xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 
47 #include <asm/ftrace.h>
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/archrandom.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/interrupt.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/pmc.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78 #include <asm/kvm_book3s_uvmem.h>
79 #include <asm/ultravisor.h>
80 #include <asm/dtl.h>
81 #include <asm/plpar_wrappers.h>
82 
83 #include "book3s.h"
84 #include "book3s_hv.h"
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace_hv.h"
88 
89 /* #define EXIT_DEBUG */
90 /* #define EXIT_DEBUG_SIMPLE */
91 /* #define EXIT_DEBUG_INT */
92 
93 /* Used to indicate that a guest page fault needs to be handled */
94 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
95 /* Used to indicate that a guest passthrough interrupt needs to be handled */
96 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
97 
98 /* Used as a "null" value for timebase values */
99 #define TB_NIL	(~(u64)0)
100 
101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
102 
103 static int dynamic_mt_modes = 6;
104 module_param(dynamic_mt_modes, int, 0644);
105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
106 static int target_smt_mode;
107 module_param(target_smt_mode, int, 0644);
108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
109 
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
113 
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 	.set = param_set_int,
117 	.get = param_get_int,
118 };
119 
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122 
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126 
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131 
132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
133 
134 /*
135  * RWMR values for POWER8.  These control the rate at which PURR
136  * and SPURR count and should be set according to the number of
137  * online threads in the vcore being run.
138  */
139 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
140 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
141 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
142 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
143 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
144 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
146 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
147 
148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
149 	RWMR_RPA_P8_1THREAD,
150 	RWMR_RPA_P8_1THREAD,
151 	RWMR_RPA_P8_2THREAD,
152 	RWMR_RPA_P8_3THREAD,
153 	RWMR_RPA_P8_4THREAD,
154 	RWMR_RPA_P8_5THREAD,
155 	RWMR_RPA_P8_6THREAD,
156 	RWMR_RPA_P8_7THREAD,
157 	RWMR_RPA_P8_8THREAD,
158 };
159 
160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
161 		int *ip)
162 {
163 	int i = *ip;
164 	struct kvm_vcpu *vcpu;
165 
166 	while (++i < MAX_SMT_THREADS) {
167 		vcpu = READ_ONCE(vc->runnable_threads[i]);
168 		if (vcpu) {
169 			*ip = i;
170 			return vcpu;
171 		}
172 	}
173 	return NULL;
174 }
175 
176 /* Used to traverse the list of runnable threads for a given vcore */
177 #define for_each_runnable_thread(i, vcpu, vc) \
178 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
179 
180 static bool kvmppc_ipi_thread(int cpu)
181 {
182 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
183 
184 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
185 	if (kvmhv_on_pseries())
186 		return false;
187 
188 	/* On POWER9 we can use msgsnd to IPI any cpu */
189 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
190 		msg |= get_hard_smp_processor_id(cpu);
191 		smp_mb();
192 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
193 		return true;
194 	}
195 
196 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
197 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
198 		preempt_disable();
199 		if (cpu_first_thread_sibling(cpu) ==
200 		    cpu_first_thread_sibling(smp_processor_id())) {
201 			msg |= cpu_thread_in_core(cpu);
202 			smp_mb();
203 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204 			preempt_enable();
205 			return true;
206 		}
207 		preempt_enable();
208 	}
209 
210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
211 	if (cpu >= 0 && cpu < nr_cpu_ids) {
212 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
213 			xics_wake_cpu(cpu);
214 			return true;
215 		}
216 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
217 		return true;
218 	}
219 #endif
220 
221 	return false;
222 }
223 
224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
225 {
226 	int cpu;
227 	struct rcuwait *waitp;
228 
229 	/*
230 	 * rcuwait_wake_up contains smp_mb() which orders prior stores that
231 	 * create pending work vs below loads of cpu fields. The other side
232 	 * is the barrier in vcpu run that orders setting the cpu fields vs
233 	 * testing for pending work.
234 	 */
235 
236 	waitp = kvm_arch_vcpu_get_wait(vcpu);
237 	if (rcuwait_wake_up(waitp))
238 		++vcpu->stat.generic.halt_wakeup;
239 
240 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 		return;
243 
244 	/* CPU points to the first thread of the core */
245 	cpu = vcpu->cpu;
246 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 		smp_send_reschedule(cpu);
248 }
249 
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282 
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
284 {
285 	unsigned long flags;
286 
287 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
288 
289 	spin_lock_irqsave(&vc->stoltb_lock, flags);
290 	vc->preempt_tb = tb;
291 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293 
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
295 {
296 	unsigned long flags;
297 
298 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
299 
300 	spin_lock_irqsave(&vc->stoltb_lock, flags);
301 	if (vc->preempt_tb != TB_NIL) {
302 		vc->stolen_tb += tb - vc->preempt_tb;
303 		vc->preempt_tb = TB_NIL;
304 	}
305 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
306 }
307 
308 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
309 {
310 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
311 	unsigned long flags;
312 	u64 now;
313 
314 	if (cpu_has_feature(CPU_FTR_ARCH_300))
315 		return;
316 
317 	now = mftb();
318 
319 	/*
320 	 * We can test vc->runner without taking the vcore lock,
321 	 * because only this task ever sets vc->runner to this
322 	 * vcpu, and once it is set to this vcpu, only this task
323 	 * ever sets it to NULL.
324 	 */
325 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
326 		kvmppc_core_end_stolen(vc, now);
327 
328 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
329 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
330 	    vcpu->arch.busy_preempt != TB_NIL) {
331 		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
332 		vcpu->arch.busy_preempt = TB_NIL;
333 	}
334 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
335 }
336 
337 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
338 {
339 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
340 	unsigned long flags;
341 	u64 now;
342 
343 	if (cpu_has_feature(CPU_FTR_ARCH_300))
344 		return;
345 
346 	now = mftb();
347 
348 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
349 		kvmppc_core_start_stolen(vc, now);
350 
351 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
352 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
353 		vcpu->arch.busy_preempt = now;
354 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
355 }
356 
357 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
358 {
359 	vcpu->arch.pvr = pvr;
360 }
361 
362 /* Dummy value used in computing PCR value below */
363 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
364 
365 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
366 {
367 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
368 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
369 
370 	/* We can (emulate) our own architecture version and anything older */
371 	if (cpu_has_feature(CPU_FTR_ARCH_31))
372 		host_pcr_bit = PCR_ARCH_31;
373 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
374 		host_pcr_bit = PCR_ARCH_300;
375 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
376 		host_pcr_bit = PCR_ARCH_207;
377 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
378 		host_pcr_bit = PCR_ARCH_206;
379 	else
380 		host_pcr_bit = PCR_ARCH_205;
381 
382 	/* Determine lowest PCR bit needed to run guest in given PVR level */
383 	guest_pcr_bit = host_pcr_bit;
384 	if (arch_compat) {
385 		switch (arch_compat) {
386 		case PVR_ARCH_205:
387 			guest_pcr_bit = PCR_ARCH_205;
388 			break;
389 		case PVR_ARCH_206:
390 		case PVR_ARCH_206p:
391 			guest_pcr_bit = PCR_ARCH_206;
392 			break;
393 		case PVR_ARCH_207:
394 			guest_pcr_bit = PCR_ARCH_207;
395 			break;
396 		case PVR_ARCH_300:
397 			guest_pcr_bit = PCR_ARCH_300;
398 			break;
399 		case PVR_ARCH_31:
400 			guest_pcr_bit = PCR_ARCH_31;
401 			break;
402 		default:
403 			return -EINVAL;
404 		}
405 	}
406 
407 	/* Check requested PCR bits don't exceed our capabilities */
408 	if (guest_pcr_bit > host_pcr_bit)
409 		return -EINVAL;
410 
411 	spin_lock(&vc->lock);
412 	vc->arch_compat = arch_compat;
413 	/*
414 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
415 	 * Also set all reserved PCR bits
416 	 */
417 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
418 	spin_unlock(&vc->lock);
419 
420 	return 0;
421 }
422 
423 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
424 {
425 	int r;
426 
427 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
428 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
429 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
430 	for (r = 0; r < 16; ++r)
431 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
432 		       r, kvmppc_get_gpr(vcpu, r),
433 		       r+16, kvmppc_get_gpr(vcpu, r+16));
434 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
435 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
436 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
437 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
438 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
439 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
440 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
441 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
442 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
443 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
444 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
445 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
446 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
447 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
448 	for (r = 0; r < vcpu->arch.slb_max; ++r)
449 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
450 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
451 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
452 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
453 	       vcpu->arch.last_inst);
454 }
455 
456 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
457 {
458 	return kvm_get_vcpu_by_id(kvm, id);
459 }
460 
461 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
462 {
463 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
464 	vpa->yield_count = cpu_to_be32(1);
465 }
466 
467 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
468 		   unsigned long addr, unsigned long len)
469 {
470 	/* check address is cacheline aligned */
471 	if (addr & (L1_CACHE_BYTES - 1))
472 		return -EINVAL;
473 	spin_lock(&vcpu->arch.vpa_update_lock);
474 	if (v->next_gpa != addr || v->len != len) {
475 		v->next_gpa = addr;
476 		v->len = addr ? len : 0;
477 		v->update_pending = 1;
478 	}
479 	spin_unlock(&vcpu->arch.vpa_update_lock);
480 	return 0;
481 }
482 
483 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
484 struct reg_vpa {
485 	u32 dummy;
486 	union {
487 		__be16 hword;
488 		__be32 word;
489 	} length;
490 };
491 
492 static int vpa_is_registered(struct kvmppc_vpa *vpap)
493 {
494 	if (vpap->update_pending)
495 		return vpap->next_gpa != 0;
496 	return vpap->pinned_addr != NULL;
497 }
498 
499 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
500 				       unsigned long flags,
501 				       unsigned long vcpuid, unsigned long vpa)
502 {
503 	struct kvm *kvm = vcpu->kvm;
504 	unsigned long len, nb;
505 	void *va;
506 	struct kvm_vcpu *tvcpu;
507 	int err;
508 	int subfunc;
509 	struct kvmppc_vpa *vpap;
510 
511 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
512 	if (!tvcpu)
513 		return H_PARAMETER;
514 
515 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
516 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
517 	    subfunc == H_VPA_REG_SLB) {
518 		/* Registering new area - address must be cache-line aligned */
519 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
520 			return H_PARAMETER;
521 
522 		/* convert logical addr to kernel addr and read length */
523 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
524 		if (va == NULL)
525 			return H_PARAMETER;
526 		if (subfunc == H_VPA_REG_VPA)
527 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
528 		else
529 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
530 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
531 
532 		/* Check length */
533 		if (len > nb || len < sizeof(struct reg_vpa))
534 			return H_PARAMETER;
535 	} else {
536 		vpa = 0;
537 		len = 0;
538 	}
539 
540 	err = H_PARAMETER;
541 	vpap = NULL;
542 	spin_lock(&tvcpu->arch.vpa_update_lock);
543 
544 	switch (subfunc) {
545 	case H_VPA_REG_VPA:		/* register VPA */
546 		/*
547 		 * The size of our lppaca is 1kB because of the way we align
548 		 * it for the guest to avoid crossing a 4kB boundary. We only
549 		 * use 640 bytes of the structure though, so we should accept
550 		 * clients that set a size of 640.
551 		 */
552 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
553 		if (len < sizeof(struct lppaca))
554 			break;
555 		vpap = &tvcpu->arch.vpa;
556 		err = 0;
557 		break;
558 
559 	case H_VPA_REG_DTL:		/* register DTL */
560 		if (len < sizeof(struct dtl_entry))
561 			break;
562 		len -= len % sizeof(struct dtl_entry);
563 
564 		/* Check that they have previously registered a VPA */
565 		err = H_RESOURCE;
566 		if (!vpa_is_registered(&tvcpu->arch.vpa))
567 			break;
568 
569 		vpap = &tvcpu->arch.dtl;
570 		err = 0;
571 		break;
572 
573 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
574 		/* Check that they have previously registered a VPA */
575 		err = H_RESOURCE;
576 		if (!vpa_is_registered(&tvcpu->arch.vpa))
577 			break;
578 
579 		vpap = &tvcpu->arch.slb_shadow;
580 		err = 0;
581 		break;
582 
583 	case H_VPA_DEREG_VPA:		/* deregister VPA */
584 		/* Check they don't still have a DTL or SLB buf registered */
585 		err = H_RESOURCE;
586 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
587 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
588 			break;
589 
590 		vpap = &tvcpu->arch.vpa;
591 		err = 0;
592 		break;
593 
594 	case H_VPA_DEREG_DTL:		/* deregister DTL */
595 		vpap = &tvcpu->arch.dtl;
596 		err = 0;
597 		break;
598 
599 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
600 		vpap = &tvcpu->arch.slb_shadow;
601 		err = 0;
602 		break;
603 	}
604 
605 	if (vpap) {
606 		vpap->next_gpa = vpa;
607 		vpap->len = len;
608 		vpap->update_pending = 1;
609 	}
610 
611 	spin_unlock(&tvcpu->arch.vpa_update_lock);
612 
613 	return err;
614 }
615 
616 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
617 {
618 	struct kvm *kvm = vcpu->kvm;
619 	void *va;
620 	unsigned long nb;
621 	unsigned long gpa;
622 
623 	/*
624 	 * We need to pin the page pointed to by vpap->next_gpa,
625 	 * but we can't call kvmppc_pin_guest_page under the lock
626 	 * as it does get_user_pages() and down_read().  So we
627 	 * have to drop the lock, pin the page, then get the lock
628 	 * again and check that a new area didn't get registered
629 	 * in the meantime.
630 	 */
631 	for (;;) {
632 		gpa = vpap->next_gpa;
633 		spin_unlock(&vcpu->arch.vpa_update_lock);
634 		va = NULL;
635 		nb = 0;
636 		if (gpa)
637 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
638 		spin_lock(&vcpu->arch.vpa_update_lock);
639 		if (gpa == vpap->next_gpa)
640 			break;
641 		/* sigh... unpin that one and try again */
642 		if (va)
643 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
644 	}
645 
646 	vpap->update_pending = 0;
647 	if (va && nb < vpap->len) {
648 		/*
649 		 * If it's now too short, it must be that userspace
650 		 * has changed the mappings underlying guest memory,
651 		 * so unregister the region.
652 		 */
653 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
654 		va = NULL;
655 	}
656 	if (vpap->pinned_addr)
657 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
658 					vpap->dirty);
659 	vpap->gpa = gpa;
660 	vpap->pinned_addr = va;
661 	vpap->dirty = false;
662 	if (va)
663 		vpap->pinned_end = va + vpap->len;
664 }
665 
666 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
667 {
668 	if (!(vcpu->arch.vpa.update_pending ||
669 	      vcpu->arch.slb_shadow.update_pending ||
670 	      vcpu->arch.dtl.update_pending))
671 		return;
672 
673 	spin_lock(&vcpu->arch.vpa_update_lock);
674 	if (vcpu->arch.vpa.update_pending) {
675 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
676 		if (vcpu->arch.vpa.pinned_addr)
677 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
678 	}
679 	if (vcpu->arch.dtl.update_pending) {
680 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
681 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
682 		vcpu->arch.dtl_index = 0;
683 	}
684 	if (vcpu->arch.slb_shadow.update_pending)
685 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
686 	spin_unlock(&vcpu->arch.vpa_update_lock);
687 }
688 
689 /*
690  * Return the accumulated stolen time for the vcore up until `now'.
691  * The caller should hold the vcore lock.
692  */
693 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
694 {
695 	u64 p;
696 	unsigned long flags;
697 
698 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
699 
700 	spin_lock_irqsave(&vc->stoltb_lock, flags);
701 	p = vc->stolen_tb;
702 	if (vc->vcore_state != VCORE_INACTIVE &&
703 	    vc->preempt_tb != TB_NIL)
704 		p += now - vc->preempt_tb;
705 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
706 	return p;
707 }
708 
709 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
710 					unsigned int pcpu, u64 now,
711 					unsigned long stolen)
712 {
713 	struct dtl_entry *dt;
714 	struct lppaca *vpa;
715 
716 	dt = vcpu->arch.dtl_ptr;
717 	vpa = vcpu->arch.vpa.pinned_addr;
718 
719 	if (!dt || !vpa)
720 		return;
721 
722 	dt->dispatch_reason = 7;
723 	dt->preempt_reason = 0;
724 	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
725 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
726 	dt->ready_to_enqueue_time = 0;
727 	dt->waiting_to_ready_time = 0;
728 	dt->timebase = cpu_to_be64(now);
729 	dt->fault_addr = 0;
730 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
731 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
732 
733 	++dt;
734 	if (dt == vcpu->arch.dtl.pinned_end)
735 		dt = vcpu->arch.dtl.pinned_addr;
736 	vcpu->arch.dtl_ptr = dt;
737 	/* order writing *dt vs. writing vpa->dtl_idx */
738 	smp_wmb();
739 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
740 	vcpu->arch.dtl.dirty = true;
741 }
742 
743 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
744 				    struct kvmppc_vcore *vc)
745 {
746 	unsigned long stolen;
747 	unsigned long core_stolen;
748 	u64 now;
749 	unsigned long flags;
750 
751 	now = mftb();
752 
753 	core_stolen = vcore_stolen_time(vc, now);
754 	stolen = core_stolen - vcpu->arch.stolen_logged;
755 	vcpu->arch.stolen_logged = core_stolen;
756 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
757 	stolen += vcpu->arch.busy_stolen;
758 	vcpu->arch.busy_stolen = 0;
759 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
760 
761 	__kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
762 }
763 
764 /* See if there is a doorbell interrupt pending for a vcpu */
765 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
766 {
767 	int thr;
768 	struct kvmppc_vcore *vc;
769 
770 	if (vcpu->arch.doorbell_request)
771 		return true;
772 	if (cpu_has_feature(CPU_FTR_ARCH_300))
773 		return false;
774 	/*
775 	 * Ensure that the read of vcore->dpdes comes after the read
776 	 * of vcpu->doorbell_request.  This barrier matches the
777 	 * smp_wmb() in kvmppc_guest_entry_inject().
778 	 */
779 	smp_rmb();
780 	vc = vcpu->arch.vcore;
781 	thr = vcpu->vcpu_id - vc->first_vcpuid;
782 	return !!(vc->dpdes & (1 << thr));
783 }
784 
785 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
786 {
787 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
788 		return true;
789 	if ((!vcpu->arch.vcore->arch_compat) &&
790 	    cpu_has_feature(CPU_FTR_ARCH_207S))
791 		return true;
792 	return false;
793 }
794 
795 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
796 			     unsigned long resource, unsigned long value1,
797 			     unsigned long value2)
798 {
799 	switch (resource) {
800 	case H_SET_MODE_RESOURCE_SET_CIABR:
801 		if (!kvmppc_power8_compatible(vcpu))
802 			return H_P2;
803 		if (value2)
804 			return H_P4;
805 		if (mflags)
806 			return H_UNSUPPORTED_FLAG_START;
807 		/* Guests can't breakpoint the hypervisor */
808 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
809 			return H_P3;
810 		vcpu->arch.ciabr  = value1;
811 		return H_SUCCESS;
812 	case H_SET_MODE_RESOURCE_SET_DAWR0:
813 		if (!kvmppc_power8_compatible(vcpu))
814 			return H_P2;
815 		if (!ppc_breakpoint_available())
816 			return H_P2;
817 		if (mflags)
818 			return H_UNSUPPORTED_FLAG_START;
819 		if (value2 & DABRX_HYP)
820 			return H_P4;
821 		vcpu->arch.dawr0  = value1;
822 		vcpu->arch.dawrx0 = value2;
823 		return H_SUCCESS;
824 	case H_SET_MODE_RESOURCE_SET_DAWR1:
825 		if (!kvmppc_power8_compatible(vcpu))
826 			return H_P2;
827 		if (!ppc_breakpoint_available())
828 			return H_P2;
829 		if (!cpu_has_feature(CPU_FTR_DAWR1))
830 			return H_P2;
831 		if (!vcpu->kvm->arch.dawr1_enabled)
832 			return H_FUNCTION;
833 		if (mflags)
834 			return H_UNSUPPORTED_FLAG_START;
835 		if (value2 & DABRX_HYP)
836 			return H_P4;
837 		vcpu->arch.dawr1  = value1;
838 		vcpu->arch.dawrx1 = value2;
839 		return H_SUCCESS;
840 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
841 		/*
842 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
843 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
844 		 */
845 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
846 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
847 			return H_UNSUPPORTED_FLAG_START;
848 		return H_TOO_HARD;
849 	default:
850 		return H_TOO_HARD;
851 	}
852 }
853 
854 /* Copy guest memory in place - must reside within a single memslot */
855 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
856 				  unsigned long len)
857 {
858 	struct kvm_memory_slot *to_memslot = NULL;
859 	struct kvm_memory_slot *from_memslot = NULL;
860 	unsigned long to_addr, from_addr;
861 	int r;
862 
863 	/* Get HPA for from address */
864 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
865 	if (!from_memslot)
866 		return -EFAULT;
867 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
868 			     << PAGE_SHIFT))
869 		return -EINVAL;
870 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
871 	if (kvm_is_error_hva(from_addr))
872 		return -EFAULT;
873 	from_addr |= (from & (PAGE_SIZE - 1));
874 
875 	/* Get HPA for to address */
876 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
877 	if (!to_memslot)
878 		return -EFAULT;
879 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
880 			   << PAGE_SHIFT))
881 		return -EINVAL;
882 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
883 	if (kvm_is_error_hva(to_addr))
884 		return -EFAULT;
885 	to_addr |= (to & (PAGE_SIZE - 1));
886 
887 	/* Perform copy */
888 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
889 			     len);
890 	if (r)
891 		return -EFAULT;
892 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
893 	return 0;
894 }
895 
896 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
897 			       unsigned long dest, unsigned long src)
898 {
899 	u64 pg_sz = SZ_4K;		/* 4K page size */
900 	u64 pg_mask = SZ_4K - 1;
901 	int ret;
902 
903 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
904 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
905 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
906 		return H_PARAMETER;
907 
908 	/* dest (and src if copy_page flag set) must be page aligned */
909 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
910 		return H_PARAMETER;
911 
912 	/* zero and/or copy the page as determined by the flags */
913 	if (flags & H_COPY_PAGE) {
914 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
915 		if (ret < 0)
916 			return H_PARAMETER;
917 	} else if (flags & H_ZERO_PAGE) {
918 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
919 		if (ret < 0)
920 			return H_PARAMETER;
921 	}
922 
923 	/* We can ignore the remaining flags */
924 
925 	return H_SUCCESS;
926 }
927 
928 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
929 {
930 	struct kvmppc_vcore *vcore = target->arch.vcore;
931 
932 	/*
933 	 * We expect to have been called by the real mode handler
934 	 * (kvmppc_rm_h_confer()) which would have directly returned
935 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
936 	 * have useful work to do and should not confer) so we don't
937 	 * recheck that here.
938 	 *
939 	 * In the case of the P9 single vcpu per vcore case, the real
940 	 * mode handler is not called but no other threads are in the
941 	 * source vcore.
942 	 */
943 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
944 		spin_lock(&vcore->lock);
945 		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
946 		    vcore->vcore_state != VCORE_INACTIVE &&
947 		    vcore->runner)
948 			target = vcore->runner;
949 		spin_unlock(&vcore->lock);
950 	}
951 
952 	return kvm_vcpu_yield_to(target);
953 }
954 
955 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
956 {
957 	int yield_count = 0;
958 	struct lppaca *lppaca;
959 
960 	spin_lock(&vcpu->arch.vpa_update_lock);
961 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
962 	if (lppaca)
963 		yield_count = be32_to_cpu(lppaca->yield_count);
964 	spin_unlock(&vcpu->arch.vpa_update_lock);
965 	return yield_count;
966 }
967 
968 /*
969  * H_RPT_INVALIDATE hcall handler for nested guests.
970  *
971  * Handles only nested process-scoped invalidation requests in L0.
972  */
973 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
974 {
975 	unsigned long type = kvmppc_get_gpr(vcpu, 6);
976 	unsigned long pid, pg_sizes, start, end;
977 
978 	/*
979 	 * The partition-scoped invalidations aren't handled here in L0.
