xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 
77 #include "book3s.h"
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81 
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85 
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90 
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL	(~(u64)0)
93 
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95 
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102 
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106 
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109 	.set = param_set_int,
110 	.get = param_get_int,
111 };
112 
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115 
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119 
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122 
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125 
126 /*
127  * RWMR values for POWER8.  These control the rate at which PURR
128  * and SPURR count and should be set according to the number of
129  * online threads in the vcore being run.
130  */
131 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
132 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
133 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
134 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
135 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
136 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
137 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
138 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
139 
140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
141 	RWMR_RPA_P8_1THREAD,
142 	RWMR_RPA_P8_1THREAD,
143 	RWMR_RPA_P8_2THREAD,
144 	RWMR_RPA_P8_3THREAD,
145 	RWMR_RPA_P8_4THREAD,
146 	RWMR_RPA_P8_5THREAD,
147 	RWMR_RPA_P8_6THREAD,
148 	RWMR_RPA_P8_7THREAD,
149 	RWMR_RPA_P8_8THREAD,
150 };
151 
152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
153 		int *ip)
154 {
155 	int i = *ip;
156 	struct kvm_vcpu *vcpu;
157 
158 	while (++i < MAX_SMT_THREADS) {
159 		vcpu = READ_ONCE(vc->runnable_threads[i]);
160 		if (vcpu) {
161 			*ip = i;
162 			return vcpu;
163 		}
164 	}
165 	return NULL;
166 }
167 
168 /* Used to traverse the list of runnable threads for a given vcore */
169 #define for_each_runnable_thread(i, vcpu, vc) \
170 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
171 
172 static bool kvmppc_ipi_thread(int cpu)
173 {
174 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
175 
176 	/* On POWER9 we can use msgsnd to IPI any cpu */
177 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
178 		msg |= get_hard_smp_processor_id(cpu);
179 		smp_mb();
180 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
181 		return true;
182 	}
183 
184 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
185 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
186 		preempt_disable();
187 		if (cpu_first_thread_sibling(cpu) ==
188 		    cpu_first_thread_sibling(smp_processor_id())) {
189 			msg |= cpu_thread_in_core(cpu);
190 			smp_mb();
191 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192 			preempt_enable();
193 			return true;
194 		}
195 		preempt_enable();
196 	}
197 
198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199 	if (cpu >= 0 && cpu < nr_cpu_ids) {
200 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 			xics_wake_cpu(cpu);
202 			return true;
203 		}
204 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 		return true;
206 	}
207 #endif
208 
209 	return false;
210 }
211 
212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213 {
214 	int cpu;
215 	struct swait_queue_head *wqp;
216 
217 	wqp = kvm_arch_vcpu_wq(vcpu);
218 	if (swq_has_sleeper(wqp)) {
219 		swake_up_one(wqp);
220 		++vcpu->stat.halt_wakeup;
221 	}
222 
223 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
224 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225 		return;
226 
227 	/* CPU points to the first thread of the core */
228 	cpu = vcpu->cpu;
229 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
230 		smp_send_reschedule(cpu);
231 }
232 
233 /*
234  * We use the vcpu_load/put functions to measure stolen time.
235  * Stolen time is counted as time when either the vcpu is able to
236  * run as part of a virtual core, but the task running the vcore
237  * is preempted or sleeping, or when the vcpu needs something done
238  * in the kernel by the task running the vcpu, but that task is
239  * preempted or sleeping.  Those two things have to be counted
240  * separately, since one of the vcpu tasks will take on the job
241  * of running the core, and the other vcpu tasks in the vcore will
242  * sleep waiting for it to do that, but that sleep shouldn't count
243  * as stolen time.
244  *
245  * Hence we accumulate stolen time when the vcpu can run as part of
246  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
247  * needs its task to do other things in the kernel (for example,
248  * service a page fault) in busy_stolen.  We don't accumulate
249  * stolen time for a vcore when it is inactive, or for a vcpu
250  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
251  * a misnomer; it means that the vcpu task is not executing in
252  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
253  * the kernel.  We don't have any way of dividing up that time
254  * between time that the vcpu is genuinely stopped, time that
255  * the task is actively working on behalf of the vcpu, and time
256  * that the task is preempted, so we don't count any of it as
257  * stolen.
258  *
259  * Updates to busy_stolen are protected by arch.tbacct_lock;
260  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
261  * lock.  The stolen times are measured in units of timebase ticks.
262  * (Note that the != TB_NIL checks below are purely defensive;
263  * they should never fail.)
264  */
265 
266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
267 {
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&vc->stoltb_lock, flags);
271 	vc->preempt_tb = mftb();
272 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
273 }
274 
275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
276 {
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&vc->stoltb_lock, flags);
280 	if (vc->preempt_tb != TB_NIL) {
281 		vc->stolen_tb += mftb() - vc->preempt_tb;
282 		vc->preempt_tb = TB_NIL;
283 	}
284 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286 
287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288 {
289 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
290 	unsigned long flags;
291 
292 	/*
293 	 * We can test vc->runner without taking the vcore lock,
294 	 * because only this task ever sets vc->runner to this
295 	 * vcpu, and once it is set to this vcpu, only this task
296 	 * ever sets it to NULL.
297 	 */
298 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
299 		kvmppc_core_end_stolen(vc);
300 
301 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
303 	    vcpu->arch.busy_preempt != TB_NIL) {
304 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
305 		vcpu->arch.busy_preempt = TB_NIL;
306 	}
307 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 }
309 
310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311 {
312 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
313 	unsigned long flags;
314 
315 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 		kvmppc_core_start_stolen(vc);
317 
318 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
320 		vcpu->arch.busy_preempt = mftb();
321 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 }
323 
324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325 {
326 	/*
327 	 * Check for illegal transactional state bit combination
328 	 * and if we find it, force the TS field to a safe state.
329 	 */
330 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
331 		msr &= ~MSR_TS_MASK;
332 	vcpu->arch.shregs.msr = msr;
333 	kvmppc_end_cede(vcpu);
334 }
335 
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338 	vcpu->arch.pvr = pvr;
339 }
340 
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
343 
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
348 
349 	/* We can (emulate) our own architecture version and anything older */
350 	if (cpu_has_feature(CPU_FTR_ARCH_300))
351 		host_pcr_bit = PCR_ARCH_300;
352 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
353 		host_pcr_bit = PCR_ARCH_207;
354 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
355 		host_pcr_bit = PCR_ARCH_206;
356 	else
357 		host_pcr_bit = PCR_ARCH_205;
358 
359 	/* Determine lowest PCR bit needed to run guest in given PVR level */
360 	guest_pcr_bit = host_pcr_bit;
361 	if (arch_compat) {
362 		switch (arch_compat) {
363 		case PVR_ARCH_205:
364 			guest_pcr_bit = PCR_ARCH_205;
365 			break;
366 		case PVR_ARCH_206:
367 		case PVR_ARCH_206p:
368 			guest_pcr_bit = PCR_ARCH_206;
369 			break;
370 		case PVR_ARCH_207:
371 			guest_pcr_bit = PCR_ARCH_207;
372 			break;
373 		case PVR_ARCH_300:
374 			guest_pcr_bit = PCR_ARCH_300;
375 			break;
376 		default:
377 			return -EINVAL;
378 		}
379 	}
380 
381 	/* Check requested PCR bits don't exceed our capabilities */
382 	if (guest_pcr_bit > host_pcr_bit)
383 		return -EINVAL;
384 
385 	spin_lock(&vc->lock);
386 	vc->arch_compat = arch_compat;
387 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
388 	vc->pcr = host_pcr_bit - guest_pcr_bit;
389 	spin_unlock(&vc->lock);
390 
391 	return 0;
392 }
393 
394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 {
396 	int r;
397 
398 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
399 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 	for (r = 0; r < 16; ++r)
402 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
403 		       r, kvmppc_get_gpr(vcpu, r),
404 		       r+16, kvmppc_get_gpr(vcpu, r+16));
405 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
406 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
408 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
409 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
410 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
411 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
412 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
414 	       vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
416 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
417 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
418 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
419 	for (r = 0; r < vcpu->arch.slb_max; ++r)
420 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
421 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
422 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 	       vcpu->arch.last_inst);
425 }
426 
427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428 {
429 	struct kvm_vcpu *ret;
430 
431 	mutex_lock(&kvm->lock);
432 	ret = kvm_get_vcpu_by_id(kvm, id);
433 	mutex_unlock(&kvm->lock);
434 	return ret;
435 }
436 
437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440 	vpa->yield_count = cpu_to_be32(1);
441 }
442 
443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444 		   unsigned long addr, unsigned long len)
445 {
446 	/* check address is cacheline aligned */
447 	if (addr & (L1_CACHE_BYTES - 1))
448 		return -EINVAL;
449 	spin_lock(&vcpu->arch.vpa_update_lock);
450 	if (v->next_gpa != addr || v->len != len) {
451 		v->next_gpa = addr;
452 		v->len = addr ? len : 0;
453 		v->update_pending = 1;
454 	}
455 	spin_unlock(&vcpu->arch.vpa_update_lock);
456 	return 0;
457 }
458 
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461 	u32 dummy;
462 	union {
463 		__be16 hword;
464 		__be32 word;
465 	} length;
466 };
467 
468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470 	if (vpap->update_pending)
471 		return vpap->next_gpa != 0;
472 	return vpap->pinned_addr != NULL;
473 }
474 
475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476 				       unsigned long flags,
477 				       unsigned long vcpuid, unsigned long vpa)
478 {
479 	struct kvm *kvm = vcpu->kvm;
480 	unsigned long len, nb;
481 	void *va;
482 	struct kvm_vcpu *tvcpu;
483 	int err;
484 	int subfunc;
485 	struct kvmppc_vpa *vpap;
486 
487 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488 	if (!tvcpu)
489 		return H_PARAMETER;
490 
491 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493 	    subfunc == H_VPA_REG_SLB) {
494 		/* Registering new area - address must be cache-line aligned */
495 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496 			return H_PARAMETER;
497 
498 		/* convert logical addr to kernel addr and read length */
499 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500 		if (va == NULL)
501 			return H_PARAMETER;
502 		if (subfunc == H_VPA_REG_VPA)
503 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504 		else
505 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
507 
508 		/* Check length */
509 		if (len > nb || len < sizeof(struct reg_vpa))
510 			return H_PARAMETER;
511 	} else {
512 		vpa = 0;
513 		len = 0;
514 	}
515 
516 	err = H_PARAMETER;
517 	vpap = NULL;
518 	spin_lock(&tvcpu->arch.vpa_update_lock);
519 
520 	switch (subfunc) {
521 	case H_VPA_REG_VPA:		/* register VPA */
522 		/*
523 		 * The size of our lppaca is 1kB because of the way we align
524 		 * it for the guest to avoid crossing a 4kB boundary. We only
525 		 * use 640 bytes of the structure though, so we should accept
526 		 * clients that set a size of 640.
527 		 */
528 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529 		if (len < sizeof(struct lppaca))
530 			break;
531 		vpap = &tvcpu->arch.vpa;
532 		err = 0;
533 		break;
534 
535 	case H_VPA_REG_DTL:		/* register DTL */
536 		if (len < sizeof(struct dtl_entry))
537 			break;
538 		len -= len % sizeof(struct dtl_entry);
539 
540 		/* Check that they have previously registered a VPA */
541 		err = H_RESOURCE;
542 		if (!vpa_is_registered(&tvcpu->arch.vpa))
543 			break;
544 
545 		vpap = &tvcpu->arch.dtl;
546 		err = 0;
547 		break;
548 
549 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
550 		/* Check that they have previously registered a VPA */
551 		err = H_RESOURCE;
552 		if (!vpa_is_registered(&tvcpu->arch.vpa))
553 			break;
554 
555 		vpap = &tvcpu->arch.slb_shadow;
556 		err = 0;
557 		break;
558 
559 	case H_VPA_DEREG_VPA:		/* deregister VPA */
560 		/* Check they don't still have a DTL or SLB buf registered */
561 		err = H_RESOURCE;
562 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
563 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
564 			break;
565 
566 		vpap = &tvcpu->arch.vpa;
567 		err = 0;
568 		break;
569 
570 	case H_VPA_DEREG_DTL:		/* deregister DTL */
571 		vpap = &tvcpu->arch.dtl;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
576 		vpap = &tvcpu->arch.slb_shadow;
577 		err = 0;
578 		break;
579 	}
580 
581 	if (vpap) {
582 		vpap->next_gpa = vpa;
583 		vpap->len = len;
584 		vpap->update_pending = 1;
585 	}
586 
587 	spin_unlock(&tvcpu->arch.vpa_update_lock);
588 
589 	return err;
590 }
591 
592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594 	struct kvm *kvm = vcpu->kvm;
595 	void *va;
596 	unsigned long nb;
597 	unsigned long gpa;
598 
599 	/*
600 	 * We need to pin the page pointed to by vpap->next_gpa,
601 	 * but we can't call kvmppc_pin_guest_page under the lock
602 	 * as it does get_user_pages() and down_read().  So we
603 	 * have to drop the lock, pin the page, then get the lock
604 	 * again and check that a new area didn't get registered
605 	 * in the meantime.
606 	 */
607 	for (;;) {
608 		gpa = vpap->next_gpa;
609 		spin_unlock(&vcpu->arch.vpa_update_lock);
610 		va = NULL;
611 		nb = 0;
612 		if (gpa)
613 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614 		spin_lock(&vcpu->arch.vpa_update_lock);
615 		if (gpa == vpap->next_gpa)
616 			break;
617 		/* sigh... unpin that one and try again */
618 		if (va)
619 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
620 	}
621 
622 	vpap->update_pending = 0;
623 	if (va && nb < vpap->len) {
624 		/*
625 		 * If it's now too short, it must be that userspace
626 		 * has changed the mappings underlying guest memory,
627 		 * so unregister the region.
628 		 */
629 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
630 		va = NULL;
631 	}
632 	if (vpap->pinned_addr)
633 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634 					vpap->dirty);
635 	vpap->gpa = gpa;
636 	vpap->pinned_addr = va;
637 	vpap->dirty = false;
638 	if (va)
639 		vpap->pinned_end = va + vpap->len;
640 }
641 
642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644 	if (!(vcpu->arch.vpa.update_pending ||
645 	      vcpu->arch.slb_shadow.update_pending ||
646 	      vcpu->arch.dtl.update_pending))
647 		return;
648 
649 	spin_lock(&vcpu->arch.vpa_update_lock);
650 	if (vcpu->arch.vpa.update_pending) {
651 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652 		if (vcpu->arch.vpa.pinned_addr)
653 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654 	}
655 	if (vcpu->arch.dtl.update_pending) {
656 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658 		vcpu->arch.dtl_index = 0;
659 	}
660 	if (vcpu->arch.slb_shadow.update_pending)
661 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662 	spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664 
665 /*
666  * Return the accumulated stolen time for the vcore up until `now'.
667  * The caller should hold the vcore lock.
668  */
669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671 	u64 p;
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&vc->stoltb_lock, flags);
675 	p = vc->stolen_tb;
676 	if (vc->vcore_state != VCORE_INACTIVE &&
677 	    vc->preempt_tb != TB_NIL)
678 		p += now - vc->preempt_tb;
679 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680 	return p;
681 }
682 
683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684 				    struct kvmppc_vcore *vc)
685 {
686 	struct dtl_entry *dt;
687 	struct lppaca *vpa;
688 	unsigned long stolen;
689 	unsigned long core_stolen;
690 	u64 now;
691 	unsigned long flags;
692 
693 	dt = vcpu->arch.dtl_ptr;
694 	vpa = vcpu->arch.vpa.pinned_addr;
695 	now = mftb();
696 	core_stolen = vcore_stolen_time(vc, now);
697 	stolen = core_stolen - vcpu->arch.stolen_logged;
698 	vcpu->arch.stolen_logged = core_stolen;
699 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700 	stolen += vcpu->arch.busy_stolen;
701 	vcpu->arch.busy_stolen = 0;
702 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703 	if (!dt || !vpa)
704 		return;
705 	memset(dt, 0, sizeof(struct dtl_entry));
706 	dt->dispatch_reason = 7;
707 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
709 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712 	++dt;
713 	if (dt == vcpu->arch.dtl.pinned_end)
714 		dt = vcpu->arch.dtl.pinned_addr;
715 	vcpu->arch.dtl_ptr = dt;
716 	/* order writing *dt vs. writing vpa->dtl_idx */
717 	smp_wmb();
718 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719 	vcpu->arch.dtl.dirty = true;
720 }
721 
722 /* See if there is a doorbell interrupt pending for a vcpu */
723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725 	int thr;
726 	struct kvmppc_vcore *vc;
727 
728 	if (vcpu->arch.doorbell_request)
729 		return true;
730 	/*
731 	 * Ensure that the read of vcore->dpdes comes after the read
732 	 * of vcpu->doorbell_request.  This barrier matches the
733 	 * lwsync in book3s_hv_rmhandlers.S just before the
734 	 * fast_guest_return label.
