xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 2359ccdd)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <asm/tlbflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 
77 #include "book3s.h"
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81 
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85 
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90 
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL	(~(u64)0)
93 
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95 
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102 
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106 
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109 	.set = param_set_int,
110 	.get = param_get_int,
111 };
112 
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115 
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119 
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122 
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125 
126 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
127 		int *ip)
128 {
129 	int i = *ip;
130 	struct kvm_vcpu *vcpu;
131 
132 	while (++i < MAX_SMT_THREADS) {
133 		vcpu = READ_ONCE(vc->runnable_threads[i]);
134 		if (vcpu) {
135 			*ip = i;
136 			return vcpu;
137 		}
138 	}
139 	return NULL;
140 }
141 
142 /* Used to traverse the list of runnable threads for a given vcore */
143 #define for_each_runnable_thread(i, vcpu, vc) \
144 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
145 
146 static bool kvmppc_ipi_thread(int cpu)
147 {
148 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
149 
150 	/* On POWER9 we can use msgsnd to IPI any cpu */
151 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
152 		msg |= get_hard_smp_processor_id(cpu);
153 		smp_mb();
154 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
155 		return true;
156 	}
157 
158 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
159 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
160 		preempt_disable();
161 		if (cpu_first_thread_sibling(cpu) ==
162 		    cpu_first_thread_sibling(smp_processor_id())) {
163 			msg |= cpu_thread_in_core(cpu);
164 			smp_mb();
165 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
166 			preempt_enable();
167 			return true;
168 		}
169 		preempt_enable();
170 	}
171 
172 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
173 	if (cpu >= 0 && cpu < nr_cpu_ids) {
174 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
175 			xics_wake_cpu(cpu);
176 			return true;
177 		}
178 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
179 		return true;
180 	}
181 #endif
182 
183 	return false;
184 }
185 
186 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
187 {
188 	int cpu;
189 	struct swait_queue_head *wqp;
190 
191 	wqp = kvm_arch_vcpu_wq(vcpu);
192 	if (swq_has_sleeper(wqp)) {
193 		swake_up(wqp);
194 		++vcpu->stat.halt_wakeup;
195 	}
196 
197 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
198 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
199 		return;
200 
201 	/* CPU points to the first thread of the core */
202 	cpu = vcpu->cpu;
203 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
204 		smp_send_reschedule(cpu);
205 }
206 
207 /*
208  * We use the vcpu_load/put functions to measure stolen time.
209  * Stolen time is counted as time when either the vcpu is able to
210  * run as part of a virtual core, but the task running the vcore
211  * is preempted or sleeping, or when the vcpu needs something done
212  * in the kernel by the task running the vcpu, but that task is
213  * preempted or sleeping.  Those two things have to be counted
214  * separately, since one of the vcpu tasks will take on the job
215  * of running the core, and the other vcpu tasks in the vcore will
216  * sleep waiting for it to do that, but that sleep shouldn't count
217  * as stolen time.
218  *
219  * Hence we accumulate stolen time when the vcpu can run as part of
220  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
221  * needs its task to do other things in the kernel (for example,
222  * service a page fault) in busy_stolen.  We don't accumulate
223  * stolen time for a vcore when it is inactive, or for a vcpu
224  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
225  * a misnomer; it means that the vcpu task is not executing in
226  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
227  * the kernel.  We don't have any way of dividing up that time
228  * between time that the vcpu is genuinely stopped, time that
229  * the task is actively working on behalf of the vcpu, and time
230  * that the task is preempted, so we don't count any of it as
231  * stolen.
232  *
233  * Updates to busy_stolen are protected by arch.tbacct_lock;
234  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
235  * lock.  The stolen times are measured in units of timebase ticks.
236  * (Note that the != TB_NIL checks below are purely defensive;
237  * they should never fail.)
238  */
239 
240 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
241 {
242 	unsigned long flags;
243 
244 	spin_lock_irqsave(&vc->stoltb_lock, flags);
245 	vc->preempt_tb = mftb();
246 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
247 }
248 
249 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
250 {
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&vc->stoltb_lock, flags);
254 	if (vc->preempt_tb != TB_NIL) {
255 		vc->stolen_tb += mftb() - vc->preempt_tb;
256 		vc->preempt_tb = TB_NIL;
257 	}
258 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
259 }
260 
261 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
262 {
263 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 	unsigned long flags;
265 
266 	/*
267 	 * We can test vc->runner without taking the vcore lock,
268 	 * because only this task ever sets vc->runner to this
269 	 * vcpu, and once it is set to this vcpu, only this task
270 	 * ever sets it to NULL.
271 	 */
272 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
273 		kvmppc_core_end_stolen(vc);
274 
275 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
276 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
277 	    vcpu->arch.busy_preempt != TB_NIL) {
278 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
279 		vcpu->arch.busy_preempt = TB_NIL;
280 	}
281 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
282 }
283 
284 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
285 {
286 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
287 	unsigned long flags;
288 
289 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
290 		kvmppc_core_start_stolen(vc);
291 
292 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
293 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
294 		vcpu->arch.busy_preempt = mftb();
295 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
296 }
297 
298 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
299 {
300 	/*
301 	 * Check for illegal transactional state bit combination
302 	 * and if we find it, force the TS field to a safe state.
303 	 */
304 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
305 		msr &= ~MSR_TS_MASK;
306 	vcpu->arch.shregs.msr = msr;
307 	kvmppc_end_cede(vcpu);
308 }
309 
310 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
311 {
312 	vcpu->arch.pvr = pvr;
313 }
314 
315 /* Dummy value used in computing PCR value below */
316 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
317 
318 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
319 {
320 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
321 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
322 
323 	/* We can (emulate) our own architecture version and anything older */
324 	if (cpu_has_feature(CPU_FTR_ARCH_300))
325 		host_pcr_bit = PCR_ARCH_300;
326 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
327 		host_pcr_bit = PCR_ARCH_207;
328 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
329 		host_pcr_bit = PCR_ARCH_206;
330 	else
331 		host_pcr_bit = PCR_ARCH_205;
332 
333 	/* Determine lowest PCR bit needed to run guest in given PVR level */
334 	guest_pcr_bit = host_pcr_bit;
335 	if (arch_compat) {
336 		switch (arch_compat) {
337 		case PVR_ARCH_205:
338 			guest_pcr_bit = PCR_ARCH_205;
339 			break;
340 		case PVR_ARCH_206:
341 		case PVR_ARCH_206p:
342 			guest_pcr_bit = PCR_ARCH_206;
343 			break;
344 		case PVR_ARCH_207:
345 			guest_pcr_bit = PCR_ARCH_207;
346 			break;
347 		case PVR_ARCH_300:
348 			guest_pcr_bit = PCR_ARCH_300;
349 			break;
350 		default:
351 			return -EINVAL;
352 		}
353 	}
354 
355 	/* Check requested PCR bits don't exceed our capabilities */
356 	if (guest_pcr_bit > host_pcr_bit)
357 		return -EINVAL;
358 
359 	spin_lock(&vc->lock);
360 	vc->arch_compat = arch_compat;
361 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
362 	vc->pcr = host_pcr_bit - guest_pcr_bit;
363 	spin_unlock(&vc->lock);
364 
365 	return 0;
366 }
367 
368 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
369 {
370 	int r;
371 
372 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
373 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
374 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
375 	for (r = 0; r < 16; ++r)
376 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
377 		       r, kvmppc_get_gpr(vcpu, r),
378 		       r+16, kvmppc_get_gpr(vcpu, r+16));
379 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
380 	       vcpu->arch.ctr, vcpu->arch.lr);
381 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
382 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
383 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
384 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
385 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
386 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
387 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
388 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
389 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
390 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
391 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
392 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
393 	for (r = 0; r < vcpu->arch.slb_max; ++r)
394 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
395 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
396 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
397 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
398 	       vcpu->arch.last_inst);
399 }
400 
401 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
402 {
403 	struct kvm_vcpu *ret;
404 
405 	mutex_lock(&kvm->lock);
406 	ret = kvm_get_vcpu_by_id(kvm, id);
407 	mutex_unlock(&kvm->lock);
408 	return ret;
409 }
410 
411 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
412 {
413 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
414 	vpa->yield_count = cpu_to_be32(1);
415 }
416 
417 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
418 		   unsigned long addr, unsigned long len)
419 {
420 	/* check address is cacheline aligned */
421 	if (addr & (L1_CACHE_BYTES - 1))
422 		return -EINVAL;
423 	spin_lock(&vcpu->arch.vpa_update_lock);
424 	if (v->next_gpa != addr || v->len != len) {
425 		v->next_gpa = addr;
426 		v->len = addr ? len : 0;
427 		v->update_pending = 1;
428 	}
429 	spin_unlock(&vcpu->arch.vpa_update_lock);
430 	return 0;
431 }
432 
433 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
434 struct reg_vpa {
435 	u32 dummy;
436 	union {
437 		__be16 hword;
438 		__be32 word;
439 	} length;
440 };
441 
442 static int vpa_is_registered(struct kvmppc_vpa *vpap)
443 {
444 	if (vpap->update_pending)
445 		return vpap->next_gpa != 0;
446 	return vpap->pinned_addr != NULL;
447 }
448 
449 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
450 				       unsigned long flags,
451 				       unsigned long vcpuid, unsigned long vpa)
452 {
453 	struct kvm *kvm = vcpu->kvm;
454 	unsigned long len, nb;
455 	void *va;
456 	struct kvm_vcpu *tvcpu;
457 	int err;
458 	int subfunc;
459 	struct kvmppc_vpa *vpap;
460 
461 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
462 	if (!tvcpu)
463 		return H_PARAMETER;
464 
465 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
466 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
467 	    subfunc == H_VPA_REG_SLB) {
468 		/* Registering new area - address must be cache-line aligned */
469 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
470 			return H_PARAMETER;
471 
472 		/* convert logical addr to kernel addr and read length */
473 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
474 		if (va == NULL)
475 			return H_PARAMETER;
476 		if (subfunc == H_VPA_REG_VPA)
477 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
478 		else
479 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
480 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
481 
482 		/* Check length */
483 		if (len > nb || len < sizeof(struct reg_vpa))
484 			return H_PARAMETER;
485 	} else {
486 		vpa = 0;
487 		len = 0;
488 	}
489 
490 	err = H_PARAMETER;
491 	vpap = NULL;
492 	spin_lock(&tvcpu->arch.vpa_update_lock);
493 
494 	switch (subfunc) {
495 	case H_VPA_REG_VPA:		/* register VPA */
496 		/*
497 		 * The size of our lppaca is 1kB because of the way we align
498 		 * it for the guest to avoid crossing a 4kB boundary. We only
499 		 * use 640 bytes of the structure though, so we should accept
500 		 * clients that set a size of 640.
501 		 */
502 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
503 		if (len < sizeof(struct lppaca))
504 			break;
505 		vpap = &tvcpu->arch.vpa;
506 		err = 0;
507 		break;
508 
509 	case H_VPA_REG_DTL:		/* register DTL */
510 		if (len < sizeof(struct dtl_entry))
511 			break;
512 		len -= len % sizeof(struct dtl_entry);
513 
514 		/* Check that they have previously registered a VPA */
515 		err = H_RESOURCE;
516 		if (!vpa_is_registered(&tvcpu->arch.vpa))
517 			break;
518 
519 		vpap = &tvcpu->arch.dtl;
520 		err = 0;
521 		break;
522 
523 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
524 		/* Check that they have previously registered a VPA */
525 		err = H_RESOURCE;
526 		if (!vpa_is_registered(&tvcpu->arch.vpa))
527 			break;
528 
529 		vpap = &tvcpu->arch.slb_shadow;
530 		err = 0;
531 		break;
532 
533 	case H_VPA_DEREG_VPA:		/* deregister VPA */
534 		/* Check they don't still have a DTL or SLB buf registered */
535 		err = H_RESOURCE;
536 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
537 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
538 			break;
539 
540 		vpap = &tvcpu->arch.vpa;
541 		err = 0;
542 		break;
543 
544 	case H_VPA_DEREG_DTL:		/* deregister DTL */
545 		vpap = &tvcpu->arch.dtl;
546 		err = 0;
547 		break;
548 
549 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
550 		vpap = &tvcpu->arch.slb_shadow;
551 		err = 0;
552 		break;
553 	}
554 
555 	if (vpap) {
556 		vpap->next_gpa = vpa;
557 		vpap->len = len;
558 		vpap->update_pending = 1;
559 	}
560 
561 	spin_unlock(&tvcpu->arch.vpa_update_lock);
562 
563 	return err;
564 }
565 
566 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
567 {
568 	struct kvm *kvm = vcpu->kvm;
569 	void *va;
570 	unsigned long nb;
571 	unsigned long gpa;
572 
573 	/*
574 	 * We need to pin the page pointed to by vpap->next_gpa,
575 	 * but we can't call kvmppc_pin_guest_page under the lock
576 	 * as it does get_user_pages() and down_read().  So we
577 	 * have to drop the lock, pin the page, then get the lock
578 	 * again and check that a new area didn't get registered
579 	 * in the meantime.
580 	 */
581 	for (;;) {
582 		gpa = vpap->next_gpa;
583 		spin_unlock(&vcpu->arch.vpa_update_lock);
584 		va = NULL;
585 		nb = 0;
586 		if (gpa)
587 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
588 		spin_lock(&vcpu->arch.vpa_update_lock);
589 		if (gpa == vpap->next_gpa)
590 			break;
591 		/* sigh... unpin that one and try again */
592 		if (va)
593 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
594 	}
595 
596 	vpap->update_pending = 0;
597 	if (va && nb < vpap->len) {
598 		/*
599 		 * If it's now too short, it must be that userspace
600 		 * has changed the mappings underlying guest memory,
601 		 * so unregister the region.
602 		 */
603 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
604 		va = NULL;
605 	}
606 	if (vpap->pinned_addr)
607 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
608 					vpap->dirty);
609 	vpap->gpa = gpa;
610 	vpap->pinned_addr = va;
611 	vpap->dirty = false;
612 	if (va)
613 		vpap->pinned_end = va + vpap->len;
614 }
615 
616 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
617 {
618 	if (!(vcpu->arch.vpa.update_pending ||
619 	      vcpu->arch.slb_shadow.update_pending ||
620 	      vcpu->arch.dtl.update_pending))
621 		return;
622 
623 	spin_lock(&vcpu->arch.vpa_update_lock);
624 	if (vcpu->arch.vpa.update_pending) {
625 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
626 		if (vcpu->arch.vpa.pinned_addr)
627 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
628 	}
629 	if (vcpu->arch.dtl.update_pending) {
630 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
631 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
632 		vcpu->arch.dtl_index = 0;
633 	}
634 	if (vcpu->arch.slb_shadow.update_pending)
635 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
636 	spin_unlock(&vcpu->arch.vpa_update_lock);
637 }
638 
639 /*
640  * Return the accumulated stolen time for the vcore up until `now'.
641  * The caller should hold the vcore lock.
642  */
643 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
644 {
645 	u64 p;
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&vc->stoltb_lock, flags);
649 	p = vc->stolen_tb;
650 	if (vc->vcore_state != VCORE_INACTIVE &&
651 	    vc->preempt_tb != TB_NIL)
652 		p += now - vc->preempt_tb;
653 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
654 	return p;
655 }
656 
657 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
658 				    struct kvmppc_vcore *vc)
659 {
660 	struct dtl_entry *dt;
661 	struct lppaca *vpa;
662 	unsigned long stolen;
663 	unsigned long core_stolen;
664 	u64 now;
665 	unsigned long flags;
666 
667 	dt = vcpu->arch.dtl_ptr;
668 	vpa = vcpu->arch.vpa.pinned_addr;
669 	now = mftb();
670 	core_stolen = vcore_stolen_time(vc, now);
671 	stolen = core_stolen - vcpu->arch.stolen_logged;
672 	vcpu->arch.stolen_logged = core_stolen;
673 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
674 	stolen += vcpu->arch.busy_stolen;
675 	vcpu->arch.busy_stolen = 0;
676 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
677 	if (!dt || !vpa)
678 		return;
679 	memset(dt, 0, sizeof(struct dtl_entry));
680 	dt->dispatch_reason = 7;
681 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
682 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
683 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
684 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
685 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
686 	++dt;
687 	if (dt == vcpu->arch.dtl.pinned_end)
688 		dt = vcpu->arch.dtl.pinned_addr;
689 	vcpu->arch.dtl_ptr = dt;
690 	/* order writing *dt vs. writing vpa->dtl_idx */
691 	smp_wmb();
692 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
693 	vcpu->arch.dtl.dirty = true;
694 }
695 
696 /* See if there is a doorbell interrupt pending for a vcpu */
697 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
698 {
699 	int thr;
700 	struct kvmppc_vcore *vc;
701 
702 	if (vcpu->arch.doorbell_request)
703 		return true;
704 	/*
705 	 * Ensure that the read of vcore->dpdes comes after the read
706 	 * of vcpu->doorbell_request.  This barrier matches the
707 	 * lwsync in book3s_hv_rmhandlers.S just before the
708 	 * fast_guest_return label.
