1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 36 #include <asm/reg.h> 37 #include <asm/cputable.h> 38 #include <asm/cache.h> 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/kvm_book3s.h> 45 #include <asm/mmu_context.h> 46 #include <asm/lppaca.h> 47 #include <asm/processor.h> 48 #include <asm/cputhreads.h> 49 #include <asm/page.h> 50 #include <asm/hvcall.h> 51 #include <asm/switch_to.h> 52 #include <asm/smp.h> 53 #include <linux/gfp.h> 54 #include <linux/vmalloc.h> 55 #include <linux/highmem.h> 56 #include <linux/hugetlb.h> 57 #include <linux/module.h> 58 59 #include "book3s.h" 60 61 /* #define EXIT_DEBUG */ 62 /* #define EXIT_DEBUG_SIMPLE */ 63 /* #define EXIT_DEBUG_INT */ 64 65 /* Used to indicate that a guest page fault needs to be handled */ 66 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 67 68 /* Used as a "null" value for timebase values */ 69 #define TB_NIL (~(u64)0) 70 71 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 72 73 #if defined(CONFIG_PPC_64K_PAGES) 74 #define MPP_BUFFER_ORDER 0 75 #elif defined(CONFIG_PPC_4K_PAGES) 76 #define MPP_BUFFER_ORDER 3 77 #endif 78 79 80 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 81 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 82 83 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 84 { 85 int me; 86 int cpu = vcpu->cpu; 87 wait_queue_head_t *wqp; 88 89 wqp = kvm_arch_vcpu_wq(vcpu); 90 if (waitqueue_active(wqp)) { 91 wake_up_interruptible(wqp); 92 ++vcpu->stat.halt_wakeup; 93 } 94 95 me = get_cpu(); 96 97 /* CPU points to the first thread of the core */ 98 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 99 #ifdef CONFIG_PPC_ICP_NATIVE 100 int real_cpu = cpu + vcpu->arch.ptid; 101 if (paca[real_cpu].kvm_hstate.xics_phys) 102 xics_wake_cpu(real_cpu); 103 else 104 #endif 105 if (cpu_online(cpu)) 106 smp_send_reschedule(cpu); 107 } 108 put_cpu(); 109 } 110 111 /* 112 * We use the vcpu_load/put functions to measure stolen time. 113 * Stolen time is counted as time when either the vcpu is able to 114 * run as part of a virtual core, but the task running the vcore 115 * is preempted or sleeping, or when the vcpu needs something done 116 * in the kernel by the task running the vcpu, but that task is 117 * preempted or sleeping. Those two things have to be counted 118 * separately, since one of the vcpu tasks will take on the job 119 * of running the core, and the other vcpu tasks in the vcore will 120 * sleep waiting for it to do that, but that sleep shouldn't count 121 * as stolen time. 122 * 123 * Hence we accumulate stolen time when the vcpu can run as part of 124 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 125 * needs its task to do other things in the kernel (for example, 126 * service a page fault) in busy_stolen. We don't accumulate 127 * stolen time for a vcore when it is inactive, or for a vcpu 128 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 129 * a misnomer; it means that the vcpu task is not executing in 130 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 131 * the kernel. We don't have any way of dividing up that time 132 * between time that the vcpu is genuinely stopped, time that 133 * the task is actively working on behalf of the vcpu, and time 134 * that the task is preempted, so we don't count any of it as 135 * stolen. 136 * 137 * Updates to busy_stolen are protected by arch.tbacct_lock; 138 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 139 * of the vcpu that has taken responsibility for running the vcore 140 * (i.e. vc->runner). The stolen times are measured in units of 141 * timebase ticks. (Note that the != TB_NIL checks below are 142 * purely defensive; they should never fail.) 143 */ 144 145 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 146 { 147 struct kvmppc_vcore *vc = vcpu->arch.vcore; 148 unsigned long flags; 149 150 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 151 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 152 vc->preempt_tb != TB_NIL) { 153 vc->stolen_tb += mftb() - vc->preempt_tb; 154 vc->preempt_tb = TB_NIL; 155 } 156 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 157 vcpu->arch.busy_preempt != TB_NIL) { 158 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 159 vcpu->arch.busy_preempt = TB_NIL; 160 } 161 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 162 } 163 164 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 165 { 166 struct kvmppc_vcore *vc = vcpu->arch.vcore; 167 unsigned long flags; 168 169 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 170 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 171 vc->preempt_tb = mftb(); 172 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 173 vcpu->arch.busy_preempt = mftb(); 174 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 175 } 176 177 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 178 { 179 vcpu->arch.shregs.msr = msr; 180 kvmppc_end_cede(vcpu); 181 } 182 183 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 184 { 185 vcpu->arch.pvr = pvr; 186 } 187 188 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 189 { 190 unsigned long pcr = 0; 191 struct kvmppc_vcore *vc = vcpu->arch.vcore; 192 193 if (arch_compat) { 194 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 195 return -EINVAL; /* 970 has no compat mode support */ 196 197 switch (arch_compat) { 198 case PVR_ARCH_205: 199 /* 200 * If an arch bit is set in PCR, all the defined 201 * higher-order arch bits also have to be set. 202 */ 203 pcr = PCR_ARCH_206 | PCR_ARCH_205; 204 break; 205 case PVR_ARCH_206: 206 case PVR_ARCH_206p: 207 pcr = PCR_ARCH_206; 208 break; 209 case PVR_ARCH_207: 210 break; 211 default: 212 return -EINVAL; 213 } 214 215 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 216 /* POWER7 can't emulate POWER8 */ 217 if (!(pcr & PCR_ARCH_206)) 218 return -EINVAL; 219 pcr &= ~PCR_ARCH_206; 220 } 221 } 222 223 spin_lock(&vc->lock); 224 vc->arch_compat = arch_compat; 225 vc->pcr = pcr; 226 spin_unlock(&vc->lock); 227 228 return 0; 229 } 230 231 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 232 { 233 int r; 234 235 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 236 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 237 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 238 for (r = 0; r < 16; ++r) 239 pr_err("r%2d = %.16lx r%d = %.16lx\n", 240 r, kvmppc_get_gpr(vcpu, r), 241 r+16, kvmppc_get_gpr(vcpu, r+16)); 242 pr_err("ctr = %.16lx lr = %.16lx\n", 243 vcpu->arch.ctr, vcpu->arch.lr); 244 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 245 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 246 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 247 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 248 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 249 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 250 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 251 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 252 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 253 pr_err("fault dar = %.16lx dsisr = %.8x\n", 254 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 255 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 256 for (r = 0; r < vcpu->arch.slb_max; ++r) 257 pr_err(" ESID = %.16llx VSID = %.16llx\n", 258 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 259 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 260 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 261 vcpu->arch.last_inst); 262 } 263 264 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 265 { 266 int r; 267 struct kvm_vcpu *v, *ret = NULL; 268 269 mutex_lock(&kvm->lock); 270 kvm_for_each_vcpu(r, v, kvm) { 271 if (v->vcpu_id == id) { 272 ret = v; 273 break; 274 } 275 } 276 mutex_unlock(&kvm->lock); 277 return ret; 278 } 279 280 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 281 { 282 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 283 vpa->yield_count = cpu_to_be32(1); 284 } 285 286 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 287 unsigned long addr, unsigned long len) 288 { 289 /* check address is cacheline aligned */ 290 if (addr & (L1_CACHE_BYTES - 1)) 291 return -EINVAL; 292 spin_lock(&vcpu->arch.vpa_update_lock); 293 if (v->next_gpa != addr || v->len != len) { 294 v->next_gpa = addr; 295 v->len = addr ? len : 0; 296 v->update_pending = 1; 297 } 298 spin_unlock(&vcpu->arch.vpa_update_lock); 299 return 0; 300 } 301 302 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 303 struct reg_vpa { 304 u32 dummy; 305 union { 306 __be16 hword; 307 __be32 word; 308 } length; 309 }; 310 311 static int vpa_is_registered(struct kvmppc_vpa *vpap) 312 { 313 if (vpap->update_pending) 314 return vpap->next_gpa != 0; 315 return vpap->pinned_addr != NULL; 316 } 317 318 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 319 unsigned long flags, 320 unsigned long vcpuid, unsigned long vpa) 321 { 322 struct kvm *kvm = vcpu->kvm; 323 unsigned long len, nb; 324 void *va; 325 struct kvm_vcpu *tvcpu; 326 int err; 327 int subfunc; 328 struct kvmppc_vpa *vpap; 329 330 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 331 if (!tvcpu) 332 return H_PARAMETER; 333 334 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 335 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 336 subfunc == H_VPA_REG_SLB) { 337 /* Registering new area - address must be cache-line aligned */ 338 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 339 return H_PARAMETER; 340 341 /* convert logical addr to kernel addr and read length */ 342 