735 	 */
736 	smp_rmb();
737 	vc = vcpu->arch.vcore;
738 	thr = vcpu->vcpu_id - vc->first_vcpuid;
739 	return !!(vc->dpdes & (1 << thr));
740 }
741 
742 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
743 {
744 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
745 		return true;
746 	if ((!vcpu->arch.vcore->arch_compat) &&
747 	    cpu_has_feature(CPU_FTR_ARCH_207S))
748 		return true;
749 	return false;
750 }
751 
752 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
753 			     unsigned long resource, unsigned long value1,
754 			     unsigned long value2)
755 {
756 	switch (resource) {
757 	case H_SET_MODE_RESOURCE_SET_CIABR:
758 		if (!kvmppc_power8_compatible(vcpu))
759 			return H_P2;
760 		if (value2)
761 			return H_P4;
762 		if (mflags)
763 			return H_UNSUPPORTED_FLAG_START;
764 		/* Guests can't breakpoint the hypervisor */
765 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
766 			return H_P3;
767 		vcpu->arch.ciabr  = value1;
768 		return H_SUCCESS;
769 	case H_SET_MODE_RESOURCE_SET_DAWR:
770 		if (!kvmppc_power8_compatible(vcpu))
771 			return H_P2;
772 		if (!ppc_breakpoint_available())
773 			return H_P2;
774 		if (mflags)
775 			return H_UNSUPPORTED_FLAG_START;
776 		if (value2 & DABRX_HYP)
777 			return H_P4;
778 		vcpu->arch.dawr  = value1;
779 		vcpu->arch.dawrx = value2;
780 		return H_SUCCESS;
781 	default:
782 		return H_TOO_HARD;
783 	}
784 }
785 
786 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
787 {
788 	struct kvmppc_vcore *vcore = target->arch.vcore;
789 
790 	/*
791 	 * We expect to have been called by the real mode handler
792 	 * (kvmppc_rm_h_confer()) which would have directly returned
793 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
794 	 * have useful work to do and should not confer) so we don't
795 	 * recheck that here.
796 	 */
797 
798 	spin_lock(&vcore->lock);
799 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
800 	    vcore->vcore_state != VCORE_INACTIVE &&
801 	    vcore->runner)
802 		target = vcore->runner;
803 	spin_unlock(&vcore->lock);
804 
805 	return kvm_vcpu_yield_to(target);
806 }
807 
808 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
809 {
810 	int yield_count = 0;
811 	struct lppaca *lppaca;
812 
813 	spin_lock(&vcpu->arch.vpa_update_lock);
814 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
815 	if (lppaca)
816 		yield_count = be32_to_cpu(lppaca->yield_count);
817 	spin_unlock(&vcpu->arch.vpa_update_lock);
818 	return yield_count;
819 }
820 
821 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
822 {
823 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
824 	unsigned long target, ret = H_SUCCESS;
825 	int yield_count;
826 	struct kvm_vcpu *tvcpu;
827 	int idx, rc;
828 
829 	if (req <= MAX_HCALL_OPCODE &&
830 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
831 		return RESUME_HOST;
832 
833 	switch (req) {
834 	case H_CEDE:
835 		break;
836 	case H_PROD:
837 		target = kvmppc_get_gpr(vcpu, 4);
838 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
839 		if (!tvcpu) {
840 			ret = H_PARAMETER;
841 			break;
842 		}
843 		tvcpu->arch.prodded = 1;
844 		smp_mb();
845 		if (tvcpu->arch.ceded)
846 			kvmppc_fast_vcpu_kick_hv(tvcpu);
847 		break;
848 	case H_CONFER:
849 		target = kvmppc_get_gpr(vcpu, 4);
850 		if (target == -1)
851 			break;
852 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
853 		if (!tvcpu) {
854 			ret = H_PARAMETER;
855 			break;
856 		}
857 		yield_count = kvmppc_get_gpr(vcpu, 5);
858 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
859 			break;
860 		kvm_arch_vcpu_yield_to(tvcpu);
861 		break;
862 	case H_REGISTER_VPA:
863 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
864 					kvmppc_get_gpr(vcpu, 5),
865 					kvmppc_get_gpr(vcpu, 6));
866 		break;
867 	case H_RTAS:
868 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
869 			return RESUME_HOST;
870 
871 		idx = srcu_read_lock(&vcpu->kvm->srcu);
872 		rc = kvmppc_rtas_hcall(vcpu);
873 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
874 
875 		if (rc == -ENOENT)
876 			return RESUME_HOST;
877 		else if (rc == 0)
878 			break;
879 
880 		/* Send the error out to userspace via KVM_RUN */
881 		return rc;
882 	case H_LOGICAL_CI_LOAD:
883 		ret = kvmppc_h_logical_ci_load(vcpu);
884 		if (ret == H_TOO_HARD)
885 			return RESUME_HOST;
886 		break;
887 	case H_LOGICAL_CI_STORE:
888 		ret = kvmppc_h_logical_ci_store(vcpu);
889 		if (ret == H_TOO_HARD)
890 			return RESUME_HOST;
891 		break;
892 	case H_SET_MODE:
893 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
894 					kvmppc_get_gpr(vcpu, 5),
895 					kvmppc_get_gpr(vcpu, 6),
896 					kvmppc_get_gpr(vcpu, 7));
897 		if (ret == H_TOO_HARD)
898 			return RESUME_HOST;
899 		break;
900 	case H_XIRR:
901 	case H_CPPR:
902 	case H_EOI:
903 	case H_IPI:
904 	case H_IPOLL:
905 	case H_XIRR_X:
906 		if (kvmppc_xics_enabled(vcpu)) {
907 			if (xive_enabled()) {
908 				ret = H_NOT_AVAILABLE;
909 				return RESUME_GUEST;
910 			}
911 			ret = kvmppc_xics_hcall(vcpu, req);
912 			break;
913 		}
914 		return RESUME_HOST;
915 	case H_PUT_TCE:
916 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
917 						kvmppc_get_gpr(vcpu, 5),
918 						kvmppc_get_gpr(vcpu, 6));
919 		if (ret == H_TOO_HARD)
920 			return RESUME_HOST;
921 		break;
922 	case H_PUT_TCE_INDIRECT:
923 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
924 						kvmppc_get_gpr(vcpu, 5),
925 						kvmppc_get_gpr(vcpu, 6),
926 						kvmppc_get_gpr(vcpu, 7));
927 		if (ret == H_TOO_HARD)
928 			return RESUME_HOST;
929 		break;
930 	case H_STUFF_TCE:
931 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
932 						kvmppc_get_gpr(vcpu, 5),
933 						kvmppc_get_gpr(vcpu, 6),
934 						kvmppc_get_gpr(vcpu, 7));
935 		if (ret == H_TOO_HARD)
936 			return RESUME_HOST;
937 		break;
938 	default:
939 		return RESUME_HOST;
940 	}
941 	kvmppc_set_gpr(vcpu, 3, ret);
942 	vcpu->arch.hcall_needed = 0;
943 	return RESUME_GUEST;
944 }
945 
946 static int kvmppc_hcall_impl_hv(unsigned long cmd)
947 {
948 	switch (cmd) {
949 	case H_CEDE:
950 	case H_PROD:
951 	case H_CONFER:
952 	case H_REGISTER_VPA:
953 	case H_SET_MODE:
954 	case H_LOGICAL_CI_LOAD:
955 	case H_LOGICAL_CI_STORE:
956 #ifdef CONFIG_KVM_XICS
957 	case H_XIRR:
958 	case H_CPPR:
959 	case H_EOI:
960 	case H_IPI:
961 	case H_IPOLL:
962 	case H_XIRR_X:
963 #endif
964 		return 1;
965 	}
966 
967 	/* See if it's in the real-mode table */
968 	return kvmppc_hcall_impl_hv_realmode(cmd);
969 }
970 
971 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
972 					struct kvm_vcpu *vcpu)
973 {
974 	u32 last_inst;
975 
976 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
977 					EMULATE_DONE) {
978 		/*
979 		 * Fetch failed, so return to guest and
980 		 * try executing it again.
981 		 */
982 		return RESUME_GUEST;
983 	}
984 
985 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
986 		run->exit_reason = KVM_EXIT_DEBUG;
987 		run->debug.arch.address = kvmppc_get_pc(vcpu);
988 		return RESUME_HOST;
989 	} else {
990 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
991 		return RESUME_GUEST;
992 	}
993 }
994 
995 static void do_nothing(void *x)
996 {
997 }
998 
999 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1000 {
1001 	int thr, cpu, pcpu, nthreads;
1002 	struct kvm_vcpu *v;
1003 	unsigned long dpdes;
1004 
1005 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1006 	dpdes = 0;
1007 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1008 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1009 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1010 		if (!v)
1011 			continue;
1012 		/*
1013 		 * If the vcpu is currently running on a physical cpu thread,
1014 		 * interrupt it in order to pull it out of the guest briefly,
1015 		 * which will update its vcore->dpdes value.
1016 		 */
1017 		pcpu = READ_ONCE(v->cpu);
1018 		if (pcpu >= 0)
1019 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1020 		if (kvmppc_doorbell_pending(v))
1021 			dpdes |= 1 << thr;
1022 	}
1023 	return dpdes;
1024 }
1025 
1026 /*
1027  * On POWER9, emulate doorbell-related instructions in order to
1028  * give the guest the illusion of running on a multi-threaded core.
1029  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1030  * and mfspr DPDES.
1031  */
1032 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1033 {
1034 	u32 inst, rb, thr;
1035 	unsigned long arg;
1036 	struct kvm *kvm = vcpu->kvm;
1037 	struct kvm_vcpu *tvcpu;
1038 
1039 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1040 		return RESUME_GUEST;
1041 	if (get_op(inst) != 31)
1042 		return EMULATE_FAIL;
1043 	rb = get_rb(inst);
1044 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1045 	switch (get_xop(inst)) {
1046 	case OP_31_XOP_MSGSNDP:
1047 		arg = kvmppc_get_gpr(vcpu, rb);
1048 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1049 			break;
1050 		arg &= 0x3f;
1051 		if (arg >= kvm->arch.emul_smt_mode)
1052 			break;
1053 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1054 		if (!tvcpu)
1055 			break;
1056 		if (!tvcpu->arch.doorbell_request) {
1057 			tvcpu->arch.doorbell_request = 1;
1058 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1059 		}
1060 		break;
1061 	case OP_31_XOP_MSGCLRP:
1062 		arg = kvmppc_get_gpr(vcpu, rb);
1063 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1064 			break;
1065 		vcpu->arch.vcore->dpdes = 0;
1066 		vcpu->arch.doorbell_request = 0;
1067 		break;
1068 	case OP_31_XOP_MFSPR:
1069 		switch (get_sprn(inst)) {
1070 		case SPRN_TIR:
1071 			arg = thr;
1072 			break;
1073 		case SPRN_DPDES:
1074 			arg = kvmppc_read_dpdes(vcpu);
1075 			break;
1076 		default:
1077 			return EMULATE_FAIL;
1078 		}
1079 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1080 		break;
1081 	default:
1082 		return EMULATE_FAIL;
1083 	}
1084 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1085 	return RESUME_GUEST;
1086 }
1087 
1088 /* Called with vcpu->arch.vcore->lock held */
1089 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1090 				 struct task_struct *tsk)
1091 {
1092 	int r = RESUME_HOST;
1093 
1094 	vcpu->stat.sum_exits++;
1095 
1096 	/*
1097 	 * This can happen if an interrupt occurs in the last stages
1098 	 * of guest entry or the first stages of guest exit (i.e. after
1099 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1100 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1101 	 * That can happen due to a bug, or due to a machine check
1102 	 * occurring at just the wrong time.
1103 	 */
1104 	if (vcpu->arch.shregs.msr & MSR_HV) {
1105 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1106 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1107 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1108 			vcpu->arch.shregs.msr);
1109 		kvmppc_dump_regs(vcpu);
1110 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1111 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1112 		return RESUME_HOST;
1113 	}
1114 	run->exit_reason = KVM_EXIT_UNKNOWN;
1115 	run->ready_for_interrupt_injection = 1;
1116 	switch (vcpu->arch.trap) {
1117 	/* We're good on these - the host merely wanted to get our attention */
1118 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119 		vcpu->stat.dec_exits++;
1120 		r = RESUME_GUEST;
1121 		break;
1122 	case BOOK3S_INTERRUPT_EXTERNAL:
1123 	case BOOK3S_INTERRUPT_H_DOORBELL:
1124 	case BOOK3S_INTERRUPT_H_VIRT:
1125 		vcpu->stat.ext_intr_exits++;
1126 		r = RESUME_GUEST;
1127 		break;
1128 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1129 	case BOOK3S_INTERRUPT_HMI:
1130 	case BOOK3S_INTERRUPT_PERFMON:
1131 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1132 		r = RESUME_GUEST;
1133 		break;
1134 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1135 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1136 		run->exit_reason = KVM_EXIT_NMI;
1137 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1138 		/* Clear out the old NMI status from run->flags */
1139 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1140 		/* Now set the NMI status */
1141 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1142 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1143 		else
1144 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1145 
1146 		r = RESUME_HOST;
1147 		/* Print the MCE event to host console. */
1148 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1149 		break;
1150 	case BOOK3S_INTERRUPT_PROGRAM:
1151 	{
1152 		ulong flags;
1153 		/*
1154 		 * Normally program interrupts are delivered directly
1155 		 * to the guest by the hardware, but we can get here
1156 		 * as a result of a hypervisor emulation interrupt
1157 		 * (e40) getting turned into a 700 by BML RTAS.
1158 		 */
1159 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1160 		kvmppc_core_queue_program(vcpu, flags);
1161 		r = RESUME_GUEST;
1162 		break;
1163 	}
1164 	case BOOK3S_INTERRUPT_SYSCALL:
1165 	{
1166 		/* hcall - punt to userspace */
1167 		int i;
1168 
1169 		/* hypercall with MSR_PR has already been handled in rmode,
1170 		 * and never reaches here.
1171 		 */
1172 
1173 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1174 		for (i = 0; i < 9; ++i)
1175 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1176 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1177 		vcpu->arch.hcall_needed = 1;
1178 		r = RESUME_HOST;
1179 		break;
1180 	}
1181 	/*
1182 	 * We get these next two if the guest accesses a page which it thinks
1183 	 * it has mapped but which is not actually present, either because
1184 	 * it is for an emulated I/O device or because the corresonding
1185 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1186 	 * have been handled already.
1187 	 */
1188 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1189 		r = RESUME_PAGE_FAULT;
1190 		break;
1191 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1192 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1193 		vcpu->arch.fault_dsisr = 0;
1194 		r = RESUME_PAGE_FAULT;
1195 		break;
1196 	/*
1197 	 * This occurs if the guest executes an illegal instruction.
1198 	 * If the guest debug is disabled, generate a program interrupt
1199 	 * to the guest. If guest debug is enabled, we need to check
1200 	 * whether the instruction is a software breakpoint instruction.
1201 	 * Accordingly return to Guest or Host.
1202 	 */
1203 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1204 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1205 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1206 				swab32(vcpu->arch.emul_inst) :
1207 				vcpu->arch.emul_inst;
1208 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1209 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1210 			spin_unlock(&vcpu->arch.vcore->lock);
1211 			r = kvmppc_emulate_debug_inst(run, vcpu);
1212 			spin_lock(&vcpu->arch.vcore->lock);
1213 		} else {
1214 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1215 			r = RESUME_GUEST;
1216 		}
1217 		break;
1218 	/*
1219 	 * This occurs if the guest (kernel or userspace), does something that
1220 	 * is prohibited by HFSCR.
1221 	 * On POWER9, this could be a doorbell instruction that we need
1222 	 * to emulate.
1223 	 * Otherwise, we just generate a program interrupt to the guest.
1224 	 */
1225 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1226 		r = EMULATE_FAIL;
1227 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1228 		    cpu_has_feature(CPU_FTR_ARCH_300)) {
1229 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1230 			spin_unlock(&vcpu->arch.vcore->lock);
1231 			r = kvmppc_emulate_doorbell_instr(vcpu);
1232 			spin_lock(&vcpu->arch.vcore->lock);
1233 		}
1234 		if (r == EMULATE_FAIL) {
1235 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1236 			r = RESUME_GUEST;
1237 		}
1238 		break;
1239 
1240 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1242 		/*
1243 		 * This occurs for various TM-related instructions that
1244 		 * we need to emulate on POWER9 DD2.2.  We have already
1245 		 * handled the cases where the guest was in real-suspend
1246 		 * mode and was transitioning to transactional state.
1247 		 */
1248 		r = kvmhv_p9_tm_emulation(vcpu);
1249 		break;
1250 #endif
1251 
1252 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1253 		r = RESUME_PASSTHROUGH;
1254 		break;
1255 	default:
1256 		kvmppc_dump_regs(vcpu);
1257 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1258 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1259 			vcpu->arch.shregs.msr);
1260 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1261 		r = RESUME_HOST;
1262 		break;
1263 	}
1264 
1265 	return r;
1266 }
1267 
1268 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1269 					    struct kvm_sregs *sregs)
1270 {
1271 	int i;
1272 
1273 	memset(sregs, 0, sizeof(struct kvm_sregs));
1274 	sregs->pvr = vcpu->arch.pvr;
1275 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1276 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1277 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1284 					    struct kvm_sregs *sregs)
1285 {
1286 	int i, j;
1287 
1288 	/* Only accept the same PVR as the host's, since we can't spoof it */
1289 	if (sregs->pvr != vcpu->arch.pvr)
1290 		return -EINVAL;
1291 
1292 	j = 0;
1293 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1294 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1295 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1296 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1297 			++j;
1298 		}
1299 	}
1300 	vcpu->arch.slb_max = j;
1301 
1302 	return 0;
1303 }
1304 
1305 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1306 		bool preserve_top32)
1307 {
1308 	struct kvm *kvm = vcpu->kvm;
1309 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1310 	u64 mask;
1311 
1312 	mutex_lock(&kvm->lock);
1313 	spin_lock(&vc->lock);
1314 	/*
1315 	 * If ILE (interrupt little-endian) has changed, update the
1316 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1317 	 */
1318 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1319 		struct kvm_vcpu *vcpu;
1320 		int i;
1321 
1322 		kvm_for_each_vcpu(i, vcpu, kvm) {
1323 			if (vcpu->arch.vcore != vc)
1324 				continue;
1325 			if (new_lpcr & LPCR_ILE)
1326 				vcpu->arch.intr_msr |= MSR_LE;
1327 			else
1328 				vcpu->arch.intr_msr &= ~MSR_LE;
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * Userspace can only modify DPFD (default prefetch depth),
1334 	 * ILE (interrupt little-endian) and TC (translation control).
