xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/archrandom.h>
54 #include <asm/debug.h>
55 #include <asm/disassemble.h>
56 #include <asm/cputable.h>
57 #include <asm/cacheflush.h>
58 #include <linux/uaccess.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 
78 #include "book3s.h"
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82 
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86 
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
91 
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL	(~(u64)0)
94 
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96 
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103 
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107 
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111 
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114 	.set = param_set_int,
115 	.get = param_get_int,
116 };
117 
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120 
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124 
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129 
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134 
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137 
138 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140 
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_2THREAD,
159 	RWMR_RPA_P8_3THREAD,
160 	RWMR_RPA_P8_4THREAD,
161 	RWMR_RPA_P8_5THREAD,
162 	RWMR_RPA_P8_6THREAD,
163 	RWMR_RPA_P8_7THREAD,
164 	RWMR_RPA_P8_8THREAD,
165 };
166 
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 		int *ip)
169 {
170 	int i = *ip;
171 	struct kvm_vcpu *vcpu;
172 
173 	while (++i < MAX_SMT_THREADS) {
174 		vcpu = READ_ONCE(vc->runnable_threads[i]);
175 		if (vcpu) {
176 			*ip = i;
177 			return vcpu;
178 		}
179 	}
180 	return NULL;
181 }
182 
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186 
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190 
191 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 	if (kvmhv_on_pseries())
193 		return false;
194 
195 	/* On POWER9 we can use msgsnd to IPI any cpu */
196 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 		msg |= get_hard_smp_processor_id(cpu);
198 		smp_mb();
199 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 		return true;
201 	}
202 
203 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 		preempt_disable();
206 		if (cpu_first_thread_sibling(cpu) ==
207 		    cpu_first_thread_sibling(smp_processor_id())) {
208 			msg |= cpu_thread_in_core(cpu);
209 			smp_mb();
210 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 			preempt_enable();
212 			return true;
213 		}
214 		preempt_enable();
215 	}
216 
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 	if (cpu >= 0 && cpu < nr_cpu_ids) {
219 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 			xics_wake_cpu(cpu);
221 			return true;
222 		}
223 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 		return true;
225 	}
226 #endif
227 
228 	return false;
229 }
230 
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233 	int cpu;
234 	struct swait_queue_head *wqp;
235 
236 	wqp = kvm_arch_vcpu_wq(vcpu);
237 	if (swq_has_sleeper(wqp)) {
238 		swake_up_one(wqp);
239 		++vcpu->stat.halt_wakeup;
240 	}
241 
242 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
243 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244 		return;
245 
246 	/* CPU points to the first thread of the core */
247 	cpu = vcpu->cpu;
248 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249 		smp_send_reschedule(cpu);
250 }
251 
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284 
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&vc->stoltb_lock, flags);
290 	vc->preempt_tb = mftb();
291 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293 
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&vc->stoltb_lock, flags);
299 	if (vc->preempt_tb != TB_NIL) {
300 		vc->stolen_tb += mftb() - vc->preempt_tb;
301 		vc->preempt_tb = TB_NIL;
302 	}
303 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305 
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309 	unsigned long flags;
310 
311 	/*
312 	 * We can test vc->runner without taking the vcore lock,
313 	 * because only this task ever sets vc->runner to this
314 	 * vcpu, and once it is set to this vcpu, only this task
315 	 * ever sets it to NULL.
316 	 */
317 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318 		kvmppc_core_end_stolen(vc);
319 
320 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322 	    vcpu->arch.busy_preempt != TB_NIL) {
323 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324 		vcpu->arch.busy_preempt = TB_NIL;
325 	}
326 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328 
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332 	unsigned long flags;
333 
334 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335 		kvmppc_core_start_stolen(vc);
336 
337 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339 		vcpu->arch.busy_preempt = mftb();
340 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342 
343 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
344 {
345 	/*
346 	 * Check for illegal transactional state bit combination
347 	 * and if we find it, force the TS field to a safe state.
348 	 */
349 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
350 		msr &= ~MSR_TS_MASK;
351 	vcpu->arch.shregs.msr = msr;
352 	kvmppc_end_cede(vcpu);
353 }
354 
355 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
356 {
357 	vcpu->arch.pvr = pvr;
358 }
359 
360 /* Dummy value used in computing PCR value below */
361 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
362 
363 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
364 {
365 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
366 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
367 
368 	/* We can (emulate) our own architecture version and anything older */
369 	if (cpu_has_feature(CPU_FTR_ARCH_300))
370 		host_pcr_bit = PCR_ARCH_300;
371 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
372 		host_pcr_bit = PCR_ARCH_207;
373 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
374 		host_pcr_bit = PCR_ARCH_206;
375 	else
376 		host_pcr_bit = PCR_ARCH_205;
377 
378 	/* Determine lowest PCR bit needed to run guest in given PVR level */
379 	guest_pcr_bit = host_pcr_bit;
380 	if (arch_compat) {
381 		switch (arch_compat) {
382 		case PVR_ARCH_205:
383 			guest_pcr_bit = PCR_ARCH_205;
384 			break;
385 		case PVR_ARCH_206:
386 		case PVR_ARCH_206p:
387 			guest_pcr_bit = PCR_ARCH_206;
388 			break;
389 		case PVR_ARCH_207:
390 			guest_pcr_bit = PCR_ARCH_207;
391 			break;
392 		case PVR_ARCH_300:
393 			guest_pcr_bit = PCR_ARCH_300;
394 			break;
395 		default:
396 			return -EINVAL;
397 		}
398 	}
399 
400 	/* Check requested PCR bits don't exceed our capabilities */
401 	if (guest_pcr_bit > host_pcr_bit)
402 		return -EINVAL;
403 
404 	spin_lock(&vc->lock);
405 	vc->arch_compat = arch_compat;
406 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
407 	vc->pcr = host_pcr_bit - guest_pcr_bit;
408 	spin_unlock(&vc->lock);
409 
410 	return 0;
411 }
412 
413 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
414 {
415 	int r;
416 
417 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
418 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
419 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
420 	for (r = 0; r < 16; ++r)
421 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
422 		       r, kvmppc_get_gpr(vcpu, r),
423 		       r+16, kvmppc_get_gpr(vcpu, r+16));
424 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
425 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
426 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
427 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
428 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
429 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
430 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
431 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
432 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
433 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
434 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
435 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
436 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
437 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
438 	for (r = 0; r < vcpu->arch.slb_max; ++r)
439 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
440 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
441 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
442 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
443 	       vcpu->arch.last_inst);
444 }
445 
446 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
447 {
448 	struct kvm_vcpu *ret;
449 
450 	mutex_lock(&kvm->lock);
451 	ret = kvm_get_vcpu_by_id(kvm, id);
452 	mutex_unlock(&kvm->lock);
453 	return ret;
454 }
455 
456 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
457 {
458 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
459 	vpa->yield_count = cpu_to_be32(1);
460 }
461 
462 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
463 		   unsigned long addr, unsigned long len)
464 {
465 	/* check address is cacheline aligned */
466 	if (addr & (L1_CACHE_BYTES - 1))
467 		return -EINVAL;
468 	spin_lock(&vcpu->arch.vpa_update_lock);
469 	if (v->next_gpa != addr || v->len != len) {
470 		v->next_gpa = addr;
471 		v->len = addr ? len : 0;
472 		v->update_pending = 1;
473 	}
474 	spin_unlock(&vcpu->arch.vpa_update_lock);
475 	return 0;
476 }
477 
478 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
479 struct reg_vpa {
480 	u32 dummy;
481 	union {
482 		__be16 hword;
483 		__be32 word;
484 	} length;
485 };
486 
487 static int vpa_is_registered(struct kvmppc_vpa *vpap)
488 {
489 	if (vpap->update_pending)
490 		return vpap->next_gpa != 0;
491 	return vpap->pinned_addr != NULL;
492 }
493 
494 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
495 				       unsigned long flags,
496 				       unsigned long vcpuid, unsigned long vpa)
497 {
498 	struct kvm *kvm = vcpu->kvm;
499 	unsigned long len, nb;
500 	void *va;
501 	struct kvm_vcpu *tvcpu;
502 	int err;
503 	int subfunc;
504 	struct kvmppc_vpa *vpap;
505 
506 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
507 	if (!tvcpu)
508 		return H_PARAMETER;
509 
510 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
511 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
512 	    subfunc == H_VPA_REG_SLB) {
513 		/* Registering new area - address must be cache-line aligned */
514 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
515 			return H_PARAMETER;
516 
517 		/* convert logical addr to kernel addr and read length */
518 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
519 		if (va == NULL)
520 			return H_PARAMETER;
521 		if (subfunc == H_VPA_REG_VPA)
522 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
523 		else
524 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
525 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
526 
527 		/* Check length */
528 		if (len > nb || len < sizeof(struct reg_vpa))
529 			return H_PARAMETER;
530 	} else {
531 		vpa = 0;
532 		len = 0;
533 	}
534 
535 	err = H_PARAMETER;
536 	vpap = NULL;
537 	spin_lock(&tvcpu->arch.vpa_update_lock);
538 
539 	switch (subfunc) {
540 	case H_VPA_REG_VPA:		/* register VPA */
541 		/*
542 		 * The size of our lppaca is 1kB because of the way we align
543 		 * it for the guest to avoid crossing a 4kB boundary. We only
544 		 * use 640 bytes of the structure though, so we should accept
545 		 * clients that set a size of 640.
546 		 */
547 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
548 		if (len < sizeof(struct lppaca))
549 			break;
550 		vpap = &tvcpu->arch.vpa;
551 		err = 0;
552 		break;
553 
554 	case H_VPA_REG_DTL:		/* register DTL */
555 		if (len < sizeof(struct dtl_entry))
556 			break;
557 		len -= len % sizeof(struct dtl_entry);
558 
559 		/* Check that they have previously registered a VPA */
560 		err = H_RESOURCE;
561 		if (!vpa_is_registered(&tvcpu->arch.vpa))
562 			break;
563 
564 		vpap = &tvcpu->arch.dtl;
565 		err = 0;
566 		break;
567 
568 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
569 		/* Check that they have previously registered a VPA */
570 		err = H_RESOURCE;
571 		if (!vpa_is_registered(&tvcpu->arch.vpa))
572 			break;
573 
574 		vpap = &tvcpu->arch.slb_shadow;
575 		err = 0;
576 		break;
577 
578 	case H_VPA_DEREG_VPA:		/* deregister VPA */
579 		/* Check they don't still have a DTL or SLB buf registered */
580 		err = H_RESOURCE;
581 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
582 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
583 			break;
584 
585 		vpap = &tvcpu->arch.vpa;
586 		err = 0;
587 		break;
588 
589 	case H_VPA_DEREG_DTL:		/* deregister DTL */
590 		vpap = &tvcpu->arch.dtl;
591 		err = 0;
592 		break;
593 
594 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
595 		vpap = &tvcpu->arch.slb_shadow;
596 		err = 0;
597 		break;
598 	}
599 
600 	if (vpap) {
601 		vpap->next_gpa = vpa;
602 		vpap->len = len;
603 		vpap->update_pending = 1;
604 	}
605 
606 	spin_unlock(&tvcpu->arch.vpa_update_lock);
607 
608 	return err;
609 }
610 
611 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
612 {
613 	struct kvm *kvm = vcpu->kvm;
614 	void *va;
615 	unsigned long nb;
616 	unsigned long gpa;
617 
618 	/*
619 	 * We need to pin the page pointed to by vpap->next_gpa,
620 	 * but we can't call kvmppc_pin_guest_page under the lock
621 	 * as it does get_user_pages() and down_read().  So we
622 	 * have to drop the lock, pin the page, then get the lock
623 	 * again and check that a new area didn't get registered
624 	 * in the meantime.
625 	 */
626 	for (;;) {
627 		gpa = vpap->next_gpa;
628 		spin_unlock(&vcpu->arch.vpa_update_lock);
629 		va = NULL;
630 		nb = 0;
631 		if (gpa)
632 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
633 		spin_lock(&vcpu->arch.vpa_update_lock);
634 		if (gpa == vpap->next_gpa)
635 			break;
636 		/* sigh... unpin that one and try again */
637 		if (va)
638 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
639 	}
640 
641 	vpap->update_pending = 0;
642 	if (va && nb < vpap->len) {
643 		/*
644 		 * If it's now too short, it must be that userspace
645 		 * has changed the mappings underlying guest memory,
646 		 * so unregister the region.
