1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 35 #include <asm/reg.h> 36 #include <asm/cputable.h> 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/kvm_ppc.h> 42 #include <asm/kvm_book3s.h> 43 #include <asm/mmu_context.h> 44 #include <asm/lppaca.h> 45 #include <asm/processor.h> 46 #include <asm/cputhreads.h> 47 #include <asm/page.h> 48 #include <asm/hvcall.h> 49 #include <asm/switch_to.h> 50 #include <asm/smp.h> 51 #include <linux/gfp.h> 52 #include <linux/vmalloc.h> 53 #include <linux/highmem.h> 54 #include <linux/hugetlb.h> 55 56 /* #define EXIT_DEBUG */ 57 /* #define EXIT_DEBUG_SIMPLE */ 58 /* #define EXIT_DEBUG_INT */ 59 60 /* Used to indicate that a guest page fault needs to be handled */ 61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 62 63 /* Used as a "null" value for timebase values */ 64 #define TB_NIL (~(u64)0) 65 66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 68 69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu) 70 { 71 int me; 72 int cpu = vcpu->cpu; 73 wait_queue_head_t *wqp; 74 75 wqp = kvm_arch_vcpu_wq(vcpu); 76 if (waitqueue_active(wqp)) { 77 wake_up_interruptible(wqp); 78 ++vcpu->stat.halt_wakeup; 79 } 80 81 me = get_cpu(); 82 83 /* CPU points to the first thread of the core */ 84 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 85 int real_cpu = cpu + vcpu->arch.ptid; 86 if (paca[real_cpu].kvm_hstate.xics_phys) 87 xics_wake_cpu(real_cpu); 88 else if (cpu_online(cpu)) 89 smp_send_reschedule(cpu); 90 } 91 put_cpu(); 92 } 93 94 /* 95 * We use the vcpu_load/put functions to measure stolen time. 96 * Stolen time is counted as time when either the vcpu is able to 97 * run as part of a virtual core, but the task running the vcore 98 * is preempted or sleeping, or when the vcpu needs something done 99 * in the kernel by the task running the vcpu, but that task is 100 * preempted or sleeping. Those two things have to be counted 101 * separately, since one of the vcpu tasks will take on the job 102 * of running the core, and the other vcpu tasks in the vcore will 103 * sleep waiting for it to do that, but that sleep shouldn't count 104 * as stolen time. 105 * 106 * Hence we accumulate stolen time when the vcpu can run as part of 107 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 108 * needs its task to do other things in the kernel (for example, 109 * service a page fault) in busy_stolen. We don't accumulate 110 * stolen time for a vcore when it is inactive, or for a vcpu 111 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 112 * a misnomer; it means that the vcpu task is not executing in 113 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 114 * the kernel. We don't have any way of dividing up that time 115 * between time that the vcpu is genuinely stopped, time that 116 * the task is actively working on behalf of the vcpu, and time 117 * that the task is preempted, so we don't count any of it as 118 * stolen. 119 * 120 * Updates to busy_stolen are protected by arch.tbacct_lock; 121 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 122 * of the vcpu that has taken responsibility for running the vcore 123 * (i.e. vc->runner). The stolen times are measured in units of 124 * timebase ticks. (Note that the != TB_NIL checks below are 125 * purely defensive; they should never fail.) 126 */ 127 128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 129 { 130 struct kvmppc_vcore *vc = vcpu->arch.vcore; 131 132 spin_lock(&vcpu->arch.tbacct_lock); 133 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 134 vc->preempt_tb != TB_NIL) { 135 vc->stolen_tb += mftb() - vc->preempt_tb; 136 vc->preempt_tb = TB_NIL; 137 } 138 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 139 vcpu->arch.busy_preempt != TB_NIL) { 140 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 141 vcpu->arch.busy_preempt = TB_NIL; 142 } 143 spin_unlock(&vcpu->arch.tbacct_lock); 144 } 145 146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) 147 { 148 struct kvmppc_vcore *vc = vcpu->arch.vcore; 149 150 spin_lock(&vcpu->arch.tbacct_lock); 151 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 152 vc->preempt_tb = mftb(); 153 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 154 vcpu->arch.busy_preempt = mftb(); 155 spin_unlock(&vcpu->arch.tbacct_lock); 156 } 157 158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) 159 { 160 vcpu->arch.shregs.msr = msr; 161 kvmppc_end_cede(vcpu); 162 } 163 164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) 165 { 166 vcpu->arch.pvr = pvr; 167 } 168 169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 170 { 171 int r; 172 173 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 174 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 175 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 176 for (r = 0; r < 16; ++r) 177 pr_err("r%2d = %.16lx r%d = %.16lx\n", 178 r, kvmppc_get_gpr(vcpu, r), 179 r+16, kvmppc_get_gpr(vcpu, r+16)); 180 pr_err("ctr = %.16lx lr = %.16lx\n", 181 vcpu->arch.ctr, vcpu->arch.lr); 182 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 183 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 184 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 185 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 186 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 187 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 188 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 189 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 190 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 191 pr_err("fault dar = %.16lx dsisr = %.8x\n", 192 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 193 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 194 for (r = 0; r < vcpu->arch.slb_max; ++r) 195 pr_err(" ESID = %.16llx VSID = %.16llx\n", 196 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 197 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 198 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, 199 vcpu->arch.last_inst); 200 } 201 202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 203 { 204 int r; 205 struct kvm_vcpu *v, *ret = NULL; 206 207 mutex_lock(&kvm->lock); 208 kvm_for_each_vcpu(r, v, kvm) { 209 if (v->vcpu_id == id) { 210 ret = v; 211 break; 212 } 213 } 214 mutex_unlock(&kvm->lock); 215 return ret; 216 } 217 218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 219 { 220 vpa->shared_proc = 1; 221 vpa->yield_count = 1; 222 } 223 224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 225 unsigned long addr, unsigned long len) 226 { 227 /* check address is cacheline aligned */ 228 if (addr & (L1_CACHE_BYTES - 1)) 229 return -EINVAL; 230 spin_lock(&vcpu->arch.vpa_update_lock); 231 if (v->next_gpa != addr || v->len != len) { 232 v->next_gpa = addr; 233 v->len = addr ? len : 0; 234 v->update_pending = 1; 235 } 236 spin_unlock(&vcpu->arch.vpa_update_lock); 237 return 0; 238 } 239 240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 241 struct reg_vpa { 242 u32 dummy; 243 union { 244 u16 hword; 