980 	 */
981 	if (type & H_RPTI_TYPE_NESTED)
982 		return RESUME_HOST;
983 
984 	pid = kvmppc_get_gpr(vcpu, 4);
985 	pg_sizes = kvmppc_get_gpr(vcpu, 7);
986 	start = kvmppc_get_gpr(vcpu, 8);
987 	end = kvmppc_get_gpr(vcpu, 9);
988 
989 	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
990 				type, pg_sizes, start, end);
991 
992 	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
993 	return RESUME_GUEST;
994 }
995 
996 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
997 				    unsigned long id, unsigned long target,
998 				    unsigned long type, unsigned long pg_sizes,
999 				    unsigned long start, unsigned long end)
1000 {
1001 	if (!kvm_is_radix(vcpu->kvm))
1002 		return H_UNSUPPORTED;
1003 
1004 	if (end < start)
1005 		return H_P5;
1006 
1007 	/*
1008 	 * Partition-scoped invalidation for nested guests.
1009 	 */
1010 	if (type & H_RPTI_TYPE_NESTED) {
1011 		if (!nesting_enabled(vcpu->kvm))
1012 			return H_FUNCTION;
1013 
1014 		/* Support only cores as target */
1015 		if (target != H_RPTI_TARGET_CMMU)
1016 			return H_P2;
1017 
1018 		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1019 					       start, end);
1020 	}
1021 
1022 	/*
1023 	 * Process-scoped invalidation for L1 guests.
1024 	 */
1025 	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1026 				type, pg_sizes, start, end);
1027 	return H_SUCCESS;
1028 }
1029 
1030 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1031 {
1032 	struct kvm *kvm = vcpu->kvm;
1033 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1034 	unsigned long target, ret = H_SUCCESS;
1035 	int yield_count;
1036 	struct kvm_vcpu *tvcpu;
1037 	int idx, rc;
1038 
1039 	if (req <= MAX_HCALL_OPCODE &&
1040 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1041 		return RESUME_HOST;
1042 
1043 	switch (req) {
1044 	case H_REMOVE:
1045 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1046 					kvmppc_get_gpr(vcpu, 5),
1047 					kvmppc_get_gpr(vcpu, 6));
1048 		if (ret == H_TOO_HARD)
1049 			return RESUME_HOST;
1050 		break;
1051 	case H_ENTER:
1052 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1053 					kvmppc_get_gpr(vcpu, 5),
1054 					kvmppc_get_gpr(vcpu, 6),
1055 					kvmppc_get_gpr(vcpu, 7));
1056 		if (ret == H_TOO_HARD)
1057 			return RESUME_HOST;
1058 		break;
1059 	case H_READ:
1060 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1061 					kvmppc_get_gpr(vcpu, 5));
1062 		if (ret == H_TOO_HARD)
1063 			return RESUME_HOST;
1064 		break;
1065 	case H_CLEAR_MOD:
1066 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1067 					kvmppc_get_gpr(vcpu, 5));
1068 		if (ret == H_TOO_HARD)
1069 			return RESUME_HOST;
1070 		break;
1071 	case H_CLEAR_REF:
1072 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1073 					kvmppc_get_gpr(vcpu, 5));
1074 		if (ret == H_TOO_HARD)
1075 			return RESUME_HOST;
1076 		break;
1077 	case H_PROTECT:
1078 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1079 					kvmppc_get_gpr(vcpu, 5),
1080 					kvmppc_get_gpr(vcpu, 6));
1081 		if (ret == H_TOO_HARD)
1082 			return RESUME_HOST;
1083 		break;
1084 	case H_BULK_REMOVE:
1085 		ret = kvmppc_h_bulk_remove(vcpu);
1086 		if (ret == H_TOO_HARD)
1087 			return RESUME_HOST;
1088 		break;
1089 
1090 	case H_CEDE:
1091 		break;
1092 	case H_PROD:
1093 		target = kvmppc_get_gpr(vcpu, 4);
1094 		tvcpu = kvmppc_find_vcpu(kvm, target);
1095 		if (!tvcpu) {
1096 			ret = H_PARAMETER;
1097 			break;
1098 		}
1099 		tvcpu->arch.prodded = 1;
1100 		smp_mb(); /* This orders prodded store vs ceded load */
1101 		if (tvcpu->arch.ceded)
1102 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1103 		break;
1104 	case H_CONFER:
1105 		target = kvmppc_get_gpr(vcpu, 4);
1106 		if (target == -1)
1107 			break;
1108 		tvcpu = kvmppc_find_vcpu(kvm, target);
1109 		if (!tvcpu) {
1110 			ret = H_PARAMETER;
1111 			break;
1112 		}
1113 		yield_count = kvmppc_get_gpr(vcpu, 5);
1114 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1115 			break;
1116 		kvm_arch_vcpu_yield_to(tvcpu);
1117 		break;
1118 	case H_REGISTER_VPA:
1119 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1120 					kvmppc_get_gpr(vcpu, 5),
1121 					kvmppc_get_gpr(vcpu, 6));
1122 		break;
1123 	case H_RTAS:
1124 		if (list_empty(&kvm->arch.rtas_tokens))
1125 			return RESUME_HOST;
1126 
1127 		idx = srcu_read_lock(&kvm->srcu);
1128 		rc = kvmppc_rtas_hcall(vcpu);
1129 		srcu_read_unlock(&kvm->srcu, idx);
1130 
1131 		if (rc == -ENOENT)
1132 			return RESUME_HOST;
1133 		else if (rc == 0)
1134 			break;
1135 
1136 		/* Send the error out to userspace via KVM_RUN */
1137 		return rc;
1138 	case H_LOGICAL_CI_LOAD:
1139 		ret = kvmppc_h_logical_ci_load(vcpu);
1140 		if (ret == H_TOO_HARD)
1141 			return RESUME_HOST;
1142 		break;
1143 	case H_LOGICAL_CI_STORE:
1144 		ret = kvmppc_h_logical_ci_store(vcpu);
1145 		if (ret == H_TOO_HARD)
1146 			return RESUME_HOST;
1147 		break;
1148 	case H_SET_MODE:
1149 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1150 					kvmppc_get_gpr(vcpu, 5),
1151 					kvmppc_get_gpr(vcpu, 6),
1152 					kvmppc_get_gpr(vcpu, 7));
1153 		if (ret == H_TOO_HARD)
1154 			return RESUME_HOST;
1155 		break;
1156 	case H_XIRR:
1157 	case H_CPPR:
1158 	case H_EOI:
1159 	case H_IPI:
1160 	case H_IPOLL:
1161 	case H_XIRR_X:
1162 		if (kvmppc_xics_enabled(vcpu)) {
1163 			if (xics_on_xive()) {
1164 				ret = H_NOT_AVAILABLE;
1165 				return RESUME_GUEST;
1166 			}
1167 			ret = kvmppc_xics_hcall(vcpu, req);
1168 			break;
1169 		}
1170 		return RESUME_HOST;
1171 	case H_SET_DABR:
1172 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1173 		break;
1174 	case H_SET_XDABR:
1175 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1176 						kvmppc_get_gpr(vcpu, 5));
1177 		break;
1178 #ifdef CONFIG_SPAPR_TCE_IOMMU
1179 	case H_GET_TCE:
1180 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1181 						kvmppc_get_gpr(vcpu, 5));
1182 		if (ret == H_TOO_HARD)
1183 			return RESUME_HOST;
1184 		break;
1185 	case H_PUT_TCE:
1186 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1187 						kvmppc_get_gpr(vcpu, 5),
1188 						kvmppc_get_gpr(vcpu, 6));
1189 		if (ret == H_TOO_HARD)
1190 			return RESUME_HOST;
1191 		break;
1192 	case H_PUT_TCE_INDIRECT:
1193 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1194 						kvmppc_get_gpr(vcpu, 5),
1195 						kvmppc_get_gpr(vcpu, 6),
1196 						kvmppc_get_gpr(vcpu, 7));
1197 		if (ret == H_TOO_HARD)
1198 			return RESUME_HOST;
1199 		break;
1200 	case H_STUFF_TCE:
1201 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1202 						kvmppc_get_gpr(vcpu, 5),
1203 						kvmppc_get_gpr(vcpu, 6),
1204 						kvmppc_get_gpr(vcpu, 7));
1205 		if (ret == H_TOO_HARD)
1206 			return RESUME_HOST;
1207 		break;
1208 #endif
1209 	case H_RANDOM:
1210 		if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1211 			ret = H_HARDWARE;
1212 		break;
1213 	case H_RPT_INVALIDATE:
1214 		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1215 					      kvmppc_get_gpr(vcpu, 5),
1216 					      kvmppc_get_gpr(vcpu, 6),
1217 					      kvmppc_get_gpr(vcpu, 7),
1218 					      kvmppc_get_gpr(vcpu, 8),
1219 					      kvmppc_get_gpr(vcpu, 9));
1220 		break;
1221 
1222 	case H_SET_PARTITION_TABLE:
1223 		ret = H_FUNCTION;
1224 		if (nesting_enabled(kvm))
1225 			ret = kvmhv_set_partition_table(vcpu);
1226 		break;
1227 	case H_ENTER_NESTED:
1228 		ret = H_FUNCTION;
1229 		if (!nesting_enabled(kvm))
1230 			break;
1231 		ret = kvmhv_enter_nested_guest(vcpu);
1232 		if (ret == H_INTERRUPT) {
1233 			kvmppc_set_gpr(vcpu, 3, 0);
1234 			vcpu->arch.hcall_needed = 0;
1235 			return -EINTR;
1236 		} else if (ret == H_TOO_HARD) {
1237 			kvmppc_set_gpr(vcpu, 3, 0);
1238 			vcpu->arch.hcall_needed = 0;
1239 			return RESUME_HOST;
1240 		}
1241 		break;
1242 	case H_TLB_INVALIDATE:
1243 		ret = H_FUNCTION;
1244 		if (nesting_enabled(kvm))
1245 			ret = kvmhv_do_nested_tlbie(vcpu);
1246 		break;
1247 	case H_COPY_TOFROM_GUEST:
1248 		ret = H_FUNCTION;
1249 		if (nesting_enabled(kvm))
1250 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1251 		break;
1252 	case H_PAGE_INIT:
1253 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1254 					 kvmppc_get_gpr(vcpu, 5),
1255 					 kvmppc_get_gpr(vcpu, 6));
1256 		break;
1257 	case H_SVM_PAGE_IN:
1258 		ret = H_UNSUPPORTED;
1259 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1260 			ret = kvmppc_h_svm_page_in(kvm,
1261 						   kvmppc_get_gpr(vcpu, 4),
1262 						   kvmppc_get_gpr(vcpu, 5),
1263 						   kvmppc_get_gpr(vcpu, 6));
1264 		break;
1265 	case H_SVM_PAGE_OUT:
1266 		ret = H_UNSUPPORTED;
1267 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1268 			ret = kvmppc_h_svm_page_out(kvm,
1269 						    kvmppc_get_gpr(vcpu, 4),
1270 						    kvmppc_get_gpr(vcpu, 5),
1271 						    kvmppc_get_gpr(vcpu, 6));
1272 		break;
1273 	case H_SVM_INIT_START:
1274 		ret = H_UNSUPPORTED;
1275 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1276 			ret = kvmppc_h_svm_init_start(kvm);
1277 		break;
1278 	case H_SVM_INIT_DONE:
1279 		ret = H_UNSUPPORTED;
1280 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1281 			ret = kvmppc_h_svm_init_done(kvm);
1282 		break;
1283 	case H_SVM_INIT_ABORT:
1284 		/*
1285 		 * Even if that call is made by the Ultravisor, the SSR1 value
1286 		 * is the guest context one, with the secure bit clear as it has
1287 		 * not yet been secured. So we can't check it here.
1288 		 * Instead the kvm->arch.secure_guest flag is checked inside
1289 		 * kvmppc_h_svm_init_abort().
1290 		 */
1291 		ret = kvmppc_h_svm_init_abort(kvm);
1292 		break;
1293 
1294 	default:
1295 		return RESUME_HOST;
1296 	}
1297 	WARN_ON_ONCE(ret == H_TOO_HARD);
1298 	kvmppc_set_gpr(vcpu, 3, ret);
1299 	vcpu->arch.hcall_needed = 0;
1300 	return RESUME_GUEST;
1301 }
1302 
1303 /*
1304  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1305  * handlers in book3s_hv_rmhandlers.S.
1306  *
1307  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1308  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1309  */
1310 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1311 {
1312 	vcpu->arch.shregs.msr |= MSR_EE;
1313 	vcpu->arch.ceded = 1;
1314 	smp_mb();
1315 	if (vcpu->arch.prodded) {
1316 		vcpu->arch.prodded = 0;
1317 		smp_mb();
1318 		vcpu->arch.ceded = 0;
1319 	}
1320 }
1321 
1322 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1323 {
1324 	switch (cmd) {
1325 	case H_CEDE:
1326 	case H_PROD:
1327 	case H_CONFER:
1328 	case H_REGISTER_VPA:
1329 	case H_SET_MODE:
1330 #ifdef CONFIG_SPAPR_TCE_IOMMU
1331 	case H_GET_TCE:
1332 	case H_PUT_TCE:
1333 	case H_PUT_TCE_INDIRECT:
1334 	case H_STUFF_TCE:
1335 #endif
1336 	case H_LOGICAL_CI_LOAD:
1337 	case H_LOGICAL_CI_STORE:
1338 #ifdef CONFIG_KVM_XICS
1339 	case H_XIRR:
1340 	case H_CPPR:
1341 	case H_EOI:
1342 	case H_IPI:
1343 	case H_IPOLL:
1344 	case H_XIRR_X:
1345 #endif
1346 	case H_PAGE_INIT:
1347 	case H_RPT_INVALIDATE:
1348 		return 1;
1349 	}
1350 
1351 	/* See if it's in the real-mode table */
1352 	return kvmppc_hcall_impl_hv_realmode(cmd);
1353 }
1354 
1355 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1356 {
1357 	u32 last_inst;
1358 
1359 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1360 					EMULATE_DONE) {
1361 		/*
1362 		 * Fetch failed, so return to guest and
1363 		 * try executing it again.
1364 		 */
1365 		return RESUME_GUEST;
1366 	}
1367 
1368 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1369 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1370 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1371 		return RESUME_HOST;
1372 	} else {
1373 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1374 		return RESUME_GUEST;
1375 	}
1376 }
1377 
1378 static void do_nothing(void *x)
1379 {
1380 }
1381 
1382 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1383 {
1384 	int thr, cpu, pcpu, nthreads;
1385 	struct kvm_vcpu *v;
1386 	unsigned long dpdes;
1387 
1388 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1389 	dpdes = 0;
1390 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1391 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1392 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1393 		if (!v)
1394 			continue;
1395 		/*
1396 		 * If the vcpu is currently running on a physical cpu thread,
1397 		 * interrupt it in order to pull it out of the guest briefly,
1398 		 * which will update its vcore->dpdes value.
1399 		 */
1400 		pcpu = READ_ONCE(v->cpu);
1401 		if (pcpu >= 0)
1402 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1403 		if (kvmppc_doorbell_pending(v))
1404 			dpdes |= 1 << thr;
1405 	}
1406 	return dpdes;
1407 }
1408 
1409 /*
1410  * On POWER9, emulate doorbell-related instructions in order to
1411  * give the guest the illusion of running on a multi-threaded core.
1412  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1413  * and mfspr DPDES.
1414  */
1415 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1416 {
1417 	u32 inst, rb, thr;
1418 	unsigned long arg;
1419 	struct kvm *kvm = vcpu->kvm;
1420 	struct kvm_vcpu *tvcpu;
1421 
1422 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1423 		return RESUME_GUEST;
1424 	if (get_op(inst) != 31)
1425 		return EMULATE_FAIL;
1426 	rb = get_rb(inst);
1427 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1428 	switch (get_xop(inst)) {
1429 	case OP_31_XOP_MSGSNDP:
1430 		arg = kvmppc_get_gpr(vcpu, rb);
1431 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1432 			break;
1433 		arg &= 0x7f;
1434 		if (arg >= kvm->arch.emul_smt_mode)
1435 			break;
1436 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1437 		if (!tvcpu)
1438 			break;
1439 		if (!tvcpu->arch.doorbell_request) {
1440 			tvcpu->arch.doorbell_request = 1;
1441 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1442 		}
1443 		break;
1444 	case OP_31_XOP_MSGCLRP:
1445 		arg = kvmppc_get_gpr(vcpu, rb);
1446 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1447 			break;
1448 		vcpu->arch.vcore->dpdes = 0;
1449 		vcpu->arch.doorbell_request = 0;
1450 		break;
1451 	case OP_31_XOP_MFSPR:
1452 		switch (get_sprn(inst)) {
1453 		case SPRN_TIR:
1454 			arg = thr;
1455 			break;
1456 		case SPRN_DPDES:
1457 			arg = kvmppc_read_dpdes(vcpu);
1458 			break;
1459 		default:
1460 			return EMULATE_FAIL;
1461 		}
1462 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1463 		break;
1464 	default:
1465 		return EMULATE_FAIL;
1466 	}
1467 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1468 	return RESUME_GUEST;
1469 }
1470 
1471 /*
1472  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1473  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1474  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1475  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1476  * allow the guest access to continue.
1477  */
1478 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1479 {
1480 	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1481 		return EMULATE_FAIL;
1482 
1483 	vcpu->arch.hfscr |= HFSCR_PM;
1484 
1485 	return RESUME_GUEST;
1486 }
1487 
1488 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1489 {
1490 	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1491 		return EMULATE_FAIL;
1492 
1493 	vcpu->arch.hfscr |= HFSCR_EBB;
1494 
1495 	return RESUME_GUEST;
1496 }
1497 
1498 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1499 {
1500 	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1501 		return EMULATE_FAIL;
1502 
1503 	vcpu->arch.hfscr |= HFSCR_TM;
1504 
1505 	return RESUME_GUEST;
1506 }
1507 
1508 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1509 				 struct task_struct *tsk)
1510 {
1511 	struct kvm_run *run = vcpu->run;
1512 	int r = RESUME_HOST;
1513 
1514 	vcpu->stat.sum_exits++;
1515 
1516 	/*
1517 	 * This can happen if an interrupt occurs in the last stages
1518 	 * of guest entry or the first stages of guest exit (i.e. after
1519 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1520 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1521 	 * That can happen due to a bug, or due to a machine check
1522 	 * occurring at just the wrong time.
1523 	 */
1524 	if (vcpu->arch.shregs.msr & MSR_HV) {
1525 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1526 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1527 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1528 			vcpu->arch.shregs.msr);
1529 		kvmppc_dump_regs(vcpu);
1530 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1531 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1532 		return RESUME_HOST;
1533 	}
1534 	run->exit_reason = KVM_EXIT_UNKNOWN;
1535 	run->ready_for_interrupt_injection = 1;
1536 	switch (vcpu->arch.trap) {
1537 	/* We're good on these - the host merely wanted to get our attention */
1538 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1539 		WARN_ON_ONCE(1); /* Should never happen */
1540 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1541 		fallthrough;
1542 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1543 		vcpu->stat.dec_exits++;
1544 		r = RESUME_GUEST;
1545 		break;
1546 	case BOOK3S_INTERRUPT_EXTERNAL:
1547 	case BOOK3S_INTERRUPT_H_DOORBELL:
1548 	case BOOK3S_INTERRUPT_H_VIRT:
1549 		vcpu->stat.ext_intr_exits++;
1550 		r = RESUME_GUEST;
1551 		break;
1552 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1553 	case BOOK3S_INTERRUPT_HMI:
1554 	case BOOK3S_INTERRUPT_PERFMON:
1555 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1556 		r = RESUME_GUEST;
1557 		break;
1558 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1559 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1560 					      DEFAULT_RATELIMIT_BURST);
1561 		/*
1562 		 * Print the MCE event to host console. Ratelimit so the guest
1563 		 * can't flood the host log.
1564 		 */
1565 		if (__ratelimit(&rs))
1566 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1567 
1568 		/*
1569 		 * If the guest can do FWNMI, exit to userspace so it can
1570 		 * deliver a FWNMI to the guest.
1571 		 * Otherwise we synthesize a machine check for the guest
1572 		 * so that it knows that the machine check occurred.
1573 		 */
1574 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1575 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1576 			kvmppc_core_queue_machine_check(vcpu, flags);
1577 			r = RESUME_GUEST;
1578 			break;
1579 		}
1580 
1581 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1582 		run->exit_reason = KVM_EXIT_NMI;
1583 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1584 		/* Clear out the old NMI status from run->flags */
1585 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1586 		/* Now set the NMI status */
1587 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1588 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1589 		else
1590 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1591 
1592 		r = RESUME_HOST;
1593 		break;
1594 	}
1595 	case BOOK3S_INTERRUPT_PROGRAM:
1596 	{
1597 		ulong flags;
1598 		/*
1599 		 * Normally program interrupts are delivered directly
1600 		 * to the guest by the hardware, but we can get here
1601 		 * as a result of a hypervisor emulation interrupt
1602 		 * (e40) getting turned into a 700 by BML RTAS.
1603 		 */
1604 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1605 		kvmppc_core_queue_program(vcpu, flags);
1606 		r = RESUME_GUEST;
1607 		break;
1608 	}
1609 	case BOOK3S_INTERRUPT_SYSCALL:
1610 	{
1611 		int i;
1612 
1613 		if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1614 			/*
1615 			 * Guest userspace executed sc 1. This can only be
1616 			 * reached by the P9 path because the old path
1617 			 * handles this case in realmode hcall handlers.
1618 			 */
1619 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1620 				/*
1621 				 * A guest could be running PR KVM, so this
1622 				 * may be a PR KVM hcall. It must be reflected
1623 				 * to the guest kernel as a sc interrupt.
1624 				 */
1625 				kvmppc_core_queue_syscall(vcpu);
1626 			} else {
1627 				/*
1628 				 * Radix guests can not run PR KVM or nested HV
1629 				 * hash guests which might run PR KVM, so this
1630 				 * is always a privilege fault. Send a program
1631 				 * check to guest kernel.
1632 				 */
1633 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1634 			}
1635 			r = RESUME_GUEST;
1636 			break;
1637 		}
1638 
1639 		/*
1640 		 * hcall - gather args and set exit_reason. This will next be
1641 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1642 		 * with it and resume guest, or may punt to userspace.
1643 		 */
1644 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1645 		for (i = 0; i < 9; ++i)
1646 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1647 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1648 		vcpu->arch.hcall_needed = 1;
1649 		r = RESUME_HOST;
1650 		break;
1651 	}
1652 	/*
1653 	 * We get these next two if the guest accesses a page which it thinks
1654 	 * it has mapped but which is not actually present, either because
1655 	 * it is for an emulated I/O device or because the corresonding
1656 	 * host page has been paged out.
1657 	 *
1658 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1659 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1660 	 * fault handling is done here.
1661 	 */
1662 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1663 		unsigned long vsid;
1664 		long err;
1665 
1666 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1667 		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1668 			r = RESUME_GUEST; /* Just retry if it's the canary */
1669 			break;
1670 		}
1671 
1672 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1673 			/*
1674 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1675 			 * already attempted to handle this in rmhandlers. The
1676 			 * hash fault handling below is v3 only (it uses ASDR
1677 			 * via fault_gpa).
1678 			 */
1679 			r = RESUME_PAGE_FAULT;
1680 			break;
1681 		}
1682 
1683 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1684 			kvmppc_core_queue_data_storage(vcpu,
1685 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1686 			r = RESUME_GUEST;
1687 			break;
1688 		}
1689 
1690 		if (!(vcpu->arch.shregs.msr & MSR_DR))
1691 			vsid = vcpu->kvm->arch.vrma_slb_v;
1692 		else
1693 			vsid = vcpu->arch.fault_gpa;
1694 
1695 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1696 				vsid, vcpu->arch.fault_dsisr, true);
1697 		if (err == 0) {
1698 			r = RESUME_GUEST;
1699 		} else if (err == -1 || err == -2) {
1700 			r = RESUME_PAGE_FAULT;
1701 		} else {
1702 			kvmppc_core_queue_data_storage(vcpu,
1703 				vcpu->arch.fault_dar, err);
1704 			r = RESUME_GUEST;
1705 		}
1706 		break;
1707 	}
1708 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1709 		unsigned long vsid;
1710 		long err;
1711 
1712 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1713 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1714 			DSISR_SRR1_MATCH_64S;
1715 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1716 			/*
1717 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1718 			 * already attempted to handle this in rmhandlers. The
1719 			 * hash fault handling below is v3 only (it uses ASDR
1720 			 * via fault_gpa).
