	save_pmu |= nesting_enabled(vcpu->kvm);
3668 
3669 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3670 
3671 	vc->entry_exit_map = 0x101;
3672 	vc->in_guest = 0;
3673 
3674 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3675 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3676 
3677 	kvmhv_load_host_pmu();
3678 
3679 	kvmppc_subcore_exit_guest();
3680 
3681 	return trap;
3682 }
3683 
3684 /*
3685  * Wait for some other vcpu thread to execute us, and
3686  * wake us up when we need to handle something in the host.
3687  */
3688 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3689 				 struct kvm_vcpu *vcpu, int wait_state)
3690 {
3691 	DEFINE_WAIT(wait);
3692 
3693 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3694 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3695 		spin_unlock(&vc->lock);
3696 		schedule();
3697 		spin_lock(&vc->lock);
3698 	}
3699 	finish_wait(&vcpu->arch.cpu_run, &wait);
3700 }
3701 
3702 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3703 {
3704 	if (!halt_poll_ns_grow)
3705 		return;
3706 
3707 	vc->halt_poll_ns *= halt_poll_ns_grow;
3708 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3709 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3710 }
3711 
3712 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3713 {
3714 	if (halt_poll_ns_shrink == 0)
3715 		vc->halt_poll_ns = 0;
3716 	else
3717 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3718 }
3719 
3720 #ifdef CONFIG_KVM_XICS
3721 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3722 {
3723 	if (!xics_on_xive())
3724 		return false;
3725 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3726 		vcpu->arch.xive_saved_state.cppr;
3727 }
3728 #else
3729 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3730 {
3731 	return false;
3732 }
3733 #endif /* CONFIG_KVM_XICS */
3734 
3735 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3736 {
3737 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3738 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3739 		return true;
3740 
3741 	return false;
3742 }
3743 
3744 /*
3745  * Check to see if any of the runnable vcpus on the vcore have pending
3746  * exceptions or are no longer ceded
3747  */
3748 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3749 {
3750 	struct kvm_vcpu *vcpu;
3751 	int i;
3752 
3753 	for_each_runnable_thread(i, vcpu, vc) {
3754 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3755 			return 1;
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 /*
3762  * All the vcpus in this vcore are idle, so wait for a decrementer
3763  * or external interrupt to one of the vcpus.  vc->lock is held.
3764  */
3765 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3766 {
3767 	ktime_t cur, start_poll, start_wait;
3768 	int do_sleep = 1;
3769 	u64 block_ns;
3770 	DECLARE_SWAITQUEUE(wait);
3771 
3772 	/* Poll for pending exceptions and ceded state */
3773 	cur = start_poll = ktime_get();
3774 	if (vc->halt_poll_ns) {
3775 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3776 		++vc->runner->stat.halt_attempted_poll;
3777 
3778 		vc->vcore_state = VCORE_POLLING;
3779 		spin_unlock(&vc->lock);
3780 
3781 		do {
3782 			if (kvmppc_vcore_check_block(vc)) {
3783 				do_sleep = 0;
3784 				break;
3785 			}
3786 			cur = ktime_get();
3787 		} while (single_task_running() && ktime_before(cur, stop));
3788 
3789 		spin_lock(&vc->lock);
3790 		vc->vcore_state = VCORE_INACTIVE;
3791 
3792 		if (!do_sleep) {
3793 			++vc->runner->stat.halt_successful_poll;
3794 			goto out;
3795 		}
3796 	}
3797 
3798 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3799 
3800 	if (kvmppc_vcore_check_block(vc)) {
3801 		finish_swait(&vc->wq, &wait);
3802 		do_sleep = 0;
3803 		/* If we polled, count this as a successful poll */
3804 		if (vc->halt_poll_ns)
3805 			++vc->runner->stat.halt_successful_poll;
3806 		goto out;
3807 	}
3808 
3809 	start_wait = ktime_get();
3810 
3811 	vc->vcore_state = VCORE_SLEEPING;
3812 	trace_kvmppc_vcore_blocked(vc, 0);
3813 	spin_unlock(&vc->lock);
3814 	schedule();
3815 	finish_swait(&vc->wq, &wait);
3816 	spin_lock(&vc->lock);
3817 	vc->vcore_state = VCORE_INACTIVE;
3818 	trace_kvmppc_vcore_blocked(vc, 1);
3819 	++vc->runner->stat.halt_successful_wait;
3820 
3821 	cur = ktime_get();
3822 
3823 out:
3824 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3825 
3826 	/* Attribute wait time */
3827 	if (do_sleep) {
3828 		vc->runner->stat.halt_wait_ns +=
3829 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3830 		/* Attribute failed poll time */
3831 		if (vc->halt_poll_ns)
3832 			vc->runner->stat.halt_poll_fail_ns +=
3833 				ktime_to_ns(start_wait) -
3834 				ktime_to_ns(start_poll);
3835 	} else {
3836 		/* Attribute successful poll time */
3837 		if (vc->halt_poll_ns)
3838 			vc->runner->stat.halt_poll_success_ns +=
3839 				ktime_to_ns(cur) -
3840 				ktime_to_ns(start_poll);
3841 	}
3842 
3843 	/* Adjust poll time */
3844 	if (halt_poll_ns) {
3845 		if (block_ns <= vc->halt_poll_ns)
3846 			;
3847 		/* We slept and blocked for longer than the max halt time */
3848 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3849 			shrink_halt_poll_ns(vc);
3850 		/* We slept and our poll time is too small */
3851 		else if (vc->halt_poll_ns < halt_poll_ns &&
3852 				block_ns < halt_poll_ns)
3853 			grow_halt_poll_ns(vc);
3854 		if (vc->halt_poll_ns > halt_poll_ns)
3855 			vc->halt_poll_ns = halt_poll_ns;
3856 	} else
3857 		vc->halt_poll_ns = 0;
3858 
3859 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3860 }
3861 
3862 /*
3863  * This never fails for a radix guest, as none of the operations it does
3864  * for a radix guest can fail or have a way to report failure.
3865  * kvmhv_run_single_vcpu() relies on this fact.
3866  */
3867 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3868 {
3869 	int r = 0;
3870 	struct kvm *kvm = vcpu->kvm;
3871 
3872 	mutex_lock(&kvm->arch.mmu_setup_lock);
3873 	if (!kvm->arch.mmu_ready) {
3874 		if (!kvm_is_radix(kvm))
3875 			r = kvmppc_hv_setup_htab_rma(vcpu);
3876 		if (!r) {
3877 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3878 				kvmppc_setup_partition_table(kvm);
3879 			kvm->arch.mmu_ready = 1;
3880 		}
3881 	}
3882 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3883 	return r;
3884 }
3885 
3886 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3887 {
3888 	int n_ceded, i, r;
3889 	struct kvmppc_vcore *vc;
3890 	struct kvm_vcpu *v;
3891 
3892 	trace_kvmppc_run_vcpu_enter(vcpu);
3893 
3894 	kvm_run->exit_reason = 0;
3895 	vcpu->arch.ret = RESUME_GUEST;
3896 	vcpu->arch.trap = 0;
3897 	kvmppc_update_vpas(vcpu);
3898 
3899 	/*
3900 	 * Synchronize with other threads in this virtual core
3901 	 */
3902 	vc = vcpu->arch.vcore;
3903 	spin_lock(&vc->lock);
3904 	vcpu->arch.ceded = 0;
3905 	vcpu->arch.run_task = current;
3906 	vcpu->arch.kvm_run = kvm_run;
3907 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3908 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3909 	vcpu->arch.busy_preempt = TB_NIL;
3910 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3911 	++vc->n_runnable;
3912 
3913 	/*
3914 	 * This happens the first time this is called for a vcpu.