1335 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1336 	 */
1337 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1338 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1339 		mask |= LPCR_AIL;
1340 	/*
1341 	 * On POWER9, allow userspace to enable large decrementer for the
1342 	 * guest, whether or not the host has it enabled.
1343 	 */
1344 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1345 		mask |= LPCR_LD;
1346 
1347 	/* Broken 32-bit version of LPCR must not clear top bits */
1348 	if (preserve_top32)
1349 		mask &= 0xFFFFFFFF;
1350 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1351 	spin_unlock(&vc->lock);
1352 	mutex_unlock(&kvm->lock);
1353 }
1354 
1355 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1356 				 union kvmppc_one_reg *val)
1357 {
1358 	int r = 0;
1359 	long int i;
1360 
1361 	switch (id) {
1362 	case KVM_REG_PPC_DEBUG_INST:
1363 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1364 		break;
1365 	case KVM_REG_PPC_HIOR:
1366 		*val = get_reg_val(id, 0);
1367 		break;
1368 	case KVM_REG_PPC_DABR:
1369 		*val = get_reg_val(id, vcpu->arch.dabr);
1370 		break;
1371 	case KVM_REG_PPC_DABRX:
1372 		*val = get_reg_val(id, vcpu->arch.dabrx);
1373 		break;
1374 	case KVM_REG_PPC_DSCR:
1375 		*val = get_reg_val(id, vcpu->arch.dscr);
1376 		break;
1377 	case KVM_REG_PPC_PURR:
1378 		*val = get_reg_val(id, vcpu->arch.purr);
1379 		break;
1380 	case KVM_REG_PPC_SPURR:
1381 		*val = get_reg_val(id, vcpu->arch.spurr);
1382 		break;
1383 	case KVM_REG_PPC_AMR:
1384 		*val = get_reg_val(id, vcpu->arch.amr);
1385 		break;
1386 	case KVM_REG_PPC_UAMOR:
1387 		*val = get_reg_val(id, vcpu->arch.uamor);
1388 		break;
1389 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1390 		i = id - KVM_REG_PPC_MMCR0;
1391 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1392 		break;
1393 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1394 		i = id - KVM_REG_PPC_PMC1;
1395 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1396 		break;
1397 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1398 		i = id - KVM_REG_PPC_SPMC1;
1399 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1400 		break;
1401 	case KVM_REG_PPC_SIAR:
1402 		*val = get_reg_val(id, vcpu->arch.siar);
1403 		break;
1404 	case KVM_REG_PPC_SDAR:
1405 		*val = get_reg_val(id, vcpu->arch.sdar);
1406 		break;
1407 	case KVM_REG_PPC_SIER:
1408 		*val = get_reg_val(id, vcpu->arch.sier);
1409 		break;
1410 	case KVM_REG_PPC_IAMR:
1411 		*val = get_reg_val(id, vcpu->arch.iamr);
1412 		break;
1413 	case KVM_REG_PPC_PSPB:
1414 		*val = get_reg_val(id, vcpu->arch.pspb);
1415 		break;
1416 	case KVM_REG_PPC_DPDES:
1417 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1418 		break;
1419 	case KVM_REG_PPC_VTB:
1420 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1421 		break;
1422 	case KVM_REG_PPC_DAWR:
1423 		*val = get_reg_val(id, vcpu->arch.dawr);
1424 		break;
1425 	case KVM_REG_PPC_DAWRX:
1426 		*val = get_reg_val(id, vcpu->arch.dawrx);
1427 		break;
1428 	case KVM_REG_PPC_CIABR:
1429 		*val = get_reg_val(id, vcpu->arch.ciabr);
1430 		break;
1431 	case KVM_REG_PPC_CSIGR:
1432 		*val = get_reg_val(id, vcpu->arch.csigr);
1433 		break;
1434 	case KVM_REG_PPC_TACR:
1435 		*val = get_reg_val(id, vcpu->arch.tacr);
1436 		break;
1437 	case KVM_REG_PPC_TCSCR:
1438 		*val = get_reg_val(id, vcpu->arch.tcscr);
1439 		break;
1440 	case KVM_REG_PPC_PID:
1441 		*val = get_reg_val(id, vcpu->arch.pid);
1442 		break;
1443 	case KVM_REG_PPC_ACOP:
1444 		*val = get_reg_val(id, vcpu->arch.acop);
1445 		break;
1446 	case KVM_REG_PPC_WORT:
1447 		*val = get_reg_val(id, vcpu->arch.wort);
1448 		break;
1449 	case KVM_REG_PPC_TIDR:
1450 		*val = get_reg_val(id, vcpu->arch.tid);
1451 		break;
1452 	case KVM_REG_PPC_PSSCR:
1453 		*val = get_reg_val(id, vcpu->arch.psscr);
1454 		break;
1455 	case KVM_REG_PPC_VPA_ADDR:
1456 		spin_lock(&vcpu->arch.vpa_update_lock);
1457 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1458 		spin_unlock(&vcpu->arch.vpa_update_lock);
1459 		break;
1460 	case KVM_REG_PPC_VPA_SLB:
1461 		spin_lock(&vcpu->arch.vpa_update_lock);
1462 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1463 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1464 		spin_unlock(&vcpu->arch.vpa_update_lock);
1465 		break;
1466 	case KVM_REG_PPC_VPA_DTL:
1467 		spin_lock(&vcpu->arch.vpa_update_lock);
1468 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1469 		val->vpaval.length = vcpu->arch.dtl.len;
1470 		spin_unlock(&vcpu->arch.vpa_update_lock);
1471 		break;
1472 	case KVM_REG_PPC_TB_OFFSET:
1473 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1474 		break;
1475 	case KVM_REG_PPC_LPCR:
1476 	case KVM_REG_PPC_LPCR_64:
1477 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1478 		break;
1479 	case KVM_REG_PPC_PPR:
1480 		*val = get_reg_val(id, vcpu->arch.ppr);
1481 		break;
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 	case KVM_REG_PPC_TFHAR:
1484 		*val = get_reg_val(id, vcpu->arch.tfhar);
1485 		break;
1486 	case KVM_REG_PPC_TFIAR:
1487 		*val = get_reg_val(id, vcpu->arch.tfiar);
1488 		break;
1489 	case KVM_REG_PPC_TEXASR:
1490 		*val = get_reg_val(id, vcpu->arch.texasr);
1491 		break;
1492 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1493 		i = id - KVM_REG_PPC_TM_GPR0;
1494 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1495 		break;
1496 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1497 	{
1498 		int j;
1499 		i = id - KVM_REG_PPC_TM_VSR0;
1500 		if (i < 32)
1501 			for (j = 0; j < TS_FPRWIDTH; j++)
1502 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1503 		else {
1504 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1505 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1506 			else
1507 				r = -ENXIO;
1508 		}
1509 		break;
1510 	}
1511 	case KVM_REG_PPC_TM_CR:
1512 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1513 		break;
1514 	case KVM_REG_PPC_TM_XER:
1515 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1516 		break;
1517 	case KVM_REG_PPC_TM_LR:
1518 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1519 		break;
1520 	case KVM_REG_PPC_TM_CTR:
1521 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1522 		break;
1523 	case KVM_REG_PPC_TM_FPSCR:
1524 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1525 		break;
1526 	case KVM_REG_PPC_TM_AMR:
1527 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1528 		break;
1529 	case KVM_REG_PPC_TM_PPR:
1530 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1531 		break;
1532 	case KVM_REG_PPC_TM_VRSAVE:
1533 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1534 		break;
1535 	case KVM_REG_PPC_TM_VSCR:
1536 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1537 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1538 		else
1539 			r = -ENXIO;
1540 		break;
1541 	case KVM_REG_PPC_TM_DSCR:
1542 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1543 		break;
1544 	case KVM_REG_PPC_TM_TAR:
1545 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1546 		break;
1547 #endif
1548 	case KVM_REG_PPC_ARCH_COMPAT:
1549 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1550 		break;
1551 	case KVM_REG_PPC_DEC_EXPIRY:
1552 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1553 				   vcpu->arch.vcore->tb_offset);
1554 		break;
1555 	case KVM_REG_PPC_ONLINE:
1556 		*val = get_reg_val(id, vcpu->arch.online);
1557 		break;
1558 	default:
1559 		r = -EINVAL;
1560 		break;
1561 	}
1562 
1563 	return r;
1564 }
1565 
1566 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1567 				 union kvmppc_one_reg *val)
1568 {
1569 	int r = 0;
1570 	long int i;
1571 	unsigned long addr, len;
1572 
1573 	switch (id) {
1574 	case KVM_REG_PPC_HIOR:
1575 		/* Only allow this to be set to zero */
1576 		if (set_reg_val(id, *val))
1577 			r = -EINVAL;
1578 		break;
1579 	case KVM_REG_PPC_DABR:
1580 		vcpu->arch.dabr = set_reg_val(id, *val);
1581 		break;
1582 	case KVM_REG_PPC_DABRX:
1583 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1584 		break;
1585 	case KVM_REG_PPC_DSCR:
1586 		vcpu->arch.dscr = set_reg_val(id, *val);
1587 		break;
1588 	case KVM_REG_PPC_PURR:
1589 		vcpu->arch.purr = set_reg_val(id, *val);
1590 		break;
1591 	case KVM_REG_PPC_SPURR:
1592 		vcpu->arch.spurr = set_reg_val(id, *val);
1593 		break;
1594 	case KVM_REG_PPC_AMR:
1595 		vcpu->arch.amr = set_reg_val(id, *val);
1596 		break;
1597 	case KVM_REG_PPC_UAMOR:
1598 		vcpu->arch.uamor = set_reg_val(id, *val);
1599 		break;
1600 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1601 		i = id - KVM_REG_PPC_MMCR0;
1602 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1603 		break;
1604 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1605 		i = id - KVM_REG_PPC_PMC1;
1606 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1607 		break;
1608 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1609 		i = id - KVM_REG_PPC_SPMC1;
1610 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1611 		break;
1612 	case KVM_REG_PPC_SIAR:
1613 		vcpu->arch.siar = set_reg_val(id, *val);
1614 		break;
1615 	case KVM_REG_PPC_SDAR:
1616 		vcpu->arch.sdar = set_reg_val(id, *val);
1617 		break;
1618 	case KVM_REG_PPC_SIER:
1619 		vcpu->arch.sier = set_reg_val(id, *val);
1620 		break;
1621 	case KVM_REG_PPC_IAMR:
1622 		vcpu->arch.iamr = set_reg_val(id, *val);
1623 		break;
1624 	case KVM_REG_PPC_PSPB:
1625 		vcpu->arch.pspb = set_reg_val(id, *val);
1626 		break;
1627 	case KVM_REG_PPC_DPDES:
1628 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1629 		break;
1630 	case KVM_REG_PPC_VTB:
1631 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1632 		break;
1633 	case KVM_REG_PPC_DAWR:
1634 		vcpu->arch.dawr = set_reg_val(id, *val);
1635 		break;
1636 	case KVM_REG_PPC_DAWRX:
1637 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1638 		break;
1639 	case KVM_REG_PPC_CIABR:
1640 		vcpu->arch.ciabr = set_reg_val(id, *val);
1641 		/* Don't allow setting breakpoints in hypervisor code */
1642 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1643 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1644 		break;
1645 	case KVM_REG_PPC_CSIGR:
1646 		vcpu->arch.csigr = set_reg_val(id, *val);
1647 		break;
1648 	case KVM_REG_PPC_TACR:
1649 		vcpu->arch.tacr = set_reg_val(id, *val);
1650 		break;
1651 	case KVM_REG_PPC_TCSCR:
1652 		vcpu->arch.tcscr = set_reg_val(id, *val);
1653 		break;
1654 	case KVM_REG_PPC_PID:
1655 		vcpu->arch.pid = set_reg_val(id, *val);
1656 		break;
1657 	case KVM_REG_PPC_ACOP:
1658 		vcpu->arch.acop = set_reg_val(id, *val);
1659 		break;
1660 	case KVM_REG_PPC_WORT:
1661 		vcpu->arch.wort = set_reg_val(id, *val);
1662 		break;
1663 	case KVM_REG_PPC_TIDR:
1664 		vcpu->arch.tid = set_reg_val(id, *val);
1665 		break;
1666 	case KVM_REG_PPC_PSSCR:
1667 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1668 		break;
1669 	case KVM_REG_PPC_VPA_ADDR:
1670 		addr = set_reg_val(id, *val);
1671 		r = -EINVAL;
1672 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1673 			      vcpu->arch.dtl.next_gpa))
1674 			break;
1675 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1676 		break;
1677 	case KVM_REG_PPC_VPA_SLB:
1678 		addr = val->vpaval.addr;
1679 		len = val->vpaval.length;
1680 		r = -EINVAL;
1681 		if (addr && !vcpu->arch.vpa.next_gpa)
1682 			break;
1683 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1684 		break;
1685 	case KVM_REG_PPC_VPA_DTL:
1686 		addr = val->vpaval.addr;
1687 		len = val->vpaval.length;
1688 		r = -EINVAL;
1689 		if (addr && (len < sizeof(struct dtl_entry) ||
1690 			     !vcpu->arch.vpa.next_gpa))
1691 			break;
1692 		len -= len % sizeof(struct dtl_entry);
1693 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1694 		break;
1695 	case KVM_REG_PPC_TB_OFFSET:
1696 		/* round up to multiple of 2^24 */
1697 		vcpu->arch.vcore->tb_offset =
1698 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1699 		break;
1700 	case KVM_REG_PPC_LPCR:
1701 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1702 		break;
1703 	case KVM_REG_PPC_LPCR_64:
1704 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1705 		break;
1706 	case KVM_REG_PPC_PPR:
1707 		vcpu->arch.ppr = set_reg_val(id, *val);
1708 		break;
1709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1710 	case KVM_REG_PPC_TFHAR:
1711 		vcpu->arch.tfhar = set_reg_val(id, *val);
1712 		break;
1713 	case KVM_REG_PPC_TFIAR:
1714 		vcpu->arch.tfiar = set_reg_val(id, *val);
1715 		break;
1716 	case KVM_REG_PPC_TEXASR:
1717 		vcpu->arch.texasr = set_reg_val(id, *val);
1718 		break;
1719 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1720 		i = id - KVM_REG_PPC_TM_GPR0;
1721 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1722 		break;
1723 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1724 	{
1725 		int j;
1726 		i = id - KVM_REG_PPC_TM_VSR0;
1727 		if (i < 32)
1728 			for (j = 0; j < TS_FPRWIDTH; j++)
1729 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1730 		else
1731 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1732 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1733 			else
1734 				r = -ENXIO;
1735 		break;
1736 	}
1737 	case KVM_REG_PPC_TM_CR:
1738 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1739 		break;
1740 	case KVM_REG_PPC_TM_XER:
1741 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1742 		break;
1743 	case KVM_REG_PPC_TM_LR:
1744 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1745 		break;
1746 	case KVM_REG_PPC_TM_CTR:
1747 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1748 		break;
1749 	case KVM_REG_PPC_TM_FPSCR:
1750 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1751 		break;
1752 	case KVM_REG_PPC_TM_AMR:
1753 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1754 		break;
1755 	case KVM_REG_PPC_TM_PPR:
1756 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1757 		break;
1758 	case KVM_REG_PPC_TM_VRSAVE:
1759 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1760 		break;
1761 	case KVM_REG_PPC_TM_VSCR:
1762 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1763 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1764 		else
1765 			r = - ENXIO;
1766 		break;
1767 	case KVM_REG_PPC_TM_DSCR:
1768 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1769 		break;
1770 	case KVM_REG_PPC_TM_TAR:
1771 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1772 		break;
1773 #endif
1774 	case KVM_REG_PPC_ARCH_COMPAT:
1775 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1776 		break;
1777 	case KVM_REG_PPC_DEC_EXPIRY:
1778 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1779 			vcpu->arch.vcore->tb_offset;
1780 		break;
1781 	case KVM_REG_PPC_ONLINE:
1782 		i = set_reg_val(id, *val);
1783 		if (i && !vcpu->arch.online)
1784 			atomic_inc(&vcpu->arch.vcore->online_count);
1785 		else if (!i && vcpu->arch.online)
1786 			atomic_dec(&vcpu->arch.vcore->online_count);
1787 		vcpu->arch.online = i;
1788 		break;
1789 	default:
1790 		r = -EINVAL;
1791 		break;
1792 	}
1793 
1794 	return r;
1795 }
1796 
1797 /*
1798  * On POWER9, threads are independent and can be in different partitions.
1799  * Therefore we consider each thread to be a subcore.
1800  * There is a restriction that all threads have to be in the same
1801  * MMU mode (radix or HPT), unfortunately, but since we only support
1802  * HPT guests on a HPT host so far, that isn't an impediment yet.