1721 			 */
1722 			if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1723 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1724 			r = RESUME_PAGE_FAULT;
1725 			break;
1726 		}
1727 
1728 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1729 			kvmppc_core_queue_inst_storage(vcpu,
1730 				vcpu->arch.fault_dsisr);
1731 			r = RESUME_GUEST;
1732 			break;
1733 		}
1734 
1735 		if (!(vcpu->arch.shregs.msr & MSR_IR))
1736 			vsid = vcpu->kvm->arch.vrma_slb_v;
1737 		else
1738 			vsid = vcpu->arch.fault_gpa;
1739 
1740 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1741 				vsid, vcpu->arch.fault_dsisr, false);
1742 		if (err == 0) {
1743 			r = RESUME_GUEST;
1744 		} else if (err == -1) {
1745 			r = RESUME_PAGE_FAULT;
1746 		} else {
1747 			kvmppc_core_queue_inst_storage(vcpu, err);
1748 			r = RESUME_GUEST;
1749 		}
1750 		break;
1751 	}
1752 
1753 	/*
1754 	 * This occurs if the guest executes an illegal instruction.
1755 	 * If the guest debug is disabled, generate a program interrupt
1756 	 * to the guest. If guest debug is enabled, we need to check
1757 	 * whether the instruction is a software breakpoint instruction.
1758 	 * Accordingly return to Guest or Host.
1759 	 */
1760 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1761 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1762 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1763 				swab32(vcpu->arch.emul_inst) :
1764 				vcpu->arch.emul_inst;
1765 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1766 			r = kvmppc_emulate_debug_inst(vcpu);
1767 		} else {
1768 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1769 			r = RESUME_GUEST;
1770 		}
1771 		break;
1772 
1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1774 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1775 		/*
1776 		 * This occurs for various TM-related instructions that
1777 		 * we need to emulate on POWER9 DD2.2.  We have already
1778 		 * handled the cases where the guest was in real-suspend
1779 		 * mode and was transitioning to transactional state.
1780 		 */
1781 		r = kvmhv_p9_tm_emulation(vcpu);
1782 		if (r != -1)
1783 			break;
1784 		fallthrough; /* go to facility unavailable handler */
1785 #endif
1786 
1787 	/*
1788 	 * This occurs if the guest (kernel or userspace), does something that
1789 	 * is prohibited by HFSCR.
1790 	 * On POWER9, this could be a doorbell instruction that we need
1791 	 * to emulate.
1792 	 * Otherwise, we just generate a program interrupt to the guest.
1793 	 */
1794 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1795 		u64 cause = vcpu->arch.hfscr >> 56;
1796 
1797 		r = EMULATE_FAIL;
1798 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1799 			if (cause == FSCR_MSGP_LG)
1800 				r = kvmppc_emulate_doorbell_instr(vcpu);
1801 			if (cause == FSCR_PM_LG)
1802 				r = kvmppc_pmu_unavailable(vcpu);
1803 			if (cause == FSCR_EBB_LG)
1804 				r = kvmppc_ebb_unavailable(vcpu);
1805 			if (cause == FSCR_TM_LG)
1806 				r = kvmppc_tm_unavailable(vcpu);
1807 		}
1808 		if (r == EMULATE_FAIL) {
1809 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1810 			r = RESUME_GUEST;
1811 		}
1812 		break;
1813 	}
1814 
1815 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1816 		r = RESUME_PASSTHROUGH;
1817 		break;
1818 	default:
1819 		kvmppc_dump_regs(vcpu);
1820 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1821 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1822 			vcpu->arch.shregs.msr);
1823 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1824 		r = RESUME_HOST;
1825 		break;
1826 	}
1827 
1828 	return r;
1829 }
1830 
1831 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1832 {
1833 	int r;
1834 	int srcu_idx;
1835 
1836 	vcpu->stat.sum_exits++;
1837 
1838 	/*
1839 	 * This can happen if an interrupt occurs in the last stages
1840 	 * of guest entry or the first stages of guest exit (i.e. after
1841 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1842 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1843 	 * That can happen due to a bug, or due to a machine check
1844 	 * occurring at just the wrong time.
1845 	 */
1846 	if (vcpu->arch.shregs.msr & MSR_HV) {
1847 		pr_emerg("KVM trap in HV mode while nested!\n");
1848 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1849 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1850 			 vcpu->arch.shregs.msr);
1851 		kvmppc_dump_regs(vcpu);
1852 		return RESUME_HOST;
1853 	}
1854 	switch (vcpu->arch.trap) {
1855 	/* We're good on these - the host merely wanted to get our attention */
1856 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1857 		vcpu->stat.dec_exits++;
1858 		r = RESUME_GUEST;
1859 		break;
1860 	case BOOK3S_INTERRUPT_EXTERNAL:
1861 		vcpu->stat.ext_intr_exits++;
1862 		r = RESUME_HOST;
1863 		break;
1864 	case BOOK3S_INTERRUPT_H_DOORBELL:
1865 	case BOOK3S_INTERRUPT_H_VIRT:
1866 		vcpu->stat.ext_intr_exits++;
1867 		r = RESUME_GUEST;
1868 		break;
1869 	/* These need to go to the nested HV */
1870 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1871 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1872 		vcpu->stat.dec_exits++;
1873 		r = RESUME_HOST;
1874 		break;
1875 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1876 	case BOOK3S_INTERRUPT_HMI:
1877 	case BOOK3S_INTERRUPT_PERFMON:
1878 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1879 		r = RESUME_GUEST;
1880 		break;
1881 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1882 	{
1883 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1884 					      DEFAULT_RATELIMIT_BURST);
1885 		/* Pass the machine check to the L1 guest */
1886 		r = RESUME_HOST;
1887 		/* Print the MCE event to host console. */
1888 		if (__ratelimit(&rs))
1889 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1890 		break;
1891 	}
1892 	/*
1893 	 * We get these next two if the guest accesses a page which it thinks
1894 	 * it has mapped but which is not actually present, either because
1895 	 * it is for an emulated I/O device or because the corresonding
1896 	 * host page has been paged out.
1897 	 */
1898 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1899 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1900 		r = kvmhv_nested_page_fault(vcpu);
1901 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1902 		break;
1903 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1904 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1905 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1906 					 DSISR_SRR1_MATCH_64S;
1907 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1908 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1909 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1910 		r = kvmhv_nested_page_fault(vcpu);
1911 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1912 		break;
1913 
1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1916 		/*
1917 		 * This occurs for various TM-related instructions that
1918 		 * we need to emulate on POWER9 DD2.2.  We have already
1919 		 * handled the cases where the guest was in real-suspend
1920 		 * mode and was transitioning to transactional state.
1921 		 */
1922 		r = kvmhv_p9_tm_emulation(vcpu);
1923 		if (r != -1)
1924 			break;
1925 		fallthrough; /* go to facility unavailable handler */
1926 #endif
1927 
1928 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1929 		u64 cause = vcpu->arch.hfscr >> 56;
1930 
1931 		/*
1932 		 * Only pass HFU interrupts to the L1 if the facility is
1933 		 * permitted but disabled by the L1's HFSCR, otherwise
1934 		 * the interrupt does not make sense to the L1 so turn
1935 		 * it into a HEAI.
1936 		 */
1937 		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1938 				(vcpu->arch.nested_hfscr & (1UL << cause))) {
1939 			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1940 
1941 			/*
1942 			 * If the fetch failed, return to guest and
1943 			 * try executing it again.
1944 			 */
1945 			r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1946 						 &vcpu->arch.emul_inst);
1947 			if (r != EMULATE_DONE)
1948 				r = RESUME_GUEST;
1949 			else
1950 				r = RESUME_HOST;
1951 		} else {
1952 			r = RESUME_HOST;
1953 		}
1954 
1955 		break;
1956 	}
1957 
1958 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1959 		vcpu->arch.trap = 0;
1960 		r = RESUME_GUEST;
1961 		if (!xics_on_xive())
1962 			kvmppc_xics_rm_complete(vcpu, 0);
1963 		break;
1964 	case BOOK3S_INTERRUPT_SYSCALL:
1965 	{
1966 		unsigned long req = kvmppc_get_gpr(vcpu, 3);
1967 
1968 		/*
1969 		 * The H_RPT_INVALIDATE hcalls issued by nested
1970 		 * guests for process-scoped invalidations when
1971 		 * GTSE=0, are handled here in L0.
1972 		 */
1973 		if (req == H_RPT_INVALIDATE) {
1974 			r = kvmppc_nested_h_rpt_invalidate(vcpu);
1975 			break;
1976 		}
1977 
1978 		r = RESUME_HOST;
1979 		break;
1980 	}
1981 	default:
1982 		r = RESUME_HOST;
1983 		break;
1984 	}
1985 
1986 	return r;
1987 }
1988 
1989 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1990 					    struct kvm_sregs *sregs)
1991 {
1992 	int i;
1993 
1994 	memset(sregs, 0, sizeof(struct kvm_sregs));
1995 	sregs->pvr = vcpu->arch.pvr;
1996 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1997 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1998 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2005 					    struct kvm_sregs *sregs)
2006 {
2007 	int i, j;
2008 
2009 	/* Only accept the same PVR as the host's, since we can't spoof it */
2010 	if (sregs->pvr != vcpu->arch.pvr)
2011 		return -EINVAL;
2012 
2013 	j = 0;
2014 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2015 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2016 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2017 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2018 			++j;
2019 		}
2020 	}
2021 	vcpu->arch.slb_max = j;
2022 
2023 	return 0;
2024 }
2025 
2026 /*
2027  * Enforce limits on guest LPCR values based on hardware availability,
2028  * guest configuration, and possibly hypervisor support and security
2029  * concerns.
2030  */
2031 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2032 {
2033 	/* LPCR_TC only applies to HPT guests */
2034 	if (kvm_is_radix(kvm))
2035 		lpcr &= ~LPCR_TC;
2036 
2037 	/* On POWER8 and above, userspace can modify AIL */
2038 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2039 		lpcr &= ~LPCR_AIL;
2040 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2041 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2042 	/*
2043 	 * On some POWER9s we force AIL off for radix guests to prevent
2044 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2045 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2046 	 * be cached, which the host TLB management does not expect.
2047 	 */
2048 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2049 		lpcr &= ~LPCR_AIL;
2050 
2051 	/*
2052 	 * On POWER9, allow userspace to enable large decrementer for the
2053 	 * guest, whether or not the host has it enabled.
2054 	 */
2055 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2056 		lpcr &= ~LPCR_LD;
2057 
2058 	return lpcr;
2059 }
2060 
2061 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2062 {
2063 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2064 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2065 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2066 	}
2067 }
2068 
2069 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2070 		bool preserve_top32)
2071 {
2072 	struct kvm *kvm = vcpu->kvm;
2073 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2074 	u64 mask;
2075 
2076 	spin_lock(&vc->lock);
2077 
2078 	/*
2079 	 * Userspace can only modify
2080 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2081 	 * TC (translation control), AIL (alternate interrupt location),
2082 	 * LD (large decrementer).
2083 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2084 	 */
2085 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2086 
2087 	/* Broken 32-bit version of LPCR must not clear top bits */
2088 	if (preserve_top32)
2089 		mask &= 0xFFFFFFFF;
2090 
2091 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2092 			(vc->lpcr & ~mask) | (new_lpcr & mask));
2093 
2094 	/*
2095 	 * If ILE (interrupt little-endian) has changed, update the
2096 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2097 	 */
2098 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2099 		struct kvm_vcpu *vcpu;
2100 		unsigned long i;
2101 
2102 		kvm_for_each_vcpu(i, vcpu, kvm) {
2103 			if (vcpu->arch.vcore != vc)
2104 				continue;
2105 			if (new_lpcr & LPCR_ILE)
2106 				vcpu->arch.intr_msr |= MSR_LE;
2107 			else
2108 				vcpu->arch.intr_msr &= ~MSR_LE;
2109 		}
2110 	}
2111 
2112 	vc->lpcr = new_lpcr;
2113 
2114 	spin_unlock(&vc->lock);
2115 }
2116 
2117 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2118 				 union kvmppc_one_reg *val)
2119 {
2120 	int r = 0;
2121 	long int i;
2122 
2123 	switch (id) {
2124 	case KVM_REG_PPC_DEBUG_INST:
2125 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2126 		break;
2127 	case KVM_REG_PPC_HIOR:
2128 		*val = get_reg_val(id, 0);
2129 		break;
2130 	case KVM_REG_PPC_DABR:
2131 		*val = get_reg_val(id, vcpu->arch.dabr);
2132 		break;
2133 	case KVM_REG_PPC_DABRX:
2134 		*val = get_reg_val(id, vcpu->arch.dabrx);
2135 		break;
2136 	case KVM_REG_PPC_DSCR:
2137 		*val = get_reg_val(id, vcpu->arch.dscr);
2138 		break;
2139 	case KVM_REG_PPC_PURR:
2140 		*val = get_reg_val(id, vcpu->arch.purr);
2141 		break;
2142 	case KVM_REG_PPC_SPURR:
2143 		*val = get_reg_val(id, vcpu->arch.spurr);
2144 		break;
2145 	case KVM_REG_PPC_AMR:
2146 		*val = get_reg_val(id, vcpu->arch.amr);
2147 		break;
2148 	case KVM_REG_PPC_UAMOR:
2149 		*val = get_reg_val(id, vcpu->arch.uamor);
2150 		break;
2151 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2152 		i = id - KVM_REG_PPC_MMCR0;
2153 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
2154 		break;
2155 	case KVM_REG_PPC_MMCR2:
2156 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
2157 		break;
2158 	case KVM_REG_PPC_MMCRA:
2159 		*val = get_reg_val(id, vcpu->arch.mmcra);
2160 		break;
2161 	case KVM_REG_PPC_MMCRS:
2162 		*val = get_reg_val(id, vcpu->arch.mmcrs);
2163 		break;
2164 	case KVM_REG_PPC_MMCR3:
2165 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2166 		break;
2167 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2168 		i = id - KVM_REG_PPC_PMC1;
2169 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
2170 		break;
2171 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2172 		i = id - KVM_REG_PPC_SPMC1;
2173 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2174 		break;
2175 	case KVM_REG_PPC_SIAR:
2176 		*val = get_reg_val(id, vcpu->arch.siar);
2177 		break;
2178 	case KVM_REG_PPC_SDAR:
2179 		*val = get_reg_val(id, vcpu->arch.sdar);
2180 		break;
2181 	case KVM_REG_PPC_SIER:
2182 		*val = get_reg_val(id, vcpu->arch.sier[0]);
2183 		break;
2184 	case KVM_REG_PPC_SIER2:
2185 		*val = get_reg_val(id, vcpu->arch.sier[1]);
2186 		break;
2187 	case KVM_REG_PPC_SIER3:
2188 		*val = get_reg_val(id, vcpu->arch.sier[2]);
2189 		break;
2190 	case KVM_REG_PPC_IAMR:
2191 		*val = get_reg_val(id, vcpu->arch.iamr);
2192 		break;
2193 	case KVM_REG_PPC_PSPB:
2194 		*val = get_reg_val(id, vcpu->arch.pspb);
2195 		break;
2196 	case KVM_REG_PPC_DPDES:
2197 		/*
2198 		 * On POWER9, where we are emulating msgsndp etc.,
2199 		 * we return 1 bit for each vcpu, which can come from
2200 		 * either vcore->dpdes or doorbell_request.
2201 		 * On POWER8, doorbell_request is 0.
2202 		 */
2203 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2204 			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2205 		else
2206 			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2207 		break;
2208 	case KVM_REG_PPC_VTB:
2209 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
2210 		break;
2211 	case KVM_REG_PPC_DAWR:
2212 		*val = get_reg_val(id, vcpu->arch.dawr0);
2213 		break;
2214 	case KVM_REG_PPC_DAWRX:
2215 		*val = get_reg_val(id, vcpu->arch.dawrx0);
2216 		break;
2217 	case KVM_REG_PPC_DAWR1:
2218 		*val = get_reg_val(id, vcpu->arch.dawr1);
2219 		break;
2220 	case KVM_REG_PPC_DAWRX1:
2221 		*val = get_reg_val(id, vcpu->arch.dawrx1);
2222 		break;
2223 	case KVM_REG_PPC_CIABR:
2224 		*val = get_reg_val(id, vcpu->arch.ciabr);
2225 		break;
2226 	case KVM_REG_PPC_CSIGR:
2227 		*val = get_reg_val(id, vcpu->arch.csigr);
2228 		break;
2229 	case KVM_REG_PPC_TACR:
2230 		*val = get_reg_val(id, vcpu->arch.tacr);
2231 		break;
2232 	case KVM_REG_PPC_TCSCR:
2233 		*val = get_reg_val(id, vcpu->arch.tcscr);
2234 		break;
2235 	case KVM_REG_PPC_PID:
2236 		*val = get_reg_val(id, vcpu->arch.pid);
2237 		break;
2238 	case KVM_REG_PPC_ACOP:
2239 		*val = get_reg_val(id, vcpu->arch.acop);
2240 		break;
2241 	case KVM_REG_PPC_WORT:
2242 		*val = get_reg_val(id, vcpu->arch.wort);
2243 		break;
2244 	case KVM_REG_PPC_TIDR:
2245 		*val = get_reg_val(id, vcpu->arch.tid);
2246 		break;
2247 	case KVM_REG_PPC_PSSCR:
2248 		*val = get_reg_val(id, vcpu->arch.psscr);
2249 		break;
2250 	case KVM_REG_PPC_VPA_ADDR:
2251 		spin_lock(&vcpu->arch.vpa_update_lock);
2252 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2253 		spin_unlock(&vcpu->arch.vpa_update_lock);
2254 		break;
2255 	case KVM_REG_PPC_VPA_SLB:
2256 		spin_lock(&vcpu->arch.vpa_update_lock);
2257 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2258 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2259 		spin_unlock(&vcpu->arch.vpa_update_lock);
2260 		break;
2261 	case KVM_REG_PPC_VPA_DTL:
2262 		spin_lock(&vcpu->arch.vpa_update_lock);
2263 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2264 		val->vpaval.length = vcpu->arch.dtl.len;
2265 		spin_unlock(&vcpu->arch.vpa_update_lock);
2266 		break;
2267 	case KVM_REG_PPC_TB_OFFSET:
2268 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2269 		break;
2270 	case KVM_REG_PPC_LPCR:
2271 	case KVM_REG_PPC_LPCR_64:
2272 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2273 		break;
2274 	case KVM_REG_PPC_PPR:
2275 		*val = get_reg_val(id, vcpu->arch.ppr);
2276 		break;
2277 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2278 	case KVM_REG_PPC_TFHAR:
2279 		*val = get_reg_val(id, vcpu->arch.tfhar);
2280 		break;
2281 	case KVM_REG_PPC_TFIAR:
2282 		*val = get_reg_val(id, vcpu->arch.tfiar);
2283 		break;
2284 	case KVM_REG_PPC_TEXASR:
2285 		*val = get_reg_val(id, vcpu->arch.texasr);
2286 		break;
2287 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2288 		i = id - KVM_REG_PPC_TM_GPR0;
2289 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2290 		break;
2291 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2292 	{
2293 		int j;
2294 		i = id - KVM_REG_PPC_TM_VSR0;
2295 		if (i < 32)
2296 			for (j = 0; j < TS_FPRWIDTH; j++)
2297 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2298 		else {
2299 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2300 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2301 			else
2302 				r = -ENXIO;
2303 		}
2304 		break;
2305 	}
2306 	case KVM_REG_PPC_TM_CR:
2307 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2308 		break;
2309 	case KVM_REG_PPC_TM_XER:
2310 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2311 		break;
2312 	case KVM_REG_PPC_TM_LR:
2313 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2314 		break;
2315 	case KVM_REG_PPC_TM_CTR:
2316 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2317 		break;
2318 	case KVM_REG_PPC_TM_FPSCR:
2319 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2320 		break;
2321 	case KVM_REG_PPC_TM_AMR:
2322 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2323 		break;
2324 	case KVM_REG_PPC_TM_PPR:
2325 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2326 		break;
2327 	case KVM_REG_PPC_TM_VRSAVE:
2328 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2329 		break;
2330 	case KVM_REG_PPC_TM_VSCR:
2331 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2332 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2333 		else
2334 			r = -ENXIO;
2335 		break;
2336 	case KVM_REG_PPC_TM_DSCR:
2337 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2338 		break;
2339 	case KVM_REG_PPC_TM_TAR:
2340 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2341 		break;
2342 #endif
2343 	case KVM_REG_PPC_ARCH_COMPAT:
2344 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2345 		break;
2346 	case KVM_REG_PPC_DEC_EXPIRY:
2347 		*val = get_reg_val(id, vcpu->arch.dec_expires);
2348 		break;
2349 	case KVM_REG_PPC_ONLINE:
2350 		*val = get_reg_val(id, vcpu->arch.online);
2351 		break;
2352 	case KVM_REG_PPC_PTCR:
2353 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2354 		break;
2355 	default:
2356 		r = -EINVAL;
2357 		break;
2358 	}
2359 
2360 	return r;
2361 }
2362 
2363 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2364 				 union kvmppc_one_reg *val)
2365 {
2366 	int r = 0;
2367 	long int i;
2368 	unsigned long addr, len;
2369 
2370 	switch (id) {
2371 	case KVM_REG_PPC_HIOR:
2372 		/* Only allow this to be set to zero */
2373 		if (set_reg_val(id, *val))
2374 			r = -EINVAL;
2375 		break;
2376 	case KVM_REG_PPC_DABR:
2377 		vcpu->arch.dabr = set_reg_val(id, *val);
2378 		break;
2379 	case KVM_REG_PPC_DABRX:
2380 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2381 		break;
2382 	case KVM_REG_PPC_DSCR:
2383 		vcpu->arch.dscr = set_reg_val(id, *val);
2384 		break;
2385 	case KVM_REG_PPC_PURR:
2386 		vcpu->arch.purr = set_reg_val(id, *val);
2387 		break;
2388 	case KVM_REG_PPC_SPURR:
2389 		vcpu->arch.spurr = set_reg_val(id, *val);
2390 		break;
2391 	case KVM_REG_PPC_AMR:
2392 		vcpu->arch.amr = set_reg_val(id, *val);
2393 		break;
2394 	case KVM_REG_PPC_UAMOR:
2395 		vcpu->arch.uamor = set_reg_val(id, *val);
2396 		break;
2397 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2398 		i = id - KVM_REG_PPC_MMCR0;
2399 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2400 		break;
2401 	case KVM_REG_PPC_MMCR2:
2402 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2403 		break;
2404 	case KVM_REG_PPC_MMCRA:
2405 		vcpu->arch.mmcra = set_reg_val(id, *val);
2406 		break;
2407 	case KVM_REG_PPC_MMCRS:
2408 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2409 		break;
2410 	case KVM_REG_PPC_MMCR3:
2411 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2412 		break;
2413 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2414 		i = id - KVM_REG_PPC_PMC1;
2415 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
2416 		break;
2417 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2418 		i = id - KVM_REG_PPC_SPMC1;
2419 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2420 		break;
2421 	case KVM_REG_PPC_SIAR:
2422 		vcpu->arch.siar = set_reg_val(id, *val);
2423 		break;
2424 	case KVM_REG_PPC_SDAR:
2425 		vcpu->arch.sdar = set_reg_val(id, *val);
2426 		break;
2427 	case KVM_REG_PPC_SIER:
2428 		vcpu->arch.sier[0] = set_reg_val(id, *val);
2429 		break;
2430 	case KVM_REG_PPC_SIER2:
2431 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2432 		break;
2433 	case KVM_REG_PPC_SIER3:
2434 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2435 		break;
2436 	case KVM_REG_PPC_IAMR:
2437 		vcpu->arch.iamr = set_reg_val(id, *val);
2438 		break;
2439 	case KVM_REG_PPC_PSPB:
2440 		vcpu->arch.pspb = set_reg_val(id, *val);
2441 		break;
2442 	case KVM_REG_PPC_DPDES:
2443 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2444 			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2445 		else
2446 			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2447 		break;
2448 	case KVM_REG_PPC_VTB:
2449 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2450 		break;
2451 	case KVM_REG_PPC_DAWR:
2452 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2453 		break;
2454 	case KVM_REG_PPC_DAWRX:
2455 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2456 		break;
2457 	case KVM_REG_PPC_DAWR1:
2458 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2459 		break;
2460 	case KVM_REG_PPC_DAWRX1:
2461 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2462 		break;
2463 	case KVM_REG_PPC_CIABR:
2464 		vcpu->arch.ciabr = set_reg_val(id, *val);
2465 		/* Don't allow setting breakpoints in hypervisor code */
2466 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2467 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2468 		break;
2469 	case KVM_REG_PPC_CSIGR:
2470 		vcpu->arch.csigr = set_reg_val(id, *val);
2471 		break;
2472 	case KVM_REG_PPC_TACR:
2473 		vcpu->arch.tacr = set_reg_val(id, *val);
2474 		break;
2475 	case KVM_REG_PPC_TCSCR:
2476 		vcpu->arch.tcscr = set_reg_val(id, *val);
2477 		break;
2478 	case KVM_REG_PPC_PID:
2479 		vcpu->arch.pid = set_reg_val(id, *val);
2480 		break;
2481 	case KVM_REG_PPC_ACOP:
2482 		vcpu->arch.acop = set_reg_val(id, *val);
2483 		break;
2484 	case KVM_REG_PPC_WORT:
2485 		vcpu->arch.wort = set_reg_val(id, *val);
2486 		break;
2487 	case KVM_REG_PPC_TIDR:
2488 		vcpu->arch.tid = set_reg_val(id, *val);
2489 		break;
2490 	case KVM_REG_PPC_PSSCR:
2491 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2492 		break;
2493 	case KVM_REG_PPC_VPA_ADDR:
2494 		addr = set_reg_val(id, *val);
2495 		r = -EINVAL;
2496 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2497 			      vcpu->arch.dtl.next_gpa))
2498 			break;
2499 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2500 		break;
2501 	case KVM_REG_PPC_VPA_SLB:
2502 		addr = val->vpaval.addr;
2503 		len = val->vpaval.length;
2504 		r = -EINVAL;
2505 		if (addr && !vcpu->arch.vpa.next_gpa)
2506 			break;
2507 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2508 		break;
2509 	case KVM_REG_PPC_VPA_DTL:
2510 		addr = val->vpaval.addr;
2511 		len = val->vpaval.length;
2512 		r = -EINVAL;
2513 		if (addr && (len < sizeof(struct dtl_entry) ||
2514 			     !vcpu->arch.vpa.next_gpa))
2515 			break;
2516 		len -= len % sizeof(struct dtl_entry);
2517 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2518 		break;
2519 	case KVM_REG_PPC_TB_OFFSET:
2520 		/* round up to multiple of 2^24 */
2521 		vcpu->arch.vcore->tb_offset =
2522 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2523 		break;
2524 	case KVM_REG_PPC_LPCR:
2525 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2526 		break;
2527 	case KVM_REG_PPC_LPCR_64:
2528 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2529 		break;
2530 	case KVM_REG_PPC_PPR:
2531 		vcpu->arch.ppr = set_reg_val(id, *val);
2532 		break;
2533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2534 	case KVM_REG_PPC_TFHAR:
2535 		vcpu->arch.tfhar = set_reg_val(id, *val);
2536 		break;
2537 	case KVM_REG_PPC_TFIAR:
2538 		vcpu->arch.tfiar = set_reg_val(id, *val);
2539 		break;
2540 	case KVM_REG_PPC_TEXASR:
2541 		vcpu->arch.texasr = set_reg_val(id, *val);
2542 		break;
2543 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2544 		i = id - KVM_REG_PPC_TM_GPR0;
2545 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2546 		break;
2547 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2548 	{
2549 		int j;
2550 		i = id - KVM_REG_PPC_TM_VSR0;
2551 		if (i < 32)
2552 			for (j = 0; j < TS_FPRWIDTH; j++)
2553 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2554 		else
2555 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2556 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2557 			else
2558 				r = -ENXIO;
2559 		break;
2560 	}
2561 	case KVM_REG_PPC_TM_CR:
2562 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2563 		break;
2564 	case KVM_REG_PPC_TM_XER:
2565 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2566 		break;
2567 	case KVM_REG_PPC_TM_LR:
2568 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2569 		break;
2570 	case KVM_REG_PPC_TM_CTR:
2571 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2572 		break;
2573 	case KVM_REG_PPC_TM_FPSCR:
2574 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2575 		break;
2576 	case KVM_REG_PPC_TM_AMR:
2577 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2578 		break;
2579 	case KVM_REG_PPC_TM_PPR:
2580 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2581 		break;
2582 	case KVM_REG_PPC_TM_VRSAVE:
2583 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2584 		break;
2585 	case KVM_REG_PPC_TM_VSCR:
2586 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2587 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2588 		else
2589 			r = - ENXIO;
2590 		break;
2591 	case KVM_REG_PPC_TM_DSCR:
2592 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2593 		break;
2594 	case KVM_REG_PPC_TM_TAR:
2595 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2596 		break;
2597 #endif
2598 	case KVM_REG_PPC_ARCH_COMPAT:
2599 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2600 		break;
2601 	case KVM_REG_PPC_DEC_EXPIRY:
2602 		vcpu->arch.dec_expires = set_reg_val(id, *val);
2603 		break;
2604 	case KVM_REG_PPC_ONLINE:
2605 		i = set_reg_val(id, *val);
2606 		if (i && !vcpu->arch.online)
2607 			atomic_inc(&vcpu->arch.vcore->online_count);
2608 		else if (!i && vcpu->arch.online)
2609 			atomic_dec(&vcpu->arch.vcore->online_count);
2610 		vcpu->arch.online = i;
2611 		break;
2612 	case KVM_REG_PPC_PTCR:
2613 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2614 		break;
2615 	default:
2616 		r = -EINVAL;
2617 		break;
2618 	}
2619 
2620 	return r;
2621 }
2622 
2623 /*
2624  * On POWER9, threads are independent and can be in different partitions.