3915 	 * If the vcore is already running, we may be able to start
3916 	 * this thread straight away and have it join in.
3917 	 */
3918 	if (!signal_pending(current)) {
3919 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3920 		     vc->vcore_state == VCORE_RUNNING) &&
3921 			   !VCORE_IS_EXITING(vc)) {
3922 			kvmppc_create_dtl_entry(vcpu, vc);
3923 			kvmppc_start_thread(vcpu, vc);
3924 			trace_kvm_guest_enter(vcpu);
3925 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3926 			swake_up_one(&vc->wq);
3927 		}
3928 
3929 	}
3930 
3931 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3932 	       !signal_pending(current)) {
3933 		/* See if the MMU is ready to go */
3934 		if (!vcpu->kvm->arch.mmu_ready) {
3935 			spin_unlock(&vc->lock);
3936 			r = kvmhv_setup_mmu(vcpu);
3937 			spin_lock(&vc->lock);
3938 			if (r) {
3939 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3940 				kvm_run->fail_entry.
3941 					hardware_entry_failure_reason = 0;
3942 				vcpu->arch.ret = r;
3943 				break;
3944 			}
3945 		}
3946 
3947 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3948 			kvmppc_vcore_end_preempt(vc);
3949 
3950 		if (vc->vcore_state != VCORE_INACTIVE) {
3951 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3952 			continue;
3953 		}
3954 		for_each_runnable_thread(i, v, vc) {
3955 			kvmppc_core_prepare_to_enter(v);
3956 			if (signal_pending(v->arch.run_task)) {
3957 				kvmppc_remove_runnable(vc, v);
3958 				v->stat.signal_exits++;
3959 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3960 				v->arch.ret = -EINTR;
3961 				wake_up(&v->arch.cpu_run);
3962 			}
3963 		}
3964 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3965 			break;
3966 		n_ceded = 0;
3967 		for_each_runnable_thread(i, v, vc) {
3968 			if (!kvmppc_vcpu_woken(v))
3969 				n_ceded += v->arch.ceded;
3970 			else
3971 				v->arch.ceded = 0;
3972 		}
3973 		vc->runner = vcpu;
3974 		if (n_ceded == vc->n_runnable) {
3975 			kvmppc_vcore_blocked(vc);
3976 		} else if (need_resched()) {
3977 			kvmppc_vcore_preempt(vc);
3978 			/* Let something else run */
3979 			cond_resched_lock(&vc->lock);
3980 			if (vc->vcore_state == VCORE_PREEMPT)
3981 				kvmppc_vcore_end_preempt(vc);
3982 		} else {
3983 			kvmppc_run_core(vc);
3984 		}
3985 		vc->runner = NULL;
3986 	}
3987 
3988 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3989 	       (vc->vcore_state == VCORE_RUNNING ||
3990 		vc->vcore_state == VCORE_EXITING ||
3991 		vc->vcore_state == VCORE_PIGGYBACK))
3992 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3993 
3994 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3995 		kvmppc_vcore_end_preempt(vc);
3996 
3997 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3998 		kvmppc_remove_runnable(vc, vcpu);
3999 		vcpu->stat.signal_exits++;
4000 		kvm_run->exit_reason = KVM_EXIT_INTR;
4001 		vcpu->arch.ret = -EINTR;
4002 	}
4003 
4004 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4005 		/* Wake up some vcpu to run the core */
4006 		i = -1;
4007 		v = next_runnable_thread(vc, &i);
4008 		wake_up(&v->arch.cpu_run);
4009 	}
4010 
4011 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4012 	spin_unlock(&vc->lock);
4013 	return vcpu->arch.ret;
4014 }
4015 
4016 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4017 			  struct kvm_vcpu *vcpu, u64 time_limit,
4018 			  unsigned long lpcr)
4019 {
4020 	int trap, r, pcpu;
4021 	int srcu_idx, lpid;
4022 	struct kvmppc_vcore *vc;
4023 	struct kvm *kvm = vcpu->kvm;
4024 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4025 
4026 	trace_kvmppc_run_vcpu_enter(vcpu);
4027 
4028 	kvm_run->exit_reason = 0;
4029 	vcpu->arch.ret = RESUME_GUEST;
4030 	vcpu->arch.trap = 0;
4031 
4032 	vc = vcpu->arch.vcore;
4033 	vcpu->arch.ceded = 0;
4034 	vcpu->arch.run_task = current;
4035 	vcpu->arch.kvm_run = kvm_run;
4036 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4037 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4038 	vcpu->arch.busy_preempt = TB_NIL;
4039 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4040 	vc->runnable_threads[0] = vcpu;
4041 	vc->n_runnable = 1;
4042 	vc->runner = vcpu;
4043 
4044 	/* See if the MMU is ready to go */
4045 	if (!kvm->arch.mmu_ready)
4046 		kvmhv_setup_mmu(vcpu);
4047 
4048 	if (need_resched())
4049 		cond_resched();
4050 
4051 	kvmppc_update_vpas(vcpu);
4052 
4053 	init_vcore_to_run(vc);
4054 	vc->preempt_tb = TB_NIL;
4055 
4056 	preempt_disable();
4057 	pcpu = smp_processor_id();
4058 	vc->pcpu = pcpu;
4059 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4060 
4061 	local_irq_disable();
4062 	hard_irq_disable();
4063 	if (signal_pending(current))
4064 		goto sigpend;
4065 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4066 		goto out;
4067 
4068 	if (!nested) {
4069 		kvmppc_core_prepare_to_enter(vcpu);
4070 		if (vcpu->arch.doorbell_request) {
4071 			vc->dpdes = 1;
4072 			smp_wmb();
4073 			vcpu->arch.doorbell_request = 0;
4074 		}
4075 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4076 			     &vcpu->arch.pending_exceptions))
4077 			lpcr |= LPCR_MER;
4078 	} else if (vcpu->arch.pending_exceptions ||
4079 		   vcpu->arch.doorbell_request ||
4080 		   xive_interrupt_pending(vcpu)) {
4081 		vcpu->arch.ret = RESUME_HOST;
4082 		goto out;
4083 	}
4084 
4085 	kvmppc_clear_host_core(pcpu);
4086 
4087 	local_paca->kvm_hstate.tid = 0;
4088 	local_paca->kvm_hstate.napping = 0;
4089 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4090 	kvmppc_start_thread(vcpu, vc);
4091 	kvmppc_create_dtl_entry(vcpu, vc);
4092 	trace_kvm_guest_enter(vcpu);
4093 
4094 	vc->vcore_state = VCORE_RUNNING;
4095 	trace_kvmppc_run_core(vc, 0);
4096 
4097 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4098 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4099 		mtspr(SPRN_LPID, lpid);
4100 		isync();
4101 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4102 	}
4103 
4104 	guest_enter_irqoff();
4105 
4106 	srcu_idx = srcu_read_lock(&kvm->srcu);
4107 
4108 	this_cpu_disable_ftrace();
4109 
4110 	/* Tell lockdep that we're about to enable interrupts */
4111 	trace_hardirqs_on();
4112 
4113 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4114 	vcpu->arch.trap = trap;
4115 
4116 	trace_hardirqs_off();
4117 
4118 	this_cpu_enable_ftrace();
4119 
4120 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4121 
4122 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4123 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4124 		isync();
4125 	}
4126 
4127 	set_irq_happened(trap);
4128 
4129 	kvmppc_set_host_core(pcpu);
4130 
4131 	local_irq_enable();
4132 	guest_exit();
4133 
4134 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4135 
4136 	preempt_enable();
4137 
4138 	/*
4139 	 * cancel pending decrementer exception if DEC is now positive, or if
4140 	 * entering a nested guest in which case the decrementer is now owned
4141 	 * by L2 and the L1 decrementer is provided in hdec_expires