1803  */
1804 static int threads_per_vcore(struct kvm *kvm)
1805 {
1806 	if (kvm->arch.threads_indep)
1807 		return 1;
1808 	return threads_per_subcore;
1809 }
1810 
1811 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1812 {
1813 	struct kvmppc_vcore *vcore;
1814 
1815 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1816 
1817 	if (vcore == NULL)
1818 		return NULL;
1819 
1820 	spin_lock_init(&vcore->lock);
1821 	spin_lock_init(&vcore->stoltb_lock);
1822 	init_swait_queue_head(&vcore->wq);
1823 	vcore->preempt_tb = TB_NIL;
1824 	vcore->lpcr = kvm->arch.lpcr;
1825 	vcore->first_vcpuid = id;
1826 	vcore->kvm = kvm;
1827 	INIT_LIST_HEAD(&vcore->preempt_list);
1828 
1829 	return vcore;
1830 }
1831 
1832 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1833 static struct debugfs_timings_element {
1834 	const char *name;
1835 	size_t offset;
1836 } timings[] = {
1837 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1838 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1839 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1840 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1841 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1842 };
1843 
1844 #define N_TIMINGS	(ARRAY_SIZE(timings))
1845 
1846 struct debugfs_timings_state {
1847 	struct kvm_vcpu	*vcpu;
1848 	unsigned int	buflen;
1849 	char		buf[N_TIMINGS * 100];
1850 };
1851 
1852 static int debugfs_timings_open(struct inode *inode, struct file *file)
1853 {
1854 	struct kvm_vcpu *vcpu = inode->i_private;
1855 	struct debugfs_timings_state *p;
1856 
1857 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1858 	if (!p)
1859 		return -ENOMEM;
1860 
1861 	kvm_get_kvm(vcpu->kvm);
1862 	p->vcpu = vcpu;
1863 	file->private_data = p;
1864 
1865 	return nonseekable_open(inode, file);
1866 }
1867 
1868 static int debugfs_timings_release(struct inode *inode, struct file *file)
1869 {
1870 	struct debugfs_timings_state *p = file->private_data;
1871 
1872 	kvm_put_kvm(p->vcpu->kvm);
1873 	kfree(p);
1874 	return 0;
1875 }
1876 
1877 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1878 				    size_t len, loff_t *ppos)
1879 {
1880 	struct debugfs_timings_state *p = file->private_data;
1881 	struct kvm_vcpu *vcpu = p->vcpu;
1882 	char *s, *buf_end;
1883 	struct kvmhv_tb_accumulator tb;
1884 	u64 count;
1885 	loff_t pos;
1886 	ssize_t n;
1887 	int i, loops;
1888 	bool ok;
1889 
1890 	if (!p->buflen) {
1891 		s = p->buf;
1892 		buf_end = s + sizeof(p->buf);
1893 		for (i = 0; i < N_TIMINGS; ++i) {
1894 			struct kvmhv_tb_accumulator *acc;
1895 
1896 			acc = (struct kvmhv_tb_accumulator *)
1897 				((unsigned long)vcpu + timings[i].offset);
1898 			ok = false;
1899 			for (loops = 0; loops < 1000; ++loops) {
1900 				count = acc->seqcount;
1901 				if (!(count & 1)) {
1902 					smp_rmb();
1903 					tb = *acc;
1904 					smp_rmb();
1905 					if (count == acc->seqcount) {
1906 						ok = true;
1907 						break;
1908 					}
1909 				}
1910 				udelay(1);
1911 			}
1912 			if (!ok)
1913 				snprintf(s, buf_end - s, "%s: stuck\n",
1914 					timings[i].name);
1915 			else
1916 				snprintf(s, buf_end - s,
1917 					"%s: %llu %llu %llu %llu\n",
1918 					timings[i].name, count / 2,
1919 					tb_to_ns(tb.tb_total),
1920 					tb_to_ns(tb.tb_min),
1921 					tb_to_ns(tb.tb_max));
1922 			s += strlen(s);
1923 		}
1924 		p->buflen = s - p->buf;
1925 	}
1926 
1927 	pos = *ppos;
1928 	if (pos >= p->buflen)
1929 		return 0;
1930 	if (len > p->buflen - pos)
1931 		len = p->buflen - pos;
1932 	n = copy_to_user(buf, p->buf + pos, len);
1933 	if (n) {
1934 		if (n == len)
1935 			return -EFAULT;
1936 		len -= n;
1937 	}
1938 	*ppos = pos + len;
1939 	return len;
1940 }
1941 
1942 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1943 				     size_t len, loff_t *ppos)
1944 {
1945 	return -EACCES;
1946 }
1947 
1948 static const struct file_operations debugfs_timings_ops = {
1949 	.owner	 = THIS_MODULE,
1950 	.open	 = debugfs_timings_open,
1951 	.release = debugfs_timings_release,
1952 	.read	 = debugfs_timings_read,
1953 	.write	 = debugfs_timings_write,
1954 	.llseek	 = generic_file_llseek,
1955 };
1956 
1957 /* Create a debugfs directory for the vcpu */
1958 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1959 {
1960 	char buf[16];
1961 	struct kvm *kvm = vcpu->kvm;
1962 
1963 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1964 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1965 		return;
1966 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1967 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1968 		return;
1969 	vcpu->arch.debugfs_timings =
1970 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1971 				    vcpu, &debugfs_timings_ops);
1972 }
1973 
1974 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1975 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1976 {
1977 }
1978 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1979 
1980 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1981 						   unsigned int id)
1982 {
1983 	struct kvm_vcpu *vcpu;
1984 	int err;
1985 	int core;
1986 	struct kvmppc_vcore *vcore;
1987 
1988 	err = -ENOMEM;
1989 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1990 	if (!vcpu)
1991 		goto out;
1992 
1993 	err = kvm_vcpu_init(vcpu, kvm, id);
1994 	if (err)
1995 		goto free_vcpu;
1996 
1997 	vcpu->arch.shared = &vcpu->arch.shregs;
1998 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1999 	/*
2000 	 * The shared struct is never shared on HV,
2001 	 * so we can always use host endianness
2002 	 */
2003 #ifdef __BIG_ENDIAN__
2004 	vcpu->arch.shared_big_endian = true;
2005 #else
2006 	vcpu->arch.shared_big_endian = false;
2007 #endif
2008 #endif
2009 	vcpu->arch.mmcr[0] = MMCR0_FC;
2010 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2011 	/* default to host PVR, since we can't spoof it */
2012 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2013 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2014 	spin_lock_init(&vcpu->arch.tbacct_lock);
2015 	vcpu->arch.busy_preempt = TB_NIL;
2016 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2017 
2018 	/*
2019 	 * Set the default HFSCR for the guest from the host value.
2020 	 * This value is only used on POWER9.
2021 	 * On POWER9, we want to virtualize the doorbell facility, so we
2022 	 * turn off the HFSCR bit, which causes those instructions to trap.
2023 	 */
2024 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2025 	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2026 		vcpu->arch.hfscr |= HFSCR_TM;
2027 	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2028 		vcpu->arch.hfscr &= ~HFSCR_TM;
2029 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2030 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2031 
2032 	kvmppc_mmu_book3s_hv_init(vcpu);
2033 
2034 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2035 
2036 	init_waitqueue_head(&vcpu->arch.cpu_run);
2037 
2038 	mutex_lock(&kvm->lock);
2039 	vcore = NULL;
2040 	err = -EINVAL;
2041 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2042 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2043 			pr_devel("KVM: VCPU ID too high\n");
2044 			core = KVM_MAX_VCORES;
2045 		} else {
2046 			BUG_ON(kvm->arch.smt_mode != 1);
2047 			core = kvmppc_pack_vcpu_id(kvm, id);
2048 		}
2049 	} else {
2050 		core = id / kvm->arch.smt_mode;
2051 	}
2052 	if (core < KVM_MAX_VCORES) {
2053 		vcore = kvm->arch.vcores[core];
2054 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2055 			pr_devel("KVM: collision on id %u", id);
2056 			vcore = NULL;
2057 		} else if (!vcore) {
2058 			err = -ENOMEM;
2059 			vcore = kvmppc_vcore_create(kvm,
2060 					id & ~(kvm->arch.smt_mode - 1));
2061 			kvm->arch.vcores[core] = vcore;
2062 			kvm->arch.online_vcores++;
2063 		}
2064 	}
2065 	mutex_unlock(&kvm->lock);
2066 
2067 	if (!vcore)
2068 		goto free_vcpu;
2069 
2070 	spin_lock(&vcore->lock);
2071 	++vcore->num_threads;
2072 	spin_unlock(&vcore->lock);
2073 	vcpu->arch.vcore = vcore;
2074 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2075 	vcpu->arch.thread_cpu = -1;
2076 	vcpu->arch.prev_cpu = -1;
2077 
2078 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2079 	kvmppc_sanity_check(vcpu);
2080 
2081 	debugfs_vcpu_init(vcpu, id);
2082 
2083 	return vcpu;
2084 
2085 free_vcpu:
2086 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2087 out:
2088 	return ERR_PTR(err);
2089 }
2090 
2091 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2092 			      unsigned long flags)
2093 {
2094 	int err;
2095 	int esmt = 0;
2096 
2097 	if (flags)
2098 		return -EINVAL;
2099 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2100 		return -EINVAL;
2101 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2102 		/*
2103 		 * On POWER8 (or POWER7), the threading mode is "strict",
2104 		 * so we pack smt_mode vcpus per vcore.
2105 		 */
2106 		if (smt_mode > threads_per_subcore)
2107 			return -EINVAL;
2108 	} else {
2109 		/*
2110 		 * On POWER9, the threading mode is "loose",
2111 		 * so each vcpu gets its own vcore.
2112 		 */
2113 		esmt = smt_mode;
2114 		smt_mode = 1;
2115 	}
2116 	mutex_lock(&kvm->lock);
2117 	err = -EBUSY;
2118 	if (!kvm->arch.online_vcores) {
2119 		kvm->arch.smt_mode = smt_mode;
2120 		kvm->arch.emul_smt_mode = esmt;
2121 		err = 0;
2122 	}
2123 	mutex_unlock(&kvm->lock);
2124 
2125 	return err;
2126 }
2127 
2128 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2129 {
2130 	if (vpa->pinned_addr)
2131 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2132 					vpa->dirty);
2133 }
2134 
2135 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2136 {
2137 	spin_lock(&vcpu->arch.vpa_update_lock);
2138 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2139 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2140 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2141 	spin_unlock(&vcpu->arch.vpa_update_lock);
2142 	kvm_vcpu_uninit(vcpu);
2143 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2144 }
2145 
2146 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2147 {
2148 	/* Indicate we want to get back into the guest */
2149 	return 1;
2150 }
2151 
2152 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2153 {
2154 	unsigned long dec_nsec, now;
2155 
2156 	now = get_tb();
2157 	if (now > vcpu->arch.dec_expires) {
2158 		/* decrementer has already gone negative */
2159 		kvmppc_core_queue_dec(vcpu);
2160 		kvmppc_core_prepare_to_enter(vcpu);
2161 		return;
2162 	}
2163 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2164 		   / tb_ticks_per_sec;
2165 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2166 	vcpu->arch.timer_running = 1;
2167 }
2168 
2169 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2170 {
2171 	vcpu->arch.ceded = 0;
2172 	if (vcpu->arch.timer_running) {
2173 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2174 		vcpu->arch.timer_running = 0;
2175 	}
2176 }
2177 
2178 extern int __kvmppc_vcore_entry(void);
2179 
2180 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2181 				   struct kvm_vcpu *vcpu)
2182 {
2183 	u64 now;
2184 
2185 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2186 		return;
2187 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2188 	now = mftb();
2189 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2190 		vcpu->arch.stolen_logged;
2191 	vcpu->arch.busy_preempt = now;
2192 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2193 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2194 	--vc->n_runnable;
2195 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2196 }
2197 
2198 static int kvmppc_grab_hwthread(int cpu)
2199 {
2200 	struct paca_struct *tpaca;
2201 	long timeout = 10000;
2202 
2203 	tpaca = paca_ptrs[cpu];
2204 
2205 	/* Ensure the thread won't go into the kernel if it wakes */
2206 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2207 	tpaca->kvm_hstate.kvm_vcore = NULL;
2208 	tpaca->kvm_hstate.napping = 0;
2209 	smp_wmb();
2210 	tpaca->kvm_hstate.hwthread_req = 1;
2211 
2212 	/*
2213 	 * If the thread is already executing in the kernel (e.g. handling
2214 	 * a stray interrupt), wait for it to get back to nap mode.
2215 	 * The smp_mb() is to ensure that our setting of hwthread_req
2216 	 * is visible before we look at hwthread_state, so if this
2217 	 * races with the code at system_reset_pSeries and the thread
2218 	 * misses our setting of hwthread_req, we are sure to see its
2219 	 * setting of hwthread_state, and vice versa.
2220 	 */
2221 	smp_mb();
2222 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2223 		if (--timeout <= 0) {
2224 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2225 			return -EBUSY;
2226 		}
2227 		udelay(1);
2228 	}
2229 	return 0;
2230 }
2231 
2232 static void kvmppc_release_hwthread(int cpu)
2233 {
2234 	struct paca_struct *tpaca;
2235 
2236 	tpaca = paca_ptrs[cpu];
2237 	tpaca->kvm_hstate.hwthread_req = 0;
2238 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2239 	tpaca->kvm_hstate.kvm_vcore = NULL;
2240 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2241 }
2242 
2243 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2244 {
2245 	int i;
2246 
2247 	cpu = cpu_first_thread_sibling(cpu);
2248 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2249 	/*
2250 	 * Make sure setting of bit in need_tlb_flush precedes
2251 	 * testing of cpu_in_guest bits.  The matching barrier on
2252 	 * the other side is the first smp_mb() in kvmppc_run_core().
2253 	 */
2254 	smp_mb();
2255 	for (i = 0; i < threads_per_core; ++i)
2256 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2257 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2258 }
2259 
2260 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2261 {
2262 	struct kvm *kvm = vcpu->kvm;
2263 
2264 	/*
2265 	 * With radix, the guest can do TLB invalidations itself,
2266 	 * and it could choose to use the local form (tlbiel) if
2267 	 * it is invalidating a translation that has only ever been
2268 	 * used on one vcpu.  However, that doesn't mean it has
2269 	 * only ever been used on one physical cpu, since vcpus
2270 	 * can move around between pcpus.  To cope with this, when
2271 	 * a vcpu moves from one pcpu to another, we need to tell
2272 	 * any vcpus running on the same core as this vcpu previously
2273 	 * ran to flush the TLB.  The TLB is shared between threads,
2274 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2275 	 */
2276 	if (vcpu->arch.prev_cpu != pcpu) {
2277 		if (vcpu->arch.prev_cpu >= 0 &&
2278 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2279 		    cpu_first_thread_sibling(pcpu))
2280 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2281 		vcpu->arch.prev_cpu = pcpu;
2282 	}
2283 }
2284 
2285 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2286 {
2287 	int cpu;
2288 	struct paca_struct *tpaca;
2289 	struct kvm *kvm = vc->kvm;
2290 
2291 	cpu = vc->pcpu;
2292 	if (vcpu) {
2293 		if (vcpu->arch.timer_running) {
2294 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2295 			vcpu->arch.timer_running = 0;
2296 		}
2297 		cpu += vcpu->arch.ptid;
2298 		vcpu->cpu = vc->pcpu;
2299 		vcpu->arch.thread_cpu = cpu;
2300 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2301 	}
2302 	tpaca = paca_ptrs[cpu];
2303 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2304 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2305 	tpaca->kvm_hstate.fake_suspend = 0;
2306 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2307 	smp_wmb();
2308 	tpaca->kvm_hstate.kvm_vcore = vc;
2309 	if (cpu != smp_processor_id())
2310 		kvmppc_ipi_thread(cpu);
2311 }
2312 
2313 static void kvmppc_wait_for_nap(int n_threads)
2314 {
2315 	int cpu = smp_processor_id();
2316 	int i, loops;
2317 
2318 	if (n_threads <= 1)
2319 		return;
2320 	for (loops = 0; loops < 1000000; ++loops) {
2321 		/*
2322 		 * Check if all threads are finished.
2323 		 * We set the vcore pointer when starting a thread
2324 		 * and the thread clears it when finished, so we look
2325 		 * for any threads that still have a non-NULL vcore ptr.
2326 		 */
2327 		for (i = 1; i < n_threads; ++i)
2328 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2329 				break;
2330 		if (i == n_threads) {
2331 			HMT_medium();
2332 			return;
2333 		}
2334 		HMT_low();
2335 	}
2336 	HMT_medium();
2337 	for (i = 1; i < n_threads; ++i)
2338 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2339 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2340 }
2341 
2342 /*
2343  * Check that we are on thread 0 and that any other threads in
2344  * this core are off-line.  Then grab the threads so they can't
2345  * enter the kernel.
2346  */
2347 static int on_primary_thread(void)
2348 {
2349 	int cpu = smp_processor_id();
2350 	int thr;
2351 
2352 	/* Are we on a primary subcore? */
2353 	if (cpu_thread_in_subcore(cpu))
2354 		return 0;
2355 
2356 	thr = 0;
2357 	while (++thr < threads_per_subcore)
2358 		if (cpu_online(cpu + thr))
2359 			return 0;
2360 
2361 	/* Grab all hw threads so they can't go into the kernel */
2362 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2363 		if (kvmppc_grab_hwthread(cpu + thr)) {
2364 			/* Couldn't grab one; let the others go */
2365 			do {
2366 				kvmppc_release_hwthread(cpu + thr);
2367 			} while (--thr > 0);
2368 			return 0;
2369 		}
2370 	}
2371 	return 1;
2372 }
2373 
2374 /*
2375  * A list of virtual cores for each physical CPU.