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 343 if (va == NULL) 344 return H_PARAMETER; 345 if (subfunc == H_VPA_REG_VPA) 346 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 347 else 348 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 349 kvmppc_unpin_guest_page(kvm, va, vpa, false); 350 351 /* Check length */ 352 if (len > nb || len < sizeof(struct reg_vpa)) 353 return H_PARAMETER; 354 } else { 355 vpa = 0; 356 len = 0; 357 } 358 359 err = H_PARAMETER; 360 vpap = NULL; 361 spin_lock(&tvcpu->arch.vpa_update_lock); 362 363 switch (subfunc) { 364 case H_VPA_REG_VPA: /* register VPA */ 365 if (len < sizeof(struct lppaca)) 366 break; 367 vpap = &tvcpu->arch.vpa; 368 err = 0; 369 break; 370 371 case H_VPA_REG_DTL: /* register DTL */ 372 if (len < sizeof(struct dtl_entry)) 373 break; 374 len -= len % sizeof(struct dtl_entry); 375 376 /* Check that they have previously registered a VPA */ 377 err = H_RESOURCE; 378 if (!vpa_is_registered(&tvcpu->arch.vpa)) 379 break; 380 381 vpap = &tvcpu->arch.dtl; 382 err = 0; 383 break; 384 385 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 386 /* Check that they have previously registered a VPA */ 387 err = H_RESOURCE; 388 if (!vpa_is_registered(&tvcpu->arch.vpa)) 389 break; 390 391 vpap = &tvcpu->arch.slb_shadow; 392 err = 0; 393 break; 394 395 case H_VPA_DEREG_VPA: /* deregister VPA */ 396 /* Check they don't still have a DTL or SLB buf registered */ 397 err = H_RESOURCE; 398 if (vpa_is_registered(&tvcpu->arch.dtl) || 399 vpa_is_registered(&tvcpu->arch.slb_shadow)) 400 break; 401 402 vpap = &tvcpu->arch.vpa; 403 err = 0; 404 break; 405 406 case H_VPA_DEREG_DTL: /* deregister DTL */ 407 vpap = &tvcpu->arch.dtl; 408 err = 0; 409 break; 410 411 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 412 vpap = &tvcpu->arch.slb_shadow; 413 err = 0; 414 break; 415 } 416 417 if (vpap) { 418 vpap->next_gpa = vpa; 419 vpap->len = len; 420 vpap->update_pending = 1; 421 } 422 423 spin_unlock(&tvcpu->arch.vpa_update_lock); 424 425 return err; 426 } 427 428 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 429 { 430 struct kvm *kvm = vcpu->kvm; 431 void *va; 432 unsigned long nb; 433 unsigned long gpa; 434 435 /* 436 * We need to pin the page pointed to by vpap->next_gpa, 437 * but we can't call kvmppc_pin_guest_page under the lock 438 * as it does get_user_pages() and down_read(). So we 439 * have to drop the lock, pin the page, then get the lock 440 * again and check that a new area didn't get registered 441 * in the meantime. 442 */ 443 for (;;) { 444 gpa = vpap->next_gpa; 445 spin_unlock(&vcpu->arch.vpa_update_lock); 446 va = NULL; 447 nb = 0; 448 if (gpa) 449 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 450 spin_lock(&vcpu->arch.vpa_update_lock); 451 if (gpa == vpap->next_gpa) 452 break; 453 /* sigh... unpin that one and try again */ 454 if (va) 455 kvmppc_unpin_guest_page(kvm, va, gpa, false); 456 } 457 458 vpap->update_pending = 0; 459 if (va && nb < vpap->len) { 460 /* 461 * If it's now too short, it must be that userspace 462 * has changed the mappings underlying guest memory, 463 * so unregister the region. 464 */ 465 kvmppc_unpin_guest_page(kvm, va, gpa, false); 466 va = NULL; 467 } 468 if (vpap->pinned_addr) 469 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 470 vpap->dirty); 471 vpap->gpa = gpa; 472 vpap->pinned_addr = va; 473 vpap->dirty = false; 474 if (va) 475 vpap->pinned_end = va + vpap->len; 476 } 477 478 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 479 { 480 if (!(vcpu->arch.vpa.update_pending || 481 vcpu->arch.slb_shadow.update_pending || 482 vcpu->arch.dtl.update_pending)) 483 return; 484 485 spin_lock(&vcpu->arch.vpa_update_lock); 486 if (vcpu->arch.vpa.update_pending) { 487 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 488 if (vcpu->arch.vpa.pinned_addr) 489 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 490 } 491 if (vcpu->arch.dtl.update_pending) { 492 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 493 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 494 vcpu->arch.dtl_index = 0; 495 } 496 if (vcpu->arch.slb_shadow.update_pending) 497 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 498 spin_unlock(&vcpu->arch.vpa_update_lock); 499 } 500 501 /* 502 * Return the accumulated stolen time for the vcore up until `now'. 503 * The caller should hold the vcore lock. 504 */ 505 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 506 { 507 u64 p; 508 509 /* 510 * If we are the task running the vcore, then since we hold 511 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 512 * can't be updated, so we don't need the tbacct_lock. 513 * If the vcore is inactive, it can't become active (since we 514 * hold the vcore lock), so the vcpu load/put functions won't 515 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 516 */ 517 if (vc->vcore_state != VCORE_INACTIVE && 518 vc->runner->arch.run_task != current) { 519 spin_lock_irq(&vc->runner->arch.tbacct_lock); 520 p = vc->stolen_tb; 521 if (vc->preempt_tb != TB_NIL) 522 p += now - vc->preempt_tb; 523 spin_unlock_irq(&vc->runner->arch.tbacct_lock); 524 } else { 525 p = vc->stolen_tb; 526 } 527 return p; 528 } 529 530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 531 struct kvmppc_vcore *vc) 532 { 533 struct dtl_entry *dt; 534 struct lppaca *vpa; 535 unsigned long stolen; 536 unsigned long core_stolen; 537 u64 now; 538 539 dt = vcpu->arch.dtl_ptr; 540 vpa = vcpu->arch.vpa.pinned_addr; 541 now = mftb(); 542 core_stolen = vcore_stolen_time(vc, now); 543 stolen = core_stolen - vcpu->arch.stolen_logged; 544 vcpu->arch.stolen_logged = core_stolen; 545 spin_lock_irq(&vcpu->arch.tbacct_lock); 546 stolen += vcpu->arch.busy_stolen; 547 vcpu->arch.busy_stolen = 0; 548 spin_unlock_irq(&vcpu->arch.tbacct_lock); 549 if (!dt || !vpa) 550 return; 551 memset(dt, 0, sizeof(struct dtl_entry)); 552 dt->dispatch_reason = 7; 553 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 554 dt->timebase = cpu_to_be64(now + vc->tb_offset); 555 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 556 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 557 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 558 ++dt; 559 if (dt == vcpu->arch.dtl.pinned_end) 560 dt = vcpu->arch.dtl.pinned_addr; 561 vcpu->arch.dtl_ptr = dt; 562 /* order writing *dt vs. writing vpa->dtl_idx */ 563 smp_wmb(); 564 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 565 vcpu->arch.dtl.dirty = true; 566 } 567 568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 569 { 570 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 571 return true; 572 if ((!vcpu->arch.vcore->arch_compat) && 573 cpu_has_feature(CPU_FTR_ARCH_207S)) 574 return true; 575 return false; 576 } 577 578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 579 unsigned long resource, unsigned long value1, 580 unsigned long value2) 581 { 582 switch (resource) { 583 case H_SET_MODE_RESOURCE_SET_CIABR: 584 if (!kvmppc_power8_compatible(vcpu)) 585 return H_P2; 586 if (value2) 587 return H_P4; 588 if (mflags) 589 return H_UNSUPPORTED_FLAG_START; 590 /* Guests can't breakpoint the hypervisor */ 591 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 592 return H_P3; 593 vcpu->arch.ciabr = value1; 594 return H_SUCCESS; 595 case H_SET_MODE_RESOURCE_SET_DAWR: 596 if (!kvmppc_power8_compatible(vcpu)) 597 return H_P2; 598 if (mflags) 599 return H_UNSUPPORTED_FLAG_START; 600 if (value2 & DABRX_HYP) 601 return H_P4; 602 vcpu->arch.dawr = value1; 603 vcpu->arch.dawrx = value2; 604 return H_SUCCESS; 605 default: 606 return H_TOO_HARD; 607 } 608 } 609 610 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 611 { 612 unsigned long req = kvmppc_get_gpr(vcpu, 3); 613 unsigned long target, ret = H_SUCCESS; 614 struct kvm_vcpu *tvcpu; 615 int idx, rc; 616 617 if (req <= MAX_HCALL_OPCODE && 618 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 619 return RESUME_HOST; 620 621 switch (req) { 622 case H_ENTER: 623 idx = srcu_read_lock(&vcpu->kvm->srcu); 624 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 625 kvmppc_get_gpr(vcpu, 5), 626 kvmppc_get_gpr(vcpu, 6), 627 kvmppc_get_gpr(vcpu, 7)); 628 srcu_read_unlock(&vcpu->kvm->srcu, idx); 629 break; 630 case H_CEDE: 631 break; 632 case H_PROD: 633 target = kvmppc_get_gpr(vcpu, 4); 634 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 635 if (!tvcpu) { 636 ret = H_PARAMETER; 637 break; 638 } 639 tvcpu->arch.prodded = 1; 640 smp_mb(); 641 if (vcpu->arch.ceded) { 642 if (waitqueue_active(&vcpu->wq)) { 643 wake_up_interruptible(&vcpu->wq); 644 vcpu->stat.halt_wakeup++; 645 } 646 } 647 break; 648 case H_CONFER: 649 target = kvmppc_get_gpr(vcpu, 4); 650 if (target == -1) 651 break; 652 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 653 if (!tvcpu) { 654 ret = H_PARAMETER; 655 break; 656 } 657 kvm_vcpu_yield_to(tvcpu); 658 break; 659 case H_REGISTER_VPA: 660 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 661 kvmppc_get_gpr(vcpu, 5), 662 kvmppc_get_gpr(vcpu, 6)); 663 break; 664 case H_RTAS: 665 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 666 return RESUME_HOST; 667 668 idx = srcu_read_lock(&vcpu->kvm->srcu); 669 rc = kvmppc_rtas_hcall(vcpu); 670 srcu_read_unlock(&vcpu->kvm->srcu, idx); 671 672 if (rc == -ENOENT) 673 return RESUME_HOST; 674 else if (rc == 0) 675 break; 676 677 /* Send the error out to userspace via KVM_RUN */ 678 return rc; 679 case H_SET_MODE: 680 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 681 kvmppc_get_gpr(vcpu, 5), 682 kvmppc_get_gpr(vcpu, 6), 683 kvmppc_get_gpr(vcpu, 