709 	 */
710 	smp_rmb();
711 	vc = vcpu->arch.vcore;
712 	thr = vcpu->vcpu_id - vc->first_vcpuid;
713 	return !!(vc->dpdes & (1 << thr));
714 }
715 
716 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
717 {
718 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
719 		return true;
720 	if ((!vcpu->arch.vcore->arch_compat) &&
721 	    cpu_has_feature(CPU_FTR_ARCH_207S))
722 		return true;
723 	return false;
724 }
725 
726 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
727 			     unsigned long resource, unsigned long value1,
728 			     unsigned long value2)
729 {
730 	switch (resource) {
731 	case H_SET_MODE_RESOURCE_SET_CIABR:
732 		if (!kvmppc_power8_compatible(vcpu))
733 			return H_P2;
734 		if (value2)
735 			return H_P4;
736 		if (mflags)
737 			return H_UNSUPPORTED_FLAG_START;
738 		/* Guests can't breakpoint the hypervisor */
739 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
740 			return H_P3;
741 		vcpu->arch.ciabr  = value1;
742 		return H_SUCCESS;
743 	case H_SET_MODE_RESOURCE_SET_DAWR:
744 		if (!kvmppc_power8_compatible(vcpu))
745 			return H_P2;
746 		if (!ppc_breakpoint_available())
747 			return H_P2;
748 		if (mflags)
749 			return H_UNSUPPORTED_FLAG_START;
750 		if (value2 & DABRX_HYP)
751 			return H_P4;
752 		vcpu->arch.dawr  = value1;
753 		vcpu->arch.dawrx = value2;
754 		return H_SUCCESS;
755 	default:
756 		return H_TOO_HARD;
757 	}
758 }
759 
760 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
761 {
762 	struct kvmppc_vcore *vcore = target->arch.vcore;
763 
764 	/*
765 	 * We expect to have been called by the real mode handler
766 	 * (kvmppc_rm_h_confer()) which would have directly returned
767 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
768 	 * have useful work to do and should not confer) so we don't
769 	 * recheck that here.
770 	 */
771 
772 	spin_lock(&vcore->lock);
773 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
774 	    vcore->vcore_state != VCORE_INACTIVE &&
775 	    vcore->runner)
776 		target = vcore->runner;
777 	spin_unlock(&vcore->lock);
778 
779 	return kvm_vcpu_yield_to(target);
780 }
781 
782 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
783 {
784 	int yield_count = 0;
785 	struct lppaca *lppaca;
786 
787 	spin_lock(&vcpu->arch.vpa_update_lock);
788 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
789 	if (lppaca)
790 		yield_count = be32_to_cpu(lppaca->yield_count);
791 	spin_unlock(&vcpu->arch.vpa_update_lock);
792 	return yield_count;
793 }
794 
795 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
796 {
797 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
798 	unsigned long target, ret = H_SUCCESS;
799 	int yield_count;
800 	struct kvm_vcpu *tvcpu;
801 	int idx, rc;
802 
803 	if (req <= MAX_HCALL_OPCODE &&
804 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
805 		return RESUME_HOST;
806 
807 	switch (req) {
808 	case H_CEDE:
809 		break;
810 	case H_PROD:
811 		target = kvmppc_get_gpr(vcpu, 4);
812 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
813 		if (!tvcpu) {
814 			ret = H_PARAMETER;
815 			break;
816 		}
817 		tvcpu->arch.prodded = 1;
818 		smp_mb();
819 		if (tvcpu->arch.ceded)
820 			kvmppc_fast_vcpu_kick_hv(tvcpu);
821 		break;
822 	case H_CONFER:
823 		target = kvmppc_get_gpr(vcpu, 4);
824 		if (target == -1)
825 			break;
826 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
827 		if (!tvcpu) {
828 			ret = H_PARAMETER;
829 			break;
830 		}
831 		yield_count = kvmppc_get_gpr(vcpu, 5);
832 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
833 			break;
834 		kvm_arch_vcpu_yield_to(tvcpu);
835 		break;
836 	case H_REGISTER_VPA:
837 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
838 					kvmppc_get_gpr(vcpu, 5),
839 					kvmppc_get_gpr(vcpu, 6));
840 		break;
841 	case H_RTAS:
842 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
843 			return RESUME_HOST;
844 
845 		idx = srcu_read_lock(&vcpu->kvm->srcu);
846 		rc = kvmppc_rtas_hcall(vcpu);
847 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
848 
849 		if (rc == -ENOENT)
850 			return RESUME_HOST;
851 		else if (rc == 0)
852 			break;
853 
854 		/* Send the error out to userspace via KVM_RUN */
855 		return rc;
856 	case H_LOGICAL_CI_LOAD:
857 		ret = kvmppc_h_logical_ci_load(vcpu);
858 		if (ret == H_TOO_HARD)
859 			return RESUME_HOST;
860 		break;
861 	case H_LOGICAL_CI_STORE:
862 		ret = kvmppc_h_logical_ci_store(vcpu);
863 		if (ret == H_TOO_HARD)
864 			return RESUME_HOST;
865 		break;
866 	case H_SET_MODE:
867 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
868 					kvmppc_get_gpr(vcpu, 5),
869 					kvmppc_get_gpr(vcpu, 6),
870 					kvmppc_get_gpr(vcpu, 7));
871 		if (ret == H_TOO_HARD)
872 			return RESUME_HOST;
873 		break;
874 	case H_XIRR:
875 	case H_CPPR:
876 	case H_EOI:
877 	case H_IPI:
878 	case H_IPOLL:
879 	case H_XIRR_X:
880 		if (kvmppc_xics_enabled(vcpu)) {
881 			if (xive_enabled()) {
882 				ret = H_NOT_AVAILABLE;
883 				return RESUME_GUEST;
884 			}
885 			ret = kvmppc_xics_hcall(vcpu, req);
886 			break;
887 		}
888 		return RESUME_HOST;
889 	case H_PUT_TCE:
890 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
891 						kvmppc_get_gpr(vcpu, 5),
892 						kvmppc_get_gpr(vcpu, 6));
893 		if (ret == H_TOO_HARD)
894 			return RESUME_HOST;
895 		break;
896 	case H_PUT_TCE_INDIRECT:
897 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
898 						kvmppc_get_gpr(vcpu, 5),
899 						kvmppc_get_gpr(vcpu, 6),
900 						kvmppc_get_gpr(vcpu, 7));
901 		if (ret == H_TOO_HARD)
902 			return RESUME_HOST;
903 		break;
904 	case H_STUFF_TCE:
905 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
906 						kvmppc_get_gpr(vcpu, 5),
907 						kvmppc_get_gpr(vcpu, 6),
908 						kvmppc_get_gpr(vcpu, 7));
909 		if (ret == H_TOO_HARD)
910 			return RESUME_HOST;
911 		break;
912 	default:
913 		return RESUME_HOST;
914 	}
915 	kvmppc_set_gpr(vcpu, 3, ret);
916 	vcpu->arch.hcall_needed = 0;
917 	return RESUME_GUEST;
918 }
919 
920 static int kvmppc_hcall_impl_hv(unsigned long cmd)
921 {
922 	switch (cmd) {
923 	case H_CEDE:
924 	case H_PROD:
925 	case H_CONFER:
926 	case H_REGISTER_VPA:
927 	case H_SET_MODE:
928 	case H_LOGICAL_CI_LOAD:
929 	case H_LOGICAL_CI_STORE:
930 #ifdef CONFIG_KVM_XICS
931 	case H_XIRR:
932 	case H_CPPR:
933 	case H_EOI:
934 	case H_IPI:
935 	case H_IPOLL:
936 	case H_XIRR_X:
937 #endif
938 		return 1;
939 	}
940 
941 	/* See if it's in the real-mode table */
942 	return kvmppc_hcall_impl_hv_realmode(cmd);
943 }
944 
945 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
946 					struct kvm_vcpu *vcpu)
947 {
948 	u32 last_inst;
949 
950 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
951 					EMULATE_DONE) {
952 		/*
953 		 * Fetch failed, so return to guest and
954 		 * try executing it again.
955 		 */
956 		return RESUME_GUEST;
957 	}
958 
959 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
960 		run->exit_reason = KVM_EXIT_DEBUG;
961 		run->debug.arch.address = kvmppc_get_pc(vcpu);
962 		return RESUME_HOST;
963 	} else {
964 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
965 		return RESUME_GUEST;
966 	}
967 }
968 
969 static void do_nothing(void *x)
970 {
971 }
972 
973 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
974 {
975 	int thr, cpu, pcpu, nthreads;
976 	struct kvm_vcpu *v;
977 	unsigned long dpdes;
978 
979 	nthreads = vcpu->kvm->arch.emul_smt_mode;
980 	dpdes = 0;
981 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
982 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
983 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
984 		if (!v)
985 			continue;
986 		/*
987 		 * If the vcpu is currently running on a physical cpu thread,
988 		 * interrupt it in order to pull it out of the guest briefly,
989 		 * which will update its vcore->dpdes value.
990 		 */
991 		pcpu = READ_ONCE(v->cpu);
992 		if (pcpu >= 0)
993 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
994 		if (kvmppc_doorbell_pending(v))
995 			dpdes |= 1 << thr;
996 	}
997 	return dpdes;
998 }
999 
1000 /*
1001  * On POWER9, emulate doorbell-related instructions in order to
1002  * give the guest the illusion of running on a multi-threaded core.
1003  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1004  * and mfspr DPDES.
1005  */
1006 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1007 {
1008 	u32 inst, rb, thr;
1009 	unsigned long arg;
1010 	struct kvm *kvm = vcpu->kvm;
1011 	struct kvm_vcpu *tvcpu;
1012 
1013 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1014 		return RESUME_GUEST;
1015 	if (get_op(inst) != 31)
1016 		return EMULATE_FAIL;
1017 	rb = get_rb(inst);
1018 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1019 	switch (get_xop(inst)) {
1020 	case OP_31_XOP_MSGSNDP:
1021 		arg = kvmppc_get_gpr(vcpu, rb);
1022 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1023 			break;
1024 		arg &= 0x3f;
1025 		if (arg >= kvm->arch.emul_smt_mode)
1026 			break;
1027 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1028 		if (!tvcpu)
1029 			break;
1030 		if (!tvcpu->arch.doorbell_request) {
1031 			tvcpu->arch.doorbell_request = 1;
1032 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1033 		}
1034 		break;
1035 	case OP_31_XOP_MSGCLRP:
1036 		arg = kvmppc_get_gpr(vcpu, rb);
1037 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1038 			break;
1039 		vcpu->arch.vcore->dpdes = 0;
1040 		vcpu->arch.doorbell_request = 0;
1041 		break;
1042 	case OP_31_XOP_MFSPR:
1043 		switch (get_sprn(inst)) {
1044 		case SPRN_TIR:
1045 			arg = thr;
1046 			break;
1047 		case SPRN_DPDES:
1048 			arg = kvmppc_read_dpdes(vcpu);
1049 			break;
1050 		default:
1051 			return EMULATE_FAIL;
1052 		}
1053 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1054 		break;
1055 	default:
1056 		return EMULATE_FAIL;
1057 	}
1058 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1059 	return RESUME_GUEST;
1060 }
1061 
1062 /* Called with vcpu->arch.vcore->lock held */
1063 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1064 				 struct task_struct *tsk)
1065 {
1066 	int r = RESUME_HOST;
1067 
1068 	vcpu->stat.sum_exits++;
1069 
1070 	/*
1071 	 * This can happen if an interrupt occurs in the last stages
1072 	 * of guest entry or the first stages of guest exit (i.e. after
1073 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1074 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1075 	 * That can happen due to a bug, or due to a machine check
1076 	 * occurring at just the wrong time.
1077 	 */
1078 	if (vcpu->arch.shregs.msr & MSR_HV) {
1079 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1080 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1081 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1082 			vcpu->arch.shregs.msr);
1083 		kvmppc_dump_regs(vcpu);
1084 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1085 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1086 		return RESUME_HOST;
1087 	}
1088 	run->exit_reason = KVM_EXIT_UNKNOWN;
1089 	run->ready_for_interrupt_injection = 1;
1090 	switch (vcpu->arch.trap) {
1091 	/* We're good on these - the host merely wanted to get our attention */
1092 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1093 		vcpu->stat.dec_exits++;
1094 		r = RESUME_GUEST;
1095 		break;
1096 	case BOOK3S_INTERRUPT_EXTERNAL:
1097 	case BOOK3S_INTERRUPT_H_DOORBELL:
1098 	case BOOK3S_INTERRUPT_H_VIRT:
1099 		vcpu->stat.ext_intr_exits++;
1100 		r = RESUME_GUEST;
1101 		break;
1102 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1103 	case BOOK3S_INTERRUPT_HMI:
1104 	case BOOK3S_INTERRUPT_PERFMON:
1105 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1106 		r = RESUME_GUEST;
1107 		break;
1108 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1109 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1110 		run->exit_reason = KVM_EXIT_NMI;
1111 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1112 		/* Clear out the old NMI status from run->flags */
1113 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1114 		/* Now set the NMI status */
1115 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1116 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1117 		else
1118 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1119 
1120 		r = RESUME_HOST;
1121 		/* Print the MCE event to host console. */
1122 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1123 		break;
1124 	case BOOK3S_INTERRUPT_PROGRAM:
1125 	{
1126 		ulong flags;
1127 		/*
1128 		 * Normally program interrupts are delivered directly
1129 		 * to the guest by the hardware, but we can get here
1130 		 * as a result of a hypervisor emulation interrupt
1131 		 * (e40) getting turned into a 700 by BML RTAS.
1132 		 */
1133 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1134 		kvmppc_core_queue_program(vcpu, flags);
1135 		r = RESUME_GUEST;
1136 		break;
1137 	}
1138 	case BOOK3S_INTERRUPT_SYSCALL:
1139 	{
1140 		/* hcall - punt to userspace */
1141 		int i;
1142 
1143 		/* hypercall with MSR_PR has already been handled in rmode,
1144 		 * and never reaches here.
1145 		 */
1146 
1147 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1148 		for (i = 0; i < 9; ++i)
1149 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1150 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1151 		vcpu->arch.hcall_needed = 1;
1152 		r = RESUME_HOST;
1153 		break;
1154 	}
1155 	/*
1156 	 * We get these next two if the guest accesses a page which it thinks
1157 	 * it has mapped but which is not actually present, either because
1158 	 * it is for an emulated I/O device or because the corresonding
1159 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1160 	 * have been handled already.
1161 	 */
1162 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1163 		r = RESUME_PAGE_FAULT;
1164 		break;
1165 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1166 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1167 		vcpu->arch.fault_dsisr = 0;
1168 		r = RESUME_PAGE_FAULT;
1169 		break;
1170 	/*
1171 	 * This occurs if the guest executes an illegal instruction.
1172 	 * If the guest debug is disabled, generate a program interrupt
1173 	 * to the guest. If guest debug is enabled, we need to check
1174 	 * whether the instruction is a software breakpoint instruction.
1175 	 * Accordingly return to Guest or Host.
1176 	 */
1177 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1178 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1179 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1180 				swab32(vcpu->arch.emul_inst) :
1181 				vcpu->arch.emul_inst;
1182 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1183 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1184 			spin_unlock(&vcpu->arch.vcore->lock);
1185 			r = kvmppc_emulate_debug_inst(run, vcpu);
1186 			spin_lock(&vcpu->arch.vcore->lock);
1187 		} else {
1188 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1189 			r = RESUME_GUEST;
1190 		}
1191 		break;
1192 	/*
1193 	 * This occurs if the guest (kernel or userspace), does something that
1194 	 * is prohibited by HFSCR.
1195 	 * On POWER9, this could be a doorbell instruction that we need
1196 	 * to emulate.
1197 	 * Otherwise, we just generate a program interrupt to the guest.
1198 	 */
1199 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1200 		r = EMULATE_FAIL;
1201 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1202 		    cpu_has_feature(CPU_FTR_ARCH_300)) {
1203 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1204 			spin_unlock(&vcpu->arch.vcore->lock);
1205 			r = kvmppc_emulate_doorbell_instr(vcpu);
1206 			spin_lock(&vcpu->arch.vcore->lock);
1207 		}
1208 		if (r == EMULATE_FAIL) {
1209 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1210 			r = RESUME_GUEST;
1211 		}
1212 		break;
1213 
1214 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1215 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1216 		/*
1217 		 * This occurs for various TM-related instructions that
1218 		 * we need to emulate on POWER9 DD2.2.  We have already
1219 		 * handled the cases where the guest was in real-suspend
1220 		 * mode and was transitioning to transactional state.
