xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 24b1944f)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59 
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
62 
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL	(~(u64)0)
65 
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68 
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71 	int me;
72 	int cpu = vcpu->cpu;
73 	wait_queue_head_t *wqp;
74 
75 	wqp = kvm_arch_vcpu_wq(vcpu);
76 	if (waitqueue_active(wqp)) {
77 		wake_up_interruptible(wqp);
78 		++vcpu->stat.halt_wakeup;
79 	}
80 
81 	me = get_cpu();
82 
83 	/* CPU points to the first thread of the core */
84 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85 		int real_cpu = cpu + vcpu->arch.ptid;
86 		if (paca[real_cpu].kvm_hstate.xics_phys)
87 			xics_wake_cpu(real_cpu);
88 		else if (cpu_online(cpu))
89 			smp_send_reschedule(cpu);
90 	}
91 	put_cpu();
92 }
93 
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127 
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
131 
132 	spin_lock(&vcpu->arch.tbacct_lock);
133 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134 	    vc->preempt_tb != TB_NIL) {
135 		vc->stolen_tb += mftb() - vc->preempt_tb;
136 		vc->preempt_tb = TB_NIL;
137 	}
138 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139 	    vcpu->arch.busy_preempt != TB_NIL) {
140 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141 		vcpu->arch.busy_preempt = TB_NIL;
142 	}
143 	spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145 
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
149 
150 	spin_lock(&vcpu->arch.tbacct_lock);
151 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152 		vc->preempt_tb = mftb();
153 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154 		vcpu->arch.busy_preempt = mftb();
155 	spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157 
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160 	vcpu->arch.shregs.msr = msr;
161 	kvmppc_end_cede(vcpu);
162 }
163 
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166 	vcpu->arch.pvr = pvr;
167 }
168 
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171 	int r;
172 
173 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176 	for (r = 0; r < 16; ++r)
177 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178 		       r, kvmppc_get_gpr(vcpu, r),
179 		       r+16, kvmppc_get_gpr(vcpu, r+16));
180 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
181 	       vcpu->arch.ctr, vcpu->arch.lr);
182 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
192 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194 	for (r = 0; r < vcpu->arch.slb_max; ++r)
195 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
196 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199 	       vcpu->arch.last_inst);
200 }
201 
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204 	int r;
205 	struct kvm_vcpu *v, *ret = NULL;
206 
207 	mutex_lock(&kvm->lock);
208 	kvm_for_each_vcpu(r, v, kvm) {
209 		if (v->vcpu_id == id) {
210 			ret = v;
211 			break;
212 		}
213 	}
214 	mutex_unlock(&kvm->lock);
215 	return ret;
216 }
217 
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220 	vpa->shared_proc = 1;
221 	vpa->yield_count = 1;
222 }
223 
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225 		   unsigned long addr, unsigned long len)
226 {
227 	/* check address is cacheline aligned */
228 	if (addr & (L1_CACHE_BYTES - 1))
229 		return -EINVAL;
230 	spin_lock(&vcpu->arch.vpa_update_lock);
231 	if (v->next_gpa != addr || v->len != len) {
232 		v->next_gpa = addr;
233 		v->len = addr ? len : 0;
234 		v->update_pending = 1;
235 	}
236 	spin_unlock(&vcpu->arch.vpa_update_lock);
237 	return 0;
238 }
239 
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242 	u32 dummy;
243 	union {
244 		u16 hword;
245 		u32 word;
246 	} length;
247 };
248 
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251 	if (vpap->update_pending)
252 		return vpap->next_gpa != 0;
253 	return vpap->pinned_addr != NULL;
254 }
255 
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257 				       unsigned long flags,
258 				       unsigned long vcpuid, unsigned long vpa)
259 {
260 	struct kvm *kvm = vcpu->kvm;
261 	unsigned long len, nb;
262 	void *va;
263 	struct kvm_vcpu *tvcpu;
264 	int err;
265 	int subfunc;
266 	struct kvmppc_vpa *vpap;
267 
268 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269 	if (!tvcpu)
270 		return H_PARAMETER;
271 
272 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274 	    subfunc == H_VPA_REG_SLB) {
275 		/* Registering new area - address must be cache-line aligned */
276 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277 			return H_PARAMETER;
278 
279 		/* convert logical addr to kernel addr and read length */
280 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281 		if (va == NULL)
282 			return H_PARAMETER;
283 		if (subfunc == H_VPA_REG_VPA)
284 			len = ((struct reg_vpa *)va)->length.hword;
285 		else
286 			len = ((struct reg_vpa *)va)->length.word;
287 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
288 
289 		/* Check length */
290 		if (len > nb || len < sizeof(struct reg_vpa))
291 			return H_PARAMETER;
292 	} else {
293 		vpa = 0;
294 		len = 0;
295 	}
296 
297 	err = H_PARAMETER;
298 	vpap = NULL;
299 	spin_lock(&tvcpu->arch.vpa_update_lock);
300 
301 	switch (subfunc) {
302 	case H_VPA_REG_VPA:		/* register VPA */
303 		if (len < sizeof(struct lppaca))
304 			break;
305 		vpap = &tvcpu->arch.vpa;
306 		err = 0;
307 		break;
308 
309 	case H_VPA_REG_DTL:		/* register DTL */
310 		if (len < sizeof(struct dtl_entry))
311 			break;
312 		len -= len % sizeof(struct dtl_entry);
313 
314 		/* Check that they have previously registered a VPA */
315 		err = H_RESOURCE;
316 		if (!vpa_is_registered(&tvcpu->arch.vpa))
317 			break;
318 
319 		vpap = &tvcpu->arch.dtl;
320 		err = 0;
321 		break;
322 
323 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
324 		/* Check that they have previously registered a VPA */
325 		err = H_RESOURCE;
326 		if (!vpa_is_registered(&tvcpu->arch.vpa))
327 			break;
328 
329 		vpap = &tvcpu->arch.slb_shadow;
330 		err = 0;
331 		break;
332 
333 	case H_VPA_DEREG_VPA:		/* deregister VPA */
334 		/* Check they don't still have a DTL or SLB buf registered */
335 		err = H_RESOURCE;
336 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
337 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
338 			break;
339 
340 		vpap = &tvcpu->arch.vpa;
341 		err = 0;
342 		break;
343 
344 	case H_VPA_DEREG_DTL:		/* deregister DTL */
345 		vpap = &tvcpu->arch.dtl;
346 		err = 0;
347 		break;
348 
349 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
350 		vpap = &tvcpu->arch.slb_shadow;
351 		err = 0;
352 		break;
353 	}
354 
355 	if (vpap) {
356 		vpap->next_gpa = vpa;
357 		vpap->len = len;
358 		vpap->update_pending = 1;
359 	}
360 
361 	spin_unlock(&tvcpu->arch.vpa_update_lock);
362 
363 	return err;
364 }
365 
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368 	struct kvm *kvm = vcpu->kvm;
369 	void *va;
370 	unsigned long nb;
371 	unsigned long gpa;
372 
373 	/*
374 	 * We need to pin the page pointed to by vpap->next_gpa,
375 	 * but we can't call kvmppc_pin_guest_page under the lock
376 	 * as it does get_user_pages() and down_read().  So we
377 	 * have to drop the lock, pin the page, then get the lock
378 	 * again and check that a new area didn't get registered
379 	 * in the meantime.