7)); 684 if (ret == H_TOO_HARD) 685 return RESUME_HOST; 686 break; 687 case H_XIRR: 688 case H_CPPR: 689 case H_EOI: 690 case H_IPI: 691 case H_IPOLL: 692 case H_XIRR_X: 693 if (kvmppc_xics_enabled(vcpu)) { 694 ret = kvmppc_xics_hcall(vcpu, req); 695 break; 696 } /* fallthrough */ 697 default: 698 return RESUME_HOST; 699 } 700 kvmppc_set_gpr(vcpu, 3, ret); 701 vcpu->arch.hcall_needed = 0; 702 return RESUME_GUEST; 703 } 704 705 static int kvmppc_hcall_impl_hv(unsigned long cmd) 706 { 707 switch (cmd) { 708 case H_CEDE: 709 case H_PROD: 710 case H_CONFER: 711 case H_REGISTER_VPA: 712 case H_SET_MODE: 713 #ifdef CONFIG_KVM_XICS 714 case H_XIRR: 715 case H_CPPR: 716 case H_EOI: 717 case H_IPI: 718 case H_IPOLL: 719 case H_XIRR_X: 720 #endif 721 return 1; 722 } 723 724 /* See if it's in the real-mode table */ 725 return kvmppc_hcall_impl_hv_realmode(cmd); 726 } 727 728 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 729 struct task_struct *tsk) 730 { 731 int r = RESUME_HOST; 732 733 vcpu->stat.sum_exits++; 734 735 run->exit_reason = KVM_EXIT_UNKNOWN; 736 run->ready_for_interrupt_injection = 1; 737 switch (vcpu->arch.trap) { 738 /* We're good on these - the host merely wanted to get our attention */ 739 case BOOK3S_INTERRUPT_HV_DECREMENTER: 740 vcpu->stat.dec_exits++; 741 r = RESUME_GUEST; 742 break; 743 case BOOK3S_INTERRUPT_EXTERNAL: 744 case BOOK3S_INTERRUPT_H_DOORBELL: 745 vcpu->stat.ext_intr_exits++; 746 r = RESUME_GUEST; 747 break; 748 case BOOK3S_INTERRUPT_PERFMON: 749 r = RESUME_GUEST; 750 break; 751 case BOOK3S_INTERRUPT_MACHINE_CHECK: 752 /* 753 * Deliver a machine check interrupt to the guest. 754 * We have to do this, even if the host has handled the 755 * machine check, because machine checks use SRR0/1 and 756 * the interrupt might have trashed guest state in them. 757 */ 758 kvmppc_book3s_queue_irqprio(vcpu, 759 BOOK3S_INTERRUPT_MACHINE_CHECK); 760 r = RESUME_GUEST; 761 break; 762 case BOOK3S_INTERRUPT_PROGRAM: 763 { 764 ulong flags; 765 /* 766 * Normally program interrupts are delivered directly 767 * to the guest by the hardware, but we can get here 768 * as a result of a hypervisor emulation interrupt 769 * (e40) getting turned into a 700 by BML RTAS. 770 */ 771 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 772 kvmppc_core_queue_program(vcpu, flags); 773 r = RESUME_GUEST; 774 break; 775 } 776 case BOOK3S_INTERRUPT_SYSCALL: 777 { 778 /* hcall - punt to userspace */ 779 int i; 780 781 /* hypercall with MSR_PR has already been handled in rmode, 782 * and never reaches here. 783 */ 784 785 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 786 for (i = 0; i < 9; ++i) 787 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 788 run->exit_reason = KVM_EXIT_PAPR_HCALL; 789 vcpu->arch.hcall_needed = 1; 790 r = RESUME_HOST; 791 break; 792 } 793 /* 794 * We get these next two if the guest accesses a page which it thinks 795 * it has mapped but which is not actually present, either because 796 * it is for an emulated I/O device or because the corresonding 797 * host page has been paged out. Any other HDSI/HISI interrupts 798 * have been handled already. 799 */ 800 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 801 r = RESUME_PAGE_FAULT; 802 break; 803 case BOOK3S_INTERRUPT_H_INST_STORAGE: 804 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 805 vcpu->arch.fault_dsisr = 0; 806 r = RESUME_PAGE_FAULT; 807 break; 808 /* 809 * This occurs if the guest executes an illegal instruction. 810 * We just generate a program interrupt to the guest, since 811 * we don't emulate any guest instructions at this stage. 812 */ 813 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 814 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 815 r = RESUME_GUEST; 816 break; 817 /* 818 * This occurs if the guest (kernel or userspace), does something that 819 * is prohibited by HFSCR. We just generate a program interrupt to 820 * the guest. 821 */ 822 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 823 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 824 r = RESUME_GUEST; 825 break; 826 default: 827 kvmppc_dump_regs(vcpu); 828 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 829 vcpu->arch.trap, kvmppc_get_pc(vcpu), 830 vcpu->arch.shregs.msr); 831 run->hw.hardware_exit_reason = vcpu->arch.trap; 832 r = RESUME_HOST; 833 break; 834 } 835 836 return r; 837 } 838 839 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 840 struct kvm_sregs *sregs) 841 { 842 int i; 843 844 memset(sregs, 0, sizeof(struct kvm_sregs)); 845 sregs->pvr = vcpu->arch.pvr; 846 for (i = 0; i < vcpu->arch.slb_max; i++) { 847 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 848 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 849 } 850 851 return 0; 852 } 853 854 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 855 struct kvm_sregs *sregs) 856 { 857 int i, j; 858 859 kvmppc_set_pvr_hv(vcpu, sregs->pvr); 860 861 j = 0; 862 for (i = 0; i < vcpu->arch.slb_nr; i++) { 863 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 864 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 865 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 866 ++j; 867 } 868 } 869 vcpu->arch.slb_max = j; 870 871 return 0; 872 } 873 874 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 875 bool preserve_top32) 876 { 877 struct kvmppc_vcore *vc = vcpu->arch.vcore; 878 u64 mask; 879 880 spin_lock(&vc->lock); 881 /* 882 * If ILE (interrupt little-endian) has changed, update the 883 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 884 */ 885 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 886 struct kvm *kvm = vcpu->kvm; 887 struct kvm_vcpu *vcpu; 888 int i; 889 890 mutex_lock(&kvm->lock); 891 kvm_for_each_vcpu(i, vcpu, kvm) { 892 if (vcpu->arch.vcore != vc) 893 continue; 894 if (new_lpcr & LPCR_ILE) 895 vcpu->arch.intr_msr |= MSR_LE; 896 else 897 vcpu->arch.intr_msr &= ~MSR_LE; 898 } 899 mutex_unlock(&kvm->lock); 900 } 901 902 /* 903 * Userspace can only modify DPFD (default prefetch depth), 904 * ILE (interrupt little-endian) and TC (translation control). 905 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 906 */ 907 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 908 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 909 mask |= LPCR_AIL; 910 911 /* Broken 32-bit version of LPCR must not clear top bits */ 912 if (preserve_top32) 913 mask &= 0xFFFFFFFF; 914 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 915 spin_unlock(&vc->lock); 916 } 917 918 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 919 union kvmppc_one_reg *val) 920 { 921 int r = 0; 922 long int i; 923 924 switch (id) { 925 case KVM_REG_PPC_HIOR: 926 *val = get_reg_val(id, 0); 927 break; 928 case KVM_REG_PPC_DABR: 929 *val = get_reg_val(id, vcpu->arch.dabr); 930 break; 931 case KVM_REG_PPC_DABRX: 932 *val = get_reg_val(id, vcpu->arch.dabrx); 933 break; 934 case KVM_REG_PPC_DSCR: 935 *val = get_reg_val(id, vcpu->arch.dscr); 936 break; 937 case KVM_REG_PPC_PURR: 938 *val = get_reg_val(id, vcpu->arch.purr); 939 break; 940 case KVM_REG_PPC_SPURR: 941 *val = get_reg_val(id, vcpu->arch.spurr); 942 break; 943 case KVM_REG_PPC_AMR: 944 *val = get_reg_val(id, vcpu->arch.amr); 945 break; 946 case KVM_REG_PPC_UAMOR: 947 *val = get_reg_val(id, vcpu->arch.uamor); 948 break; 949 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 950 i = id - KVM_REG_PPC_MMCR0; 951 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 952 break; 953 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 954 i = id - KVM_REG_PPC_PMC1; 955 *val = get_reg_val(id, vcpu->arch.pmc[i]); 956 break; 957 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 958 i = id - KVM_REG_PPC_SPMC1; 959 *val = get_reg_val(id, vcpu->arch.spmc[i]); 960 break; 961 case KVM_REG_PPC_SIAR: 962 *val = get_reg_val(id, vcpu->arch.siar); 963 break; 964 case KVM_REG_PPC_SDAR: 965 *val = get_reg_val(id, vcpu->arch.sdar); 966 break; 967 case KVM_REG_PPC_SIER: 968 *val = get_reg_val(id, vcpu->arch.sier); 969 break; 970 case KVM_REG_PPC_IAMR: 971 *val = get_reg_val(id, vcpu->arch.iamr); 972 break; 973 case KVM_REG_PPC_PSPB: 974 *val = get_reg_val(id, vcpu->arch.pspb); 975 break; 976 case KVM_REG_PPC_DPDES: 977 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 978 break; 979 case KVM_REG_PPC_DAWR: 980 *val = get_reg_val(id, vcpu->arch.dawr); 981 break; 982 case KVM_REG_PPC_DAWRX: 983 *val = get_reg_val(id, vcpu->arch.dawrx); 984 break; 985 case KVM_REG_PPC_CIABR: 986 *val = get_reg_val(id, vcpu->arch.ciabr); 987 break; 988 case KVM_REG_PPC_CSIGR: 989 *val = get_reg_val(id, vcpu->arch.csigr); 990 break; 991 case KVM_REG_PPC_TACR: 992 *val = get_reg_val(id, vcpu->arch.tacr); 993 break; 994 case KVM_REG_PPC_TCSCR: 995 *val = get_reg_val(id, vcpu->arch.tcscr); 996 break; 997 case KVM_REG_PPC_PID: 998 *val = get_reg_val(id, vcpu->arch.pid); 999 break; 1000 case KVM_REG_PPC_ACOP: 1001 *val = get_reg_val(id, vcpu->arch.acop); 1002 break; 1003 case KVM_REG_PPC_WORT: 1004 *val = get_reg_val(id, vcpu->arch.wort); 1005 break; 1006 case KVM_REG_PPC_VPA_ADDR: 1007 spin_lock(&vcpu->arch.vpa_update_lock); 1008 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1009 spin_unlock(&vcpu->arch.vpa_update_lock); 1010 break; 1011 case KVM_REG_PPC_VPA_SLB: 1012 spin_lock(&vcpu->arch.vpa_update_lock); 1013 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1014 val->vpaval.length = vcpu->arch.slb_shadow.len; 1015 spin_unlock(&vcpu->arch.vpa_update_lock); 1016 break; 1017 case KVM_REG_PPC_VPA_DTL: 1018 spin_lock(&vcpu->arch.vpa_update_lock); 