2625  * Therefore we consider each thread to be a subcore.
2626  * There is a restriction that all threads have to be in the same
2627  * MMU mode (radix or HPT), unfortunately, but since we only support
2628  * HPT guests on a HPT host so far, that isn't an impediment yet.
2629  */
2630 static int threads_per_vcore(struct kvm *kvm)
2631 {
2632 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2633 		return 1;
2634 	return threads_per_subcore;
2635 }
2636 
2637 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2638 {
2639 	struct kvmppc_vcore *vcore;
2640 
2641 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2642 
2643 	if (vcore == NULL)
2644 		return NULL;
2645 
2646 	spin_lock_init(&vcore->lock);
2647 	spin_lock_init(&vcore->stoltb_lock);
2648 	rcuwait_init(&vcore->wait);
2649 	vcore->preempt_tb = TB_NIL;
2650 	vcore->lpcr = kvm->arch.lpcr;
2651 	vcore->first_vcpuid = id;
2652 	vcore->kvm = kvm;
2653 	INIT_LIST_HEAD(&vcore->preempt_list);
2654 
2655 	return vcore;
2656 }
2657 
2658 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2659 static struct debugfs_timings_element {
2660 	const char *name;
2661 	size_t offset;
2662 } timings[] = {
2663 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2664 	{"vcpu_entry",	offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2665 	{"guest_entry",	offsetof(struct kvm_vcpu, arch.guest_entry)},
2666 	{"in_guest",	offsetof(struct kvm_vcpu, arch.in_guest)},
2667 	{"guest_exit",	offsetof(struct kvm_vcpu, arch.guest_exit)},
2668 	{"vcpu_exit",	offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2669 	{"hypercall",	offsetof(struct kvm_vcpu, arch.hcall)},
2670 	{"page_fault",	offsetof(struct kvm_vcpu, arch.pg_fault)},
2671 #else
2672 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2673 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2674 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2675 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2676 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2677 #endif
2678 };
2679 
2680 #define N_TIMINGS	(ARRAY_SIZE(timings))
2681 
2682 struct debugfs_timings_state {
2683 	struct kvm_vcpu	*vcpu;
2684 	unsigned int	buflen;
2685 	char		buf[N_TIMINGS * 100];
2686 };
2687 
2688 static int debugfs_timings_open(struct inode *inode, struct file *file)
2689 {
2690 	struct kvm_vcpu *vcpu = inode->i_private;
2691 	struct debugfs_timings_state *p;
2692 
2693 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2694 	if (!p)
2695 		return -ENOMEM;
2696 
2697 	kvm_get_kvm(vcpu->kvm);
2698 	p->vcpu = vcpu;
2699 	file->private_data = p;
2700 
2701 	return nonseekable_open(inode, file);
2702 }
2703 
2704 static int debugfs_timings_release(struct inode *inode, struct file *file)
2705 {
2706 	struct debugfs_timings_state *p = file->private_data;
2707 
2708 	kvm_put_kvm(p->vcpu->kvm);
2709 	kfree(p);
2710 	return 0;
2711 }
2712 
2713 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2714 				    size_t len, loff_t *ppos)
2715 {
2716 	struct debugfs_timings_state *p = file->private_data;
2717 	struct kvm_vcpu *vcpu = p->vcpu;
2718 	char *s, *buf_end;
2719 	struct kvmhv_tb_accumulator tb;
2720 	u64 count;
2721 	loff_t pos;
2722 	ssize_t n;
2723 	int i, loops;
2724 	bool ok;
2725 
2726 	if (!p->buflen) {
2727 		s = p->buf;
2728 		buf_end = s + sizeof(p->buf);
2729 		for (i = 0; i < N_TIMINGS; ++i) {
2730 			struct kvmhv_tb_accumulator *acc;
2731 
2732 			acc = (struct kvmhv_tb_accumulator *)
2733 				((unsigned long)vcpu + timings[i].offset);
2734 			ok = false;
2735 			for (loops = 0; loops < 1000; ++loops) {
2736 				count = acc->seqcount;
2737 				if (!(count & 1)) {
2738 					smp_rmb();
2739 					tb = *acc;
2740 					smp_rmb();
2741 					if (count == acc->seqcount) {
2742 						ok = true;
2743 						break;
2744 					}
2745 				}
2746 				udelay(1);
2747 			}
2748 			if (!ok)
2749 				snprintf(s, buf_end - s, "%s: stuck\n",
2750 					timings[i].name);
2751 			else
2752 				snprintf(s, buf_end - s,
2753 					"%s: %llu %llu %llu %llu\n",
2754 					timings[i].name, count / 2,
2755 					tb_to_ns(tb.tb_total),
2756 					tb_to_ns(tb.tb_min),
2757 					tb_to_ns(tb.tb_max));
2758 			s += strlen(s);
2759 		}
2760 		p->buflen = s - p->buf;
2761 	}
2762 
2763 	pos = *ppos;
2764 	if (pos >= p->buflen)
2765 		return 0;
2766 	if (len > p->buflen - pos)
2767 		len = p->buflen - pos;
2768 	n = copy_to_user(buf, p->buf + pos, len);
2769 	if (n) {
2770 		if (n == len)
2771 			return -EFAULT;
2772 		len -= n;
2773 	}
2774 	*ppos = pos + len;
2775 	return len;
2776 }
2777 
2778 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2779 				     size_t len, loff_t *ppos)
2780 {
2781 	return -EACCES;
2782 }
2783 
2784 static const struct file_operations debugfs_timings_ops = {
2785 	.owner	 = THIS_MODULE,
2786 	.open	 = debugfs_timings_open,
2787 	.release = debugfs_timings_release,
2788 	.read	 = debugfs_timings_read,
2789 	.write	 = debugfs_timings_write,
2790 	.llseek	 = generic_file_llseek,
2791 };
2792 
2793 /* Create a debugfs directory for the vcpu */
2794 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2795 {
2796 	if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2797 		debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2798 				    &debugfs_timings_ops);
2799 	return 0;
2800 }
2801 
2802 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2803 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2804 {
2805 	return 0;
2806 }
2807 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2808 
2809 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2810 {
2811 	int err;
2812 	int core;
2813 	struct kvmppc_vcore *vcore;
2814 	struct kvm *kvm;
2815 	unsigned int id;
2816 
2817 	kvm = vcpu->kvm;
2818 	id = vcpu->vcpu_id;
2819 
2820 	vcpu->arch.shared = &vcpu->arch.shregs;
2821 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2822 	/*
2823 	 * The shared struct is never shared on HV,
2824 	 * so we can always use host endianness
2825 	 */
2826 #ifdef __BIG_ENDIAN__
2827 	vcpu->arch.shared_big_endian = true;
2828 #else
2829 	vcpu->arch.shared_big_endian = false;
2830 #endif
2831 #endif
2832 	vcpu->arch.mmcr[0] = MMCR0_FC;
2833 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2834 		vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2835 		vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2836 	}
2837 
2838 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2839 	/* default to host PVR, since we can't spoof it */
2840 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2841 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2842 	spin_lock_init(&vcpu->arch.tbacct_lock);
2843 	vcpu->arch.busy_preempt = TB_NIL;
2844 	vcpu->arch.shregs.msr = MSR_ME;
2845 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2846 
2847 	/*
2848 	 * Set the default HFSCR for the guest from the host value.
2849 	 * This value is only used on POWER9.
2850 	 * On POWER9, we want to virtualize the doorbell facility, so we
2851 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2852 	 * to trap and then we emulate them.
2853 	 */
2854 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2855 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2856 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2857 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2858 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2859 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2860 			vcpu->arch.hfscr |= HFSCR_TM;
2861 #endif
2862 	}
2863 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2864 		vcpu->arch.hfscr |= HFSCR_TM;
2865 
2866 	vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2867 
2868 	/*
2869 	 * PM, EBB, TM are demand-faulted so start with it clear.
2870 	 */
2871 	vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2872 
2873 	kvmppc_mmu_book3s_hv_init(vcpu);
2874 
2875 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2876 
2877 	init_waitqueue_head(&vcpu->arch.cpu_run);
2878 
2879 	mutex_lock(&kvm->lock);
2880 	vcore = NULL;
2881 	err = -EINVAL;
2882 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2883 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2884 			pr_devel("KVM: VCPU ID too high\n");
2885 			core = KVM_MAX_VCORES;
2886 		} else {
2887 			BUG_ON(kvm->arch.smt_mode != 1);
2888 			core = kvmppc_pack_vcpu_id(kvm, id);
2889 		}
2890 	} else {
2891 		core = id / kvm->arch.smt_mode;
2892 	}
2893 	if (core < KVM_MAX_VCORES) {
2894 		vcore = kvm->arch.vcores[core];
2895 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2896 			pr_devel("KVM: collision on id %u", id);
2897 			vcore = NULL;
2898 		} else if (!vcore) {
2899 			/*
2900 			 * Take mmu_setup_lock for mutual exclusion
2901 			 * with kvmppc_update_lpcr().
2902 			 */
2903 			err = -ENOMEM;
2904 			vcore = kvmppc_vcore_create(kvm,
2905 					id & ~(kvm->arch.smt_mode - 1));
2906 			mutex_lock(&kvm->arch.mmu_setup_lock);
2907 			kvm->arch.vcores[core] = vcore;
2908 			kvm->arch.online_vcores++;
2909 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2910 		}
2911 	}
2912 	mutex_unlock(&kvm->lock);
2913 
2914 	if (!vcore)
2915 		return err;
2916 
2917 	spin_lock(&vcore->lock);
2918 	++vcore->num_threads;
2919 	spin_unlock(&vcore->lock);
2920 	vcpu->arch.vcore = vcore;
2921 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2922 	vcpu->arch.thread_cpu = -1;
2923 	vcpu->arch.prev_cpu = -1;
2924 
2925 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2926 	kvmppc_sanity_check(vcpu);
2927 
2928 	return 0;
2929 }
2930 
2931 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2932 			      unsigned long flags)
2933 {
2934 	int err;
2935 	int esmt = 0;
2936 
2937 	if (flags)
2938 		return -EINVAL;
2939 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2940 		return -EINVAL;
2941 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2942 		/*
2943 		 * On POWER8 (or POWER7), the threading mode is "strict",
2944 		 * so we pack smt_mode vcpus per vcore.
2945 		 */
2946 		if (smt_mode > threads_per_subcore)
2947 			return -EINVAL;
2948 	} else {
2949 		/*
2950 		 * On POWER9, the threading mode is "loose",
2951 		 * so each vcpu gets its own vcore.
2952 		 */
2953 		esmt = smt_mode;
2954 		smt_mode = 1;
2955 	}
2956 	mutex_lock(&kvm->lock);
2957 	err = -EBUSY;
2958 	if (!kvm->arch.online_vcores) {
2959 		kvm->arch.smt_mode = smt_mode;
2960 		kvm->arch.emul_smt_mode = esmt;
2961 		err = 0;
2962 	}
2963 	mutex_unlock(&kvm->lock);
2964 
2965 	return err;
2966 }
2967 
2968 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2969 {
2970 	if (vpa->pinned_addr)
2971 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2972 					vpa->dirty);
2973 }
2974 
2975 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2976 {
2977 	spin_lock(&vcpu->arch.vpa_update_lock);
2978 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2979 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2980 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2981 	spin_unlock(&vcpu->arch.vpa_update_lock);
2982 }
2983 
2984 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2985 {
2986 	/* Indicate we want to get back into the guest */
2987 	return 1;
2988 }
2989 
2990 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2991 {
2992 	unsigned long dec_nsec, now;
2993 
2994 	now = get_tb();
2995 	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2996 		/* decrementer has already gone negative */
2997 		kvmppc_core_queue_dec(vcpu);
2998 		kvmppc_core_prepare_to_enter(vcpu);
2999 		return;
3000 	}
3001 	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3002 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3003 	vcpu->arch.timer_running = 1;
3004 }
3005 
3006 extern int __kvmppc_vcore_entry(void);
3007 
3008 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3009 				   struct kvm_vcpu *vcpu, u64 tb)
3010 {
3011 	u64 now;
3012 
3013 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3014 		return;
3015 	spin_lock_irq(&vcpu->arch.tbacct_lock);
3016 	now = tb;
3017 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3018 		vcpu->arch.stolen_logged;
3019 	vcpu->arch.busy_preempt = now;
3020 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3021 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3022 	--vc->n_runnable;
3023 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3024 }
3025 
3026 static int kvmppc_grab_hwthread(int cpu)
3027 {
3028 	struct paca_struct *tpaca;
3029 	long timeout = 10000;
3030 
3031 	tpaca = paca_ptrs[cpu];
3032 
3033 	/* Ensure the thread won't go into the kernel if it wakes */
3034 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3035 	tpaca->kvm_hstate.kvm_vcore = NULL;
3036 	tpaca->kvm_hstate.napping = 0;
3037 	smp_wmb();
3038 	tpaca->kvm_hstate.hwthread_req = 1;
3039 
3040 	/*
3041 	 * If the thread is already executing in the kernel (e.g. handling
3042 	 * a stray interrupt), wait for it to get back to nap mode.
3043 	 * The smp_mb() is to ensure that our setting of hwthread_req
3044 	 * is visible before we look at hwthread_state, so if this
3045 	 * races with the code at system_reset_pSeries and the thread
3046 	 * misses our setting of hwthread_req, we are sure to see its
3047 	 * setting of hwthread_state, and vice versa.
3048 	 */
3049 	smp_mb();
3050 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3051 		if (--timeout <= 0) {
3052 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3053 			return -EBUSY;
3054 		}
3055 		udelay(1);
3056 	}
3057 	return 0;
3058 }
3059 
3060 static void kvmppc_release_hwthread(int cpu)
3061 {
3062 	struct paca_struct *tpaca;
3063 
3064 	tpaca = paca_ptrs[cpu];
3065 	tpaca->kvm_hstate.hwthread_req = 0;
3066 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3067 	tpaca->kvm_hstate.kvm_vcore = NULL;
3068 	tpaca->kvm_hstate.kvm_split_mode = NULL;
3069 }
3070 
3071 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3072 
3073 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3074 {
3075 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3076 	cpumask_t *need_tlb_flush;
3077 	int i;
3078 
3079 	if (nested)
3080 		need_tlb_flush = &nested->need_tlb_flush;
3081 	else
3082 		need_tlb_flush = &kvm->arch.need_tlb_flush;
3083 
3084 	cpu = cpu_first_tlb_thread_sibling(cpu);
3085 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3086 					i += cpu_tlb_thread_sibling_step())
3087 		cpumask_set_cpu(i, need_tlb_flush);
3088 
3089 	/*
3090 	 * Make sure setting of bit in need_tlb_flush precedes testing of
3091 	 * cpu_in_guest. The matching barrier on the other side is hwsync
3092 	 * when switching to guest MMU mode, which happens between
3093 	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3094 	 * being tested.
3095 	 */
3096 	smp_mb();
3097 
3098 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3099 					i += cpu_tlb_thread_sibling_step()) {
3100 		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3101 
3102 		if (running == kvm)
3103 			smp_call_function_single(i, do_nothing, NULL, 1);
3104 	}
3105 }
3106 
3107 static void do_migrate_away_vcpu(void *arg)
3108 {
3109 	struct kvm_vcpu *vcpu = arg;
3110 	struct kvm *kvm = vcpu->kvm;
3111 
3112 	/*
3113 	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3114 	 * ptesync sequence on the old CPU before migrating to a new one, in
3115 	 * case we interrupted the guest between a tlbie ; eieio ;
3116 	 * tlbsync; ptesync sequence.
3117 	 *
3118 	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3119 	 */
3120 	if (kvm->arch.lpcr & LPCR_GTSE)
3121 		asm volatile("eieio; tlbsync; ptesync");
3122 	else
3123 		asm volatile("ptesync");
3124 }
3125 
3126 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3127 {
3128 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3129 	struct kvm *kvm = vcpu->kvm;
3130 	int prev_cpu;
3131 
3132 	if (!cpu_has_feature(CPU_FTR_HVMODE))
3133 		return;
3134 
3135 	if (nested)
3136 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3137 	else
3138 		prev_cpu = vcpu->arch.prev_cpu;
3139 
3140 	/*
3141 	 * With radix, the guest can do TLB invalidations itself,
3142 	 * and it could choose to use the local form (tlbiel) if
3143 	 * it is invalidating a translation that has only ever been
3144 	 * used on one vcpu.  However, that doesn't mean it has
3145 	 * only ever been used on one physical cpu, since vcpus
3146 	 * can move around between pcpus.  To cope with this, when
3147 	 * a vcpu moves from one pcpu to another, we need to tell
3148 	 * any vcpus running on the same core as this vcpu previously
3149 	 * ran to flush the TLB.
3150 	 */
3151 	if (prev_cpu != pcpu) {
3152 		if (prev_cpu >= 0) {
3153 			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3154 			    cpu_first_tlb_thread_sibling(pcpu))
3155 				radix_flush_cpu(kvm, prev_cpu, vcpu);
3156 
3157 			smp_call_function_single(prev_cpu,
3158 					do_migrate_away_vcpu, vcpu, 1);
3159 		}
3160 		if (nested)
3161 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3162 		else
3163 			vcpu->arch.prev_cpu = pcpu;
3164 	}
3165 }
3166 
3167 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3168 {
3169 	int cpu;
3170 	struct paca_struct *tpaca;
3171 
3172 	cpu = vc->pcpu;
3173 	if (vcpu) {
3174 		if (vcpu->arch.timer_running) {
3175 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3176 			vcpu->arch.timer_running = 0;
3177 		}
3178 		cpu += vcpu->arch.ptid;
3179 		vcpu->cpu = vc->pcpu;
3180 		vcpu->arch.thread_cpu = cpu;
3181 	}
3182 	tpaca = paca_ptrs[cpu];
3183 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3184 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3185 	tpaca->kvm_hstate.fake_suspend = 0;
3186 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3187 	smp_wmb();
3188 	tpaca->kvm_hstate.kvm_vcore = vc;
3189 	if (cpu != smp_processor_id())
3190 		kvmppc_ipi_thread(cpu);
3191 }
3192 
3193 static void kvmppc_wait_for_nap(int n_threads)
3194 {
3195 	int cpu = smp_processor_id();
3196 	int i, loops;
3197 
3198 	if (n_threads <= 1)
3199 		return;
3200 	for (loops = 0; loops < 1000000; ++loops) {
3201 		/*
3202 		 * Check if all threads are finished.
3203 		 * We set the vcore pointer when starting a thread
3204 		 * and the thread clears it when finished, so we look
3205 		 * for any threads that still have a non-NULL vcore ptr.