4142 	 */
4143 	if (kvmppc_core_pending_dec(vcpu) &&
4144 			((get_tb() < vcpu->arch.dec_expires) ||
4145 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4146 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4147 		kvmppc_core_dequeue_dec(vcpu);
4148 
4149 	trace_kvm_guest_exit(vcpu);
4150 	r = RESUME_GUEST;
4151 	if (trap) {
4152 		if (!nested)
4153 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4154 		else
4155 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4156 	}
4157 	vcpu->arch.ret = r;
4158 
4159 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4160 	    !kvmppc_vcpu_woken(vcpu)) {
4161 		kvmppc_set_timer(vcpu);
4162 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4163 			if (signal_pending(current)) {
4164 				vcpu->stat.signal_exits++;
4165 				kvm_run->exit_reason = KVM_EXIT_INTR;
4166 				vcpu->arch.ret = -EINTR;
4167 				break;
4168 			}
4169 			spin_lock(&vc->lock);
4170 			kvmppc_vcore_blocked(vc);
4171 			spin_unlock(&vc->lock);
4172 		}
4173 	}
4174 	vcpu->arch.ceded = 0;
4175 
4176 	vc->vcore_state = VCORE_INACTIVE;
4177 	trace_kvmppc_run_core(vc, 1);
4178 
4179  done:
4180 	kvmppc_remove_runnable(vc, vcpu);
4181 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4182 
4183 	return vcpu->arch.ret;
4184 
4185  sigpend:
4186 	vcpu->stat.signal_exits++;
4187 	kvm_run->exit_reason = KVM_EXIT_INTR;
4188 	vcpu->arch.ret = -EINTR;
4189  out:
4190 	local_irq_enable();
4191 	preempt_enable();
4192 	goto done;
4193 }
4194 
4195 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4196 {
4197 	int r;
4198 	int srcu_idx;
4199 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4200 	unsigned long user_tar = 0;
4201 	unsigned int user_vrsave;
4202 	struct kvm *kvm;
4203 
4204 	if (!vcpu->arch.sane) {
4205 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4206 		return -EINVAL;
4207 	}
4208 
4209 	/*
4210 	 * Don't allow entry with a suspended transaction, because
4211 	 * the guest entry/exit code will lose it.
4212 	 * If the guest has TM enabled, save away their TM-related SPRs
4213 	 * (they will get restored by the TM unavailable interrupt).
4214 	 */
4215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4216 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4217 	    (current->thread.regs->msr & MSR_TM)) {
4218 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4219 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4220 			run->fail_entry.hardware_entry_failure_reason = 0;
4221 			return -EINVAL;
4222 		}
4223 		/* Enable TM so we can read the TM SPRs */
4224 		mtmsr(mfmsr() | MSR_TM);
4225 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4226 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4227 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4228 		current->thread.regs->msr &= ~MSR_TM;
4229 	}
4230 #endif
4231 
4232 	/*
4233 	 * Force online to 1 for the sake of old userspace which doesn't
4234 	 * set it.
4235 	 */
4236 	if (!vcpu->arch.online) {
4237 		atomic_inc(&vcpu->arch.vcore->online_count);
4238 		vcpu->arch.online = 1;
4239 	}
4240 
4241 	kvmppc_core_prepare_to_enter(vcpu);
4242 
4243 	/* No need to go into the guest when all we'll do is come back out */
4244 	if (signal_pending(current)) {
4245 		run->exit_reason = KVM_EXIT_INTR;
4246 		return -EINTR;
4247 	}
4248 
4249 	kvm = vcpu->kvm;
4250 	atomic_inc(&kvm->arch.vcpus_running);
4251 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4252 	smp_mb();
4253 
4254 	flush_all_to_thread(current);
4255 
4256 	/* Save userspace EBB and other register values */
4257 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4258 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4259 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4260 		ebb_regs[2] = mfspr(SPRN_BESCR);
4261 		user_tar = mfspr(SPRN_TAR);
4262 	}
4263 	user_vrsave = mfspr(SPRN_VRSAVE);
4264 
4265 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4266 	vcpu->arch.pgdir = current->mm->pgd;
4267 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4268 
4269 	do {
4270 		/*
4271 		 * The early POWER9 chips that can't mix radix and HPT threads
4272 		 * on the same core also need the workaround for the problem
4273 		 * where the TLB would prefetch entries in the guest exit path
4274 		 * for radix guests using the guest PIDR value and LPID 0.
4275 		 * The workaround is in the old path (kvmppc_run_vcpu())
4276 		 * but not the new path (kvmhv_run_single_vcpu()).
4277 		 */
4278 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4279 		    !no_mixing_hpt_and_radix)
4280 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4281 						  vcpu->arch.vcore->lpcr);
4282 		else
4283 			r = kvmppc_run_vcpu(run, vcpu);
4284 
4285 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4286 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4287 			trace_kvm_hcall_enter(vcpu);
4288 			r = kvmppc_pseries_do_hcall(vcpu);
4289 			trace_kvm_hcall_exit(vcpu, r);
4290 			kvmppc_core_prepare_to_enter(vcpu);
4291 		} else if (r == RESUME_PAGE_FAULT) {
4292 			srcu_idx = srcu_read_lock(&kvm->srcu);
4293 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4294 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4295 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4296 		} else if (r == RESUME_PASSTHROUGH) {
4297 			if (WARN_ON(xics_on_xive()))
4298 				r = H_SUCCESS;
4299 			else
4300 				r = kvmppc_xics_rm_complete(vcpu, 0);
4301 		}
4302 	} while (is_kvmppc_resume_guest(r));
4303 
4304 	/* Restore userspace EBB and other register values */
4305 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4306 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4307 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4308 		mtspr(SPRN_BESCR, ebb_regs[2]);
4309 		mtspr(SPRN_TAR, user_tar);
4310 		mtspr(SPRN_FSCR, current->thread.fscr);
4311 	}
4312 	mtspr(SPRN_VRSAVE, user_vrsave);
4313 
4314 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4315 	atomic_dec(&kvm->arch.vcpus_running);
4316 	return r;
4317 }
4318 
4319 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4320 				     int shift, int sllp)
4321 {
4322 	(*sps)->page_shift = shift;
4323 	(*sps)->slb_enc = sllp;
4324 	(*sps)->enc[0].page_shift = shift;
4325 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4326 	/*
4327 	 * Add 16MB MPSS support (may get filtered out by userspace)
4328 	 */
4329 	if (shift != 24) {
4330 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4331 		if (penc != -1) {
4332 			(*sps)->enc[1].page_shift = 24;
4333 			(*sps)->enc[1].pte_enc = penc;
4334 		}
4335 	}
4336 	(*sps)++;
4337 }
4338 
4339 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4340 					 struct kvm_ppc_smmu_info *info)
4341 {
4342 	struct kvm_ppc_one_seg_page_size *sps;
4343 
4344 	/*
4345 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4346 	 * POWER7 doesn't support keys for instruction accesses,
4347 	 * POWER8 and POWER9 do.