245 u32 word; 246 } length; 247 }; 248 249 static int vpa_is_registered(struct kvmppc_vpa *vpap) 250 { 251 if (vpap->update_pending) 252 return vpap->next_gpa != 0; 253 return vpap->pinned_addr != NULL; 254 } 255 256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 257 unsigned long flags, 258 unsigned long vcpuid, unsigned long vpa) 259 { 260 struct kvm *kvm = vcpu->kvm; 261 unsigned long len, nb; 262 void *va; 263 struct kvm_vcpu *tvcpu; 264 int err; 265 int subfunc; 266 struct kvmppc_vpa *vpap; 267 268 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 269 if (!tvcpu) 270 return H_PARAMETER; 271 272 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 273 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 274 subfunc == H_VPA_REG_SLB) { 275 /* Registering new area - address must be cache-line aligned */ 276 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 277 return H_PARAMETER; 278 279 /* convert logical addr to kernel addr and read length */ 280 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 281 if (va == NULL) 282 return H_PARAMETER; 283 if (subfunc == H_VPA_REG_VPA) 284 len = ((struct reg_vpa *)va)->length.hword; 285 else 286 len = ((struct reg_vpa *)va)->length.word; 287 kvmppc_unpin_guest_page(kvm, va, vpa, false); 288 289 /* Check length */ 290 if (len > nb || len < sizeof(struct reg_vpa)) 291 return H_PARAMETER; 292 } else { 293 vpa = 0; 294 len = 0; 295 } 296 297 err = H_PARAMETER; 298 vpap = NULL; 299 spin_lock(&tvcpu->arch.vpa_update_lock); 300 301 switch (subfunc) { 302 case H_VPA_REG_VPA: /* register VPA */ 303 if (len < sizeof(struct lppaca)) 304 break; 305 vpap = &tvcpu->arch.vpa; 306 err = 0; 307 break; 308 309 case H_VPA_REG_DTL: /* register DTL */ 310 if (len < sizeof(struct dtl_entry)) 311 break; 312 len -= len % sizeof(struct dtl_entry); 313 314 /* Check that they have previously registered a VPA */ 315 err = H_RESOURCE; 316 if (!vpa_is_registered(&tvcpu->arch.vpa)) 317 break; 318 319 vpap = &tvcpu->arch.dtl; 320 err = 0; 321 break; 322 323 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 324 /* Check that they have previously registered a VPA */ 325 err = H_RESOURCE; 326 if (!vpa_is_registered(&tvcpu->arch.vpa)) 327 break; 328 329 vpap = &tvcpu->arch.slb_shadow; 330 err = 0; 331 break; 332 333 case H_VPA_DEREG_VPA: /* deregister VPA */ 334 /* Check they don't still have a DTL or SLB buf registered */ 335 err = H_RESOURCE; 336 if (vpa_is_registered(&tvcpu->arch.dtl) || 337 vpa_is_registered(&tvcpu->arch.slb_shadow)) 338 break; 339 340 vpap = &tvcpu->arch.vpa; 341 err = 0; 342 break; 343 344 case H_VPA_DEREG_DTL: /* deregister DTL */ 345 vpap = &tvcpu->arch.dtl; 346 err = 0; 347 break; 348 349 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 350 vpap = &tvcpu->arch.slb_shadow; 351 err = 0; 352 break; 353 } 354 355 if (vpap) { 356 vpap->next_gpa = vpa; 357 vpap->len = len; 358 vpap->update_pending = 1; 359 } 360 361 spin_unlock(&tvcpu->arch.vpa_update_lock); 362 363 return err; 364 } 365 366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 367 { 368 struct kvm *kvm = vcpu->kvm; 369 void *va; 370 unsigned long nb; 371 unsigned long gpa; 372 373 /* 374 * We need to pin the page pointed to by vpap->next_gpa, 375 * but we can't call kvmppc_pin_guest_page under the lock 376 * as it does get_user_pages() and down_read(). So we 377 * have to drop the lock, pin the page, then get the lock 378 * again and check that a new area didn't get registered 379 * in the meantime. 380 */ 381 for (;;) { 382 gpa = vpap->next_gpa; 383 spin_unlock(&vcpu->arch.vpa_update_lock); 384 va = NULL; 385 nb = 0; 386 if (gpa) 387 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 388 spin_lock(&vcpu->arch.vpa_update_lock); 389 if (gpa == vpap->next_gpa) 390 break; 391 /* sigh... unpin that one and try again */ 392 if (va) 393 kvmppc_unpin_guest_page(kvm, va, gpa, false); 394 } 395 396 vpap->update_pending = 0; 397 if (va && nb < vpap->len) { 398 /* 399 * If it's now too short, it must be that userspace 400 * has changed the mappings underlying guest memory, 401 * so unregister the region. 402 */ 403 kvmppc_unpin_guest_page(kvm, va, gpa, false); 404 va = NULL; 405 } 406 if (vpap->pinned_addr) 407 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 408 vpap->dirty); 409 vpap->gpa = gpa; 410 vpap->pinned_addr = va; 411 vpap->dirty = false; 412 if (va) 413 vpap->pinned_end = va + vpap->len; 414 } 415 416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 417 { 418 if (!(vcpu->arch.vpa.update_pending || 419 vcpu->arch.slb_shadow.update_pending || 420 vcpu->arch.dtl.update_pending)) 421 return; 422 423 spin_lock(&vcpu->arch.vpa_update_lock); 424 if (vcpu->arch.vpa.update_pending) { 425 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 426 if (vcpu->arch.vpa.pinned_addr) 427 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 428 } 429 if (vcpu->arch.dtl.update_pending) { 430 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 431 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 432 vcpu->arch.dtl_index = 0; 433 } 434 if (vcpu->arch.slb_shadow.update_pending) 435 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 436 spin_unlock(&vcpu->arch.vpa_update_lock); 437 } 438 439 /* 440 * Return the accumulated stolen time for the vcore up until `now'. 441 * The caller should hold the vcore lock. 442 */ 443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 444 { 445 u64 p; 446 447 /* 448 * If we are the task running the vcore, then since we hold 449 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 450 * can't be updated, so we don't need the tbacct_lock. 451 * If the vcore is inactive, it can't become active (since we 452 * hold the vcore lock), so the vcpu load/put functions won't 453 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 454 */ 455 if (vc->vcore_state != VCORE_INACTIVE && 456 vc->runner->arch.run_task != current) { 457 spin_lock(&vc->runner->arch.tbacct_lock); 458 p = vc->stolen_tb; 459 if (vc->preempt_tb != TB_NIL) 460 p += now - vc->preempt_tb; 461 spin_unlock(&vc->runner->arch.tbacct_lock); 462 } else { 463 p = vc->stolen_tb; 464 } 465 return p; 466 } 467 468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 469 struct kvmppc_vcore *vc) 470 { 471 struct dtl_entry *dt; 472 struct lppaca *vpa; 473 unsigned long stolen; 474 unsigned long core_stolen; 475 u64 now; 476 477 dt = vcpu->arch.dtl_ptr; 478 vpa = vcpu->arch.vpa.pinned_addr; 479 now = mftb(); 480 core_stolen = vcore_stolen_time(vc, now); 481 stolen = core_stolen - vcpu->arch.stolen_logged; 482 vcpu->arch.stolen_logged = core_stolen; 483 spin_lock(&vcpu->arch.tbacct_lock); 484 stolen += vcpu->arch.busy_stolen; 485 vcpu->arch.busy_stolen = 0; 486 spin_unlock(&vcpu->arch.tbacct_lock); 487 if (!dt || !vpa) 488 return; 489 memset(dt, 0, sizeof(struct dtl_entry)); 490 dt->dispatch_reason = 7; 491 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 492 dt->timebase = now; 493 dt->enqueue_to_dispatch_time = stolen; 494 dt->srr0 = kvmppc_get_pc(vcpu); 495 dt->srr1 = vcpu->arch.shregs.msr; 496 ++dt; 497 if (dt == vcpu->arch.dtl.pinned_end) 498 dt = vcpu->arch.dtl.pinned_addr; 499 vcpu->arch.dtl_ptr = dt; 500 /* order writing *dt vs. writing vpa->dtl_idx */ 501 smp_wmb(); 502 vpa->dtl_idx = ++vcpu->arch.dtl_index; 503 vcpu->arch.dtl.dirty = true; 504 } 505 506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 507 { 508 unsigned long req = kvmppc_get_gpr(vcpu, 3); 509 unsigned long target, ret = H_SUCCESS; 510 struct kvm_vcpu *tvcpu; 511 int idx, rc; 512 513 switch (req) { 514 case H_ENTER: 515 idx = srcu_read_lock(&vcpu->kvm->srcu); 516 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 517 kvmppc_get_gpr(vcpu, 5), 518 kvmppc_get_gpr(vcpu, 6), 519 kvmppc_get_gpr(vcpu, 7)); 520 srcu_read_unlock(&vcpu->kvm->srcu, idx); 521 break; 522 case H_CEDE: 523 break; 524 case H_PROD: 525 target = kvmppc_get_gpr(vcpu, 4); 526 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 527 if (!tvcpu) { 528 ret = H_PARAMETER; 529 break; 530 } 531 tvcpu->arch.prodded = 1; 532 smp_mb(); 533 if (vcpu->arch.ceded) { 534 if (waitqueue_active(&vcpu->wq)) { 535 wake_up_interruptible(&vcpu->wq); 536 vcpu->stat.halt_wakeup++; 537 } 538 } 539 break; 540 case H_CONFER: 541 break; 542 case H_REGISTER_VPA: 543 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 544 kvmppc_get_gpr(vcpu, 5), 545 kvmppc_get_gpr(vcpu, 6)); 546 break; 547 case H_RTAS: 548 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 549 return RESUME_HOST; 550 551 rc = kvmppc_rtas_hcall(vcpu); 552 553 if (rc == -ENOENT) 554 return RESUME_HOST; 555 else if (rc == 0) 556 break; 557 558 /* Send the error out to userspace via KVM_RUN */ 559 return rc; 560 561 case H_XIRR: 562 case H_CPPR: 563 case H_EOI: 564 case H_IPI: 565 case H_IPOLL: 566 case H_XIRR_X: 567 if (kvmppc_xics_enabled(vcpu)) { 568 ret = kvmppc_xics_hcall(vcpu, req); 569 break; 570 } /* fallthrough */ 571 default: 572 return RESUME_HOST; 573 } 574 kvmppc_set_gpr(vcpu, 3, ret); 575 vcpu->arch.hcall_needed = 0; 576 return RESUME_GUEST; 577 } 578 579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, 580 struct task_struct *tsk) 581 { 582 int r = RESUME_HOST; 583 584 vcpu->stat.sum_exits++; 585 586 run->exit_reason = KVM_EXIT_UNKNOWN; 587 run->ready_for_interrupt_injection = 1; 588 switch (vcpu->arch.trap) { 589 /* We're good on these - the host merely wanted to get our attention */ 590 case BOOK3S_INTERRUPT_HV_DECREMENTER: 591 vcpu->stat.dec_exits++; 592 r = RESUME_GUEST; 593 break; 594 case BOOK3S_INTERRUPT_EXTERNAL: 595 vcpu->stat.ext_intr_exits++; 596 r = RESUME_GUEST; 597 break; 598 case BOOK3S_INTERRUPT_PERFMON: 599 r = RESUME_GUEST; 600 break; 601 case BOOK3S_INTERRUPT_MACHINE_CHECK: 602 /* 603 * Deliver a machine check interrupt to the guest. 604 * We have to do this, even if the host has handled the 605 * machine check, because machine checks use SRR0/1 and 606 * the interrupt might have trashed guest state in them. 607 */ 608 kvmppc_book3s_queue_irqprio(vcpu, 609 BOOK3S_INTERRUPT_MACHINE_CHECK); 610 r = RESUME_GUEST; 611 break; 612 case BOOK3S_INTERRUPT_PROGRAM: 613 { 614 ulong flags; 615 /* 616 * Normally program interrupts are delivered directly 617 * to the guest by the hardware, but we can get here 618 * as a result of a hypervisor emulation interrupt 619 * (e40) getting turned into a 700 by BML RTAS. 620 */ 621 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 622 kvmppc_core_queue_program(vcpu, flags); 623 r = RESUME_GUEST; 624 break; 625 } 626 case BOOK3S_INTERRUPT_SYSCALL: 627 { 628 /* hcall - punt to userspace */ 629 int i; 630 631 if (vcpu->arch.shregs.msr & MSR_PR) { 632 /* sc 1 from userspace - reflect to guest syscall */ 633 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 634 r = RESUME_GUEST; 635 break; 636 } 637 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 638 for (i = 0; i < 9; ++i) 639 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 640 run->exit_reason = KVM_EXIT_PAPR_HCALL; 641 vcpu->arch.hcall_needed = 1; 642 r = RESUME_HOST; 643 break; 644 } 645 /* 646 * We get these next two if the guest accesses a page which it thinks 647 * it has mapped but which is not actually present, either because 648 * it is for an emulated I/O device or because the corresonding 649 * host page has been paged out. Any other HDSI/HISI interrupts 650 * have been handled already. 651 */ 652 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 653 r = RESUME_PAGE_FAULT; 654 break; 655 case BOOK3S_INTERRUPT_H_INST_STORAGE: 656 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 657 vcpu->arch.fault_dsisr = 0; 658 r = RESUME_PAGE_FAULT; 659 break; 660 /* 661 * This occurs if the guest executes an illegal instruction. 662 * We just generate a program interrupt to the guest, since 663 * we don't emulate any guest instructions at this stage. 664 */ 665 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 666 kvmppc_core_queue_program(vcpu, 0x80000); 667 r = RESUME_GUEST; 668 break; 669 default: 670 kvmppc_dump_regs(vcpu); 671 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 672 vcpu->arch.trap, kvmppc_get_pc(vcpu), 673 vcpu->arch.shregs.msr); 674 r = RESUME_HOST; 675 BUG(); 676 break; 677 } 678 679 return r; 680 } 681 682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 683 struct kvm_sregs *sregs) 684 { 685 int i; 686 687 sregs->pvr = vcpu->arch.pvr; 688 689 memset(sregs, 0, sizeof(struct kvm_sregs)); 690 for (i = 0; i < vcpu->arch.slb_max; i++) { 691 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 692 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 693 } 694 695 return 0; 696 } 697 698 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 699 struct kvm_sregs *sregs) 700 { 701 int i, j; 702 703 kvmppc_set_pvr(vcpu, sregs->pvr); 704 705 j = 0; 706 for (i = 0; i < vcpu->arch.slb_nr; i++) { 707 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 708 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 709 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 710 ++j; 711 } 712 } 713 vcpu->arch.slb_max = j; 714 715 return 0; 716 } 717 718 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) 719 { 720 int r = 0; 721 long int i; 722 723 switch (id) { 724 case KVM_REG_PPC_HIOR: 725 *val = get_reg_val(id, 0); 726 break; 727 case KVM_REG_PPC_DABR: 728 *val = get_reg_val(id, vcpu->arch.dabr); 729 break; 730 case KVM_REG_PPC_DSCR: 731 *val = get_reg_val(id, vcpu->arch.dscr); 732 break; 733 case KVM_REG_PPC_PURR: 734 *val = get_reg_val(id, vcpu->arch.purr); 735 break; 736 case KVM_REG_PPC_SPURR: 737 *val = get_reg_val(id, vcpu->arch.spurr); 738 break; 739 case KVM_REG_PPC_AMR: 740 *val = get_reg_val(id, vcpu->arch.amr); 741 break; 742 case KVM_REG_PPC_UAMOR: 743 *val = get_reg_val(id, vcpu->arch.uamor); 744 break; 745 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 746 i = id - KVM_REG_PPC_MMCR0; 747 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 748 break; 749 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 750 i = id - KVM_REG_PPC_PMC1; 751 *val = get_reg_val(id, vcpu->arch.pmc[i]); 752 break; 753 #ifdef CONFIG_VSX 754 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 755 if (cpu_has_feature(CPU_FTR_VSX)) { 756 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 757 long int i = id - KVM_REG_PPC_FPR0; 758 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); 759 } else { 760 /* let generic code handle it */ 761 r = -EINVAL; 762 } 763 break; 764 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 765 if (cpu_has_feature(CPU_FTR_VSX)) { 766 long int i = id - KVM_REG_PPC_VSR0; 767 val->vsxval[0] = vcpu->arch.vsr[2 * i]; 768 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; 769 } else { 770 r = -ENXIO; 771 } 772 break; 773 #endif /* CONFIG_VSX */ 774 case KVM_REG_PPC_VPA_ADDR: 775 spin_lock(&vcpu->arch.vpa_update_lock); 776 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 777 spin_unlock(&vcpu->arch.vpa_update_lock); 778 break; 779 case KVM_REG_PPC_VPA_SLB: 780 spin_lock(&vcpu->arch.vpa_update_lock); 781 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 782 val->vpaval.length = vcpu->arch.slb_shadow.len; 783 spin_unlock(&vcpu->arch.vpa_update_lock); 784 break; 785 case KVM_REG_PPC_VPA_DTL: 786 spin_lock(&vcpu->arch.vpa_update_lock); 787 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 788 val->vpaval.length = vcpu->arch.dtl.len; 789 spin_unlock(&vcpu->arch.vpa_update_lock); 790 break; 791 default: 792 r = -EINVAL; 793 break; 794 } 795 796 return r; 797 } 798 799 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) 800 { 801 int r = 0; 802 long int i; 803 unsigned long addr, len; 804 805 switch (id) { 806 case KVM_REG_PPC_HIOR: 807 /* Only allow this to be set to zero */ 808 if (set_reg_val(id, *val)) 809 r = -EINVAL; 810 break; 811 case KVM_REG_PPC_DABR: 812 vcpu->arch.dabr = set_reg_val(id, *val); 813 break; 814 case KVM_REG_PPC_DSCR: 815 vcpu->arch.dscr = set_reg_val(id, *val); 816 break; 817 case KVM_REG_PPC_PURR: 818 vcpu->arch.purr = set_reg_val(id, *val); 819 break; 820 case KVM_REG_PPC_SPURR: 821 vcpu->arch.spurr = set_reg_val(id, *val); 822 break; 823 case KVM_REG_PPC_AMR: 824 vcpu->arch.amr = set_reg_val(id, *val); 825 break; 826 case KVM_REG_PPC_UAMOR: 827 vcpu->arch.uamor = set_reg_val(id, *val); 828 break; 829 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 830 i = id - KVM_REG_PPC_MMCR0; 831 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 832 break; 833 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 834 i = id - KVM_REG_PPC_PMC1; 835 vcpu->arch.pmc[i] = set_reg_val(id, *val); 836 break; 837 #ifdef CONFIG_VSX 838 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 839 if (cpu_has_feature(CPU_FTR_VSX)) { 840 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 841 long int i = id - KVM_REG_PPC_FPR0; 842 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); 843 } else { 844 /* let generic code handle it */ 845 r = -EINVAL; 846 } 847 break; 848 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 849 if (cpu_has_feature(CPU_FTR_VSX)) { 850 long int i = id - KVM_REG_PPC_VSR0; 851 vcpu->arch.vsr[2 * i] = val->vsxval[0]; 852 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; 853 } else { 854 r = -ENXIO; 855 } 856 break; 857 #endif /* CONFIG_VSX */ 858 case KVM_REG_PPC_VPA_ADDR: 859 addr = set_reg_val(id, *val); 860 r = -EINVAL; 861 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 862 vcpu->arch.dtl.next_gpa)) 863 break; 864 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 865 break; 866 case KVM_REG_PPC_VPA_SLB: 867 addr = val->vpaval.addr; 868 len = val->vpaval.length; 869 r = -EINVAL; 870 if (addr && !vcpu->arch.vpa.next_gpa) 871 break; 872 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 873 break; 874 case KVM_REG_PPC_VPA_DTL: 875 addr = val->vpaval.addr; 876 len = val->vpaval.length; 877 r = -EINVAL; 878 if (addr && (len < sizeof(struct dtl_entry) || 879 !vcpu->arch.vpa.next_gpa)) 880 break; 881 len -= len % sizeof(struct dtl_entry); 882 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 883 break; 884 default: 885 r = -EINVAL; 886 break; 887 } 888 889 return r; 890 } 891 892 int kvmppc_core_check_processor_compat(void) 893 { 894 if (cpu_has_feature(CPU_FTR_HVMODE)) 895 return 0; 896 return -EIO; 897 } 898 899 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) 900 { 901 struct kvm_vcpu *vcpu; 902 int err = -EINVAL; 903 int core; 904 struct kvmppc_vcore *vcore; 905 906 core = id / threads_per_core; 907 if (core >= KVM_MAX_VCORES) 908 goto out; 909 910 err = -ENOMEM; 911 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 912 if (!vcpu) 913 goto out; 914 915 err = kvm_vcpu_init(vcpu, kvm, id); 916 if (err) 917 goto free_vcpu; 918 919 vcpu->arch.shared = &vcpu->arch.shregs; 920 vcpu->arch.mmcr[0] = MMCR0_FC; 921 vcpu->arch.ctrl = CTRL_RUNLATCH; 922 /* default to host PVR, since we can't spoof it */ 923 vcpu->arch.pvr = mfspr(SPRN_PVR); 924 kvmppc_set_pvr(vcpu, vcpu->arch.pvr); 925 spin_lock_init(&vcpu->arch.vpa_update_lock); 926 spin_lock_init(&vcpu->arch.tbacct_lock); 927 vcpu->arch.busy_preempt = TB_NIL; 928 929 kvmppc_mmu_book3s_hv_init(vcpu); 930 931 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 932 933 init_waitqueue_head(&vcpu->arch.cpu_run); 934 935 mutex_lock(&kvm->lock); 936 vcore = kvm->arch.vcores[core]; 937 if (!vcore) { 938 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 939 if (vcore) { 940 INIT_LIST_HEAD(&vcore->runnable_threads); 941 spin_lock_init(&vcore->lock); 942 init_waitqueue_head(&vcore->wq); 943 vcore->preempt_tb = TB_NIL; 944 } 945 kvm->arch.vcores[core] = vcore; 946 kvm->arch.online_vcores++; 947 } 948 mutex_unlock(&kvm->lock); 949 950 if (!vcore) 951 goto free_vcpu; 952 953 spin_lock(&vcore->lock); 954 ++vcore->num_threads; 955 spin_unlock(&vcore->lock); 956 vcpu->arch.vcore = vcore; 957 958 vcpu->arch.cpu_type = KVM_CPU_3S_64; 959 kvmppc_sanity_check(vcpu); 960 961 return vcpu; 962 963 free_vcpu: 964 kmem_cache_free(kvm_vcpu_cache, vcpu); 965 out: 966 return ERR_PTR(err); 967 } 968 969 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 970 { 971 if (vpa->pinned_addr) 972 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 973 vpa->dirty); 974 } 975 976 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) 977 { 978 spin_lock(&vcpu->arch.vpa_update_lock); 979 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 980 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 981 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 982 spin_unlock(&vcpu->arch.vpa_update_lock); 983 kvm_vcpu_uninit(vcpu); 984 kmem_cache_free(kvm_vcpu_cache, vcpu); 985 } 986 987 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 988 { 989 unsigned long dec_nsec, now; 990 991 now = get_tb(); 992 if (now > vcpu->arch.dec_expires) { 993 /* decrementer has already gone negative */ 994 kvmppc_core_queue_dec(vcpu); 995 kvmppc_core_prepare_to_enter(vcpu); 996 return; 997 } 998 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 999 / tb_ticks_per_sec; 1000 