380 	 */
381 	for (;;) {
382 		gpa = vpap->next_gpa;
383 		spin_unlock(&vcpu->arch.vpa_update_lock);
384 		va = NULL;
385 		nb = 0;
386 		if (gpa)
387 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388 		spin_lock(&vcpu->arch.vpa_update_lock);
389 		if (gpa == vpap->next_gpa)
390 			break;
391 		/* sigh... unpin that one and try again */
392 		if (va)
393 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
394 	}
395 
396 	vpap->update_pending = 0;
397 	if (va && nb < vpap->len) {
398 		/*
399 		 * If it's now too short, it must be that userspace
400 		 * has changed the mappings underlying guest memory,
401 		 * so unregister the region.
402 		 */
403 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
404 		va = NULL;
405 	}
406 	if (vpap->pinned_addr)
407 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408 					vpap->dirty);
409 	vpap->gpa = gpa;
410 	vpap->pinned_addr = va;
411 	vpap->dirty = false;
412 	if (va)
413 		vpap->pinned_end = va + vpap->len;
414 }
415 
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418 	if (!(vcpu->arch.vpa.update_pending ||
419 	      vcpu->arch.slb_shadow.update_pending ||
420 	      vcpu->arch.dtl.update_pending))
421 		return;
422 
423 	spin_lock(&vcpu->arch.vpa_update_lock);
424 	if (vcpu->arch.vpa.update_pending) {
425 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426 		if (vcpu->arch.vpa.pinned_addr)
427 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428 	}
429 	if (vcpu->arch.dtl.update_pending) {
430 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432 		vcpu->arch.dtl_index = 0;
433 	}
434 	if (vcpu->arch.slb_shadow.update_pending)
435 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436 	spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438 
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445 	u64 p;
446 
447 	/*
448 	 * If we are the task running the vcore, then since we hold
449 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450 	 * can't be updated, so we don't need the tbacct_lock.
451 	 * If the vcore is inactive, it can't become active (since we
452 	 * hold the vcore lock), so the vcpu load/put functions won't
453 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454 	 */
455 	if (vc->vcore_state != VCORE_INACTIVE &&
456 	    vc->runner->arch.run_task != current) {
457 		spin_lock(&vc->runner->arch.tbacct_lock);
458 		p = vc->stolen_tb;
459 		if (vc->preempt_tb != TB_NIL)
460 			p += now - vc->preempt_tb;
461 		spin_unlock(&vc->runner->arch.tbacct_lock);
462 	} else {
463 		p = vc->stolen_tb;
464 	}
465 	return p;
466 }
467 
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469 				    struct kvmppc_vcore *vc)
470 {
471 	struct dtl_entry *dt;
472 	struct lppaca *vpa;
473 	unsigned long stolen;
474 	unsigned long core_stolen;
475 	u64 now;
476 
477 	dt = vcpu->arch.dtl_ptr;
478 	vpa = vcpu->arch.vpa.pinned_addr;
479 	now = mftb();
480 	core_stolen = vcore_stolen_time(vc, now);
481 	stolen = core_stolen - vcpu->arch.stolen_logged;
482 	vcpu->arch.stolen_logged = core_stolen;
483 	spin_lock(&vcpu->arch.tbacct_lock);
484 	stolen += vcpu->arch.busy_stolen;
485 	vcpu->arch.busy_stolen = 0;
486 	spin_unlock(&vcpu->arch.tbacct_lock);
487 	if (!dt || !vpa)
488 		return;
489 	memset(dt, 0, sizeof(struct dtl_entry));
490 	dt->dispatch_reason = 7;
491 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492 	dt->timebase = now;
493 	dt->enqueue_to_dispatch_time = stolen;
494 	dt->srr0 = kvmppc_get_pc(vcpu);
495 	dt->srr1 = vcpu->arch.shregs.msr;
496 	++dt;
497 	if (dt == vcpu->arch.dtl.pinned_end)
498 		dt = vcpu->arch.dtl.pinned_addr;
499 	vcpu->arch.dtl_ptr = dt;
500 	/* order writing *dt vs. writing vpa->dtl_idx */
501 	smp_wmb();
502 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
503 	vcpu->arch.dtl.dirty = true;
504 }
505 
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
509 	unsigned long target, ret = H_SUCCESS;
510 	struct kvm_vcpu *tvcpu;
511 	int idx, rc;
512 
513 	switch (req) {
514 	case H_ENTER:
515 		idx = srcu_read_lock(&vcpu->kvm->srcu);
516 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517 					      kvmppc_get_gpr(vcpu, 5),
518 					      kvmppc_get_gpr(vcpu, 6),
519 					      kvmppc_get_gpr(vcpu, 7));
520 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
521 		break;
522 	case H_CEDE:
523 		break;
524 	case H_PROD:
525 		target = kvmppc_get_gpr(vcpu, 4);
526 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527 		if (!tvcpu) {
528 			ret = H_PARAMETER;
529 			break;
530 		}
531 		tvcpu->arch.prodded = 1;
532 		smp_mb();
533 		if (vcpu->arch.ceded) {
534 			if (waitqueue_active(&vcpu->wq)) {
535 				wake_up_interruptible(&vcpu->wq);
536 				vcpu->stat.halt_wakeup++;
537 			}
538 		}
539 		break;
540 	case H_CONFER:
541 		break;
542 	case H_REGISTER_VPA:
543 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544 					kvmppc_get_gpr(vcpu, 5),
545 					kvmppc_get_gpr(vcpu, 6));
546 		break;
547 	case H_RTAS:
548 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549 			return RESUME_HOST;
550 
551 		rc = kvmppc_rtas_hcall(vcpu);
552 
553 		if (rc == -ENOENT)
554 			return RESUME_HOST;
555 		else if (rc == 0)
556 			break;
557 
558 		/* Send the error out to userspace via KVM_RUN */
559 		return rc;
560 
561 	case H_XIRR:
562 	case H_CPPR:
563 	case H_EOI:
564 	case H_IPI:
565 	case H_IPOLL:
566 	case H_XIRR_X:
567 		if (kvmppc_xics_enabled(vcpu)) {
568 			ret = kvmppc_xics_hcall(vcpu, req);
569 			break;
570 		} /* fallthrough */
571 	default:
572 		return RESUME_HOST;
573 	}
574 	kvmppc_set_gpr(vcpu, 3, ret);
575 	vcpu->arch.hcall_needed = 0;
576 	return RESUME_GUEST;
577 }
578 
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580 			      struct task_struct *tsk)
581 {
582 	int r = RESUME_HOST;
583 
584 	vcpu->stat.sum_exits++;
585 
586 	run->exit_reason = KVM_EXIT_UNKNOWN;
587 	run->ready_for_interrupt_injection = 1;
588 	switch (vcpu->arch.trap) {
589 	/* We're good on these - the host merely wanted to get our attention */
590 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
591 		vcpu->stat.dec_exits++;
592 		r = RESUME_GUEST;
593 		break;
594 	case BOOK3S_INTERRUPT_EXTERNAL:
595 		vcpu->stat.ext_intr_exits++;
596 		r = RESUME_GUEST;
597 		break;
598 	case BOOK3S_INTERRUPT_PERFMON:
599 		r = RESUME_GUEST;
600 		break;
601 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
602 		/*
603 		 * Deliver a machine check interrupt to the guest.