4348 	 */
4349 	info->data_keys = 32;
4350 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4351 
4352 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4353 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4354 	info->slb_size = 32;
4355 
4356 	/* We only support these sizes for now, and no muti-size segments */
4357 	sps = &info->sps[0];
4358 	kvmppc_add_seg_page_size(&sps, 12, 0);
4359 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4360 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4361 
4362 	/* If running as a nested hypervisor, we don't support HPT guests */
4363 	if (kvmhv_on_pseries())
4364 		info->flags |= KVM_PPC_NO_HASH;
4365 
4366 	return 0;
4367 }
4368 
4369 /*
4370  * Get (and clear) the dirty memory log for a memory slot.
4371  */
4372 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4373 					 struct kvm_dirty_log *log)
4374 {
4375 	struct kvm_memslots *slots;
4376 	struct kvm_memory_slot *memslot;
4377 	int i, r;
4378 	unsigned long n;
4379 	unsigned long *buf, *p;
4380 	struct kvm_vcpu *vcpu;
4381 
4382 	mutex_lock(&kvm->slots_lock);
4383 
4384 	r = -EINVAL;
4385 	if (log->slot >= KVM_USER_MEM_SLOTS)
4386 		goto out;
4387 
4388 	slots = kvm_memslots(kvm);
4389 	memslot = id_to_memslot(slots, log->slot);
4390 	r = -ENOENT;
4391 	if (!memslot->dirty_bitmap)
4392 		goto out;
4393 
4394 	/*
4395 	 * Use second half of bitmap area because both HPT and radix
4396 	 * accumulate bits in the first half.
4397 	 */
4398 	n = kvm_dirty_bitmap_bytes(memslot);
4399 	buf = memslot->dirty_bitmap + n / sizeof(long);
4400 	memset(buf, 0, n);
4401 
4402 	if (kvm_is_radix(kvm))
4403 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4404 	else
4405 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4406 	if (r)
4407 		goto out;
4408 
4409 	/*
4410 	 * We accumulate dirty bits in the first half of the
4411 	 * memslot's dirty_bitmap area, for when pages are paged
4412 	 * out or modified by the host directly.  Pick up these
4413 	 * bits and add them to the map.
4414 	 */
4415 	p = memslot->dirty_bitmap;
4416 	for (i = 0; i < n / sizeof(long); ++i)
4417 		buf[i] |= xchg(&p[i], 0);
4418 
4419 	/* Harvest dirty bits from VPA and DTL updates */
4420 	/* Note: we never modify the SLB shadow buffer areas */
4421 	kvm_for_each_vcpu(i, vcpu, kvm) {
4422 		spin_lock(&vcpu->arch.vpa_update_lock);
4423 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4424 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4425 		spin_unlock(&vcpu->arch.vpa_update_lock);
4426 	}
4427 
4428 	r = -EFAULT;
4429 	if (copy_to_user(log->dirty_bitmap, buf, n))
4430 		goto out;
4431 
4432 	r = 0;
4433 out:
4434 	mutex_unlock(&kvm->slots_lock);
4435 	return r;
4436 }
4437 
4438 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4439 					struct kvm_memory_slot *dont)
4440 {
4441 	if (!dont || free->arch.rmap != dont->arch.rmap) {
4442 		vfree(free->arch.rmap);
4443 		free->arch.rmap = NULL;
4444 	}
4445 }
4446 
4447 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4448 					 unsigned long npages)
4449 {
4450 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4451 	if (!slot->arch.rmap)
4452 		return -ENOMEM;
4453 
4454 	return 0;
4455 }
4456 
4457 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4458 					struct kvm_memory_slot *memslot,
4459 					const struct kvm_userspace_memory_region *mem)
4460 {
4461 	return 0;
4462 }
4463 
4464 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4465 				const struct kvm_userspace_memory_region *mem,
4466 				const struct kvm_memory_slot *old,
4467 				const struct kvm_memory_slot *new,
4468 				enum kvm_mr_change change)
4469 {
4470 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4471 
4472 	/*
4473 	 * If we are making a new memslot, it might make
4474 	 * some address that was previously cached as emulated
4475 	 * MMIO be no longer emulated MMIO, so invalidate
4476 	 * all the caches of emulated MMIO translations.
4477 	 */
4478 	if (npages)
4479 		atomic64_inc(&kvm->arch.mmio_update);
4480 
4481 	/*
4482 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4483 	 * have already called kvm_arch_flush_shadow_memslot() to
4484 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4485 	 * previous mappings.  So the only case to handle is
4486 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4487 	 * has been changed.
4488 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4489 	 * to get rid of any THP PTEs in the partition-scoped page tables
4490 	 * so we can track dirtiness at the page level; we flush when
4491 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4492 	 * using THP PTEs.
4493 	 */
4494 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4495 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4496 		kvmppc_radix_flush_memslot(kvm, old);
4497 }
4498 
4499 /*
4500  * Update LPCR values in kvm->arch and in vcores.
4501  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4502  * of kvm->arch.lpcr update).
4503  */
4504 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4505 {
4506 	long int i;
4507 	u32 cores_done = 0;
4508 
4509 	if ((kvm->arch.lpcr & mask) == lpcr)
4510 		return;
4511 
4512 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4513 
4514 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4515 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4516 		if (!vc)
4517 			continue;
4518 		spin_lock(&vc->lock);
4519 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4520 		spin_unlock(&vc->lock);
4521 		if (++cores_done >= kvm->arch.online_vcores)
4522 			break;
4523 	}
4524 }
4525 
4526 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4527 {
4528 	return;
4529 }
4530 
4531 void kvmppc_setup_partition_table(struct kvm *kvm)
4532 {
4533 	unsigned long dw0, dw1;
4534 
4535 	if (!kvm_is_radix(kvm)) {
4536 		/* PS field - page size for VRMA */
4537 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4538 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4539 		/* HTABSIZE and HTABORG fields */
4540 		dw0 |= kvm->arch.sdr1;
4541 
4542 		/* Second dword as set by userspace */
4543 		dw1 = kvm->arch.process_table;
4544 	} else {
4545 		dw0 = PATB_HR | radix__get_tree_size() |
4546 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4547 		dw1 = PATB_GR | kvm->arch.process_table;
4548 	}
4549 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4550 }
4551 
4552 /*
4553  * Set up HPT (hashed page table) and RMA (real-mode area).
4554  * Must be called with kvm->arch.mmu_setup_lock held.