2376  * These are vcores that could run but their runner VCPU tasks are
2377  * (or may be) preempted.
2378  */
2379 struct preempted_vcore_list {
2380 	struct list_head	list;
2381 	spinlock_t		lock;
2382 };
2383 
2384 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2385 
2386 static void init_vcore_lists(void)
2387 {
2388 	int cpu;
2389 
2390 	for_each_possible_cpu(cpu) {
2391 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2392 		spin_lock_init(&lp->lock);
2393 		INIT_LIST_HEAD(&lp->list);
2394 	}
2395 }
2396 
2397 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2398 {
2399 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2400 
2401 	vc->vcore_state = VCORE_PREEMPT;
2402 	vc->pcpu = smp_processor_id();
2403 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2404 		spin_lock(&lp->lock);
2405 		list_add_tail(&vc->preempt_list, &lp->list);
2406 		spin_unlock(&lp->lock);
2407 	}
2408 
2409 	/* Start accumulating stolen time */
2410 	kvmppc_core_start_stolen(vc);
2411 }
2412 
2413 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2414 {
2415 	struct preempted_vcore_list *lp;
2416 
2417 	kvmppc_core_end_stolen(vc);
2418 	if (!list_empty(&vc->preempt_list)) {
2419 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2420 		spin_lock(&lp->lock);
2421 		list_del_init(&vc->preempt_list);
2422 		spin_unlock(&lp->lock);
2423 	}
2424 	vc->vcore_state = VCORE_INACTIVE;
2425 }
2426 
2427 /*
2428  * This stores information about the virtual cores currently
2429  * assigned to a physical core.
2430  */
2431 struct core_info {
2432 	int		n_subcores;
2433 	int		max_subcore_threads;
2434 	int		total_threads;
2435 	int		subcore_threads[MAX_SUBCORES];
2436 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2437 };
2438 
2439 /*
2440  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2441  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2442  */
2443 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2444 
2445 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2446 {
2447 	memset(cip, 0, sizeof(*cip));
2448 	cip->n_subcores = 1;
2449 	cip->max_subcore_threads = vc->num_threads;
2450 	cip->total_threads = vc->num_threads;
2451 	cip->subcore_threads[0] = vc->num_threads;
2452 	cip->vc[0] = vc;
2453 }
2454 
2455 static bool subcore_config_ok(int n_subcores, int n_threads)
2456 {
2457 	/*
2458 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2459 	 * split-core mode, with one thread per subcore.
2460 	 */
2461 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2462 		return n_subcores <= 4 && n_threads == 1;
2463 
2464 	/* On POWER8, can only dynamically split if unsplit to begin with */
2465 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2466 		return false;
2467 	if (n_subcores > MAX_SUBCORES)
2468 		return false;
2469 	if (n_subcores > 1) {
2470 		if (!(dynamic_mt_modes & 2))
2471 			n_subcores = 4;
2472 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2473 			return false;
2474 	}
2475 
2476 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2477 }
2478 
2479 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2480 {
2481 	vc->entry_exit_map = 0;
2482 	vc->in_guest = 0;
2483 	vc->napping_threads = 0;
2484 	vc->conferring_threads = 0;
2485 	vc->tb_offset_applied = 0;
2486 }
2487 
2488 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2489 {
2490 	int n_threads = vc->num_threads;
2491 	int sub;
2492 
2493 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2494 		return false;
2495 
2496 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2497 	if (no_mixing_hpt_and_radix &&
2498 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2499 		return false;
2500 
2501 	if (n_threads < cip->max_subcore_threads)
2502 		n_threads = cip->max_subcore_threads;
2503 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2504 		return false;
2505 	cip->max_subcore_threads = n_threads;
2506 
2507 	sub = cip->n_subcores;
2508 	++cip->n_subcores;
2509 	cip->total_threads += vc->num_threads;
2510 	cip->subcore_threads[sub] = vc->num_threads;
2511 	cip->vc[sub] = vc;
2512 	init_vcore_to_run(vc);
2513 	list_del_init(&vc->preempt_list);
2514 
2515 	return true;
2516 }
2517 
2518 /*
2519  * Work out whether it is possible to piggyback the execution of
2520  * vcore *pvc onto the execution of the other vcores described in *cip.
2521  */
2522 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2523 			  int target_threads)
2524 {
2525 	if (cip->total_threads + pvc->num_threads > target_threads)
2526 		return false;
2527 
2528 	return can_dynamic_split(pvc, cip);
2529 }
2530 
2531 static void prepare_threads(struct kvmppc_vcore *vc)
2532 {
2533 	int i;
2534 	struct kvm_vcpu *vcpu;
2535 
2536 	for_each_runnable_thread(i, vcpu, vc) {
2537 		if (signal_pending(vcpu->arch.run_task))
2538 			vcpu->arch.ret = -EINTR;
2539 		else if (vcpu->arch.vpa.update_pending ||
2540 			 vcpu->arch.slb_shadow.update_pending ||
2541 			 vcpu->arch.dtl.update_pending)
2542 			vcpu->arch.ret = RESUME_GUEST;
2543 		else
2544 			continue;
2545 		kvmppc_remove_runnable(vc, vcpu);
2546 		wake_up(&vcpu->arch.cpu_run);
2547 	}
2548 }
2549 
2550 static void collect_piggybacks(struct core_info *cip, int target_threads)
2551 {
2552 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2553 	struct kvmppc_vcore *pvc, *vcnext;
2554 
2555 	spin_lock(&lp->lock);
2556 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2557 		if (!spin_trylock(&pvc->lock))
2558 			continue;
2559 		prepare_threads(pvc);
2560 		if (!pvc->n_runnable) {
2561 			list_del_init(&pvc->preempt_list);
2562 			if (pvc->runner == NULL) {
2563 				pvc->vcore_state = VCORE_INACTIVE;
2564 				kvmppc_core_end_stolen(pvc);
2565 			}
2566 			spin_unlock(&pvc->lock);
2567 			continue;
2568 		}
2569 		if (!can_piggyback(pvc, cip, target_threads)) {
2570 			spin_unlock(&pvc->lock);
2571 			continue;
2572 		}
2573 		kvmppc_core_end_stolen(pvc);
2574 		pvc->vcore_state = VCORE_PIGGYBACK;
2575 		if (cip->total_threads >= target_threads)
2576 			break;
2577 	}
2578 	spin_unlock(&lp->lock);
2579 }
2580 
2581 static bool recheck_signals(struct core_info *cip)
2582 {
2583 	int sub, i;
2584 	struct kvm_vcpu *vcpu;
2585 
2586 	for (sub = 0; sub < cip->n_subcores; ++sub)
2587 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2588 			if (signal_pending(vcpu->arch.run_task))
2589 				return true;
2590 	return false;
2591 }
2592 
2593 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2594 {
2595 	int still_running = 0, i;
2596 	u64 now;
2597 	long ret;
2598 	struct kvm_vcpu *vcpu;
2599 
2600 	spin_lock(&vc->lock);
2601 	now = get_tb();
2602 	for_each_runnable_thread(i, vcpu, vc) {
2603 		/* cancel pending dec exception if dec is positive */
2604 		if (now < vcpu->arch.dec_expires &&
2605 		    kvmppc_core_pending_dec(vcpu))
2606 			kvmppc_core_dequeue_dec(vcpu);
2607 
2608 		trace_kvm_guest_exit(vcpu);
2609 
2610 		ret = RESUME_GUEST;
2611 		if (vcpu->arch.trap)
2612 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2613 						    vcpu->arch.run_task);
2614 
2615 		vcpu->arch.ret = ret;
2616 		vcpu->arch.trap = 0;
2617 
2618 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2619 			if (vcpu->arch.pending_exceptions)
2620 				kvmppc_core_prepare_to_enter(vcpu);
2621 			if (vcpu->arch.ceded)
2622 				kvmppc_set_timer(vcpu);
2623 			else
2624 				++still_running;
2625 		} else {
2626 			kvmppc_remove_runnable(vc, vcpu);
2627 			wake_up(&vcpu->arch.cpu_run);
2628 		}
2629 	}
2630 	if (!is_master) {
2631 		if (still_running > 0) {
2632 			kvmppc_vcore_preempt(vc);
2633 		} else if (vc->runner) {
2634 			vc->vcore_state = VCORE_PREEMPT;
2635 			kvmppc_core_start_stolen(vc);
2636 		} else {
2637 			vc->vcore_state = VCORE_INACTIVE;
2638 		}
2639 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2640 			/* make sure there's a candidate runner awake */
2641 			i = -1;
2642 			vcpu = next_runnable_thread(vc, &i);
2643 			wake_up(&vcpu->arch.cpu_run);
2644 		}
2645 	}
2646 	spin_unlock(&vc->lock);
2647 }
2648 
2649 /*
2650  * Clear core from the list of active host cores as we are about to
2651  * enter the guest. Only do this if it is the primary thread of the
2652  * core (not if a subcore) that is entering the guest.
2653  */
2654 static inline int kvmppc_clear_host_core(unsigned int cpu)
2655 {
2656 	int core;
2657 
2658 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2659 		return 0;
2660 	/*
2661 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2662 	 * later in kvmppc_start_thread and we need ensure that state is
2663 	 * visible to other CPUs only after we enter guest.
2664 	 */
2665 	core = cpu >> threads_shift;
2666 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2667 	return 0;
2668 }
2669 
2670 /*
2671  * Advertise this core as an active host core since we exited the guest
2672  * Only need to do this if it is the primary thread of the core that is
2673  * exiting.
2674  */
2675 static inline int kvmppc_set_host_core(unsigned int cpu)
2676 {
2677 	int core;
2678 
2679 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2680 		return 0;
2681 
2682 	/*
2683 	 * Memory barrier can be omitted here because we do a spin_unlock
2684 	 * immediately after this which provides the memory barrier.
2685 	 */
2686 	core = cpu >> threads_shift;
2687 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2688 	return 0;
2689 }
2690 
2691 static void set_irq_happened(int trap)
2692 {
2693 	switch (trap) {
2694 	case BOOK3S_INTERRUPT_EXTERNAL:
2695 		local_paca->irq_happened |= PACA_IRQ_EE;
2696 		break;
2697 	case BOOK3S_INTERRUPT_H_DOORBELL:
2698 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2699 		break;
2700 	case BOOK3S_INTERRUPT_HMI:
2701 		local_paca->irq_happened |= PACA_IRQ_HMI;
2702 		break;
2703 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2704 		replay_system_reset();
2705 		break;
2706 	}
2707 }
2708 
2709 /*
2710  * Run a set of guest threads on a physical core.
2711  * Called with vc->lock held.
2712  */
2713 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2714 {
2715 	struct kvm_vcpu *vcpu;
2716 	int i;
2717 	int srcu_idx;
2718 	struct core_info core_info;
2719 	struct kvmppc_vcore *pvc;
2720 	struct kvm_split_mode split_info, *sip;
2721 	int split, subcore_size, active;
2722 	int sub;
2723 	bool thr0_done;
2724 	unsigned long cmd_bit, stat_bit;
2725 	int pcpu, thr;
2726 	int target_threads;
2727 	int controlled_threads;
2728 	int trap;
2729 	bool is_power8;
2730 	bool hpt_on_radix;
2731 
2732 	/*
2733 	 * Remove from the list any threads that have a signal pending
2734 	 * or need a VPA update done
2735 	 */
2736 	prepare_threads(vc);
2737 
2738 	/* if the runner is no longer runnable, let the caller pick a new one */
2739 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2740 		return;
2741 
2742 	/*
2743 	 * Initialize *vc.
2744 	 */
2745 	init_vcore_to_run(vc);
2746 	vc->preempt_tb = TB_NIL;
2747 
2748 	/*
2749 	 * Number of threads that we will be controlling: the same as
2750 	 * the number of threads per subcore, except on POWER9,
2751 	 * where it's 1 because the threads are (mostly) independent.
2752 	 */
2753 	controlled_threads = threads_per_vcore(vc->kvm);
2754 
2755 	/*
2756 	 * Make sure we are running on primary threads, and that secondary
2757 	 * threads are offline.  Also check if the number of threads in this
2758 	 * guest are greater than the current system threads per guest.
2759 	 * On POWER9, we need to be not in independent-threads mode if
2760 	 * this is a HPT guest on a radix host machine where the
2761 	 * CPU threads may not be in different MMU modes.
2762 	 */
2763 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2764 		!kvm_is_radix(vc->kvm);
2765 	if (((controlled_threads > 1) &&
2766 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2767 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2768 		for_each_runnable_thread(i, vcpu, vc) {
2769 			vcpu->arch.ret = -EBUSY;
2770 			kvmppc_remove_runnable(vc, vcpu);
2771 			wake_up(&vcpu->arch.cpu_run);
2772 		}
2773 		goto out;
2774 	}
2775 
2776 	/*
2777 	 * See if we could run any other vcores on the physical core
2778 	 * along with this one.
2779 	 */
2780 	init_core_info(&core_info, vc);
2781 	pcpu = smp_processor_id();
2782 	target_threads = controlled_threads;
2783 	if (target_smt_mode && target_smt_mode < target_threads)
2784 		target_threads = target_smt_mode;
2785 	if (vc->num_threads < target_threads)
2786 		collect_piggybacks(&core_info, target_threads);
2787 
2788 	/*
2789 	 * On radix, arrange for TLB flushing if necessary.
2790 	 * This has to be done before disabling interrupts since
2791 	 * it uses smp_call_function().
2792 	 */
2793 	pcpu = smp_processor_id();
2794 	if (kvm_is_radix(vc->kvm)) {
2795 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2796 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2797 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2798 	}
2799 
2800 	/*
2801 	 * Hard-disable interrupts, and check resched flag and signals.
2802 	 * If we need to reschedule or deliver a signal, clean up
2803 	 * and return without going into the guest(s).
2804 	 * If the mmu_ready flag has been cleared, don't go into the
2805 	 * guest because that means a HPT resize operation is in progress.
2806 	 */
2807 	local_irq_disable();
2808 	hard_irq_disable();
2809 	if (lazy_irq_pending() || need_resched() ||
2810 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2811 		local_irq_enable();
2812 		vc->vcore_state = VCORE_INACTIVE;
2813 		/* Unlock all except the primary vcore */
2814 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2815 			pvc = core_info.vc[sub];
2816 			/* Put back on to the preempted vcores list */
2817 			kvmppc_vcore_preempt(pvc);
2818 			spin_unlock(&pvc->lock);
2819 		}
2820 		for (i = 0; i < controlled_threads; ++i)
2821 			kvmppc_release_hwthread(pcpu + i);
2822 		return;
2823 	}
2824 
2825 	kvmppc_clear_host_core(pcpu);
2826 
2827 	/* Decide on micro-threading (split-core) mode */
2828 	subcore_size = threads_per_subcore;
2829 	cmd_bit = stat_bit = 0;
2830 	split = core_info.n_subcores;
2831 	sip = NULL;
2832 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2833 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2834 
2835 	if (split > 1 || hpt_on_radix) {
2836 		sip = &split_info;
2837 		memset(&split_info, 0, sizeof(split_info));
2838 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2839 			split_info.vc[sub] = core_info.vc[sub];
2840 
2841 		if (is_power8) {
2842 			if (split == 2 && (dynamic_mt_modes & 2)) {
2843 				cmd_bit = HID0_POWER8_1TO2LPAR;
2844 				stat_bit = HID0_POWER8_2LPARMODE;
2845 			} else {
2846 				split = 4;
2847 				cmd_bit = HID0_POWER8_1TO4LPAR;
2848 				stat_bit = HID0_POWER8_4LPARMODE;
2849 			}
2850 			subcore_size = MAX_SMT_THREADS / split;
2851 			split_info.rpr = mfspr(SPRN_RPR);
2852 			split_info.pmmar = mfspr(SPRN_PMMAR);
2853 			split_info.ldbar = mfspr(SPRN_LDBAR);
2854 			split_info.subcore_size = subcore_size;
2855 		} else {
2856 			split_info.subcore_size = 1;
2857 			if (hpt_on_radix) {
2858 				/* Use the split_info for LPCR/LPIDR changes */
2859 				split_info.lpcr_req = vc->lpcr;
2860 				split_info.lpidr_req = vc->kvm->arch.lpid;
2861 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2862 				split_info.do_set = 1;
2863 			}
2864 		}
2865 
2866 		/* order writes to split_info before kvm_split_mode pointer */
2867 		smp_wmb();
2868 	}
2869 
2870 	for (thr = 0; thr < controlled_threads; ++thr) {
2871 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
2872 
2873 		paca->kvm_hstate.tid = thr;
2874 		paca->kvm_hstate.napping = 0;
2875 		paca->kvm_hstate.kvm_split_mode = sip;
2876 	}
2877 
2878 	/* Initiate micro-threading (split-core) on POWER8 if required */
2879 	if (cmd_bit) {
2880 		unsigned long hid0 = mfspr(SPRN_HID0);
2881 
2882 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2883 		mb();
2884 		mtspr(SPRN_HID0, hid0);
2885 		isync();
2886 		for (;;) {
2887 			hid0 = mfspr(SPRN_HID0);
2888 			if (hid0 & stat_bit)
2889 				break;
2890 			cpu_relax();
2891 		}
2892 	}
2893 
2894 	/*
2895 	 * On POWER8, set RWMR register.
2896 	 * Since it only affects PURR and SPURR, it doesn't affect
2897 	 * the host, so we don't save/restore the host value.
2898 	 */
2899 	if (is_power8) {
2900 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2901 		int n_online = atomic_read(&vc->online_count);
2902 
2903 		/*
2904 		 * Use the 8-thread value if we're doing split-core
2905 		 * or if the vcore's online count looks bogus.