1221 		 */
1222 		r = kvmhv_p9_tm_emulation(vcpu);
1223 		break;
1224 #endif
1225 
1226 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1227 		r = RESUME_PASSTHROUGH;
1228 		break;
1229 	default:
1230 		kvmppc_dump_regs(vcpu);
1231 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1232 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1233 			vcpu->arch.shregs.msr);
1234 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1235 		r = RESUME_HOST;
1236 		break;
1237 	}
1238 
1239 	return r;
1240 }
1241 
1242 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1243 					    struct kvm_sregs *sregs)
1244 {
1245 	int i;
1246 
1247 	memset(sregs, 0, sizeof(struct kvm_sregs));
1248 	sregs->pvr = vcpu->arch.pvr;
1249 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1250 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1251 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1258 					    struct kvm_sregs *sregs)
1259 {
1260 	int i, j;
1261 
1262 	/* Only accept the same PVR as the host's, since we can't spoof it */
1263 	if (sregs->pvr != vcpu->arch.pvr)
1264 		return -EINVAL;
1265 
1266 	j = 0;
1267 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1268 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1269 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1270 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1271 			++j;
1272 		}
1273 	}
1274 	vcpu->arch.slb_max = j;
1275 
1276 	return 0;
1277 }
1278 
1279 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1280 		bool preserve_top32)
1281 {
1282 	struct kvm *kvm = vcpu->kvm;
1283 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1284 	u64 mask;
1285 
1286 	mutex_lock(&kvm->lock);
1287 	spin_lock(&vc->lock);
1288 	/*
1289 	 * If ILE (interrupt little-endian) has changed, update the
1290 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1291 	 */
1292 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1293 		struct kvm_vcpu *vcpu;
1294 		int i;
1295 
1296 		kvm_for_each_vcpu(i, vcpu, kvm) {
1297 			if (vcpu->arch.vcore != vc)
1298 				continue;
1299 			if (new_lpcr & LPCR_ILE)
1300 				vcpu->arch.intr_msr |= MSR_LE;
1301 			else
1302 				vcpu->arch.intr_msr &= ~MSR_LE;
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Userspace can only modify DPFD (default prefetch depth),
1308 	 * ILE (interrupt little-endian) and TC (translation control).
1309 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1310 	 */
1311 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1312 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1313 		mask |= LPCR_AIL;
1314 	/*
1315 	 * On POWER9, allow userspace to enable large decrementer for the
1316 	 * guest, whether or not the host has it enabled.
1317 	 */
1318 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1319 		mask |= LPCR_LD;
1320 
1321 	/* Broken 32-bit version of LPCR must not clear top bits */
1322 	if (preserve_top32)
1323 		mask &= 0xFFFFFFFF;
1324 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1325 	spin_unlock(&vc->lock);
1326 	mutex_unlock(&kvm->lock);
1327 }
1328 
1329 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1330 				 union kvmppc_one_reg *val)
1331 {
1332 	int r = 0;
1333 	long int i;
1334 
1335 	switch (id) {
1336 	case KVM_REG_PPC_DEBUG_INST:
1337 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1338 		break;
1339 	case KVM_REG_PPC_HIOR:
1340 		*val = get_reg_val(id, 0);
1341 		break;
1342 	case KVM_REG_PPC_DABR:
1343 		*val = get_reg_val(id, vcpu->arch.dabr);
1344 		break;
1345 	case KVM_REG_PPC_DABRX:
1346 		*val = get_reg_val(id, vcpu->arch.dabrx);
1347 		break;
1348 	case KVM_REG_PPC_DSCR:
1349 		*val = get_reg_val(id, vcpu->arch.dscr);
1350 		break;
1351 	case KVM_REG_PPC_PURR:
1352 		*val = get_reg_val(id, vcpu->arch.purr);
1353 		break;
1354 	case KVM_REG_PPC_SPURR:
1355 		*val = get_reg_val(id, vcpu->arch.spurr);
1356 		break;
1357 	case KVM_REG_PPC_AMR:
1358 		*val = get_reg_val(id, vcpu->arch.amr);
1359 		break;
1360 	case KVM_REG_PPC_UAMOR:
1361 		*val = get_reg_val(id, vcpu->arch.uamor);
1362 		break;
1363 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1364 		i = id - KVM_REG_PPC_MMCR0;
1365 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1366 		break;
1367 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1368 		i = id - KVM_REG_PPC_PMC1;
1369 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1370 		break;
1371 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1372 		i = id - KVM_REG_PPC_SPMC1;
1373 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1374 		break;
1375 	case KVM_REG_PPC_SIAR:
1376 		*val = get_reg_val(id, vcpu->arch.siar);
1377 		break;
1378 	case KVM_REG_PPC_SDAR:
1379 		*val = get_reg_val(id, vcpu->arch.sdar);
1380 		break;
1381 	case KVM_REG_PPC_SIER:
1382 		*val = get_reg_val(id, vcpu->arch.sier);
1383 		break;
1384 	case KVM_REG_PPC_IAMR:
1385 		*val = get_reg_val(id, vcpu->arch.iamr);
1386 		break;
1387 	case KVM_REG_PPC_PSPB:
1388 		*val = get_reg_val(id, vcpu->arch.pspb);
1389 		break;
1390 	case KVM_REG_PPC_DPDES:
1391 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1392 		break;
1393 	case KVM_REG_PPC_VTB:
1394 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1395 		break;
1396 	case KVM_REG_PPC_DAWR:
1397 		*val = get_reg_val(id, vcpu->arch.dawr);
1398 		break;
1399 	case KVM_REG_PPC_DAWRX:
1400 		*val = get_reg_val(id, vcpu->arch.dawrx);
1401 		break;
1402 	case KVM_REG_PPC_CIABR:
1403 		*val = get_reg_val(id, vcpu->arch.ciabr);
1404 		break;
1405 	case KVM_REG_PPC_CSIGR:
1406 		*val = get_reg_val(id, vcpu->arch.csigr);
1407 		break;
1408 	case KVM_REG_PPC_TACR:
1409 		*val = get_reg_val(id, vcpu->arch.tacr);
1410 		break;
1411 	case KVM_REG_PPC_TCSCR:
1412 		*val = get_reg_val(id, vcpu->arch.tcscr);
1413 		break;
1414 	case KVM_REG_PPC_PID:
1415 		*val = get_reg_val(id, vcpu->arch.pid);
1416 		break;
1417 	case KVM_REG_PPC_ACOP:
1418 		*val = get_reg_val(id, vcpu->arch.acop);
1419 		break;
1420 	case KVM_REG_PPC_WORT:
1421 		*val = get_reg_val(id, vcpu->arch.wort);
1422 		break;
1423 	case KVM_REG_PPC_TIDR:
1424 		*val = get_reg_val(id, vcpu->arch.tid);
1425 		break;
1426 	case KVM_REG_PPC_PSSCR:
1427 		*val = get_reg_val(id, vcpu->arch.psscr);
1428 		break;
1429 	case KVM_REG_PPC_VPA_ADDR:
1430 		spin_lock(&vcpu->arch.vpa_update_lock);
1431 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1432 		spin_unlock(&vcpu->arch.vpa_update_lock);
1433 		break;
1434 	case KVM_REG_PPC_VPA_SLB:
1435 		spin_lock(&vcpu->arch.vpa_update_lock);
1436 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1437 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1438 		spin_unlock(&vcpu->arch.vpa_update_lock);
1439 		break;
1440 	case KVM_REG_PPC_VPA_DTL:
1441 		spin_lock(&vcpu->arch.vpa_update_lock);
1442 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1443 		val->vpaval.length = vcpu->arch.dtl.len;
1444 		spin_unlock(&vcpu->arch.vpa_update_lock);
1445 		break;
1446 	case KVM_REG_PPC_TB_OFFSET:
1447 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1448 		break;
1449 	case KVM_REG_PPC_LPCR:
1450 	case KVM_REG_PPC_LPCR_64:
1451 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1452 		break;
1453 	case KVM_REG_PPC_PPR:
1454 		*val = get_reg_val(id, vcpu->arch.ppr);
1455 		break;
1456 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1457 	case KVM_REG_PPC_TFHAR:
1458 		*val = get_reg_val(id, vcpu->arch.tfhar);
1459 		break;
1460 	case KVM_REG_PPC_TFIAR:
1461 		*val = get_reg_val(id, vcpu->arch.tfiar);
1462 		break;
1463 	case KVM_REG_PPC_TEXASR:
1464 		*val = get_reg_val(id, vcpu->arch.texasr);
1465 		break;
1466 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1467 		i = id - KVM_REG_PPC_TM_GPR0;
1468 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1469 		break;
1470 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1471 	{
1472 		int j;
1473 		i = id - KVM_REG_PPC_TM_VSR0;
1474 		if (i < 32)
1475 			for (j = 0; j < TS_FPRWIDTH; j++)
1476 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1477 		else {
1478 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1479 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1480 			else
1481 				r = -ENXIO;
1482 		}
1483 		break;
1484 	}
1485 	case KVM_REG_PPC_TM_CR:
1486 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1487 		break;
1488 	case KVM_REG_PPC_TM_XER:
1489 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1490 		break;
1491 	case KVM_REG_PPC_TM_LR:
1492 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1493 		break;
1494 	case KVM_REG_PPC_TM_CTR:
1495 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1496 		break;
1497 	case KVM_REG_PPC_TM_FPSCR:
1498 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1499 		break;
1500 	case KVM_REG_PPC_TM_AMR:
1501 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1502 		break;
1503 	case KVM_REG_PPC_TM_PPR:
1504 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1505 		break;
1506 	case KVM_REG_PPC_TM_VRSAVE:
1507 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1508 		break;
1509 	case KVM_REG_PPC_TM_VSCR:
1510 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1511 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1512 		else
1513 			r = -ENXIO;
1514 		break;
1515 	case KVM_REG_PPC_TM_DSCR:
1516 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1517 		break;
1518 	case KVM_REG_PPC_TM_TAR:
1519 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1520 		break;
1521 #endif
1522 	case KVM_REG_PPC_ARCH_COMPAT:
1523 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1524 		break;
1525 	case KVM_REG_PPC_DEC_EXPIRY:
1526 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1527 				   vcpu->arch.vcore->tb_offset);
1528 		break;
1529 	default:
1530 		r = -EINVAL;
1531 		break;
1532 	}
1533 
1534 	return r;
1535 }
1536 
1537 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1538 				 union kvmppc_one_reg *val)
1539 {
1540 	int r = 0;
1541 	long int i;
1542 	unsigned long addr, len;
1543 
1544 	switch (id) {
1545 	case KVM_REG_PPC_HIOR:
1546 		/* Only allow this to be set to zero */
1547 		if (set_reg_val(id, *val))
1548 			r = -EINVAL;
1549 		break;
1550 	case KVM_REG_PPC_DABR:
1551 		vcpu->arch.dabr = set_reg_val(id, *val);
1552 		break;
1553 	case KVM_REG_PPC_DABRX:
1554 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1555 		break;
1556 	case KVM_REG_PPC_DSCR:
1557 		vcpu->arch.dscr = set_reg_val(id, *val);
1558 		break;
1559 	case KVM_REG_PPC_PURR:
1560 		vcpu->arch.purr = set_reg_val(id, *val);
1561 		break;
1562 	case KVM_REG_PPC_SPURR:
1563 		vcpu->arch.spurr = set_reg_val(id, *val);
1564 		break;
1565 	case KVM_REG_PPC_AMR:
1566 		vcpu->arch.amr = set_reg_val(id, *val);
1567 		break;
1568 	case KVM_REG_PPC_UAMOR:
1569 		vcpu->arch.uamor = set_reg_val(id, *val);
1570 		break;
1571 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1572 		i = id - KVM_REG_PPC_MMCR0;
1573 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1574 		break;
1575 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1576 		i = id - KVM_REG_PPC_PMC1;
1577 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1578 		break;
1579 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1580 		i = id - KVM_REG_PPC_SPMC1;
1581 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1582 		break;
1583 	case KVM_REG_PPC_SIAR:
1584 		vcpu->arch.siar = set_reg_val(id, *val);
1585 		break;
1586 	case KVM_REG_PPC_SDAR:
1587 		vcpu->arch.sdar = set_reg_val(id, *val);
1588 		break;
1589 	case KVM_REG_PPC_SIER:
1590 		vcpu->arch.sier = set_reg_val(id, *val);
1591 		break;
1592 	case KVM_REG_PPC_IAMR:
1593 		vcpu->arch.iamr = set_reg_val(id, *val);
1594 		break;
1595 	case KVM_REG_PPC_PSPB:
1596 		vcpu->arch.pspb = set_reg_val(id, *val);
1597 		break;
1598 	case KVM_REG_PPC_DPDES:
1599 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1600 		break;
1601 	case KVM_REG_PPC_VTB:
1602 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1603 		break;
1604 	case KVM_REG_PPC_DAWR:
1605 		vcpu->arch.dawr = set_reg_val(id, *val);
1606 		break;
1607 	case KVM_REG_PPC_DAWRX:
1608 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1609 		break;
1610 	case KVM_REG_PPC_CIABR:
1611 		vcpu->arch.ciabr = set_reg_val(id, *val);
1612 		/* Don't allow setting breakpoints in hypervisor code */
1613 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1614 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1615 		break;
1616 	case KVM_REG_PPC_CSIGR:
1617 		vcpu->arch.csigr = set_reg_val(id, *val);
1618 		break;
1619 	case KVM_REG_PPC_TACR:
1620 		vcpu->arch.tacr = set_reg_val(id, *val);
1621 		break;
1622 	case KVM_REG_PPC_TCSCR:
1623 		vcpu->arch.tcscr = set_reg_val(id, *val);
1624 		break;
1625 	case KVM_REG_PPC_PID:
1626 		vcpu->arch.pid = set_reg_val(id, *val);
1627 		break;
1628 	case KVM_REG_PPC_ACOP:
1629 		vcpu->arch.acop = set_reg_val(id, *val);
1630 		break;
1631 	case KVM_REG_PPC_WORT:
1632 		vcpu->arch.wort = set_reg_val(id, *val);
1633 		break;
1634 	case KVM_REG_PPC_TIDR:
1635 		vcpu->arch.tid = set_reg_val(id, *val);
1636 		break;
1637 	case KVM_REG_PPC_PSSCR:
1638 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1639 		break;
1640 	case KVM_REG_PPC_VPA_ADDR:
1641 		addr = set_reg_val(id, *val);
1642 		r = -EINVAL;
1643 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1644 			      vcpu->arch.dtl.next_gpa))
1645 			break;
1646 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1647 		break;
1648 	case KVM_REG_PPC_VPA_SLB:
1649 		addr = val->vpaval.addr;
1650 		len = val->vpaval.length;
1651 		r = -EINVAL;
1652 		if (addr && !vcpu->arch.vpa.next_gpa)
1653 			break;
1654 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1655 		break;
1656 	case KVM_REG_PPC_VPA_DTL:
1657 		addr = val->vpaval.addr;
1658 		len = val->vpaval.length;
1659 		r = -EINVAL;
1660 		if (addr && (len < sizeof(struct dtl_entry) ||
1661 			     !vcpu->arch.vpa.next_gpa))
1662 			break;
1663 		len -= len % sizeof(struct dtl_entry);
1664 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1665 		break;
1666 	case KVM_REG_PPC_TB_OFFSET:
1667 		/*
1668 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1669 		 * the timebase to lose ticks.  So we don't let the
1670 		 * timebase offset be changed on P9 DD1.  (It is
1671 		 * initialized to zero.)
1672 		 */
1673 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1674 			break;
1675 		/* round up to multiple of 2^24 */
1676 		vcpu->arch.vcore->tb_offset =
1677 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1678 		break;
1679 	case KVM_REG_PPC_LPCR:
1680 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1681 		break;
1682 	case KVM_REG_PPC_LPCR_64:
1683 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1684 		break;
1685 	case KVM_REG_PPC_PPR:
1686 		vcpu->arch.ppr = set_reg_val(id, *val);
1687 		break;
1688 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1689 	case KVM_REG_PPC_TFHAR:
1690 		vcpu->arch.tfhar = set_reg_val(id, *val);
1691 		break;
1692 	case KVM_REG_PPC_TFIAR:
1693 		vcpu->arch.tfiar = set_reg_val(id, *val);
1694 		break;
1695 	case KVM_REG_PPC_TEXASR:
1696 		vcpu->arch.texasr = set_reg_val(id, *val);
1697 		break;
1698 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1699 		i = id - KVM_REG_PPC_TM_GPR0;
1700 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1701 		break;
1702 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1703 	{
1704 		int j;
1705 		i = id - KVM_REG_PPC_TM_VSR0;
1706 		if (i < 32)
1707 			for (j = 0; j < TS_FPRWIDTH; j++)
1708 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1709 		else
1710 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1711 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1712 			else
1713 				r = -ENXIO;
1714 		break;
1715 	}
1716 	case KVM_REG_PPC_TM_CR:
1717 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1718 		break;
1719 	case KVM_REG_PPC_TM_XER:
1720 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1721 		break;
1722 	case KVM_REG_PPC_TM_LR:
1723 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1724 		break;
1725 	case KVM_REG_PPC_TM_CTR:
1726 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1727 		break;
1728 	case KVM_REG_PPC_TM_FPSCR:
1729 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1730 		break;
1731 	case KVM_REG_PPC_TM_AMR:
1732 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1733 		break;
1734 	case KVM_REG_PPC_TM_PPR:
1735 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1736 		break;
1737 	case KVM_REG_PPC_TM_VRSAVE:
1738 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1739 		break;
1740 	case KVM_REG_PPC_TM_VSCR:
1741 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1742 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1743 		else
1744 			r = - ENXIO;
1745 		break;
1746 	case KVM_REG_PPC_TM_DSCR:
1747 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1748 		break;
1749 	case KVM_REG_PPC_TM_TAR:
1750 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1751 		break;
1752 #endif
1753 	case KVM_REG_PPC_ARCH_COMPAT:
1754 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1755 		break;
1756 	case KVM_REG_PPC_DEC_EXPIRY:
1757 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1758 			vcpu->arch.vcore->tb_offset;
1759 		break;
1760 	default:
1761 		r = -EINVAL;
1762 		break;
1763 	}
1764 
1765 	return r;
1766 }
1767 
1768 /*
1769  * On POWER9, threads are independent and can be in different partitions.