4555  */
4556 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4557 {
4558 	int err = 0;
4559 	struct kvm *kvm = vcpu->kvm;
4560 	unsigned long hva;
4561 	struct kvm_memory_slot *memslot;
4562 	struct vm_area_struct *vma;
4563 	unsigned long lpcr = 0, senc;
4564 	unsigned long psize, porder;
4565 	int srcu_idx;
4566 
4567 	/* Allocate hashed page table (if not done already) and reset it */
4568 	if (!kvm->arch.hpt.virt) {
4569 		int order = KVM_DEFAULT_HPT_ORDER;
4570 		struct kvm_hpt_info info;
4571 
4572 		err = kvmppc_allocate_hpt(&info, order);
4573 		/* If we get here, it means userspace didn't specify a
4574 		 * size explicitly.  So, try successively smaller
4575 		 * sizes if the default failed. */
4576 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4577 			err  = kvmppc_allocate_hpt(&info, order);
4578 
4579 		if (err < 0) {
4580 			pr_err("KVM: Couldn't alloc HPT\n");
4581 			goto out;
4582 		}
4583 
4584 		kvmppc_set_hpt(kvm, &info);
4585 	}
4586 
4587 	/* Look up the memslot for guest physical address 0 */
4588 	srcu_idx = srcu_read_lock(&kvm->srcu);
4589 	memslot = gfn_to_memslot(kvm, 0);
4590 
4591 	/* We must have some memory at 0 by now */
4592 	err = -EINVAL;
4593 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4594 		goto out_srcu;
4595 
4596 	/* Look up the VMA for the start of this memory slot */
4597 	hva = memslot->userspace_addr;
4598 	down_read(&current->mm->mmap_sem);
4599 	vma = find_vma(current->mm, hva);
4600 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4601 		goto up_out;
4602 
4603 	psize = vma_kernel_pagesize(vma);
4604 
4605 	up_read(&current->mm->mmap_sem);
4606 
4607 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4608 	if (psize >= 0x1000000)
4609 		psize = 0x1000000;
4610 	else if (psize >= 0x10000)
4611 		psize = 0x10000;
4612 	else
4613 		psize = 0x1000;
4614 	porder = __ilog2(psize);
4615 
4616 	senc = slb_pgsize_encoding(psize);
4617 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4618 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4619 	/* Create HPTEs in the hash page table for the VRMA */
4620 	kvmppc_map_vrma(vcpu, memslot, porder);
4621 
4622 	/* Update VRMASD field in the LPCR */
4623 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4624 		/* the -4 is to account for senc values starting at 0x10 */
4625 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4626 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4627 	}
4628 
4629 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4630 	smp_wmb();
4631 	err = 0;
4632  out_srcu:
4633 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4634  out:
4635 	return err;
4636 
4637  up_out:
4638 	up_read(&current->mm->mmap_sem);
4639 	goto out_srcu;
4640 }
4641 
4642 /*
4643  * Must be called with kvm->arch.mmu_setup_lock held and
4644  * mmu_ready = 0 and no vcpus running.
4645  */
4646 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4647 {
4648 	if (nesting_enabled(kvm))
4649 		kvmhv_release_all_nested(kvm);
4650 	kvmppc_rmap_reset(kvm);
4651 	kvm->arch.process_table = 0;
4652 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4653 	spin_lock(&kvm->mmu_lock);
4654 	kvm->arch.radix = 0;
4655 	spin_unlock(&kvm->mmu_lock);
4656 	kvmppc_free_radix(kvm);
4657 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4658 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4659 	return 0;
4660 }
4661 
4662 /*
4663  * Must be called with kvm->arch.mmu_setup_lock held and
4664  * mmu_ready = 0 and no vcpus running.
4665  */
4666 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4667 {
4668 	int err;
4669 
4670 	err = kvmppc_init_vm_radix(kvm);
4671 	if (err)
4672 		return err;
4673 	kvmppc_rmap_reset(kvm);
4674 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4675 	spin_lock(&kvm->mmu_lock);
4676 	kvm->arch.radix = 1;
4677 	spin_unlock(&kvm->mmu_lock);
4678 	kvmppc_free_hpt(&kvm->arch.hpt);
4679 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4680 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4681 	return 0;
4682 }
4683 
4684 #ifdef CONFIG_KVM_XICS
4685 /*
4686  * Allocate a per-core structure for managing state about which cores are
4687  * running in the host versus the guest and for exchanging data between
4688  * real mode KVM and CPU running in the host.
4689  * This is only done for the first VM.
4690  * The allocated structure stays even if all VMs have stopped.
4691  * It is only freed when the kvm-hv module is unloaded.
4692  * It's OK for this routine to fail, we just don't support host
4693  * core operations like redirecting H_IPI wakeups.
4694  */
4695 void kvmppc_alloc_host_rm_ops(void)
4696 {
4697 	struct kvmppc_host_rm_ops *ops;
4698 	unsigned long l_ops;
4699 	int cpu, core;
4700 	int size;
4701 
4702 	/* Not the first time here ? */
4703 	if (kvmppc_host_rm_ops_hv != NULL)
4704 		return;
4705 
4706 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4707 	if (!ops)
4708 		return;
4709 
4710 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4711 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4712 
4713 	if (!ops->rm_core) {
4714 		kfree(ops);
4715 		return;
4716 	}
4717 
4718 	cpus_read_lock();
4719 
4720 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4721 		if (!cpu_online(cpu))
4722 			continue;
4723 
4724 		core = cpu >> threads_shift;
4725 		ops->rm_core[core].rm_state.in_host = 1;
4726 	}
4727 
4728 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4729 
4730 	/*
4731 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4732 	 * to other CPUs before we assign it to the global variable.
4733 	 * Do an atomic assignment (no locks used here), but if someone
4734 	 * beats us to it, just free our copy and return.
4735 	 */
4736 	smp_wmb();
4737 	l_ops = (unsigned long) ops;
4738 
4739 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4740 		cpus_read_unlock();
4741 		kfree(ops->rm_core);
4742 		kfree(ops);
4743 		return;
4744 	}
4745 
4746 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4747 					     "ppc/kvm_book3s:prepare",
4748 					     kvmppc_set_host_core,
4749 					     kvmppc_clear_host_core);
4750 	cpus_read_unlock();
4751 }
4752 
4753 void kvmppc_free_host_rm_ops(void)
4754 {
4755 	if (kvmppc_host_rm_ops_hv) {
4756 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4757 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4758 		kfree(kvmppc_host_rm_ops_hv);
4759 		kvmppc_host_rm_ops_hv = NULL;
4760 	}
4761 }
4762 #endif
4763 
4764 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4765 {
4766 	unsigned long lpcr, lpid;
4767 	char buf[32];
4768 	int ret;
4769 
4770 	mutex_init(&kvm->arch.mmu_setup_lock);
4771 
4772 	/* Allocate the guest's logical partition ID */
4773 
4774 	lpid = kvmppc_alloc_lpid();
4775 	if ((long)lpid < 0)
4776 		return -ENOMEM;
4777 	kvm->arch.lpid = lpid;
4778 
4779 	kvmppc_alloc_host_rm_ops();
4780 
4781 	kvmhv_vm_nested_init(kvm);
4782 
4783 	/*
4784 	 * Since we don't flush the TLB when tearing down a VM,
4785 	 * and this lpid might have previously been used,
4786 	 * make sure we flush on each core before running the new VM.
4787 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4788 	 * does this flush for us.
4789 	 */
4790 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4791 		cpumask_setall(&kvm->arch.need_tlb_flush);
4792 
4793 	/* Start out with the default set of hcalls enabled */
4794 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4795 	       sizeof(kvm->arch.enabled_hcalls));
4796 
4797 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4798 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4799 
4800 	/* Init LPCR for virtual RMA mode */
4801 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4802 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4803 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4804 		lpcr &= LPCR_PECE | LPCR_LPES;
4805 	} else {
4806 		lpcr = 0;
4807 	}
4808 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4809 		LPCR_VPM0 | LPCR_VPM1;
4810 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4811 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4812 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4813 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4814 		lpcr |= LPCR_ONL;
4815 	/*
4816 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4817 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4818 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4819 	 * be unnecessary but better safe than sorry in case we re-enable
4820 	 * EE in HV mode with this LPCR still set)
4821 	 */
4822 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4823 		lpcr &= ~LPCR_VPM0;
4824 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4825 
4826 		/*
4827 		 * If xive is enabled, we route 0x500 interrupts directly
4828 		 * to the guest.