604 		 * We have to do this, even if the host has handled the
605 		 * machine check, because machine checks use SRR0/1 and
606 		 * the interrupt might have trashed guest state in them.
607 		 */
608 		kvmppc_book3s_queue_irqprio(vcpu,
609 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
610 		r = RESUME_GUEST;
611 		break;
612 	case BOOK3S_INTERRUPT_PROGRAM:
613 	{
614 		ulong flags;
615 		/*
616 		 * Normally program interrupts are delivered directly
617 		 * to the guest by the hardware, but we can get here
618 		 * as a result of a hypervisor emulation interrupt
619 		 * (e40) getting turned into a 700 by BML RTAS.
620 		 */
621 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622 		kvmppc_core_queue_program(vcpu, flags);
623 		r = RESUME_GUEST;
624 		break;
625 	}
626 	case BOOK3S_INTERRUPT_SYSCALL:
627 	{
628 		/* hcall - punt to userspace */
629 		int i;
630 
631 		if (vcpu->arch.shregs.msr & MSR_PR) {
632 			/* sc 1 from userspace - reflect to guest syscall */
633 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634 			r = RESUME_GUEST;
635 			break;
636 		}
637 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638 		for (i = 0; i < 9; ++i)
639 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
641 		vcpu->arch.hcall_needed = 1;
642 		r = RESUME_HOST;
643 		break;
644 	}
645 	/*
646 	 * We get these next two if the guest accesses a page which it thinks
647 	 * it has mapped but which is not actually present, either because
648 	 * it is for an emulated I/O device or because the corresonding
649 	 * host page has been paged out.  Any other HDSI/HISI interrupts
650 	 * have been handled already.
651 	 */
652 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653 		r = RESUME_PAGE_FAULT;
654 		break;
655 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
656 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657 		vcpu->arch.fault_dsisr = 0;
658 		r = RESUME_PAGE_FAULT;
659 		break;
660 	/*
661 	 * This occurs if the guest executes an illegal instruction.
662 	 * We just generate a program interrupt to the guest, since
663 	 * we don't emulate any guest instructions at this stage.
664 	 */
665 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666 		kvmppc_core_queue_program(vcpu, 0x80000);
667 		r = RESUME_GUEST;
668 		break;
669 	default:
670 		kvmppc_dump_regs(vcpu);
671 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
673 			vcpu->arch.shregs.msr);
674 		r = RESUME_HOST;
675 		BUG();
676 		break;
677 	}
678 
679 	return r;
680 }
681 
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683                                   struct kvm_sregs *sregs)
684 {
685 	int i;
686 
687 	sregs->pvr = vcpu->arch.pvr;
688 
689 	memset(sregs, 0, sizeof(struct kvm_sregs));
690 	for (i = 0; i < vcpu->arch.slb_max; i++) {
691 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
692 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
693 	}
694 
695 	return 0;
696 }
697 
698 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
699                                   struct kvm_sregs *sregs)
700 {
701 	int i, j;
702 
703 	kvmppc_set_pvr(vcpu, sregs->pvr);
704 
705 	j = 0;
706 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
707 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
708 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
709 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
710 			++j;
711 		}
712 	}
713 	vcpu->arch.slb_max = j;
714 
715 	return 0;
716 }
717 
718 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
719 {
720 	int r = 0;
721 	long int i;
722 
723 	switch (id) {
724 	case KVM_REG_PPC_HIOR:
725 		*val = get_reg_val(id, 0);
726 		break;
727 	case KVM_REG_PPC_DABR:
728 		*val = get_reg_val(id, vcpu->arch.dabr);
729 		break;
730 	case KVM_REG_PPC_DSCR:
731 		*val = get_reg_val(id, vcpu->arch.dscr);
732 		break;
733 	case KVM_REG_PPC_PURR:
734 		*val = get_reg_val(id, vcpu->arch.purr);
735 		break;
736 	case KVM_REG_PPC_SPURR:
737 		*val = get_reg_val(id, vcpu->arch.spurr);
738 		break;
739 	case KVM_REG_PPC_AMR:
740 		*val = get_reg_val(id, vcpu->arch.amr);
741 		break;
742 	case KVM_REG_PPC_UAMOR:
743 		*val = get_reg_val(id, vcpu->arch.uamor);
744 		break;
745 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
746 		i = id - KVM_REG_PPC_MMCR0;
747 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
748 		break;
749 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
750 		i = id - KVM_REG_PPC_PMC1;
751 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
752 		break;
753 #ifdef CONFIG_VSX
754 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
755 		if (cpu_has_feature(CPU_FTR_VSX)) {
756 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
757 			long int i = id - KVM_REG_PPC_FPR0;
758 			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
759 		} else {
760 			/* let generic code handle it */
761 			r = -EINVAL;
762 		}
763 		break;
764 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
765 		if (cpu_has_feature(CPU_FTR_VSX)) {
766 			long int i = id - KVM_REG_PPC_VSR0;
767 			val->vsxval[0] = vcpu->arch.vsr[2 * i];
768 			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
769 		} else {
770 			r = -ENXIO;
771 		}
772 		break;
773 #endif /* CONFIG_VSX */
774 	case KVM_REG_PPC_VPA_ADDR:
775 		spin_lock(&vcpu->arch.vpa_update_lock);
776 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
777 		spin_unlock(&vcpu->arch.vpa_update_lock);
778 		break;
779 	case KVM_REG_PPC_VPA_SLB:
780 		spin_lock(&vcpu->arch.vpa_update_lock);
781 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
782 		val->vpaval.length = vcpu->arch.slb_shadow.len;
783 		spin_unlock(&vcpu->arch.vpa_update_lock);
784 		break;
785 	case KVM_REG_PPC_VPA_DTL:
786 		spin_lock(&vcpu->arch.vpa_update_lock);
787 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
788 		val->vpaval.length = vcpu->arch.dtl.len;
789 		spin_unlock(&vcpu->arch.vpa_update_lock);
790 		break;
791 	default:
792 		r = -EINVAL;
793 		break;
794 	}
795 
796 	return r;
797 }
798 
799 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
800 {
801 	int r = 0;
802 	long int i;
803 	unsigned long addr, len;
804 
805 	switch (id) {
806 	case KVM_REG_PPC_HIOR:
807 		/* Only allow this to be set to zero */
808 		if (set_reg_val(id, *val))
809 			r = -EINVAL;
810 		break;
811 	case KVM_REG_PPC_DABR:
812 		vcpu->arch.dabr = set_reg_val(id, *val);
813 		break;
814 	case KVM_REG_PPC_DSCR:
815 		vcpu->arch.dscr = set_reg_val(id, *val);
816 		break;
817 	case KVM_REG_PPC_PURR:
818 		vcpu->arch.purr = set_reg_val(id, *val);
819 		break;
820 	case KVM_REG_PPC_SPURR:
821 		vcpu->arch.spurr = set_reg_val(id, *val);
822 		break;
823 	case KVM_REG_PPC_AMR:
824 		vcpu->arch.amr = set_reg_val(id, *val);
825 		break;
826 	case KVM_REG_PPC_UAMOR:
827 		vcpu->arch.uamor = set_reg_val(id, *val);