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1001 HRTIMER_MODE_REL); 1002 vcpu->arch.timer_running = 1; 1003 } 1004 1005 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1006 { 1007 vcpu->arch.ceded = 0; 1008 if (vcpu->arch.timer_running) { 1009 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1010 vcpu->arch.timer_running = 0; 1011 } 1012 } 1013 1014 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 1015 1016 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1017 struct kvm_vcpu *vcpu) 1018 { 1019 u64 now; 1020 1021 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1022 return; 1023 spin_lock(&vcpu->arch.tbacct_lock); 1024 now = mftb(); 1025 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1026 vcpu->arch.stolen_logged; 1027 vcpu->arch.busy_preempt = now; 1028 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1029 spin_unlock(&vcpu->arch.tbacct_lock); 1030 --vc->n_runnable; 1031 list_del(&vcpu->arch.run_list); 1032 } 1033 1034 static int kvmppc_grab_hwthread(int cpu) 1035 { 1036 struct paca_struct *tpaca; 1037 long timeout = 1000; 1038 1039 tpaca = &paca[cpu]; 1040 1041 /* Ensure the thread won't go into the kernel if it wakes */ 1042 tpaca->kvm_hstate.hwthread_req = 1; 1043 tpaca->kvm_hstate.kvm_vcpu = NULL; 1044 1045 /* 1046 * If the thread is already executing in the kernel (e.g. handling 1047 * a stray interrupt), wait for it to get back to nap mode. 1048 * The smp_mb() is to ensure that our setting of hwthread_req 1049 * is visible before we look at hwthread_state, so if this 1050 * races with the code at system_reset_pSeries and the thread 1051 * misses our setting of hwthread_req, we are sure to see its 1052 * setting of hwthread_state, and vice versa. 1053 */ 1054 smp_mb(); 1055 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1056 if (--timeout <= 0) { 1057 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1058 return -EBUSY; 1059 } 1060 udelay(1); 1061 } 1062 return 0; 1063 } 1064 1065 static void kvmppc_release_hwthread(int cpu) 1066 { 1067 struct paca_struct *tpaca; 1068 1069 tpaca = &paca[cpu]; 1070 tpaca->kvm_hstate.hwthread_req = 0; 1071 tpaca->kvm_hstate.kvm_vcpu = NULL; 1072 } 1073 1074 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1075 { 1076 int cpu; 1077 struct paca_struct *tpaca; 1078 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1079 1080 if (vcpu->arch.timer_running) { 1081 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1082 vcpu->arch.timer_running = 0; 1083 } 1084 cpu = vc->pcpu + vcpu->arch.ptid; 1085 tpaca = &paca[cpu]; 1086 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1087 tpaca->kvm_hstate.kvm_vcore = vc; 1088 tpaca->kvm_hstate.napping = 0; 1089 vcpu->cpu = vc->pcpu; 1090 smp_wmb(); 1091 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1092 if (vcpu->arch.ptid) { 1093 xics_wake_cpu(cpu); 1094 ++vc->n_woken; 1095 } 1096 #endif 1097 } 1098 1099 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1100 { 1101 int i; 1102 1103 HMT_low(); 1104 i = 0; 1105 while (vc->nap_count < vc->n_woken) { 1106 if (++i >= 1000000) { 1107 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1108 vc->nap_count, vc->n_woken); 1109 break; 1110 } 1111 cpu_relax(); 1112 } 1113 HMT_medium(); 1114 } 1115 1116 /* 1117 * Check that we are on thread 0 and that any other threads in 1118 * this core are off-line. Then grab the threads so they can't 1119 * enter the kernel. 1120 */ 1121 static int on_primary_thread(void) 1122 { 1123 int cpu = smp_processor_id(); 1124 int thr = cpu_thread_in_core(cpu); 1125 1126 if (thr) 1127 return 0; 1128 while (++thr < threads_per_core) 1129 if (cpu_online(cpu + thr)) 1130 return 0; 1131 1132 /* Grab all hw threads so they can't go into the kernel */ 1133 for (thr = 1; thr < threads_per_core; ++thr) { 1134 if (kvmppc_grab_hwthread(cpu + thr)) { 1135 /* Couldn't grab one; let the others go */ 1136 do { 1137 kvmppc_release_hwthread(cpu + thr); 1138 } while (--thr > 0); 1139 return 0; 1140 } 1141 } 1142 return 1; 1143 } 1144 1145 /* 1146 * Run a set of guest threads on a physical core. 1147 * Called with vc->lock held. 1148 */ 1149 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1150 { 1151 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 1152 long ret; 1153 u64 now; 1154 int ptid, i, need_vpa_update; 1155 int srcu_idx; 1156 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1157 1158 /* don't start if any threads have a signal pending */ 1159 need_vpa_update = 0; 1160 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1161 if (signal_pending(vcpu->arch.run_task)) 1162 return; 1163 if (vcpu->arch.vpa.update_pending || 1164 vcpu->arch.slb_shadow.update_pending || 1165 vcpu->arch.dtl.update_pending) 1166 vcpus_to_update[need_vpa_update++] = vcpu; 1167 } 1168 1169 /* 1170 * Initialize *vc, in particular vc->vcore_state, so we can 1171 * drop the vcore lock if necessary. 1172 */ 1173 vc->n_woken = 0; 1174 vc->nap_count = 0; 1175 vc->entry_exit_count = 0; 1176 vc->vcore_state = VCORE_STARTING; 1177 vc->in_guest = 0; 1178 vc->napping_threads = 0; 1179 1180 /* 1181 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1182 * which can't be called with any spinlocks held. 1183 */ 1184 if (need_vpa_update) { 1185 spin_unlock(&vc->lock); 1186 for (i = 0; i < need_vpa_update; ++i) 1187 kvmppc_update_vpas(vcpus_to_update[i]); 1188 spin_lock(&vc->lock); 1189 } 1190 1191 /* 1192 * Assign physical thread IDs, first to non-ceded vcpus 1193 * and then to ceded ones. 1194 */ 1195 ptid = 0; 1196 vcpu0 = NULL; 1197 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1198 if (!vcpu->arch.ceded) { 1199 if (!ptid) 1200 vcpu0 = vcpu; 1201 vcpu->arch.ptid = ptid++; 1202 } 1203 } 1204 if (!vcpu0) 1205 goto out; /* nothing to run; should never happen */ 1206 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1207 if (vcpu->arch.ceded) 1208 vcpu->arch.ptid = ptid++; 1209 1210 /* 1211 * Make sure we are running on thread 0, and that 1212 * secondary threads are offline. 