3206 		 */
3207 		for (i = 1; i < n_threads; ++i)
3208 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3209 				break;
3210 		if (i == n_threads) {
3211 			HMT_medium();
3212 			return;
3213 		}
3214 		HMT_low();
3215 	}
3216 	HMT_medium();
3217 	for (i = 1; i < n_threads; ++i)
3218 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3219 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3220 }
3221 
3222 /*
3223  * Check that we are on thread 0 and that any other threads in
3224  * this core are off-line.  Then grab the threads so they can't
3225  * enter the kernel.
3226  */
3227 static int on_primary_thread(void)
3228 {
3229 	int cpu = smp_processor_id();
3230 	int thr;
3231 
3232 	/* Are we on a primary subcore? */
3233 	if (cpu_thread_in_subcore(cpu))
3234 		return 0;
3235 
3236 	thr = 0;
3237 	while (++thr < threads_per_subcore)
3238 		if (cpu_online(cpu + thr))
3239 			return 0;
3240 
3241 	/* Grab all hw threads so they can't go into the kernel */
3242 	for (thr = 1; thr < threads_per_subcore; ++thr) {
3243 		if (kvmppc_grab_hwthread(cpu + thr)) {
3244 			/* Couldn't grab one; let the others go */
3245 			do {
3246 				kvmppc_release_hwthread(cpu + thr);
3247 			} while (--thr > 0);
3248 			return 0;
3249 		}
3250 	}
3251 	return 1;
3252 }
3253 
3254 /*
3255  * A list of virtual cores for each physical CPU.
3256  * These are vcores that could run but their runner VCPU tasks are
3257  * (or may be) preempted.
3258  */
3259 struct preempted_vcore_list {
3260 	struct list_head	list;
3261 	spinlock_t		lock;
3262 };
3263 
3264 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3265 
3266 static void init_vcore_lists(void)
3267 {
3268 	int cpu;
3269 
3270 	for_each_possible_cpu(cpu) {
3271 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3272 		spin_lock_init(&lp->lock);
3273 		INIT_LIST_HEAD(&lp->list);
3274 	}
3275 }
3276 
3277 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3278 {
3279 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3280 
3281 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3282 
3283 	vc->vcore_state = VCORE_PREEMPT;
3284 	vc->pcpu = smp_processor_id();
3285 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3286 		spin_lock(&lp->lock);
3287 		list_add_tail(&vc->preempt_list, &lp->list);
3288 		spin_unlock(&lp->lock);
3289 	}
3290 
3291 	/* Start accumulating stolen time */
3292 	kvmppc_core_start_stolen(vc, mftb());
3293 }
3294 
3295 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3296 {
3297 	struct preempted_vcore_list *lp;
3298 
3299 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3300 
3301 	kvmppc_core_end_stolen(vc, mftb());
3302 	if (!list_empty(&vc->preempt_list)) {
3303 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3304 		spin_lock(&lp->lock);
3305 		list_del_init(&vc->preempt_list);
3306 		spin_unlock(&lp->lock);
3307 	}
3308 	vc->vcore_state = VCORE_INACTIVE;
3309 }
3310 
3311 /*
3312  * This stores information about the virtual cores currently
3313  * assigned to a physical core.
3314  */
3315 struct core_info {
3316 	int		n_subcores;
3317 	int		max_subcore_threads;
3318 	int		total_threads;
3319 	int		subcore_threads[MAX_SUBCORES];
3320 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3321 };
3322 
3323 /*
3324  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3325  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3326  */
3327 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3328 
3329 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3330 {
3331 	memset(cip, 0, sizeof(*cip));
3332 	cip->n_subcores = 1;
3333 	cip->max_subcore_threads = vc->num_threads;
3334 	cip->total_threads = vc->num_threads;
3335 	cip->subcore_threads[0] = vc->num_threads;
3336 	cip->vc[0] = vc;
3337 }
3338 
3339 static bool subcore_config_ok(int n_subcores, int n_threads)
3340 {
3341 	/*
3342 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3343 	 * split-core mode, with one thread per subcore.
3344 	 */
3345 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3346 		return n_subcores <= 4 && n_threads == 1;
3347 
3348 	/* On POWER8, can only dynamically split if unsplit to begin with */
3349 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3350 		return false;
3351 	if (n_subcores > MAX_SUBCORES)
3352 		return false;
3353 	if (n_subcores > 1) {
3354 		if (!(dynamic_mt_modes & 2))
3355 			n_subcores = 4;
3356 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3357 			return false;
3358 	}
3359 
3360 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3361 }
3362 
3363 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3364 {
3365 	vc->entry_exit_map = 0;
3366 	vc->in_guest = 0;
3367 	vc->napping_threads = 0;
3368 	vc->conferring_threads = 0;
3369 	vc->tb_offset_applied = 0;
3370 }
3371 
3372 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3373 {
3374 	int n_threads = vc->num_threads;
3375 	int sub;
3376 
3377 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3378 		return false;
3379 
3380 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3381 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3382 		return false;
3383 
3384 	if (n_threads < cip->max_subcore_threads)
3385 		n_threads = cip->max_subcore_threads;
3386 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3387 		return false;
3388 	cip->max_subcore_threads = n_threads;
3389 
3390 	sub = cip->n_subcores;
3391 	++cip->n_subcores;
3392 	cip->total_threads += vc->num_threads;
3393 	cip->subcore_threads[sub] = vc->num_threads;
3394 	cip->vc[sub] = vc;
3395 	init_vcore_to_run(vc);
3396 	list_del_init(&vc->preempt_list);
3397 
3398 	return true;
3399 }
3400 
3401 /*
3402  * Work out whether it is possible to piggyback the execution of
3403  * vcore *pvc onto the execution of the other vcores described in *cip.
3404  */
3405 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3406 			  int target_threads)
3407 {
3408 	if (cip->total_threads + pvc->num_threads > target_threads)
3409 		return false;
3410 
3411 	return can_dynamic_split(pvc, cip);
3412 }
3413 
3414 static void prepare_threads(struct kvmppc_vcore *vc)
3415 {
3416 	int i;
3417 	struct kvm_vcpu *vcpu;
3418 
3419 	for_each_runnable_thread(i, vcpu, vc) {
3420 		if (signal_pending(vcpu->arch.run_task))
3421 			vcpu->arch.ret = -EINTR;
3422 		else if (vcpu->arch.vpa.update_pending ||
3423 			 vcpu->arch.slb_shadow.update_pending ||
3424 			 vcpu->arch.dtl.update_pending)
3425 			vcpu->arch.ret = RESUME_GUEST;
3426 		else
3427 			continue;
3428 		kvmppc_remove_runnable(vc, vcpu, mftb());
3429 		wake_up(&vcpu->arch.cpu_run);
3430 	}
3431 }
3432 
3433 static void collect_piggybacks(struct core_info *cip, int target_threads)
3434 {
3435 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3436 	struct kvmppc_vcore *pvc, *vcnext;
3437 
3438 	spin_lock(&lp->lock);
3439 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3440 		if (!spin_trylock(&pvc->lock))
3441 			continue;
3442 		prepare_threads(pvc);
3443 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3444 			list_del_init(&pvc->preempt_list);
3445 			if (pvc->runner == NULL) {
3446 				pvc->vcore_state = VCORE_INACTIVE;
3447 				kvmppc_core_end_stolen(pvc, mftb());
3448 			}
3449 			spin_unlock(&pvc->lock);
3450 			continue;
3451 		}
3452 		if (!can_piggyback(pvc, cip, target_threads)) {
3453 			spin_unlock(&pvc->lock);
3454 			continue;
3455 		}
3456 		kvmppc_core_end_stolen(pvc, mftb());
3457 		pvc->vcore_state = VCORE_PIGGYBACK;
3458 		if (cip->total_threads >= target_threads)
3459 			break;
3460 	}
3461 	spin_unlock(&lp->lock);
3462 }
3463 
3464 static bool recheck_signals_and_mmu(struct core_info *cip)
3465 {
3466 	int sub, i;
3467 	struct kvm_vcpu *vcpu;
3468 	struct kvmppc_vcore *vc;
3469 
3470 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3471 		vc = cip->vc[sub];
3472 		if (!vc->kvm->arch.mmu_ready)
3473 			return true;
3474 		for_each_runnable_thread(i, vcpu, vc)
3475 			if (signal_pending(vcpu->arch.run_task))
3476 				return true;
3477 	}
3478 	return false;
3479 }
3480 
3481 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3482 {
3483 	int still_running = 0, i;
3484 	u64 now;
3485 	long ret;
3486 	struct kvm_vcpu *vcpu;
3487 
3488 	spin_lock(&vc->lock);
3489 	now = get_tb();
3490 	for_each_runnable_thread(i, vcpu, vc) {
3491 		/*
3492 		 * It's safe to unlock the vcore in the loop here, because
3493 		 * for_each_runnable_thread() is safe against removal of
3494 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3495 		 * so any vcpus becoming runnable will have their arch.trap
3496 		 * set to zero and can't actually run in the guest.
3497 		 */
3498 		spin_unlock(&vc->lock);
3499 		/* cancel pending dec exception if dec is positive */
3500 		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3501 		    kvmppc_core_pending_dec(vcpu))
3502 			kvmppc_core_dequeue_dec(vcpu);
3503 
3504 		trace_kvm_guest_exit(vcpu);
3505 
3506 		ret = RESUME_GUEST;
3507 		if (vcpu->arch.trap)
3508 			ret = kvmppc_handle_exit_hv(vcpu,
3509 						    vcpu->arch.run_task);
3510 
3511 		vcpu->arch.ret = ret;
3512 		vcpu->arch.trap = 0;
3513 
3514 		spin_lock(&vc->lock);
3515 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3516 			if (vcpu->arch.pending_exceptions)
3517 				kvmppc_core_prepare_to_enter(vcpu);
3518 			if (vcpu->arch.ceded)
3519 				kvmppc_set_timer(vcpu);
3520 			else
3521 				++still_running;
3522 		} else {
3523 			kvmppc_remove_runnable(vc, vcpu, mftb());
3524 			wake_up(&vcpu->arch.cpu_run);
3525 		}
3526 	}
3527 	if (!is_master) {
3528 		if (still_running > 0) {
3529 			kvmppc_vcore_preempt(vc);
3530 		} else if (vc->runner) {
3531 			vc->vcore_state = VCORE_PREEMPT;
3532 			kvmppc_core_start_stolen(vc, mftb());
3533 		} else {
3534 			vc->vcore_state = VCORE_INACTIVE;
3535 		}
3536 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3537 			/* make sure there's a candidate runner awake */
3538 			i = -1;
3539 			vcpu = next_runnable_thread(vc, &i);
3540 			wake_up(&vcpu->arch.cpu_run);
3541 		}
3542 	}
3543 	spin_unlock(&vc->lock);
3544 }
3545 
3546 /*
3547  * Clear core from the list of active host cores as we are about to
3548  * enter the guest. Only do this if it is the primary thread of the
3549  * core (not if a subcore) that is entering the guest.
3550  */
3551 static inline int kvmppc_clear_host_core(unsigned int cpu)
3552 {
3553 	int core;
3554 
3555 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3556 		return 0;
3557 	/*
3558 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3559 	 * later in kvmppc_start_thread and we need ensure that state is
3560 	 * visible to other CPUs only after we enter guest.
3561 	 */
3562 	core = cpu >> threads_shift;
3563 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3564 	return 0;
3565 }
3566 
3567 /*
3568  * Advertise this core as an active host core since we exited the guest
3569  * Only need to do this if it is the primary thread of the core that is
3570  * exiting.
3571  */
3572 static inline int kvmppc_set_host_core(unsigned int cpu)
3573 {
3574 	int core;
3575 
3576 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3577 		return 0;
3578 
3579 	/*
3580 	 * Memory barrier can be omitted here because we do a spin_unlock
3581 	 * immediately after this which provides the memory barrier.
3582 	 */
3583 	core = cpu >> threads_shift;
3584 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3585 	return 0;
3586 }
3587 
3588 static void set_irq_happened(int trap)
3589 {
3590 	switch (trap) {
3591 	case BOOK3S_INTERRUPT_EXTERNAL:
3592 		local_paca->irq_happened |= PACA_IRQ_EE;
3593 		break;
3594 	case BOOK3S_INTERRUPT_H_DOORBELL:
3595 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3596 		break;
3597 	case BOOK3S_INTERRUPT_HMI:
3598 		local_paca->irq_happened |= PACA_IRQ_HMI;
3599 		break;
3600 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3601 		replay_system_reset();
3602 		break;
3603 	}
3604 }
3605 
3606 /*
3607  * Run a set of guest threads on a physical core.
3608  * Called with vc->lock held.
3609  */
3610 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3611 {
3612 	struct kvm_vcpu *vcpu;
3613 	int i;
3614 	int srcu_idx;
3615 	struct core_info core_info;
3616 	struct kvmppc_vcore *pvc;
3617 	struct kvm_split_mode split_info, *sip;
3618 	int split, subcore_size, active;
3619 	int sub;
3620 	bool thr0_done;
3621 	unsigned long cmd_bit, stat_bit;
3622 	int pcpu, thr;
3623 	int target_threads;
3624 	int controlled_threads;
3625 	int trap;
3626 	bool is_power8;
3627 
3628 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3629 		return;
3630 
3631 	/*
3632 	 * Remove from the list any threads that have a signal pending
3633 	 * or need a VPA update done
3634 	 */
3635 	prepare_threads(vc);
3636 
3637 	/* if the runner is no longer runnable, let the caller pick a new one */
3638 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3639 		return;
3640 
3641 	/*
3642 	 * Initialize *vc.
3643 	 */
3644 	init_vcore_to_run(vc);
3645 	vc->preempt_tb = TB_NIL;
3646 
3647 	/*
3648 	 * Number of threads that we will be controlling: the same as
3649 	 * the number of threads per subcore, except on POWER9,
3650 	 * where it's 1 because the threads are (mostly) independent.
3651 	 */
3652 	controlled_threads = threads_per_vcore(vc->kvm);
3653 
3654 	/*
3655 	 * Make sure we are running on primary threads, and that secondary
3656 	 * threads are offline.  Also check if the number of threads in this
3657 	 * guest are greater than the current system threads per guest.
3658 	 */
3659 	if ((controlled_threads > 1) &&
3660 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3661 		for_each_runnable_thread(i, vcpu, vc) {
3662 			vcpu->arch.ret = -EBUSY;
3663 			kvmppc_remove_runnable(vc, vcpu, mftb());
3664 			wake_up(&vcpu->arch.cpu_run);
3665 		}
3666 		goto out;
3667 	}
3668 
3669 	/*
3670 	 * See if we could run any other vcores on the physical core
3671 	 * along with this one.
3672 	 */
3673 	init_core_info(&core_info, vc);
3674 	pcpu = smp_processor_id();
3675 	target_threads = controlled_threads;
3676 	if (target_smt_mode && target_smt_mode < target_threads)
3677 		target_threads = target_smt_mode;
3678 	if (vc->num_threads < target_threads)
3679 		collect_piggybacks(&core_info, target_threads);
3680 
3681 	/*
3682 	 * Hard-disable interrupts, and check resched flag and signals.
3683 	 * If we need to reschedule or deliver a signal, clean up
3684 	 * and return without going into the guest(s).
3685 	 * If the mmu_ready flag has been cleared, don't go into the
3686 	 * guest because that means a HPT resize operation is in progress.
3687 	 */
3688 	local_irq_disable();
3689 	hard_irq_disable();
3690 	if (lazy_irq_pending() || need_resched() ||
3691 	    recheck_signals_and_mmu(&core_info)) {
3692 		local_irq_enable();
3693 		vc->vcore_state = VCORE_INACTIVE;
3694 		/* Unlock all except the primary vcore */
3695 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3696 			pvc = core_info.vc[sub];
3697 			/* Put back on to the preempted vcores list */
3698 			kvmppc_vcore_preempt(pvc);
3699 			spin_unlock(&pvc->lock);
3700 		}
3701 		for (i = 0; i < controlled_threads; ++i)
3702 			kvmppc_release_hwthread(pcpu + i);
3703 		return;
3704 	}
3705 
3706 	kvmppc_clear_host_core(pcpu);
3707 
3708 	/* Decide on micro-threading (split-core) mode */
3709 	subcore_size = threads_per_subcore;
3710 	cmd_bit = stat_bit = 0;
3711 	split = core_info.n_subcores;
3712 	sip = NULL;
3713 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3714 
3715 	if (split > 1) {
3716 		sip = &split_info;
3717 		memset(&split_info, 0, sizeof(split_info));
3718 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3719 			split_info.vc[sub] = core_info.vc[sub];
3720 
3721 		if (is_power8) {
3722 			if (split == 2 && (dynamic_mt_modes & 2)) {
3723 				cmd_bit = HID0_POWER8_1TO2LPAR;
3724 				stat_bit = HID0_POWER8_2LPARMODE;
3725 			} else {
3726 				split = 4;
3727 				cmd_bit = HID0_POWER8_1TO4LPAR;
3728 				stat_bit = HID0_POWER8_4LPARMODE;
3729 			}
3730 			subcore_size = MAX_SMT_THREADS / split;
3731 			split_info.rpr = mfspr(SPRN_RPR);
3732 			split_info.pmmar = mfspr(SPRN_PMMAR);
3733 			split_info.ldbar = mfspr(SPRN_LDBAR);
3734 			split_info.subcore_size = subcore_size;
3735 		} else {
3736 			split_info.subcore_size = 1;
3737 		}
3738 
3739 		/* order writes to split_info before kvm_split_mode pointer */
3740 		smp_wmb();
3741 	}
3742 
3743 	for (thr = 0; thr < controlled_threads; ++thr) {
3744 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3745 
3746 		paca->kvm_hstate.napping = 0;
3747 		paca->kvm_hstate.kvm_split_mode = sip;
3748 	}
3749 
3750 	/* Initiate micro-threading (split-core) on POWER8 if required */
3751 	if (cmd_bit) {
3752 		unsigned long hid0 = mfspr(SPRN_HID0);
3753 
3754 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3755 		mb();
3756 		mtspr(SPRN_HID0, hid0);
3757 		isync();
3758 		for (;;) {
3759 			hid0 = mfspr(SPRN_HID0);
3760 			if (hid0 & stat_bit)
3761 				break;
3762 			cpu_relax();
3763 		}
3764 	}
3765 
3766 	/*
3767 	 * On POWER8, set RWMR register.
3768 	 * Since it only affects PURR and SPURR, it doesn't affect
3769 	 * the host, so we don't save/restore the host value.
3770 	 */
3771 	if (is_power8) {
3772 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3773 		int n_online = atomic_read(&vc->online_count);
3774 
3775 		/*
3776 		 * Use the 8-thread value if we're doing split-core
3777 		 * or if the vcore's online count looks bogus.
3778 		 */
3779 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3780 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3781 			rwmr_val = p8_rwmr_values[n_online];
3782 		mtspr(SPRN_RWMR, rwmr_val);
3783 	}
3784 
3785 	/* Start all the threads */
3786 	active = 0;
3787 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3788 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3789 		thr0_done = false;
3790 		active |= 1 << thr;
3791 		pvc = core_info.vc[sub];
3792 		pvc->pcpu = pcpu + thr;
3793 		for_each_runnable_thread(i, vcpu, pvc) {
3794 			/*
3795 			 * XXX: is kvmppc_start_thread called too late here?
3796 			 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3797 			 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3798 			 * kick is called after new exceptions become available
3799 			 * and exceptions are checked earlier than here, by
3800 			 * kvmppc_core_prepare_to_enter.
3801 			 */
3802 			kvmppc_start_thread(vcpu, pvc);
3803 			kvmppc_create_dtl_entry(vcpu, pvc);
3804 			trace_kvm_guest_enter(vcpu);
3805 			if (!vcpu->arch.ptid)
3806 				thr0_done = true;
3807 			active |= 1 << (thr + vcpu->arch.ptid);
3808 		}
3809 		/*
3810 		 * We need to start the first thread of each subcore
3811 		 * even if it doesn't have a vcpu.
3812 		 */
3813 		if (!thr0_done)
3814 			kvmppc_start_thread(NULL, pvc);
3815 	}
3816 
3817 	/*
3818 	 * Ensure that split_info.do_nap is set after setting
3819 	 * the vcore pointer in the PACA of the secondaries.
3820 	 */
3821 	smp_mb();
3822 
3823 	/*
3824 	 * When doing micro-threading, poke the inactive threads as well.
3825 	 * This gets them to the nap instruction after kvm_do_nap,
3826 	 * which reduces the time taken to unsplit later.
3827 	 */
3828 	if (cmd_bit) {
3829 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3830 		for (thr = 1; thr < threads_per_subcore; ++thr)
3831 			if (!(active & (1 << thr)))
3832 				kvmppc_ipi_thread(pcpu + thr);
3833 	}
3834 
3835 	vc->vcore_state = VCORE_RUNNING;
3836 	preempt_disable();
3837 
3838 	trace_kvmppc_run_core(vc, 0);
3839 
3840 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3841 		spin_unlock(&core_info.vc[sub]->lock);
3842 
3843 	guest_enter_irqoff();
3844 
3845 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3846 
3847 	this_cpu_disable_ftrace();
3848 
3849 	/*
3850 	 * Interrupts will be enabled once we get into the guest,
3851 	 * so tell lockdep that we're about to enable interrupts.
3852 	 */
3853 	trace_hardirqs_on();
3854 
3855 	trap = __kvmppc_vcore_entry();
3856 
3857 	trace_hardirqs_off();
3858 
3859 	this_cpu_enable_ftrace();
3860 
3861 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3862 
3863 	set_irq_happened(trap);
3864 
3865 	spin_lock(&vc->lock);
3866 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3867 	vc->vcore_state = VCORE_EXITING;
3868 
3869 	/* wait for secondary threads to finish writing their state to memory */
3870 	kvmppc_wait_for_nap(controlled_threads);
3871 
3872 	/* Return to whole-core mode if we split the core earlier */
3873 	if (cmd_bit) {
3874 		unsigned long hid0 = mfspr(SPRN_HID0);
3875 		unsigned long loops = 0;
3876 
3877 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3878 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3879 		mb();
3880 		mtspr(SPRN_HID0, hid0);
3881 		isync();
3882 		for (;;) {
3883 			hid0 = mfspr(SPRN_HID0);
3884 			if (!(hid0 & stat_bit))
3885 				break;
3886 			cpu_relax();
3887 			++loops;
3888 		}
3889 		split_info.do_nap = 0;
3890 	}
3891 
3892 	kvmppc_set_host_core(pcpu);
3893 
3894 	context_tracking_guest_exit();
3895 	if (!vtime_accounting_enabled_this_cpu()) {
3896 		local_irq_enable();
3897 		/*
3898 		 * Service IRQs here before vtime_account_guest_exit() so any
3899 		 * ticks that occurred while running the guest are accounted to
3900 		 * the guest. If vtime accounting is enabled, accounting uses
3901 		 * TB rather than ticks, so it can be done without enabling
3902 		 * interrupts here, which has the problem that it accounts
3903 		 * interrupt processing overhead to the host.