1770  * Therefore we consider each thread to be a subcore.
1771  * There is a restriction that all threads have to be in the same
1772  * MMU mode (radix or HPT), unfortunately, but since we only support
1773  * HPT guests on a HPT host so far, that isn't an impediment yet.
1774  */
1775 static int threads_per_vcore(struct kvm *kvm)
1776 {
1777 	if (kvm->arch.threads_indep)
1778 		return 1;
1779 	return threads_per_subcore;
1780 }
1781 
1782 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1783 {
1784 	struct kvmppc_vcore *vcore;
1785 
1786 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1787 
1788 	if (vcore == NULL)
1789 		return NULL;
1790 
1791 	spin_lock_init(&vcore->lock);
1792 	spin_lock_init(&vcore->stoltb_lock);
1793 	init_swait_queue_head(&vcore->wq);
1794 	vcore->preempt_tb = TB_NIL;
1795 	vcore->lpcr = kvm->arch.lpcr;
1796 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1797 	vcore->kvm = kvm;
1798 	INIT_LIST_HEAD(&vcore->preempt_list);
1799 
1800 	return vcore;
1801 }
1802 
1803 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1804 static struct debugfs_timings_element {
1805 	const char *name;
1806 	size_t offset;
1807 } timings[] = {
1808 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1809 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1810 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1811 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1812 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1813 };
1814 
1815 #define N_TIMINGS	(ARRAY_SIZE(timings))
1816 
1817 struct debugfs_timings_state {
1818 	struct kvm_vcpu	*vcpu;
1819 	unsigned int	buflen;
1820 	char		buf[N_TIMINGS * 100];
1821 };
1822 
1823 static int debugfs_timings_open(struct inode *inode, struct file *file)
1824 {
1825 	struct kvm_vcpu *vcpu = inode->i_private;
1826 	struct debugfs_timings_state *p;
1827 
1828 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1829 	if (!p)
1830 		return -ENOMEM;
1831 
1832 	kvm_get_kvm(vcpu->kvm);
1833 	p->vcpu = vcpu;
1834 	file->private_data = p;
1835 
1836 	return nonseekable_open(inode, file);
1837 }
1838 
1839 static int debugfs_timings_release(struct inode *inode, struct file *file)
1840 {
1841 	struct debugfs_timings_state *p = file->private_data;
1842 
1843 	kvm_put_kvm(p->vcpu->kvm);
1844 	kfree(p);
1845 	return 0;
1846 }
1847 
1848 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1849 				    size_t len, loff_t *ppos)
1850 {
1851 	struct debugfs_timings_state *p = file->private_data;
1852 	struct kvm_vcpu *vcpu = p->vcpu;
1853 	char *s, *buf_end;
1854 	struct kvmhv_tb_accumulator tb;
1855 	u64 count;
1856 	loff_t pos;
1857 	ssize_t n;
1858 	int i, loops;
1859 	bool ok;
1860 
1861 	if (!p->buflen) {
1862 		s = p->buf;
1863 		buf_end = s + sizeof(p->buf);
1864 		for (i = 0; i < N_TIMINGS; ++i) {
1865 			struct kvmhv_tb_accumulator *acc;
1866 
1867 			acc = (struct kvmhv_tb_accumulator *)
1868 				((unsigned long)vcpu + timings[i].offset);
1869 			ok = false;
1870 			for (loops = 0; loops < 1000; ++loops) {
1871 				count = acc->seqcount;
1872 				if (!(count & 1)) {
1873 					smp_rmb();
1874 					tb = *acc;
1875 					smp_rmb();
1876 					if (count == acc->seqcount) {
1877 						ok = true;
1878 						break;
1879 					}
1880 				}
1881 				udelay(1);
1882 			}
1883 			if (!ok)
1884 				snprintf(s, buf_end - s, "%s: stuck\n",
1885 					timings[i].name);
1886 			else
1887 				snprintf(s, buf_end - s,
1888 					"%s: %llu %llu %llu %llu\n",
1889 					timings[i].name, count / 2,
1890 					tb_to_ns(tb.tb_total),
1891 					tb_to_ns(tb.tb_min),
1892 					tb_to_ns(tb.tb_max));
1893 			s += strlen(s);
1894 		}
1895 		p->buflen = s - p->buf;
1896 	}
1897 
1898 	pos = *ppos;
1899 	if (pos >= p->buflen)
1900 		return 0;
1901 	if (len > p->buflen - pos)
1902 		len = p->buflen - pos;
1903 	n = copy_to_user(buf, p->buf + pos, len);
1904 	if (n) {
1905 		if (n == len)
1906 			return -EFAULT;
1907 		len -= n;
1908 	}
1909 	*ppos = pos + len;
1910 	return len;
1911 }
1912 
1913 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1914 				     size_t len, loff_t *ppos)
1915 {
1916 	return -EACCES;
1917 }
1918 
1919 static const struct file_operations debugfs_timings_ops = {
1920 	.owner	 = THIS_MODULE,
1921 	.open	 = debugfs_timings_open,
1922 	.release = debugfs_timings_release,
1923 	.read	 = debugfs_timings_read,
1924 	.write	 = debugfs_timings_write,
1925 	.llseek	 = generic_file_llseek,
1926 };
1927 
1928 /* Create a debugfs directory for the vcpu */
1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930 {
1931 	char buf[16];
1932 	struct kvm *kvm = vcpu->kvm;
1933 
1934 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1935 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1936 		return;
1937 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1938 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1939 		return;
1940 	vcpu->arch.debugfs_timings =
1941 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1942 				    vcpu, &debugfs_timings_ops);
1943 }
1944 
1945 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1946 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1947 {
1948 }
1949 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1950 
1951 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1952 						   unsigned int id)
1953 {
1954 	struct kvm_vcpu *vcpu;
1955 	int err;
1956 	int core;
1957 	struct kvmppc_vcore *vcore;
1958 
1959 	err = -ENOMEM;
1960 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1961 	if (!vcpu)
1962 		goto out;
1963 
1964 	err = kvm_vcpu_init(vcpu, kvm, id);
1965 	if (err)
1966 		goto free_vcpu;
1967 
1968 	vcpu->arch.shared = &vcpu->arch.shregs;
1969 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1970 	/*
1971 	 * The shared struct is never shared on HV,
1972 	 * so we can always use host endianness
1973 	 */
1974 #ifdef __BIG_ENDIAN__
1975 	vcpu->arch.shared_big_endian = true;
1976 #else
1977 	vcpu->arch.shared_big_endian = false;
1978 #endif
1979 #endif
1980 	vcpu->arch.mmcr[0] = MMCR0_FC;
1981 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1982 	/* default to host PVR, since we can't spoof it */
1983 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1984 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1985 	spin_lock_init(&vcpu->arch.tbacct_lock);
1986 	vcpu->arch.busy_preempt = TB_NIL;
1987 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1988 
1989 	/*
1990 	 * Set the default HFSCR for the guest from the host value.
1991 	 * This value is only used on POWER9.
1992 	 * On POWER9 DD1, TM doesn't work, so we make sure to
1993 	 * prevent the guest from using it.
1994 	 * On POWER9, we want to virtualize the doorbell facility, so we
1995 	 * turn off the HFSCR bit, which causes those instructions to trap.
1996 	 */
1997 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1998 	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
1999 		vcpu->arch.hfscr |= HFSCR_TM;
2000 	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2001 		vcpu->arch.hfscr &= ~HFSCR_TM;
2002 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2003 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2004 
2005 	kvmppc_mmu_book3s_hv_init(vcpu);
2006 
2007 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2008 
2009 	init_waitqueue_head(&vcpu->arch.cpu_run);
2010 
2011 	mutex_lock(&kvm->lock);
2012 	vcore = NULL;
2013 	err = -EINVAL;
2014 	core = id / kvm->arch.smt_mode;
2015 	if (core < KVM_MAX_VCORES) {
2016 		vcore = kvm->arch.vcores[core];
2017 		if (!vcore) {
2018 			err = -ENOMEM;
2019 			vcore = kvmppc_vcore_create(kvm, core);
2020 			kvm->arch.vcores[core] = vcore;
2021 			kvm->arch.online_vcores++;
2022 		}
2023 	}
2024 	mutex_unlock(&kvm->lock);
2025 
2026 	if (!vcore)
2027 		goto free_vcpu;
2028 
2029 	spin_lock(&vcore->lock);
2030 	++vcore->num_threads;
2031 	spin_unlock(&vcore->lock);
2032 	vcpu->arch.vcore = vcore;
2033 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2034 	vcpu->arch.thread_cpu = -1;
2035 	vcpu->arch.prev_cpu = -1;
2036 
2037 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2038 	kvmppc_sanity_check(vcpu);
2039 
2040 	debugfs_vcpu_init(vcpu, id);
2041 
2042 	return vcpu;
2043 
2044 free_vcpu:
2045 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2046 out:
2047 	return ERR_PTR(err);
2048 }
2049 
2050 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2051 			      unsigned long flags)
2052 {
2053 	int err;
2054 	int esmt = 0;
2055 
2056 	if (flags)
2057 		return -EINVAL;
2058 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2059 		return -EINVAL;
2060 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2061 		/*
2062 		 * On POWER8 (or POWER7), the threading mode is "strict",
2063 		 * so we pack smt_mode vcpus per vcore.
2064 		 */
2065 		if (smt_mode > threads_per_subcore)
2066 			return -EINVAL;
2067 	} else {
2068 		/*
2069 		 * On POWER9, the threading mode is "loose",
2070 		 * so each vcpu gets its own vcore.
2071 		 */
2072 		esmt = smt_mode;
2073 		smt_mode = 1;
2074 	}
2075 	mutex_lock(&kvm->lock);
2076 	err = -EBUSY;
2077 	if (!kvm->arch.online_vcores) {
2078 		kvm->arch.smt_mode = smt_mode;
2079 		kvm->arch.emul_smt_mode = esmt;
2080 		err = 0;
2081 	}
2082 	mutex_unlock(&kvm->lock);
2083 
2084 	return err;
2085 }
2086 
2087 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2088 {
2089 	if (vpa->pinned_addr)
2090 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2091 					vpa->dirty);
2092 }
2093 
2094 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2095 {
2096 	spin_lock(&vcpu->arch.vpa_update_lock);
2097 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2098 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2099 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2100 	spin_unlock(&vcpu->arch.vpa_update_lock);
2101 	kvm_vcpu_uninit(vcpu);
2102 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2103 }
2104 
2105 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2106 {
2107 	/* Indicate we want to get back into the guest */
2108 	return 1;
2109 }
2110 
2111 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2112 {
2113 	unsigned long dec_nsec, now;
2114 
2115 	now = get_tb();
2116 	if (now > vcpu->arch.dec_expires) {
2117 		/* decrementer has already gone negative */
2118 		kvmppc_core_queue_dec(vcpu);
2119 		kvmppc_core_prepare_to_enter(vcpu);
2120 		return;
2121 	}
2122 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2123 		   / tb_ticks_per_sec;
2124 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2125 	vcpu->arch.timer_running = 1;
2126 }
2127 
2128 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2129 {
2130 	vcpu->arch.ceded = 0;
2131 	if (vcpu->arch.timer_running) {
2132 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2133 		vcpu->arch.timer_running = 0;
2134 	}
2135 }
2136 
2137 extern int __kvmppc_vcore_entry(void);
2138 
2139 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2140 				   struct kvm_vcpu *vcpu)
2141 {
2142 	u64 now;
2143 
2144 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2145 		return;
2146 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2147 	now = mftb();
2148 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2149 		vcpu->arch.stolen_logged;
2150 	vcpu->arch.busy_preempt = now;
2151 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2152 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2153 	--vc->n_runnable;
2154 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2155 }
2156 
2157 static int kvmppc_grab_hwthread(int cpu)
2158 {
2159 	struct paca_struct *tpaca;
2160 	long timeout = 10000;
2161 
2162 	tpaca = paca_ptrs[cpu];
2163 
2164 	/* Ensure the thread won't go into the kernel if it wakes */
2165 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2166 	tpaca->kvm_hstate.kvm_vcore = NULL;
2167 	tpaca->kvm_hstate.napping = 0;
2168 	smp_wmb();
2169 	tpaca->kvm_hstate.hwthread_req = 1;
2170 
2171 	/*
2172 	 * If the thread is already executing in the kernel (e.g. handling
2173 	 * a stray interrupt), wait for it to get back to nap mode.
2174 	 * The smp_mb() is to ensure that our setting of hwthread_req
2175 	 * is visible before we look at hwthread_state, so if this
2176 	 * races with the code at system_reset_pSeries and the thread
2177 	 * misses our setting of hwthread_req, we are sure to see its
2178 	 * setting of hwthread_state, and vice versa.
2179 	 */
2180 	smp_mb();
2181 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2182 		if (--timeout <= 0) {
2183 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2184 			return -EBUSY;
2185 		}
2186 		udelay(1);
2187 	}
2188 	return 0;
2189 }
2190 
2191 static void kvmppc_release_hwthread(int cpu)
2192 {
2193 	struct paca_struct *tpaca;
2194 
2195 	tpaca = paca_ptrs[cpu];
2196 	tpaca->kvm_hstate.hwthread_req = 0;
2197 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2198 	tpaca->kvm_hstate.kvm_vcore = NULL;
2199 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2200 }
2201 
2202 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2203 {
2204 	int i;
2205 
2206 	cpu = cpu_first_thread_sibling(cpu);
2207 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2208 	/*
2209 	 * Make sure setting of bit in need_tlb_flush precedes
2210 	 * testing of cpu_in_guest bits.  The matching barrier on
2211 	 * the other side is the first smp_mb() in kvmppc_run_core().
2212 	 */
2213 	smp_mb();
2214 	for (i = 0; i < threads_per_core; ++i)
2215 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2216 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2217 }
2218 
2219 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2220 {
2221 	struct kvm *kvm = vcpu->kvm;
2222 
2223 	/*
2224 	 * With radix, the guest can do TLB invalidations itself,
2225 	 * and it could choose to use the local form (tlbiel) if
2226 	 * it is invalidating a translation that has only ever been
2227 	 * used on one vcpu.  However, that doesn't mean it has
2228 	 * only ever been used on one physical cpu, since vcpus
2229 	 * can move around between pcpus.  To cope with this, when
2230 	 * a vcpu moves from one pcpu to another, we need to tell
2231 	 * any vcpus running on the same core as this vcpu previously
2232 	 * ran to flush the TLB.  The TLB is shared between threads,
2233 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2234 	 */
2235 	if (vcpu->arch.prev_cpu != pcpu) {
2236 		if (vcpu->arch.prev_cpu >= 0 &&
2237 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2238 		    cpu_first_thread_sibling(pcpu))
2239 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2240 		vcpu->arch.prev_cpu = pcpu;
2241 	}
2242 }
2243 
2244 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2245 {
2246 	int cpu;
2247 	struct paca_struct *tpaca;
2248 	struct kvm *kvm = vc->kvm;
2249 
2250 	cpu = vc->pcpu;
2251 	if (vcpu) {
2252 		if (vcpu->arch.timer_running) {
2253 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2254 			vcpu->arch.timer_running = 0;
2255 		}
2256 		cpu += vcpu->arch.ptid;
2257 		vcpu->cpu = vc->pcpu;
2258 		vcpu->arch.thread_cpu = cpu;
2259 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2260 	}
2261 	tpaca = paca_ptrs[cpu];
2262 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2263 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2264 	tpaca->kvm_hstate.fake_suspend = 0;
2265 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2266 	smp_wmb();
2267 	tpaca->kvm_hstate.kvm_vcore = vc;
2268 	if (cpu != smp_processor_id())
2269 		kvmppc_ipi_thread(cpu);
2270 }
2271 
2272 static void kvmppc_wait_for_nap(int n_threads)
2273 {
2274 	int cpu = smp_processor_id();
2275 	int i, loops;
2276 
2277 	if (n_threads <= 1)
2278 		return;
2279 	for (loops = 0; loops < 1000000; ++loops) {
2280 		/*
2281 		 * Check if all threads are finished.
2282 		 * We set the vcore pointer when starting a thread
2283 		 * and the thread clears it when finished, so we look
2284 		 * for any threads that still have a non-NULL vcore ptr.
2285 		 */
2286 		for (i = 1; i < n_threads; ++i)
2287 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2288 				break;
2289 		if (i == n_threads) {
2290 			HMT_medium();
2291 			return;
2292 		}
2293 		HMT_low();
2294 	}
2295 	HMT_medium();
2296 	for (i = 1; i < n_threads; ++i)
2297 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2298 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2299 }
2300 
2301 /*
2302  * Check that we are on thread 0 and that any other threads in
2303  * this core are off-line.  Then grab the threads so they can't
2304  * enter the kernel.