1019 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1020 val->vpaval.length = vcpu->arch.dtl.len; 1021 spin_unlock(&vcpu->arch.vpa_update_lock); 1022 break; 1023 case KVM_REG_PPC_TB_OFFSET: 1024 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1025 break; 1026 case KVM_REG_PPC_LPCR: 1027 case KVM_REG_PPC_LPCR_64: 1028 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1029 break; 1030 case KVM_REG_PPC_PPR: 1031 *val = get_reg_val(id, vcpu->arch.ppr); 1032 break; 1033 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1034 case KVM_REG_PPC_TFHAR: 1035 *val = get_reg_val(id, vcpu->arch.tfhar); 1036 break; 1037 case KVM_REG_PPC_TFIAR: 1038 *val = get_reg_val(id, vcpu->arch.tfiar); 1039 break; 1040 case KVM_REG_PPC_TEXASR: 1041 *val = get_reg_val(id, vcpu->arch.texasr); 1042 break; 1043 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1044 i = id - KVM_REG_PPC_TM_GPR0; 1045 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1046 break; 1047 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1048 { 1049 int j; 1050 i = id - KVM_REG_PPC_TM_VSR0; 1051 if (i < 32) 1052 for (j = 0; j < TS_FPRWIDTH; j++) 1053 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1054 else { 1055 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1056 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1057 else 1058 r = -ENXIO; 1059 } 1060 break; 1061 } 1062 case KVM_REG_PPC_TM_CR: 1063 *val = get_reg_val(id, vcpu->arch.cr_tm); 1064 break; 1065 case KVM_REG_PPC_TM_LR: 1066 *val = get_reg_val(id, vcpu->arch.lr_tm); 1067 break; 1068 case KVM_REG_PPC_TM_CTR: 1069 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1070 break; 1071 case KVM_REG_PPC_TM_FPSCR: 1072 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1073 break; 1074 case KVM_REG_PPC_TM_AMR: 1075 *val = get_reg_val(id, vcpu->arch.amr_tm); 1076 break; 1077 case KVM_REG_PPC_TM_PPR: 1078 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1079 break; 1080 case KVM_REG_PPC_TM_VRSAVE: 1081 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1082 break; 1083 case KVM_REG_PPC_TM_VSCR: 1084 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1085 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1086 else 1087 r = -ENXIO; 1088 break; 1089 case KVM_REG_PPC_TM_DSCR: 1090 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1091 break; 1092 case KVM_REG_PPC_TM_TAR: 1093 *val = get_reg_val(id, vcpu->arch.tar_tm); 1094 break; 1095 #endif 1096 case KVM_REG_PPC_ARCH_COMPAT: 1097 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1098 break; 1099 default: 1100 r = -EINVAL; 1101 break; 1102 } 1103 1104 return r; 1105 } 1106 1107 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1108 union kvmppc_one_reg *val) 1109 { 1110 int r = 0; 1111 long int i; 1112 unsigned long addr, len; 1113 1114 switch (id) { 1115 case KVM_REG_PPC_HIOR: 1116 /* Only allow this to be set to zero */ 1117 if (set_reg_val(id, *val)) 1118 r = -EINVAL; 1119 break; 1120 case KVM_REG_PPC_DABR: 1121 vcpu->arch.dabr = set_reg_val(id, *val); 1122 break; 1123 case KVM_REG_PPC_DABRX: 1124 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1125 break; 1126 case KVM_REG_PPC_DSCR: 1127 vcpu->arch.dscr = set_reg_val(id, *val); 1128 break; 1129 case KVM_REG_PPC_PURR: 1130 vcpu->arch.purr = set_reg_val(id, *val); 1131 break; 1132 case KVM_REG_PPC_SPURR: 1133 vcpu->arch.spurr = set_reg_val(id, *val); 1134 break; 1135 case KVM_REG_PPC_AMR: 1136 vcpu->arch.amr = set_reg_val(id, *val); 1137 break; 1138 case KVM_REG_PPC_UAMOR: 1139 vcpu->arch.uamor = set_reg_val(id, *val); 1140 break; 1141 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1142 i = id - KVM_REG_PPC_MMCR0; 1143 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1144 break; 1145 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1146 i = id - KVM_REG_PPC_PMC1; 1147 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1148 break; 1149 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1150 i = id - KVM_REG_PPC_SPMC1; 1151 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1152 break; 1153 case KVM_REG_PPC_SIAR: 1154 vcpu->arch.siar = set_reg_val(id, *val); 1155 break; 1156 case KVM_REG_PPC_SDAR: 1157 vcpu->arch.sdar = set_reg_val(id, *val); 1158 break; 1159 case KVM_REG_PPC_SIER: 1160 vcpu->arch.sier = set_reg_val(id, *val); 1161 break; 1162 case KVM_REG_PPC_IAMR: 1163 vcpu->arch.iamr = set_reg_val(id, *val); 1164 break; 1165 case KVM_REG_PPC_PSPB: 1166 vcpu->arch.pspb = set_reg_val(id, *val); 1167 break; 1168 case KVM_REG_PPC_DPDES: 1169 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1170 break; 1171 case KVM_REG_PPC_DAWR: 1172 vcpu->arch.dawr = set_reg_val(id, *val); 1173 break; 1174 case KVM_REG_PPC_DAWRX: 1175 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1176 break; 1177 case KVM_REG_PPC_CIABR: 1178 vcpu->arch.ciabr = set_reg_val(id, *val); 1179 /* Don't allow setting breakpoints in hypervisor code */ 1180 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1181 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1182 break; 1183 case KVM_REG_PPC_CSIGR: 1184 vcpu->arch.csigr = set_reg_val(id, *val); 1185 break; 1186 case KVM_REG_PPC_TACR: 1187 vcpu->arch.tacr = set_reg_val(id, *val); 1188 break; 1189 case KVM_REG_PPC_TCSCR: 1190 vcpu->arch.tcscr = set_reg_val(id, *val); 1191 break; 1192 case KVM_REG_PPC_PID: 1193 vcpu->arch.pid = set_reg_val(id, *val); 1194 break; 1195 case KVM_REG_PPC_ACOP: 1196 vcpu->arch.acop = set_reg_val(id, *val); 1197 break; 1198 case KVM_REG_PPC_WORT: 1199 vcpu->arch.wort = set_reg_val(id, *val); 1200 break; 1201 case KVM_REG_PPC_VPA_ADDR: 1202 addr = set_reg_val(id, *val); 1203 r = -EINVAL; 1204 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1205 vcpu->arch.dtl.next_gpa)) 1206 break; 1207 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1208 break; 1209 case KVM_REG_PPC_VPA_SLB: 1210 addr = val->vpaval.addr; 1211 len = val->vpaval.length; 1212 r = -EINVAL; 1213 if (addr && !vcpu->arch.vpa.next_gpa) 1214 break; 1215 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1216 break; 1217 case KVM_REG_PPC_VPA_DTL: 1218 addr = val->vpaval.addr; 1219 len = val->vpaval.length; 1220 r = -EINVAL; 1221 if (addr && (len < sizeof(struct dtl_entry) || 1222 !vcpu->arch.vpa.next_gpa)) 1223 break; 1224 len -= len % sizeof(struct dtl_entry); 1225 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1226 break; 1227 case KVM_REG_PPC_TB_OFFSET: 1228 /* round up to multiple of 2^24 */ 1229 vcpu->arch.vcore->tb_offset = 1230 ALIGN(set_reg_val(id, *val), 1UL << 24); 1231 break; 1232 case KVM_REG_PPC_LPCR: 1233 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1234 break; 1235 case KVM_REG_PPC_LPCR_64: 1236 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1237 break; 1238 case KVM_REG_PPC_PPR: 1239 vcpu->arch.ppr = set_reg_val(id, *val); 1240 break; 1241 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1242 case KVM_REG_PPC_TFHAR: 1243 vcpu->arch.tfhar = set_reg_val(id, *val); 1244 break; 1245 case KVM_REG_PPC_TFIAR: 1246 vcpu->arch.tfiar = set_reg_val(id, *val); 1247 break; 1248 case KVM_REG_PPC_TEXASR: 1249 vcpu->arch.texasr = set_reg_val(id, *val); 1250 break; 1251 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1252 i = id - KVM_REG_PPC_TM_GPR0; 1253 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1254 break; 1255 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1256 { 1257 int j; 1258 i = id - KVM_REG_PPC_TM_VSR0; 1259 if (i < 32) 1260 for (j = 0; j < TS_FPRWIDTH; j++) 1261 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1262 else 1263 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1264 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1265 else 1266 r = -ENXIO; 1267 break; 1268 } 1269 case KVM_REG_PPC_TM_CR: 1270 vcpu->arch.cr_tm = set_reg_val(id, *val); 1271 break; 1272 case KVM_REG_PPC_TM_LR: 1273 vcpu->arch.lr_tm = set_reg_val(id, *val); 1274 break; 1275 case KVM_REG_PPC_TM_CTR: 1276 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1277 break; 1278 case KVM_REG_PPC_TM_FPSCR: 1279 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1280 break; 1281 case KVM_REG_PPC_TM_AMR: 1282 vcpu->arch.amr_tm = set_reg_val(id, *val); 1283 break; 1284 case KVM_REG_PPC_TM_PPR: 1285 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1286 break; 1287 case KVM_REG_PPC_TM_VRSAVE: 1288 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1289 break; 1290 case KVM_REG_PPC_TM_VSCR: 1291 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1292 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1293 else 1294 r = - ENXIO; 1295 break; 1296 case KVM_REG_PPC_TM_DSCR: 1297 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1298 break; 1299 case KVM_REG_PPC_TM_TAR: 1300 vcpu->arch.tar_tm = set_reg_val(id, *val); 1301 break; 1302 #endif 1303 case KVM_REG_PPC_ARCH_COMPAT: 1304 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1305 break; 1306 default: 1307 r = -EINVAL; 1308 break; 1309 } 1310 1311 return r; 1312 } 1313 1314 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1315 { 1316 struct kvmppc_vcore *vcore; 1317 1318 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1319 1320 if (vcore == NULL) 1321 return NULL; 1322 1323 INIT_LIST_HEAD(&vcore->runnable_threads); 1324 spin_lock_init(&vcore->lock); 1325 init_waitqueue_head(&vcore->wq); 1326 vcore->preempt_tb = TB_NIL; 1327 vcore->lpcr = kvm->arch.lpcr; 1328 vcore->first_vcpuid = core * threads_per_subcore; 1329 vcore->kvm = kvm; 1330 1331 vcore->mpp_buffer_is_valid = false; 1332 1333 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1334 