3904 		 */
3905 		local_irq_disable();
3906 	}
3907 	vtime_account_guest_exit();
3908 
3909 	local_irq_enable();
3910 
3911 	/* Let secondaries go back to the offline loop */
3912 	for (i = 0; i < controlled_threads; ++i) {
3913 		kvmppc_release_hwthread(pcpu + i);
3914 		if (sip && sip->napped[i])
3915 			kvmppc_ipi_thread(pcpu + i);
3916 	}
3917 
3918 	spin_unlock(&vc->lock);
3919 
3920 	/* make sure updates to secondary vcpu structs are visible now */
3921 	smp_mb();
3922 
3923 	preempt_enable();
3924 
3925 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3926 		pvc = core_info.vc[sub];
3927 		post_guest_process(pvc, pvc == vc);
3928 	}
3929 
3930 	spin_lock(&vc->lock);
3931 
3932  out:
3933 	vc->vcore_state = VCORE_INACTIVE;
3934 	trace_kvmppc_run_core(vc, 1);
3935 }
3936 
3937 static inline bool hcall_is_xics(unsigned long req)
3938 {
3939 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
3940 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3941 }
3942 
3943 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3944 {
3945 	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3946 	if (lp) {
3947 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3948 		lp->yield_count = cpu_to_be32(yield_count);
3949 		vcpu->arch.vpa.dirty = 1;
3950 	}
3951 }
3952 
3953 /* call our hypervisor to load up HV regs and go */
3954 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3955 {
3956 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3957 	unsigned long host_psscr;
3958 	unsigned long msr;
3959 	struct hv_guest_state hvregs;
3960 	struct p9_host_os_sprs host_os_sprs;
3961 	s64 dec;
3962 	int trap;
3963 
3964 	msr = mfmsr();
3965 
3966 	save_p9_host_os_sprs(&host_os_sprs);
3967 
3968 	/*
3969 	 * We need to save and restore the guest visible part of the
3970 	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3971 	 * doesn't do this for us. Note only required if pseries since
3972 	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3973 	 */
3974 	host_psscr = mfspr(SPRN_PSSCR_PR);
3975 
3976 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3977 	if (lazy_irq_pending())
3978 		return 0;
3979 
3980 	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3981 		msr = mfmsr(); /* TM restore can update msr */
3982 
3983 	if (vcpu->arch.psscr != host_psscr)
3984 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3985 
3986 	kvmhv_save_hv_regs(vcpu, &hvregs);
3987 	hvregs.lpcr = lpcr;
3988 	hvregs.amor = ~0;
3989 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3990 	hvregs.version = HV_GUEST_STATE_VERSION;
3991 	if (vcpu->arch.nested) {
3992 		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3993 		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3994 	} else {
3995 		hvregs.lpid = vcpu->kvm->arch.lpid;
3996 		hvregs.vcpu_token = vcpu->vcpu_id;
3997 	}
3998 	hvregs.hdec_expiry = time_limit;
3999 
4000 	/*
4001 	 * When setting DEC, we must always deal with irq_work_raise
4002 	 * via NMI vs setting DEC. The problem occurs right as we
4003 	 * switch into guest mode if a NMI hits and sets pending work
4004 	 * and sets DEC, then that will apply to the guest and not
4005 	 * bring us back to the host.
4006 	 *
4007 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4008 	 * for example) and set HDEC to 1? That wouldn't solve the
4009 	 * nested hv case which needs to abort the hcall or zero the
4010 	 * time limit.
4011 	 *
4012 	 * XXX: Another day's problem.
4013 	 */
4014 	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4015 
4016 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4017 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4018 	switch_pmu_to_guest(vcpu, &host_os_sprs);
4019 	accumulate_time(vcpu, &vcpu->arch.in_guest);
4020 	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4021 				  __pa(&vcpu->arch.regs));
4022 	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4023 	kvmhv_restore_hv_return_state(vcpu, &hvregs);
4024 	switch_pmu_to_host(vcpu, &host_os_sprs);
4025 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4026 	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4027 	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4028 	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4029 
4030 	store_vcpu_state(vcpu);
4031 
4032 	dec = mfspr(SPRN_DEC);
4033 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4034 		dec = (s32) dec;
4035 	*tb = mftb();
4036 	vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4037 
4038 	timer_rearm_host_dec(*tb);
4039 
4040 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4041 	if (vcpu->arch.psscr != host_psscr)
4042 		mtspr(SPRN_PSSCR_PR, host_psscr);
4043 
4044 	return trap;
4045 }
4046 
4047 /*
4048  * Guest entry for POWER9 and later CPUs.
4049  */
4050 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4051 			 unsigned long lpcr, u64 *tb)
4052 {
4053 	struct kvm *kvm = vcpu->kvm;
4054 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4055 	u64 next_timer;
4056 	int trap;
4057 
4058 	next_timer = timer_get_next_tb();
4059 	if (*tb >= next_timer)
4060 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4061 	if (next_timer < time_limit)
4062 		time_limit = next_timer;
4063 	else if (*tb >= time_limit) /* nested time limit */
4064 		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4065 
4066 	vcpu->arch.ceded = 0;
4067 
4068 	vcpu_vpa_increment_dispatch(vcpu);
4069 
4070 	if (kvmhv_on_pseries()) {
4071 		trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4072 
4073 		/* H_CEDE has to be handled now, not later */
4074 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4075 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4076 			kvmppc_cede(vcpu);
4077 			kvmppc_set_gpr(vcpu, 3, 0);
4078 			trap = 0;
4079 		}
4080 
4081 	} else if (nested) {
4082 		__this_cpu_write(cpu_in_guest, kvm);
4083 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4084 		__this_cpu_write(cpu_in_guest, NULL);
4085 
4086 	} else {
4087 		kvmppc_xive_push_vcpu(vcpu);
4088 
4089 		__this_cpu_write(cpu_in_guest, kvm);
4090 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4091 		__this_cpu_write(cpu_in_guest, NULL);
4092 
4093 		if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4094 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4095 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4096 
4097 			/*
4098 			 * XIVE rearm and XICS hcalls must be handled
4099 			 * before xive context is pulled (is this
4100 			 * true?)
4101 			 */
4102 			if (req == H_CEDE) {
4103 				/* H_CEDE has to be handled now */
4104 				kvmppc_cede(vcpu);
4105 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4106 					/*
4107 					 * Pending escalation so abort
4108 					 * the cede.
4109 					 */
4110 					vcpu->arch.ceded = 0;
4111 				}
4112 				kvmppc_set_gpr(vcpu, 3, 0);
4113 				trap = 0;
4114 
4115 			} else if (req == H_ENTER_NESTED) {
4116 				/*
4117 				 * L2 should not run with the L1
4118 				 * context so rearm and pull it.
4119 				 */
4120 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4121 					/*
4122 					 * Pending escalation so abort
4123 					 * H_ENTER_NESTED.
4124 					 */
4125 					kvmppc_set_gpr(vcpu, 3, 0);
4126 					trap = 0;
4127 				}
4128 
4129 			} else if (hcall_is_xics(req)) {
4130 				int ret;
4131 
4132 				ret = kvmppc_xive_xics_hcall(vcpu, req);
4133 				if (ret != H_TOO_HARD) {
4134 					kvmppc_set_gpr(vcpu, 3, ret);
4135 					trap = 0;
4136 				}
4137 			}
4138 		}
4139 		kvmppc_xive_pull_vcpu(vcpu);
4140 
4141 		if (kvm_is_radix(kvm))
4142 			vcpu->arch.slb_max = 0;
4143 	}
4144 
4145 	vcpu_vpa_increment_dispatch(vcpu);
4146 
4147 	return trap;
4148 }
4149 
4150 /*
4151  * Wait for some other vcpu thread to execute us, and
4152  * wake us up when we need to handle something in the host.
4153  */
4154 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4155 				 struct kvm_vcpu *vcpu, int wait_state)
4156 {
4157 	DEFINE_WAIT(wait);
4158 
4159 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4160 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4161 		spin_unlock(&vc->lock);
4162 		schedule();
4163 		spin_lock(&vc->lock);
4164 	}
4165 	finish_wait(&vcpu->arch.cpu_run, &wait);
4166 }
4167 
4168 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4169 {
4170 	if (!halt_poll_ns_grow)
4171 		return;
4172 
4173 	vc->halt_poll_ns *= halt_poll_ns_grow;
4174 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4175 		vc->halt_poll_ns = halt_poll_ns_grow_start;
4176 }
4177 
4178 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4179 {
4180 	if (halt_poll_ns_shrink == 0)
4181 		vc->halt_poll_ns = 0;
4182 	else
4183 		vc->halt_poll_ns /= halt_poll_ns_shrink;
4184 }
4185 
4186 #ifdef CONFIG_KVM_XICS
4187 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4188 {
4189 	if (!xics_on_xive())
4190 		return false;
4191 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4192 		vcpu->arch.xive_saved_state.cppr;
4193 }
4194 #else
4195 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4196 {
4197 	return false;
4198 }
4199 #endif /* CONFIG_KVM_XICS */
4200 
4201 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4202 {
4203 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4204 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4205 		return true;
4206 
4207 	return false;
4208 }
4209 
4210 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4211 {
4212 	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4213 		return true;
4214 	return false;
4215 }
4216 
4217 /*
4218  * Check to see if any of the runnable vcpus on the vcore have pending
4219  * exceptions or are no longer ceded
4220  */
4221 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4222 {
4223 	struct kvm_vcpu *vcpu;
4224 	int i;
4225 
4226 	for_each_runnable_thread(i, vcpu, vc) {
4227 		if (kvmppc_vcpu_check_block(vcpu))
4228 			return 1;
4229 	}
4230 
4231 	return 0;
4232 }
4233 
4234 /*
4235  * All the vcpus in this vcore are idle, so wait for a decrementer
4236  * or external interrupt to one of the vcpus.  vc->lock is held.
4237  */
4238 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4239 {
4240 	ktime_t cur, start_poll, start_wait;
4241 	int do_sleep = 1;
4242 	u64 block_ns;
4243 
4244 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4245 
4246 	/* Poll for pending exceptions and ceded state */
4247 	cur = start_poll = ktime_get();
4248 	if (vc->halt_poll_ns) {
4249 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4250 		++vc->runner->stat.generic.halt_attempted_poll;
4251 
4252 		vc->vcore_state = VCORE_POLLING;
4253 		spin_unlock(&vc->lock);
4254 
4255 		do {
4256 			if (kvmppc_vcore_check_block(vc)) {
4257 				do_sleep = 0;
4258 				break;
4259 			}
4260 			cur = ktime_get();
4261 		} while (kvm_vcpu_can_poll(cur, stop));
4262 
4263 		spin_lock(&vc->lock);
4264 		vc->vcore_state = VCORE_INACTIVE;
4265 
4266 		if (!do_sleep) {
4267 			++vc->runner->stat.generic.halt_successful_poll;
4268 			goto out;
4269 		}
4270 	}
4271 
4272 	prepare_to_rcuwait(&vc->wait);
4273 	set_current_state(TASK_INTERRUPTIBLE);
4274 	if (kvmppc_vcore_check_block(vc)) {
4275 		finish_rcuwait(&vc->wait);
4276 		do_sleep = 0;
4277 		/* If we polled, count this as a successful poll */
4278 		if (vc->halt_poll_ns)
4279 			++vc->runner->stat.generic.halt_successful_poll;
4280 		goto out;
4281 	}
4282 
4283 	start_wait = ktime_get();
4284 
4285 	vc->vcore_state = VCORE_SLEEPING;
4286 	trace_kvmppc_vcore_blocked(vc->runner, 0);
4287 	spin_unlock(&vc->lock);
4288 	schedule();
4289 	finish_rcuwait(&vc->wait);
4290 	spin_lock(&vc->lock);
4291 	vc->vcore_state = VCORE_INACTIVE;
4292 	trace_kvmppc_vcore_blocked(vc->runner, 1);
4293 	++vc->runner->stat.halt_successful_wait;
4294 
4295 	cur = ktime_get();
4296 
4297 out:
4298 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4299 
4300 	/* Attribute wait time */
4301 	if (do_sleep) {
4302 		vc->runner->stat.generic.halt_wait_ns +=
4303 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4304 		KVM_STATS_LOG_HIST_UPDATE(
4305 				vc->runner->stat.generic.halt_wait_hist,
4306 				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4307 		/* Attribute failed poll time */
4308 		if (vc->halt_poll_ns) {
4309 			vc->runner->stat.generic.halt_poll_fail_ns +=
4310 				ktime_to_ns(start_wait) -
4311 				ktime_to_ns(start_poll);
4312 			KVM_STATS_LOG_HIST_UPDATE(
4313 				vc->runner->stat.generic.halt_poll_fail_hist,
4314 				ktime_to_ns(start_wait) -
4315 				ktime_to_ns(start_poll));
4316 		}
4317 	} else {
4318 		/* Attribute successful poll time */
4319 		if (vc->halt_poll_ns) {
4320 			vc->runner->stat.generic.halt_poll_success_ns +=
4321 				ktime_to_ns(cur) -
4322 				ktime_to_ns(start_poll);
4323 			KVM_STATS_LOG_HIST_UPDATE(
4324 				vc->runner->stat.generic.halt_poll_success_hist,
4325 				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4326 		}
4327 	}
4328 
4329 	/* Adjust poll time */
4330 	if (halt_poll_ns) {
4331 		if (block_ns <= vc->halt_poll_ns)
4332 			;
4333 		/* We slept and blocked for longer than the max halt time */
4334 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4335 			shrink_halt_poll_ns(vc);
4336 		/* We slept and our poll time is too small */
4337 		else if (vc->halt_poll_ns < halt_poll_ns &&
4338 				block_ns < halt_poll_ns)
4339 			grow_halt_poll_ns(vc);
4340 		if (vc->halt_poll_ns > halt_poll_ns)
4341 			vc->halt_poll_ns = halt_poll_ns;
4342 	} else
4343 		vc->halt_poll_ns = 0;
4344 
4345 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4346 }
4347 
4348 /*
4349  * This never fails for a radix guest, as none of the operations it does
4350  * for a radix guest can fail or have a way to report failure.
4351  */
4352 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4353 {
4354 	int r = 0;
4355 	struct kvm *kvm = vcpu->kvm;
4356 
4357 	mutex_lock(&kvm->arch.mmu_setup_lock);
4358 	if (!kvm->arch.mmu_ready) {
4359 		if (!kvm_is_radix(kvm))
4360 			r = kvmppc_hv_setup_htab_rma(vcpu);
4361 		if (!r) {
4362 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4363 				kvmppc_setup_partition_table(kvm);
4364 			kvm->arch.mmu_ready = 1;
4365 		}
4366 	}
4367 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4368 	return r;
4369 }
4370 
4371 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4372 {
4373 	struct kvm_run *run = vcpu->run;
4374 	int n_ceded, i, r;
4375 	struct kvmppc_vcore *vc;
4376 	struct kvm_vcpu *v;
4377 
4378 	trace_kvmppc_run_vcpu_enter(vcpu);
4379 
4380 	run->exit_reason = 0;
4381 	vcpu->arch.ret = RESUME_GUEST;
4382 	vcpu->arch.trap = 0;
4383 	kvmppc_update_vpas(vcpu);
4384 
4385 	/*
4386 	 * Synchronize with other threads in this virtual core
4387 	 */
4388 	vc = vcpu->arch.vcore;
4389 	spin_lock(&vc->lock);
4390 	vcpu->arch.ceded = 0;
4391 	vcpu->arch.run_task = current;
4392 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4393 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4394 	vcpu->arch.busy_preempt = TB_NIL;
4395 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4396 	++vc->n_runnable;
4397 
4398 	/*
4399 	 * This happens the first time this is called for a vcpu.
4400 	 * If the vcore is already running, we may be able to start
4401 	 * this thread straight away and have it join in.
4402 	 */
4403 	if (!signal_pending(current)) {
4404 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4405 		     vc->vcore_state == VCORE_RUNNING) &&
4406 			   !VCORE_IS_EXITING(vc)) {
4407 			kvmppc_create_dtl_entry(vcpu, vc);
4408 			kvmppc_start_thread(vcpu, vc);
4409 			trace_kvm_guest_enter(vcpu);
4410 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4411 		        rcuwait_wake_up(&vc->wait);
4412 		}
4413 
4414 	}
4415 
4416 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4417 	       !signal_pending(current)) {
4418 		/* See if the MMU is ready to go */
4419 		if (!vcpu->kvm->arch.mmu_ready) {
4420 			spin_unlock(&vc->lock);
4421 			r = kvmhv_setup_mmu(vcpu);
4422 			spin_lock(&vc->lock);
4423 			if (r) {
4424 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4425 				run->fail_entry.
4426 					hardware_entry_failure_reason = 0;
4427 				vcpu->arch.ret = r;
4428 				break;
4429 			}
4430 		}
4431 
4432 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4433 			kvmppc_vcore_end_preempt(vc);
4434 
4435 		if (vc->vcore_state != VCORE_INACTIVE) {
4436 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4437 			continue;
4438 		}
4439 		for_each_runnable_thread(i, v, vc) {
4440 			kvmppc_core_prepare_to_enter(v);
4441 			if (signal_pending(v->arch.run_task)) {
4442 				kvmppc_remove_runnable(vc, v, mftb());
4443 				v->stat.signal_exits++;
4444 				v->run->exit_reason = KVM_EXIT_INTR;
4445 				v->arch.ret = -EINTR;
4446 				wake_up(&v->arch.cpu_run);
4447 			}
4448 		}
4449 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4450 			break;
4451 		n_ceded = 0;
4452 		for_each_runnable_thread(i, v, vc) {
4453 			if (!kvmppc_vcpu_woken(v))
4454 				n_ceded += v->arch.ceded;
4455 			else
4456 				v->arch.ceded = 0;
4457 		}
4458 		vc->runner = vcpu;
4459 		if (n_ceded == vc->n_runnable) {
4460 			kvmppc_vcore_blocked(vc);
4461 		} else if (need_resched()) {
4462 			kvmppc_vcore_preempt(vc);
4463 			/* Let something else run */
4464 			cond_resched_lock(&vc->lock);
4465 			if (vc->vcore_state == VCORE_PREEMPT)
4466 				kvmppc_vcore_end_preempt(vc);
4467 		} else {
4468 			kvmppc_run_core(vc);
4469 		}
4470 		vc->runner = NULL;
4471 	}
4472 
4473 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4474 	       (vc->vcore_state == VCORE_RUNNING ||
4475 		vc->vcore_state == VCORE_EXITING ||
4476 		vc->vcore_state == VCORE_PIGGYBACK))
4477 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4478 
4479 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4480 		kvmppc_vcore_end_preempt(vc);
4481 
4482 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4483 		kvmppc_remove_runnable(vc, vcpu, mftb());
4484 		vcpu->stat.signal_exits++;
4485 		run->exit_reason = KVM_EXIT_INTR;
4486 		vcpu->arch.ret = -EINTR;
4487 	}
4488 
4489 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4490 		/* Wake up some vcpu to run the core */
4491 		i = -1;
4492 		v = next_runnable_thread(vc, &i);
4493 		wake_up(&v->arch.cpu_run);
4494 	}
4495 
4496 	trace_kvmppc_run_vcpu_exit(vcpu);
4497 	spin_unlock(&vc->lock);
4498 	return vcpu->arch.ret;
4499 }
4500 
4501 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4502 			  unsigned long lpcr)
4503 {
4504 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4505 	struct kvm_run *run = vcpu->run;
4506 	int trap, r, pcpu;
4507 	int srcu_idx;
4508 	struct kvmppc_vcore *vc;
4509 	struct kvm *kvm = vcpu->kvm;
4510 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4511 	unsigned long flags;
4512 	u64 tb;
4513 
4514 	trace_kvmppc_run_vcpu_enter(vcpu);
4515 
4516 	run->exit_reason = 0;
4517 	vcpu->arch.ret = RESUME_GUEST;
4518 	vcpu->arch.trap = 0;
4519 
4520 	vc = vcpu->arch.vcore;
4521 	vcpu->arch.ceded = 0;
4522 	vcpu->arch.run_task = current;
4523 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4524 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4525 
4526 	/* See if the MMU is ready to go */
4527 	if (unlikely(!kvm->arch.mmu_ready)) {
4528 		r = kvmhv_setup_mmu(vcpu);
4529 		if (r) {
4530 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4531 			run->fail_entry.hardware_entry_failure_reason = 0;
4532 			vcpu->arch.ret = r;
4533 			return r;
4534 		}
4535 	}
4536 
4537 	if (need_resched())
4538 		cond_resched();
4539 
4540 	kvmppc_update_vpas(vcpu);
4541 
4542 	preempt_disable();
4543 	pcpu = smp_processor_id();
4544 	if (kvm_is_radix(kvm))
4545 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4546 
4547 	/* flags save not required, but irq_pmu has no disable/enable API */
4548 	powerpc_local_irq_pmu_save(flags);
4549 
4550 	if (signal_pending(current))
4551 		goto sigpend;
4552 	if (need_resched() || !kvm->arch.mmu_ready)
4553 		goto out;
4554 
4555 	vcpu->cpu = pcpu;
4556 	vcpu->arch.thread_cpu = pcpu;
4557 	vc->pcpu = pcpu;
4558 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4559 	local_paca->kvm_hstate.ptid = 0;
4560 	local_paca->kvm_hstate.fake_suspend = 0;
4561 
4562 	/*
4563 	 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4564 	 * doorbells below. The other side is when these fields are set vs
4565 	 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4566 	 * kick a vCPU to notice the pending interrupt.
4567 	 */
4568 	smp_mb();
4569 
4570 	if (!nested) {
4571 		kvmppc_core_prepare_to_enter(vcpu);
4572 		if (vcpu->arch.shregs.msr & MSR_EE) {
4573 			if (xive_interrupt_pending(vcpu))
4574 				kvmppc_inject_interrupt_hv(vcpu,
4575 						BOOK3S_INTERRUPT_EXTERNAL, 0);
4576 		} else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4577 			     &vcpu->arch.pending_exceptions)) {
4578 			lpcr |= LPCR_MER;
4579 		}
4580 	} else if (vcpu->arch.pending_exceptions ||
4581 		   vcpu->arch.doorbell_request ||
4582 		   xive_interrupt_pending(vcpu)) {
4583 		vcpu->arch.ret = RESUME_HOST;
4584 		goto out;
4585 	}
4586 
4587 	if (vcpu->arch.timer_running) {
4588 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4589 		vcpu->arch.timer_running = 0;
4590 	}
4591 
4592 	tb = mftb();
4593 
4594 	__kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4595 
4596 	trace_kvm_guest_enter(vcpu);
4597 
4598 	guest_enter_irqoff();
4599 
4600 	srcu_idx = srcu_read_lock(&kvm->srcu);
4601 
4602 	this_cpu_disable_ftrace();
4603 
4604 	/* Tell lockdep that we're about to enable interrupts */
4605 	trace_hardirqs_on();
4606 
4607 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4608 	vcpu->arch.trap = trap;
4609 
4610 	trace_hardirqs_off();
4611 
4612 	this_cpu_enable_ftrace();
4613 
4614 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4615 
4616 	set_irq_happened(trap);
4617 
4618 	context_tracking_guest_exit();
4619 	if (!vtime_accounting_enabled_this_cpu()) {
4620 		local_irq_enable();
4621 		/*
4622 		 * Service IRQs here before vtime_account_guest_exit() so any
4623 		 * ticks that occurred while running the guest are accounted to
4624 		 * the guest. If vtime accounting is enabled, accounting uses
4625 		 * TB rather than ticks, so it can be done without enabling
4626 		 * interrupts here, which has the problem that it accounts
4627 		 * interrupt processing overhead to the host.
4628 		 */
4629 		local_irq_disable();
4630 	}
4631 	vtime_account_guest_exit();
4632 
4633 	vcpu->cpu = -1;
4634 	vcpu->arch.thread_cpu = -1;
4635 
4636 	powerpc_local_irq_pmu_restore(flags);
4637 
4638 	preempt_enable();
4639 
4640 	/*
4641 	 * cancel pending decrementer exception if DEC is now positive, or if
4642 	 * entering a nested guest in which case the decrementer is now owned
4643 	 * by L2 and the L1 decrementer is provided in hdec_expires
4644 	 */
4645 	if (kvmppc_core_pending_dec(vcpu) &&
4646 			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4647 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4648 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4649 		kvmppc_core_dequeue_dec(vcpu);
4650 
4651 	trace_kvm_guest_exit(vcpu);
4652 	r = RESUME_GUEST;
4653 	if (trap) {
4654 		if (!nested)
4655 			r = kvmppc_handle_exit_hv(vcpu, current);
4656 		else
4657 			r = kvmppc_handle_nested_exit(vcpu);
4658 	}
4659 	vcpu->arch.ret = r;
4660 
4661 	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4662 		kvmppc_set_timer(vcpu);
4663 
4664 		prepare_to_rcuwait(wait);
4665 		for (;;) {
4666 			set_current_state(TASK_INTERRUPTIBLE);
4667 			if (signal_pending(current)) {
4668 				vcpu->stat.signal_exits++;
4669 				run->exit_reason = KVM_EXIT_INTR;
4670 				vcpu->arch.ret = -EINTR;
4671 				break;
4672 			}
4673 
4674 			if (kvmppc_vcpu_check_block(vcpu))
4675 				break;
4676 
4677 			trace_kvmppc_vcore_blocked(vcpu, 0);
4678 			schedule();
4679 			trace_kvmppc_vcore_blocked(vcpu, 1);
4680 		}
4681 		finish_rcuwait(wait);
4682 	}
4683 	vcpu->arch.ceded = 0;
4684 
4685  done:
4686 	trace_kvmppc_run_vcpu_exit(vcpu);
4687 
4688 	return vcpu->arch.ret;
4689 
4690  sigpend:
4691 	vcpu->stat.signal_exits++;
4692 	run->exit_reason = KVM_EXIT_INTR;
4693 	vcpu->arch.ret = -EINTR;
4694  out:
4695 	vcpu->cpu = -1;
4696 	vcpu->arch.thread_cpu = -1;
4697 	powerpc_local_irq_pmu_restore(flags);
4698 	preempt_enable();
4699 	goto done;
4700 }
4701 
4702 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4703 {
4704 	struct kvm_run *run = vcpu->run;
4705 	int r;
4706 	int srcu_idx;
4707 	struct kvm *kvm;
4708 	unsigned long msr;
4709 
4710 	start_timing(vcpu, &vcpu->arch.vcpu_entry);
4711 
4712 	if (!vcpu->arch.sane) {
4713 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4714 		return -EINVAL;
4715 	}
4716 
4717 	/* No need to go into the guest when all we'll do is come back out */
4718 	if (signal_pending(current)) {
4719 		run->exit_reason = KVM_EXIT_INTR;
4720 		return -EINTR;
4721 	}
4722 
4723 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4724 	/*
4725 	 * Don't allow entry with a suspended transaction, because
4726 	 * the guest entry/exit code will lose it.