2906 		 */
2907 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2908 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
2909 			rwmr_val = p8_rwmr_values[n_online];
2910 		mtspr(SPRN_RWMR, rwmr_val);
2911 	}
2912 
2913 	/* Start all the threads */
2914 	active = 0;
2915 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2916 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2917 		thr0_done = false;
2918 		active |= 1 << thr;
2919 		pvc = core_info.vc[sub];
2920 		pvc->pcpu = pcpu + thr;
2921 		for_each_runnable_thread(i, vcpu, pvc) {
2922 			kvmppc_start_thread(vcpu, pvc);
2923 			kvmppc_create_dtl_entry(vcpu, pvc);
2924 			trace_kvm_guest_enter(vcpu);
2925 			if (!vcpu->arch.ptid)
2926 				thr0_done = true;
2927 			active |= 1 << (thr + vcpu->arch.ptid);
2928 		}
2929 		/*
2930 		 * We need to start the first thread of each subcore
2931 		 * even if it doesn't have a vcpu.
2932 		 */
2933 		if (!thr0_done)
2934 			kvmppc_start_thread(NULL, pvc);
2935 	}
2936 
2937 	/*
2938 	 * Ensure that split_info.do_nap is set after setting
2939 	 * the vcore pointer in the PACA of the secondaries.
2940 	 */
2941 	smp_mb();
2942 
2943 	/*
2944 	 * When doing micro-threading, poke the inactive threads as well.
2945 	 * This gets them to the nap instruction after kvm_do_nap,
2946 	 * which reduces the time taken to unsplit later.
2947 	 * For POWER9 HPT guest on radix host, we need all the secondary
2948 	 * threads woken up so they can do the LPCR/LPIDR change.
2949 	 */
2950 	if (cmd_bit || hpt_on_radix) {
2951 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2952 		for (thr = 1; thr < threads_per_subcore; ++thr)
2953 			if (!(active & (1 << thr)))
2954 				kvmppc_ipi_thread(pcpu + thr);
2955 	}
2956 
2957 	vc->vcore_state = VCORE_RUNNING;
2958 	preempt_disable();
2959 
2960 	trace_kvmppc_run_core(vc, 0);
2961 
2962 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2963 		spin_unlock(&core_info.vc[sub]->lock);
2964 
2965 	if (kvm_is_radix(vc->kvm)) {
2966 		int tmp = pcpu;
2967 
2968 		/*
2969 		 * Do we need to flush the process scoped TLB for the LPAR?
2970 		 *
2971 		 * On POWER9, individual threads can come in here, but the
2972 		 * TLB is shared between the 4 threads in a core, hence
2973 		 * invalidating on one thread invalidates for all.
2974 		 * Thus we make all 4 threads use the same bit here.
2975 		 *
2976 		 * Hash must be flushed in realmode in order to use tlbiel.
2977 		 */
2978 		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2979 		isync();
2980 
2981 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2982 			tmp &= ~0x3UL;
2983 
2984 		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2985 			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2986 			/* Clear the bit after the TLB flush */
2987 			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2988 		}
2989 	}
2990 
2991 	/*
2992 	 * Interrupts will be enabled once we get into the guest,
2993 	 * so tell lockdep that we're about to enable interrupts.
2994 	 */
2995 	trace_hardirqs_on();
2996 
2997 	guest_enter_irqoff();
2998 
2999 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3000 
3001 	this_cpu_disable_ftrace();
3002 
3003 	trap = __kvmppc_vcore_entry();
3004 
3005 	this_cpu_enable_ftrace();
3006 
3007 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3008 
3009 	trace_hardirqs_off();
3010 	set_irq_happened(trap);
3011 
3012 	spin_lock(&vc->lock);
3013 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3014 	vc->vcore_state = VCORE_EXITING;
3015 
3016 	/* wait for secondary threads to finish writing their state to memory */
3017 	kvmppc_wait_for_nap(controlled_threads);
3018 
3019 	/* Return to whole-core mode if we split the core earlier */
3020 	if (cmd_bit) {
3021 		unsigned long hid0 = mfspr(SPRN_HID0);
3022 		unsigned long loops = 0;
3023 
3024 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3025 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3026 		mb();
3027 		mtspr(SPRN_HID0, hid0);
3028 		isync();
3029 		for (;;) {
3030 			hid0 = mfspr(SPRN_HID0);
3031 			if (!(hid0 & stat_bit))
3032 				break;
3033 			cpu_relax();
3034 			++loops;
3035 		}
3036 	} else if (hpt_on_radix) {
3037 		/* Wait for all threads to have seen final sync */
3038 		for (thr = 1; thr < controlled_threads; ++thr) {
3039 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3040 
3041 			while (paca->kvm_hstate.kvm_split_mode) {
3042 				HMT_low();
3043 				barrier();
3044 			}
3045 			HMT_medium();
3046 		}
3047 	}
3048 	split_info.do_nap = 0;
3049 
3050 	kvmppc_set_host_core(pcpu);
3051 
3052 	local_irq_enable();
3053 	guest_exit();
3054 
3055 	/* Let secondaries go back to the offline loop */
3056 	for (i = 0; i < controlled_threads; ++i) {
3057 		kvmppc_release_hwthread(pcpu + i);
3058 		if (sip && sip->napped[i])
3059 			kvmppc_ipi_thread(pcpu + i);
3060 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3061 	}
3062 
3063 	spin_unlock(&vc->lock);
3064 
3065 	/* make sure updates to secondary vcpu structs are visible now */
3066 	smp_mb();
3067 
3068 	preempt_enable();
3069 
3070 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3071 		pvc = core_info.vc[sub];
3072 		post_guest_process(pvc, pvc == vc);
3073 	}
3074 
3075 	spin_lock(&vc->lock);
3076 
3077  out:
3078 	vc->vcore_state = VCORE_INACTIVE;
3079 	trace_kvmppc_run_core(vc, 1);
3080 }
3081 
3082 /*
3083  * Wait for some other vcpu thread to execute us, and
3084  * wake us up when we need to handle something in the host.
3085  */
3086 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3087 				 struct kvm_vcpu *vcpu, int wait_state)
3088 {
3089 	DEFINE_WAIT(wait);
3090 
3091 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3092 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3093 		spin_unlock(&vc->lock);
3094 		schedule();
3095 		spin_lock(&vc->lock);
3096 	}
3097 	finish_wait(&vcpu->arch.cpu_run, &wait);
3098 }
3099 
3100 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3101 {
3102 	/* 10us base */
3103 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3104 		vc->halt_poll_ns = 10000;
3105 	else
3106 		vc->halt_poll_ns *= halt_poll_ns_grow;
3107 }
3108 
3109 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3110 {
3111 	if (halt_poll_ns_shrink == 0)
3112 		vc->halt_poll_ns = 0;
3113 	else
3114 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3115 }
3116 
3117 #ifdef CONFIG_KVM_XICS
3118 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3119 {
3120 	if (!xive_enabled())
3121 		return false;
3122 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3123 		vcpu->arch.xive_saved_state.cppr;
3124 }
3125 #else
3126 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3127 {
3128 	return false;
3129 }
3130 #endif /* CONFIG_KVM_XICS */
3131 
3132 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3133 {
3134 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3135 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3136 		return true;
3137 
3138 	return false;
3139 }
3140 
3141 /*
3142  * Check to see if any of the runnable vcpus on the vcore have pending
3143  * exceptions or are no longer ceded
3144  */
3145 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3146 {
3147 	struct kvm_vcpu *vcpu;
3148 	int i;
3149 
3150 	for_each_runnable_thread(i, vcpu, vc) {
3151 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3152 			return 1;
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * All the vcpus in this vcore are idle, so wait for a decrementer
3160  * or external interrupt to one of the vcpus.  vc->lock is held.
3161  */
3162 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3163 {
3164 	ktime_t cur, start_poll, start_wait;
3165 	int do_sleep = 1;
3166 	u64 block_ns;
3167 	DECLARE_SWAITQUEUE(wait);
3168 
3169 	/* Poll for pending exceptions and ceded state */
3170 	cur = start_poll = ktime_get();
3171 	if (vc->halt_poll_ns) {
3172 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3173 		++vc->runner->stat.halt_attempted_poll;
3174 
3175 		vc->vcore_state = VCORE_POLLING;
3176 		spin_unlock(&vc->lock);
3177 
3178 		do {
3179 			if (kvmppc_vcore_check_block(vc)) {
3180 				do_sleep = 0;
3181 				break;
3182 			}
3183 			cur = ktime_get();
3184 		} while (single_task_running() && ktime_before(cur, stop));
3185 
3186 		spin_lock(&vc->lock);
3187 		vc->vcore_state = VCORE_INACTIVE;
3188 
3189 		if (!do_sleep) {
3190 			++vc->runner->stat.halt_successful_poll;
3191 			goto out;
3192 		}
3193 	}
3194 
3195 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3196 
3197 	if (kvmppc_vcore_check_block(vc)) {
3198 		finish_swait(&vc->wq, &wait);
3199 		do_sleep = 0;
3200 		/* If we polled, count this as a successful poll */
3201 		if (vc->halt_poll_ns)
3202 			++vc->runner->stat.halt_successful_poll;
3203 		goto out;
3204 	}
3205 
3206 	start_wait = ktime_get();
3207 
3208 	vc->vcore_state = VCORE_SLEEPING;
3209 	trace_kvmppc_vcore_blocked(vc, 0);
3210 	spin_unlock(&vc->lock);
3211 	schedule();
3212 	finish_swait(&vc->wq, &wait);
3213 	spin_lock(&vc->lock);
3214 	vc->vcore_state = VCORE_INACTIVE;
3215 	trace_kvmppc_vcore_blocked(vc, 1);
3216 	++vc->runner->stat.halt_successful_wait;
3217 
3218 	cur = ktime_get();
3219 
3220 out:
3221 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3222 
3223 	/* Attribute wait time */
3224 	if (do_sleep) {
3225 		vc->runner->stat.halt_wait_ns +=
3226 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3227 		/* Attribute failed poll time */
3228 		if (vc->halt_poll_ns)
3229 			vc->runner->stat.halt_poll_fail_ns +=
3230 				ktime_to_ns(start_wait) -
3231 				ktime_to_ns(start_poll);
3232 	} else {
3233 		/* Attribute successful poll time */
3234 		if (vc->halt_poll_ns)
3235 			vc->runner->stat.halt_poll_success_ns +=
3236 				ktime_to_ns(cur) -
3237 				ktime_to_ns(start_poll);
3238 	}
3239 
3240 	/* Adjust poll time */
3241 	if (halt_poll_ns) {
3242 		if (block_ns <= vc->halt_poll_ns)
3243 			;
3244 		/* We slept and blocked for longer than the max halt time */
3245 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3246 			shrink_halt_poll_ns(vc);
3247 		/* We slept and our poll time is too small */
3248 		else if (vc->halt_poll_ns < halt_poll_ns &&
3249 				block_ns < halt_poll_ns)
3250 			grow_halt_poll_ns(vc);
3251 		if (vc->halt_poll_ns > halt_poll_ns)
3252 			vc->halt_poll_ns = halt_poll_ns;
3253 	} else
3254 		vc->halt_poll_ns = 0;
3255 
3256 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3257 }
3258 
3259 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3260 {
3261 	int r = 0;
3262 	struct kvm *kvm = vcpu->kvm;
3263 
3264 	mutex_lock(&kvm->lock);
3265 	if (!kvm->arch.mmu_ready) {
3266 		if (!kvm_is_radix(kvm))
3267 			r = kvmppc_hv_setup_htab_rma(vcpu);
3268 		if (!r) {
3269 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3270 				kvmppc_setup_partition_table(kvm);
3271 			kvm->arch.mmu_ready = 1;
3272 		}
3273 	}
3274 	mutex_unlock(&kvm->lock);
3275 	return r;
3276 }
3277 
3278 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3279 {
3280 	int n_ceded, i, r;
3281 	struct kvmppc_vcore *vc;
3282 	struct kvm_vcpu *v;
3283 
3284 	trace_kvmppc_run_vcpu_enter(vcpu);
3285 
3286 	kvm_run->exit_reason = 0;
3287 	vcpu->arch.ret = RESUME_GUEST;
3288 	vcpu->arch.trap = 0;
3289 	kvmppc_update_vpas(vcpu);
3290 
3291 	/*
3292 	 * Synchronize with other threads in this virtual core
3293 	 */
3294 	vc = vcpu->arch.vcore;
3295 	spin_lock(&vc->lock);
3296 	vcpu->arch.ceded = 0;
3297 	vcpu->arch.run_task = current;
3298 	vcpu->arch.kvm_run = kvm_run;
3299 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3300 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3301 	vcpu->arch.busy_preempt = TB_NIL;
3302 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3303 	++vc->n_runnable;
3304 
3305 	/*
3306 	 * This happens the first time this is called for a vcpu.
3307 	 * If the vcore is already running, we may be able to start
3308 	 * this thread straight away and have it join in.
3309 	 */
3310 	if (!signal_pending(current)) {
3311 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3312 		     vc->vcore_state == VCORE_RUNNING) &&
3313 			   !VCORE_IS_EXITING(vc)) {
3314 			kvmppc_create_dtl_entry(vcpu, vc);
3315 			kvmppc_start_thread(vcpu, vc);
3316 			trace_kvm_guest_enter(vcpu);
3317 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3318 			swake_up_one(&vc->wq);
3319 		}
3320 
3321 	}
3322 
3323 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3324 	       !signal_pending(current)) {
3325 		/* See if the MMU is ready to go */
3326 		if (!vcpu->kvm->arch.mmu_ready) {
3327 			spin_unlock(&vc->lock);
3328 			r = kvmhv_setup_mmu(vcpu);
3329 			spin_lock(&vc->lock);
3330 			if (r) {
3331 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3332 				kvm_run->fail_entry.
3333 					hardware_entry_failure_reason = 0;
3334 				vcpu->arch.ret = r;
3335 				break;
3336 			}
3337 		}
3338 
3339 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3340 			kvmppc_vcore_end_preempt(vc);
3341 
3342 		if (vc->vcore_state != VCORE_INACTIVE) {
3343 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3344 			continue;
3345 		}
3346 		for_each_runnable_thread(i, v, vc) {
3347 			kvmppc_core_prepare_to_enter(v);
3348 			if (signal_pending(v->arch.run_task)) {
3349 				kvmppc_remove_runnable(vc, v);
3350 				v->stat.signal_exits++;
3351 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3352 				v->arch.ret = -EINTR;
3353 				wake_up(&v->arch.cpu_run);
3354 			}
3355 		}
3356 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3357 			break;
3358 		n_ceded = 0;
3359 		for_each_runnable_thread(i, v, vc) {
3360 			if (!kvmppc_vcpu_woken(v))
3361 				n_ceded += v->arch.ceded;
3362 			else
3363 				v->arch.ceded = 0;
3364 		}
3365 		vc->runner = vcpu;
3366 		if (n_ceded == vc->n_runnable) {
3367 			kvmppc_vcore_blocked(vc);
3368 		} else if (need_resched()) {
3369 			kvmppc_vcore_preempt(vc);
3370 			/* Let something else run */
3371 			cond_resched_lock(&vc->lock);
3372 			if (vc->vcore_state == VCORE_PREEMPT)
3373 				kvmppc_vcore_end_preempt(vc);
3374 		} else {
3375 			kvmppc_run_core(vc);
3376 		}
3377 		vc->runner = NULL;
3378 	}
3379 
3380 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3381 	       (vc->vcore_state == VCORE_RUNNING ||
3382 		vc->vcore_state == VCORE_EXITING ||
3383 		vc->vcore_state == VCORE_PIGGYBACK))
3384 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3385 
3386 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3387 		kvmppc_vcore_end_preempt(vc);
3388 
3389 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3390 		kvmppc_remove_runnable(vc, vcpu);
3391 		vcpu->stat.signal_exits++;
3392 		kvm_run->exit_reason = KVM_EXIT_INTR;
3393 		vcpu->arch.ret = -EINTR;
3394 	}
3395 
3396 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3397 		/* Wake up some vcpu to run the core */
3398 		i = -1;
3399 		v = next_runnable_thread(vc, &i);
3400 		wake_up(&v->arch.cpu_run);
3401 	}
3402 
3403 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3404 	spin_unlock(&vc->lock);
3405 	return vcpu->arch.ret;
3406 }
3407 
3408 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3409 {
3410 	int r;
3411 	int srcu_idx;
3412 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3413 	unsigned long user_tar = 0;
3414 	unsigned int user_vrsave;
3415 	struct kvm *kvm;
3416 
3417 	if (!vcpu->arch.sane) {
3418 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3419 		return -EINVAL;
3420 	}
3421 
3422 	/*
3423 	 * Don't allow entry with a suspended transaction, because
3424 	 * the guest entry/exit code will lose it.
3425 	 * If the guest has TM enabled, save away their TM-related SPRs
3426 	 * (they will get restored by the TM unavailable interrupt).
3427 	 */
3428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3429 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3430 	    (current->thread.regs->msr & MSR_TM)) {
3431 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3432 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3433 			run->fail_entry.hardware_entry_failure_reason = 0;
3434 			return -EINVAL;
3435 		}
3436 		/* Enable TM so we can read the TM SPRs */
3437 		mtmsr(mfmsr() | MSR_TM);
3438 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3439 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3440 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3441 		current->thread.regs->msr &= ~MSR_TM;
3442 	}
3443 #endif
3444 
3445 	/*
3446 	 * Force online to 1 for the sake of old userspace which doesn't
3447 	 * set it.