1213 */ 1214 if (threads_per_core > 1 && !on_primary_thread()) { 1215 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1216 vcpu->arch.ret = -EBUSY; 1217 goto out; 1218 } 1219 1220 vc->pcpu = smp_processor_id(); 1221 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1222 kvmppc_start_thread(vcpu); 1223 kvmppc_create_dtl_entry(vcpu, vc); 1224 } 1225 1226 vc->vcore_state = VCORE_RUNNING; 1227 preempt_disable(); 1228 spin_unlock(&vc->lock); 1229 1230 kvm_guest_enter(); 1231 1232 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); 1233 1234 __kvmppc_vcore_entry(NULL, vcpu0); 1235 1236 spin_lock(&vc->lock); 1237 /* disable sending of IPIs on virtual external irqs */ 1238 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1239 vcpu->cpu = -1; 1240 /* wait for secondary threads to finish writing their state to memory */ 1241 if (vc->nap_count < vc->n_woken) 1242 kvmppc_wait_for_nap(vc); 1243 for (i = 0; i < threads_per_core; ++i) 1244 kvmppc_release_hwthread(vc->pcpu + i); 1245 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1246 vc->vcore_state = VCORE_EXITING; 1247 spin_unlock(&vc->lock); 1248 1249 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); 1250 1251 /* make sure updates to secondary vcpu structs are visible now */ 1252 smp_mb(); 1253 kvm_guest_exit(); 1254 1255 preempt_enable(); 1256 kvm_resched(vcpu); 1257 1258 spin_lock(&vc->lock); 1259 now = get_tb(); 1260 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1261 /* cancel pending dec exception if dec is positive */ 1262 if (now < vcpu->arch.dec_expires && 1263 kvmppc_core_pending_dec(vcpu)) 1264 kvmppc_core_dequeue_dec(vcpu); 1265 1266 ret = RESUME_GUEST; 1267 if (vcpu->arch.trap) 1268 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, 1269 vcpu->arch.run_task); 1270 1271 vcpu->arch.ret = ret; 1272 vcpu->arch.trap = 0; 1273 1274 if (vcpu->arch.ceded) { 1275 if (ret != RESUME_GUEST) 1276 kvmppc_end_cede(vcpu); 1277 else 1278 kvmppc_set_timer(vcpu); 1279 } 1280 } 1281 1282 out: 1283 vc->vcore_state = VCORE_INACTIVE; 1284 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1285 arch.run_list) { 1286 if (vcpu->arch.ret != RESUME_GUEST) { 1287 kvmppc_remove_runnable(vc, vcpu); 1288 wake_up(&vcpu->arch.cpu_run); 1289 } 1290 } 1291 } 1292 1293 /* 1294 * Wait for some other vcpu thread to execute us, and 1295 * wake us up when we need to handle something in the host. 1296 */ 1297 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1298 { 1299 DEFINE_WAIT(wait); 1300 1301 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1302 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1303 schedule(); 1304 finish_wait(&vcpu->arch.cpu_run, &wait); 1305 } 1306 1307 /* 1308 * All the vcpus in this vcore are idle, so wait for a decrementer 1309 * or external interrupt to one of the vcpus. vc->lock is held. 1310 */ 1311 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1312 { 1313 DEFINE_WAIT(wait); 1314 1315 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1316 vc->vcore_state = VCORE_SLEEPING; 1317 spin_unlock(&vc->lock); 1318 schedule(); 1319 finish_wait(&vc->wq, &wait); 1320 spin_lock(&vc->lock); 1321 vc->vcore_state = VCORE_INACTIVE; 1322 } 1323 1324 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1325 { 1326 int n_ceded; 1327 struct kvmppc_vcore *vc; 1328 struct kvm_vcpu *v, *vn; 1329 1330 kvm_run->exit_reason = 0; 1331 vcpu->arch.ret = RESUME_GUEST; 1332 vcpu->arch.trap = 0; 1333 kvmppc_update_vpas(vcpu); 1334 1335 /* 1336 * Synchronize with other threads in this virtual core 1337 */ 1338 vc = vcpu->arch.vcore; 1339 spin_lock(&vc->lock); 1340 vcpu->arch.ceded = 0; 1341 vcpu->arch.run_task = current; 1342 vcpu->arch.kvm_run = kvm_run; 1343 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1344 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1345 vcpu->arch.busy_preempt = TB_NIL; 1346 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1347 ++vc->n_runnable; 1348 1349 /* 1350 * This happens the first time this is called for a vcpu. 1351 * If the vcore is already running, we may be able to start 1352 * this thread straight away and have it join in. 1353 */ 1354 if (!signal_pending(current)) { 1355 if (vc->vcore_state == VCORE_RUNNING && 1356 VCORE_EXIT_COUNT(vc) == 0) { 1357 vcpu->arch.ptid = vc->n_runnable - 1; 1358 kvmppc_create_dtl_entry(vcpu, vc); 1359 kvmppc_start_thread(vcpu); 1360 } else if (vc->vcore_state == VCORE_SLEEPING) { 1361 wake_up(&vc->wq); 1362 } 1363 1364 } 1365 1366 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1367 !signal_pending(current)) { 1368 if (vc->vcore_state != VCORE_INACTIVE) { 1369 spin_unlock(&vc->lock); 1370 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1371 spin_lock(&vc->lock); 1372 continue; 1373 } 1374 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1375 arch.run_list) { 1376 kvmppc_core_prepare_to_enter(v); 1377 if (signal_pending(v->arch.run_task)) { 1378 kvmppc_remove_runnable(vc, v); 1379 v->stat.signal_exits++; 1380 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1381 v->arch.ret = -EINTR; 1382 wake_up(&v->arch.cpu_run); 1383 } 1384 } 1385 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1386 break; 1387 vc->runner = vcpu; 1388 n_ceded = 0; 1389 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1390 if (!v->arch.pending_exceptions) 1391 n_ceded += v->arch.ceded; 1392 else 1393 v->arch.ceded = 0; 1394 } 1395 if (n_ceded == vc->n_runnable) 1396 kvmppc_vcore_blocked(vc); 1397 else 1398 kvmppc_run_core(vc); 1399 vc->runner = NULL; 1400 } 1401 1402 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1403 (vc->vcore_state == VCORE_RUNNING || 1404 vc->vcore_state == VCORE_EXITING)) { 1405 spin_unlock(&vc->lock); 1406 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1407 spin_lock(&vc->lock); 1408 } 1409 1410 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1411 kvmppc_remove_runnable(vc, vcpu); 1412 vcpu->stat.signal_exits++; 1413 kvm_run->exit_reason = KVM_EXIT_INTR; 1414 vcpu->arch.ret = -EINTR; 1415 } 1416 1417 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1418 /* Wake up some vcpu to run the core */ 1419 v = list_first_entry(&vc->runnable_threads, 1420 struct kvm_vcpu, arch.run_list); 1421 wake_up(&v->arch.cpu_run); 1422 } 1423 1424 spin_unlock(&vc->lock); 1425 return vcpu->arch.ret; 1426 } 1427 1428 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) 1429 { 1430 int r; 1431 int srcu_idx; 1432 1433 if (!vcpu->arch.sane) { 1434 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1435 return -EINVAL; 1436 } 1437 1438 kvmppc_core_prepare_to_enter(vcpu); 1439 1440 /* No need to go into the guest when all we'll do is come back out */ 1441 if (signal_pending(current)) { 1442 run->exit_reason = KVM_EXIT_INTR; 1443 return -EINTR; 1444 } 1445 1446 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1447 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1448 smp_mb(); 1449 1450 /* On the first time here, set up HTAB and VRMA or RMA */ 1451 if (!vcpu->kvm->arch.rma_setup_done) { 1452 r = kvmppc_hv_setup_htab_rma(vcpu); 1453 if (r) 1454 goto out; 1455 } 1456 1457 flush_fp_to_thread(current); 1458 flush_altivec_to_thread(current); 1459 flush_vsx_to_thread(current); 1460 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1461 vcpu->arch.pgdir = current->mm->pgd; 1462 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1463 1464 do { 1465 r = kvmppc_run_vcpu(run, vcpu); 1466 1467 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1468 !