4727 	 */
4728 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4729 	    (current->thread.regs->msr & MSR_TM)) {
4730 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4731 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4732 			run->fail_entry.hardware_entry_failure_reason = 0;
4733 			return -EINVAL;
4734 		}
4735 	}
4736 #endif
4737 
4738 	/*
4739 	 * Force online to 1 for the sake of old userspace which doesn't
4740 	 * set it.
4741 	 */
4742 	if (!vcpu->arch.online) {
4743 		atomic_inc(&vcpu->arch.vcore->online_count);
4744 		vcpu->arch.online = 1;
4745 	}
4746 
4747 	kvmppc_core_prepare_to_enter(vcpu);
4748 
4749 	kvm = vcpu->kvm;
4750 	atomic_inc(&kvm->arch.vcpus_running);
4751 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4752 	smp_mb();
4753 
4754 	msr = 0;
4755 	if (IS_ENABLED(CONFIG_PPC_FPU))
4756 		msr |= MSR_FP;
4757 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4758 		msr |= MSR_VEC;
4759 	if (cpu_has_feature(CPU_FTR_VSX))
4760 		msr |= MSR_VSX;
4761 	if ((cpu_has_feature(CPU_FTR_TM) ||
4762 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4763 			(vcpu->arch.hfscr & HFSCR_TM))
4764 		msr |= MSR_TM;
4765 	msr = msr_check_and_set(msr);
4766 
4767 	kvmppc_save_user_regs();
4768 
4769 	kvmppc_save_current_sprs();
4770 
4771 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4772 		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4773 	vcpu->arch.pgdir = kvm->mm->pgd;
4774 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4775 
4776 	do {
4777 		accumulate_time(vcpu, &vcpu->arch.guest_entry);
4778 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4779 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4780 						  vcpu->arch.vcore->lpcr);
4781 		else
4782 			r = kvmppc_run_vcpu(vcpu);
4783 
4784 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4785 			accumulate_time(vcpu, &vcpu->arch.hcall);
4786 
4787 			if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4788 				/*
4789 				 * These should have been caught reflected
4790 				 * into the guest by now. Final sanity check:
4791 				 * don't allow userspace to execute hcalls in
4792 				 * the hypervisor.
4793 				 */
4794 				r = RESUME_GUEST;
4795 				continue;
4796 			}
4797 			trace_kvm_hcall_enter(vcpu);
4798 			r = kvmppc_pseries_do_hcall(vcpu);
4799 			trace_kvm_hcall_exit(vcpu, r);
4800 			kvmppc_core_prepare_to_enter(vcpu);
4801 		} else if (r == RESUME_PAGE_FAULT) {
4802 			accumulate_time(vcpu, &vcpu->arch.pg_fault);
4803 			srcu_idx = srcu_read_lock(&kvm->srcu);
4804 			r = kvmppc_book3s_hv_page_fault(vcpu,
4805 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4806 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4807 		} else if (r == RESUME_PASSTHROUGH) {
4808 			if (WARN_ON(xics_on_xive()))
4809 				r = H_SUCCESS;
4810 			else
4811 				r = kvmppc_xics_rm_complete(vcpu, 0);
4812 		}
4813 	} while (is_kvmppc_resume_guest(r));
4814 	accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4815 
4816 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4817 	atomic_dec(&kvm->arch.vcpus_running);
4818 
4819 	srr_regs_clobbered();
4820 
4821 	end_timing(vcpu);
4822 
4823 	return r;
4824 }
4825 
4826 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4827 				     int shift, int sllp)
4828 {
4829 	(*sps)->page_shift = shift;
4830 	(*sps)->slb_enc = sllp;
4831 	(*sps)->enc[0].page_shift = shift;
4832 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4833 	/*
4834 	 * Add 16MB MPSS support (may get filtered out by userspace)
4835 	 */
4836 	if (shift != 24) {
4837 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4838 		if (penc != -1) {
4839 			(*sps)->enc[1].page_shift = 24;
4840 			(*sps)->enc[1].pte_enc = penc;
4841 		}
4842 	}
4843 	(*sps)++;
4844 }
4845 
4846 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4847 					 struct kvm_ppc_smmu_info *info)
4848 {
4849 	struct kvm_ppc_one_seg_page_size *sps;
4850 
4851 	/*
4852 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4853 	 * POWER7 doesn't support keys for instruction accesses,
4854 	 * POWER8 and POWER9 do.
4855 	 */
4856 	info->data_keys = 32;
4857 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4858 
4859 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4860 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4861 	info->slb_size = 32;
4862 
4863 	/* We only support these sizes for now, and no muti-size segments */
4864 	sps = &info->sps[0];
4865 	kvmppc_add_seg_page_size(&sps, 12, 0);
4866 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4867 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4868 
4869 	/* If running as a nested hypervisor, we don't support HPT guests */
4870 	if (kvmhv_on_pseries())
4871 		info->flags |= KVM_PPC_NO_HASH;
4872 
4873 	return 0;
4874 }
4875 
4876 /*
4877  * Get (and clear) the dirty memory log for a memory slot.
4878  */
4879 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4880 					 struct kvm_dirty_log *log)
4881 {
4882 	struct kvm_memslots *slots;
4883 	struct kvm_memory_slot *memslot;
4884 	int r;
4885 	unsigned long n, i;
4886 	unsigned long *buf, *p;
4887 	struct kvm_vcpu *vcpu;
4888 
4889 	mutex_lock(&kvm->slots_lock);
4890 
4891 	r = -EINVAL;
4892 	if (log->slot >= KVM_USER_MEM_SLOTS)
4893 		goto out;
4894 
4895 	slots = kvm_memslots(kvm);
4896 	memslot = id_to_memslot(slots, log->slot);
4897 	r = -ENOENT;
4898 	if (!memslot || !memslot->dirty_bitmap)
4899 		goto out;
4900 
4901 	/*
4902 	 * Use second half of bitmap area because both HPT and radix
4903 	 * accumulate bits in the first half.
4904 	 */
4905 	n = kvm_dirty_bitmap_bytes(memslot);
4906 	buf = memslot->dirty_bitmap + n / sizeof(long);
4907 	memset(buf, 0, n);
4908 
4909 	if (kvm_is_radix(kvm))
4910 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4911 	else
4912 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4913 	if (r)
4914 		goto out;
4915 
4916 	/*
4917 	 * We accumulate dirty bits in the first half of the
4918 	 * memslot's dirty_bitmap area, for when pages are paged
4919 	 * out or modified by the host directly.  Pick up these
4920 	 * bits and add them to the map.
4921 	 */
4922 	p = memslot->dirty_bitmap;
4923 	for (i = 0; i < n / sizeof(long); ++i)
4924 		buf[i] |= xchg(&p[i], 0);
4925 
4926 	/* Harvest dirty bits from VPA and DTL updates */
4927 	/* Note: we never modify the SLB shadow buffer areas */
4928 	kvm_for_each_vcpu(i, vcpu, kvm) {
4929 		spin_lock(&vcpu->arch.vpa_update_lock);
4930 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4931 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4932 		spin_unlock(&vcpu->arch.vpa_update_lock);
4933 	}
4934 
4935 	r = -EFAULT;
4936 	if (copy_to_user(log->dirty_bitmap, buf, n))
4937 		goto out;
4938 
4939 	r = 0;
4940 out:
4941 	mutex_unlock(&kvm->slots_lock);
4942 	return r;
4943 }
4944 
4945 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4946 {
4947 	vfree(slot->arch.rmap);
4948 	slot->arch.rmap = NULL;
4949 }
4950 
4951 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4952 				const struct kvm_memory_slot *old,
4953 				struct kvm_memory_slot *new,
4954 				enum kvm_mr_change change)
4955 {
4956 	if (change == KVM_MR_CREATE) {
4957 		unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
4958 
4959 		if ((size >> PAGE_SHIFT) > totalram_pages())
4960 			return -ENOMEM;
4961 
4962 		new->arch.rmap = vzalloc(size);
4963 		if (!new->arch.rmap)
4964 			return -ENOMEM;
4965 	} else if (change != KVM_MR_DELETE) {
4966 		new->arch.rmap = old->arch.rmap;
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4973 				struct kvm_memory_slot *old,
4974 				const struct kvm_memory_slot *new,
4975 				enum kvm_mr_change change)
4976 {
4977 	/*
4978 	 * If we are creating or modifying a memslot, it might make
4979 	 * some address that was previously cached as emulated
4980 	 * MMIO be no longer emulated MMIO, so invalidate
4981 	 * all the caches of emulated MMIO translations.
4982 	 */
4983 	if (change != KVM_MR_DELETE)
4984 		atomic64_inc(&kvm->arch.mmio_update);
4985 
4986 	/*
4987 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4988 	 * have already called kvm_arch_flush_shadow_memslot() to
4989 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4990 	 * previous mappings.  So the only case to handle is
4991 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4992 	 * has been changed.
4993 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4994 	 * to get rid of any THP PTEs in the partition-scoped page tables
4995 	 * so we can track dirtiness at the page level; we flush when
4996 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4997 	 * using THP PTEs.
4998 	 */
4999 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5000 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5001 		kvmppc_radix_flush_memslot(kvm, old);
5002 	/*
5003 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5004 	 */
5005 	if (!kvm->arch.secure_guest)
5006 		return;
5007 
5008 	switch (change) {
5009 	case KVM_MR_CREATE:
5010 		/*
5011 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
5012 		 * return error. Fix this.
5013 		 */
5014 		kvmppc_uvmem_memslot_create(kvm, new);
5015 		break;
5016 	case KVM_MR_DELETE:
5017 		kvmppc_uvmem_memslot_delete(kvm, old);
5018 		break;
5019 	default:
5020 		/* TODO: Handle KVM_MR_MOVE */
5021 		break;
5022 	}
5023 }
5024 
5025 /*
5026  * Update LPCR values in kvm->arch and in vcores.
5027  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5028  * of kvm->arch.lpcr update).
5029  */
5030 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5031 {
5032 	long int i;
5033 	u32 cores_done = 0;
5034 
5035 	if ((kvm->arch.lpcr & mask) == lpcr)
5036 		return;
5037 
5038 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5039 
5040 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
5041 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5042 		if (!vc)
5043 			continue;
5044 
5045 		spin_lock(&vc->lock);
5046 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5047 		verify_lpcr(kvm, vc->lpcr);
5048 		spin_unlock(&vc->lock);
5049 		if (++cores_done >= kvm->arch.online_vcores)
5050 			break;
5051 	}
5052 }
5053 
5054 void kvmppc_setup_partition_table(struct kvm *kvm)
5055 {
5056 	unsigned long dw0, dw1;
5057 
5058 	if (!kvm_is_radix(kvm)) {
5059 		/* PS field - page size for VRMA */
5060 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5061 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5062 		/* HTABSIZE and HTABORG fields */
5063 		dw0 |= kvm->arch.sdr1;
5064 
5065 		/* Second dword as set by userspace */
5066 		dw1 = kvm->arch.process_table;
5067 	} else {
5068 		dw0 = PATB_HR | radix__get_tree_size() |
5069 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5070 		dw1 = PATB_GR | kvm->arch.process_table;
5071 	}
5072 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5073 }
5074 
5075 /*
5076  * Set up HPT (hashed page table) and RMA (real-mode area).
5077  * Must be called with kvm->arch.mmu_setup_lock held.
5078  */
5079 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5080 {
5081 	int err = 0;
5082 	struct kvm *kvm = vcpu->kvm;
5083 	unsigned long hva;
5084 	struct kvm_memory_slot *memslot;
5085 	struct vm_area_struct *vma;
5086 	unsigned long lpcr = 0, senc;
5087 	unsigned long psize, porder;
5088 	int srcu_idx;
5089 
5090 	/* Allocate hashed page table (if not done already) and reset it */
5091 	if (!kvm->arch.hpt.virt) {
5092 		int order = KVM_DEFAULT_HPT_ORDER;
5093 		struct kvm_hpt_info info;
5094 
5095 		err = kvmppc_allocate_hpt(&info, order);
5096 		/* If we get here, it means userspace didn't specify a
5097 		 * size explicitly.  So, try successively smaller
5098 		 * sizes if the default failed. */
5099 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5100 			err  = kvmppc_allocate_hpt(&info, order);
5101 
5102 		if (err < 0) {
5103 			pr_err("KVM: Couldn't alloc HPT\n");
5104 			goto out;
5105 		}
5106 
5107 		kvmppc_set_hpt(kvm, &info);
5108 	}
5109 
5110 	/* Look up the memslot for guest physical address 0 */
5111 	srcu_idx = srcu_read_lock(&kvm->srcu);
5112 	memslot = gfn_to_memslot(kvm, 0);
5113 
5114 	/* We must have some memory at 0 by now */
5115 	err = -EINVAL;
5116 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5117 		goto out_srcu;
5118 
5119 	/* Look up the VMA for the start of this memory slot */
5120 	hva = memslot->userspace_addr;
5121 	mmap_read_lock(kvm->mm);
5122 	vma = vma_lookup(kvm->mm, hva);
5123 	if (!vma || (vma->vm_flags & VM_IO))
5124 		goto up_out;
5125 
5126 	psize = vma_kernel_pagesize(vma);
5127 
5128 	mmap_read_unlock(kvm->mm);
5129 
5130 	/* We can handle 4k, 64k or 16M pages in the VRMA */
5131 	if (psize >= 0x1000000)
5132 		psize = 0x1000000;
5133 	else if (psize >= 0x10000)
5134 		psize = 0x10000;
5135 	else
5136 		psize = 0x1000;
5137 	porder = __ilog2(psize);
5138 
5139 	senc = slb_pgsize_encoding(psize);
5140 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5141 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5142 	/* Create HPTEs in the hash page table for the VRMA */
5143 	kvmppc_map_vrma(vcpu, memslot, porder);
5144 
5145 	/* Update VRMASD field in the LPCR */
5146 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5147 		/* the -4 is to account for senc values starting at 0x10 */
5148 		lpcr = senc << (LPCR_VRMASD_SH - 4);
5149 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5150 	}
5151 
5152 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5153 	smp_wmb();
5154 	err = 0;
5155  out_srcu:
5156 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5157  out:
5158 	return err;
5159 
5160  up_out:
5161 	mmap_read_unlock(kvm->mm);
5162 	goto out_srcu;
5163 }
5164 
5165 /*
5166  * Must be called with kvm->arch.mmu_setup_lock held and
5167  * mmu_ready = 0 and no vcpus running.
5168  */
5169 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5170 {
5171 	unsigned long lpcr, lpcr_mask;
5172 
5173 	if (nesting_enabled(kvm))
5174 		kvmhv_release_all_nested(kvm);
5175 	kvmppc_rmap_reset(kvm);
5176 	kvm->arch.process_table = 0;
5177 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5178 	spin_lock(&kvm->mmu_lock);
5179 	kvm->arch.radix = 0;
5180 	spin_unlock(&kvm->mmu_lock);
5181 	kvmppc_free_radix(kvm);
5182 
5183 	lpcr = LPCR_VPM1;
5184 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5185 	if (cpu_has_feature(CPU_FTR_ARCH_31))
5186 		lpcr_mask |= LPCR_HAIL;
5187 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5188 
5189 	return 0;
5190 }
5191 
5192 /*
5193  * Must be called with kvm->arch.mmu_setup_lock held and
5194  * mmu_ready = 0 and no vcpus running.
5195  */
5196 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5197 {
5198 	unsigned long lpcr, lpcr_mask;
5199 	int err;
5200 
5201 	err = kvmppc_init_vm_radix(kvm);
5202 	if (err)
5203 		return err;
5204 	kvmppc_rmap_reset(kvm);
5205 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5206 	spin_lock(&kvm->mmu_lock);
5207 	kvm->arch.radix = 1;
5208 	spin_unlock(&kvm->mmu_lock);
5209 	kvmppc_free_hpt(&kvm->arch.hpt);
5210 
5211 	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5212 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5213 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5214 		lpcr_mask |= LPCR_HAIL;
5215 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5216 				(kvm->arch.host_lpcr & LPCR_HAIL))
5217 			lpcr |= LPCR_HAIL;
5218 	}
5219 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5220 
5221 	return 0;
5222 }
5223 
5224 #ifdef CONFIG_KVM_XICS
5225 /*
5226  * Allocate a per-core structure for managing state about which cores are
5227  * running in the host versus the guest and for exchanging data between
5228  * real mode KVM and CPU running in the host.
5229  * This is only done for the first VM.
5230  * The allocated structure stays even if all VMs have stopped.
5231  * It is only freed when the kvm-hv module is unloaded.
5232  * It's OK for this routine to fail, we just don't support host
5233  * core operations like redirecting H_IPI wakeups.
5234  */
5235 void kvmppc_alloc_host_rm_ops(void)
5236 {
5237 	struct kvmppc_host_rm_ops *ops;
5238 	unsigned long l_ops;
5239 	int cpu, core;
5240 	int size;
5241 
5242 	if (cpu_has_feature(CPU_FTR_ARCH_300))
5243 		return;
5244 
5245 	/* Not the first time here ? */
5246 	if (kvmppc_host_rm_ops_hv != NULL)
5247 		return;
5248 
5249 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5250 	if (!ops)
5251 		return;
5252 
5253 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5254 	ops->rm_core = kzalloc(size, GFP_KERNEL);
5255 
5256 	if (!ops->rm_core) {
5257 		kfree(ops);
5258 		return;
5259 	}
5260 
5261 	cpus_read_lock();
5262 
5263 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5264 		if (!cpu_online(cpu))
5265 			continue;
5266 
5267 		core = cpu >> threads_shift;
5268 		ops->rm_core[core].rm_state.in_host = 1;
5269 	}
5270 
5271 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5272 
5273 	/*
5274 	 * Make the contents of the kvmppc_host_rm_ops structure visible
5275 	 * to other CPUs before we assign it to the global variable.
5276 	 * Do an atomic assignment (no locks used here), but if someone
5277 	 * beats us to it, just free our copy and return.
5278 	 */
5279 	smp_wmb();
5280 	l_ops = (unsigned long) ops;
5281 
5282 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5283 		cpus_read_unlock();
5284 		kfree(ops->rm_core);
5285 		kfree(ops);
5286 		return;
5287 	}
5288 
5289 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5290 					     "ppc/kvm_book3s:prepare",
5291 					     kvmppc_set_host_core,
5292 					     kvmppc_clear_host_core);
5293 	cpus_read_unlock();
5294 }
5295 
5296 void kvmppc_free_host_rm_ops(void)
5297 {
5298 	if (kvmppc_host_rm_ops_hv) {
5299 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5300 		kfree(kvmppc_host_rm_ops_hv->rm_core);
5301 		kfree(kvmppc_host_rm_ops_hv);
5302 		kvmppc_host_rm_ops_hv = NULL;
5303 	}
5304 }
5305 #endif
5306 
5307 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5308 {
5309 	unsigned long lpcr, lpid;
5310 	int ret;
5311 
5312 	mutex_init(&kvm->arch.uvmem_lock);
5313 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5314 	mutex_init(&kvm->arch.mmu_setup_lock);
5315 
5316 	/* Allocate the guest's logical partition ID */
5317 
5318 	lpid = kvmppc_alloc_lpid();
5319 	if ((long)lpid < 0)
5320 		return -ENOMEM;
5321 	kvm->arch.lpid = lpid;
5322 
5323 	kvmppc_alloc_host_rm_ops();
5324 
5325 	kvmhv_vm_nested_init(kvm);
5326 
5327 	/*
5328 	 * Since we don't flush the TLB when tearing down a VM,
5329 	 * and this lpid might have previously been used,
5330 	 * make sure we flush on each core before running the new VM.
5331 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5332 	 * does this flush for us.
5333 	 */
5334 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5335 		cpumask_setall(&kvm->arch.need_tlb_flush);
5336 
5337 	/* Start out with the default set of hcalls enabled */
5338 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5339 	       sizeof(kvm->arch.enabled_hcalls));
5340 
5341 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5342 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5343 
5344 	/* Init LPCR for virtual RMA mode */
5345 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5346 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5347 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5348 		lpcr &= LPCR_PECE | LPCR_LPES;
5349 	} else {
5350 		/*
5351 		 * The L2 LPES mode will be set by the L0 according to whether
5352 		 * or not it needs to take external interrupts in HV mode.
5353 		 */
5354 		lpcr = 0;
5355 	}
5356 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5357 		LPCR_VPM0 | LPCR_VPM1;
5358 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5359 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5360 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5361 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5362 		lpcr |= LPCR_ONL;
5363 	/*
5364 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5365 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5366 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5367 	 * be unnecessary but better safe than sorry in case we re-enable
5368 	 * EE in HV mode with this LPCR still set)
5369 	 */
5370 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5371 		lpcr &= ~LPCR_VPM0;
5372 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5373 
5374 		/*
5375 		 * If xive is enabled, we route 0x500 interrupts directly
5376 		 * to the guest.
5377 		 */
5378 		if (xics_on_xive())
5379 			lpcr |= LPCR_LPES;
5380 	}
5381 
5382 	/*
5383 	 * If the host uses radix, the guest starts out as radix.
5384 	 */
5385 	if (radix_enabled()) {
5386 		kvm->arch.radix = 1;
5387 		kvm->arch.mmu_ready = 1;
5388 		lpcr &= ~LPCR_VPM1;
5389 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5390 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5391 		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5392 		    (kvm->arch.host_lpcr & LPCR_HAIL))
5393 			lpcr |= LPCR_HAIL;
5394 		ret = kvmppc_init_vm_radix(kvm);
5395 		if (ret) {
5396 			kvmppc_free_lpid(kvm->arch.lpid);
5397 			return ret;
5398 		}
5399 		kvmppc_setup_partition_table(kvm);
5400 	}
5401 
5402 	verify_lpcr(kvm, lpcr);
5403 	kvm->arch.lpcr = lpcr;
5404 
5405 	/* Initialization for future HPT resizes */
5406 	kvm->arch.resize_hpt = NULL;
5407 
5408 	/*
5409 	 * Work out how many sets the TLB has, for the use of
5410 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5411 	 */
5412 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5413 		/*
5414 		 * P10 will flush all the congruence class with a single tlbiel
5415 		 */
5416 		kvm->arch.tlb_sets = 1;
5417 	} else if (radix_enabled())
5418 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5419 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5420 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5421 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5422 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5423 	else
5424 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5425 
5426 	/*
5427 	 * Track that we now have a HV mode VM active. This blocks secondary
5428 	 * CPU threads from coming online.
5429 	 */
5430 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5431 		kvm_hv_vm_activated();
5432 
5433 	/*
5434 	 * Initialize smt_mode depending on processor.
5435 	 * POWER8 and earlier have to use "strict" threading, where
5436 	 * all vCPUs in a vcore have to run on the same (sub)core,
5437 	 * whereas on POWER9 the threads can each run a different
5438 	 * guest.