828 		break;
829 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
830 		i = id - KVM_REG_PPC_MMCR0;
831 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
832 		break;
833 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
834 		i = id - KVM_REG_PPC_PMC1;
835 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
836 		break;
837 #ifdef CONFIG_VSX
838 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
839 		if (cpu_has_feature(CPU_FTR_VSX)) {
840 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
841 			long int i = id - KVM_REG_PPC_FPR0;
842 			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
843 		} else {
844 			/* let generic code handle it */
845 			r = -EINVAL;
846 		}
847 		break;
848 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
849 		if (cpu_has_feature(CPU_FTR_VSX)) {
850 			long int i = id - KVM_REG_PPC_VSR0;
851 			vcpu->arch.vsr[2 * i] = val->vsxval[0];
852 			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
853 		} else {
854 			r = -ENXIO;
855 		}
856 		break;
857 #endif /* CONFIG_VSX */
858 	case KVM_REG_PPC_VPA_ADDR:
859 		addr = set_reg_val(id, *val);
860 		r = -EINVAL;
861 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
862 			      vcpu->arch.dtl.next_gpa))
863 			break;
864 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
865 		break;
866 	case KVM_REG_PPC_VPA_SLB:
867 		addr = val->vpaval.addr;
868 		len = val->vpaval.length;
869 		r = -EINVAL;
870 		if (addr && !vcpu->arch.vpa.next_gpa)
871 			break;
872 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
873 		break;
874 	case KVM_REG_PPC_VPA_DTL:
875 		addr = val->vpaval.addr;
876 		len = val->vpaval.length;
877 		r = -EINVAL;
878 		if (addr && (len < sizeof(struct dtl_entry) ||
879 			     !vcpu->arch.vpa.next_gpa))
880 			break;
881 		len -= len % sizeof(struct dtl_entry);
882 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
883 		break;
884 	default:
885 		r = -EINVAL;
886 		break;
887 	}
888 
889 	return r;
890 }
891 
892 int kvmppc_core_check_processor_compat(void)
893 {
894 	if (cpu_has_feature(CPU_FTR_HVMODE))
895 		return 0;
896 	return -EIO;
897 }
898 
899 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
900 {
901 	struct kvm_vcpu *vcpu;
902 	int err = -EINVAL;
903 	int core;
904 	struct kvmppc_vcore *vcore;
905 
906 	core = id / threads_per_core;
907 	if (core >= KVM_MAX_VCORES)
908 		goto out;
909 
910 	err = -ENOMEM;
911 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
912 	if (!vcpu)
913 		goto out;
914 
915 	err = kvm_vcpu_init(vcpu, kvm, id);
916 	if (err)
917 		goto free_vcpu;
918 
919 	vcpu->arch.shared = &vcpu->arch.shregs;
920 	vcpu->arch.mmcr[0] = MMCR0_FC;
921 	vcpu->arch.ctrl = CTRL_RUNLATCH;
922 	/* default to host PVR, since we can't spoof it */
923 	vcpu->arch.pvr = mfspr(SPRN_PVR);
924 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
925 	spin_lock_init(&vcpu->arch.vpa_update_lock);
926 	spin_lock_init(&vcpu->arch.tbacct_lock);
927 	vcpu->arch.busy_preempt = TB_NIL;
928 
929 	kvmppc_mmu_book3s_hv_init(vcpu);
930 
931 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
932 
933 	init_waitqueue_head(&vcpu->arch.cpu_run);
934 
935 	mutex_lock(&kvm->lock);
936 	vcore = kvm->arch.vcores[core];
937 	if (!vcore) {
938 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
939 		if (vcore) {
940 			INIT_LIST_HEAD(&vcore->runnable_threads);
941 			spin_lock_init(&vcore->lock);
942 			init_waitqueue_head(&vcore->wq);
943 			vcore->preempt_tb = TB_NIL;
944 		}
945 		kvm->arch.vcores[core] = vcore;
946 		kvm->arch.online_vcores++;
947 	}
948 	mutex_unlock(&kvm->lock);
949 
950 	if (!vcore)
951 		goto free_vcpu;
952 
953 	spin_lock(&vcore->lock);
954 	++vcore->num_threads;
955 	spin_unlock(&vcore->lock);
956 	vcpu->arch.vcore = vcore;
957 
958 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
959 	kvmppc_sanity_check(vcpu);
960 
961 	return vcpu;
962 
963 free_vcpu:
964 	kmem_cache_free(kvm_vcpu_cache, vcpu);
965 out:
966 	return ERR_PTR(err);
967 }
968 
969 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
970 {
971 	if (vpa->pinned_addr)
972 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
973 					vpa->dirty);
974 }
975 
976 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
977 {
978 	spin_lock(&vcpu->arch.vpa_update_lock);
979 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
980 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
981 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
982 	spin_unlock(&vcpu->arch.vpa_update_lock);
983 	kvm_vcpu_uninit(vcpu);
984 	kmem_cache_free(kvm_vcpu_cache, vcpu);
985 }
986 
987 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
988 {
989 	unsigned long dec_nsec, now;
990 
991 	now = get_tb();
992 	if (now > vcpu->arch.dec_expires) {
993 		/* decrementer has already gone negative */
994 		kvmppc_core_queue_dec(vcpu);
995 		kvmppc_core_prepare_to_enter(vcpu);
996 		return;
997 	}
998 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
999 		   / tb_ticks_per_sec;
1000 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1001 		      HRTIMER_MODE_REL);
1002 	vcpu->arch.timer_running = 1;
1003 }
1004 
1005 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1006 {
1007 	vcpu->arch.ceded = 0;
1008 	if (vcpu->arch.timer_running) {
1009 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1010 		vcpu->arch.timer_running = 0;
1011 	}
1012 }
1013 
1014 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1015 
1016 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1017 				   struct kvm_vcpu *vcpu)
1018 {
1019 	u64 now;
1020 
1021 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1022 		return;
1023 	spin_lock(&vcpu->arch.tbacct_lock);
1024 	now = mftb();
1025 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1026 		vcpu->arch.stolen_logged;
1027 	vcpu->arch.busy_preempt = now;
1028 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1029 	spin_unlock(&vcpu->arch.tbacct_lock);
1030 	--vc->n_runnable;
1031 	list_del(&vcpu->arch.run_list);
1032 }
1033 
1034 static int kvmppc_grab_hwthread(int cpu)
1035 {
1036 	struct paca_struct *tpaca;
1037 	long timeout = 1000;
1038 
1039 	tpaca = &paca[cpu];
1040 
1041 	/* Ensure the thread won't go into the kernel if it wakes */
1042 	tpaca->kvm_hstate.hwthread_req = 1;
1043 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1044 
1045 	/*
1046 	 * If the thread is already executing in the kernel (e.g. handling
1047 	 * a stray interrupt), wait for it to get back to nap mode.
1048 	 * The smp_mb() is to ensure that our setting of hwthread_req
1049 	 * is visible before we look at hwthread_state, so if this
1050 	 * races with the code at system_reset_pSeries and the thread
1051 	 * misses our setting of hwthread_req, we are sure to see its
1052 	 * setting of hwthread_state, and vice versa.