(vcpu->arch.shregs.msr & MSR_PR)) { 1469 r = kvmppc_pseries_do_hcall(vcpu); 1470 kvmppc_core_prepare_to_enter(vcpu); 1471 } else if (r == RESUME_PAGE_FAULT) { 1472 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1473 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1474 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1475 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1476 } 1477 } while (r == RESUME_GUEST); 1478 1479 out: 1480 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1481 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1482 return r; 1483 } 1484 1485 1486 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1487 Assumes POWER7 or PPC970. */ 1488 static inline int lpcr_rmls(unsigned long rma_size) 1489 { 1490 switch (rma_size) { 1491 case 32ul << 20: /* 32 MB */ 1492 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1493 return 8; /* only supported on POWER7 */ 1494 return -1; 1495 case 64ul << 20: /* 64 MB */ 1496 return 3; 1497 case 128ul << 20: /* 128 MB */ 1498 return 7; 1499 case 256ul << 20: /* 256 MB */ 1500 return 4; 1501 case 1ul << 30: /* 1 GB */ 1502 return 2; 1503 case 16ul << 30: /* 16 GB */ 1504 return 1; 1505 case 256ul << 30: /* 256 GB */ 1506 return 0; 1507 default: 1508 return -1; 1509 } 1510 } 1511 1512 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1513 { 1514 struct kvmppc_linear_info *ri = vma->vm_file->private_data; 1515 struct page *page; 1516 1517 if (vmf->pgoff >= ri->npages) 1518 return VM_FAULT_SIGBUS; 1519 1520 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1521 get_page(page); 1522 vmf->page = page; 1523 return 0; 1524 } 1525 1526 static const struct vm_operations_struct kvm_rma_vm_ops = { 1527 .fault = kvm_rma_fault, 1528 }; 1529 1530 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1531 { 1532 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1533 vma->vm_ops = &kvm_rma_vm_ops; 1534 return 0; 1535 } 1536 1537 static int kvm_rma_release(struct inode *inode, struct file *filp) 1538 { 1539 struct kvmppc_linear_info *ri = filp->private_data; 1540 1541 kvm_release_rma(ri); 1542 return 0; 1543 } 1544 1545 static const struct file_operations kvm_rma_fops = { 1546 .mmap = kvm_rma_mmap, 1547 .release = kvm_rma_release, 1548 }; 1549 1550 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) 1551 { 1552 struct kvmppc_linear_info *ri; 1553 long fd; 1554 1555 ri = kvm_alloc_rma(); 1556 if (!ri) 1557 return -ENOMEM; 1558 1559 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); 1560 if (fd < 0) 1561 kvm_release_rma(ri); 1562 1563 ret->rma_size = ri->npages << PAGE_SHIFT; 1564 return fd; 1565 } 1566 1567 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1568 int linux_psize) 1569 { 1570 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1571 1572 if (!def->shift) 1573 return; 1574 (*sps)->page_shift = def->shift; 1575 (*sps)->slb_enc = def->sllp; 1576 (*sps)->enc[0].page_shift = def->shift; 1577 /* 1578 * Only return base page encoding. We don't want to return 1579 * all the supporting pte_enc, because our H_ENTER doesn't 1580 * support MPSS yet. Once they do, we can start passing all 1581 * support pte_enc here 1582 */ 1583 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1584 (*sps)++; 1585 } 1586 1587 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) 1588 { 1589 struct kvm_ppc_one_seg_page_size *sps; 1590 1591 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1592 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1593 info->flags |= KVM_PPC_1T_SEGMENTS; 1594 info->slb_size = mmu_slb_size; 1595 1596 /* We only support these sizes for now, and no muti-size segments */ 1597 sps = &info->sps[0]; 1598 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1599 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1600 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1601 1602 return 0; 1603 } 1604 1605 /* 1606 * Get (and clear) the dirty memory log for a memory slot. 1607 */ 1608 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1609 { 1610 struct kvm_memory_slot *memslot; 1611 int r; 1612 unsigned long n; 1613 1614 mutex_lock(&kvm->slots_lock); 1615 1616 r = -EINVAL; 1617 if (log->slot >= KVM_USER_MEM_SLOTS) 1618 goto out; 1619 1620 memslot = id_to_memslot(kvm->memslots, log->slot); 1621 r = -ENOENT; 1622 if (!memslot->dirty_bitmap) 1623 goto out; 1624 1625 n = kvm_dirty_bitmap_bytes(memslot); 1626 memset(memslot->dirty_bitmap, 0, n); 1627 1628 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1629 if (r) 1630 goto out; 1631 1632 r = -EFAULT; 1633 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1634 goto out; 1635 1636 r = 0; 1637 out: 1638 mutex_unlock(&kvm->slots_lock); 1639 return r; 1640 } 1641 1642 static void unpin_slot(struct kvm_memory_slot *memslot) 1643 { 1644 unsigned long *physp; 1645 unsigned long j, npages, pfn; 1646 struct page *page; 1647 1648 physp = memslot->arch.slot_phys; 1649 npages = memslot->npages; 1650 if (!physp) 1651 return; 1652 for (j = 0; j < npages; j++) { 1653 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1654 continue; 1655 pfn = physp[j] >> PAGE_SHIFT; 1656 page = pfn_to_page(pfn); 1657 SetPageDirty(page); 1658 put_page(page); 1659 } 1660 } 1661 1662 void kvmppc_core_free_memslot(struct kvm_memory_slot *free, 1663 struct kvm_memory_slot *dont) 1664 { 1665 if (!dont || free->arch.rmap != dont->arch.rmap) { 1666 vfree(free->arch.rmap); 1667 free->arch.rmap = NULL; 1668 } 1669 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 1670 unpin_slot(free); 1671 vfree(free->arch.slot_phys); 1672 free->arch.slot_phys = NULL; 1673 } 1674 } 1675 1676 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, 1677 unsigned long npages) 1678 { 1679 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 1680 if (!slot->arch.rmap) 1681 return -ENOMEM; 1682 slot->arch.slot_phys = NULL; 1683 1684 return 0; 1685 } 1686 1687 int kvmppc_core_prepare_memory_region(struct kvm *kvm, 1688 struct kvm_memory_slot *memslot, 1689 struct kvm_userspace_memory_region *mem) 1690 { 1691 unsigned long *phys; 1692 1693 /* Allocate a slot_phys array if needed */ 1694 phys = memslot->arch.slot_phys; 1695 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 1696 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 1697 if (!phys) 1698 return -ENOMEM; 1699 memslot->arch.slot_phys = phys; 1700 } 1701 1702 return 0; 1703 } 1704 1705 void kvmppc_core_commit_memory_region(struct kvm *kvm, 1706 struct kvm_userspace_memory_region *mem, 1707 const struct kvm_memory_slot *old) 1708 { 1709 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 1710 struct kvm_memory_slot *memslot; 1711 1712 if (npages && old->npages) { 1713 /* 1714 * If modifying a memslot, reset all the rmap dirty bits. 1715 * If this is a new memslot, we don't need to do anything 1716 * since the rmap array starts out as all zeroes, 1717 * i.e. no pages are dirty. 