3448 	 */
3449 	if (!vcpu->arch.online) {
3450 		atomic_inc(&vcpu->arch.vcore->online_count);
3451 		vcpu->arch.online = 1;
3452 	}
3453 
3454 	kvmppc_core_prepare_to_enter(vcpu);
3455 
3456 	/* No need to go into the guest when all we'll do is come back out */
3457 	if (signal_pending(current)) {
3458 		run->exit_reason = KVM_EXIT_INTR;
3459 		return -EINTR;
3460 	}
3461 
3462 	kvm = vcpu->kvm;
3463 	atomic_inc(&kvm->arch.vcpus_running);
3464 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3465 	smp_mb();
3466 
3467 	flush_all_to_thread(current);
3468 
3469 	/* Save userspace EBB and other register values */
3470 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3471 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3472 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3473 		ebb_regs[2] = mfspr(SPRN_BESCR);
3474 		user_tar = mfspr(SPRN_TAR);
3475 	}
3476 	user_vrsave = mfspr(SPRN_VRSAVE);
3477 
3478 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3479 	vcpu->arch.pgdir = current->mm->pgd;
3480 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3481 
3482 	do {
3483 		r = kvmppc_run_vcpu(run, vcpu);
3484 
3485 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3486 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3487 			trace_kvm_hcall_enter(vcpu);
3488 			r = kvmppc_pseries_do_hcall(vcpu);
3489 			trace_kvm_hcall_exit(vcpu, r);
3490 			kvmppc_core_prepare_to_enter(vcpu);
3491 		} else if (r == RESUME_PAGE_FAULT) {
3492 			srcu_idx = srcu_read_lock(&kvm->srcu);
3493 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3494 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3495 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3496 		} else if (r == RESUME_PASSTHROUGH) {
3497 			if (WARN_ON(xive_enabled()))
3498 				r = H_SUCCESS;
3499 			else
3500 				r = kvmppc_xics_rm_complete(vcpu, 0);
3501 		}
3502 	} while (is_kvmppc_resume_guest(r));
3503 
3504 	/* Restore userspace EBB and other register values */
3505 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3506 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3507 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3508 		mtspr(SPRN_BESCR, ebb_regs[2]);
3509 		mtspr(SPRN_TAR, user_tar);
3510 		mtspr(SPRN_FSCR, current->thread.fscr);
3511 	}
3512 	mtspr(SPRN_VRSAVE, user_vrsave);
3513 
3514 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3515 	atomic_dec(&kvm->arch.vcpus_running);
3516 	return r;
3517 }
3518 
3519 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3520 				     int shift, int sllp)
3521 {
3522 	(*sps)->page_shift = shift;
3523 	(*sps)->slb_enc = sllp;
3524 	(*sps)->enc[0].page_shift = shift;
3525 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3526 	/*
3527 	 * Add 16MB MPSS support (may get filtered out by userspace)
3528 	 */
3529 	if (shift != 24) {
3530 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3531 		if (penc != -1) {
3532 			(*sps)->enc[1].page_shift = 24;
3533 			(*sps)->enc[1].pte_enc = penc;
3534 		}
3535 	}
3536 	(*sps)++;
3537 }
3538 
3539 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3540 					 struct kvm_ppc_smmu_info *info)
3541 {
3542 	struct kvm_ppc_one_seg_page_size *sps;
3543 
3544 	/*
3545 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3546 	 * POWER7 doesn't support keys for instruction accesses,
3547 	 * POWER8 and POWER9 do.
3548 	 */
3549 	info->data_keys = 32;
3550 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3551 
3552 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3553 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3554 	info->slb_size = 32;
3555 
3556 	/* We only support these sizes for now, and no muti-size segments */
3557 	sps = &info->sps[0];
3558 	kvmppc_add_seg_page_size(&sps, 12, 0);
3559 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3560 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * Get (and clear) the dirty memory log for a memory slot.
3567  */
3568 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3569 					 struct kvm_dirty_log *log)
3570 {
3571 	struct kvm_memslots *slots;
3572 	struct kvm_memory_slot *memslot;
3573 	int i, r;
3574 	unsigned long n;
3575 	unsigned long *buf, *p;
3576 	struct kvm_vcpu *vcpu;
3577 
3578 	mutex_lock(&kvm->slots_lock);
3579 
3580 	r = -EINVAL;
3581 	if (log->slot >= KVM_USER_MEM_SLOTS)
3582 		goto out;
3583 
3584 	slots = kvm_memslots(kvm);
3585 	memslot = id_to_memslot(slots, log->slot);
3586 	r = -ENOENT;
3587 	if (!memslot->dirty_bitmap)
3588 		goto out;
3589 
3590 	/*
3591 	 * Use second half of bitmap area because both HPT and radix
3592 	 * accumulate bits in the first half.
3593 	 */
3594 	n = kvm_dirty_bitmap_bytes(memslot);
3595 	buf = memslot->dirty_bitmap + n / sizeof(long);
3596 	memset(buf, 0, n);
3597 
3598 	if (kvm_is_radix(kvm))
3599 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3600 	else
3601 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3602 	if (r)
3603 		goto out;
3604 
3605 	/*
3606 	 * We accumulate dirty bits in the first half of the
3607 	 * memslot's dirty_bitmap area, for when pages are paged
3608 	 * out or modified by the host directly.  Pick up these
3609 	 * bits and add them to the map.
3610 	 */
3611 	p = memslot->dirty_bitmap;
3612 	for (i = 0; i < n / sizeof(long); ++i)
3613 		buf[i] |= xchg(&p[i], 0);
3614 
3615 	/* Harvest dirty bits from VPA and DTL updates */
3616 	/* Note: we never modify the SLB shadow buffer areas */
3617 	kvm_for_each_vcpu(i, vcpu, kvm) {
3618 		spin_lock(&vcpu->arch.vpa_update_lock);
3619 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3620 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3621 		spin_unlock(&vcpu->arch.vpa_update_lock);
3622 	}
3623 
3624 	r = -EFAULT;
3625 	if (copy_to_user(log->dirty_bitmap, buf, n))
3626 		goto out;
3627 
3628 	r = 0;
3629 out:
3630 	mutex_unlock(&kvm->slots_lock);
3631 	return r;
3632 }
3633 
3634 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3635 					struct kvm_memory_slot *dont)
3636 {
3637 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3638 		vfree(free->arch.rmap);
3639 		free->arch.rmap = NULL;
3640 	}
3641 }
3642 
3643 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3644 					 unsigned long npages)
3645 {
3646 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3647 	if (!slot->arch.rmap)
3648 		return -ENOMEM;
3649 
3650 	return 0;
3651 }
3652 
3653 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3654 					struct kvm_memory_slot *memslot,
3655 					const struct kvm_userspace_memory_region *mem)
3656 {
3657 	return 0;
3658 }
3659 
3660 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3661 				const struct kvm_userspace_memory_region *mem,
3662 				const struct kvm_memory_slot *old,
3663 				const struct kvm_memory_slot *new)
3664 {
3665 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3666 
3667 	/*
3668 	 * If we are making a new memslot, it might make
3669 	 * some address that was previously cached as emulated
3670 	 * MMIO be no longer emulated MMIO, so invalidate
3671 	 * all the caches of emulated MMIO translations.
3672 	 */
3673 	if (npages)
3674 		atomic64_inc(&kvm->arch.mmio_update);
3675 }
3676 
3677 /*
3678  * Update LPCR values in kvm->arch and in vcores.
3679  * Caller must hold kvm->lock.
3680  */
3681 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3682 {
3683 	long int i;
3684 	u32 cores_done = 0;
3685 
3686 	if ((kvm->arch.lpcr & mask) == lpcr)
3687 		return;
3688 
3689 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3690 
3691 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3692 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3693 		if (!vc)
3694 			continue;
3695 		spin_lock(&vc->lock);
3696 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3697 		spin_unlock(&vc->lock);
3698 		if (++cores_done >= kvm->arch.online_vcores)
3699 			break;
3700 	}
3701 }
3702 
3703 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3704 {
3705 	return;
3706 }
3707 
3708 void kvmppc_setup_partition_table(struct kvm *kvm)
3709 {
3710 	unsigned long dw0, dw1;
3711 
3712 	if (!kvm_is_radix(kvm)) {
3713 		/* PS field - page size for VRMA */
3714 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3715 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3716 		/* HTABSIZE and HTABORG fields */
3717 		dw0 |= kvm->arch.sdr1;
3718 
3719 		/* Second dword as set by userspace */
3720 		dw1 = kvm->arch.process_table;
3721 	} else {
3722 		dw0 = PATB_HR | radix__get_tree_size() |
3723 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3724 		dw1 = PATB_GR | kvm->arch.process_table;
3725 	}
3726 
3727 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3728 }
3729 
3730 /*
3731  * Set up HPT (hashed page table) and RMA (real-mode area).
3732  * Must be called with kvm->lock held.
3733  */
3734 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3735 {
3736 	int err = 0;
3737 	struct kvm *kvm = vcpu->kvm;
3738 	unsigned long hva;
3739 	struct kvm_memory_slot *memslot;
3740 	struct vm_area_struct *vma;
3741 	unsigned long lpcr = 0, senc;
3742 	unsigned long psize, porder;
3743 	int srcu_idx;
3744 
3745 	/* Allocate hashed page table (if not done already) and reset it */
3746 	if (!kvm->arch.hpt.virt) {
3747 		int order = KVM_DEFAULT_HPT_ORDER;
3748 		struct kvm_hpt_info info;
3749 
3750 		err = kvmppc_allocate_hpt(&info, order);
3751 		/* If we get here, it means userspace didn't specify a
3752 		 * size explicitly.  So, try successively smaller
3753 		 * sizes if the default failed. */
3754 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3755 			err  = kvmppc_allocate_hpt(&info, order);
3756 
3757 		if (err < 0) {
3758 			pr_err("KVM: Couldn't alloc HPT\n");
3759 			goto out;
3760 		}
3761 
3762 		kvmppc_set_hpt(kvm, &info);
3763 	}
3764 
3765 	/* Look up the memslot for guest physical address 0 */
3766 	srcu_idx = srcu_read_lock(&kvm->srcu);
3767 	memslot = gfn_to_memslot(kvm, 0);
3768 
3769 	/* We must have some memory at 0 by now */
3770 	err = -EINVAL;
3771 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3772 		goto out_srcu;
3773 
3774 	/* Look up the VMA for the start of this memory slot */
3775 	hva = memslot->userspace_addr;
3776 	down_read(&current->mm->mmap_sem);
3777 	vma = find_vma(current->mm, hva);
3778 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3779 		goto up_out;
3780 
3781 	psize = vma_kernel_pagesize(vma);
3782 
3783 	up_read(&current->mm->mmap_sem);
3784 
3785 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3786 	if (psize >= 0x1000000)
3787 		psize = 0x1000000;
3788 	else if (psize >= 0x10000)
3789 		psize = 0x10000;
3790 	else
3791 		psize = 0x1000;
3792 	porder = __ilog2(psize);
3793 
3794 	senc = slb_pgsize_encoding(psize);
3795 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3796 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3797 	/* Create HPTEs in the hash page table for the VRMA */
3798 	kvmppc_map_vrma(vcpu, memslot, porder);
3799 
3800 	/* Update VRMASD field in the LPCR */
3801 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3802 		/* the -4 is to account for senc values starting at 0x10 */
3803 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3804 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3805 	}
3806 
3807 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3808 	smp_wmb();
3809 	err = 0;
3810  out_srcu:
3811 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3812  out:
3813 	return err;
3814 
3815  up_out:
3816 	up_read(&current->mm->mmap_sem);
3817 	goto out_srcu;
3818 }
3819 
3820 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3821 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3822 {
3823 	kvmppc_free_radix(kvm);
3824 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3825 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3826 	kvmppc_rmap_reset(kvm);
3827 	kvm->arch.radix = 0;
3828 	kvm->arch.process_table = 0;
3829 	return 0;
3830 }
3831 
3832 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3833 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3834 {
3835 	int err;
3836 
3837 	err = kvmppc_init_vm_radix(kvm);
3838 	if (err)
3839 		return err;
3840 
3841 	kvmppc_free_hpt(&kvm->arch.hpt);
3842 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3843 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3844 	kvm->arch.radix = 1;
3845 	return 0;
3846 }
3847 
3848 #ifdef CONFIG_KVM_XICS
3849 /*
3850  * Allocate a per-core structure for managing state about which cores are
3851  * running in the host versus the guest and for exchanging data between
3852  * real mode KVM and CPU running in the host.
3853  * This is only done for the first VM.
3854  * The allocated structure stays even if all VMs have stopped.
3855  * It is only freed when the kvm-hv module is unloaded.
3856  * It's OK for this routine to fail, we just don't support host
3857  * core operations like redirecting H_IPI wakeups.
3858  */
3859 void kvmppc_alloc_host_rm_ops(void)
3860 {
3861 	struct kvmppc_host_rm_ops *ops;
3862 	unsigned long l_ops;
3863 	int cpu, core;
3864 	int size;
3865 
3866 	/* Not the first time here ? */
3867 	if (kvmppc_host_rm_ops_hv != NULL)
3868 		return;
3869 
3870 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3871 	if (!ops)
3872 		return;
3873 
3874 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3875 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3876 
3877 	if (!ops->rm_core) {
3878 		kfree(ops);
3879 		return;
3880 	}
3881 
3882 	cpus_read_lock();
3883 
3884 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3885 		if (!cpu_online(cpu))
3886 			continue;
3887 
3888 		core = cpu >> threads_shift;
3889 		ops->rm_core[core].rm_state.in_host = 1;
3890 	}
3891 
3892 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3893 
3894 	/*
3895 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3896 	 * to other CPUs before we assign it to the global variable.
3897 	 * Do an atomic assignment (no locks used here), but if someone
3898 	 * beats us to it, just free our copy and return.
3899 	 */
3900 	smp_wmb();
3901 	l_ops = (unsigned long) ops;
3902 
3903 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3904 		cpus_read_unlock();
3905 		kfree(ops->rm_core);
3906 		kfree(ops);
3907 		return;
3908 	}
3909 
3910 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3911 					     "ppc/kvm_book3s:prepare",
3912 					     kvmppc_set_host_core,
3913 					     kvmppc_clear_host_core);
3914 	cpus_read_unlock();
3915 }
3916 
3917 void kvmppc_free_host_rm_ops(void)
3918 {
3919 	if (kvmppc_host_rm_ops_hv) {
3920 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3921 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3922 		kfree(kvmppc_host_rm_ops_hv);
3923 		kvmppc_host_rm_ops_hv = NULL;
3924 	}
3925 }
3926 #endif
3927 
3928 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3929 {
3930 	unsigned long lpcr, lpid;
3931 	char buf[32];
3932 	int ret;
3933 
3934 	/* Allocate the guest's logical partition ID */
3935 
3936 	lpid = kvmppc_alloc_lpid();
3937 	if ((long)lpid < 0)
3938 		return -ENOMEM;
3939 	kvm->arch.lpid = lpid;
3940 
3941 	kvmppc_alloc_host_rm_ops();
3942 
3943 	/*
3944 	 * Since we don't flush the TLB when tearing down a VM,
3945 	 * and this lpid might have previously been used,
3946 	 * make sure we flush on each core before running the new VM.
3947 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3948 	 * does this flush for us.
3949 	 */
3950 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3951 		cpumask_setall(&kvm->arch.need_tlb_flush);
3952 
3953 	/* Start out with the default set of hcalls enabled */
3954 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3955 	       sizeof(kvm->arch.enabled_hcalls));
3956 
3957 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3958 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3959 
3960 	/* Init LPCR for virtual RMA mode */
3961 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3962 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3963 	lpcr &= LPCR_PECE | LPCR_LPES;
3964 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3965 		LPCR_VPM0 | LPCR_VPM1;
3966 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3967 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3968 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3969 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3970 		lpcr |= LPCR_ONL;
3971 	/*
3972 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3973 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3974 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3975 	 * be unnecessary but better safe than sorry in case we re-enable
3976 	 * EE in HV mode with this LPCR still set)
3977 	 */
3978 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3979 		lpcr &= ~LPCR_VPM0;
3980 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3981 
3982 		/*
3983 		 * If xive is enabled, we route 0x500 interrupts directly
3984 		 * to the guest.
3985 		 */
3986 		if (xive_enabled())
3987 			lpcr |= LPCR_LPES;
3988 	}
3989 
3990 	/*
3991 	 * If the host uses radix, the guest starts out as radix.
3992 	 */
3993 	if (radix_enabled()) {
3994 		kvm->arch.radix = 1;
3995 		kvm->arch.mmu_ready = 1;
3996 		lpcr &= ~LPCR_VPM1;
3997 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3998 		ret = kvmppc_init_vm_radix(kvm);
3999 		if (ret) {
4000 			kvmppc_free_lpid(kvm->arch.lpid);
4001 			return ret;
4002 		}
4003 		kvmppc_setup_partition_table(kvm);
4004 	}
4005 
4006 	kvm->arch.lpcr = lpcr;
4007 
4008 	/* Initialization for future HPT resizes */
4009 	kvm->arch.resize_hpt = NULL;
4010 
4011 	/*
4012 	 * Work out how many sets the TLB has, for the use of
4013 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4014 	 */
4015 	if (radix_enabled())
4016 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4017 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4018 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4019 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4020 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4021 	else
4022 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4023 
4024 	/*
4025 	 * Track that we now have a HV mode VM active. This blocks secondary
4026 	 * CPU threads from coming online.