1053 	 */
1054 	smp_mb();
1055 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1056 		if (--timeout <= 0) {
1057 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1058 			return -EBUSY;
1059 		}
1060 		udelay(1);
1061 	}
1062 	return 0;
1063 }
1064 
1065 static void kvmppc_release_hwthread(int cpu)
1066 {
1067 	struct paca_struct *tpaca;
1068 
1069 	tpaca = &paca[cpu];
1070 	tpaca->kvm_hstate.hwthread_req = 0;
1071 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1072 }
1073 
1074 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1075 {
1076 	int cpu;
1077 	struct paca_struct *tpaca;
1078 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1079 
1080 	if (vcpu->arch.timer_running) {
1081 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1082 		vcpu->arch.timer_running = 0;
1083 	}
1084 	cpu = vc->pcpu + vcpu->arch.ptid;
1085 	tpaca = &paca[cpu];
1086 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1087 	tpaca->kvm_hstate.kvm_vcore = vc;
1088 	tpaca->kvm_hstate.napping = 0;
1089 	vcpu->cpu = vc->pcpu;
1090 	smp_wmb();
1091 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1092 	if (vcpu->arch.ptid) {
1093 		xics_wake_cpu(cpu);
1094 		++vc->n_woken;
1095 	}
1096 #endif
1097 }
1098 
1099 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1100 {
1101 	int i;
1102 
1103 	HMT_low();
1104 	i = 0;
1105 	while (vc->nap_count < vc->n_woken) {
1106 		if (++i >= 1000000) {
1107 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1108 			       vc->nap_count, vc->n_woken);
1109 			break;
1110 		}
1111 		cpu_relax();
1112 	}
1113 	HMT_medium();
1114 }
1115 
1116 /*
1117  * Check that we are on thread 0 and that any other threads in
1118  * this core are off-line.  Then grab the threads so they can't
1119  * enter the kernel.
1120  */
1121 static int on_primary_thread(void)
1122 {
1123 	int cpu = smp_processor_id();
1124 	int thr = cpu_thread_in_core(cpu);
1125 
1126 	if (thr)
1127 		return 0;
1128 	while (++thr < threads_per_core)
1129 		if (cpu_online(cpu + thr))
1130 			return 0;
1131 
1132 	/* Grab all hw threads so they can't go into the kernel */
1133 	for (thr = 1; thr < threads_per_core; ++thr) {
1134 		if (kvmppc_grab_hwthread(cpu + thr)) {
1135 			/* Couldn't grab one; let the others go */
1136 			do {
1137 				kvmppc_release_hwthread(cpu + thr);
1138 			} while (--thr > 0);
1139 			return 0;
1140 		}
1141 	}
1142 	return 1;
1143 }
1144 
1145 /*
1146  * Run a set of guest threads on a physical core.
1147  * Called with vc->lock held.
1148  */
1149 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1150 {
1151 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1152 	long ret;
1153 	u64 now;
1154 	int ptid, i, need_vpa_update;
1155 	int srcu_idx;
1156 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1157 
1158 	/* don't start if any threads have a signal pending */
1159 	need_vpa_update = 0;
1160 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1161 		if (signal_pending(vcpu->arch.run_task))
1162 			return;
1163 		if (vcpu->arch.vpa.update_pending ||
1164 		    vcpu->arch.slb_shadow.update_pending ||
1165 		    vcpu->arch.dtl.update_pending)
1166 			vcpus_to_update[need_vpa_update++] = vcpu;
1167 	}
1168 
1169 	/*
1170 	 * Initialize *vc, in particular vc->vcore_state, so we can
1171 	 * drop the vcore lock if necessary.
1172 	 */
1173 	vc->n_woken = 0;
1174 	vc->nap_count = 0;
1175 	vc->entry_exit_count = 0;
1176 	vc->vcore_state = VCORE_STARTING;
1177 	vc->in_guest = 0;
1178 	vc->napping_threads = 0;
1179 
1180 	/*
1181 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1182 	 * which can't be called with any spinlocks held.
1183 	 */
1184 	if (need_vpa_update) {
1185 		spin_unlock(&vc->lock);
1186 		for (i = 0; i < need_vpa_update; ++i)
1187 			kvmppc_update_vpas(vcpus_to_update[i]);
1188 		spin_lock(&vc->lock);
1189 	}
1190 
1191 	/*
1192 	 * Assign physical thread IDs, first to non-ceded vcpus
1193 	 * and then to ceded ones.
1194 	 */
1195 	ptid = 0;
1196 	vcpu0 = NULL;
1197 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1198 		if (!vcpu->arch.ceded) {
1199 			if (!ptid)
1200 				vcpu0 = vcpu;
1201 			vcpu->arch.ptid = ptid++;
1202 		}
1203 	}
1204 	if (!vcpu0)
1205 		goto out;	/* nothing to run; should never happen */
1206 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1207 		if (vcpu->arch.ceded)
1208 			vcpu->arch.ptid = ptid++;
1209 
1210 	/*
1211 	 * Make sure we are running on thread 0, and that
1212 	 * secondary threads are offline.
1213 	 */
1214 	if (threads_per_core > 1 && !on_primary_thread()) {
1215 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1216 			vcpu->arch.ret = -EBUSY;
1217 		goto out;
1218 	}
1219 
1220 	vc->pcpu = smp_processor_id();
1221 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1222 		kvmppc_start_thread(vcpu);
1223 		kvmppc_create_dtl_entry(vcpu, vc);
1224 	}
1225 
1226 	vc->vcore_state = VCORE_RUNNING;
1227 	preempt_disable();
1228 	spin_unlock(&vc->lock);
1229 
1230 	kvm_guest_enter();
1231 
1232 	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1233 
1234 	__kvmppc_vcore_entry(NULL, vcpu0);
1235 
1236 	spin_lock(&vc->lock);
1237 	/* disable sending of IPIs on virtual external irqs */
1238 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1239 		vcpu->cpu = -1;
1240 	/* wait for secondary threads to finish writing their state to memory */
1241 	if (vc->nap_count < vc->n_woken)
1242 		kvmppc_wait_for_nap(vc);
1243 	for (i = 0; i < threads_per_core; ++i)
1244 		kvmppc_release_hwthread(vc->pcpu + i);
1245 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1246 	vc->vcore_state = VCORE_EXITING;
1247 	spin_unlock(&vc->lock);
1248 
1249 	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1250 
1251 	/* make sure updates to secondary vcpu structs are visible now */
1252 	smp_mb();
1253 	kvm_guest_exit();
1254 
1255 	preempt_enable();
1256 	kvm_resched(vcpu);
1257 
1258 	spin_lock(&vc->lock);
1259 	now = get_tb();
1260 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1261 		/* cancel pending dec exception if dec is positive */
1262 		if (now < vcpu->arch.dec_expires &&
1263 		    kvmppc_core_pending_dec(vcpu))
1264 			kvmppc_core_dequeue_dec(vcpu);
1265 
1266 		ret = RESUME_GUEST;
1267 		if (vcpu->arch.trap)
1268 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1269 						 vcpu->arch.run_task);
1270 
1271 		vcpu->arch.ret = ret;
1272 		vcpu->arch.trap = 0;
1273 
1274 		if (vcpu->arch.ceded) {
1275 			if (ret != RESUME_GUEST)
1276 				kvmppc_end_cede(vcpu);
1277 			else
1278 				kvmppc_set_timer(vcpu);
1279 		}
1280 	}
1281 
1282  out:
1283 	vc->vcore_state = VCORE_INACTIVE;
1284 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1285 				 arch.run_list) {
1286 		if (vcpu->arch.ret != RESUME_GUEST) {
1287 			kvmppc_remove_runnable(vc, vcpu);
1288 			wake_up(&vcpu->arch.cpu_run);
1289 		}
1290 	}
1291 }
1292 
1293 /*
1294  * Wait for some other vcpu thread to execute us, and
1295  * wake us up when we need to handle something in the host.