vcore->mpp_buffer = (void *)__get_free_pages( 1335 GFP_KERNEL|__GFP_ZERO, 1336 MPP_BUFFER_ORDER); 1337 1338 return vcore; 1339 } 1340 1341 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1342 unsigned int id) 1343 { 1344 struct kvm_vcpu *vcpu; 1345 int err = -EINVAL; 1346 int core; 1347 struct kvmppc_vcore *vcore; 1348 1349 core = id / threads_per_subcore; 1350 if (core >= KVM_MAX_VCORES) 1351 goto out; 1352 1353 err = -ENOMEM; 1354 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1355 if (!vcpu) 1356 goto out; 1357 1358 err = kvm_vcpu_init(vcpu, kvm, id); 1359 if (err) 1360 goto free_vcpu; 1361 1362 vcpu->arch.shared = &vcpu->arch.shregs; 1363 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1364 /* 1365 * The shared struct is never shared on HV, 1366 * so we can always use host endianness 1367 */ 1368 #ifdef __BIG_ENDIAN__ 1369 vcpu->arch.shared_big_endian = true; 1370 #else 1371 vcpu->arch.shared_big_endian = false; 1372 #endif 1373 #endif 1374 vcpu->arch.mmcr[0] = MMCR0_FC; 1375 vcpu->arch.ctrl = CTRL_RUNLATCH; 1376 /* default to host PVR, since we can't spoof it */ 1377 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1378 spin_lock_init(&vcpu->arch.vpa_update_lock); 1379 spin_lock_init(&vcpu->arch.tbacct_lock); 1380 vcpu->arch.busy_preempt = TB_NIL; 1381 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1382 1383 kvmppc_mmu_book3s_hv_init(vcpu); 1384 1385 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1386 1387 init_waitqueue_head(&vcpu->arch.cpu_run); 1388 1389 mutex_lock(&kvm->lock); 1390 vcore = kvm->arch.vcores[core]; 1391 if (!vcore) { 1392 vcore = kvmppc_vcore_create(kvm, core); 1393 kvm->arch.vcores[core] = vcore; 1394 kvm->arch.online_vcores++; 1395 } 1396 mutex_unlock(&kvm->lock); 1397 1398 if (!vcore) 1399 goto free_vcpu; 1400 1401 spin_lock(&vcore->lock); 1402 ++vcore->num_threads; 1403 spin_unlock(&vcore->lock); 1404 vcpu->arch.vcore = vcore; 1405 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1406 1407 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1408 kvmppc_sanity_check(vcpu); 1409 1410 return vcpu; 1411 1412 free_vcpu: 1413 kmem_cache_free(kvm_vcpu_cache, vcpu); 1414 out: 1415 return ERR_PTR(err); 1416 } 1417 1418 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1419 { 1420 if (vpa->pinned_addr) 1421 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1422 vpa->dirty); 1423 } 1424 1425 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1426 { 1427 spin_lock(&vcpu->arch.vpa_update_lock); 1428 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1429 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1430 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1431 spin_unlock(&vcpu->arch.vpa_update_lock); 1432 kvm_vcpu_uninit(vcpu); 1433 kmem_cache_free(kvm_vcpu_cache, vcpu); 1434 } 1435 1436 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1437 { 1438 /* Indicate we want to get back into the guest */ 1439 return 1; 1440 } 1441 1442 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1443 { 1444 unsigned long dec_nsec, now; 1445 1446 now = get_tb(); 1447 if (now > vcpu->arch.dec_expires) { 1448 /* decrementer has already gone negative */ 1449 kvmppc_core_queue_dec(vcpu); 1450 kvmppc_core_prepare_to_enter(vcpu); 1451 return; 1452 } 1453 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1454 / tb_ticks_per_sec; 1455 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1456 HRTIMER_MODE_REL); 1457 vcpu->arch.timer_running = 1; 1458 } 1459 1460 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1461 { 1462 vcpu->arch.ceded = 0; 1463 if (vcpu->arch.timer_running) { 1464 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1465 vcpu->arch.timer_running = 0; 1466 } 1467 } 1468 1469 extern void __kvmppc_vcore_entry(void); 1470 1471 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1472 struct kvm_vcpu *vcpu) 1473 { 1474 u64 now; 1475 1476 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1477 return; 1478 spin_lock_irq(&vcpu->arch.tbacct_lock); 1479 now = mftb(); 1480 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1481 vcpu->arch.stolen_logged; 1482 vcpu->arch.busy_preempt = now; 1483 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1484 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1485 --vc->n_runnable; 1486 list_del(&vcpu->arch.run_list); 1487 } 1488 1489 static int kvmppc_grab_hwthread(int cpu) 1490 { 1491 struct paca_struct *tpaca; 1492 long timeout = 1000; 1493 1494 tpaca = &paca[cpu]; 1495 1496 /* Ensure the thread won't go into the kernel if it wakes */ 1497 tpaca->kvm_hstate.hwthread_req = 1; 1498 tpaca->kvm_hstate.kvm_vcpu = NULL; 1499 1500 /* 1501 * If the thread is already executing in the kernel (e.g. handling 1502 * a stray interrupt), wait for it to get back to nap mode. 1503 * The smp_mb() is to ensure that our setting of hwthread_req 1504 * is visible before we look at hwthread_state, so if this 1505 * races with the code at system_reset_pSeries and the thread 1506 * misses our setting of hwthread_req, we are sure to see its 1507 * setting of hwthread_state, and vice versa. 1508 */ 1509 smp_mb(); 1510 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1511 if (--timeout <= 0) { 1512 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1513 return -EBUSY; 1514 } 1515 udelay(1); 1516 } 1517 return 0; 1518 } 1519 1520 static void kvmppc_release_hwthread(int cpu) 1521 { 1522 struct paca_struct *tpaca; 1523 1524 tpaca = &paca[cpu]; 1525 tpaca->kvm_hstate.hwthread_req = 0; 1526 tpaca->kvm_hstate.kvm_vcpu = NULL; 1527 } 1528 1529 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1530 { 1531 int cpu; 1532 struct paca_struct *tpaca; 1533 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1534 1535 if (vcpu->arch.timer_running) { 1536 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1537 vcpu->arch.timer_running = 0; 1538 } 1539 cpu = vc->pcpu + vcpu->arch.ptid; 1540 tpaca = &paca[cpu]; 1541 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1542 tpaca->kvm_hstate.kvm_vcore = vc; 1543 tpaca->kvm_hstate.ptid = vcpu->arch.ptid; 1544 vcpu->cpu = vc->pcpu; 1545 smp_wmb(); 1546 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1547 if (cpu != smp_processor_id()) { 1548 xics_wake_cpu(cpu); 1549 if (vcpu->arch.ptid) 1550 ++vc->n_woken; 1551 } 1552 #endif 1553 } 1554 1555 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1556 { 1557 int i; 1558 1559 HMT_low(); 1560 i = 0; 1561 while (vc->nap_count < vc->n_woken) { 1562 if (++i >= 1000000) { 1563 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1564 vc->nap_count, vc->n_woken); 1565 break; 1566 } 1567 cpu_relax(); 1568 } 1569 HMT_medium(); 1570 } 1571 1572 /* 1573 * Check that we are on thread 0 and that any other threads in 1574 * this core are off-line. Then grab the threads so they can't 1575 * enter the kernel. 1576 */ 1577 static int on_primary_thread(void) 1578 { 1579 int cpu = smp_processor_id(); 1580 int thr; 1581 1582 /* Are we on a primary subcore? */ 1583 if (cpu_thread_in_subcore(cpu)) 1584 return 0; 1585 1586 thr = 0; 1587 while (++thr < threads_per_subcore) 1588 if (cpu_online(cpu + thr)) 1589 return 0; 1590 1591 /* Grab all hw threads so they can't go into the kernel */ 1592 for (thr = 1; thr < threads_per_subcore; ++thr) { 1593 if (kvmppc_grab_hwthread(cpu + thr)) { 1594 /* Couldn't grab one; let the others go */ 1595 do { 1596 kvmppc_release_hwthread(cpu + thr); 1597 } while (--thr > 0); 1598 return 0; 1599 } 1600 } 1601 return 1; 1602 } 1603 1604 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc) 1605 { 1606 phys_addr_t phy_addr, mpp_addr; 1607 1608 phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer); 1609 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1610 1611 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT); 1612 logmpp(mpp_addr | PPC_LOGMPP_LOG_L2); 1613 1614 vc->mpp_buffer_is_valid = true; 1615 } 1616 1617 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc) 1618 { 1619 phys_addr_t phy_addr, mpp_addr; 1620 1621 phy_addr = virt_to_phys(vc->mpp_buffer); 1622 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1623 1624 /* We must abort any in-progress save operations to ensure 1625 * the table is valid so that prefetch engine knows when to 1626 * stop prefetching. */ 1627 logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT); 1628 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE); 1629 } 1630 1631 /* 1632 * Run a set of guest threads on a physical core. 1633 * Called with vc->lock held. 1634 */ 1635 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1636 { 1637 struct kvm_vcpu *vcpu, *vnext; 1638 long ret; 1639 u64 now; 1640 int i, need_vpa_update; 1641 int srcu_idx; 1642 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1643 1644 /* don't start if any threads have a signal pending */ 1645 need_vpa_update = 0; 1646 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1647 if (signal_pending(vcpu->arch.run_task)) 1648 return; 1649 if (vcpu->arch.vpa.update_pending || 1650 vcpu->arch.slb_shadow.update_pending || 1651 vcpu->arch.dtl.update_pending) 1652 vcpus_to_update[need_vpa_update++] = vcpu; 1653 } 1654 1655 /* 1656 * Initialize *vc, in particular vc->vcore_state, so we can 1657 * drop the vcore lock if necessary. 