2305  */
2306 static int on_primary_thread(void)
2307 {
2308 	int cpu = smp_processor_id();
2309 	int thr;
2310 
2311 	/* Are we on a primary subcore? */
2312 	if (cpu_thread_in_subcore(cpu))
2313 		return 0;
2314 
2315 	thr = 0;
2316 	while (++thr < threads_per_subcore)
2317 		if (cpu_online(cpu + thr))
2318 			return 0;
2319 
2320 	/* Grab all hw threads so they can't go into the kernel */
2321 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2322 		if (kvmppc_grab_hwthread(cpu + thr)) {
2323 			/* Couldn't grab one; let the others go */
2324 			do {
2325 				kvmppc_release_hwthread(cpu + thr);
2326 			} while (--thr > 0);
2327 			return 0;
2328 		}
2329 	}
2330 	return 1;
2331 }
2332 
2333 /*
2334  * A list of virtual cores for each physical CPU.
2335  * These are vcores that could run but their runner VCPU tasks are
2336  * (or may be) preempted.
2337  */
2338 struct preempted_vcore_list {
2339 	struct list_head	list;
2340 	spinlock_t		lock;
2341 };
2342 
2343 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2344 
2345 static void init_vcore_lists(void)
2346 {
2347 	int cpu;
2348 
2349 	for_each_possible_cpu(cpu) {
2350 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2351 		spin_lock_init(&lp->lock);
2352 		INIT_LIST_HEAD(&lp->list);
2353 	}
2354 }
2355 
2356 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2357 {
2358 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2359 
2360 	vc->vcore_state = VCORE_PREEMPT;
2361 	vc->pcpu = smp_processor_id();
2362 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2363 		spin_lock(&lp->lock);
2364 		list_add_tail(&vc->preempt_list, &lp->list);
2365 		spin_unlock(&lp->lock);
2366 	}
2367 
2368 	/* Start accumulating stolen time */
2369 	kvmppc_core_start_stolen(vc);
2370 }
2371 
2372 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2373 {
2374 	struct preempted_vcore_list *lp;
2375 
2376 	kvmppc_core_end_stolen(vc);
2377 	if (!list_empty(&vc->preempt_list)) {
2378 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2379 		spin_lock(&lp->lock);
2380 		list_del_init(&vc->preempt_list);
2381 		spin_unlock(&lp->lock);
2382 	}
2383 	vc->vcore_state = VCORE_INACTIVE;
2384 }
2385 
2386 /*
2387  * This stores information about the virtual cores currently
2388  * assigned to a physical core.
2389  */
2390 struct core_info {
2391 	int		n_subcores;
2392 	int		max_subcore_threads;
2393 	int		total_threads;
2394 	int		subcore_threads[MAX_SUBCORES];
2395 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2396 };
2397 
2398 /*
2399  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2400  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2401  */
2402 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2403 
2404 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2405 {
2406 	memset(cip, 0, sizeof(*cip));
2407 	cip->n_subcores = 1;
2408 	cip->max_subcore_threads = vc->num_threads;
2409 	cip->total_threads = vc->num_threads;
2410 	cip->subcore_threads[0] = vc->num_threads;
2411 	cip->vc[0] = vc;
2412 }
2413 
2414 static bool subcore_config_ok(int n_subcores, int n_threads)
2415 {
2416 	/*
2417 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2418 	 * split-core mode, with one thread per subcore.
2419 	 */
2420 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2421 		return n_subcores <= 4 && n_threads == 1;
2422 
2423 	/* On POWER8, can only dynamically split if unsplit to begin with */
2424 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2425 		return false;
2426 	if (n_subcores > MAX_SUBCORES)
2427 		return false;
2428 	if (n_subcores > 1) {
2429 		if (!(dynamic_mt_modes & 2))
2430 			n_subcores = 4;
2431 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2432 			return false;
2433 	}
2434 
2435 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2436 }
2437 
2438 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2439 {
2440 	vc->entry_exit_map = 0;
2441 	vc->in_guest = 0;
2442 	vc->napping_threads = 0;
2443 	vc->conferring_threads = 0;
2444 }
2445 
2446 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2447 {
2448 	int n_threads = vc->num_threads;
2449 	int sub;
2450 
2451 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2452 		return false;
2453 
2454 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2455 	if (no_mixing_hpt_and_radix &&
2456 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2457 		return false;
2458 
2459 	if (n_threads < cip->max_subcore_threads)
2460 		n_threads = cip->max_subcore_threads;
2461 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2462 		return false;
2463 	cip->max_subcore_threads = n_threads;
2464 
2465 	sub = cip->n_subcores;
2466 	++cip->n_subcores;
2467 	cip->total_threads += vc->num_threads;
2468 	cip->subcore_threads[sub] = vc->num_threads;
2469 	cip->vc[sub] = vc;
2470 	init_vcore_to_run(vc);
2471 	list_del_init(&vc->preempt_list);
2472 
2473 	return true;
2474 }
2475 
2476 /*
2477  * Work out whether it is possible to piggyback the execution of
2478  * vcore *pvc onto the execution of the other vcores described in *cip.
2479  */
2480 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2481 			  int target_threads)
2482 {
2483 	if (cip->total_threads + pvc->num_threads > target_threads)
2484 		return false;
2485 
2486 	return can_dynamic_split(pvc, cip);
2487 }
2488 
2489 static void prepare_threads(struct kvmppc_vcore *vc)
2490 {
2491 	int i;
2492 	struct kvm_vcpu *vcpu;
2493 
2494 	for_each_runnable_thread(i, vcpu, vc) {
2495 		if (signal_pending(vcpu->arch.run_task))
2496 			vcpu->arch.ret = -EINTR;
2497 		else if (vcpu->arch.vpa.update_pending ||
2498 			 vcpu->arch.slb_shadow.update_pending ||
2499 			 vcpu->arch.dtl.update_pending)
2500 			vcpu->arch.ret = RESUME_GUEST;
2501 		else
2502 			continue;
2503 		kvmppc_remove_runnable(vc, vcpu);
2504 		wake_up(&vcpu->arch.cpu_run);
2505 	}
2506 }
2507 
2508 static void collect_piggybacks(struct core_info *cip, int target_threads)
2509 {
2510 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2511 	struct kvmppc_vcore *pvc, *vcnext;
2512 
2513 	spin_lock(&lp->lock);
2514 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2515 		if (!spin_trylock(&pvc->lock))
2516 			continue;
2517 		prepare_threads(pvc);
2518 		if (!pvc->n_runnable) {
2519 			list_del_init(&pvc->preempt_list);
2520 			if (pvc->runner == NULL) {
2521 				pvc->vcore_state = VCORE_INACTIVE;
2522 				kvmppc_core_end_stolen(pvc);
2523 			}
2524 			spin_unlock(&pvc->lock);
2525 			continue;
2526 		}
2527 		if (!can_piggyback(pvc, cip, target_threads)) {
2528 			spin_unlock(&pvc->lock);
2529 			continue;
2530 		}
2531 		kvmppc_core_end_stolen(pvc);
2532 		pvc->vcore_state = VCORE_PIGGYBACK;
2533 		if (cip->total_threads >= target_threads)
2534 			break;
2535 	}
2536 	spin_unlock(&lp->lock);
2537 }
2538 
2539 static bool recheck_signals(struct core_info *cip)
2540 {
2541 	int sub, i;
2542 	struct kvm_vcpu *vcpu;
2543 
2544 	for (sub = 0; sub < cip->n_subcores; ++sub)
2545 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2546 			if (signal_pending(vcpu->arch.run_task))
2547 				return true;
2548 	return false;
2549 }
2550 
2551 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2552 {
2553 	int still_running = 0, i;
2554 	u64 now;
2555 	long ret;
2556 	struct kvm_vcpu *vcpu;
2557 
2558 	spin_lock(&vc->lock);
2559 	now = get_tb();
2560 	for_each_runnable_thread(i, vcpu, vc) {
2561 		/* cancel pending dec exception if dec is positive */
2562 		if (now < vcpu->arch.dec_expires &&
2563 		    kvmppc_core_pending_dec(vcpu))
2564 			kvmppc_core_dequeue_dec(vcpu);
2565 
2566 		trace_kvm_guest_exit(vcpu);
2567 
2568 		ret = RESUME_GUEST;
2569 		if (vcpu->arch.trap)
2570 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2571 						    vcpu->arch.run_task);
2572 
2573 		vcpu->arch.ret = ret;
2574 		vcpu->arch.trap = 0;
2575 
2576 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2577 			if (vcpu->arch.pending_exceptions)
2578 				kvmppc_core_prepare_to_enter(vcpu);
2579 			if (vcpu->arch.ceded)
2580 				kvmppc_set_timer(vcpu);
2581 			else
2582 				++still_running;
2583 		} else {
2584 			kvmppc_remove_runnable(vc, vcpu);
2585 			wake_up(&vcpu->arch.cpu_run);
2586 		}
2587 	}
2588 	if (!is_master) {
2589 		if (still_running > 0) {
2590 			kvmppc_vcore_preempt(vc);
2591 		} else if (vc->runner) {
2592 			vc->vcore_state = VCORE_PREEMPT;
2593 			kvmppc_core_start_stolen(vc);
2594 		} else {
2595 			vc->vcore_state = VCORE_INACTIVE;
2596 		}
2597 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2598 			/* make sure there's a candidate runner awake */
2599 			i = -1;
2600 			vcpu = next_runnable_thread(vc, &i);
2601 			wake_up(&vcpu->arch.cpu_run);
2602 		}
2603 	}
2604 	spin_unlock(&vc->lock);
2605 }
2606 
2607 /*
2608  * Clear core from the list of active host cores as we are about to
2609  * enter the guest. Only do this if it is the primary thread of the
2610  * core (not if a subcore) that is entering the guest.
2611  */
2612 static inline int kvmppc_clear_host_core(unsigned int cpu)
2613 {
2614 	int core;
2615 
2616 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2617 		return 0;
2618 	/*
2619 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2620 	 * later in kvmppc_start_thread and we need ensure that state is
2621 	 * visible to other CPUs only after we enter guest.
2622 	 */
2623 	core = cpu >> threads_shift;
2624 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2625 	return 0;
2626 }
2627 
2628 /*
2629  * Advertise this core as an active host core since we exited the guest
2630  * Only need to do this if it is the primary thread of the core that is
2631  * exiting.
2632  */
2633 static inline int kvmppc_set_host_core(unsigned int cpu)
2634 {
2635 	int core;
2636 
2637 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2638 		return 0;
2639 
2640 	/*
2641 	 * Memory barrier can be omitted here because we do a spin_unlock
2642 	 * immediately after this which provides the memory barrier.
2643 	 */
2644 	core = cpu >> threads_shift;
2645 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2646 	return 0;
2647 }
2648 
2649 static void set_irq_happened(int trap)
2650 {
2651 	switch (trap) {
2652 	case BOOK3S_INTERRUPT_EXTERNAL:
2653 		local_paca->irq_happened |= PACA_IRQ_EE;
2654 		break;
2655 	case BOOK3S_INTERRUPT_H_DOORBELL:
2656 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2657 		break;
2658 	case BOOK3S_INTERRUPT_HMI:
2659 		local_paca->irq_happened |= PACA_IRQ_HMI;
2660 		break;
2661 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2662 		replay_system_reset();
2663 		break;
2664 	}
2665 }
2666 
2667 /*
2668  * Run a set of guest threads on a physical core.
2669  * Called with vc->lock held.
2670  */
2671 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2672 {
2673 	struct kvm_vcpu *vcpu;
2674 	int i;
2675 	int srcu_idx;
2676 	struct core_info core_info;
2677 	struct kvmppc_vcore *pvc;
2678 	struct kvm_split_mode split_info, *sip;
2679 	int split, subcore_size, active;
2680 	int sub;
2681 	bool thr0_done;
2682 	unsigned long cmd_bit, stat_bit;
2683 	int pcpu, thr;
2684 	int target_threads;
2685 	int controlled_threads;
2686 	int trap;
2687 	bool is_power8;
2688 	bool hpt_on_radix;
2689 
2690 	/*
2691 	 * Remove from the list any threads that have a signal pending
2692 	 * or need a VPA update done
2693 	 */
2694 	prepare_threads(vc);
2695 
2696 	/* if the runner is no longer runnable, let the caller pick a new one */
2697 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2698 		return;
2699 
2700 	/*
2701 	 * Initialize *vc.
2702 	 */
2703 	init_vcore_to_run(vc);
2704 	vc->preempt_tb = TB_NIL;
2705 
2706 	/*
2707 	 * Number of threads that we will be controlling: the same as
2708 	 * the number of threads per subcore, except on POWER9,
2709 	 * where it's 1 because the threads are (mostly) independent.
2710 	 */
2711 	controlled_threads = threads_per_vcore(vc->kvm);
2712 
2713 	/*
2714 	 * Make sure we are running on primary threads, and that secondary
2715 	 * threads are offline.  Also check if the number of threads in this
2716 	 * guest are greater than the current system threads per guest.
2717 	 * On POWER9, we need to be not in independent-threads mode if
2718 	 * this is a HPT guest on a radix host machine where the
2719 	 * CPU threads may not be in different MMU modes.
2720 	 */
2721 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2722 		!kvm_is_radix(vc->kvm);
2723 	if (((controlled_threads > 1) &&
2724 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2725 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2726 		for_each_runnable_thread(i, vcpu, vc) {
2727 			vcpu->arch.ret = -EBUSY;
2728 			kvmppc_remove_runnable(vc, vcpu);
2729 			wake_up(&vcpu->arch.cpu_run);
2730 		}
2731 		goto out;
2732 	}
2733 
2734 	/*
2735 	 * See if we could run any other vcores on the physical core
2736 	 * along with this one.
2737 	 */
2738 	init_core_info(&core_info, vc);
2739 	pcpu = smp_processor_id();
2740 	target_threads = controlled_threads;
2741 	if (target_smt_mode && target_smt_mode < target_threads)
2742 		target_threads = target_smt_mode;
2743 	if (vc->num_threads < target_threads)
2744 		collect_piggybacks(&core_info, target_threads);
2745 
2746 	/*
2747 	 * On radix, arrange for TLB flushing if necessary.
2748 	 * This has to be done before disabling interrupts since
2749 	 * it uses smp_call_function().
2750 	 */
2751 	pcpu = smp_processor_id();
2752 	if (kvm_is_radix(vc->kvm)) {
2753 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2754 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2755 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2756 	}
2757 
2758 	/*
2759 	 * Hard-disable interrupts, and check resched flag and signals.
2760 	 * If we need to reschedule or deliver a signal, clean up
2761 	 * and return without going into the guest(s).
2762 	 * If the mmu_ready flag has been cleared, don't go into the
2763 	 * guest because that means a HPT resize operation is in progress.
2764 	 */
2765 	local_irq_disable();
2766 	hard_irq_disable();
2767 	if (lazy_irq_pending() || need_resched() ||
2768 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2769 		local_irq_enable();
2770 		vc->vcore_state = VCORE_INACTIVE;
2771 		/* Unlock all except the primary vcore */
2772 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2773 			pvc = core_info.vc[sub];
2774 			/* Put back on to the preempted vcores list */
2775 			kvmppc_vcore_preempt(pvc);
2776 			spin_unlock(&pvc->lock);
2777 		}
2778 		for (i = 0; i < controlled_threads; ++i)
2779 			kvmppc_release_hwthread(pcpu + i);
2780 		return;
2781 	}
2782 
2783 	kvmppc_clear_host_core(pcpu);
2784 
2785 	/* Decide on micro-threading (split-core) mode */
2786 	subcore_size = threads_per_subcore;
2787 	cmd_bit = stat_bit = 0;
2788 	split = core_info.n_subcores;
2789 	sip = NULL;
2790 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2791 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2792 
2793 	if (split > 1 || hpt_on_radix) {
2794 		sip = &split_info;
2795 		memset(&split_info, 0, sizeof(split_info));
2796 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2797 			split_info.vc[sub] = core_info.vc[sub];
2798 
2799 		if (is_power8) {
2800 			if (split == 2 && (dynamic_mt_modes & 2)) {
2801 				cmd_bit = HID0_POWER8_1TO2LPAR;
2802 				stat_bit = HID0_POWER8_2LPARMODE;
2803 			} else {
2804 				split = 4;
2805 				cmd_bit = HID0_POWER8_1TO4LPAR;
2806 				stat_bit = HID0_POWER8_4LPARMODE;
2807 			}
2808 			subcore_size = MAX_SMT_THREADS / split;
2809 			split_info.rpr = mfspr(SPRN_RPR);
2810 			split_info.pmmar = mfspr(SPRN_PMMAR);
2811 			split_info.ldbar = mfspr(SPRN_LDBAR);
2812 			split_info.subcore_size = subcore_size;
2813 		} else {
2814 			split_info.subcore_size = 1;
2815 			if (hpt_on_radix) {
2816 				/* Use the split_info for LPCR/LPIDR changes */
2817 				split_info.lpcr_req = vc->lpcr;
2818 				split_info.lpidr_req = vc->kvm->arch.lpid;
2819 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2820 				split_info.do_set = 1;
2821 			}
2822 		}
2823 
2824 		/* order writes to split_info before kvm_split_mode pointer */
2825 		smp_wmb();
2826 	}
2827 
2828 	for (thr = 0; thr < controlled_threads; ++thr) {
2829 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
2830 
2831 		paca->kvm_hstate.tid = thr;
2832 		paca->kvm_hstate.napping = 0;
2833 		paca->kvm_hstate.kvm_split_mode = sip;
2834 	}
2835 
2836 	/* Initiate micro-threading (split-core) on POWER8 if required */
2837 	if (cmd_bit) {
2838 		unsigned long hid0 = mfspr(SPRN_HID0);
2839 
2840 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2841 		mb();
2842 		mtspr(SPRN_HID0, hid0);
2843 		isync();
2844 		for (;;) {
2845 			hid0 = mfspr(SPRN_HID0);
2846 			if (hid0 & stat_bit)
2847 				break;
2848 			cpu_relax();
2849 		}
2850 	}
2851 
2852 	/* Start all the threads */
2853 	active = 0;
2854 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2855 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2856 		thr0_done = false;
2857 		active |= 1 << thr;
2858 		pvc = core_info.vc[sub];
2859 		pvc->pcpu = pcpu + thr;
2860 		for_each_runnable_thread(i, vcpu, pvc) {
2861 			kvmppc_start_thread(vcpu, pvc);
2862 			kvmppc_create_dtl_entry(vcpu, pvc);
2863 			trace_kvm_guest_enter(vcpu);
2864 			if (!vcpu->arch.ptid)
2865 				thr0_done = true;
2866 			active |= 1 << (thr + vcpu->arch.ptid);
2867 		}
2868 		/*
2869 		 * We need to start the first thread of each subcore
2870 		 * even if it doesn't have a vcpu.