647 		 */
648 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
649 		va = NULL;
650 	}
651 	if (vpap->pinned_addr)
652 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
653 					vpap->dirty);
654 	vpap->gpa = gpa;
655 	vpap->pinned_addr = va;
656 	vpap->dirty = false;
657 	if (va)
658 		vpap->pinned_end = va + vpap->len;
659 }
660 
661 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
662 {
663 	if (!(vcpu->arch.vpa.update_pending ||
664 	      vcpu->arch.slb_shadow.update_pending ||
665 	      vcpu->arch.dtl.update_pending))
666 		return;
667 
668 	spin_lock(&vcpu->arch.vpa_update_lock);
669 	if (vcpu->arch.vpa.update_pending) {
670 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
671 		if (vcpu->arch.vpa.pinned_addr)
672 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
673 	}
674 	if (vcpu->arch.dtl.update_pending) {
675 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
676 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
677 		vcpu->arch.dtl_index = 0;
678 	}
679 	if (vcpu->arch.slb_shadow.update_pending)
680 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
681 	spin_unlock(&vcpu->arch.vpa_update_lock);
682 }
683 
684 /*
685  * Return the accumulated stolen time for the vcore up until `now'.
686  * The caller should hold the vcore lock.
687  */
688 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
689 {
690 	u64 p;
691 	unsigned long flags;
692 
693 	spin_lock_irqsave(&vc->stoltb_lock, flags);
694 	p = vc->stolen_tb;
695 	if (vc->vcore_state != VCORE_INACTIVE &&
696 	    vc->preempt_tb != TB_NIL)
697 		p += now - vc->preempt_tb;
698 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
699 	return p;
700 }
701 
702 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
703 				    struct kvmppc_vcore *vc)
704 {
705 	struct dtl_entry *dt;
706 	struct lppaca *vpa;
707 	unsigned long stolen;
708 	unsigned long core_stolen;
709 	u64 now;
710 	unsigned long flags;
711 
712 	dt = vcpu->arch.dtl_ptr;
713 	vpa = vcpu->arch.vpa.pinned_addr;
714 	now = mftb();
715 	core_stolen = vcore_stolen_time(vc, now);
716 	stolen = core_stolen - vcpu->arch.stolen_logged;
717 	vcpu->arch.stolen_logged = core_stolen;
718 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
719 	stolen += vcpu->arch.busy_stolen;
720 	vcpu->arch.busy_stolen = 0;
721 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
722 	if (!dt || !vpa)
723 		return;
724 	memset(dt, 0, sizeof(struct dtl_entry));
725 	dt->dispatch_reason = 7;
726 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
727 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
728 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
729 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
730 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
731 	++dt;
732 	if (dt == vcpu->arch.dtl.pinned_end)
733 		dt = vcpu->arch.dtl.pinned_addr;
734 	vcpu->arch.dtl_ptr = dt;
735 	/* order writing *dt vs. writing vpa->dtl_idx */
736 	smp_wmb();
737 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
738 	vcpu->arch.dtl.dirty = true;
739 }
740 
741 /* See if there is a doorbell interrupt pending for a vcpu */
742 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
743 {
744 	int thr;
745 	struct kvmppc_vcore *vc;
746 
747 	if (vcpu->arch.doorbell_request)
748 		return true;
749 	/*
750 	 * Ensure that the read of vcore->dpdes comes after the read
751 	 * of vcpu->doorbell_request.  This barrier matches the
752 	 * smb_wmb() in kvmppc_guest_entry_inject().
753 	 */
754 	smp_rmb();
755 	vc = vcpu->arch.vcore;
756 	thr = vcpu->vcpu_id - vc->first_vcpuid;
757 	return !!(vc->dpdes & (1 << thr));
758 }
759 
760 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
761 {
762 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
763 		return true;
764 	if ((!vcpu->arch.vcore->arch_compat) &&
765 	    cpu_has_feature(CPU_FTR_ARCH_207S))
766 		return true;
767 	return false;
768 }
769 
770 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
771 			     unsigned long resource, unsigned long value1,
772 			     unsigned long value2)
773 {
774 	switch (resource) {
775 	case H_SET_MODE_RESOURCE_SET_CIABR:
776 		if (!kvmppc_power8_compatible(vcpu))
777 			return H_P2;
778 		if (value2)
779 			return H_P4;
780 		if (mflags)
781 			return H_UNSUPPORTED_FLAG_START;
782 		/* Guests can't breakpoint the hypervisor */
783 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
784 			return H_P3;
785 		vcpu->arch.ciabr  = value1;
786 		return H_SUCCESS;
787 	case H_SET_MODE_RESOURCE_SET_DAWR:
788 		if (!kvmppc_power8_compatible(vcpu))
789 			return H_P2;
790 		if (!ppc_breakpoint_available())
791 			return H_P2;
792 		if (mflags)
793 			return H_UNSUPPORTED_FLAG_START;
794 		if (value2 & DABRX_HYP)
795 			return H_P4;
796 		vcpu->arch.dawr  = value1;
797 		vcpu->arch.dawrx = value2;
798 		return H_SUCCESS;
799 	default:
800 		return H_TOO_HARD;
801 	}
802 }
803 
804 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
805 {
806 	struct kvmppc_vcore *vcore = target->arch.vcore;
807 
808 	/*
809 	 * We expect to have been called by the real mode handler
810 	 * (kvmppc_rm_h_confer()) which would have directly returned
811 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
812 	 * have useful work to do and should not confer) so we don't
813 	 * recheck that here.
814 	 */
815 
816 	spin_lock(&vcore->lock);
817 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
818 	    vcore->vcore_state != VCORE_INACTIVE &&
819 	    vcore->runner)
820 		target = vcore->runner;
821 	spin_unlock(&vcore->lock);
822 
823 	return kvm_vcpu_yield_to(target);
824 }
825 
826 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
827 {
828 	int yield_count = 0;
829 	struct lppaca *lppaca;
830 
831 	spin_lock(&vcpu->arch.vpa_update_lock);
832 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
833 	if (lppaca)
834 		yield_count = be32_to_cpu(lppaca->yield_count);
835 	spin_unlock(&vcpu->arch.vpa_update_lock);
836 	return yield_count;
837 }
838 
839 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
840 {
841 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
842 	unsigned long target, ret = H_SUCCESS;
843 	int yield_count;
844 	struct kvm_vcpu *tvcpu;
845 	int idx, rc;
846 
847 	if (req <= MAX_HCALL_OPCODE &&
848 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
849 		return RESUME_HOST;
850 
851 	switch (req) {
852 	case H_CEDE:
853 		break;
854 	case H_PROD:
855 		target = kvmppc_get_gpr(vcpu, 4);
856 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
857 		if (!tvcpu) {
858 			ret = H_PARAMETER;
859 			break;
860 		}
861 		tvcpu->arch.prodded = 1;
862 		smp_mb();
863 		if (tvcpu->arch.ceded)
864 			kvmppc_fast_vcpu_kick_hv(tvcpu);
865 		break;
866 	case H_CONFER:
867 		target = kvmppc_get_gpr(vcpu, 4);
868 		if (target == -1)
869 			break;
870 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
871 		if (!tvcpu) {
872 			ret = H_PARAMETER;
873 			break;
874 		}
875 		yield_count = kvmppc_get_gpr(vcpu, 5);
876 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
877 			break;
878 		kvm_arch_vcpu_yield_to(tvcpu);
879 		break;
880 	case H_REGISTER_VPA:
881 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
882 					kvmppc_get_gpr(vcpu, 5),
883 					kvmppc_get_gpr(vcpu, 6));
884 		break;
885 	case H_RTAS:
886 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
887 			return RESUME_HOST;
888 
889 		idx = srcu_read_lock(&vcpu->kvm->srcu);
890 		rc = kvmppc_rtas_hcall(vcpu);
891 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
892 
893 		if (rc == -ENOENT)
894 			return RESUME_HOST;
895 		else if (rc == 0)
896 			break;
897 
898 		/* Send the error out to userspace via KVM_RUN */
899 		return rc;
900 	case H_LOGICAL_CI_LOAD:
901 		ret = kvmppc_h_logical_ci_load(vcpu);
902 		if (ret == H_TOO_HARD)
903 			return RESUME_HOST;
904 		break;
905 	case H_LOGICAL_CI_STORE:
906 		ret = kvmppc_h_logical_ci_store(vcpu);
907 		if (ret == H_TOO_HARD)
908 			return RESUME_HOST;
909 		break;
910 	case H_SET_MODE:
911 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
912 					kvmppc_get_gpr(vcpu, 5),
913 					kvmppc_get_gpr(vcpu, 6),
914 					kvmppc_get_gpr(vcpu, 7));
915 		if (ret == H_TOO_HARD)
916 			return RESUME_HOST;
917 		break;
918 	case H_XIRR:
919 	case H_CPPR:
920 	case H_EOI:
921 	case H_IPI:
922 	case H_IPOLL:
923 	case H_XIRR_X:
924 		if (kvmppc_xics_enabled(vcpu)) {
925 			if (xive_enabled()) {
926 				ret = H_NOT_AVAILABLE;
927 				return RESUME_GUEST;
928 			}
929 			ret = kvmppc_xics_hcall(vcpu, req);
930 			break;
931 		}
932 		return RESUME_HOST;
933 	case H_SET_DABR:
934 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
935 		break;
936 	case H_SET_XDABR:
937 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
938 						kvmppc_get_gpr(vcpu, 5));
939 		break;
940 	case H_GET_TCE:
941 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
942 						kvmppc_get_gpr(vcpu, 5));
943 		if (ret == H_TOO_HARD)
944 			return RESUME_HOST;
945 		break;
946 	case H_PUT_TCE:
947 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
948 						kvmppc_get_gpr(vcpu, 5),
949 						kvmppc_get_gpr(vcpu, 6));
950 		if (ret == H_TOO_HARD)
951 			return RESUME_HOST;
952 		break;
953 	case H_PUT_TCE_INDIRECT:
954 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
955 						kvmppc_get_gpr(vcpu, 5),
956 						kvmppc_get_gpr(vcpu, 6),
957 						kvmppc_get_gpr(vcpu, 7));
958 		if (ret == H_TOO_HARD)
959 			return RESUME_HOST;
960 		break;
961 	case H_STUFF_TCE:
962 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
963 						kvmppc_get_gpr(vcpu, 5),
964 						kvmppc_get_gpr(vcpu, 6),
965 						kvmppc_get_gpr(vcpu, 7));
966 		if (ret == H_TOO_HARD)
967 			return RESUME_HOST;
968 		break;
969 	case H_RANDOM:
970 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
971 			ret = H_HARDWARE;
972 		break;
973 
974 	case H_SET_PARTITION_TABLE:
975 		ret = H_FUNCTION;
976 		if (nesting_enabled(vcpu->kvm))
977 			ret = kvmhv_set_partition_table(vcpu);
978 		break;
979 	case H_ENTER_NESTED:
980 		ret = H_FUNCTION;
981 		if (!nesting_enabled(vcpu->kvm))
982 			break;
983 		ret = kvmhv_enter_nested_guest(vcpu);
984 		if (ret == H_INTERRUPT) {
985 			kvmppc_set_gpr(vcpu, 3, 0);
986 			vcpu->arch.hcall_needed = 0;
987 			return -EINTR;
988 		} else if (ret == H_TOO_HARD) {
989 			kvmppc_set_gpr(vcpu, 3, 0);
990 			vcpu->arch.hcall_needed = 0;
991 			return RESUME_HOST;
992 		}
993 		break;
994 	case H_TLB_INVALIDATE:
995 		ret = H_FUNCTION;
996 		if (nesting_enabled(vcpu->kvm))
997 			ret = kvmhv_do_nested_tlbie(vcpu);
998 		break;
999 	case H_COPY_TOFROM_GUEST:
1000 		ret = H_FUNCTION;
1001 		if (nesting_enabled(vcpu->kvm))
1002 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1003 		break;
1004 	default:
1005 		return RESUME_HOST;
1006 	}
1007 	kvmppc_set_gpr(vcpu, 3, ret);
1008 	vcpu->arch.hcall_needed = 0;
1009 	return RESUME_GUEST;
1010 }
1011 
1012 /*
1013  * Handle H_CEDE in the nested virtualization case where we haven't
1014  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1015  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1016  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1017  */
1018 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1019 {
1020 	vcpu->arch.shregs.msr |= MSR_EE;
1021 	vcpu->arch.ceded = 1;
1022 	smp_mb();
1023 	if (vcpu->arch.prodded) {
1024 		vcpu->arch.prodded = 0;
1025 		smp_mb();
1026 		vcpu->arch.ceded = 0;
1027 	}
1028 }
1029 
1030 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1031 {
1032 	switch (cmd) {
1033 	case H_CEDE:
1034 	case H_PROD:
1035 	case H_CONFER:
1036 	case H_REGISTER_VPA:
1037 	case H_SET_MODE:
1038 	case H_LOGICAL_CI_LOAD:
1039 	case H_LOGICAL_CI_STORE:
1040 #ifdef CONFIG_KVM_XICS
1041 	case H_XIRR:
1042 	case H_CPPR:
1043 	case H_EOI:
1044 	case H_IPI:
1045 	case H_IPOLL:
1046 	case H_XIRR_X:
1047 #endif
1048 		return 1;
1049 	}
1050 
1051 	/* See if it's in the real-mode table */
1052 	return kvmppc_hcall_impl_hv_realmode(cmd);
1053 }
1054 
1055 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1056 					struct kvm_vcpu *vcpu)
1057 {
1058 	u32 last_inst;
1059 
1060 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1061 					EMULATE_DONE) {
1062 		/*
1063 		 * Fetch failed, so return to guest and
1064 		 * try executing it again.