1658 */ 1659 vc->n_woken = 0; 1660 vc->nap_count = 0; 1661 vc->entry_exit_count = 0; 1662 vc->vcore_state = VCORE_STARTING; 1663 vc->in_guest = 0; 1664 vc->napping_threads = 0; 1665 1666 /* 1667 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1668 * which can't be called with any spinlocks held. 1669 */ 1670 if (need_vpa_update) { 1671 spin_unlock(&vc->lock); 1672 for (i = 0; i < need_vpa_update; ++i) 1673 kvmppc_update_vpas(vcpus_to_update[i]); 1674 spin_lock(&vc->lock); 1675 } 1676 1677 /* 1678 * Make sure we are running on primary threads, and that secondary 1679 * threads are offline. Also check if the number of threads in this 1680 * guest are greater than the current system threads per guest. 1681 */ 1682 if ((threads_per_core > 1) && 1683 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 1684 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1685 vcpu->arch.ret = -EBUSY; 1686 goto out; 1687 } 1688 1689 1690 vc->pcpu = smp_processor_id(); 1691 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1692 kvmppc_start_thread(vcpu); 1693 kvmppc_create_dtl_entry(vcpu, vc); 1694 } 1695 1696 /* Set this explicitly in case thread 0 doesn't have a vcpu */ 1697 get_paca()->kvm_hstate.kvm_vcore = vc; 1698 get_paca()->kvm_hstate.ptid = 0; 1699 1700 vc->vcore_state = VCORE_RUNNING; 1701 preempt_disable(); 1702 spin_unlock(&vc->lock); 1703 1704 kvm_guest_enter(); 1705 1706 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 1707 1708 if (vc->mpp_buffer_is_valid) 1709 kvmppc_start_restoring_l2_cache(vc); 1710 1711 __kvmppc_vcore_entry(); 1712 1713 spin_lock(&vc->lock); 1714 1715 if (vc->mpp_buffer) 1716 kvmppc_start_saving_l2_cache(vc); 1717 1718 /* disable sending of IPIs on virtual external irqs */ 1719 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1720 vcpu->cpu = -1; 1721 /* wait for secondary threads to finish writing their state to memory */ 1722 if (vc->nap_count < vc->n_woken) 1723 kvmppc_wait_for_nap(vc); 1724 for (i = 0; i < threads_per_subcore; ++i) 1725 kvmppc_release_hwthread(vc->pcpu + i); 1726 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1727 vc->vcore_state = VCORE_EXITING; 1728 spin_unlock(&vc->lock); 1729 1730 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 1731 1732 /* make sure updates to secondary vcpu structs are visible now */ 1733 smp_mb(); 1734 kvm_guest_exit(); 1735 1736 preempt_enable(); 1737 cond_resched(); 1738 1739 spin_lock(&vc->lock); 1740 now = get_tb(); 1741 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1742 /* cancel pending dec exception if dec is positive */ 1743 if (now < vcpu->arch.dec_expires && 1744 kvmppc_core_pending_dec(vcpu)) 1745 kvmppc_core_dequeue_dec(vcpu); 1746 1747 ret = RESUME_GUEST; 1748 if (vcpu->arch.trap) 1749 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1750 vcpu->arch.run_task); 1751 1752 vcpu->arch.ret = ret; 1753 vcpu->arch.trap = 0; 1754 1755 if (vcpu->arch.ceded) { 1756 if (!is_kvmppc_resume_guest(ret)) 1757 kvmppc_end_cede(vcpu); 1758 else 1759 kvmppc_set_timer(vcpu); 1760 } 1761 } 1762 1763 out: 1764 vc->vcore_state = VCORE_INACTIVE; 1765 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1766 arch.run_list) { 1767 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) { 1768 kvmppc_remove_runnable(vc, vcpu); 1769 wake_up(&vcpu->arch.cpu_run); 1770 } 1771 } 1772 } 1773 1774 /* 1775 * Wait for some other vcpu thread to execute us, and 1776 * wake us up when we need to handle something in the host. 1777 */ 1778 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1779 { 1780 DEFINE_WAIT(wait); 1781 1782 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1783 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1784 schedule(); 1785 finish_wait(&vcpu->arch.cpu_run, &wait); 1786 } 1787 1788 /* 1789 * All the vcpus in this vcore are idle, so wait for a decrementer 1790 * or external interrupt to one of the vcpus. vc->lock is held. 1791 */ 1792 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1793 { 1794 DEFINE_WAIT(wait); 1795 1796 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1797 vc->vcore_state = VCORE_SLEEPING; 1798 spin_unlock(&vc->lock); 1799 schedule(); 1800 finish_wait(&vc->wq, &wait); 1801 spin_lock(&vc->lock); 1802 vc->vcore_state = VCORE_INACTIVE; 1803 } 1804 1805 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1806 { 1807 int n_ceded; 1808 struct kvmppc_vcore *vc; 1809 struct kvm_vcpu *v, *vn; 1810 1811 kvm_run->exit_reason = 0; 1812 vcpu->arch.ret = RESUME_GUEST; 1813 vcpu->arch.trap = 0; 1814 kvmppc_update_vpas(vcpu); 1815 1816 /* 1817 * Synchronize with other threads in this virtual core 1818 */ 1819 vc = vcpu->arch.vcore; 1820 spin_lock(&vc->lock); 1821 vcpu->arch.ceded = 0; 1822 vcpu->arch.run_task = current; 1823 vcpu->arch.kvm_run = kvm_run; 1824 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1825 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1826 vcpu->arch.busy_preempt = TB_NIL; 1827 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1828 ++vc->n_runnable; 1829 1830 /* 1831 * This happens the first time this is called for a vcpu. 1832 * If the vcore is already running, we may be able to start 1833 * this thread straight away and have it join in. 1834 */ 1835 if (!signal_pending(current)) { 1836 if (vc->vcore_state == VCORE_RUNNING && 1837 VCORE_EXIT_COUNT(vc) == 0) { 1838 kvmppc_create_dtl_entry(vcpu, vc); 1839 kvmppc_start_thread(vcpu); 1840 } else if (vc->vcore_state == VCORE_SLEEPING) { 1841 wake_up(&vc->wq); 1842 } 1843 1844 } 1845 1846 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1847 !signal_pending(current)) { 1848 if (vc->vcore_state != VCORE_INACTIVE) { 1849 spin_unlock(&vc->lock); 1850 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1851 spin_lock(&vc->lock); 1852 continue; 1853 } 1854 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1855 arch.run_list) { 1856 kvmppc_core_prepare_to_enter(v); 1857 if (signal_pending(v->arch.run_task)) { 1858 kvmppc_remove_runnable(vc, v); 1859 v->stat.signal_exits++; 1860 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1861 v->arch.ret = -EINTR; 1862 wake_up(&v->arch.cpu_run); 1863 } 1864 } 1865 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1866 break; 1867 vc->runner = vcpu; 1868 n_ceded = 0; 1869 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1870 if (!v->arch.pending_exceptions) 1871 n_ceded += v->arch.ceded; 1872 else 1873 v->arch.ceded = 0; 1874 } 1875 if (n_ceded == vc->n_runnable) 1876 kvmppc_vcore_blocked(vc); 1877 else 1878 kvmppc_run_core(vc); 1879 vc->runner = NULL; 1880 } 1881 1882 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1883 (vc->vcore_state == VCORE_RUNNING || 1884 vc->vcore_state == VCORE_EXITING)) { 1885 spin_unlock(&vc->lock); 1886 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1887 spin_lock(&vc->lock); 1888 } 1889 1890 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1891 kvmppc_remove_runnable(vc, vcpu); 1892 vcpu->stat.signal_exits++; 1893 kvm_run->exit_reason = KVM_EXIT_INTR; 1894 vcpu->arch.ret = -EINTR; 1895 } 1896 1897 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1898 /* Wake up some vcpu to run the core */ 1899 v = list_first_entry(&vc->runnable_threads, 1900 struct kvm_vcpu, arch.run_list); 1901 wake_up(&v->arch.cpu_run); 1902 } 1903 1904 spin_unlock(&vc->lock); 1905 return vcpu->arch.ret; 1906 } 1907 1908 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 1909 { 1910 int r; 1911 int srcu_idx; 1912 1913 if (!vcpu->arch.sane) { 1914 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1915 return -EINVAL; 1916 } 1917 1918 kvmppc_core_prepare_to_enter(vcpu); 1919 1920 /* No need to go into the guest when all we'll do is come back out */ 1921 if (signal_pending(current)) { 1922 run->exit_reason = KVM_EXIT_INTR; 1923 return -EINTR; 1924 } 1925 1926 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1927 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1928 smp_mb(); 1929 1930 /* On the first time here, set up HTAB and VRMA or RMA */ 1931 if (!vcpu->kvm->arch.rma_setup_done) { 1932 r = kvmppc_hv_setup_htab_rma(vcpu); 1933 if (r) 1934 goto out; 1935 } 1936 1937 flush_fp_to_thread(current); 1938 flush_altivec_to_thread(current); 1939 flush_vsx_to_thread(current); 1940 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1941 vcpu->arch.pgdir = current->mm->pgd; 1942 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1943 1944 do { 1945 r = kvmppc_run_vcpu(run, vcpu); 1946 1947 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1948 !