1296  */
1297 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1298 {
1299 	DEFINE_WAIT(wait);
1300 
1301 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1302 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1303 		schedule();
1304 	finish_wait(&vcpu->arch.cpu_run, &wait);
1305 }
1306 
1307 /*
1308  * All the vcpus in this vcore are idle, so wait for a decrementer
1309  * or external interrupt to one of the vcpus.  vc->lock is held.
1310  */
1311 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1312 {
1313 	DEFINE_WAIT(wait);
1314 
1315 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1316 	vc->vcore_state = VCORE_SLEEPING;
1317 	spin_unlock(&vc->lock);
1318 	schedule();
1319 	finish_wait(&vc->wq, &wait);
1320 	spin_lock(&vc->lock);
1321 	vc->vcore_state = VCORE_INACTIVE;
1322 }
1323 
1324 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1325 {
1326 	int n_ceded;
1327 	struct kvmppc_vcore *vc;
1328 	struct kvm_vcpu *v, *vn;
1329 
1330 	kvm_run->exit_reason = 0;
1331 	vcpu->arch.ret = RESUME_GUEST;
1332 	vcpu->arch.trap = 0;
1333 	kvmppc_update_vpas(vcpu);
1334 
1335 	/*
1336 	 * Synchronize with other threads in this virtual core
1337 	 */
1338 	vc = vcpu->arch.vcore;
1339 	spin_lock(&vc->lock);
1340 	vcpu->arch.ceded = 0;
1341 	vcpu->arch.run_task = current;
1342 	vcpu->arch.kvm_run = kvm_run;
1343 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1344 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1345 	vcpu->arch.busy_preempt = TB_NIL;
1346 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1347 	++vc->n_runnable;
1348 
1349 	/*
1350 	 * This happens the first time this is called for a vcpu.
1351 	 * If the vcore is already running, we may be able to start
1352 	 * this thread straight away and have it join in.
1353 	 */
1354 	if (!signal_pending(current)) {
1355 		if (vc->vcore_state == VCORE_RUNNING &&
1356 		    VCORE_EXIT_COUNT(vc) == 0) {
1357 			vcpu->arch.ptid = vc->n_runnable - 1;
1358 			kvmppc_create_dtl_entry(vcpu, vc);
1359 			kvmppc_start_thread(vcpu);
1360 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1361 			wake_up(&vc->wq);
1362 		}
1363 
1364 	}
1365 
1366 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1367 	       !signal_pending(current)) {
1368 		if (vc->vcore_state != VCORE_INACTIVE) {
1369 			spin_unlock(&vc->lock);
1370 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1371 			spin_lock(&vc->lock);
1372 			continue;
1373 		}
1374 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1375 					 arch.run_list) {
1376 			kvmppc_core_prepare_to_enter(v);
1377 			if (signal_pending(v->arch.run_task)) {
1378 				kvmppc_remove_runnable(vc, v);
1379 				v->stat.signal_exits++;
1380 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1381 				v->arch.ret = -EINTR;
1382 				wake_up(&v->arch.cpu_run);
1383 			}
1384 		}
1385 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1386 			break;
1387 		vc->runner = vcpu;
1388 		n_ceded = 0;
1389 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1390 			if (!v->arch.pending_exceptions)
1391 				n_ceded += v->arch.ceded;
1392 			else
1393 				v->arch.ceded = 0;
1394 		}
1395 		if (n_ceded == vc->n_runnable)
1396 			kvmppc_vcore_blocked(vc);
1397 		else
1398 			kvmppc_run_core(vc);
1399 		vc->runner = NULL;
1400 	}
1401 
1402 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1403 	       (vc->vcore_state == VCORE_RUNNING ||
1404 		vc->vcore_state == VCORE_EXITING)) {
1405 		spin_unlock(&vc->lock);
1406 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1407 		spin_lock(&vc->lock);
1408 	}
1409 
1410 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1411 		kvmppc_remove_runnable(vc, vcpu);
1412 		vcpu->stat.signal_exits++;
1413 		kvm_run->exit_reason = KVM_EXIT_INTR;
1414 		vcpu->arch.ret = -EINTR;
1415 	}
1416 
1417 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1418 		/* Wake up some vcpu to run the core */
1419 		v = list_first_entry(&vc->runnable_threads,
1420 				     struct kvm_vcpu, arch.run_list);
1421 		wake_up(&v->arch.cpu_run);
1422 	}
1423 
1424 	spin_unlock(&vc->lock);
1425 	return vcpu->arch.ret;
1426 }
1427 
1428 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1429 {
1430 	int r;
1431 	int srcu_idx;
1432 
1433 	if (!vcpu->arch.sane) {
1434 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1435 		return -EINVAL;
1436 	}
1437 
1438 	kvmppc_core_prepare_to_enter(vcpu);
1439 
1440 	/* No need to go into the guest when all we'll do is come back out */
1441 	if (signal_pending(current)) {
1442 		run->exit_reason = KVM_EXIT_INTR;
1443 		return -EINTR;
1444 	}
1445 
1446 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1447 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1448 	smp_mb();
1449 
1450 	/* On the first time here, set up HTAB and VRMA or RMA */
1451 	if (!vcpu->kvm->arch.rma_setup_done) {
1452 		r = kvmppc_hv_setup_htab_rma(vcpu);
1453 		if (r)
1454 			goto out;
1455 	}
1456 
1457 	flush_fp_to_thread(current);
1458 	flush_altivec_to_thread(current);
1459 	flush_vsx_to_thread(current);
1460 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1461 	vcpu->arch.pgdir = current->mm->pgd;
1462 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1463 
1464 	do {
1465 		r = kvmppc_run_vcpu(run, vcpu);
1466 
1467 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1468 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1469 			r = kvmppc_pseries_do_hcall(vcpu);
1470 			kvmppc_core_prepare_to_enter(vcpu);
1471 		} else if (r == RESUME_PAGE_FAULT) {
1472 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1473 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
1474 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1475 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1476 		}
1477 	} while (r == RESUME_GUEST);
1478 
1479  out:
1480 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1481 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1482 	return r;
1483 }
1484 
1485 
1486 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1487    Assumes POWER7 or PPC970. */
1488 static inline int lpcr_rmls(unsigned long rma_size)
1489 {
1490 	switch (rma_size) {
1491 	case 32ul << 20:	/* 32 MB */
1492 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1493 			return 8;	/* only supported on POWER7 */