1065 		 */
1066 		return RESUME_GUEST;
1067 	}
1068 
1069 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1070 		run->exit_reason = KVM_EXIT_DEBUG;
1071 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1072 		return RESUME_HOST;
1073 	} else {
1074 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1075 		return RESUME_GUEST;
1076 	}
1077 }
1078 
1079 static void do_nothing(void *x)
1080 {
1081 }
1082 
1083 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1084 {
1085 	int thr, cpu, pcpu, nthreads;
1086 	struct kvm_vcpu *v;
1087 	unsigned long dpdes;
1088 
1089 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1090 	dpdes = 0;
1091 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1092 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1093 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1094 		if (!v)
1095 			continue;
1096 		/*
1097 		 * If the vcpu is currently running on a physical cpu thread,
1098 		 * interrupt it in order to pull it out of the guest briefly,
1099 		 * which will update its vcore->dpdes value.
1100 		 */
1101 		pcpu = READ_ONCE(v->cpu);
1102 		if (pcpu >= 0)
1103 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1104 		if (kvmppc_doorbell_pending(v))
1105 			dpdes |= 1 << thr;
1106 	}
1107 	return dpdes;
1108 }
1109 
1110 /*
1111  * On POWER9, emulate doorbell-related instructions in order to
1112  * give the guest the illusion of running on a multi-threaded core.
1113  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1114  * and mfspr DPDES.
1115  */
1116 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1117 {
1118 	u32 inst, rb, thr;
1119 	unsigned long arg;
1120 	struct kvm *kvm = vcpu->kvm;
1121 	struct kvm_vcpu *tvcpu;
1122 
1123 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1124 		return RESUME_GUEST;
1125 	if (get_op(inst) != 31)
1126 		return EMULATE_FAIL;
1127 	rb = get_rb(inst);
1128 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1129 	switch (get_xop(inst)) {
1130 	case OP_31_XOP_MSGSNDP:
1131 		arg = kvmppc_get_gpr(vcpu, rb);
1132 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1133 			break;
1134 		arg &= 0x3f;
1135 		if (arg >= kvm->arch.emul_smt_mode)
1136 			break;
1137 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1138 		if (!tvcpu)
1139 			break;
1140 		if (!tvcpu->arch.doorbell_request) {
1141 			tvcpu->arch.doorbell_request = 1;
1142 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1143 		}
1144 		break;
1145 	case OP_31_XOP_MSGCLRP:
1146 		arg = kvmppc_get_gpr(vcpu, rb);
1147 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1148 			break;
1149 		vcpu->arch.vcore->dpdes = 0;
1150 		vcpu->arch.doorbell_request = 0;
1151 		break;
1152 	case OP_31_XOP_MFSPR:
1153 		switch (get_sprn(inst)) {
1154 		case SPRN_TIR:
1155 			arg = thr;
1156 			break;
1157 		case SPRN_DPDES:
1158 			arg = kvmppc_read_dpdes(vcpu);
1159 			break;
1160 		default:
1161 			return EMULATE_FAIL;
1162 		}
1163 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1164 		break;
1165 	default:
1166 		return EMULATE_FAIL;
1167 	}
1168 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1169 	return RESUME_GUEST;
1170 }
1171 
1172 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1173 				 struct task_struct *tsk)
1174 {
1175 	int r = RESUME_HOST;
1176 
1177 	vcpu->stat.sum_exits++;
1178 
1179 	/*
1180 	 * This can happen if an interrupt occurs in the last stages
1181 	 * of guest entry or the first stages of guest exit (i.e. after
1182 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1183 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1184 	 * That can happen due to a bug, or due to a machine check
1185 	 * occurring at just the wrong time.
1186 	 */
1187 	if (vcpu->arch.shregs.msr & MSR_HV) {
1188 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1189 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1190 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1191 			vcpu->arch.shregs.msr);
1192 		kvmppc_dump_regs(vcpu);
1193 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1194 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1195 		return RESUME_HOST;
1196 	}
1197 	run->exit_reason = KVM_EXIT_UNKNOWN;
1198 	run->ready_for_interrupt_injection = 1;
1199 	switch (vcpu->arch.trap) {
1200 	/* We're good on these - the host merely wanted to get our attention */
1201 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1202 		vcpu->stat.dec_exits++;
1203 		r = RESUME_GUEST;
1204 		break;
1205 	case BOOK3S_INTERRUPT_EXTERNAL:
1206 	case BOOK3S_INTERRUPT_H_DOORBELL:
1207 	case BOOK3S_INTERRUPT_H_VIRT:
1208 		vcpu->stat.ext_intr_exits++;
1209 		r = RESUME_GUEST;
1210 		break;
1211 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1212 	case BOOK3S_INTERRUPT_HMI:
1213 	case BOOK3S_INTERRUPT_PERFMON:
1214 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1215 		r = RESUME_GUEST;
1216 		break;
1217 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1218 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1219 		run->exit_reason = KVM_EXIT_NMI;
1220 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1221 		/* Clear out the old NMI status from run->flags */
1222 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1223 		/* Now set the NMI status */
1224 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1225 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1226 		else
1227 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1228 
1229 		r = RESUME_HOST;
1230 		/* Print the MCE event to host console. */
1231 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1232 		break;
1233 	case BOOK3S_INTERRUPT_PROGRAM:
1234 	{
1235 		ulong flags;
1236 		/*
1237 		 * Normally program interrupts are delivered directly
1238 		 * to the guest by the hardware, but we can get here
1239 		 * as a result of a hypervisor emulation interrupt
1240 		 * (e40) getting turned into a 700 by BML RTAS.
1241 		 */
1242 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1243 		kvmppc_core_queue_program(vcpu, flags);
1244 		r = RESUME_GUEST;
1245 		break;
1246 	}
1247 	case BOOK3S_INTERRUPT_SYSCALL:
1248 	{
1249 		/* hcall - punt to userspace */
1250 		int i;
1251 
1252 		/* hypercall with MSR_PR has already been handled in rmode,
1253 		 * and never reaches here.
1254 		 */
1255 
1256 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1257 		for (i = 0; i < 9; ++i)
1258 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1259 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1260 		vcpu->arch.hcall_needed = 1;
1261 		r = RESUME_HOST;
1262 		break;
1263 	}
1264 	/*
1265 	 * We get these next two if the guest accesses a page which it thinks
1266 	 * it has mapped but which is not actually present, either because
1267 	 * it is for an emulated I/O device or because the corresonding
1268 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1269 	 * have been handled already.
1270 	 */
1271 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1272 		r = RESUME_PAGE_FAULT;
1273 		break;
1274 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1275 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1276 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1277 			DSISR_SRR1_MATCH_64S;
1278 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1279 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1280 		r = RESUME_PAGE_FAULT;
1281 		break;
1282 	/*
1283 	 * This occurs if the guest executes an illegal instruction.
1284 	 * If the guest debug is disabled, generate a program interrupt
1285 	 * to the guest. If guest debug is enabled, we need to check
1286 	 * whether the instruction is a software breakpoint instruction.
1287 	 * Accordingly return to Guest or Host.
1288 	 */
1289 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1290 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1291 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1292 				swab32(vcpu->arch.emul_inst) :
1293 				vcpu->arch.emul_inst;
1294 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1295 			r = kvmppc_emulate_debug_inst(run, vcpu);
1296 		} else {
1297 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1298 			r = RESUME_GUEST;
1299 		}
1300 		break;
1301 	/*
1302 	 * This occurs if the guest (kernel or userspace), does something that
1303 	 * is prohibited by HFSCR.
1304 	 * On POWER9, this could be a doorbell instruction that we need
1305 	 * to emulate.
1306 	 * Otherwise, we just generate a program interrupt to the guest.
1307 	 */
1308 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1309 		r = EMULATE_FAIL;
1310 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1311 		    cpu_has_feature(CPU_FTR_ARCH_300))
1312 			r = kvmppc_emulate_doorbell_instr(vcpu);
1313 		if (r == EMULATE_FAIL) {
1314 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1315 			r = RESUME_GUEST;
1316 		}
1317 		break;
1318 
1319 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1320 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1321 		/*
1322 		 * This occurs for various TM-related instructions that
1323 		 * we need to emulate on POWER9 DD2.2.  We have already
1324 		 * handled the cases where the guest was in real-suspend
1325 		 * mode and was transitioning to transactional state.
1326 		 */
1327 		r = kvmhv_p9_tm_emulation(vcpu);
1328 		break;
1329 #endif
1330 
1331 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1332 		r = RESUME_PASSTHROUGH;
1333 		break;
1334 	default:
1335 		kvmppc_dump_regs(vcpu);
1336 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1337 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1338 			vcpu->arch.shregs.msr);
1339 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1340 		r = RESUME_HOST;
1341 		break;
1342 	}
1343 
1344 	return r;
1345 }
1346 
1347 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1348 {
1349 	int r;
1350 	int srcu_idx;
1351 
1352 	vcpu->stat.sum_exits++;
1353 
1354 	/*
1355 	 * This can happen if an interrupt occurs in the last stages
1356 	 * of guest entry or the first stages of guest exit (i.e. after
1357 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1358 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1359 	 * That can happen due to a bug, or due to a machine check
1360 	 * occurring at just the wrong time.
1361 	 */
1362 	if (vcpu->arch.shregs.msr & MSR_HV) {
1363 		pr_emerg("KVM trap in HV mode while nested!\n");
1364 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1365 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1366 			 vcpu->arch.shregs.msr);
1367 		kvmppc_dump_regs(vcpu);
1368 		return RESUME_HOST;
1369 	}
1370 	switch (vcpu->arch.trap) {
1371 	/* We're good on these - the host merely wanted to get our attention */
1372 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1373 		vcpu->stat.dec_exits++;
1374 		r = RESUME_GUEST;
1375 		break;
1376 	case BOOK3S_INTERRUPT_EXTERNAL:
1377 		vcpu->stat.ext_intr_exits++;
1378 		r = RESUME_HOST;
1379 		break;
1380 	case BOOK3S_INTERRUPT_H_DOORBELL:
1381 	case BOOK3S_INTERRUPT_H_VIRT:
1382 		vcpu->stat.ext_intr_exits++;
1383 		r = RESUME_GUEST;
1384 		break;
1385 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1386 	case BOOK3S_INTERRUPT_HMI:
1387 	case BOOK3S_INTERRUPT_PERFMON:
1388 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1389 		r = RESUME_GUEST;
1390 		break;
1391 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1392 		/* Pass the machine check to the L1 guest */
1393 		r = RESUME_HOST;
1394 		/* Print the MCE event to host console. */
1395 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1396 		break;
1397 	/*
1398 	 * We get these next two if the guest accesses a page which it thinks
1399 	 * it has mapped but which is not actually present, either because
1400 	 * it is for an emulated I/O device or because the corresonding
1401 	 * host page has been paged out.
1402 	 */
1403 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1404 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1405 		r = kvmhv_nested_page_fault(run, vcpu);
1406 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1407 		break;
1408 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1409 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1410 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1411 					 DSISR_SRR1_MATCH_64S;
1412 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1413 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1414 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1415 		r = kvmhv_nested_page_fault(run, vcpu);
1416 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1417 		break;
1418 
1419 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1421 		/*
1422 		 * This occurs for various TM-related instructions that
1423 		 * we need to emulate on POWER9 DD2.2.  We have already
1424 		 * handled the cases where the guest was in real-suspend
1425 		 * mode and was transitioning to transactional state.