(vcpu->arch.shregs.msr & MSR_PR)) { 1949 r = kvmppc_pseries_do_hcall(vcpu); 1950 kvmppc_core_prepare_to_enter(vcpu); 1951 } else if (r == RESUME_PAGE_FAULT) { 1952 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1953 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1954 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1955 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1956 } 1957 } while (is_kvmppc_resume_guest(r)); 1958 1959 out: 1960 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1961 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1962 return r; 1963 } 1964 1965 1966 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1967 Assumes POWER7 or PPC970. */ 1968 static inline int lpcr_rmls(unsigned long rma_size) 1969 { 1970 switch (rma_size) { 1971 case 32ul << 20: /* 32 MB */ 1972 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1973 return 8; /* only supported on POWER7 */ 1974 return -1; 1975 case 64ul << 20: /* 64 MB */ 1976 return 3; 1977 case 128ul << 20: /* 128 MB */ 1978 return 7; 1979 case 256ul << 20: /* 256 MB */ 1980 return 4; 1981 case 1ul << 30: /* 1 GB */ 1982 return 2; 1983 case 16ul << 30: /* 16 GB */ 1984 return 1; 1985 case 256ul << 30: /* 256 GB */ 1986 return 0; 1987 default: 1988 return -1; 1989 } 1990 } 1991 1992 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1993 { 1994 struct page *page; 1995 struct kvm_rma_info *ri = vma->vm_file->private_data; 1996 1997 if (vmf->pgoff >= kvm_rma_pages) 1998 return VM_FAULT_SIGBUS; 1999 2000 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 2001 get_page(page); 2002 vmf->page = page; 2003 return 0; 2004 } 2005 2006 static const struct vm_operations_struct kvm_rma_vm_ops = { 2007 .fault = kvm_rma_fault, 2008 }; 2009 2010 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 2011 { 2012 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2013 vma->vm_ops = &kvm_rma_vm_ops; 2014 return 0; 2015 } 2016 2017 static int kvm_rma_release(struct inode *inode, struct file *filp) 2018 { 2019 struct kvm_rma_info *ri = filp->private_data; 2020 2021 kvm_release_rma(ri); 2022 return 0; 2023 } 2024 2025 static const struct file_operations kvm_rma_fops = { 2026 .mmap = kvm_rma_mmap, 2027 .release = kvm_rma_release, 2028 }; 2029 2030 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, 2031 struct kvm_allocate_rma *ret) 2032 { 2033 long fd; 2034 struct kvm_rma_info *ri; 2035 /* 2036 * Only do this on PPC970 in HV mode 2037 */ 2038 if (!cpu_has_feature(CPU_FTR_HVMODE) || 2039 !cpu_has_feature(CPU_FTR_ARCH_201)) 2040 return -EINVAL; 2041 2042 if (!kvm_rma_pages) 2043 return -EINVAL; 2044 2045 ri = kvm_alloc_rma(); 2046 if (!ri) 2047 return -ENOMEM; 2048 2049 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 2050 if (fd < 0) 2051 kvm_release_rma(ri); 2052 2053 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 2054 return fd; 2055 } 2056 2057 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2058 int linux_psize) 2059 { 2060 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2061 2062 if (!def->shift) 2063 return; 2064 (*sps)->page_shift = def->shift; 2065 (*sps)->slb_enc = def->sllp; 2066 (*sps)->enc[0].page_shift = def->shift; 2067 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2068 /* 2069 * Add 16MB MPSS support if host supports it 2070 */ 2071 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2072 (*sps)->enc[1].page_shift = 24; 2073 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2074 } 2075 (*sps)++; 2076 } 2077 2078 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2079 struct kvm_ppc_smmu_info *info) 2080 { 2081 struct kvm_ppc_one_seg_page_size *sps; 2082 2083 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2084 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2085 info->flags |= KVM_PPC_1T_SEGMENTS; 2086 info->slb_size = mmu_slb_size; 2087 2088 /* We only support these sizes for now, and no muti-size segments */ 2089 sps = &info->sps[0]; 2090 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2091 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2092 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2093 2094 return 0; 2095 } 2096 2097 /* 2098 * Get (and clear) the dirty memory log for a memory slot. 2099 */ 2100 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2101 struct kvm_dirty_log *log) 2102 { 2103 struct kvm_memory_slot *memslot; 2104 int r; 2105 unsigned long n; 2106 2107 mutex_lock(&kvm->slots_lock); 2108 2109 r = -EINVAL; 2110 if (log->slot >= KVM_USER_MEM_SLOTS) 2111 goto out; 2112 2113 memslot = id_to_memslot(kvm->memslots, log->slot); 2114 r = -ENOENT; 2115 if (!memslot->dirty_bitmap) 2116 goto out; 2117 2118 n = kvm_dirty_bitmap_bytes(memslot); 2119 memset(memslot->dirty_bitmap, 0, n); 2120 2121 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2122 if (r) 2123 goto out; 2124 2125 r = -EFAULT; 2126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2127 goto out; 2128 2129 r = 0; 2130 out: 2131 mutex_unlock(&kvm->slots_lock); 2132 return r; 2133 } 2134 2135 static void unpin_slot(struct kvm_memory_slot *memslot) 2136 { 2137 unsigned long *physp; 2138 unsigned long j, npages, pfn; 2139 struct page *page; 2140 2141 physp = memslot->arch.slot_phys; 2142 npages = memslot->npages; 2143 if (!physp) 2144 return; 2145 for (j = 0; j < npages; j++) { 2146 if (!(physp[j] & KVMPPC_GOT_PAGE)) 2147 continue; 2148 pfn = physp[j] >> PAGE_SHIFT; 2149 page = pfn_to_page(pfn); 2150 SetPageDirty(page); 2151 put_page(page); 2152 } 2153 } 2154 2155 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2156 struct kvm_memory_slot *dont) 2157 { 2158 if (!dont || free->arch.rmap != dont->arch.rmap) { 2159 vfree(free->arch.rmap); 2160 free->arch.rmap = NULL; 2161 } 2162 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 2163 unpin_slot(free); 2164 vfree(free->arch.slot_phys); 2165 free->arch.slot_phys = NULL; 2166 } 2167 } 2168 2169 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2170 unsigned long npages) 2171 { 2172 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2173 if (!slot->arch.rmap) 2174 return -ENOMEM; 2175 slot->arch.slot_phys = NULL; 2176 2177 return 0; 2178 } 2179 2180 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2181 struct kvm_memory_slot *memslot, 2182 struct kvm_userspace_memory_region *mem) 2183 { 2184 unsigned long *phys; 2185 2186 /* Allocate a slot_phys array if needed */ 2187 phys = memslot->arch.slot_phys; 2188 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 2189 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 2190 if (!phys) 2191 return -ENOMEM; 2192 memslot->arch.slot_phys = phys; 2193 } 2194 2195 return 0; 2196 } 2197 2198 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2199 struct kvm_userspace_memory_region *mem, 2200 const struct kvm_memory_slot *old) 2201 { 2202 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2203 struct kvm_memory_slot *memslot; 2204 2205 if (npages && old->npages) { 2206 /* 2207 * If modifying a memslot, reset all the rmap dirty bits. 2208 * If this is a new memslot, we don't need to do anything 2209 * since the rmap array starts out as all zeroes, 2210 * i.e. no pages are dirty. 2211 */ 2212 memslot = id_to_memslot(kvm->memslots, mem->slot); 2213 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2214 } 2215 } 2216 2217 /* 2218 * Update LPCR values in kvm->arch and in vcores. 2219 * Caller must hold kvm->lock. 2220 */ 2221 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2222 { 2223 long int i; 2224 u32 cores_done = 0; 2225 2226 if ((kvm->arch.lpcr & mask) == lpcr) 2227 return; 2228 2229 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2230 2231 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2232 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2233 if (!vc) 2234 continue; 2235 spin_lock(&vc->lock); 2236 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2237 spin_unlock(&vc->lock); 2238 if (++cores_done >= kvm->arch.online_vcores) 2239 break; 2240 } 2241 } 2242 2243 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2244 { 2245 return; 2246 } 2247 2248 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2249 { 2250 int err = 0; 2251 struct kvm *kvm = vcpu->kvm; 2252 struct kvm_rma_info *ri = NULL; 2253 unsigned long hva; 2254 struct kvm_memory_slot *memslot; 2255 struct vm_area_struct *vma; 2256 unsigned long lpcr = 0, senc; 2257 unsigned long lpcr_mask = 0; 2258 unsigned long psize, porder; 2259 unsigned long rma_size; 2260 unsigned long rmls; 2261 unsigned long *physp; 2262 unsigned long i, npages; 2263 int srcu_idx; 2264 2265 mutex_lock(&kvm->lock); 2266 if (kvm->arch.rma_setup_done) 2267 goto out; /* another vcpu beat us to it */ 2268 2269 /* Allocate hashed page table (if not done already) and reset it */ 2270 if (!kvm->arch.hpt_virt) { 2271 err = kvmppc_alloc_hpt(kvm, NULL); 2272 if (err) { 2273 pr_err("KVM: Couldn't alloc HPT\n"); 2274 goto out; 2275 } 2276 } 2277 2278 /* Look up the memslot for guest physical address 0 */ 2279 srcu_idx = srcu_read_lock(&kvm->srcu); 2280 memslot = gfn_to_memslot(kvm, 0); 2281 2282 /* We must have some memory at 0 by now */ 2283 err = -EINVAL; 2284 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2285 goto out_srcu; 2286 2287 /* Look up the VMA for the start of this memory slot */ 2288 hva = memslot->userspace_addr; 2289 down_read(¤t->mm->mmap_sem); 2290 vma = find_vma(current->mm, hva); 2291 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2292 goto up_out; 2293 2294 psize = vma_kernel_pagesize(vma); 2295 porder = __ilog2(psize); 2296 2297 /* Is this one of our preallocated RMAs? */ 2298 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 2299 hva == vma->vm_start) 2300 ri = vma->vm_file->private_data; 2301 2302 up_read(¤t->mm->mmap_sem); 2303 2304 if (!ri) { 2305 /* On POWER7, use VRMA; on PPC970, give up */ 2306 err = -EPERM; 2307 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2308 pr_err("KVM: CPU requires an RMO\n"); 2309 goto out_srcu; 2310 } 2311 2312 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2313 err = -EINVAL; 2314 if (!