1718 */ 1719 memslot = id_to_memslot(kvm->memslots, mem->slot); 1720 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 1721 } 1722 } 1723 1724 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 1725 { 1726 int err = 0; 1727 struct kvm *kvm = vcpu->kvm; 1728 struct kvmppc_linear_info *ri = NULL; 1729 unsigned long hva; 1730 struct kvm_memory_slot *memslot; 1731 struct vm_area_struct *vma; 1732 unsigned long lpcr, senc; 1733 unsigned long psize, porder; 1734 unsigned long rma_size; 1735 unsigned long rmls; 1736 unsigned long *physp; 1737 unsigned long i, npages; 1738 int srcu_idx; 1739 1740 mutex_lock(&kvm->lock); 1741 if (kvm->arch.rma_setup_done) 1742 goto out; /* another vcpu beat us to it */ 1743 1744 /* Allocate hashed page table (if not done already) and reset it */ 1745 if (!kvm->arch.hpt_virt) { 1746 err = kvmppc_alloc_hpt(kvm, NULL); 1747 if (err) { 1748 pr_err("KVM: Couldn't alloc HPT\n"); 1749 goto out; 1750 } 1751 } 1752 1753 /* Look up the memslot for guest physical address 0 */ 1754 srcu_idx = srcu_read_lock(&kvm->srcu); 1755 memslot = gfn_to_memslot(kvm, 0); 1756 1757 /* We must have some memory at 0 by now */ 1758 err = -EINVAL; 1759 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1760 goto out_srcu; 1761 1762 /* Look up the VMA for the start of this memory slot */ 1763 hva = memslot->userspace_addr; 1764 down_read(¤t->mm->mmap_sem); 1765 vma = find_vma(current->mm, hva); 1766 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 1767 goto up_out; 1768 1769 psize = vma_kernel_pagesize(vma); 1770 porder = __ilog2(psize); 1771 1772 /* Is this one of our preallocated RMAs? */ 1773 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 1774 hva == vma->vm_start) 1775 ri = vma->vm_file->private_data; 1776 1777 up_read(¤t->mm->mmap_sem); 1778 1779 if (!ri) { 1780 /* On POWER7, use VRMA; on PPC970, give up */ 1781 err = -EPERM; 1782 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1783 pr_err("KVM: CPU requires an RMO\n"); 1784 goto out_srcu; 1785 } 1786 1787 /* We can handle 4k, 64k or 16M pages in the VRMA */ 1788 err = -EINVAL; 1789 if (!(psize == 0x1000 || psize == 0x10000 || 1790 psize == 0x1000000)) 1791 goto out_srcu; 1792 1793 /* Update VRMASD field in the LPCR */ 1794 senc = slb_pgsize_encoding(psize); 1795 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1796 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1797 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; 1798 lpcr |= senc << (LPCR_VRMASD_SH - 4); 1799 kvm->arch.lpcr = lpcr; 1800 1801 /* Create HPTEs in the hash page table for the VRMA */ 1802 kvmppc_map_vrma(vcpu, memslot, porder); 1803 1804 } else { 1805 /* Set up to use an RMO region */ 1806 rma_size = ri->npages; 1807 if (rma_size > memslot->npages) 1808 rma_size = memslot->npages; 1809 rma_size <<= PAGE_SHIFT; 1810 rmls = lpcr_rmls(rma_size); 1811 err = -EINVAL; 1812 if (rmls < 0) { 1813 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 1814 goto out_srcu; 1815 } 1816 atomic_inc(&ri->use_count); 1817 kvm->arch.rma = ri; 1818 1819 /* Update LPCR and RMOR */ 1820 lpcr = kvm->arch.lpcr; 1821 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1822 /* PPC970; insert RMLS value (split field) in HID4 */ 1823 lpcr &= ~((1ul << HID4_RMLS0_SH) | 1824 (3ul << HID4_RMLS2_SH)); 1825 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | 1826 ((rmls & 3) << HID4_RMLS2_SH); 1827 /* RMOR is also in HID4 */ 1828 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1829 << HID4_RMOR_SH; 1830 } else { 1831 /* POWER7 */ 1832 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); 1833 lpcr |= rmls << LPCR_RMLS_SH; 1834 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; 1835 } 1836 kvm->arch.lpcr = lpcr; 1837 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 1838 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1839 1840 /* Initialize phys addrs of pages in RMO */ 1841 npages = ri->npages; 1842 porder = __ilog2(npages); 1843 physp = memslot->arch.slot_phys; 1844 if (physp) { 1845 if (npages > memslot->npages) 1846 npages = memslot->npages; 1847 spin_lock(&kvm->arch.slot_phys_lock); 1848 for (i = 0; i < npages; ++i) 1849 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 1850 porder; 1851 spin_unlock(&kvm->arch.slot_phys_lock); 1852 } 1853 } 1854 1855 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 1856 smp_wmb(); 1857 kvm->arch.rma_setup_done = 1; 1858 err = 0; 1859 out_srcu: 1860 srcu_read_unlock(&kvm->srcu, srcu_idx); 1861 out: 1862 mutex_unlock(&kvm->lock); 1863 return err; 1864 1865 up_out: 1866 up_read(¤t->mm->mmap_sem); 1867 goto out; 1868 } 1869 1870 int kvmppc_core_init_vm(struct kvm *kvm) 1871 { 1872 unsigned long lpcr, lpid; 1873 1874 /* Allocate the guest's logical partition ID */ 1875 1876 lpid = kvmppc_alloc_lpid(); 1877 if (lpid < 0) 1878 return -ENOMEM; 1879 kvm->arch.lpid = lpid; 1880 1881 /* 1882 * Since we don't flush the TLB when tearing down a VM, 1883 * and this lpid might have previously been used, 1884 * make sure we flush on each core before running the new VM. 1885 */ 1886 cpumask_setall(&kvm->arch.need_tlb_flush); 1887 1888 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); 1889 INIT_LIST_HEAD(&kvm->arch.rtas_tokens); 1890 1891 kvm->arch.rma = NULL; 1892 1893 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 1894 1895 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1896 /* PPC970; HID4 is effectively the LPCR */ 1897 kvm->arch.host_lpid = 0; 1898 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 1899 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 1900 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 1901 ((lpid & 0xf) << HID4_LPID5_SH); 1902 } else { 1903 /* POWER7; init LPCR for virtual RMA mode */ 1904 kvm->arch.host_lpid = mfspr(SPRN_LPID); 1905 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 1906 lpcr &= LPCR_PECE | LPCR_LPES; 1907 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 1908 LPCR_VPM0 | LPCR_VPM1; 1909 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 1910 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1911 } 1912 kvm->arch.lpcr = lpcr; 1913 1914 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 1915 spin_lock_init(&kvm->arch.slot_phys_lock); 1916 1917 /* 1918 * Don't allow secondary CPU threads to come online 1919 * while any KVM VMs exist. 1920 */ 1921 inhibit_secondary_onlining(); 1922 1923 return 0; 1924 } 1925 1926 void kvmppc_core_destroy_vm(struct kvm *kvm) 1927 { 1928 uninhibit_secondary_onlining(); 1929 1930 if (kvm->arch.rma) { 1931 kvm_release_rma(kvm->arch.rma); 1932 kvm->arch.rma = NULL; 1933 } 1934 1935 kvmppc_rtas_tokens_free(kvm); 1936 1937 kvmppc_free_hpt(kvm); 1938 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1939 } 1940 1941 /* These are stubs for now */ 1942 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) 1943 { 1944 } 1945 1946 /* We don't need to emulate any privileged instructions or dcbz */ 1947 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, 1948 unsigned int inst, int *advance) 1949 { 1950 return EMULATE_FAIL; 1951 } 1952 1953 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) 1954 { 1955 return EMULATE_FAIL; 1956 } 1957 1958 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) 1959 { 1960 return EMULATE_FAIL; 1961 } 1962 1963 static int kvmppc_book3s_hv_init(void) 1964 { 1965 int r; 1966 1967 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1968 1969 if (r) 1970 return r; 1971 1972 r = kvmppc_mmu_hv_init(); 1973 1974 return r; 1975 } 1976 1977 static void kvmppc_book3s_hv_exit(void) 1978 { 1979 kvm_exit(); 1980 } 1981 1982 module_init(kvmppc_book3s_hv_init); 1983 module_exit(kvmppc_book3s_hv_exit); 1984