1426 		 */
1427 		r = kvmhv_p9_tm_emulation(vcpu);
1428 		break;
1429 #endif
1430 
1431 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1432 		vcpu->arch.trap = 0;
1433 		r = RESUME_GUEST;
1434 		if (!xive_enabled())
1435 			kvmppc_xics_rm_complete(vcpu, 0);
1436 		break;
1437 	default:
1438 		r = RESUME_HOST;
1439 		break;
1440 	}
1441 
1442 	return r;
1443 }
1444 
1445 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1446 					    struct kvm_sregs *sregs)
1447 {
1448 	int i;
1449 
1450 	memset(sregs, 0, sizeof(struct kvm_sregs));
1451 	sregs->pvr = vcpu->arch.pvr;
1452 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1453 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1454 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1461 					    struct kvm_sregs *sregs)
1462 {
1463 	int i, j;
1464 
1465 	/* Only accept the same PVR as the host's, since we can't spoof it */
1466 	if (sregs->pvr != vcpu->arch.pvr)
1467 		return -EINVAL;
1468 
1469 	j = 0;
1470 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1471 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1472 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1473 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1474 			++j;
1475 		}
1476 	}
1477 	vcpu->arch.slb_max = j;
1478 
1479 	return 0;
1480 }
1481 
1482 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1483 		bool preserve_top32)
1484 {
1485 	struct kvm *kvm = vcpu->kvm;
1486 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1487 	u64 mask;
1488 
1489 	mutex_lock(&kvm->lock);
1490 	spin_lock(&vc->lock);
1491 	/*
1492 	 * If ILE (interrupt little-endian) has changed, update the
1493 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1494 	 */
1495 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1496 		struct kvm_vcpu *vcpu;
1497 		int i;
1498 
1499 		kvm_for_each_vcpu(i, vcpu, kvm) {
1500 			if (vcpu->arch.vcore != vc)
1501 				continue;
1502 			if (new_lpcr & LPCR_ILE)
1503 				vcpu->arch.intr_msr |= MSR_LE;
1504 			else
1505 				vcpu->arch.intr_msr &= ~MSR_LE;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Userspace can only modify DPFD (default prefetch depth),
1511 	 * ILE (interrupt little-endian) and TC (translation control).
1512 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1513 	 */
1514 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1515 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1516 		mask |= LPCR_AIL;
1517 	/*
1518 	 * On POWER9, allow userspace to enable large decrementer for the
1519 	 * guest, whether or not the host has it enabled.
1520 	 */
1521 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1522 		mask |= LPCR_LD;
1523 
1524 	/* Broken 32-bit version of LPCR must not clear top bits */
1525 	if (preserve_top32)
1526 		mask &= 0xFFFFFFFF;
1527 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1528 	spin_unlock(&vc->lock);
1529 	mutex_unlock(&kvm->lock);
1530 }
1531 
1532 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1533 				 union kvmppc_one_reg *val)
1534 {
1535 	int r = 0;
1536 	long int i;
1537 
1538 	switch (id) {
1539 	case KVM_REG_PPC_DEBUG_INST:
1540 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1541 		break;
1542 	case KVM_REG_PPC_HIOR:
1543 		*val = get_reg_val(id, 0);
1544 		break;
1545 	case KVM_REG_PPC_DABR:
1546 		*val = get_reg_val(id, vcpu->arch.dabr);
1547 		break;
1548 	case KVM_REG_PPC_DABRX:
1549 		*val = get_reg_val(id, vcpu->arch.dabrx);
1550 		break;
1551 	case KVM_REG_PPC_DSCR:
1552 		*val = get_reg_val(id, vcpu->arch.dscr);
1553 		break;
1554 	case KVM_REG_PPC_PURR:
1555 		*val = get_reg_val(id, vcpu->arch.purr);
1556 		break;
1557 	case KVM_REG_PPC_SPURR:
1558 		*val = get_reg_val(id, vcpu->arch.spurr);
1559 		break;
1560 	case KVM_REG_PPC_AMR:
1561 		*val = get_reg_val(id, vcpu->arch.amr);
1562 		break;
1563 	case KVM_REG_PPC_UAMOR:
1564 		*val = get_reg_val(id, vcpu->arch.uamor);
1565 		break;
1566 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1567 		i = id - KVM_REG_PPC_MMCR0;
1568 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1569 		break;
1570 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1571 		i = id - KVM_REG_PPC_PMC1;
1572 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1573 		break;
1574 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1575 		i = id - KVM_REG_PPC_SPMC1;
1576 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1577 		break;
1578 	case KVM_REG_PPC_SIAR:
1579 		*val = get_reg_val(id, vcpu->arch.siar);
1580 		break;
1581 	case KVM_REG_PPC_SDAR:
1582 		*val = get_reg_val(id, vcpu->arch.sdar);
1583 		break;
1584 	case KVM_REG_PPC_SIER:
1585 		*val = get_reg_val(id, vcpu->arch.sier);
1586 		break;
1587 	case KVM_REG_PPC_IAMR:
1588 		*val = get_reg_val(id, vcpu->arch.iamr);
1589 		break;
1590 	case KVM_REG_PPC_PSPB:
1591 		*val = get_reg_val(id, vcpu->arch.pspb);
1592 		break;
1593 	case KVM_REG_PPC_DPDES:
1594 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1595 		break;
1596 	case KVM_REG_PPC_VTB:
1597 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1598 		break;
1599 	case KVM_REG_PPC_DAWR:
1600 		*val = get_reg_val(id, vcpu->arch.dawr);
1601 		break;
1602 	case KVM_REG_PPC_DAWRX:
1603 		*val = get_reg_val(id, vcpu->arch.dawrx);
1604 		break;
1605 	case KVM_REG_PPC_CIABR:
1606 		*val = get_reg_val(id, vcpu->arch.ciabr);
1607 		break;
1608 	case KVM_REG_PPC_CSIGR:
1609 		*val = get_reg_val(id, vcpu->arch.csigr);
1610 		break;
1611 	case KVM_REG_PPC_TACR:
1612 		*val = get_reg_val(id, vcpu->arch.tacr);
1613 		break;
1614 	case KVM_REG_PPC_TCSCR:
1615 		*val = get_reg_val(id, vcpu->arch.tcscr);
1616 		break;
1617 	case KVM_REG_PPC_PID:
1618 		*val = get_reg_val(id, vcpu->arch.pid);
1619 		break;
1620 	case KVM_REG_PPC_ACOP:
1621 		*val = get_reg_val(id, vcpu->arch.acop);
1622 		break;
1623 	case KVM_REG_PPC_WORT:
1624 		*val = get_reg_val(id, vcpu->arch.wort);
1625 		break;
1626 	case KVM_REG_PPC_TIDR:
1627 		*val = get_reg_val(id, vcpu->arch.tid);
1628 		break;
1629 	case KVM_REG_PPC_PSSCR:
1630 		*val = get_reg_val(id, vcpu->arch.psscr);
1631 		break;
1632 	case KVM_REG_PPC_VPA_ADDR:
1633 		spin_lock(&vcpu->arch.vpa_update_lock);
1634 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1635 		spin_unlock(&vcpu->arch.vpa_update_lock);
1636 		break;
1637 	case KVM_REG_PPC_VPA_SLB:
1638 		spin_lock(&vcpu->arch.vpa_update_lock);
1639 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1640 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1641 		spin_unlock(&vcpu->arch.vpa_update_lock);
1642 		break;
1643 	case KVM_REG_PPC_VPA_DTL:
1644 		spin_lock(&vcpu->arch.vpa_update_lock);
1645 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1646 		val->vpaval.length = vcpu->arch.dtl.len;
1647 		spin_unlock(&vcpu->arch.vpa_update_lock);
1648 		break;
1649 	case KVM_REG_PPC_TB_OFFSET:
1650 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1651 		break;
1652 	case KVM_REG_PPC_LPCR:
1653 	case KVM_REG_PPC_LPCR_64:
1654 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1655 		break;
1656 	case KVM_REG_PPC_PPR:
1657 		*val = get_reg_val(id, vcpu->arch.ppr);
1658 		break;
1659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1660 	case KVM_REG_PPC_TFHAR:
1661 		*val = get_reg_val(id, vcpu->arch.tfhar);
1662 		break;
1663 	case KVM_REG_PPC_TFIAR:
1664 		*val = get_reg_val(id, vcpu->arch.tfiar);
1665 		break;
1666 	case KVM_REG_PPC_TEXASR:
1667 		*val = get_reg_val(id, vcpu->arch.texasr);
1668 		break;
1669 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1670 		i = id - KVM_REG_PPC_TM_GPR0;
1671 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1672 		break;
1673 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1674 	{
1675 		int j;
1676 		i = id - KVM_REG_PPC_TM_VSR0;
1677 		if (i < 32)
1678 			for (j = 0; j < TS_FPRWIDTH; j++)
1679 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1680 		else {
1681 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1682 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1683 			else
1684 				r = -ENXIO;
1685 		}
1686 		break;
1687 	}
1688 	case KVM_REG_PPC_TM_CR:
1689 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1690 		break;
1691 	case KVM_REG_PPC_TM_XER:
1692 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1693 		break;
1694 	case KVM_REG_PPC_TM_LR:
1695 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1696 		break;
1697 	case KVM_REG_PPC_TM_CTR:
1698 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1699 		break;
1700 	case KVM_REG_PPC_TM_FPSCR:
1701 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1702 		break;
1703 	case KVM_REG_PPC_TM_AMR:
1704 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1705 		break;
1706 	case KVM_REG_PPC_TM_PPR:
1707 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1708 		break;
1709 	case KVM_REG_PPC_TM_VRSAVE:
1710 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1711 		break;
1712 	case KVM_REG_PPC_TM_VSCR:
1713 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1714 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1715 		else
1716 			r = -ENXIO;
1717 		break;
1718 	case KVM_REG_PPC_TM_DSCR:
1719 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1720 		break;
1721 	case KVM_REG_PPC_TM_TAR:
1722 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1723 		break;
1724 #endif
1725 	case KVM_REG_PPC_ARCH_COMPAT:
1726 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1727 		break;
1728 	case KVM_REG_PPC_DEC_EXPIRY:
1729 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1730 				   vcpu->arch.vcore->tb_offset);
1731 		break;
1732 	case KVM_REG_PPC_ONLINE:
1733 		*val = get_reg_val(id, vcpu->arch.online);
1734 		break;
1735 	case KVM_REG_PPC_PTCR:
1736 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1737 		break;
1738 	default:
1739 		r = -EINVAL;
1740 		break;
1741 	}
1742 
1743 	return r;
1744 }
1745 
1746 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1747 				 union kvmppc_one_reg *val)
1748 {
1749 	int r = 0;
1750 	long int i;
1751 	unsigned long addr, len;
1752 
1753 	switch (id) {
1754 	case KVM_REG_PPC_HIOR:
1755 		/* Only allow this to be set to zero */
1756 		if (set_reg_val(id, *val))
1757 			r = -EINVAL;
1758 		break;
1759 	case KVM_REG_PPC_DABR:
1760 		vcpu->arch.dabr = set_reg_val(id, *val);
1761 		break;
1762 	case KVM_REG_PPC_DABRX:
1763 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1764 		break;
1765 	case KVM_REG_PPC_DSCR:
1766 		vcpu->arch.dscr = set_reg_val(id, *val);
1767 		break;
1768 	case KVM_REG_PPC_PURR:
1769 		vcpu->arch.purr = set_reg_val(id, *val);
1770 		break;
1771 	case KVM_REG_PPC_SPURR:
1772 		vcpu->arch.spurr = set_reg_val(id, *val);
1773 		break;
1774 	case KVM_REG_PPC_AMR:
1775 		vcpu->arch.amr = set_reg_val(id, *val);
1776 		break;
1777 	case KVM_REG_PPC_UAMOR:
1778 		vcpu->arch.uamor = set_reg_val(id, *val);
1779 		break;
1780 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1781 		i = id - KVM_REG_PPC_MMCR0;
1782 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1783 		break;
1784 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1785 		i = id - KVM_REG_PPC_PMC1;
1786 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1787 		break;
1788 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1789 		i = id - KVM_REG_PPC_SPMC1;
1790 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1791 		break;
1792 	case KVM_REG_PPC_SIAR:
1793 		vcpu->arch.siar = set_reg_val(id, *val);
1794 		break;
1795 	case KVM_REG_PPC_SDAR:
1796 		vcpu->arch.sdar = set_reg_val(id, *val);
1797 		break;
1798 	case KVM_REG_PPC_SIER:
1799 		vcpu->arch.sier = set_reg_val(id, *val);
1800 		break;
1801 	case KVM_REG_PPC_IAMR:
1802 		vcpu->arch.iamr = set_reg_val(id, *val);
1803 		break;
1804 	case KVM_REG_PPC_PSPB:
1805 		vcpu->arch.pspb = set_reg_val(id, *val);
1806 		break;
1807 	case KVM_REG_PPC_DPDES:
1808 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1809 		break;
1810 	case KVM_REG_PPC_VTB:
1811 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1812 		break;
1813 	case KVM_REG_PPC_DAWR:
1814 		vcpu->arch.dawr = set_reg_val(id, *val);
1815 		break;
1816 	case KVM_REG_PPC_DAWRX:
1817 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1818 		break;
1819 	case KVM_REG_PPC_CIABR:
1820 		vcpu->arch.ciabr = set_reg_val(id, *val);
1821 		/* Don't allow setting breakpoints in hypervisor code */
1822 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1823 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1824 		break;
1825 	case KVM_REG_PPC_CSIGR:
1826 		vcpu->arch.csigr = set_reg_val(id, *val);
1827 		break;
1828 	case KVM_REG_PPC_TACR:
1829 		vcpu->arch.tacr = set_reg_val(id, *val);
1830 		break;
1831 	case KVM_REG_PPC_TCSCR:
1832 		vcpu->arch.tcscr = set_reg_val(id, *val);
1833 		break;
1834 	case KVM_REG_PPC_PID:
1835 		vcpu->arch.pid = set_reg_val(id, *val);
1836 		break;
1837 	case KVM_REG_PPC_ACOP:
1838 		vcpu->arch.acop = set_reg_val(id, *val);
1839 		break;
1840 	case KVM_REG_PPC_WORT:
1841 		vcpu->arch.wort = set_reg_val(id, *val);
1842 		break;
1843 	case KVM_REG_PPC_TIDR:
1844 		vcpu->arch.tid = set_reg_val(id, *val);
1845 		break;
1846 	case KVM_REG_PPC_PSSCR:
1847 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1848 		break;
1849 	case KVM_REG_PPC_VPA_ADDR:
1850 		addr = set_reg_val(id, *val);
1851 		r = -EINVAL;
1852 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1853 			      vcpu->arch.dtl.next_gpa))
1854 			break;
1855 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1856 		break;
1857 	case KVM_REG_PPC_VPA_SLB:
1858 		addr = val->vpaval.addr;
1859 		len = val->vpaval.length;
1860 		r = -EINVAL;
1861 		if (addr && !vcpu->arch.vpa.next_gpa)
1862 			break;
1863 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1864 		break;
1865 	case KVM_REG_PPC_VPA_DTL:
1866 		addr = val->vpaval.addr;
1867 		len = val->vpaval.length;
1868 		r = -EINVAL;
1869 		if (addr && (len < sizeof(struct dtl_entry) ||
1870 			     !vcpu->arch.vpa.next_gpa))
1871 			break;
1872 		len -= len % sizeof(struct dtl_entry);
1873 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1874 		break;
1875 	case KVM_REG_PPC_TB_OFFSET:
1876 		/* round up to multiple of 2^24 */
1877 		vcpu->arch.vcore->tb_offset =
1878 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1879 		break;
1880 	case KVM_REG_PPC_LPCR:
1881 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1882 		break;
1883 	case KVM_REG_PPC_LPCR_64:
1884 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1885 		break;
1886 	case KVM_REG_PPC_PPR:
1887 		vcpu->arch.ppr = set_reg_val(id, *val);
1888 		break;
1889 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1890 	case KVM_REG_PPC_TFHAR:
1891 		vcpu->arch.tfhar = set_reg_val(id, *val);
1892 		break;
1893 	case KVM_REG_PPC_TFIAR:
1894 		vcpu->arch.tfiar = set_reg_val(id, *val);
1895 		break;
1896 	case KVM_REG_PPC_TEXASR:
1897 		vcpu->arch.texasr = set_reg_val(id, *val);
1898 		break;
1899 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1900 		i = id - KVM_REG_PPC_TM_GPR0;
1901 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1902 		break;
1903 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1904 	{
1905 		int j;
1906 		i = id - KVM_REG_PPC_TM_VSR0;
1907 		if (i < 32)
1908 			for (j = 0; j < TS_FPRWIDTH; j++)
1909 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1910 		else
1911 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1912 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1913 			else
1914 				r = -ENXIO;
1915 		break;
1916 	}
1917 	case KVM_REG_PPC_TM_CR:
1918 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1919 		break;
1920 	case KVM_REG_PPC_TM_XER:
1921 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1922 		break;
1923 	case KVM_REG_PPC_TM_LR:
1924 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1925 		break;
1926 	case KVM_REG_PPC_TM_CTR:
1927 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1928 		break;
1929 	case KVM_REG_PPC_TM_FPSCR:
1930 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1931 		break;
1932 	case KVM_REG_PPC_TM_AMR:
1933 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1934 		break;
1935 	case KVM_REG_PPC_TM_PPR:
1936 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1937 		break;
1938 	case KVM_REG_PPC_TM_VRSAVE:
1939 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1940 		break;
1941 	case KVM_REG_PPC_TM_VSCR:
1942 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1943 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1944 		else
1945 			r = - ENXIO;
1946 		break;
1947 	case KVM_REG_PPC_TM_DSCR:
1948 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1949 		break;
1950 	case KVM_REG_PPC_TM_TAR:
1951 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1952 		break;
1953 #endif
1954 	case KVM_REG_PPC_ARCH_COMPAT:
1955 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1956 		break;
1957 	case KVM_REG_PPC_DEC_EXPIRY:
1958 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1959 			vcpu->arch.vcore->tb_offset;
1960 		break;
1961 	case KVM_REG_PPC_ONLINE:
1962 		i = set_reg_val(id, *val);
1963 		if (i && !vcpu->arch.online)
1964 			atomic_inc(&vcpu->arch.vcore->online_count);
1965 		else if (!i && vcpu->arch.online)
1966 			atomic_dec(&vcpu->arch.vcore->online_count);
1967 		vcpu->arch.online = i;
1968 		break;
1969 	case KVM_REG_PPC_PTCR:
1970 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
1971 		break;
1972 	default:
1973 		r = -EINVAL;
1974 		break;
1975 	}
1976 
1977 	return r;
1978 }
1979 
1980 /*
1981  * On POWER9, threads are independent and can be in different partitions.
1982  * Therefore we consider each thread to be a subcore.
1983  * There is a restriction that all threads have to be in the same
1984  * MMU mode (radix or HPT), unfortunately, but since we only support
1985  * HPT guests on a HPT host so far, that isn't an impediment yet.
1986  */
1987 static int threads_per_vcore(struct kvm *kvm)
1988 {
1989 	if (kvm->arch.threads_indep)
1990 		return 1;
1991 	return threads_per_subcore;
1992 }
1993 
1994 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1995 {
1996 	struct kvmppc_vcore *vcore;
1997 
1998 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1999 
2000 	if (vcore == NULL)
2001 		return NULL;
2002 
2003 	spin_lock_init(&vcore->lock);
2004 	spin_lock_init(&vcore->stoltb_lock);
2005 	init_swait_queue_head(&vcore->wq);
2006 	vcore->preempt_tb = TB_NIL;
2007 	vcore->lpcr = kvm->arch.lpcr;
2008 	vcore->first_vcpuid = id;
2009 	vcore->kvm = kvm;
2010 	INIT_LIST_HEAD(&vcore->preempt_list);
2011 
2012 	return vcore;
2013 }
2014 
2015 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2016 static struct debugfs_timings_element {
2017 	const char *name;
2018 	size_t offset;
2019 } timings[] = {
2020 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2021 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2022 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2023 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2024 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2025 };
2026 
2027 #define N_TIMINGS	(ARRAY_SIZE(timings))
2028 
2029 struct debugfs_timings_state {
2030 	struct kvm_vcpu	*vcpu;
2031 	unsigned int	buflen;
2032 	char		buf[N_TIMINGS * 100];
2033 };
2034 
2035 static int debugfs_timings_open(struct inode *inode, struct file *file)
2036 {
2037 	struct kvm_vcpu *vcpu = inode->i_private;
2038 	struct debugfs_timings_state *p;
2039 
2040 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2041 	if (!p)
2042 		return -ENOMEM;
2043 
2044 	kvm_get_kvm(vcpu->kvm);
2045 	p->vcpu = vcpu;
2046 	file->private_data = p;
2047 
2048 	return nonseekable_open(inode, file);
2049 }
2050 
2051 static int debugfs_timings_release(struct inode *inode, struct file *file)
2052 {
2053 	struct debugfs_timings_state *p = file->private_data;
2054 
2055 	kvm_put_kvm(p->vcpu->kvm);
2056 	kfree(p);
2057 	return 0;
2058 }
2059 
2060 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2061 				    size_t len, loff_t *ppos)
2062 {
2063 	struct debugfs_timings_state *p = file->private_data;
2064 	struct kvm_vcpu *vcpu = p->vcpu;
2065 	char *s, *buf_end;
2066 	struct kvmhv_tb_accumulator tb;
2067 	u64 count;
2068 	loff_t pos;
2069 	ssize_t n;
2070 	int i, loops;
2071 	bool ok;
2072 
2073 	if (!p->buflen) {
2074 		s = p->buf;
2075 		buf_end = s + sizeof(p->buf);
2076 		for (i = 0; i < N_TIMINGS; ++i) {
2077 			struct kvmhv_tb_accumulator *acc;
2078 
2079 			acc = (struct kvmhv_tb_accumulator *)
2080 				((unsigned long)vcpu + timings[i].offset);
2081 			ok = false;
2082 			for (loops = 0; loops < 1000; ++loops) {
2083 				count = acc->seqcount;
2084 				if (!(count & 1)) {
2085 					smp_rmb();
2086 					tb = *acc;
2087 					smp_rmb();
2088 					if (count == acc->seqcount) {
2089 						ok = true;
2090 						break;
2091 					}
2092 				}
2093 				udelay(1);
2094 			}
2095 			if (!ok)
2096 				snprintf(s, buf_end - s, "%s: stuck\n",
2097 					timings[i].name);
2098 			else
2099 				snprintf(s, buf_end - s,
2100 					"%s: %llu %llu %llu %llu\n",
2101 					timings[i].name, count / 2,
2102 					tb_to_ns(tb.tb_total),
2103 					tb_to_ns(tb.tb_min),
2104 					tb_to_ns(tb.tb_max));
2105 			s += strlen(s);
2106 		}
2107 		p->buflen = s - p->buf;
2108 	}
2109 
2110 	pos = *ppos;
2111 	if (pos >= p->buflen)
2112 		return 0;
2113 	if (len > p->buflen - pos)
2114 		len = p->buflen - pos;
2115 	n = copy_to_user(buf, p->buf + pos, len);
2116 	if (n) {
2117 		if (n == len)
2118 			return -EFAULT;
2119 		len -= n;
2120 	}
2121 	*ppos = pos + len;
2122 	return len;
2123 }
2124 
2125 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2126 				     size_t len, loff_t *ppos)
2127 {
2128 	return -EACCES;
2129 }
2130 
2131 static const struct file_operations debugfs_timings_ops = {
2132 	.owner	 = THIS_MODULE,
2133 	.open	 = debugfs_timings_open,
2134 	.release = debugfs_timings_release,
2135 	.read	 = debugfs_timings_read,
2136 	.write	 = debugfs_timings_write,
2137 	.llseek	 = generic_file_llseek,
2138 };
2139 
2140 /* Create a debugfs directory for the vcpu */
2141 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2142 {
2143 	char buf[16];
2144 	struct kvm *kvm = vcpu->kvm;
2145 
2146 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2147 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2148 		return;
2149 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2150 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2151 		return;
2152 	vcpu->arch.debugfs_timings =
2153 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2154 				    vcpu, &debugfs_timings_ops);
2155 }
2156 
2157 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2158 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2159 {
2160 }
2161 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2162 
2163 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2164 						   unsigned int id)
2165 {
2166 	struct kvm_vcpu *vcpu;
2167 	int err;
2168 	int core;
2169 	struct kvmppc_vcore *vcore;
2170 
2171 	err = -ENOMEM;
2172 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2173 	if (!vcpu)
2174 		goto out;
2175 
2176 	err = kvm_vcpu_init(vcpu, kvm, id);
2177 	if (err)
2178 		goto free_vcpu;
2179 
2180 	vcpu->arch.shared = &vcpu->arch.shregs;
2181 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2182 	/*
2183 	 * The shared struct is never shared on HV,
2184 	 * so we can always use host endianness
2185 	 */
2186 #ifdef __BIG_ENDIAN__
2187 	vcpu->arch.shared_big_endian = true;
2188 #else
2189 	vcpu->arch.shared_big_endian = false;
2190 #endif
2191 #endif
2192 	vcpu->arch.mmcr[0] = MMCR0_FC;
2193 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2194 	/* default to host PVR, since we can't spoof it */
2195 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2196 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2197 	spin_lock_init(&vcpu->arch.tbacct_lock);
2198 	vcpu->arch.busy_preempt = TB_NIL;
2199 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2200 
2201 	/*
2202 	 * Set the default HFSCR for the guest from the host value.