(psize == 0x1000 || psize == 0x10000 || 2315 psize == 0x1000000)) 2316 goto out_srcu; 2317 2318 /* Update VRMASD field in the LPCR */ 2319 senc = slb_pgsize_encoding(psize); 2320 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2321 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2322 lpcr_mask = LPCR_VRMASD; 2323 /* the -4 is to account for senc values starting at 0x10 */ 2324 lpcr = senc << (LPCR_VRMASD_SH - 4); 2325 2326 /* Create HPTEs in the hash page table for the VRMA */ 2327 kvmppc_map_vrma(vcpu, memslot, porder); 2328 2329 } else { 2330 /* Set up to use an RMO region */ 2331 rma_size = kvm_rma_pages; 2332 if (rma_size > memslot->npages) 2333 rma_size = memslot->npages; 2334 rma_size <<= PAGE_SHIFT; 2335 rmls = lpcr_rmls(rma_size); 2336 err = -EINVAL; 2337 if ((long)rmls < 0) { 2338 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 2339 goto out_srcu; 2340 } 2341 atomic_inc(&ri->use_count); 2342 kvm->arch.rma = ri; 2343 2344 /* Update LPCR and RMOR */ 2345 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2346 /* PPC970; insert RMLS value (split field) in HID4 */ 2347 lpcr_mask = (1ul << HID4_RMLS0_SH) | 2348 (3ul << HID4_RMLS2_SH) | HID4_RMOR; 2349 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) | 2350 ((rmls & 3) << HID4_RMLS2_SH); 2351 /* RMOR is also in HID4 */ 2352 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 2353 << HID4_RMOR_SH; 2354 } else { 2355 /* POWER7 */ 2356 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS; 2357 lpcr = rmls << LPCR_RMLS_SH; 2358 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 2359 } 2360 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 2361 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 2362 2363 /* Initialize phys addrs of pages in RMO */ 2364 npages = kvm_rma_pages; 2365 porder = __ilog2(npages); 2366 physp = memslot->arch.slot_phys; 2367 if (physp) { 2368 if (npages > memslot->npages) 2369 npages = memslot->npages; 2370 spin_lock(&kvm->arch.slot_phys_lock); 2371 for (i = 0; i < npages; ++i) 2372 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 2373 porder; 2374 spin_unlock(&kvm->arch.slot_phys_lock); 2375 } 2376 } 2377 2378 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 2379 2380 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 2381 smp_wmb(); 2382 kvm->arch.rma_setup_done = 1; 2383 err = 0; 2384 out_srcu: 2385 srcu_read_unlock(&kvm->srcu, srcu_idx); 2386 out: 2387 mutex_unlock(&kvm->lock); 2388 return err; 2389 2390 up_out: 2391 up_read(¤t->mm->mmap_sem); 2392 goto out_srcu; 2393 } 2394 2395 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2396 { 2397 unsigned long lpcr, lpid; 2398 2399 /* Allocate the guest's logical partition ID */ 2400 2401 lpid = kvmppc_alloc_lpid(); 2402 if ((long)lpid < 0) 2403 return -ENOMEM; 2404 kvm->arch.lpid = lpid; 2405 2406 /* 2407 * Since we don't flush the TLB when tearing down a VM, 2408 * and this lpid might have previously been used, 2409 * make sure we flush on each core before running the new VM. 2410 */ 2411 cpumask_setall(&kvm->arch.need_tlb_flush); 2412 2413 /* Start out with the default set of hcalls enabled */ 2414 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 2415 sizeof(kvm->arch.enabled_hcalls)); 2416 2417 kvm->arch.rma = NULL; 2418 2419 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2420 2421 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2422 /* PPC970; HID4 is effectively the LPCR */ 2423 kvm->arch.host_lpid = 0; 2424 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 2425 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 2426 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 2427 ((lpid & 0xf) << HID4_LPID5_SH); 2428 } else { 2429 /* POWER7; init LPCR for virtual RMA mode */ 2430 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2431 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2432 lpcr &= LPCR_PECE | LPCR_LPES; 2433 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2434 LPCR_VPM0 | LPCR_VPM1; 2435 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2436 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2437 /* On POWER8 turn on online bit to enable PURR/SPURR */ 2438 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 2439 lpcr |= LPCR_ONL; 2440 } 2441 kvm->arch.lpcr = lpcr; 2442 2443 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 2444 spin_lock_init(&kvm->arch.slot_phys_lock); 2445 2446 /* 2447 * Track that we now have a HV mode VM active. This blocks secondary 2448 * CPU threads from coming online. 2449 */ 2450 kvm_hv_vm_activated(); 2451 2452 return 0; 2453 } 2454 2455 static void kvmppc_free_vcores(struct kvm *kvm) 2456 { 2457 long int i; 2458 2459 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2460 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) { 2461 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2462 free_pages((unsigned long)vc->mpp_buffer, 2463 MPP_BUFFER_ORDER); 2464 } 2465 kfree(kvm->arch.vcores[i]); 2466 } 2467 kvm->arch.online_vcores = 0; 2468 } 2469 2470 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2471 { 2472 kvm_hv_vm_deactivated(); 2473 2474 kvmppc_free_vcores(kvm); 2475 if (kvm->arch.rma) { 2476 kvm_release_rma(kvm->arch.rma); 2477 kvm->arch.rma = NULL; 2478 } 2479 2480 kvmppc_free_hpt(kvm); 2481 } 2482 2483 /* We don't need to emulate any privileged instructions or dcbz */ 2484 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2485 unsigned int inst, int *advance) 2486 { 2487 return EMULATE_FAIL; 2488 } 2489 2490 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2491 ulong spr_val) 2492 { 2493 return EMULATE_FAIL; 2494 } 2495 2496 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2497 ulong *spr_val) 2498 { 2499 return EMULATE_FAIL; 2500 } 2501 2502 static int kvmppc_core_check_processor_compat_hv(void) 2503 { 2504 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2505 return -EIO; 2506 return 0; 2507 } 2508 2509 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2510 unsigned int ioctl, unsigned long arg) 2511 { 2512 struct kvm *kvm __maybe_unused = filp->private_data; 2513 void __user *argp = (void __user *)arg; 2514 long r; 2515 2516 switch (ioctl) { 2517 2518 case KVM_ALLOCATE_RMA: { 2519 struct kvm_allocate_rma rma; 2520 struct kvm *kvm = filp->private_data; 2521 2522 r = kvm_vm_ioctl_allocate_rma(kvm, &rma); 2523 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) 2524 r = -EFAULT; 2525 break; 2526 } 2527 2528 case KVM_PPC_ALLOCATE_HTAB: { 2529 u32 htab_order; 2530 2531 r = -EFAULT; 2532 if (get_user(htab_order, (u32 __user *)argp)) 2533 break; 2534 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2535 if (r) 2536 break; 2537 r = -EFAULT; 2538 if (put_user(htab_order, (u32 __user *)argp)) 2539 break; 2540 r = 0; 2541 break; 2542 } 2543 2544 case KVM_PPC_GET_HTAB_FD: { 2545 struct kvm_get_htab_fd ghf; 2546 2547 r = -EFAULT; 2548 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2549 break; 2550 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2551 break; 2552 } 2553 2554 default: 2555 r = -ENOTTY; 2556 } 2557 2558 return r; 2559 } 2560 2561 /* 2562 * List of hcall numbers to enable by default. 2563 * For compatibility with old userspace, we enable by default 2564 * all hcalls that were implemented before the hcall-enabling 2565 * facility was added. Note this list should not include H_RTAS. 2566 */ 2567 static unsigned int default_hcall_list[] = { 2568 H_REMOVE, 2569 H_ENTER, 2570 H_READ, 2571 H_PROTECT, 2572 H_BULK_REMOVE, 2573 H_GET_TCE, 2574 H_PUT_TCE, 2575 H_SET_DABR, 2576 H_SET_XDABR, 2577 H_CEDE, 2578 H_PROD, 2579 H_CONFER, 2580 H_REGISTER_VPA, 2581 #ifdef CONFIG_KVM_XICS 2582 H_EOI, 2583 H_CPPR, 2584 H_IPI, 2585 H_IPOLL, 2586 H_XIRR, 2587 H_XIRR_X, 2588 #endif 2589 0 2590 }; 2591 2592 static void init_default_hcalls(void) 2593 { 2594 int i; 2595 unsigned int hcall; 2596 2597 for (i = 0; default_hcall_list[i]; ++i) { 2598 hcall = default_hcall_list[i]; 2599 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 2600 __set_bit(hcall / 4, default_enabled_hcalls); 2601 } 2602 } 2603 2604 static struct kvmppc_ops kvm_ops_hv = { 2605 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2606 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2607 .get_one_reg = kvmppc_get_one_reg_hv, 2608 .set_one_reg = kvmppc_set_one_reg_hv, 2609 .vcpu_load = kvmppc_core_vcpu_load_hv, 2610 .vcpu_put = kvmppc_core_vcpu_put_hv, 2611 .set_msr = kvmppc_set_msr_hv, 2612 .vcpu_run = kvmppc_vcpu_run_hv, 2613 .vcpu_create = kvmppc_core_vcpu_create_hv, 2614 .vcpu_free = kvmppc_core_vcpu_free_hv, 2615 .check_requests = kvmppc_core_check_requests_hv, 2616 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2617 .flush_memslot = kvmppc_core_flush_memslot_hv, 2618 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2619 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2620 .unmap_hva = kvm_unmap_hva_hv, 2621 .unmap_hva_range = kvm_unmap_hva_range_hv, 2622 .age_hva = kvm_age_hva_hv, 2623 .test_age_hva = kvm_test_age_hva_hv, 2624 .set_spte_hva = kvm_set_spte_hva_hv, 2625 .mmu_destroy = kvmppc_mmu_destroy_hv, 2626 .free_memslot = kvmppc_core_free_memslot_hv, 2627 .create_memslot = kvmppc_core_create_memslot_hv, 2628 .init_vm = kvmppc_core_init_vm_hv, 2629 .destroy_vm = kvmppc_core_destroy_vm_hv, 2630 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2631 .emulate_op = kvmppc_core_emulate_op_hv, 2632 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2633 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2634 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2635 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2636 .hcall_implemented = kvmppc_hcall_impl_hv, 2637 }; 2638 2639 static int kvmppc_book3s_init_hv(void) 2640 { 2641 int r; 2642 /* 2643 * FIXME!! Do we need to check on all cpus ? 2644 */ 2645 r = kvmppc_core_check_processor_compat_hv(); 2646 if (r < 0) 2647 return -ENODEV; 2648 2649 kvm_ops_hv.owner = THIS_MODULE; 2650 kvmppc_hv_ops = &kvm_ops_hv; 2651 2652 init_default_hcalls(); 2653 2654 r = kvmppc_mmu_hv_init(); 2655 return r; 2656 } 2657 2658 static void kvmppc_book3s_exit_hv(void) 2659 { 2660 kvmppc_hv_ops = NULL; 2661 } 2662 2663 module_init(kvmppc_book3s_init_hv); 2664 module_exit(kvmppc_book3s_exit_hv); 2665 MODULE_LICENSE("GPL"); 2666 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2667 MODULE_ALIAS("devname:kvm"); 2668