4829 		 */
4830 		if (xics_on_xive())
4831 			lpcr |= LPCR_LPES;
4832 	}
4833 
4834 	/*
4835 	 * If the host uses radix, the guest starts out as radix.
4836 	 */
4837 	if (radix_enabled()) {
4838 		kvm->arch.radix = 1;
4839 		kvm->arch.mmu_ready = 1;
4840 		lpcr &= ~LPCR_VPM1;
4841 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4842 		ret = kvmppc_init_vm_radix(kvm);
4843 		if (ret) {
4844 			kvmppc_free_lpid(kvm->arch.lpid);
4845 			return ret;
4846 		}
4847 		kvmppc_setup_partition_table(kvm);
4848 	}
4849 
4850 	kvm->arch.lpcr = lpcr;
4851 
4852 	/* Initialization for future HPT resizes */
4853 	kvm->arch.resize_hpt = NULL;
4854 
4855 	/*
4856 	 * Work out how many sets the TLB has, for the use of
4857 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4858 	 */
4859 	if (radix_enabled())
4860 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4861 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4862 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4863 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4864 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4865 	else
4866 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4867 
4868 	/*
4869 	 * Track that we now have a HV mode VM active. This blocks secondary
4870 	 * CPU threads from coming online.
4871 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4872 	 * module parameter has been set to N.
4873 	 */
4874 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4875 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4876 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4877 			kvm->arch.threads_indep = true;
4878 		} else {
4879 			kvm->arch.threads_indep = indep_threads_mode;
4880 		}
4881 	}
4882 	if (!kvm->arch.threads_indep)
4883 		kvm_hv_vm_activated();
4884 
4885 	/*
4886 	 * Initialize smt_mode depending on processor.
4887 	 * POWER8 and earlier have to use "strict" threading, where
4888 	 * all vCPUs in a vcore have to run on the same (sub)core,
4889 	 * whereas on POWER9 the threads can each run a different
4890 	 * guest.
4891 	 */
4892 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4893 		kvm->arch.smt_mode = threads_per_subcore;
4894 	else
4895 		kvm->arch.smt_mode = 1;
4896 	kvm->arch.emul_smt_mode = 1;
4897 
4898 	/*
4899 	 * Create a debugfs directory for the VM
4900 	 */
4901 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4902 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4903 	kvmppc_mmu_debugfs_init(kvm);
4904 	if (radix_enabled())
4905 		kvmhv_radix_debugfs_init(kvm);
4906 
4907 	return 0;
4908 }
4909 
4910 static void kvmppc_free_vcores(struct kvm *kvm)
4911 {
4912 	long int i;
4913 
4914 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4915 		kfree(kvm->arch.vcores[i]);
4916 	kvm->arch.online_vcores = 0;
4917 }
4918 
4919 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4920 {
4921 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4922 
4923 	if (!kvm->arch.threads_indep)
4924 		kvm_hv_vm_deactivated();
4925 
4926 	kvmppc_free_vcores(kvm);
4927 
4928 
4929 	if (kvm_is_radix(kvm))
4930 		kvmppc_free_radix(kvm);
4931 	else
4932 		kvmppc_free_hpt(&kvm->arch.hpt);
4933 
4934 	/* Perform global invalidation and return lpid to the pool */
4935 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4936 		if (nesting_enabled(kvm))
4937 			kvmhv_release_all_nested(kvm);
4938 		kvm->arch.process_table = 0;
4939 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4940 	}
4941 	kvmppc_free_lpid(kvm->arch.lpid);
4942 
4943 	kvmppc_free_pimap(kvm);
4944 }
4945 
4946 /* We don't need to emulate any privileged instructions or dcbz */
4947 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4948 				     unsigned int inst, int *advance)
4949 {
4950 	return EMULATE_FAIL;
4951 }
4952 
4953 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4954 					ulong spr_val)
4955 {
4956 	return EMULATE_FAIL;
4957 }
4958 
4959 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4960 					ulong *spr_val)
4961 {
4962 	return EMULATE_FAIL;
4963 }
4964 
4965 static int kvmppc_core_check_processor_compat_hv(void)
4966 {
4967 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
4968 	    cpu_has_feature(CPU_FTR_ARCH_206))
4969 		return 0;
4970 
4971 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
4972 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4973 		return 0;
4974 
4975 	return -EIO;
4976 }
4977 
4978 #ifdef CONFIG_KVM_XICS
4979 
4980 void kvmppc_free_pimap(struct kvm *kvm)
4981 {
4982 	kfree(kvm->arch.pimap);
4983 }
4984 
4985 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4986 {
4987 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4988 }
4989 
4990 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4991 {
4992 	struct irq_desc *desc;
4993 	struct kvmppc_irq_map *irq_map;
4994 	struct kvmppc_passthru_irqmap *pimap;
4995 	struct irq_chip *chip;
4996 	int i, rc = 0;
4997 
4998 	if (!kvm_irq_bypass)
4999 		return 1;
5000 
5001 	desc = irq_to_desc(host_irq);
5002 	if (!desc)
5003 		return -EIO;
5004 
5005 	mutex_lock(&kvm->lock);
5006 
5007 	pimap = kvm->arch.pimap;
5008 	if (pimap == NULL) {
5009 		/* First call, allocate structure to hold IRQ map */
5010 		pimap = kvmppc_alloc_pimap();
5011 		if (pimap == NULL) {
5012 			mutex_unlock(&kvm->lock);
5013 			return -ENOMEM;
5014 		}
5015 		kvm->arch.pimap = pimap;
5016 	}
5017 
5018 	/*
5019 	 * For now, we only support interrupts for which the EOI operation
5020 	 * is an OPAL call followed by a write to XIRR, since that's
5021 	 * what our real-mode EOI code does, or a XIVE interrupt
5022 	 */
5023 	chip = irq_data_get_irq_chip(&desc->irq_data);
5024 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5025 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5026 			host_irq, guest_gsi);
5027 		mutex_unlock(&kvm->lock);
5028 		return -ENOENT;
5029 	}
5030 
5031 	/*
5032 	 * See if we already have an entry for this guest IRQ number.
5033 	 * If it's mapped to a hardware IRQ number, that's an error,
5034 	 * otherwise re-use this entry.
5035 	 */
5036 	for (i = 0; i < pimap->n_mapped; i++) {
5037 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5038 			if (pimap->mapped[i].r_hwirq) {
5039 				mutex_unlock(&kvm->lock);
5040 				return -EINVAL;
5041 			}
5042 			break;
5043 		}
5044 	}
5045 
5046 	if (i == KVMPPC_PIRQ_MAPPED) {
5047 		mutex_unlock(&kvm->lock);
5048 		return -EAGAIN;		/* table is full */
5049 	}
5050 
5051 	irq_map = &pimap->mapped[i];
5052 
5053 	irq_map->v_hwirq = guest_gsi;
5054 	irq_map->desc = desc;
5055 
5056 	/*
5057 	 * Order the above two stores before the next to serialize with
5058 	 * the KVM real mode handler.