2203 	 * This value is only used on POWER9.
2204 	 * On POWER9, we want to virtualize the doorbell facility, so we
2205 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2206 	 * to trap and then we emulate them.
2207 	 */
2208 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2209 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2210 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2211 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2212 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2213 			vcpu->arch.hfscr |= HFSCR_TM;
2214 	}
2215 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2216 		vcpu->arch.hfscr |= HFSCR_TM;
2217 
2218 	kvmppc_mmu_book3s_hv_init(vcpu);
2219 
2220 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2221 
2222 	init_waitqueue_head(&vcpu->arch.cpu_run);
2223 
2224 	mutex_lock(&kvm->lock);
2225 	vcore = NULL;
2226 	err = -EINVAL;
2227 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2228 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2229 			pr_devel("KVM: VCPU ID too high\n");
2230 			core = KVM_MAX_VCORES;
2231 		} else {
2232 			BUG_ON(kvm->arch.smt_mode != 1);
2233 			core = kvmppc_pack_vcpu_id(kvm, id);
2234 		}
2235 	} else {
2236 		core = id / kvm->arch.smt_mode;
2237 	}
2238 	if (core < KVM_MAX_VCORES) {
2239 		vcore = kvm->arch.vcores[core];
2240 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2241 			pr_devel("KVM: collision on id %u", id);
2242 			vcore = NULL;
2243 		} else if (!vcore) {
2244 			err = -ENOMEM;
2245 			vcore = kvmppc_vcore_create(kvm,
2246 					id & ~(kvm->arch.smt_mode - 1));
2247 			kvm->arch.vcores[core] = vcore;
2248 			kvm->arch.online_vcores++;
2249 		}
2250 	}
2251 	mutex_unlock(&kvm->lock);
2252 
2253 	if (!vcore)
2254 		goto free_vcpu;
2255 
2256 	spin_lock(&vcore->lock);
2257 	++vcore->num_threads;
2258 	spin_unlock(&vcore->lock);
2259 	vcpu->arch.vcore = vcore;
2260 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2261 	vcpu->arch.thread_cpu = -1;
2262 	vcpu->arch.prev_cpu = -1;
2263 
2264 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2265 	kvmppc_sanity_check(vcpu);
2266 
2267 	debugfs_vcpu_init(vcpu, id);
2268 
2269 	return vcpu;
2270 
2271 free_vcpu:
2272 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2273 out:
2274 	return ERR_PTR(err);
2275 }
2276 
2277 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2278 			      unsigned long flags)
2279 {
2280 	int err;
2281 	int esmt = 0;
2282 
2283 	if (flags)
2284 		return -EINVAL;
2285 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2286 		return -EINVAL;
2287 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2288 		/*
2289 		 * On POWER8 (or POWER7), the threading mode is "strict",
2290 		 * so we pack smt_mode vcpus per vcore.
2291 		 */
2292 		if (smt_mode > threads_per_subcore)
2293 			return -EINVAL;
2294 	} else {
2295 		/*
2296 		 * On POWER9, the threading mode is "loose",
2297 		 * so each vcpu gets its own vcore.
2298 		 */
2299 		esmt = smt_mode;
2300 		smt_mode = 1;
2301 	}
2302 	mutex_lock(&kvm->lock);
2303 	err = -EBUSY;
2304 	if (!kvm->arch.online_vcores) {
2305 		kvm->arch.smt_mode = smt_mode;
2306 		kvm->arch.emul_smt_mode = esmt;
2307 		err = 0;
2308 	}
2309 	mutex_unlock(&kvm->lock);
2310 
2311 	return err;
2312 }
2313 
2314 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2315 {
2316 	if (vpa->pinned_addr)
2317 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2318 					vpa->dirty);
2319 }
2320 
2321 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2322 {
2323 	spin_lock(&vcpu->arch.vpa_update_lock);
2324 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2325 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2326 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2327 	spin_unlock(&vcpu->arch.vpa_update_lock);
2328 	kvm_vcpu_uninit(vcpu);
2329 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2330 }
2331 
2332 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2333 {
2334 	/* Indicate we want to get back into the guest */
2335 	return 1;
2336 }
2337 
2338 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2339 {
2340 	unsigned long dec_nsec, now;
2341 
2342 	now = get_tb();
2343 	if (now > vcpu->arch.dec_expires) {
2344 		/* decrementer has already gone negative */
2345 		kvmppc_core_queue_dec(vcpu);
2346 		kvmppc_core_prepare_to_enter(vcpu);
2347 		return;
2348 	}
2349 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2350 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2351 	vcpu->arch.timer_running = 1;
2352 }
2353 
2354 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2355 {
2356 	vcpu->arch.ceded = 0;
2357 	if (vcpu->arch.timer_running) {
2358 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2359 		vcpu->arch.timer_running = 0;
2360 	}
2361 }
2362 
2363 extern int __kvmppc_vcore_entry(void);
2364 
2365 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2366 				   struct kvm_vcpu *vcpu)
2367 {
2368 	u64 now;
2369 
2370 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2371 		return;
2372 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2373 	now = mftb();
2374 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2375 		vcpu->arch.stolen_logged;
2376 	vcpu->arch.busy_preempt = now;
2377 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2378 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2379 	--vc->n_runnable;
2380 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2381 }
2382 
2383 static int kvmppc_grab_hwthread(int cpu)
2384 {
2385 	struct paca_struct *tpaca;
2386 	long timeout = 10000;
2387 
2388 	tpaca = paca_ptrs[cpu];
2389 
2390 	/* Ensure the thread won't go into the kernel if it wakes */
2391 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2392 	tpaca->kvm_hstate.kvm_vcore = NULL;
2393 	tpaca->kvm_hstate.napping = 0;
2394 	smp_wmb();
2395 	tpaca->kvm_hstate.hwthread_req = 1;
2396 
2397 	/*
2398 	 * If the thread is already executing in the kernel (e.g. handling
2399 	 * a stray interrupt), wait for it to get back to nap mode.
2400 	 * The smp_mb() is to ensure that our setting of hwthread_req
2401 	 * is visible before we look at hwthread_state, so if this
2402 	 * races with the code at system_reset_pSeries and the thread
2403 	 * misses our setting of hwthread_req, we are sure to see its
2404 	 * setting of hwthread_state, and vice versa.
2405 	 */
2406 	smp_mb();
2407 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2408 		if (--timeout <= 0) {
2409 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2410 			return -EBUSY;
2411 		}
2412 		udelay(1);
2413 	}
2414 	return 0;
2415 }
2416 
2417 static void kvmppc_release_hwthread(int cpu)
2418 {
2419 	struct paca_struct *tpaca;
2420 
2421 	tpaca = paca_ptrs[cpu];
2422 	tpaca->kvm_hstate.hwthread_req = 0;
2423 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2424 	tpaca->kvm_hstate.kvm_vcore = NULL;
2425 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2426 }
2427 
2428 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2429 {
2430 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2431 	cpumask_t *cpu_in_guest;
2432 	int i;
2433 
2434 	cpu = cpu_first_thread_sibling(cpu);
2435 	if (nested) {
2436 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2437 		cpu_in_guest = &nested->cpu_in_guest;
2438 	} else {
2439 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2440 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2441 	}
2442 	/*
2443 	 * Make sure setting of bit in need_tlb_flush precedes
2444 	 * testing of cpu_in_guest bits.  The matching barrier on
2445 	 * the other side is the first smp_mb() in kvmppc_run_core().
2446 	 */
2447 	smp_mb();
2448 	for (i = 0; i < threads_per_core; ++i)
2449 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2450 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2451 }
2452 
2453 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2454 {
2455 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2456 	struct kvm *kvm = vcpu->kvm;
2457 	int prev_cpu;
2458 
2459 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2460 		return;
2461 
2462 	if (nested)
2463 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2464 	else
2465 		prev_cpu = vcpu->arch.prev_cpu;
2466 
2467 	/*
2468 	 * With radix, the guest can do TLB invalidations itself,
2469 	 * and it could choose to use the local form (tlbiel) if
2470 	 * it is invalidating a translation that has only ever been
2471 	 * used on one vcpu.  However, that doesn't mean it has
2472 	 * only ever been used on one physical cpu, since vcpus
2473 	 * can move around between pcpus.  To cope with this, when
2474 	 * a vcpu moves from one pcpu to another, we need to tell
2475 	 * any vcpus running on the same core as this vcpu previously
2476 	 * ran to flush the TLB.  The TLB is shared between threads,
2477 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2478 	 */
2479 	if (prev_cpu != pcpu) {
2480 		if (prev_cpu >= 0 &&
2481 		    cpu_first_thread_sibling(prev_cpu) !=
2482 		    cpu_first_thread_sibling(pcpu))
2483 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2484 		if (nested)
2485 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2486 		else
2487 			vcpu->arch.prev_cpu = pcpu;
2488 	}
2489 }
2490 
2491 static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu,
2492 					      struct kvm_nested_guest *nested)
2493 {
2494 	cpumask_t *need_tlb_flush;
2495 	int lpid;
2496 
2497 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2498 		return;
2499 
2500 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2501 		pcpu &= ~0x3UL;
2502 
2503 	if (nested) {
2504 		lpid = nested->shadow_lpid;
2505 		need_tlb_flush = &nested->need_tlb_flush;
2506 	} else {
2507 		lpid = kvm->arch.lpid;
2508 		need_tlb_flush = &kvm->arch.need_tlb_flush;
2509 	}
2510 
2511 	mtspr(SPRN_LPID, lpid);
2512 	isync();
2513 	smp_mb();
2514 
2515 	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
2516 		radix__local_flush_tlb_lpid_guest(lpid);
2517 		/* Clear the bit after the TLB flush */
2518 		cpumask_clear_cpu(pcpu, need_tlb_flush);
2519 	}
2520 }
2521 
2522 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2523 {
2524 	int cpu;
2525 	struct paca_struct *tpaca;
2526 	struct kvm *kvm = vc->kvm;
2527 
2528 	cpu = vc->pcpu;
2529 	if (vcpu) {
2530 		if (vcpu->arch.timer_running) {
2531 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2532 			vcpu->arch.timer_running = 0;
2533 		}
2534 		cpu += vcpu->arch.ptid;
2535 		vcpu->cpu = vc->pcpu;
2536 		vcpu->arch.thread_cpu = cpu;
2537 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2538 	}
2539 	tpaca = paca_ptrs[cpu];
2540 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2541 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2542 	tpaca->kvm_hstate.fake_suspend = 0;
2543 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2544 	smp_wmb();
2545 	tpaca->kvm_hstate.kvm_vcore = vc;
2546 	if (cpu != smp_processor_id())
2547 		kvmppc_ipi_thread(cpu);
2548 }
2549 
2550 static void kvmppc_wait_for_nap(int n_threads)
2551 {
2552 	int cpu = smp_processor_id();
2553 	int i, loops;
2554 
2555 	if (n_threads <= 1)
2556 		return;
2557 	for (loops = 0; loops < 1000000; ++loops) {
2558 		/*
2559 		 * Check if all threads are finished.
2560 		 * We set the vcore pointer when starting a thread
2561 		 * and the thread clears it when finished, so we look
2562 		 * for any threads that still have a non-NULL vcore ptr.
2563 		 */
2564 		for (i = 1; i < n_threads; ++i)
2565 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2566 				break;
2567 		if (i == n_threads) {
2568 			HMT_medium();
2569 			return;
2570 		}
2571 		HMT_low();
2572 	}
2573 	HMT_medium();
2574 	for (i = 1; i < n_threads; ++i)
2575 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2576 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2577 }
2578 
2579 /*
2580  * Check that we are on thread 0 and that any other threads in
2581  * this core are off-line.  Then grab the threads so they can't
2582  * enter the kernel.