1494 		return -1;
1495 	case 64ul << 20:	/* 64 MB */
1496 		return 3;
1497 	case 128ul << 20:	/* 128 MB */
1498 		return 7;
1499 	case 256ul << 20:	/* 256 MB */
1500 		return 4;
1501 	case 1ul << 30:		/* 1 GB */
1502 		return 2;
1503 	case 16ul << 30:	/* 16 GB */
1504 		return 1;
1505 	case 256ul << 30:	/* 256 GB */
1506 		return 0;
1507 	default:
1508 		return -1;
1509 	}
1510 }
1511 
1512 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1513 {
1514 	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1515 	struct page *page;
1516 
1517 	if (vmf->pgoff >= ri->npages)
1518 		return VM_FAULT_SIGBUS;
1519 
1520 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1521 	get_page(page);
1522 	vmf->page = page;
1523 	return 0;
1524 }
1525 
1526 static const struct vm_operations_struct kvm_rma_vm_ops = {
1527 	.fault = kvm_rma_fault,
1528 };
1529 
1530 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1531 {
1532 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1533 	vma->vm_ops = &kvm_rma_vm_ops;
1534 	return 0;
1535 }
1536 
1537 static int kvm_rma_release(struct inode *inode, struct file *filp)
1538 {
1539 	struct kvmppc_linear_info *ri = filp->private_data;
1540 
1541 	kvm_release_rma(ri);
1542 	return 0;
1543 }
1544 
1545 static const struct file_operations kvm_rma_fops = {
1546 	.mmap           = kvm_rma_mmap,
1547 	.release	= kvm_rma_release,
1548 };
1549 
1550 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1551 {
1552 	struct kvmppc_linear_info *ri;
1553 	long fd;
1554 
1555 	ri = kvm_alloc_rma();
1556 	if (!ri)
1557 		return -ENOMEM;
1558 
1559 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1560 	if (fd < 0)
1561 		kvm_release_rma(ri);
1562 
1563 	ret->rma_size = ri->npages << PAGE_SHIFT;
1564 	return fd;
1565 }
1566 
1567 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1568 				     int linux_psize)
1569 {
1570 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1571 
1572 	if (!def->shift)
1573 		return;
1574 	(*sps)->page_shift = def->shift;
1575 	(*sps)->slb_enc = def->sllp;
1576 	(*sps)->enc[0].page_shift = def->shift;
1577 	/*
1578 	 * Only return base page encoding. We don't want to return
1579 	 * all the supporting pte_enc, because our H_ENTER doesn't
1580 	 * support MPSS yet. Once they do, we can start passing all
1581 	 * support pte_enc here
1582 	 */
1583 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1584 	(*sps)++;
1585 }
1586 
1587 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1588 {
1589 	struct kvm_ppc_one_seg_page_size *sps;
1590 
1591 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1592 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1593 		info->flags |= KVM_PPC_1T_SEGMENTS;
1594 	info->slb_size = mmu_slb_size;
1595 
1596 	/* We only support these sizes for now, and no muti-size segments */
1597 	sps = &info->sps[0];
1598 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1599 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1600 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1601 
1602 	return 0;
1603 }
1604 
1605 /*
1606  * Get (and clear) the dirty memory log for a memory slot.
1607  */
1608 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1609 {
1610 	struct kvm_memory_slot *memslot;
1611 	int r;
1612 	unsigned long n;
1613 
1614 	mutex_lock(&kvm->slots_lock);
1615 
1616 	r = -EINVAL;
1617 	if (log->slot >= KVM_USER_MEM_SLOTS)
1618 		goto out;
1619 
1620 	memslot = id_to_memslot(kvm->memslots, log->slot);
1621 	r = -ENOENT;
1622 	if (!memslot->dirty_bitmap)
1623 		goto out;
1624 
1625 	n = kvm_dirty_bitmap_bytes(memslot);
1626 	memset(memslot->dirty_bitmap, 0, n);
1627 
1628 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1629 	if (r)
1630 		goto out;
1631 
1632 	r = -EFAULT;
1633 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1634 		goto out;
1635 
1636 	r = 0;
1637 out:
1638 	mutex_unlock(&kvm->slots_lock);
1639 	return r;
1640 }
1641 
1642 static void unpin_slot(struct kvm_memory_slot *memslot)
1643 {
1644 	unsigned long *physp;
1645 	unsigned long j, npages, pfn;
1646 	struct page *page;
1647 
1648 	physp = memslot->arch.slot_phys;
1649 	npages = memslot->npages;
1650 	if (!physp)
1651 		return;
1652 	for (j = 0; j < npages; j++) {
1653 		if (!(physp[j] & KVMPPC_GOT_PAGE))
1654 			continue;
1655 		pfn = physp[j] >> PAGE_SHIFT;
1656 		page = pfn_to_page(pfn);
1657 		SetPageDirty(page);
1658 		put_page(page);
1659 	}
1660 }
1661 
1662 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1663 			      struct kvm_memory_slot *dont)
1664 {
1665 	if (!dont || free->arch.rmap != dont->arch.rmap) {
1666 		vfree(free->arch.rmap);
1667 		free->arch.rmap = NULL;
1668 	}
1669 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1670 		unpin_slot(free);
1671 		vfree(free->arch.slot_phys);
1672 		free->arch.slot_phys = NULL;
1673 	}
1674 }
1675 
1676 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1677 			       unsigned long npages)
1678 {
1679 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1680 	if (!slot->arch.rmap)
1681 		return -ENOMEM;
1682 	slot->arch.slot_phys = NULL;
1683 
1684 	return 0;
1685 }
1686 
1687 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1688 				      struct kvm_memory_slot *memslot,
1689 				      struct kvm_userspace_memory_region *mem)
1690 {
1691 	unsigned long *phys;
1692 
1693 	/* Allocate a slot_phys array if needed */
1694 	phys = memslot->arch.slot_phys;
1695 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1696 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
1697 		if (!phys)
1698 			return -ENOMEM;
1699 		memslot->arch.slot_phys = phys;
1700 	}
1701 
1702 	return 0;
1703 }
1704 
1705 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1706 				      struct kvm_userspace_memory_region *mem,
1707 				      const struct kvm_memory_slot *old)
1708 {
1709 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1710 	struct kvm_memory_slot *memslot;
1711 
1712 	if (npages && old->npages) {
1713 		/*
1714 		 * If modifying a memslot, reset all the rmap dirty bits.
1715 		 * If this is a new memslot, we don't need to do anything
1716 		 * since the rmap array starts out as all zeroes,
1717 		 * i.e. no pages are dirty.