2871 		 */
2872 		if (!thr0_done)
2873 			kvmppc_start_thread(NULL, pvc);
2874 	}
2875 
2876 	/*
2877 	 * Ensure that split_info.do_nap is set after setting
2878 	 * the vcore pointer in the PACA of the secondaries.
2879 	 */
2880 	smp_mb();
2881 
2882 	/*
2883 	 * When doing micro-threading, poke the inactive threads as well.
2884 	 * This gets them to the nap instruction after kvm_do_nap,
2885 	 * which reduces the time taken to unsplit later.
2886 	 * For POWER9 HPT guest on radix host, we need all the secondary
2887 	 * threads woken up so they can do the LPCR/LPIDR change.
2888 	 */
2889 	if (cmd_bit || hpt_on_radix) {
2890 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2891 		for (thr = 1; thr < threads_per_subcore; ++thr)
2892 			if (!(active & (1 << thr)))
2893 				kvmppc_ipi_thread(pcpu + thr);
2894 	}
2895 
2896 	vc->vcore_state = VCORE_RUNNING;
2897 	preempt_disable();
2898 
2899 	trace_kvmppc_run_core(vc, 0);
2900 
2901 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2902 		spin_unlock(&core_info.vc[sub]->lock);
2903 
2904 	/*
2905 	 * Interrupts will be enabled once we get into the guest,
2906 	 * so tell lockdep that we're about to enable interrupts.
2907 	 */
2908 	trace_hardirqs_on();
2909 
2910 	guest_enter_irqoff();
2911 
2912 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2913 
2914 	trap = __kvmppc_vcore_entry();
2915 
2916 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2917 
2918 	trace_hardirqs_off();
2919 	set_irq_happened(trap);
2920 
2921 	spin_lock(&vc->lock);
2922 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2923 	vc->vcore_state = VCORE_EXITING;
2924 
2925 	/* wait for secondary threads to finish writing their state to memory */
2926 	kvmppc_wait_for_nap(controlled_threads);
2927 
2928 	/* Return to whole-core mode if we split the core earlier */
2929 	if (cmd_bit) {
2930 		unsigned long hid0 = mfspr(SPRN_HID0);
2931 		unsigned long loops = 0;
2932 
2933 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2934 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2935 		mb();
2936 		mtspr(SPRN_HID0, hid0);
2937 		isync();
2938 		for (;;) {
2939 			hid0 = mfspr(SPRN_HID0);
2940 			if (!(hid0 & stat_bit))
2941 				break;
2942 			cpu_relax();
2943 			++loops;
2944 		}
2945 	} else if (hpt_on_radix) {
2946 		/* Wait for all threads to have seen final sync */
2947 		for (thr = 1; thr < controlled_threads; ++thr) {
2948 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
2949 
2950 			while (paca->kvm_hstate.kvm_split_mode) {
2951 				HMT_low();
2952 				barrier();
2953 			}
2954 			HMT_medium();
2955 		}
2956 	}
2957 	split_info.do_nap = 0;
2958 
2959 	kvmppc_set_host_core(pcpu);
2960 
2961 	local_irq_enable();
2962 	guest_exit();
2963 
2964 	/* Let secondaries go back to the offline loop */
2965 	for (i = 0; i < controlled_threads; ++i) {
2966 		kvmppc_release_hwthread(pcpu + i);
2967 		if (sip && sip->napped[i])
2968 			kvmppc_ipi_thread(pcpu + i);
2969 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2970 	}
2971 
2972 	spin_unlock(&vc->lock);
2973 
2974 	/* make sure updates to secondary vcpu structs are visible now */
2975 	smp_mb();
2976 
2977 	preempt_enable();
2978 
2979 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2980 		pvc = core_info.vc[sub];
2981 		post_guest_process(pvc, pvc == vc);
2982 	}
2983 
2984 	spin_lock(&vc->lock);
2985 
2986  out:
2987 	vc->vcore_state = VCORE_INACTIVE;
2988 	trace_kvmppc_run_core(vc, 1);
2989 }
2990 
2991 /*
2992  * Wait for some other vcpu thread to execute us, and
2993  * wake us up when we need to handle something in the host.
2994  */
2995 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2996 				 struct kvm_vcpu *vcpu, int wait_state)
2997 {
2998 	DEFINE_WAIT(wait);
2999 
3000 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3001 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3002 		spin_unlock(&vc->lock);
3003 		schedule();
3004 		spin_lock(&vc->lock);
3005 	}
3006 	finish_wait(&vcpu->arch.cpu_run, &wait);
3007 }
3008 
3009 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3010 {
3011 	/* 10us base */
3012 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3013 		vc->halt_poll_ns = 10000;
3014 	else
3015 		vc->halt_poll_ns *= halt_poll_ns_grow;
3016 }
3017 
3018 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3019 {
3020 	if (halt_poll_ns_shrink == 0)
3021 		vc->halt_poll_ns = 0;
3022 	else
3023 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3024 }
3025 
3026 #ifdef CONFIG_KVM_XICS
3027 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3028 {
3029 	if (!xive_enabled())
3030 		return false;
3031 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3032 		vcpu->arch.xive_saved_state.cppr;
3033 }
3034 #else
3035 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3036 {
3037 	return false;
3038 }
3039 #endif /* CONFIG_KVM_XICS */
3040 
3041 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3042 {
3043 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3044 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3045 		return true;
3046 
3047 	return false;
3048 }
3049 
3050 /*
3051  * Check to see if any of the runnable vcpus on the vcore have pending
3052  * exceptions or are no longer ceded
3053  */
3054 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3055 {
3056 	struct kvm_vcpu *vcpu;
3057 	int i;
3058 
3059 	for_each_runnable_thread(i, vcpu, vc) {
3060 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3061 			return 1;
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 /*
3068  * All the vcpus in this vcore are idle, so wait for a decrementer
3069  * or external interrupt to one of the vcpus.  vc->lock is held.
3070  */
3071 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3072 {
3073 	ktime_t cur, start_poll, start_wait;
3074 	int do_sleep = 1;
3075 	u64 block_ns;
3076 	DECLARE_SWAITQUEUE(wait);
3077 
3078 	/* Poll for pending exceptions and ceded state */
3079 	cur = start_poll = ktime_get();
3080 	if (vc->halt_poll_ns) {
3081 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3082 		++vc->runner->stat.halt_attempted_poll;
3083 
3084 		vc->vcore_state = VCORE_POLLING;
3085 		spin_unlock(&vc->lock);
3086 
3087 		do {
3088 			if (kvmppc_vcore_check_block(vc)) {
3089 				do_sleep = 0;
3090 				break;
3091 			}
3092 			cur = ktime_get();
3093 		} while (single_task_running() && ktime_before(cur, stop));
3094 
3095 		spin_lock(&vc->lock);
3096 		vc->vcore_state = VCORE_INACTIVE;
3097 
3098 		if (!do_sleep) {
3099 			++vc->runner->stat.halt_successful_poll;
3100 			goto out;
3101 		}
3102 	}
3103 
3104 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3105 
3106 	if (kvmppc_vcore_check_block(vc)) {
3107 		finish_swait(&vc->wq, &wait);
3108 		do_sleep = 0;
3109 		/* If we polled, count this as a successful poll */
3110 		if (vc->halt_poll_ns)
3111 			++vc->runner->stat.halt_successful_poll;
3112 		goto out;
3113 	}
3114 
3115 	start_wait = ktime_get();
3116 
3117 	vc->vcore_state = VCORE_SLEEPING;
3118 	trace_kvmppc_vcore_blocked(vc, 0);
3119 	spin_unlock(&vc->lock);
3120 	schedule();
3121 	finish_swait(&vc->wq, &wait);
3122 	spin_lock(&vc->lock);
3123 	vc->vcore_state = VCORE_INACTIVE;
3124 	trace_kvmppc_vcore_blocked(vc, 1);
3125 	++vc->runner->stat.halt_successful_wait;
3126 
3127 	cur = ktime_get();
3128 
3129 out:
3130 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3131 
3132 	/* Attribute wait time */
3133 	if (do_sleep) {
3134 		vc->runner->stat.halt_wait_ns +=
3135 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3136 		/* Attribute failed poll time */
3137 		if (vc->halt_poll_ns)
3138 			vc->runner->stat.halt_poll_fail_ns +=
3139 				ktime_to_ns(start_wait) -
3140 				ktime_to_ns(start_poll);
3141 	} else {
3142 		/* Attribute successful poll time */
3143 		if (vc->halt_poll_ns)
3144 			vc->runner->stat.halt_poll_success_ns +=
3145 				ktime_to_ns(cur) -
3146 				ktime_to_ns(start_poll);
3147 	}
3148 
3149 	/* Adjust poll time */
3150 	if (halt_poll_ns) {
3151 		if (block_ns <= vc->halt_poll_ns)
3152 			;
3153 		/* We slept and blocked for longer than the max halt time */
3154 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3155 			shrink_halt_poll_ns(vc);
3156 		/* We slept and our poll time is too small */
3157 		else if (vc->halt_poll_ns < halt_poll_ns &&
3158 				block_ns < halt_poll_ns)
3159 			grow_halt_poll_ns(vc);
3160 		if (vc->halt_poll_ns > halt_poll_ns)
3161 			vc->halt_poll_ns = halt_poll_ns;
3162 	} else
3163 		vc->halt_poll_ns = 0;
3164 
3165 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3166 }
3167 
3168 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3169 {
3170 	int r = 0;
3171 	struct kvm *kvm = vcpu->kvm;
3172 
3173 	mutex_lock(&kvm->lock);
3174 	if (!kvm->arch.mmu_ready) {
3175 		if (!kvm_is_radix(kvm))
3176 			r = kvmppc_hv_setup_htab_rma(vcpu);
3177 		if (!r) {
3178 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3179 				kvmppc_setup_partition_table(kvm);
3180 			kvm->arch.mmu_ready = 1;
3181 		}
3182 	}
3183 	mutex_unlock(&kvm->lock);
3184 	return r;
3185 }
3186 
3187 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3188 {
3189 	int n_ceded, i, r;
3190 	struct kvmppc_vcore *vc;
3191 	struct kvm_vcpu *v;
3192 
3193 	trace_kvmppc_run_vcpu_enter(vcpu);
3194 
3195 	kvm_run->exit_reason = 0;
3196 	vcpu->arch.ret = RESUME_GUEST;
3197 	vcpu->arch.trap = 0;
3198 	kvmppc_update_vpas(vcpu);
3199 
3200 	/*
3201 	 * Synchronize with other threads in this virtual core
3202 	 */
3203 	vc = vcpu->arch.vcore;
3204 	spin_lock(&vc->lock);
3205 	vcpu->arch.ceded = 0;
3206 	vcpu->arch.run_task = current;
3207 	vcpu->arch.kvm_run = kvm_run;
3208 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3209 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3210 	vcpu->arch.busy_preempt = TB_NIL;
3211 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3212 	++vc->n_runnable;
3213 
3214 	/*
3215 	 * This happens the first time this is called for a vcpu.
3216 	 * If the vcore is already running, we may be able to start
3217 	 * this thread straight away and have it join in.
3218 	 */
3219 	if (!signal_pending(current)) {
3220 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3221 		     vc->vcore_state == VCORE_RUNNING) &&
3222 			   !VCORE_IS_EXITING(vc)) {
3223 			kvmppc_create_dtl_entry(vcpu, vc);
3224 			kvmppc_start_thread(vcpu, vc);
3225 			trace_kvm_guest_enter(vcpu);
3226 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3227 			swake_up(&vc->wq);
3228 		}
3229 
3230 	}
3231 
3232 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3233 	       !signal_pending(current)) {
3234 		/* See if the MMU is ready to go */
3235 		if (!vcpu->kvm->arch.mmu_ready) {
3236 			spin_unlock(&vc->lock);
3237 			r = kvmhv_setup_mmu(vcpu);
3238 			spin_lock(&vc->lock);
3239 			if (r) {
3240 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3241 				kvm_run->fail_entry.
3242 					hardware_entry_failure_reason = 0;
3243 				vcpu->arch.ret = r;
3244 				break;
3245 			}
3246 		}
3247 
3248 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3249 			kvmppc_vcore_end_preempt(vc);
3250 
3251 		if (vc->vcore_state != VCORE_INACTIVE) {
3252 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3253 			continue;
3254 		}
3255 		for_each_runnable_thread(i, v, vc) {
3256 			kvmppc_core_prepare_to_enter(v);
3257 			if (signal_pending(v->arch.run_task)) {
3258 				kvmppc_remove_runnable(vc, v);
3259 				v->stat.signal_exits++;
3260 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3261 				v->arch.ret = -EINTR;
3262 				wake_up(&v->arch.cpu_run);
3263 			}
3264 		}
3265 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3266 			break;
3267 		n_ceded = 0;
3268 		for_each_runnable_thread(i, v, vc) {
3269 			if (!kvmppc_vcpu_woken(v))
3270 				n_ceded += v->arch.ceded;
3271 			else
3272 				v->arch.ceded = 0;
3273 		}
3274 		vc->runner = vcpu;
3275 		if (n_ceded == vc->n_runnable) {
3276 			kvmppc_vcore_blocked(vc);
3277 		} else if (need_resched()) {
3278 			kvmppc_vcore_preempt(vc);
3279 			/* Let something else run */
3280 			cond_resched_lock(&vc->lock);
3281 			if (vc->vcore_state == VCORE_PREEMPT)
3282 				kvmppc_vcore_end_preempt(vc);
3283 		} else {
3284 			kvmppc_run_core(vc);
3285 		}
3286 		vc->runner = NULL;
3287 	}
3288 
3289 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3290 	       (vc->vcore_state == VCORE_RUNNING ||
3291 		vc->vcore_state == VCORE_EXITING ||
3292 		vc->vcore_state == VCORE_PIGGYBACK))
3293 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3294 
3295 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3296 		kvmppc_vcore_end_preempt(vc);
3297 
3298 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3299 		kvmppc_remove_runnable(vc, vcpu);
3300 		vcpu->stat.signal_exits++;
3301 		kvm_run->exit_reason = KVM_EXIT_INTR;
3302 		vcpu->arch.ret = -EINTR;
3303 	}
3304 
3305 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3306 		/* Wake up some vcpu to run the core */
3307 		i = -1;
3308 		v = next_runnable_thread(vc, &i);
3309 		wake_up(&v->arch.cpu_run);
3310 	}
3311 
3312 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3313 	spin_unlock(&vc->lock);
3314 	return vcpu->arch.ret;
3315 }
3316 
3317 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3318 {
3319 	int r;
3320 	int srcu_idx;
3321 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3322 	unsigned long user_tar = 0;
3323 	unsigned int user_vrsave;
3324 	struct kvm *kvm;
3325 
3326 	if (!vcpu->arch.sane) {
3327 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3328 		return -EINVAL;
3329 	}
3330 
3331 	/*
3332 	 * Don't allow entry with a suspended transaction, because
3333 	 * the guest entry/exit code will lose it.
3334 	 * If the guest has TM enabled, save away their TM-related SPRs
3335 	 * (they will get restored by the TM unavailable interrupt).