5439 	 */
5440 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5441 		kvm->arch.smt_mode = threads_per_subcore;
5442 	else
5443 		kvm->arch.smt_mode = 1;
5444 	kvm->arch.emul_smt_mode = 1;
5445 
5446 	return 0;
5447 }
5448 
5449 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5450 {
5451 	kvmppc_mmu_debugfs_init(kvm);
5452 	if (radix_enabled())
5453 		kvmhv_radix_debugfs_init(kvm);
5454 	return 0;
5455 }
5456 
5457 static void kvmppc_free_vcores(struct kvm *kvm)
5458 {
5459 	long int i;
5460 
5461 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5462 		kfree(kvm->arch.vcores[i]);
5463 	kvm->arch.online_vcores = 0;
5464 }
5465 
5466 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5467 {
5468 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5469 		kvm_hv_vm_deactivated();
5470 
5471 	kvmppc_free_vcores(kvm);
5472 
5473 
5474 	if (kvm_is_radix(kvm))
5475 		kvmppc_free_radix(kvm);
5476 	else
5477 		kvmppc_free_hpt(&kvm->arch.hpt);
5478 
5479 	/* Perform global invalidation and return lpid to the pool */
5480 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5481 		if (nesting_enabled(kvm))
5482 			kvmhv_release_all_nested(kvm);
5483 		kvm->arch.process_table = 0;
5484 		if (kvm->arch.secure_guest)
5485 			uv_svm_terminate(kvm->arch.lpid);
5486 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5487 	}
5488 
5489 	kvmppc_free_lpid(kvm->arch.lpid);
5490 
5491 	kvmppc_free_pimap(kvm);
5492 }
5493 
5494 /* We don't need to emulate any privileged instructions or dcbz */
5495 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5496 				     unsigned int inst, int *advance)
5497 {
5498 	return EMULATE_FAIL;
5499 }
5500 
5501 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5502 					ulong spr_val)
5503 {
5504 	return EMULATE_FAIL;
5505 }
5506 
5507 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5508 					ulong *spr_val)
5509 {
5510 	return EMULATE_FAIL;
5511 }
5512 
5513 static int kvmppc_core_check_processor_compat_hv(void)
5514 {
5515 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5516 	    cpu_has_feature(CPU_FTR_ARCH_206))
5517 		return 0;
5518 
5519 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5520 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5521 		return 0;
5522 
5523 	return -EIO;
5524 }
5525 
5526 #ifdef CONFIG_KVM_XICS
5527 
5528 void kvmppc_free_pimap(struct kvm *kvm)
5529 {
5530 	kfree(kvm->arch.pimap);
5531 }
5532 
5533 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5534 {
5535 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5536 }
5537 
5538 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5539 {
5540 	struct irq_desc *desc;
5541 	struct kvmppc_irq_map *irq_map;
5542 	struct kvmppc_passthru_irqmap *pimap;
5543 	struct irq_chip *chip;
5544 	int i, rc = 0;
5545 	struct irq_data *host_data;
5546 
5547 	if (!kvm_irq_bypass)
5548 		return 1;
5549 
5550 	desc = irq_to_desc(host_irq);
5551 	if (!desc)
5552 		return -EIO;
5553 
5554 	mutex_lock(&kvm->lock);
5555 
5556 	pimap = kvm->arch.pimap;
5557 	if (pimap == NULL) {
5558 		/* First call, allocate structure to hold IRQ map */
5559 		pimap = kvmppc_alloc_pimap();
5560 		if (pimap == NULL) {
5561 			mutex_unlock(&kvm->lock);
5562 			return -ENOMEM;
5563 		}
5564 		kvm->arch.pimap = pimap;
5565 	}
5566 
5567 	/*
5568 	 * For now, we only support interrupts for which the EOI operation
5569 	 * is an OPAL call followed by a write to XIRR, since that's
5570 	 * what our real-mode EOI code does, or a XIVE interrupt
5571 	 */
5572 	chip = irq_data_get_irq_chip(&desc->irq_data);
5573 	if (!chip || !is_pnv_opal_msi(chip)) {
5574 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5575 			host_irq, guest_gsi);
5576 		mutex_unlock(&kvm->lock);
5577 		return -ENOENT;
5578 	}
5579 
5580 	/*
5581 	 * See if we already have an entry for this guest IRQ number.
5582 	 * If it's mapped to a hardware IRQ number, that's an error,
5583 	 * otherwise re-use this entry.
5584 	 */
5585 	for (i = 0; i < pimap->n_mapped; i++) {
5586 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5587 			if (pimap->mapped[i].r_hwirq) {
5588 				mutex_unlock(&kvm->lock);
5589 				return -EINVAL;
5590 			}
5591 			break;
5592 		}
5593 	}
5594 
5595 	if (i == KVMPPC_PIRQ_MAPPED) {
5596 		mutex_unlock(&kvm->lock);
5597 		return -EAGAIN;		/* table is full */
5598 	}
5599 
5600 	irq_map = &pimap->mapped[i];
5601 
5602 	irq_map->v_hwirq = guest_gsi;
5603 	irq_map->desc = desc;
5604 
5605 	/*
5606 	 * Order the above two stores before the next to serialize with
5607 	 * the KVM real mode handler.
5608 	 */
5609 	smp_wmb();
5610 
5611 	/*
5612 	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5613 	 * the underlying calls, which will EOI the interrupt in real
5614 	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5615 	 */
5616 	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5617 	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5618 
5619 	if (i == pimap->n_mapped)
5620 		pimap->n_mapped++;
5621 
5622 	if (xics_on_xive())
5623 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5624 	else
5625 		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5626 	if (rc)
5627 		irq_map->r_hwirq = 0;
5628 
5629 	mutex_unlock(&kvm->lock);
5630 
5631 	return 0;
5632 }
5633 
5634 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5635 {
5636 	struct irq_desc *desc;
5637 	struct kvmppc_passthru_irqmap *pimap;
5638 	int i, rc = 0;
5639 
5640 	if (!kvm_irq_bypass)
5641 		return 0;
5642 
5643 	desc = irq_to_desc(host_irq);
5644 	if (!desc)
5645 		return -EIO;
5646 
5647 	mutex_lock(&kvm->lock);
5648 	if (!kvm->arch.pimap)
5649 		goto unlock;
5650 
5651 	pimap = kvm->arch.pimap;
5652 
5653 	for (i = 0; i < pimap->n_mapped; i++) {
5654 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5655 			break;
5656 	}
5657 
5658 	if (i == pimap->n_mapped) {
5659 		mutex_unlock(&kvm->lock);
5660 		return -ENODEV;
5661 	}
5662 
5663 	if (xics_on_xive())
5664 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5665 	else
5666 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5667 
5668 	/* invalidate the entry (what to do on error from the above ?) */
5669 	pimap->mapped[i].r_hwirq = 0;
5670 
5671 	/*
5672 	 * We don't free this structure even when the count goes to
5673 	 * zero. The structure is freed when we destroy the VM.
5674 	 */
5675  unlock:
5676 	mutex_unlock(&kvm->lock);
5677 	return rc;
5678 }
5679 
5680 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5681 					     struct irq_bypass_producer *prod)
5682 {
5683 	int ret = 0;
5684 	struct kvm_kernel_irqfd *irqfd =
5685 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5686 
5687 	irqfd->producer = prod;
5688 
5689 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5690 	if (ret)
5691 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5692 			prod->irq, irqfd->gsi, ret);
5693 
5694 	return ret;
5695 }
5696 
5697 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5698 					      struct irq_bypass_producer *prod)
5699 {
5700 	int ret;
5701 	struct kvm_kernel_irqfd *irqfd =
5702 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5703 
5704 	irqfd->producer = NULL;
5705 
5706 	/*
5707 	 * When producer of consumer is unregistered, we change back to
5708 	 * default external interrupt handling mode - KVM real mode
5709 	 * will switch back to host.
5710 	 */
5711 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5712 	if (ret)
5713 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5714 			prod->irq, irqfd->gsi, ret);
5715 }
5716 #endif
5717 
5718 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5719 				 unsigned int ioctl, unsigned long arg)
5720 {
5721 	struct kvm *kvm __maybe_unused = filp->private_data;
5722 	void __user *argp = (void __user *)arg;
5723 	long r;
5724 
5725 	switch (ioctl) {
5726 
5727 	case KVM_PPC_ALLOCATE_HTAB: {
5728 		u32 htab_order;
5729 
5730 		/* If we're a nested hypervisor, we currently only support radix */
5731 		if (kvmhv_on_pseries()) {
5732 			r = -EOPNOTSUPP;
5733 			break;
5734 		}
5735 
5736 		r = -EFAULT;
5737 		if (get_user(htab_order, (u32 __user *)argp))
5738 			break;
5739 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5740 		if (r)
5741 			break;
5742 		r = 0;
5743 		break;
5744 	}
5745 
5746 	case KVM_PPC_GET_HTAB_FD: {
5747 		struct kvm_get_htab_fd ghf;
5748 
5749 		r = -EFAULT;
5750 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5751 			break;
5752 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5753 		break;
5754 	}
5755 
5756 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5757 		struct kvm_ppc_resize_hpt rhpt;
5758 
5759 		r = -EFAULT;
5760 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5761 			break;
5762 
5763 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5764 		break;
5765 	}
5766 
5767 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5768 		struct kvm_ppc_resize_hpt rhpt;
5769 
5770 		r = -EFAULT;
5771 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5772 			break;
5773 
5774 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5775 		break;
5776 	}
5777 
5778 	default:
5779 		r = -ENOTTY;
5780 	}
5781 
5782 	return r;
5783 }
5784 
5785 /*
5786  * List of hcall numbers to enable by default.
5787  * For compatibility with old userspace, we enable by default
5788  * all hcalls that were implemented before the hcall-enabling
5789  * facility was added.  Note this list should not include H_RTAS.
5790  */
5791 static unsigned int default_hcall_list[] = {
5792 	H_REMOVE,
5793 	H_ENTER,
5794 	H_READ,
5795 	H_PROTECT,
5796 	H_BULK_REMOVE,
5797 #ifdef CONFIG_SPAPR_TCE_IOMMU
5798 	H_GET_TCE,
5799 	H_PUT_TCE,
5800 #endif
5801 	H_SET_DABR,
5802 	H_SET_XDABR,
5803 	H_CEDE,
5804 	H_PROD,
5805 	H_CONFER,
5806 	H_REGISTER_VPA,
5807 #ifdef CONFIG_KVM_XICS
5808 	H_EOI,
5809 	H_CPPR,
5810 	H_IPI,
5811 	H_IPOLL,
5812 	H_XIRR,
5813 	H_XIRR_X,
5814 #endif
5815 	0
5816 };
5817 
5818 static void init_default_hcalls(void)
5819 {
5820 	int i;
5821 	unsigned int hcall;
5822 
5823 	for (i = 0; default_hcall_list[i]; ++i) {
5824 		hcall = default_hcall_list[i];
5825 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5826 		__set_bit(hcall / 4, default_enabled_hcalls);
5827 	}
5828 }
5829 
5830 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5831 {
5832 	unsigned long lpcr;
5833 	int radix;
5834 	int err;
5835 
5836 	/* If not on a POWER9, reject it */
5837 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5838 		return -ENODEV;
5839 
5840 	/* If any unknown flags set, reject it */
5841 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5842 		return -EINVAL;
5843 
5844 	/* GR (guest radix) bit in process_table field must match */
5845 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5846 	if (!!(cfg->process_table & PATB_GR) != radix)
5847 		return -EINVAL;
5848 
5849 	/* Process table size field must be reasonable, i.e. <= 24 */
5850 	if ((cfg->process_table & PRTS_MASK) > 24)
5851 		return -EINVAL;
5852 
5853 	/* We can change a guest to/from radix now, if the host is radix */
5854 	if (radix && !radix_enabled())
5855 		return -EINVAL;
5856 
5857 	/* If we're a nested hypervisor, we currently only support radix */
5858 	if (kvmhv_on_pseries() && !radix)
5859 		return -EINVAL;
5860 
5861 	mutex_lock(&kvm->arch.mmu_setup_lock);
5862 	if (radix != kvm_is_radix(kvm)) {
5863 		if (kvm->arch.mmu_ready) {
5864 			kvm->arch.mmu_ready = 0;
5865 			/* order mmu_ready vs. vcpus_running */
5866 			smp_mb();
5867 			if (atomic_read(&kvm->arch.vcpus_running)) {
5868 				kvm->arch.mmu_ready = 1;
5869 				err = -EBUSY;
5870 				goto out_unlock;
5871 			}
5872 		}
5873 		if (radix)
5874 			err = kvmppc_switch_mmu_to_radix(kvm);
5875 		else
5876 			err = kvmppc_switch_mmu_to_hpt(kvm);
5877 		if (err)
5878 			goto out_unlock;
5879 	}
5880 
5881 	kvm->arch.process_table = cfg->process_table;
5882 	kvmppc_setup_partition_table(kvm);
5883 
5884 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5885 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5886 	err = 0;
5887 
5888  out_unlock:
5889 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5890 	return err;
5891 }
5892 
5893 static int kvmhv_enable_nested(struct kvm *kvm)
5894 {
5895 	if (!nested)
5896 		return -EPERM;
5897 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5898 		return -ENODEV;
5899 	if (!radix_enabled())
5900 		return -ENODEV;
5901 
5902 	/* kvm == NULL means the caller is testing if the capability exists */
5903 	if (kvm)
5904 		kvm->arch.nested_enable = true;
5905 	return 0;
5906 }
5907 
5908 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5909 				 int size)
5910 {
5911 	int rc = -EINVAL;
5912 
5913 	if (kvmhv_vcpu_is_radix(vcpu)) {
5914 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5915 
5916 		if (rc > 0)
5917 			rc = -EINVAL;
5918 	}
5919 
5920 	/* For now quadrants are the only way to access nested guest memory */
5921 	if (rc && vcpu->arch.nested)
5922 		rc = -EAGAIN;
5923 
5924 	return rc;
5925 }
5926 
5927 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5928 				int size)
5929 {
5930 	int rc = -EINVAL;
5931 
5932 	if (kvmhv_vcpu_is_radix(vcpu)) {
5933 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5934 
5935 		if (rc > 0)
5936 			rc = -EINVAL;
5937 	}
5938 
5939 	/* For now quadrants are the only way to access nested guest memory */
5940 	if (rc && vcpu->arch.nested)
5941 		rc = -EAGAIN;
5942 
5943 	return rc;
5944 }
5945 
5946 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5947 {
5948 	unpin_vpa(kvm, vpa);
5949 	vpa->gpa = 0;
5950 	vpa->pinned_addr = NULL;
5951 	vpa->dirty = false;
5952 	vpa->update_pending = 0;
5953 }
5954 
5955 /*
5956  * Enable a guest to become a secure VM, or test whether
5957  * that could be enabled.
5958  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5959  * tested (kvm == NULL) or enabled (kvm != NULL).
5960  */
5961 static int kvmhv_enable_svm(struct kvm *kvm)
5962 {
5963 	if (!kvmppc_uvmem_available())
5964 		return -EINVAL;
5965 	if (kvm)
5966 		kvm->arch.svm_enabled = 1;
5967 	return 0;
5968 }
5969 
5970 /*
5971  *  IOCTL handler to turn off secure mode of guest
5972  *
5973  * - Release all device pages
5974  * - Issue ucall to terminate the guest on the UV side
5975  * - Unpin the VPA pages.
5976  * - Reinit the partition scoped page tables
5977  */
5978 static int kvmhv_svm_off(struct kvm *kvm)
5979 {
5980 	struct kvm_vcpu *vcpu;
5981 	int mmu_was_ready;
5982 	int srcu_idx;
5983 	int ret = 0;
5984 	unsigned long i;
5985 
5986 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5987 		return ret;
5988 
5989 	mutex_lock(&kvm->arch.mmu_setup_lock);
5990 	mmu_was_ready = kvm->arch.mmu_ready;
5991 	if (kvm->arch.mmu_ready) {
5992 		kvm->arch.mmu_ready = 0;
5993 		/* order mmu_ready vs. vcpus_running */
5994 		smp_mb();
5995 		if (atomic_read(&kvm->arch.vcpus_running)) {
5996 			kvm->arch.mmu_ready = 1;
5997 			ret = -EBUSY;
5998 			goto out;
5999 		}
6000 	}
6001 
6002 	srcu_idx = srcu_read_lock(&kvm->srcu);
6003 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6004 		struct kvm_memory_slot *memslot;
6005 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6006 		int bkt;
6007 
6008 		if (!slots)
6009 			continue;
6010 
6011 		kvm_for_each_memslot(memslot, bkt, slots) {
6012 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
6013 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6014 		}
6015 	}
6016 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6017 
6018 	ret = uv_svm_terminate(kvm->arch.lpid);
6019 	if (ret != U_SUCCESS) {
6020 		ret = -EINVAL;
6021 		goto out;
6022 	}
6023 
6024 	/*
6025 	 * When secure guest is reset, all the guest pages are sent
6026 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6027 	 * chance to run and unpin their VPA pages. Unpinning of all
6028 	 * VPA pages is done here explicitly so that VPA pages
6029 	 * can be migrated to the secure side.
6030 	 *
6031 	 * This is required to for the secure SMP guest to reboot
6032 	 * correctly.
6033 	 */
6034 	kvm_for_each_vcpu(i, vcpu, kvm) {
6035 		spin_lock(&vcpu->arch.vpa_update_lock);
6036 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6037 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6038 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6039 		spin_unlock(&vcpu->arch.vpa_update_lock);
6040 	}
6041 
6042 	kvmppc_setup_partition_table(kvm);
6043 	kvm->arch.secure_guest = 0;
6044 	kvm->arch.mmu_ready = mmu_was_ready;
6045 out:
6046 	mutex_unlock(&kvm->arch.mmu_setup_lock);
6047 	return ret;
6048 }
6049 
6050 static int kvmhv_enable_dawr1(struct kvm *kvm)
6051 {
6052 	if (!cpu_has_feature(CPU_FTR_DAWR1))
6053 		return -ENODEV;
6054 
6055 	/* kvm == NULL means the caller is testing if the capability exists */
6056 	if (kvm)
6057 		kvm->arch.dawr1_enabled = true;
6058 	return 0;
6059 }
6060 
6061 static bool kvmppc_hash_v3_possible(void)
6062 {
6063 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6064 		return false;
6065 
6066 	if (!cpu_has_feature(CPU_FTR_HVMODE))
6067 		return false;
6068 
6069 	/*
6070 	 * POWER9 chips before version 2.02 can't have some threads in
6071 	 * HPT mode and some in radix mode on the same core.
6072 	 */
6073 	if (radix_enabled()) {
6074 		unsigned int pvr = mfspr(SPRN_PVR);
6075 		if ((pvr >> 16) == PVR_POWER9 &&
6076 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6077 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6078 			return false;
6079 	}
6080 
6081 	return true;
6082 }
6083 
6084 static struct kvmppc_ops kvm_ops_hv = {
6085 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6086 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6087 	.get_one_reg = kvmppc_get_one_reg_hv,
6088 	.set_one_reg = kvmppc_set_one_reg_hv,
6089 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6090 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6091 	.inject_interrupt = kvmppc_inject_interrupt_hv,
6092 	.set_msr     = kvmppc_set_msr_hv,
6093 	.vcpu_run    = kvmppc_vcpu_run_hv,
6094 	.vcpu_create = kvmppc_core_vcpu_create_hv,
6095 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6096 	.check_requests = kvmppc_core_check_requests_hv,
6097 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6098 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6099 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6100 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6101 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6102 	.age_gfn = kvm_age_gfn_hv,
6103 	.test_age_gfn = kvm_test_age_gfn_hv,
6104 	.set_spte_gfn = kvm_set_spte_gfn_hv,
6105 	.free_memslot = kvmppc_core_free_memslot_hv,
6106 	.init_vm =  kvmppc_core_init_vm_hv,
6107 	.destroy_vm = kvmppc_core_destroy_vm_hv,
6108 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6109 	.emulate_op = kvmppc_core_emulate_op_hv,
6110 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6111 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6112 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6113 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6114 	.hcall_implemented = kvmppc_hcall_impl_hv,
6115 #ifdef CONFIG_KVM_XICS
6116 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6117 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6118 #endif
6119 	.configure_mmu = kvmhv_configure_mmu,
6120 	.get_rmmu_info = kvmhv_get_rmmu_info,
6121 	.set_smt_mode = kvmhv_set_smt_mode,
6122 	.enable_nested = kvmhv_enable_nested,
6123 	.load_from_eaddr = kvmhv_load_from_eaddr,
6124 	.store_to_eaddr = kvmhv_store_to_eaddr,
6125 	.enable_svm = kvmhv_enable_svm,
6126 	.svm_off = kvmhv_svm_off,
6127 	.enable_dawr1 = kvmhv_enable_dawr1,
6128 	.hash_v3_possible = kvmppc_hash_v3_possible,
6129 	.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6130 	.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6131 };
6132 
6133 static int kvm_init_subcore_bitmap(void)
6134 {
6135 	int i, j;
6136 	int nr_cores = cpu_nr_cores();
6137 	struct sibling_subcore_state *sibling_subcore_state;
6138 
6139 	for (i = 0; i < nr_cores; i++) {
6140 		int first_cpu = i * threads_per_core;
6141 		int node = cpu_to_node(first_cpu);
6142 
6143 		/* Ignore if it is already allocated. */
6144 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6145 			continue;
6146 
6147 		sibling_subcore_state =
6148 			kzalloc_node(sizeof(struct sibling_subcore_state),
6149 							GFP_KERNEL, node);
6150 		if (!sibling_subcore_state)
6151 			return -ENOMEM;
6152 
6153 
6154 		for (j = 0; j < threads_per_core; j++) {
6155 			int cpu = first_cpu + j;
6156 
6157 			paca_ptrs[cpu]->sibling_subcore_state =
6158 						sibling_subcore_state;
6159 		}
6160 	}
6161 	return 0;
6162 }
6163 
6164 static int kvmppc_radix_possible(void)
6165 {
6166 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6167 }
6168 
6169 static int kvmppc_book3s_init_hv(void)
6170 {
6171 	int r;
6172 
6173 	if (!tlbie_capable) {
6174 		pr_err("KVM-HV: Host does not support TLBIE\n");
6175 		return -ENODEV;
6176 	}
6177 
6178 	/*
6179 	 * FIXME!! Do we need to check on all cpus ?
6180 	 */
6181 	r = kvmppc_core_check_processor_compat_hv();
6182 	if (r < 0)
6183 		return -ENODEV;
6184 
6185 	r = kvmhv_nested_init();
6186 	if (r)
6187 		return r;
6188 
6189 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6190 		r = kvm_init_subcore_bitmap();
6191 		if (r)
6192 			goto err;
6193 	}
6194 
6195 	/*
6196 	 * We need a way of accessing the XICS interrupt controller,
6197 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6198 	 * indirectly, via OPAL.
6199 	 */
6200 #ifdef CONFIG_SMP
6201 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6202 	    !local_paca->kvm_hstate.xics_phys) {
6203 		struct device_node *np;
6204 
6205 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6206 		if (!np) {
6207 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6208 			r = -ENODEV;
6209 			goto err;
6210 		}
6211 		/* presence of intc confirmed - node can be dropped again */
6212 		of_node_put(np);
6213 	}
6214 #endif
6215 
6216 	init_default_hcalls();
6217 
6218 	init_vcore_lists();
6219 
6220 	r = kvmppc_mmu_hv_init();
6221 	if (r)
6222 		goto err;
6223 
6224 	if (kvmppc_radix_possible()) {
6225 		r = kvmppc_radix_init();
6226 		if (r)
6227 			goto err;
6228 	}
6229 
6230 	r = kvmppc_uvmem_init();
6231 	if (r < 0) {
6232 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6233 		return r;
6234 	}
6235 
6236 	kvm_ops_hv.owner = THIS_MODULE;
6237 	kvmppc_hv_ops = &kvm_ops_hv;
6238 
6239 	return 0;
6240 
6241 err:
6242 	kvmhv_nested_exit();
6243 	kvmppc_radix_exit();
6244 
6245 	return r;
6246 }
6247 
6248 static void kvmppc_book3s_exit_hv(void)
6249 {
6250 	kvmppc_uvmem_free();
6251 	kvmppc_free_host_rm_ops();
6252 	if (kvmppc_radix_possible())
6253 		kvmppc_radix_exit();
6254 	kvmppc_hv_ops = NULL;
6255 	kvmhv_nested_exit();
6256 }
6257 
6258 module_init(kvmppc_book3s_init_hv);
6259 module_exit(kvmppc_book3s_exit_hv);
6260 MODULE_LICENSE("GPL");
6261 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6262 MODULE_ALIAS("devname:kvm");
6263