5059 	 */
5060 	smp_wmb();
5061 	irq_map->r_hwirq = desc->irq_data.hwirq;
5062 
5063 	if (i == pimap->n_mapped)
5064 		pimap->n_mapped++;
5065 
5066 	if (xics_on_xive())
5067 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5068 	else
5069 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5070 	if (rc)
5071 		irq_map->r_hwirq = 0;
5072 
5073 	mutex_unlock(&kvm->lock);
5074 
5075 	return 0;
5076 }
5077 
5078 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5079 {
5080 	struct irq_desc *desc;
5081 	struct kvmppc_passthru_irqmap *pimap;
5082 	int i, rc = 0;
5083 
5084 	if (!kvm_irq_bypass)
5085 		return 0;
5086 
5087 	desc = irq_to_desc(host_irq);
5088 	if (!desc)
5089 		return -EIO;
5090 
5091 	mutex_lock(&kvm->lock);
5092 	if (!kvm->arch.pimap)
5093 		goto unlock;
5094 
5095 	pimap = kvm->arch.pimap;
5096 
5097 	for (i = 0; i < pimap->n_mapped; i++) {
5098 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5099 			break;
5100 	}
5101 
5102 	if (i == pimap->n_mapped) {
5103 		mutex_unlock(&kvm->lock);
5104 		return -ENODEV;
5105 	}
5106 
5107 	if (xics_on_xive())
5108 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5109 	else
5110 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5111 
5112 	/* invalidate the entry (what do do on error from the above ?) */
5113 	pimap->mapped[i].r_hwirq = 0;
5114 
5115 	/*
5116 	 * We don't free this structure even when the count goes to
5117 	 * zero. The structure is freed when we destroy the VM.
5118 	 */
5119  unlock:
5120 	mutex_unlock(&kvm->lock);
5121 	return rc;
5122 }
5123 
5124 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5125 					     struct irq_bypass_producer *prod)
5126 {
5127 	int ret = 0;
5128 	struct kvm_kernel_irqfd *irqfd =
5129 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5130 
5131 	irqfd->producer = prod;
5132 
5133 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5134 	if (ret)
5135 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5136 			prod->irq, irqfd->gsi, ret);
5137 
5138 	return ret;
5139 }
5140 
5141 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5142 					      struct irq_bypass_producer *prod)
5143 {
5144 	int ret;
5145 	struct kvm_kernel_irqfd *irqfd =
5146 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5147 
5148 	irqfd->producer = NULL;
5149 
5150 	/*
5151 	 * When producer of consumer is unregistered, we change back to
5152 	 * default external interrupt handling mode - KVM real mode
5153 	 * will switch back to host.
5154 	 */
5155 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5156 	if (ret)
5157 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5158 			prod->irq, irqfd->gsi, ret);
5159 }
5160 #endif
5161 
5162 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5163 				 unsigned int ioctl, unsigned long arg)
5164 {
5165 	struct kvm *kvm __maybe_unused = filp->private_data;
5166 	void __user *argp = (void __user *)arg;
5167 	long r;
5168 
5169 	switch (ioctl) {
5170 
5171 	case KVM_PPC_ALLOCATE_HTAB: {
5172 		u32 htab_order;
5173 
5174 		r = -EFAULT;
5175 		if (get_user(htab_order, (u32 __user *)argp))
5176 			break;
5177 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5178 		if (r)
5179 			break;
5180 		r = 0;
5181 		break;
5182 	}
5183 
5184 	case KVM_PPC_GET_HTAB_FD: {
5185 		struct kvm_get_htab_fd ghf;
5186 
5187 		r = -EFAULT;
5188 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5189 			break;
5190 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5191 		break;
5192 	}
5193 
5194 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5195 		struct kvm_ppc_resize_hpt rhpt;
5196 
5197 		r = -EFAULT;
5198 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5199 			break;
5200 
5201 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5202 		break;
5203 	}
5204 
5205 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5206 		struct kvm_ppc_resize_hpt rhpt;
5207 
5208 		r = -EFAULT;
5209 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5210 			break;
5211 
5212 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5213 		break;
5214 	}
5215 
5216 	default:
5217 		r = -ENOTTY;
5218 	}
5219 
5220 	return r;
5221 }
5222 
5223 /*
5224  * List of hcall numbers to enable by default.
5225  * For compatibility with old userspace, we enable by default
5226  * all hcalls that were implemented before the hcall-enabling
5227  * facility was added.  Note this list should not include H_RTAS.
5228  */
5229 static unsigned int default_hcall_list[] = {
5230 	H_REMOVE,
5231 	H_ENTER,
5232 	H_READ,
5233 	H_PROTECT,
5234 	H_BULK_REMOVE,
5235 	H_GET_TCE,
5236 	H_PUT_TCE,
5237 	H_SET_DABR,
5238 	H_SET_XDABR,
5239 	H_CEDE,
5240 	H_PROD,
5241 	H_CONFER,
5242 	H_REGISTER_VPA,
5243 #ifdef CONFIG_KVM_XICS
5244 	H_EOI,
5245 	H_CPPR,
5246 	H_IPI,
5247 	H_IPOLL,
5248 	H_XIRR,
5249 	H_XIRR_X,
5250 #endif
5251 	0
5252 };
5253 
5254 static void init_default_hcalls(void)
5255 {
5256 	int i;
5257 	unsigned int hcall;
5258 
5259 	for (i = 0; default_hcall_list[i]; ++i) {
5260 		hcall = default_hcall_list[i];
5261 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5262 		__set_bit(hcall / 4, default_enabled_hcalls);
5263 	}
5264 }
5265 
5266 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5267 {
5268 	unsigned long lpcr;
5269 	int radix;
5270 	int err;
5271 
5272 	/* If not on a POWER9, reject it */
5273 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5274 		return -ENODEV;
5275 
5276 	/* If any unknown flags set, reject it */
5277 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5278 		return -EINVAL;
5279 
5280 	/* GR (guest radix) bit in process_table field must match */
5281 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5282 	if (!!(cfg->process_table & PATB_GR) != radix)
5283 		return -EINVAL;
5284 
5285 	/* Process table size field must be reasonable, i.e. <= 24 */
5286 	if ((cfg->process_table & PRTS_MASK) > 24)
5287 		return -EINVAL;
5288 
5289 	/* We can change a guest to/from radix now, if the host is radix */
5290 	if (radix && !radix_enabled())
5291 		return -EINVAL;
5292 
5293 	/* If we're a nested hypervisor, we currently only support radix */
5294 	if (kvmhv_on_pseries() && !radix)
5295 		return -EINVAL;
5296 
5297 	mutex_lock(&kvm->arch.mmu_setup_lock);
5298 	if (radix != kvm_is_radix(kvm)) {
5299 		if (kvm->arch.mmu_ready) {
5300 			kvm->arch.mmu_ready = 0;
5301 			/* order mmu_ready vs. vcpus_running */
5302 			smp_mb();
5303 			if (atomic_read(&kvm->arch.vcpus_running)) {
5304 				kvm->arch.mmu_ready = 1;
5305 				err = -EBUSY;
5306 				goto out_unlock;
5307 			}
5308 		}
5309 		if (radix)
5310 			err = kvmppc_switch_mmu_to_radix(kvm);
5311 		else
5312 			err = kvmppc_switch_mmu_to_hpt(kvm);
5313 		if (err)
5314 			goto out_unlock;
5315 	}
5316 
5317 	kvm->arch.process_table = cfg->process_table;
5318 	kvmppc_setup_partition_table(kvm);
5319 