3336 	 */
3337 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3338 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3339 	    (current->thread.regs->msr & MSR_TM)) {
3340 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3341 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3342 			run->fail_entry.hardware_entry_failure_reason = 0;
3343 			return -EINVAL;
3344 		}
3345 		/* Enable TM so we can read the TM SPRs */
3346 		mtmsr(mfmsr() | MSR_TM);
3347 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3348 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3349 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3350 		current->thread.regs->msr &= ~MSR_TM;
3351 	}
3352 #endif
3353 
3354 	kvmppc_core_prepare_to_enter(vcpu);
3355 
3356 	/* No need to go into the guest when all we'll do is come back out */
3357 	if (signal_pending(current)) {
3358 		run->exit_reason = KVM_EXIT_INTR;
3359 		return -EINTR;
3360 	}
3361 
3362 	kvm = vcpu->kvm;
3363 	atomic_inc(&kvm->arch.vcpus_running);
3364 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3365 	smp_mb();
3366 
3367 	flush_all_to_thread(current);
3368 
3369 	/* Save userspace EBB and other register values */
3370 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3371 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3372 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3373 		ebb_regs[2] = mfspr(SPRN_BESCR);
3374 		user_tar = mfspr(SPRN_TAR);
3375 	}
3376 	user_vrsave = mfspr(SPRN_VRSAVE);
3377 
3378 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3379 	vcpu->arch.pgdir = current->mm->pgd;
3380 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3381 
3382 	do {
3383 		r = kvmppc_run_vcpu(run, vcpu);
3384 
3385 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3386 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3387 			trace_kvm_hcall_enter(vcpu);
3388 			r = kvmppc_pseries_do_hcall(vcpu);
3389 			trace_kvm_hcall_exit(vcpu, r);
3390 			kvmppc_core_prepare_to_enter(vcpu);
3391 		} else if (r == RESUME_PAGE_FAULT) {
3392 			srcu_idx = srcu_read_lock(&kvm->srcu);
3393 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3394 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3395 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3396 		} else if (r == RESUME_PASSTHROUGH) {
3397 			if (WARN_ON(xive_enabled()))
3398 				r = H_SUCCESS;
3399 			else
3400 				r = kvmppc_xics_rm_complete(vcpu, 0);
3401 		}
3402 	} while (is_kvmppc_resume_guest(r));
3403 
3404 	/* Restore userspace EBB and other register values */
3405 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3406 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3407 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3408 		mtspr(SPRN_BESCR, ebb_regs[2]);
3409 		mtspr(SPRN_TAR, user_tar);
3410 		mtspr(SPRN_FSCR, current->thread.fscr);
3411 	}
3412 	mtspr(SPRN_VRSAVE, user_vrsave);
3413 
3414 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3415 	atomic_dec(&kvm->arch.vcpus_running);
3416 	return r;
3417 }
3418 
3419 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3420 				     int shift, int sllp)
3421 {
3422 	(*sps)->page_shift = shift;
3423 	(*sps)->slb_enc = sllp;
3424 	(*sps)->enc[0].page_shift = shift;
3425 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3426 	/*
3427 	 * Add 16MB MPSS support (may get filtered out by userspace)
3428 	 */
3429 	if (shift != 24) {
3430 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3431 		if (penc != -1) {
3432 			(*sps)->enc[1].page_shift = 24;
3433 			(*sps)->enc[1].pte_enc = penc;
3434 		}
3435 	}
3436 	(*sps)++;
3437 }
3438 
3439 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3440 					 struct kvm_ppc_smmu_info *info)
3441 {
3442 	struct kvm_ppc_one_seg_page_size *sps;
3443 
3444 	/*
3445 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3446 	 * POWER7 doesn't support keys for instruction accesses,
3447 	 * POWER8 and POWER9 do.
3448 	 */
3449 	info->data_keys = 32;
3450 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3451 
3452 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3453 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3454 	info->slb_size = 32;
3455 
3456 	/* We only support these sizes for now, and no muti-size segments */
3457 	sps = &info->sps[0];
3458 	kvmppc_add_seg_page_size(&sps, 12, 0);
3459 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3460 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3461 
3462 	return 0;
3463 }
3464 
3465 /*
3466  * Get (and clear) the dirty memory log for a memory slot.
3467  */
3468 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3469 					 struct kvm_dirty_log *log)
3470 {
3471 	struct kvm_memslots *slots;
3472 	struct kvm_memory_slot *memslot;
3473 	int i, r;
3474 	unsigned long n;
3475 	unsigned long *buf, *p;
3476 	struct kvm_vcpu *vcpu;
3477 
3478 	mutex_lock(&kvm->slots_lock);
3479 
3480 	r = -EINVAL;
3481 	if (log->slot >= KVM_USER_MEM_SLOTS)
3482 		goto out;
3483 
3484 	slots = kvm_memslots(kvm);
3485 	memslot = id_to_memslot(slots, log->slot);
3486 	r = -ENOENT;
3487 	if (!memslot->dirty_bitmap)
3488 		goto out;
3489 
3490 	/*
3491 	 * Use second half of bitmap area because both HPT and radix
3492 	 * accumulate bits in the first half.
3493 	 */
3494 	n = kvm_dirty_bitmap_bytes(memslot);
3495 	buf = memslot->dirty_bitmap + n / sizeof(long);
3496 	memset(buf, 0, n);
3497 
3498 	if (kvm_is_radix(kvm))
3499 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3500 	else
3501 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3502 	if (r)
3503 		goto out;
3504 
3505 	/*
3506 	 * We accumulate dirty bits in the first half of the
3507 	 * memslot's dirty_bitmap area, for when pages are paged
3508 	 * out or modified by the host directly.  Pick up these
3509 	 * bits and add them to the map.
3510 	 */
3511 	p = memslot->dirty_bitmap;
3512 	for (i = 0; i < n / sizeof(long); ++i)
3513 		buf[i] |= xchg(&p[i], 0);
3514 
3515 	/* Harvest dirty bits from VPA and DTL updates */
3516 	/* Note: we never modify the SLB shadow buffer areas */
3517 	kvm_for_each_vcpu(i, vcpu, kvm) {
3518 		spin_lock(&vcpu->arch.vpa_update_lock);
3519 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3520 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3521 		spin_unlock(&vcpu->arch.vpa_update_lock);
3522 	}
3523 
3524 	r = -EFAULT;
3525 	if (copy_to_user(log->dirty_bitmap, buf, n))
3526 		goto out;
3527 
3528 	r = 0;
3529 out:
3530 	mutex_unlock(&kvm->slots_lock);
3531 	return r;
3532 }
3533 
3534 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3535 					struct kvm_memory_slot *dont)
3536 {
3537 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3538 		vfree(free->arch.rmap);
3539 		free->arch.rmap = NULL;
3540 	}
3541 }
3542 
3543 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3544 					 unsigned long npages)
3545 {
3546 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3547 	if (!slot->arch.rmap)
3548 		return -ENOMEM;
3549 
3550 	return 0;
3551 }
3552 
3553 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3554 					struct kvm_memory_slot *memslot,
3555 					const struct kvm_userspace_memory_region *mem)
3556 {
3557 	return 0;
3558 }
3559 
3560 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3561 				const struct kvm_userspace_memory_region *mem,
3562 				const struct kvm_memory_slot *old,
3563 				const struct kvm_memory_slot *new)
3564 {
3565 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3566 
3567 	/*
3568 	 * If we are making a new memslot, it might make
3569 	 * some address that was previously cached as emulated
3570 	 * MMIO be no longer emulated MMIO, so invalidate
3571 	 * all the caches of emulated MMIO translations.
3572 	 */
3573 	if (npages)
3574 		atomic64_inc(&kvm->arch.mmio_update);
3575 }
3576 
3577 /*
3578  * Update LPCR values in kvm->arch and in vcores.
3579  * Caller must hold kvm->lock.
3580  */
3581 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3582 {
3583 	long int i;
3584 	u32 cores_done = 0;
3585 
3586 	if ((kvm->arch.lpcr & mask) == lpcr)
3587 		return;
3588 
3589 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3590 
3591 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3592 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3593 		if (!vc)
3594 			continue;
3595 		spin_lock(&vc->lock);
3596 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3597 		spin_unlock(&vc->lock);
3598 		if (++cores_done >= kvm->arch.online_vcores)
3599 			break;
3600 	}
3601 }
3602 
3603 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3604 {
3605 	return;
3606 }
3607 
3608 void kvmppc_setup_partition_table(struct kvm *kvm)
3609 {
3610 	unsigned long dw0, dw1;
3611 
3612 	if (!kvm_is_radix(kvm)) {
3613 		/* PS field - page size for VRMA */
3614 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3615 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3616 		/* HTABSIZE and HTABORG fields */
3617 		dw0 |= kvm->arch.sdr1;
3618 
3619 		/* Second dword as set by userspace */
3620 		dw1 = kvm->arch.process_table;
3621 	} else {
3622 		dw0 = PATB_HR | radix__get_tree_size() |
3623 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3624 		dw1 = PATB_GR | kvm->arch.process_table;
3625 	}
3626 
3627 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3628 }
3629 
3630 /*
3631  * Set up HPT (hashed page table) and RMA (real-mode area).
3632  * Must be called with kvm->lock held.
3633  */
3634 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3635 {
3636 	int err = 0;
3637 	struct kvm *kvm = vcpu->kvm;
3638 	unsigned long hva;
3639 	struct kvm_memory_slot *memslot;
3640 	struct vm_area_struct *vma;
3641 	unsigned long lpcr = 0, senc;
3642 	unsigned long psize, porder;
3643 	int srcu_idx;
3644 
3645 	/* Allocate hashed page table (if not done already) and reset it */
3646 	if (!kvm->arch.hpt.virt) {
3647 		int order = KVM_DEFAULT_HPT_ORDER;
3648 		struct kvm_hpt_info info;
3649 
3650 		err = kvmppc_allocate_hpt(&info, order);
3651 		/* If we get here, it means userspace didn't specify a
3652 		 * size explicitly.  So, try successively smaller
3653 		 * sizes if the default failed. */
3654 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3655 			err  = kvmppc_allocate_hpt(&info, order);
3656 
3657 		if (err < 0) {
3658 			pr_err("KVM: Couldn't alloc HPT\n");
3659 			goto out;
3660 		}
3661 
3662 		kvmppc_set_hpt(kvm, &info);
3663 	}
3664 
3665 	/* Look up the memslot for guest physical address 0 */
3666 	srcu_idx = srcu_read_lock(&kvm->srcu);
3667 	memslot = gfn_to_memslot(kvm, 0);
3668 
3669 	/* We must have some memory at 0 by now */
3670 	err = -EINVAL;
3671 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3672 		goto out_srcu;
3673 
3674 	/* Look up the VMA for the start of this memory slot */
3675 	hva = memslot->userspace_addr;
3676 	down_read(&current->mm->mmap_sem);
3677 	vma = find_vma(current->mm, hva);
3678 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3679 		goto up_out;
3680 
3681 	psize = vma_kernel_pagesize(vma);
3682 
3683 	up_read(&current->mm->mmap_sem);
3684 
3685 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3686 	if (psize >= 0x1000000)
3687 		psize = 0x1000000;
3688 	else if (psize >= 0x10000)
3689 		psize = 0x10000;
3690 	else
3691 		psize = 0x1000;
3692 	porder = __ilog2(psize);
3693 
3694 	senc = slb_pgsize_encoding(psize);
3695 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3696 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3697 	/* Create HPTEs in the hash page table for the VRMA */
3698 	kvmppc_map_vrma(vcpu, memslot, porder);
3699 
3700 	/* Update VRMASD field in the LPCR */
3701 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3702 		/* the -4 is to account for senc values starting at 0x10 */
3703 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3704 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3705 	}
3706 
3707 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3708 	smp_wmb();
3709 	err = 0;
3710  out_srcu:
3711 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3712  out:
3713 	return err;
3714 
3715  up_out:
3716 	up_read(&current->mm->mmap_sem);
3717 	goto out_srcu;
3718 }
3719 
3720 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3721 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3722 {
3723 	kvmppc_free_radix(kvm);
3724 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3725 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3726 	kvmppc_rmap_reset(kvm);
3727 	kvm->arch.radix = 0;
3728 	kvm->arch.process_table = 0;
3729 	return 0;
3730 }
3731 
3732 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3733 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3734 {
3735 	int err;
3736 
3737 	err = kvmppc_init_vm_radix(kvm);
3738 	if (err)
3739 		return err;
3740 
3741 	kvmppc_free_hpt(&kvm->arch.hpt);
3742 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3743 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3744 	kvm->arch.radix = 1;
3745 	return 0;
3746 }
3747 
3748 #ifdef CONFIG_KVM_XICS
3749 /*
3750  * Allocate a per-core structure for managing state about which cores are
3751  * running in the host versus the guest and for exchanging data between
3752  * real mode KVM and CPU running in the host.
3753  * This is only done for the first VM.
3754  * The allocated structure stays even if all VMs have stopped.
3755  * It is only freed when the kvm-hv module is unloaded.
3756  * It's OK for this routine to fail, we just don't support host
3757  * core operations like redirecting H_IPI wakeups.
3758  */
3759 void kvmppc_alloc_host_rm_ops(void)
3760 {
3761 	struct kvmppc_host_rm_ops *ops;
3762 	unsigned long l_ops;
3763 	int cpu, core;
3764 	int size;
3765 
3766 	/* Not the first time here ? */
3767 	if (kvmppc_host_rm_ops_hv != NULL)
3768 		return;
3769 
3770 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3771 	if (!ops)
3772 		return;
3773 
3774 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3775 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3776 
3777 	if (!ops->rm_core) {
3778 		kfree(ops);
3779 		return;
3780 	}
3781 
3782 	cpus_read_lock();
3783 
3784 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3785 		if (!cpu_online(cpu))
3786 			continue;
3787 
3788 		core = cpu >> threads_shift;
3789 		ops->rm_core[core].rm_state.in_host = 1;
3790 	}
3791 
3792 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3793 
3794 	/*
3795 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3796 	 * to other CPUs before we assign it to the global variable.
3797 	 * Do an atomic assignment (no locks used here), but if someone
3798 	 * beats us to it, just free our copy and return.
3799 	 */
3800 	smp_wmb();
3801 	l_ops = (unsigned long) ops;
3802 
3803 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3804 		cpus_read_unlock();
3805 		kfree(ops->rm_core);
3806 		kfree(ops);
3807 		return;
3808 	}
3809 
3810 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3811 					     "ppc/kvm_book3s:prepare",
3812 					     kvmppc_set_host_core,
3813 					     kvmppc_clear_host_core);
3814 	cpus_read_unlock();
3815 }
3816 
3817 void kvmppc_free_host_rm_ops(void)
3818 {
3819 	if (kvmppc_host_rm_ops_hv) {
3820 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3821 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3822 		kfree(kvmppc_host_rm_ops_hv);
3823 		kvmppc_host_rm_ops_hv = NULL;
3824 	}
3825 }
3826 #endif
3827 
3828 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3829 {
3830 	unsigned long lpcr, lpid;
3831 	char buf[32];
3832 	int ret;
3833 
3834 	/* Allocate the guest's logical partition ID */
3835 
3836 	lpid = kvmppc_alloc_lpid();
3837 	if ((long)lpid < 0)
3838 		return -ENOMEM;
3839 	kvm->arch.lpid = lpid;
3840 
3841 	kvmppc_alloc_host_rm_ops();
3842 
3843 	/*
3844 	 * Since we don't flush the TLB when tearing down a VM,
3845 	 * and this lpid might have previously been used,
3846 	 * make sure we flush on each core before running the new VM.
3847 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3848 	 * does this flush for us.
3849 	 */
3850 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3851 		cpumask_setall(&kvm->arch.need_tlb_flush);
3852 
3853 	/* Start out with the default set of hcalls enabled */
3854 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3855 	       sizeof(kvm->arch.enabled_hcalls));
3856 
3857 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3858 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3859 
3860 	/* Init LPCR for virtual RMA mode */
3861 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3862 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3863 	lpcr &= LPCR_PECE | LPCR_LPES;
3864 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3865 		LPCR_VPM0 | LPCR_VPM1;
3866 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3867 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3868 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3869 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3870 		lpcr |= LPCR_ONL;
3871 	/*
3872 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3873 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3874 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3875 	 * be unnecessary but better safe than sorry in case we re-enable
3876 	 * EE in HV mode with this LPCR still set)
3877 	 */
3878 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3879 		lpcr &= ~LPCR_VPM0;
3880 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3881 
3882 		/*
3883 		 * If xive is enabled, we route 0x500 interrupts directly
3884 		 * to the guest.
3885 		 */
3886 		if (xive_enabled())
3887 			lpcr |= LPCR_LPES;
3888 	}
3889 
3890 	/*
3891 	 * If the host uses radix, the guest starts out as radix.
3892 	 */
3893 	if (radix_enabled()) {
3894 		kvm->arch.radix = 1;
3895 		kvm->arch.mmu_ready = 1;
3896 		lpcr &= ~LPCR_VPM1;
3897 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3898 		ret = kvmppc_init_vm_radix(kvm);
3899 		if (ret) {
3900 			kvmppc_free_lpid(kvm->arch.lpid);
3901 			return ret;
3902 		}
3903 		kvmppc_setup_partition_table(kvm);
3904 	}
3905 
3906 	kvm->arch.lpcr = lpcr;
3907 
3908 	/* Initialization for future HPT resizes */
3909 	kvm->arch.resize_hpt = NULL;
3910 
3911 	/*
3912 	 * Work out how many sets the TLB has, for the use of
3913 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3914 	 */
3915 	if (radix_enabled())
3916 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3917 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3918 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3919 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3920 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3921 	else
3922 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3923 
3924 	/*
3925 	 * Track that we now have a HV mode VM active. This blocks secondary
3926 	 * CPU threads from coming online.
3927 	 * On POWER9, we only need to do this if the "indep_threads_mode"
3928 	 * module parameter has been set to N.