2583  */
2584 static int on_primary_thread(void)
2585 {
2586 	int cpu = smp_processor_id();
2587 	int thr;
2588 
2589 	/* Are we on a primary subcore? */
2590 	if (cpu_thread_in_subcore(cpu))
2591 		return 0;
2592 
2593 	thr = 0;
2594 	while (++thr < threads_per_subcore)
2595 		if (cpu_online(cpu + thr))
2596 			return 0;
2597 
2598 	/* Grab all hw threads so they can't go into the kernel */
2599 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2600 		if (kvmppc_grab_hwthread(cpu + thr)) {
2601 			/* Couldn't grab one; let the others go */
2602 			do {
2603 				kvmppc_release_hwthread(cpu + thr);
2604 			} while (--thr > 0);
2605 			return 0;
2606 		}
2607 	}
2608 	return 1;
2609 }
2610 
2611 /*
2612  * A list of virtual cores for each physical CPU.
2613  * These are vcores that could run but their runner VCPU tasks are
2614  * (or may be) preempted.
2615  */
2616 struct preempted_vcore_list {
2617 	struct list_head	list;
2618 	spinlock_t		lock;
2619 };
2620 
2621 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2622 
2623 static void init_vcore_lists(void)
2624 {
2625 	int cpu;
2626 
2627 	for_each_possible_cpu(cpu) {
2628 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2629 		spin_lock_init(&lp->lock);
2630 		INIT_LIST_HEAD(&lp->list);
2631 	}
2632 }
2633 
2634 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2635 {
2636 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2637 
2638 	vc->vcore_state = VCORE_PREEMPT;
2639 	vc->pcpu = smp_processor_id();
2640 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2641 		spin_lock(&lp->lock);
2642 		list_add_tail(&vc->preempt_list, &lp->list);
2643 		spin_unlock(&lp->lock);
2644 	}
2645 
2646 	/* Start accumulating stolen time */
2647 	kvmppc_core_start_stolen(vc);
2648 }
2649 
2650 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2651 {
2652 	struct preempted_vcore_list *lp;
2653 
2654 	kvmppc_core_end_stolen(vc);
2655 	if (!list_empty(&vc->preempt_list)) {
2656 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2657 		spin_lock(&lp->lock);
2658 		list_del_init(&vc->preempt_list);
2659 		spin_unlock(&lp->lock);
2660 	}
2661 	vc->vcore_state = VCORE_INACTIVE;
2662 }
2663 
2664 /*
2665  * This stores information about the virtual cores currently
2666  * assigned to a physical core.
2667  */
2668 struct core_info {
2669 	int		n_subcores;
2670 	int		max_subcore_threads;
2671 	int		total_threads;
2672 	int		subcore_threads[MAX_SUBCORES];
2673 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2674 };
2675 
2676 /*
2677  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2678  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2679  */
2680 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2681 
2682 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2683 {
2684 	memset(cip, 0, sizeof(*cip));
2685 	cip->n_subcores = 1;
2686 	cip->max_subcore_threads = vc->num_threads;
2687 	cip->total_threads = vc->num_threads;
2688 	cip->subcore_threads[0] = vc->num_threads;
2689 	cip->vc[0] = vc;
2690 }
2691 
2692 static bool subcore_config_ok(int n_subcores, int n_threads)
2693 {
2694 	/*
2695 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2696 	 * split-core mode, with one thread per subcore.
2697 	 */
2698 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2699 		return n_subcores <= 4 && n_threads == 1;
2700 
2701 	/* On POWER8, can only dynamically split if unsplit to begin with */
2702 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2703 		return false;
2704 	if (n_subcores > MAX_SUBCORES)
2705 		return false;
2706 	if (n_subcores > 1) {
2707 		if (!(dynamic_mt_modes & 2))
2708 			n_subcores = 4;
2709 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2710 			return false;
2711 	}
2712 
2713 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2714 }
2715 
2716 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2717 {
2718 	vc->entry_exit_map = 0;
2719 	vc->in_guest = 0;
2720 	vc->napping_threads = 0;
2721 	vc->conferring_threads = 0;
2722 	vc->tb_offset_applied = 0;
2723 }
2724 
2725 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2726 {
2727 	int n_threads = vc->num_threads;
2728 	int sub;
2729 
2730 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2731 		return false;
2732 
2733 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2734 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2735 		return false;
2736 
2737 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2738 	if (no_mixing_hpt_and_radix &&
2739 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2740 		return false;
2741 
2742 	if (n_threads < cip->max_subcore_threads)
2743 		n_threads = cip->max_subcore_threads;
2744 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2745 		return false;
2746 	cip->max_subcore_threads = n_threads;
2747 
2748 	sub = cip->n_subcores;
2749 	++cip->n_subcores;
2750 	cip->total_threads += vc->num_threads;
2751 	cip->subcore_threads[sub] = vc->num_threads;
2752 	cip->vc[sub] = vc;
2753 	init_vcore_to_run(vc);
2754 	list_del_init(&vc->preempt_list);
2755 
2756 	return true;
2757 }
2758 
2759 /*
2760  * Work out whether it is possible to piggyback the execution of
2761  * vcore *pvc onto the execution of the other vcores described in *cip.
2762  */
2763 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2764 			  int target_threads)
2765 {
2766 	if (cip->total_threads + pvc->num_threads > target_threads)
2767 		return false;
2768 
2769 	return can_dynamic_split(pvc, cip);
2770 }
2771 
2772 static void prepare_threads(struct kvmppc_vcore *vc)
2773 {
2774 	int i;
2775 	struct kvm_vcpu *vcpu;
2776 
2777 	for_each_runnable_thread(i, vcpu, vc) {
2778 		if (signal_pending(vcpu->arch.run_task))
2779 			vcpu->arch.ret = -EINTR;
2780 		else if (vcpu->arch.vpa.update_pending ||
2781 			 vcpu->arch.slb_shadow.update_pending ||
2782 			 vcpu->arch.dtl.update_pending)
2783 			vcpu->arch.ret = RESUME_GUEST;
2784 		else
2785 			continue;
2786 		kvmppc_remove_runnable(vc, vcpu);
2787 		wake_up(&vcpu->arch.cpu_run);
2788 	}
2789 }
2790 
2791 static void collect_piggybacks(struct core_info *cip, int target_threads)
2792 {
2793 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2794 	struct kvmppc_vcore *pvc, *vcnext;
2795 
2796 	spin_lock(&lp->lock);
2797 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2798 		if (!spin_trylock(&pvc->lock))
2799 			continue;
2800 		prepare_threads(pvc);
2801 		if (!pvc->n_runnable) {
2802 			list_del_init(&pvc->preempt_list);
2803 			if (pvc->runner == NULL) {
2804 				pvc->vcore_state = VCORE_INACTIVE;
2805 				kvmppc_core_end_stolen(pvc);
2806 			}
2807 			spin_unlock(&pvc->lock);
2808 			continue;
2809 		}
2810 		if (!can_piggyback(pvc, cip, target_threads)) {
2811 			spin_unlock(&pvc->lock);
2812 			continue;
2813 		}
2814 		kvmppc_core_end_stolen(pvc);
2815 		pvc->vcore_state = VCORE_PIGGYBACK;
2816 		if (cip->total_threads >= target_threads)
2817 			break;
2818 	}
2819 	spin_unlock(&lp->lock);
2820 }
2821 
2822 static bool recheck_signals(struct core_info *cip)
2823 {
2824 	int sub, i;
2825 	struct kvm_vcpu *vcpu;
2826 
2827 	for (sub = 0; sub < cip->n_subcores; ++sub)
2828 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2829 			if (signal_pending(vcpu->arch.run_task))
2830 				return true;
2831 	return false;
2832 }
2833 
2834 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2835 {
2836 	int still_running = 0, i;
2837 	u64 now;
2838 	long ret;
2839 	struct kvm_vcpu *vcpu;
2840 
2841 	spin_lock(&vc->lock);
2842 	now = get_tb();
2843 	for_each_runnable_thread(i, vcpu, vc) {
2844 		/*
2845 		 * It's safe to unlock the vcore in the loop here, because
2846 		 * for_each_runnable_thread() is safe against removal of
2847 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2848 		 * so any vcpus becoming runnable will have their arch.trap
2849 		 * set to zero and can't actually run in the guest.
2850 		 */
2851 		spin_unlock(&vc->lock);
2852 		/* cancel pending dec exception if dec is positive */
2853 		if (now < vcpu->arch.dec_expires &&
2854 		    kvmppc_core_pending_dec(vcpu))
2855 			kvmppc_core_dequeue_dec(vcpu);
2856 
2857 		trace_kvm_guest_exit(vcpu);
2858 
2859 		ret = RESUME_GUEST;
2860 		if (vcpu->arch.trap)
2861 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2862 						    vcpu->arch.run_task);
2863 
2864 		vcpu->arch.ret = ret;
2865 		vcpu->arch.trap = 0;
2866 
2867 		spin_lock(&vc->lock);
2868 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2869 			if (vcpu->arch.pending_exceptions)
2870 				kvmppc_core_prepare_to_enter(vcpu);
2871 			if (vcpu->arch.ceded)
2872 				kvmppc_set_timer(vcpu);
2873 			else
2874 				++still_running;
2875 		} else {
2876 			kvmppc_remove_runnable(vc, vcpu);
2877 			wake_up(&vcpu->arch.cpu_run);
2878 		}
2879 	}
2880 	if (!is_master) {
2881 		if (still_running > 0) {
2882 			kvmppc_vcore_preempt(vc);
2883 		} else if (vc->runner) {
2884 			vc->vcore_state = VCORE_PREEMPT;
2885 			kvmppc_core_start_stolen(vc);
2886 		} else {
2887 			vc->vcore_state = VCORE_INACTIVE;
2888 		}
2889 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2890 			/* make sure there's a candidate runner awake */
2891 			i = -1;
2892 			vcpu = next_runnable_thread(vc, &i);
2893 			wake_up(&vcpu->arch.cpu_run);
2894 		}
2895 	}
2896 	spin_unlock(&vc->lock);
2897 }
2898 
2899 /*
2900  * Clear core from the list of active host cores as we are about to
2901  * enter the guest. Only do this if it is the primary thread of the
2902  * core (not if a subcore) that is entering the guest.
2903  */
2904 static inline int kvmppc_clear_host_core(unsigned int cpu)
2905 {
2906 	int core;
2907 
2908 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2909 		return 0;
2910 	/*
2911 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2912 	 * later in kvmppc_start_thread and we need ensure that state is
2913 	 * visible to other CPUs only after we enter guest.
2914 	 */
2915 	core = cpu >> threads_shift;
2916 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2917 	return 0;
2918 }
2919 
2920 /*
2921  * Advertise this core as an active host core since we exited the guest
2922  * Only need to do this if it is the primary thread of the core that is
2923  * exiting.
2924  */
2925 static inline int kvmppc_set_host_core(unsigned int cpu)
2926 {
2927 	int core;
2928 
2929 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2930 		return 0;
2931 
2932 	/*
2933 	 * Memory barrier can be omitted here because we do a spin_unlock
2934 	 * immediately after this which provides the memory barrier.
2935 	 */
2936 	core = cpu >> threads_shift;
2937 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2938 	return 0;
2939 }
2940 
2941 static void set_irq_happened(int trap)
2942 {
2943 	switch (trap) {
2944 	case BOOK3S_INTERRUPT_EXTERNAL:
2945 		local_paca->irq_happened |= PACA_IRQ_EE;
2946 		break;
2947 	case BOOK3S_INTERRUPT_H_DOORBELL:
2948 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2949 		break;
2950 	case BOOK3S_INTERRUPT_HMI:
2951 		local_paca->irq_happened |= PACA_IRQ_HMI;
2952 		break;
2953 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2954 		replay_system_reset();
2955 		break;
2956 	}
2957 }
2958 
2959 /*
2960  * Run a set of guest threads on a physical core.
2961  * Called with vc->lock held.