5320 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5321 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5322 	err = 0;
5323 
5324  out_unlock:
5325 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5326 	return err;
5327 }
5328 
5329 static int kvmhv_enable_nested(struct kvm *kvm)
5330 {
5331 	if (!nested)
5332 		return -EPERM;
5333 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5334 		return -ENODEV;
5335 
5336 	/* kvm == NULL means the caller is testing if the capability exists */
5337 	if (kvm)
5338 		kvm->arch.nested_enable = true;
5339 	return 0;
5340 }
5341 
5342 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5343 				 int size)
5344 {
5345 	int rc = -EINVAL;
5346 
5347 	if (kvmhv_vcpu_is_radix(vcpu)) {
5348 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5349 
5350 		if (rc > 0)
5351 			rc = -EINVAL;
5352 	}
5353 
5354 	/* For now quadrants are the only way to access nested guest memory */
5355 	if (rc && vcpu->arch.nested)
5356 		rc = -EAGAIN;
5357 
5358 	return rc;
5359 }
5360 
5361 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5362 				int size)
5363 {
5364 	int rc = -EINVAL;
5365 
5366 	if (kvmhv_vcpu_is_radix(vcpu)) {
5367 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5368 
5369 		if (rc > 0)
5370 			rc = -EINVAL;
5371 	}
5372 
5373 	/* For now quadrants are the only way to access nested guest memory */
5374 	if (rc && vcpu->arch.nested)
5375 		rc = -EAGAIN;
5376 
5377 	return rc;
5378 }
5379 
5380 static struct kvmppc_ops kvm_ops_hv = {
5381 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5382 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5383 	.get_one_reg = kvmppc_get_one_reg_hv,
5384 	.set_one_reg = kvmppc_set_one_reg_hv,
5385 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5386 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5387 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5388 	.set_msr     = kvmppc_set_msr_hv,
5389 	.vcpu_run    = kvmppc_vcpu_run_hv,
5390 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5391 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5392 	.check_requests = kvmppc_core_check_requests_hv,
5393 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5394 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5395 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5396 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5397 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5398 	.age_hva  = kvm_age_hva_hv,
5399 	.test_age_hva = kvm_test_age_hva_hv,
5400 	.set_spte_hva = kvm_set_spte_hva_hv,
5401 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
5402 	.free_memslot = kvmppc_core_free_memslot_hv,
5403 	.create_memslot = kvmppc_core_create_memslot_hv,
5404 	.init_vm =  kvmppc_core_init_vm_hv,
5405 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5406 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5407 	.emulate_op = kvmppc_core_emulate_op_hv,
5408 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5409 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5410 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5411 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5412 	.hcall_implemented = kvmppc_hcall_impl_hv,
5413 #ifdef CONFIG_KVM_XICS
5414 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5415 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5416 #endif
5417 	.configure_mmu = kvmhv_configure_mmu,
5418 	.get_rmmu_info = kvmhv_get_rmmu_info,
5419 	.set_smt_mode = kvmhv_set_smt_mode,
5420 	.enable_nested = kvmhv_enable_nested,
5421 	.load_from_eaddr = kvmhv_load_from_eaddr,
5422 	.store_to_eaddr = kvmhv_store_to_eaddr,
5423 };
5424 
5425 static int kvm_init_subcore_bitmap(void)
5426 {
5427 	int i, j;
5428 	int nr_cores = cpu_nr_cores();
5429 	struct sibling_subcore_state *sibling_subcore_state;
5430 
5431 	for (i = 0; i < nr_cores; i++) {
5432 		int first_cpu = i * threads_per_core;
5433 		int node = cpu_to_node(first_cpu);
5434 
5435 		/* Ignore if it is already allocated. */
5436 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5437 			continue;
5438 
5439 		sibling_subcore_state =
5440 			kzalloc_node(sizeof(struct sibling_subcore_state),
5441 							GFP_KERNEL, node);
5442 		if (!sibling_subcore_state)
5443 			return -ENOMEM;
5444 
5445 
5446 		for (j = 0; j < threads_per_core; j++) {
5447 			int cpu = first_cpu + j;
5448 
5449 			paca_ptrs[cpu]->sibling_subcore_state =
5450 						sibling_subcore_state;
5451 		}
5452 	}
5453 	return 0;
5454 }
5455 
5456 static int kvmppc_radix_possible(void)
5457 {
5458 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5459 }
5460 
5461 static int kvmppc_book3s_init_hv(void)
5462 {
5463 	int r;
5464 
5465 	if (!tlbie_capable) {
5466 		pr_err("KVM-HV: Host does not support TLBIE\n");
5467 		return -ENODEV;
5468 	}
5469 
5470 	/*
5471 	 * FIXME!! Do we need to check on all cpus ?
5472 	 */
5473 	r = kvmppc_core_check_processor_compat_hv();
5474 	if (r < 0)
5475 		return -ENODEV;
5476 
5477 	r = kvmhv_nested_init();
5478 	if (r)
5479 		return r;
5480 
5481 	r = kvm_init_subcore_bitmap();
5482 	if (r)
5483 		return r;
5484 
5485 	/*
5486 	 * We need a way of accessing the XICS interrupt controller,
5487 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5488 	 * indirectly, via OPAL.
5489 	 */
5490 #ifdef CONFIG_SMP
5491 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5492 	    !local_paca->kvm_hstate.xics_phys) {
5493 		struct device_node *np;
5494 
5495 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5496 		if (!np) {
5497 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5498 			return -ENODEV;
5499 		}
5500 		/* presence of intc confirmed - node can be dropped again */
5501 		of_node_put(np);
5502 	}
5503 #endif
5504 
5505 	kvm_ops_hv.owner = THIS_MODULE;
5506 	kvmppc_hv_ops = &kvm_ops_hv;
5507 
5508 	init_default_hcalls();
5509 
5510 	init_vcore_lists();
5511 
5512 	r = kvmppc_mmu_hv_init();
5513 	if (r)
5514 		return r;
5515 
5516 	if (kvmppc_radix_possible())
5517 		r = kvmppc_radix_init();
5518 
5519 	/*
5520 	 * POWER9 chips before version 2.02 can't have some threads in
5521 	 * HPT mode and some in radix mode on the same core.
5522 	 */
5523 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5524 		unsigned int pvr = mfspr(SPRN_PVR);
5525 		if ((pvr >> 16) == PVR_POWER9 &&
5526 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5527 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5528 			no_mixing_hpt_and_radix = true;
5529 	}
5530 
5531 	return r;
5532 }
5533 
5534 static void kvmppc_book3s_exit_hv(void)
5535 {
5536 	kvmppc_free_host_rm_ops();
5537 	if (kvmppc_radix_possible())
5538 		kvmppc_radix_exit();
5539 	kvmppc_hv_ops = NULL;
5540 	kvmhv_nested_exit();
5541 }
5542 
5543 module_init(kvmppc_book3s_init_hv);
5544 module_exit(kvmppc_book3s_exit_hv);
5545 MODULE_LICENSE("GPL");
5546 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5547 MODULE_ALIAS("devname:kvm");
5548