3929 	 */
3930 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3931 		kvm->arch.threads_indep = indep_threads_mode;
3932 	if (!kvm->arch.threads_indep)
3933 		kvm_hv_vm_activated();
3934 
3935 	/*
3936 	 * Initialize smt_mode depending on processor.
3937 	 * POWER8 and earlier have to use "strict" threading, where
3938 	 * all vCPUs in a vcore have to run on the same (sub)core,
3939 	 * whereas on POWER9 the threads can each run a different
3940 	 * guest.
3941 	 */
3942 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3943 		kvm->arch.smt_mode = threads_per_subcore;
3944 	else
3945 		kvm->arch.smt_mode = 1;
3946 	kvm->arch.emul_smt_mode = 1;
3947 
3948 	/*
3949 	 * Create a debugfs directory for the VM
3950 	 */
3951 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3952 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3953 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3954 		kvmppc_mmu_debugfs_init(kvm);
3955 
3956 	return 0;
3957 }
3958 
3959 static void kvmppc_free_vcores(struct kvm *kvm)
3960 {
3961 	long int i;
3962 
3963 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3964 		kfree(kvm->arch.vcores[i]);
3965 	kvm->arch.online_vcores = 0;
3966 }
3967 
3968 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3969 {
3970 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3971 
3972 	if (!kvm->arch.threads_indep)
3973 		kvm_hv_vm_deactivated();
3974 
3975 	kvmppc_free_vcores(kvm);
3976 
3977 	kvmppc_free_lpid(kvm->arch.lpid);
3978 
3979 	if (kvm_is_radix(kvm))
3980 		kvmppc_free_radix(kvm);
3981 	else
3982 		kvmppc_free_hpt(&kvm->arch.hpt);
3983 
3984 	kvmppc_free_pimap(kvm);
3985 }
3986 
3987 /* We don't need to emulate any privileged instructions or dcbz */
3988 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3989 				     unsigned int inst, int *advance)
3990 {
3991 	return EMULATE_FAIL;
3992 }
3993 
3994 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3995 					ulong spr_val)
3996 {
3997 	return EMULATE_FAIL;
3998 }
3999 
4000 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4001 					ulong *spr_val)
4002 {
4003 	return EMULATE_FAIL;
4004 }
4005 
4006 static int kvmppc_core_check_processor_compat_hv(void)
4007 {
4008 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4009 	    !cpu_has_feature(CPU_FTR_ARCH_206))
4010 		return -EIO;
4011 
4012 	return 0;
4013 }
4014 
4015 #ifdef CONFIG_KVM_XICS
4016 
4017 void kvmppc_free_pimap(struct kvm *kvm)
4018 {
4019 	kfree(kvm->arch.pimap);
4020 }
4021 
4022 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4023 {
4024 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4025 }
4026 
4027 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4028 {
4029 	struct irq_desc *desc;
4030 	struct kvmppc_irq_map *irq_map;
4031 	struct kvmppc_passthru_irqmap *pimap;
4032 	struct irq_chip *chip;
4033 	int i, rc = 0;
4034 
4035 	if (!kvm_irq_bypass)
4036 		return 1;
4037 
4038 	desc = irq_to_desc(host_irq);
4039 	if (!desc)
4040 		return -EIO;
4041 
4042 	mutex_lock(&kvm->lock);
4043 
4044 	pimap = kvm->arch.pimap;
4045 	if (pimap == NULL) {
4046 		/* First call, allocate structure to hold IRQ map */
4047 		pimap = kvmppc_alloc_pimap();
4048 		if (pimap == NULL) {
4049 			mutex_unlock(&kvm->lock);
4050 			return -ENOMEM;
4051 		}
4052 		kvm->arch.pimap = pimap;
4053 	}
4054 
4055 	/*
4056 	 * For now, we only support interrupts for which the EOI operation
4057 	 * is an OPAL call followed by a write to XIRR, since that's
4058 	 * what our real-mode EOI code does, or a XIVE interrupt
4059 	 */
4060 	chip = irq_data_get_irq_chip(&desc->irq_data);
4061 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4062 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4063 			host_irq, guest_gsi);
4064 		mutex_unlock(&kvm->lock);
4065 		return -ENOENT;
4066 	}
4067 
4068 	/*
4069 	 * See if we already have an entry for this guest IRQ number.
4070 	 * If it's mapped to a hardware IRQ number, that's an error,
4071 	 * otherwise re-use this entry.
4072 	 */
4073 	for (i = 0; i < pimap->n_mapped; i++) {
4074 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4075 			if (pimap->mapped[i].r_hwirq) {
4076 				mutex_unlock(&kvm->lock);
4077 				return -EINVAL;
4078 			}
4079 			break;
4080 		}
4081 	}
4082 
4083 	if (i == KVMPPC_PIRQ_MAPPED) {
4084 		mutex_unlock(&kvm->lock);
4085 		return -EAGAIN;		/* table is full */
4086 	}
4087 
4088 	irq_map = &pimap->mapped[i];
4089 
4090 	irq_map->v_hwirq = guest_gsi;
4091 	irq_map->desc = desc;
4092 
4093 	/*
4094 	 * Order the above two stores before the next to serialize with
4095 	 * the KVM real mode handler.
4096 	 */
4097 	smp_wmb();
4098 	irq_map->r_hwirq = desc->irq_data.hwirq;
4099 
4100 	if (i == pimap->n_mapped)
4101 		pimap->n_mapped++;
4102 
4103 	if (xive_enabled())
4104 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4105 	else
4106 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4107 	if (rc)
4108 		irq_map->r_hwirq = 0;
4109 
4110 	mutex_unlock(&kvm->lock);
4111 
4112 	return 0;
4113 }
4114 
4115 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4116 {
4117 	struct irq_desc *desc;
4118 	struct kvmppc_passthru_irqmap *pimap;
4119 	int i, rc = 0;
4120 
4121 	if (!kvm_irq_bypass)
4122 		return 0;
4123 
4124 	desc = irq_to_desc(host_irq);
4125 	if (!desc)
4126 		return -EIO;
4127 
4128 	mutex_lock(&kvm->lock);
4129 	if (!kvm->arch.pimap)
4130 		goto unlock;
4131 
4132 	pimap = kvm->arch.pimap;
4133 
4134 	for (i = 0; i < pimap->n_mapped; i++) {
4135 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4136 			break;
4137 	}
4138 
4139 	if (i == pimap->n_mapped) {
4140 		mutex_unlock(&kvm->lock);
4141 		return -ENODEV;
4142 	}
4143 
4144 	if (xive_enabled())
4145 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4146 	else
4147 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4148 
4149 	/* invalidate the entry (what do do on error from the above ?) */
4150 	pimap->mapped[i].r_hwirq = 0;
4151 
4152 	/*
4153 	 * We don't free this structure even when the count goes to
4154 	 * zero. The structure is freed when we destroy the VM.
4155 	 */
4156  unlock:
4157 	mutex_unlock(&kvm->lock);
4158 	return rc;
4159 }
4160 
4161 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4162 					     struct irq_bypass_producer *prod)
4163 {
4164 	int ret = 0;
4165 	struct kvm_kernel_irqfd *irqfd =
4166 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4167 
4168 	irqfd->producer = prod;
4169 
4170 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4171 	if (ret)
4172 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4173 			prod->irq, irqfd->gsi, ret);
4174 
4175 	return ret;
4176 }
4177 
4178 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4179 					      struct irq_bypass_producer *prod)
4180 {
4181 	int ret;
4182 	struct kvm_kernel_irqfd *irqfd =
4183 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4184 
4185 	irqfd->producer = NULL;
4186 
4187 	/*
4188 	 * When producer of consumer is unregistered, we change back to
4189 	 * default external interrupt handling mode - KVM real mode
4190 	 * will switch back to host.
4191 	 */
4192 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4193 	if (ret)
4194 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4195 			prod->irq, irqfd->gsi, ret);
4196 }
4197 #endif
4198 
4199 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4200 				 unsigned int ioctl, unsigned long arg)
4201 {
4202 	struct kvm *kvm __maybe_unused = filp->private_data;
4203 	void __user *argp = (void __user *)arg;
4204 	long r;
4205 
4206 	switch (ioctl) {
4207 
4208 	case KVM_PPC_ALLOCATE_HTAB: {
4209 		u32 htab_order;
4210 
4211 		r = -EFAULT;
4212 		if (get_user(htab_order, (u32 __user *)argp))
4213 			break;
4214 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4215 		if (r)
4216 			break;
4217 		r = 0;
4218 		break;
4219 	}
4220 
4221 	case KVM_PPC_GET_HTAB_FD: {
4222 		struct kvm_get_htab_fd ghf;
4223 
4224 		r = -EFAULT;
4225 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4226 			break;
4227 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4228 		break;
4229 	}
4230 
4231 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4232 		struct kvm_ppc_resize_hpt rhpt;
4233 
4234 		r = -EFAULT;
4235 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4236 			break;
4237 
4238 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4239 		break;
4240 	}
4241 
4242 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4243 		struct kvm_ppc_resize_hpt rhpt;
4244 
4245 		r = -EFAULT;
4246 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4247 			break;
4248 
4249 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4250 		break;
4251 	}
4252 
4253 	default:
4254 		r = -ENOTTY;
4255 	}
4256 
4257 	return r;
4258 }
4259 
4260 /*
4261  * List of hcall numbers to enable by default.
4262  * For compatibility with old userspace, we enable by default
4263  * all hcalls that were implemented before the hcall-enabling
4264  * facility was added.  Note this list should not include H_RTAS.
4265  */
4266 static unsigned int default_hcall_list[] = {
4267 	H_REMOVE,
4268 	H_ENTER,
4269 	H_READ,
4270 	H_PROTECT,
4271 	H_BULK_REMOVE,
4272 	H_GET_TCE,
4273 	H_PUT_TCE,
4274 	H_SET_DABR,
4275 	H_SET_XDABR,
4276 	H_CEDE,
4277 	H_PROD,
4278 	H_CONFER,
4279 	H_REGISTER_VPA,
4280 #ifdef CONFIG_KVM_XICS
4281 	H_EOI,
4282 	H_CPPR,
4283 	H_IPI,
4284 	H_IPOLL,
4285 	H_XIRR,
4286 	H_XIRR_X,
4287 #endif
4288 	0
4289 };
4290 
4291 static void init_default_hcalls(void)
4292 {
4293 	int i;
4294 	unsigned int hcall;
4295 
4296 	for (i = 0; default_hcall_list[i]; ++i) {
4297 		hcall = default_hcall_list[i];
4298 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4299 		__set_bit(hcall / 4, default_enabled_hcalls);
4300 	}
4301 }
4302 
4303 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4304 {
4305 	unsigned long lpcr;
4306 	int radix;
4307 	int err;
4308 
4309 	/* If not on a POWER9, reject it */
4310 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4311 		return -ENODEV;
4312 
4313 	/* If any unknown flags set, reject it */
4314 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4315 		return -EINVAL;
4316 
4317 	/* GR (guest radix) bit in process_table field must match */
4318 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4319 	if (!!(cfg->process_table & PATB_GR) != radix)
4320 		return -EINVAL;
4321 
4322 	/* Process table size field must be reasonable, i.e. <= 24 */
4323 	if ((cfg->process_table & PRTS_MASK) > 24)
4324 		return -EINVAL;
4325 
4326 	/* We can change a guest to/from radix now, if the host is radix */
4327 	if (radix && !radix_enabled())
4328 		return -EINVAL;
4329 
4330 	mutex_lock(&kvm->lock);
4331 	if (radix != kvm_is_radix(kvm)) {
4332 		if (kvm->arch.mmu_ready) {
4333 			kvm->arch.mmu_ready = 0;
4334 			/* order mmu_ready vs. vcpus_running */
4335 			smp_mb();
4336 			if (atomic_read(&kvm->arch.vcpus_running)) {
4337 				kvm->arch.mmu_ready = 1;
4338 				err = -EBUSY;
4339 				goto out_unlock;
4340 			}
4341 		}
4342 		if (radix)
4343 			err = kvmppc_switch_mmu_to_radix(kvm);
4344 		else
4345 			err = kvmppc_switch_mmu_to_hpt(kvm);
4346 		if (err)
4347 			goto out_unlock;
4348 	}
4349 
4350 	kvm->arch.process_table = cfg->process_table;
4351 	kvmppc_setup_partition_table(kvm);
4352 
4353 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4354 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4355 	err = 0;
4356 
4357  out_unlock:
4358 	mutex_unlock(&kvm->lock);
4359 	return err;
4360 }
4361 
4362 static struct kvmppc_ops kvm_ops_hv = {
4363 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4364 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4365 	.get_one_reg = kvmppc_get_one_reg_hv,
4366 	.set_one_reg = kvmppc_set_one_reg_hv,
4367 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4368 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4369 	.set_msr     = kvmppc_set_msr_hv,
4370 	.vcpu_run    = kvmppc_vcpu_run_hv,
4371 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4372 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4373 	.check_requests = kvmppc_core_check_requests_hv,
4374 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4375 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4376 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4377 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4378 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4379 	.age_hva  = kvm_age_hva_hv,
4380 	.test_age_hva = kvm_test_age_hva_hv,
4381 	.set_spte_hva = kvm_set_spte_hva_hv,
4382 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4383 	.free_memslot = kvmppc_core_free_memslot_hv,
4384 	.create_memslot = kvmppc_core_create_memslot_hv,
4385 	.init_vm =  kvmppc_core_init_vm_hv,
4386 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4387 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4388 	.emulate_op = kvmppc_core_emulate_op_hv,
4389 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4390 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4391 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4392 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4393 	.hcall_implemented = kvmppc_hcall_impl_hv,
4394 #ifdef CONFIG_KVM_XICS
4395 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4396 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4397 #endif
4398 	.configure_mmu = kvmhv_configure_mmu,
4399 	.get_rmmu_info = kvmhv_get_rmmu_info,
4400 	.set_smt_mode = kvmhv_set_smt_mode,
4401 };
4402 
4403 static int kvm_init_subcore_bitmap(void)
4404 {
4405 	int i, j;
4406 	int nr_cores = cpu_nr_cores();
4407 	struct sibling_subcore_state *sibling_subcore_state;
4408 
4409 	for (i = 0; i < nr_cores; i++) {
4410 		int first_cpu = i * threads_per_core;
4411 		int node = cpu_to_node(first_cpu);
4412 
4413 		/* Ignore if it is already allocated. */
4414 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4415 			continue;
4416 
4417 		sibling_subcore_state =
4418 			kmalloc_node(sizeof(struct sibling_subcore_state),
4419 							GFP_KERNEL, node);
4420 		if (!sibling_subcore_state)
4421 			return -ENOMEM;
4422 
4423 		memset(sibling_subcore_state, 0,
4424 				sizeof(struct sibling_subcore_state));
4425 
4426 		for (j = 0; j < threads_per_core; j++) {
4427 			int cpu = first_cpu + j;
4428 
4429 			paca_ptrs[cpu]->sibling_subcore_state =
4430 						sibling_subcore_state;
4431 		}
4432 	}
4433 	return 0;
4434 }
4435 
4436 static int kvmppc_radix_possible(void)
4437 {
4438 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4439 }
4440 
4441 static int kvmppc_book3s_init_hv(void)
4442 {
4443 	int r;
4444 	/*
4445 	 * FIXME!! Do we need to check on all cpus ?
4446 	 */
4447 	r = kvmppc_core_check_processor_compat_hv();
4448 	if (r < 0)
4449 		return -ENODEV;
4450 
4451 	r = kvm_init_subcore_bitmap();
4452 	if (r)
4453 		return r;
4454 
4455 	/*
4456 	 * We need a way of accessing the XICS interrupt controller,
4457 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4458 	 * indirectly, via OPAL.
4459 	 */
4460 #ifdef CONFIG_SMP
4461 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4462 		struct device_node *np;
4463 
4464 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4465 		if (!np) {
4466 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4467 			return -ENODEV;
4468 		}
4469 	}
4470 #endif
4471 
4472 	kvm_ops_hv.owner = THIS_MODULE;
4473 	kvmppc_hv_ops = &kvm_ops_hv;
4474 
4475 	init_default_hcalls();
4476 
4477 	init_vcore_lists();
4478 
4479 	r = kvmppc_mmu_hv_init();
4480 	if (r)
4481 		return r;
4482 
4483 	if (kvmppc_radix_possible())
4484 		r = kvmppc_radix_init();
4485 
4486 	/*
4487 	 * POWER9 chips before version 2.02 can't have some threads in
4488 	 * HPT mode and some in radix mode on the same core.
4489 	 */
4490 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4491 		unsigned int pvr = mfspr(SPRN_PVR);
4492 		if ((pvr >> 16) == PVR_POWER9 &&
4493 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4494 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4495 			no_mixing_hpt_and_radix = true;
4496 	}
4497 
4498 	return r;
4499 }
4500 
4501 static void kvmppc_book3s_exit_hv(void)
4502 {
4503 	kvmppc_free_host_rm_ops();
4504 	if (kvmppc_radix_possible())
4505 		kvmppc_radix_exit();
4506 	kvmppc_hv_ops = NULL;
4507 }
4508 
4509 module_init(kvmppc_book3s_init_hv);
4510 module_exit(kvmppc_book3s_exit_hv);
4511 MODULE_LICENSE("GPL");
4512 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4513 MODULE_ALIAS("devname:kvm");
4514