1718 		 */
1719 		memslot = id_to_memslot(kvm->memslots, mem->slot);
1720 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1721 	}
1722 }
1723 
1724 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1725 {
1726 	int err = 0;
1727 	struct kvm *kvm = vcpu->kvm;
1728 	struct kvmppc_linear_info *ri = NULL;
1729 	unsigned long hva;
1730 	struct kvm_memory_slot *memslot;
1731 	struct vm_area_struct *vma;
1732 	unsigned long lpcr, senc;
1733 	unsigned long psize, porder;
1734 	unsigned long rma_size;
1735 	unsigned long rmls;
1736 	unsigned long *physp;
1737 	unsigned long i, npages;
1738 	int srcu_idx;
1739 
1740 	mutex_lock(&kvm->lock);
1741 	if (kvm->arch.rma_setup_done)
1742 		goto out;	/* another vcpu beat us to it */
1743 
1744 	/* Allocate hashed page table (if not done already) and reset it */
1745 	if (!kvm->arch.hpt_virt) {
1746 		err = kvmppc_alloc_hpt(kvm, NULL);
1747 		if (err) {
1748 			pr_err("KVM: Couldn't alloc HPT\n");
1749 			goto out;
1750 		}
1751 	}
1752 
1753 	/* Look up the memslot for guest physical address 0 */
1754 	srcu_idx = srcu_read_lock(&kvm->srcu);
1755 	memslot = gfn_to_memslot(kvm, 0);
1756 
1757 	/* We must have some memory at 0 by now */
1758 	err = -EINVAL;
1759 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1760 		goto out_srcu;
1761 
1762 	/* Look up the VMA for the start of this memory slot */
1763 	hva = memslot->userspace_addr;
1764 	down_read(&current->mm->mmap_sem);
1765 	vma = find_vma(current->mm, hva);
1766 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1767 		goto up_out;
1768 
1769 	psize = vma_kernel_pagesize(vma);
1770 	porder = __ilog2(psize);
1771 
1772 	/* Is this one of our preallocated RMAs? */
1773 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1774 	    hva == vma->vm_start)
1775 		ri = vma->vm_file->private_data;
1776 
1777 	up_read(&current->mm->mmap_sem);
1778 
1779 	if (!ri) {
1780 		/* On POWER7, use VRMA; on PPC970, give up */
1781 		err = -EPERM;
1782 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1783 			pr_err("KVM: CPU requires an RMO\n");
1784 			goto out_srcu;
1785 		}
1786 
1787 		/* We can handle 4k, 64k or 16M pages in the VRMA */
1788 		err = -EINVAL;
1789 		if (!(psize == 0x1000 || psize == 0x10000 ||
1790 		      psize == 0x1000000))
1791 			goto out_srcu;
1792 
1793 		/* Update VRMASD field in the LPCR */
1794 		senc = slb_pgsize_encoding(psize);
1795 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1796 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1797 		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1798 		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1799 		kvm->arch.lpcr = lpcr;
1800 
1801 		/* Create HPTEs in the hash page table for the VRMA */
1802 		kvmppc_map_vrma(vcpu, memslot, porder);
1803 
1804 	} else {
1805 		/* Set up to use an RMO region */
1806 		rma_size = ri->npages;
1807 		if (rma_size > memslot->npages)
1808 			rma_size = memslot->npages;
1809 		rma_size <<= PAGE_SHIFT;
1810 		rmls = lpcr_rmls(rma_size);
1811 		err = -EINVAL;
1812 		if (rmls < 0) {
1813 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1814 			goto out_srcu;
1815 		}
1816 		atomic_inc(&ri->use_count);
1817 		kvm->arch.rma = ri;
1818 
1819 		/* Update LPCR and RMOR */
1820 		lpcr = kvm->arch.lpcr;
1821 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1822 			/* PPC970; insert RMLS value (split field) in HID4 */
1823 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1824 				  (3ul << HID4_RMLS2_SH));
1825 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1826 				((rmls & 3) << HID4_RMLS2_SH);
1827 			/* RMOR is also in HID4 */
1828 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1829 				<< HID4_RMOR_SH;
1830 		} else {
1831 			/* POWER7 */
1832 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1833 			lpcr |= rmls << LPCR_RMLS_SH;
1834 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1835 		}
1836 		kvm->arch.lpcr = lpcr;
1837 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1838 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1839 
1840 		/* Initialize phys addrs of pages in RMO */
1841 		npages = ri->npages;
1842 		porder = __ilog2(npages);
1843 		physp = memslot->arch.slot_phys;
1844 		if (physp) {
1845 			if (npages > memslot->npages)
1846 				npages = memslot->npages;
1847 			spin_lock(&kvm->arch.slot_phys_lock);
1848 			for (i = 0; i < npages; ++i)
1849 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1850 					porder;
1851 			spin_unlock(&kvm->arch.slot_phys_lock);
1852 		}
1853 	}
1854 
1855 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1856 	smp_wmb();
1857 	kvm->arch.rma_setup_done = 1;
1858 	err = 0;
1859  out_srcu:
1860 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1861  out:
1862 	mutex_unlock(&kvm->lock);
1863 	return err;
1864 
1865  up_out:
1866 	up_read(&current->mm->mmap_sem);
1867 	goto out;
1868 }
1869 
1870 int kvmppc_core_init_vm(struct kvm *kvm)
1871 {
1872 	unsigned long lpcr, lpid;
1873 
1874 	/* Allocate the guest's logical partition ID */
1875 
1876 	lpid = kvmppc_alloc_lpid();
1877 	if (lpid < 0)
1878 		return -ENOMEM;
1879 	kvm->arch.lpid = lpid;
1880 
1881 	/*
1882 	 * Since we don't flush the TLB when tearing down a VM,
1883 	 * and this lpid might have previously been used,
1884 	 * make sure we flush on each core before running the new VM.
1885 	 */
1886 	cpumask_setall(&kvm->arch.need_tlb_flush);
1887 
1888 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1889 	INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1890 
1891 	kvm->arch.rma = NULL;
1892 
1893 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1894 
1895 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1896 		/* PPC970; HID4 is effectively the LPCR */
1897 		kvm->arch.host_lpid = 0;
1898 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1899 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1900 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1901 			((lpid & 0xf) << HID4_LPID5_SH);
1902 	} else {
1903 		/* POWER7; init LPCR for virtual RMA mode */
1904 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1905 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1906 		lpcr &= LPCR_PECE | LPCR_LPES;
1907 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1908 			LPCR_VPM0 | LPCR_VPM1;
1909 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1910 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1911 	}
1912 	kvm->arch.lpcr = lpcr;
1913 
1914 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1915 	spin_lock_init(&kvm->arch.slot_phys_lock);
1916 
1917 	/*
1918 	 * Don't allow secondary CPU threads to come online
1919 	 * while any KVM VMs exist.
1920 	 */
1921 	inhibit_secondary_onlining();
1922 
1923 	return 0;
1924 }
1925 
1926 void kvmppc_core_destroy_vm(struct kvm *kvm)
1927 {
1928 	uninhibit_secondary_onlining();
1929 
1930 	if (kvm->arch.rma) {
1931 		kvm_release_rma(kvm->arch.rma);
1932 		kvm->arch.rma = NULL;
1933 	}
1934 
1935 	kvmppc_rtas_tokens_free(kvm);
1936 
1937 	kvmppc_free_hpt(kvm);
1938 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1939 }
1940 
1941 /* These are stubs for now */
1942 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1943 {
1944 }
1945 
1946 /* We don't need to emulate any privileged instructions or dcbz */
1947 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1948                            unsigned int inst, int *advance)
1949 {
1950 	return EMULATE_FAIL;
1951 }
1952 
1953 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1954 {
1955 	return EMULATE_FAIL;
1956 }
1957 
1958 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1959 {
1960 	return EMULATE_FAIL;
1961 }
1962 
1963 static int kvmppc_book3s_hv_init(void)
1964 {
1965 	int r;
1966 
1967 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1968 
1969 	if (r)
1970 		return r;
1971 
1972 	r = kvmppc_mmu_hv_init();
1973 
1974 	return r;
1975 }
1976 
1977 static void kvmppc_book3s_hv_exit(void)
1978 {
1979 	kvm_exit();
1980 }
1981 
1982 module_init(kvmppc_book3s_hv_init);
1983 module_exit(kvmppc_book3s_hv_exit);
1984