4027 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4028 	 * module parameter has been set to N.
4029 	 */
4030 	if (cpu_has_feature(CPU_FTR_ARCH_300))
4031 		kvm->arch.threads_indep = indep_threads_mode;
4032 	if (!kvm->arch.threads_indep)
4033 		kvm_hv_vm_activated();
4034 
4035 	/*
4036 	 * Initialize smt_mode depending on processor.
4037 	 * POWER8 and earlier have to use "strict" threading, where
4038 	 * all vCPUs in a vcore have to run on the same (sub)core,
4039 	 * whereas on POWER9 the threads can each run a different
4040 	 * guest.
4041 	 */
4042 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4043 		kvm->arch.smt_mode = threads_per_subcore;
4044 	else
4045 		kvm->arch.smt_mode = 1;
4046 	kvm->arch.emul_smt_mode = 1;
4047 
4048 	/*
4049 	 * Create a debugfs directory for the VM
4050 	 */
4051 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4052 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4053 	kvmppc_mmu_debugfs_init(kvm);
4054 
4055 	return 0;
4056 }
4057 
4058 static void kvmppc_free_vcores(struct kvm *kvm)
4059 {
4060 	long int i;
4061 
4062 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4063 		kfree(kvm->arch.vcores[i]);
4064 	kvm->arch.online_vcores = 0;
4065 }
4066 
4067 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4068 {
4069 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4070 
4071 	if (!kvm->arch.threads_indep)
4072 		kvm_hv_vm_deactivated();
4073 
4074 	kvmppc_free_vcores(kvm);
4075 
4076 	kvmppc_free_lpid(kvm->arch.lpid);
4077 
4078 	if (kvm_is_radix(kvm))
4079 		kvmppc_free_radix(kvm);
4080 	else
4081 		kvmppc_free_hpt(&kvm->arch.hpt);
4082 
4083 	kvmppc_free_pimap(kvm);
4084 }
4085 
4086 /* We don't need to emulate any privileged instructions or dcbz */
4087 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4088 				     unsigned int inst, int *advance)
4089 {
4090 	return EMULATE_FAIL;
4091 }
4092 
4093 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4094 					ulong spr_val)
4095 {
4096 	return EMULATE_FAIL;
4097 }
4098 
4099 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4100 					ulong *spr_val)
4101 {
4102 	return EMULATE_FAIL;
4103 }
4104 
4105 static int kvmppc_core_check_processor_compat_hv(void)
4106 {
4107 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4108 	    !cpu_has_feature(CPU_FTR_ARCH_206))
4109 		return -EIO;
4110 
4111 	return 0;
4112 }
4113 
4114 #ifdef CONFIG_KVM_XICS
4115 
4116 void kvmppc_free_pimap(struct kvm *kvm)
4117 {
4118 	kfree(kvm->arch.pimap);
4119 }
4120 
4121 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4122 {
4123 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4124 }
4125 
4126 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4127 {
4128 	struct irq_desc *desc;
4129 	struct kvmppc_irq_map *irq_map;
4130 	struct kvmppc_passthru_irqmap *pimap;
4131 	struct irq_chip *chip;
4132 	int i, rc = 0;
4133 
4134 	if (!kvm_irq_bypass)
4135 		return 1;
4136 
4137 	desc = irq_to_desc(host_irq);
4138 	if (!desc)
4139 		return -EIO;
4140 
4141 	mutex_lock(&kvm->lock);
4142 
4143 	pimap = kvm->arch.pimap;
4144 	if (pimap == NULL) {
4145 		/* First call, allocate structure to hold IRQ map */
4146 		pimap = kvmppc_alloc_pimap();
4147 		if (pimap == NULL) {
4148 			mutex_unlock(&kvm->lock);
4149 			return -ENOMEM;
4150 		}
4151 		kvm->arch.pimap = pimap;
4152 	}
4153 
4154 	/*
4155 	 * For now, we only support interrupts for which the EOI operation
4156 	 * is an OPAL call followed by a write to XIRR, since that's
4157 	 * what our real-mode EOI code does, or a XIVE interrupt
4158 	 */
4159 	chip = irq_data_get_irq_chip(&desc->irq_data);
4160 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4161 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4162 			host_irq, guest_gsi);
4163 		mutex_unlock(&kvm->lock);
4164 		return -ENOENT;
4165 	}
4166 
4167 	/*
4168 	 * See if we already have an entry for this guest IRQ number.
4169 	 * If it's mapped to a hardware IRQ number, that's an error,
4170 	 * otherwise re-use this entry.
4171 	 */
4172 	for (i = 0; i < pimap->n_mapped; i++) {
4173 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4174 			if (pimap->mapped[i].r_hwirq) {
4175 				mutex_unlock(&kvm->lock);
4176 				return -EINVAL;
4177 			}
4178 			break;
4179 		}
4180 	}
4181 
4182 	if (i == KVMPPC_PIRQ_MAPPED) {
4183 		mutex_unlock(&kvm->lock);
4184 		return -EAGAIN;		/* table is full */
4185 	}
4186 
4187 	irq_map = &pimap->mapped[i];
4188 
4189 	irq_map->v_hwirq = guest_gsi;
4190 	irq_map->desc = desc;
4191 
4192 	/*
4193 	 * Order the above two stores before the next to serialize with
4194 	 * the KVM real mode handler.
4195 	 */
4196 	smp_wmb();
4197 	irq_map->r_hwirq = desc->irq_data.hwirq;
4198 
4199 	if (i == pimap->n_mapped)
4200 		pimap->n_mapped++;
4201 
4202 	if (xive_enabled())
4203 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4204 	else
4205 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4206 	if (rc)
4207 		irq_map->r_hwirq = 0;
4208 
4209 	mutex_unlock(&kvm->lock);
4210 
4211 	return 0;
4212 }
4213 
4214 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4215 {
4216 	struct irq_desc *desc;
4217 	struct kvmppc_passthru_irqmap *pimap;
4218 	int i, rc = 0;
4219 
4220 	if (!kvm_irq_bypass)
4221 		return 0;
4222 
4223 	desc = irq_to_desc(host_irq);
4224 	if (!desc)
4225 		return -EIO;
4226 
4227 	mutex_lock(&kvm->lock);
4228 	if (!kvm->arch.pimap)
4229 		goto unlock;
4230 
4231 	pimap = kvm->arch.pimap;
4232 
4233 	for (i = 0; i < pimap->n_mapped; i++) {
4234 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4235 			break;
4236 	}
4237 
4238 	if (i == pimap->n_mapped) {
4239 		mutex_unlock(&kvm->lock);
4240 		return -ENODEV;
4241 	}
4242 
4243 	if (xive_enabled())
4244 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4245 	else
4246 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4247 
4248 	/* invalidate the entry (what do do on error from the above ?) */
4249 	pimap->mapped[i].r_hwirq = 0;
4250 
4251 	/*
4252 	 * We don't free this structure even when the count goes to
4253 	 * zero. The structure is freed when we destroy the VM.
4254 	 */
4255  unlock:
4256 	mutex_unlock(&kvm->lock);
4257 	return rc;
4258 }
4259 
4260 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4261 					     struct irq_bypass_producer *prod)
4262 {
4263 	int ret = 0;
4264 	struct kvm_kernel_irqfd *irqfd =
4265 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4266 
4267 	irqfd->producer = prod;
4268 
4269 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4270 	if (ret)
4271 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4272 			prod->irq, irqfd->gsi, ret);
4273 
4274 	return ret;
4275 }
4276 
4277 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4278 					      struct irq_bypass_producer *prod)
4279 {
4280 	int ret;
4281 	struct kvm_kernel_irqfd *irqfd =
4282 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4283 
4284 	irqfd->producer = NULL;
4285 
4286 	/*
4287 	 * When producer of consumer is unregistered, we change back to
4288 	 * default external interrupt handling mode - KVM real mode
4289 	 * will switch back to host.
4290 	 */
4291 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4292 	if (ret)
4293 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4294 			prod->irq, irqfd->gsi, ret);
4295 }
4296 #endif
4297 
4298 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4299 				 unsigned int ioctl, unsigned long arg)
4300 {
4301 	struct kvm *kvm __maybe_unused = filp->private_data;
4302 	void __user *argp = (void __user *)arg;
4303 	long r;
4304 
4305 	switch (ioctl) {
4306 
4307 	case KVM_PPC_ALLOCATE_HTAB: {
4308 		u32 htab_order;
4309 
4310 		r = -EFAULT;
4311 		if (get_user(htab_order, (u32 __user *)argp))
4312 			break;
4313 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4314 		if (r)
4315 			break;
4316 		r = 0;
4317 		break;
4318 	}
4319 
4320 	case KVM_PPC_GET_HTAB_FD: {
4321 		struct kvm_get_htab_fd ghf;
4322 
4323 		r = -EFAULT;
4324 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4325 			break;
4326 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4327 		break;
4328 	}
4329 
4330 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4331 		struct kvm_ppc_resize_hpt rhpt;
4332 
4333 		r = -EFAULT;
4334 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4335 			break;
4336 
4337 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4338 		break;
4339 	}
4340 
4341 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4342 		struct kvm_ppc_resize_hpt rhpt;
4343 
4344 		r = -EFAULT;
4345 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4346 			break;
4347 
4348 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4349 		break;
4350 	}
4351 
4352 	default:
4353 		r = -ENOTTY;
4354 	}
4355 
4356 	return r;
4357 }
4358 
4359 /*
4360  * List of hcall numbers to enable by default.
4361  * For compatibility with old userspace, we enable by default
4362  * all hcalls that were implemented before the hcall-enabling
4363  * facility was added.  Note this list should not include H_RTAS.
4364  */
4365 static unsigned int default_hcall_list[] = {
4366 	H_REMOVE,
4367 	H_ENTER,
4368 	H_READ,
4369 	H_PROTECT,
4370 	H_BULK_REMOVE,
4371 	H_GET_TCE,
4372 	H_PUT_TCE,
4373 	H_SET_DABR,
4374 	H_SET_XDABR,
4375 	H_CEDE,
4376 	H_PROD,
4377 	H_CONFER,
4378 	H_REGISTER_VPA,
4379 #ifdef CONFIG_KVM_XICS
4380 	H_EOI,
4381 	H_CPPR,
4382 	H_IPI,
4383 	H_IPOLL,
4384 	H_XIRR,
4385 	H_XIRR_X,
4386 #endif
4387 	0
4388 };
4389 
4390 static void init_default_hcalls(void)
4391 {
4392 	int i;
4393 	unsigned int hcall;
4394 
4395 	for (i = 0; default_hcall_list[i]; ++i) {
4396 		hcall = default_hcall_list[i];
4397 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4398 		__set_bit(hcall / 4, default_enabled_hcalls);
4399 	}
4400 }
4401 
4402 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4403 {
4404 	unsigned long lpcr;
4405 	int radix;
4406 	int err;
4407 
4408 	/* If not on a POWER9, reject it */
4409 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4410 		return -ENODEV;
4411 
4412 	/* If any unknown flags set, reject it */
4413 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4414 		return -EINVAL;
4415 
4416 	/* GR (guest radix) bit in process_table field must match */
4417 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4418 	if (!!(cfg->process_table & PATB_GR) != radix)
4419 		return -EINVAL;
4420 
4421 	/* Process table size field must be reasonable, i.e. <= 24 */
4422 	if ((cfg->process_table & PRTS_MASK) > 24)
4423 		return -EINVAL;
4424 
4425 	/* We can change a guest to/from radix now, if the host is radix */
4426 	if (radix && !radix_enabled())
4427 		return -EINVAL;
4428 
4429 	mutex_lock(&kvm->lock);
4430 	if (radix != kvm_is_radix(kvm)) {
4431 		if (kvm->arch.mmu_ready) {
4432 			kvm->arch.mmu_ready = 0;
4433 			/* order mmu_ready vs. vcpus_running */
4434 			smp_mb();
4435 			if (atomic_read(&kvm->arch.vcpus_running)) {
4436 				kvm->arch.mmu_ready = 1;
4437 				err = -EBUSY;
4438 				goto out_unlock;
4439 			}
4440 		}
4441 		if (radix)
4442 			err = kvmppc_switch_mmu_to_radix(kvm);
4443 		else
4444 			err = kvmppc_switch_mmu_to_hpt(kvm);
4445 		if (err)
4446 			goto out_unlock;
4447 	}
4448 
4449 	kvm->arch.process_table = cfg->process_table;
4450 	kvmppc_setup_partition_table(kvm);
4451 
4452 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4453 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4454 	err = 0;
4455 
4456  out_unlock:
4457 	mutex_unlock(&kvm->lock);
4458 	return err;
4459 }
4460 
4461 static struct kvmppc_ops kvm_ops_hv = {
4462 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4463 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4464 	.get_one_reg = kvmppc_get_one_reg_hv,
4465 	.set_one_reg = kvmppc_set_one_reg_hv,
4466 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4467 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4468 	.set_msr     = kvmppc_set_msr_hv,
4469 	.vcpu_run    = kvmppc_vcpu_run_hv,
4470 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4471 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4472 	.check_requests = kvmppc_core_check_requests_hv,
4473 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4474 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4475 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4476 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4477 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4478 	.age_hva  = kvm_age_hva_hv,
4479 	.test_age_hva = kvm_test_age_hva_hv,
4480 	.set_spte_hva = kvm_set_spte_hva_hv,
4481 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4482 	.free_memslot = kvmppc_core_free_memslot_hv,
4483 	.create_memslot = kvmppc_core_create_memslot_hv,
4484 	.init_vm =  kvmppc_core_init_vm_hv,
4485 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4486 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4487 	.emulate_op = kvmppc_core_emulate_op_hv,
4488 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4489 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4490 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4491 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4492 	.hcall_implemented = kvmppc_hcall_impl_hv,
4493 #ifdef CONFIG_KVM_XICS
4494 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4495 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4496 #endif
4497 	.configure_mmu = kvmhv_configure_mmu,
4498 	.get_rmmu_info = kvmhv_get_rmmu_info,
4499 	.set_smt_mode = kvmhv_set_smt_mode,
4500 };
4501 
4502 static int kvm_init_subcore_bitmap(void)
4503 {
4504 	int i, j;
4505 	int nr_cores = cpu_nr_cores();
4506 	struct sibling_subcore_state *sibling_subcore_state;
4507 
4508 	for (i = 0; i < nr_cores; i++) {
4509 		int first_cpu = i * threads_per_core;
4510 		int node = cpu_to_node(first_cpu);
4511 
4512 		/* Ignore if it is already allocated. */
4513 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4514 			continue;
4515 
4516 		sibling_subcore_state =
4517 			kmalloc_node(sizeof(struct sibling_subcore_state),
4518 							GFP_KERNEL, node);
4519 		if (!sibling_subcore_state)
4520 			return -ENOMEM;
4521 
4522 		memset(sibling_subcore_state, 0,
4523 				sizeof(struct sibling_subcore_state));
4524 
4525 		for (j = 0; j < threads_per_core; j++) {
4526 			int cpu = first_cpu + j;
4527 
4528 			paca_ptrs[cpu]->sibling_subcore_state =
4529 						sibling_subcore_state;
4530 		}
4531 	}
4532 	return 0;
4533 }
4534 
4535 static int kvmppc_radix_possible(void)
4536 {
4537 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4538 }
4539 
4540 static int kvmppc_book3s_init_hv(void)
4541 {
4542 	int r;
4543 	/*
4544 	 * FIXME!! Do we need to check on all cpus ?
4545 	 */
4546 	r = kvmppc_core_check_processor_compat_hv();
4547 	if (r < 0)
4548 		return -ENODEV;
4549 
4550 	r = kvm_init_subcore_bitmap();
4551 	if (r)
4552 		return r;
4553 
4554 	/*
4555 	 * We need a way of accessing the XICS interrupt controller,
4556 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4557 	 * indirectly, via OPAL.
4558 	 */
4559 #ifdef CONFIG_SMP
4560 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4561 		struct device_node *np;
4562 
4563 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4564 		if (!np) {
4565 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4566 			return -ENODEV;
4567 		}
4568 		/* presence of intc confirmed - node can be dropped again */
4569 		of_node_put(np);
4570 	}
4571 #endif
4572 
4573 	kvm_ops_hv.owner = THIS_MODULE;
4574 	kvmppc_hv_ops = &kvm_ops_hv;
4575 
4576 	init_default_hcalls();
4577 
4578 	init_vcore_lists();
4579 
4580 	r = kvmppc_mmu_hv_init();
4581 	if (r)
4582 		return r;
4583 
4584 	if (kvmppc_radix_possible())
4585 		r = kvmppc_radix_init();
4586 
4587 	/*
4588 	 * POWER9 chips before version 2.02 can't have some threads in
4589 	 * HPT mode and some in radix mode on the same core.
4590 	 */
4591 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4592 		unsigned int pvr = mfspr(SPRN_PVR);
4593 		if ((pvr >> 16) == PVR_POWER9 &&
4594 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4595 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4596 			no_mixing_hpt_and_radix = true;
4597 	}
4598 
4599 	return r;
4600 }
4601 
4602 static void kvmppc_book3s_exit_hv(void)
4603 {
4604 	kvmppc_free_host_rm_ops();
4605 	if (kvmppc_radix_possible())
4606 		kvmppc_radix_exit();
4607 	kvmppc_hv_ops = NULL;
4608 }
4609 
4610 module_init(kvmppc_book3s_init_hv);
4611 module_exit(kvmppc_book3s_exit_hv);
4612 MODULE_LICENSE("GPL");
4613 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4614 MODULE_ALIAS("devname:kvm");
4615