2962  */
2963 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2964 {
2965 	struct kvm_vcpu *vcpu;
2966 	int i;
2967 	int srcu_idx;
2968 	struct core_info core_info;
2969 	struct kvmppc_vcore *pvc;
2970 	struct kvm_split_mode split_info, *sip;
2971 	int split, subcore_size, active;
2972 	int sub;
2973 	bool thr0_done;
2974 	unsigned long cmd_bit, stat_bit;
2975 	int pcpu, thr;
2976 	int target_threads;
2977 	int controlled_threads;
2978 	int trap;
2979 	bool is_power8;
2980 	bool hpt_on_radix;
2981 
2982 	/*
2983 	 * Remove from the list any threads that have a signal pending
2984 	 * or need a VPA update done
2985 	 */
2986 	prepare_threads(vc);
2987 
2988 	/* if the runner is no longer runnable, let the caller pick a new one */
2989 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2990 		return;
2991 
2992 	/*
2993 	 * Initialize *vc.
2994 	 */
2995 	init_vcore_to_run(vc);
2996 	vc->preempt_tb = TB_NIL;
2997 
2998 	/*
2999 	 * Number of threads that we will be controlling: the same as
3000 	 * the number of threads per subcore, except on POWER9,
3001 	 * where it's 1 because the threads are (mostly) independent.
3002 	 */
3003 	controlled_threads = threads_per_vcore(vc->kvm);
3004 
3005 	/*
3006 	 * Make sure we are running on primary threads, and that secondary
3007 	 * threads are offline.  Also check if the number of threads in this
3008 	 * guest are greater than the current system threads per guest.
3009 	 * On POWER9, we need to be not in independent-threads mode if
3010 	 * this is a HPT guest on a radix host machine where the
3011 	 * CPU threads may not be in different MMU modes.
3012 	 */
3013 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3014 		!kvm_is_radix(vc->kvm);
3015 	if (((controlled_threads > 1) &&
3016 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3017 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3018 		for_each_runnable_thread(i, vcpu, vc) {
3019 			vcpu->arch.ret = -EBUSY;
3020 			kvmppc_remove_runnable(vc, vcpu);
3021 			wake_up(&vcpu->arch.cpu_run);
3022 		}
3023 		goto out;
3024 	}
3025 
3026 	/*
3027 	 * See if we could run any other vcores on the physical core
3028 	 * along with this one.
3029 	 */
3030 	init_core_info(&core_info, vc);
3031 	pcpu = smp_processor_id();
3032 	target_threads = controlled_threads;
3033 	if (target_smt_mode && target_smt_mode < target_threads)
3034 		target_threads = target_smt_mode;
3035 	if (vc->num_threads < target_threads)
3036 		collect_piggybacks(&core_info, target_threads);
3037 
3038 	/*
3039 	 * On radix, arrange for TLB flushing if necessary.
3040 	 * This has to be done before disabling interrupts since
3041 	 * it uses smp_call_function().
3042 	 */
3043 	pcpu = smp_processor_id();
3044 	if (kvm_is_radix(vc->kvm)) {
3045 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3046 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3047 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3048 	}
3049 
3050 	/*
3051 	 * Hard-disable interrupts, and check resched flag and signals.
3052 	 * If we need to reschedule or deliver a signal, clean up
3053 	 * and return without going into the guest(s).
3054 	 * If the mmu_ready flag has been cleared, don't go into the
3055 	 * guest because that means a HPT resize operation is in progress.
3056 	 */
3057 	local_irq_disable();
3058 	hard_irq_disable();
3059 	if (lazy_irq_pending() || need_resched() ||
3060 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3061 		local_irq_enable();
3062 		vc->vcore_state = VCORE_INACTIVE;
3063 		/* Unlock all except the primary vcore */
3064 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3065 			pvc = core_info.vc[sub];
3066 			/* Put back on to the preempted vcores list */
3067 			kvmppc_vcore_preempt(pvc);
3068 			spin_unlock(&pvc->lock);
3069 		}
3070 		for (i = 0; i < controlled_threads; ++i)
3071 			kvmppc_release_hwthread(pcpu + i);
3072 		return;
3073 	}
3074 
3075 	kvmppc_clear_host_core(pcpu);
3076 
3077 	/* Decide on micro-threading (split-core) mode */
3078 	subcore_size = threads_per_subcore;
3079 	cmd_bit = stat_bit = 0;
3080 	split = core_info.n_subcores;
3081 	sip = NULL;
3082 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3083 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3084 
3085 	if (split > 1 || hpt_on_radix) {
3086 		sip = &split_info;
3087 		memset(&split_info, 0, sizeof(split_info));
3088 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3089 			split_info.vc[sub] = core_info.vc[sub];
3090 
3091 		if (is_power8) {
3092 			if (split == 2 && (dynamic_mt_modes & 2)) {
3093 				cmd_bit = HID0_POWER8_1TO2LPAR;
3094 				stat_bit = HID0_POWER8_2LPARMODE;
3095 			} else {
3096 				split = 4;
3097 				cmd_bit = HID0_POWER8_1TO4LPAR;
3098 				stat_bit = HID0_POWER8_4LPARMODE;
3099 			}
3100 			subcore_size = MAX_SMT_THREADS / split;
3101 			split_info.rpr = mfspr(SPRN_RPR);
3102 			split_info.pmmar = mfspr(SPRN_PMMAR);
3103 			split_info.ldbar = mfspr(SPRN_LDBAR);
3104 			split_info.subcore_size = subcore_size;
3105 		} else {
3106 			split_info.subcore_size = 1;
3107 			if (hpt_on_radix) {
3108 				/* Use the split_info for LPCR/LPIDR changes */
3109 				split_info.lpcr_req = vc->lpcr;
3110 				split_info.lpidr_req = vc->kvm->arch.lpid;
3111 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3112 				split_info.do_set = 1;
3113 			}
3114 		}
3115 
3116 		/* order writes to split_info before kvm_split_mode pointer */
3117 		smp_wmb();
3118 	}
3119 
3120 	for (thr = 0; thr < controlled_threads; ++thr) {
3121 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3122 
3123 		paca->kvm_hstate.tid = thr;
3124 		paca->kvm_hstate.napping = 0;
3125 		paca->kvm_hstate.kvm_split_mode = sip;
3126 	}
3127 
3128 	/* Initiate micro-threading (split-core) on POWER8 if required */
3129 	if (cmd_bit) {
3130 		unsigned long hid0 = mfspr(SPRN_HID0);
3131 
3132 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3133 		mb();
3134 		mtspr(SPRN_HID0, hid0);
3135 		isync();
3136 		for (;;) {
3137 			hid0 = mfspr(SPRN_HID0);
3138 			if (hid0 & stat_bit)
3139 				break;
3140 			cpu_relax();
3141 		}
3142 	}
3143 
3144 	/*
3145 	 * On POWER8, set RWMR register.
3146 	 * Since it only affects PURR and SPURR, it doesn't affect
3147 	 * the host, so we don't save/restore the host value.
3148 	 */
3149 	if (is_power8) {
3150 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3151 		int n_online = atomic_read(&vc->online_count);
3152 
3153 		/*
3154 		 * Use the 8-thread value if we're doing split-core
3155 		 * or if the vcore's online count looks bogus.
3156 		 */
3157 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3158 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3159 			rwmr_val = p8_rwmr_values[n_online];
3160 		mtspr(SPRN_RWMR, rwmr_val);
3161 	}
3162 
3163 	/* Start all the threads */
3164 	active = 0;
3165 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3166 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3167 		thr0_done = false;
3168 		active |= 1 << thr;
3169 		pvc = core_info.vc[sub];
3170 		pvc->pcpu = pcpu + thr;
3171 		for_each_runnable_thread(i, vcpu, pvc) {
3172 			kvmppc_start_thread(vcpu, pvc);
3173 			kvmppc_create_dtl_entry(vcpu, pvc);
3174 			trace_kvm_guest_enter(vcpu);
3175 			if (!vcpu->arch.ptid)
3176 				thr0_done = true;
3177 			active |= 1 << (thr + vcpu->arch.ptid);
3178 		}
3179 		/*
3180 		 * We need to start the first thread of each subcore
3181 		 * even if it doesn't have a vcpu.
3182 		 */
3183 		if (!thr0_done)
3184 			kvmppc_start_thread(NULL, pvc);
3185 	}
3186 
3187 	/*
3188 	 * Ensure that split_info.do_nap is set after setting
3189 	 * the vcore pointer in the PACA of the secondaries.
3190 	 */
3191 	smp_mb();
3192 
3193 	/*
3194 	 * When doing micro-threading, poke the inactive threads as well.
3195 	 * This gets them to the nap instruction after kvm_do_nap,
3196 	 * which reduces the time taken to unsplit later.
3197 	 * For POWER9 HPT guest on radix host, we need all the secondary
3198 	 * threads woken up so they can do the LPCR/LPIDR change.
3199 	 */
3200 	if (cmd_bit || hpt_on_radix) {
3201 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3202 		for (thr = 1; thr < threads_per_subcore; ++thr)
3203 			if (!(active & (1 << thr)))
3204 				kvmppc_ipi_thread(pcpu + thr);
3205 	}
3206 
3207 	vc->vcore_state = VCORE_RUNNING;
3208 	preempt_disable();
3209 
3210 	trace_kvmppc_run_core(vc, 0);
3211 
3212 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3213 		spin_unlock(&core_info.vc[sub]->lock);
3214 
3215 	if (kvm_is_radix(vc->kvm)) {
3216 		/*
3217 		 * Do we need to flush the process scoped TLB for the LPAR?
3218 		 *
3219 		 * On POWER9, individual threads can come in here, but the
3220 		 * TLB is shared between the 4 threads in a core, hence
3221 		 * invalidating on one thread invalidates for all.
3222 		 * Thus we make all 4 threads use the same bit here.
3223 		 *
3224 		 * Hash must be flushed in realmode in order to use tlbiel.
3225 		 */
3226 		kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL);
3227 	}
3228 
3229 	/*
3230 	 * Interrupts will be enabled once we get into the guest,
3231 	 * so tell lockdep that we're about to enable interrupts.
3232 	 */
3233 	trace_hardirqs_on();
3234 
3235 	guest_enter_irqoff();
3236 
3237 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3238 
3239 	this_cpu_disable_ftrace();
3240 
3241 	trap = __kvmppc_vcore_entry();
3242 
3243 	this_cpu_enable_ftrace();
3244 
3245 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3246 
3247 	trace_hardirqs_off();
3248 	set_irq_happened(trap);
3249 
3250 	spin_lock(&vc->lock);
3251 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3252 	vc->vcore_state = VCORE_EXITING;
3253 
3254 	/* wait for secondary threads to finish writing their state to memory */
3255 	kvmppc_wait_for_nap(controlled_threads);
3256 
3257 	/* Return to whole-core mode if we split the core earlier */
3258 	if (cmd_bit) {
3259 		unsigned long hid0 = mfspr(SPRN_HID0);
3260 		unsigned long loops = 0;
3261 
3262 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3263 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3264 		mb();
3265 		mtspr(SPRN_HID0, hid0);
3266 		isync();
3267 		for (;;) {
3268 			hid0 = mfspr(SPRN_HID0);
3269 			if (!(hid0 & stat_bit))
3270 				break;
3271 			cpu_relax();
3272 			++loops;
3273 		}
3274 	} else if (hpt_on_radix) {
3275 		/* Wait for all threads to have seen final sync */
3276 		for (thr = 1; thr < controlled_threads; ++thr) {
3277 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3278 
3279 			while (paca->kvm_hstate.kvm_split_mode) {
3280 				HMT_low();
3281 				barrier();
3282 			}
3283 			HMT_medium();
3284 		}
3285 	}
3286 	split_info.do_nap = 0;
3287 
3288 	kvmppc_set_host_core(pcpu);
3289 
3290 	local_irq_enable();
3291 	guest_exit();
3292 
3293 	/* Let secondaries go back to the offline loop */
3294 	for (i = 0; i < controlled_threads; ++i) {
3295 		kvmppc_release_hwthread(pcpu + i);
3296 		if (sip && sip->napped[i])
3297 			kvmppc_ipi_thread(pcpu + i);
3298 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3299 	}
3300 
3301 	spin_unlock(&vc->lock);
3302 
3303 	/* make sure updates to secondary vcpu structs are visible now */
3304 	smp_mb();
3305 
3306 	preempt_enable();
3307 
3308 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3309 		pvc = core_info.vc[sub];
3310 		post_guest_process(pvc, pvc == vc);
3311 	}
3312 
3313 	spin_lock(&vc->lock);
3314 
3315  out:
3316 	vc->vcore_state = VCORE_INACTIVE;
3317 	trace_kvmppc_run_core(vc, 1);
3318 }
3319 
3320 /*
3321  * Load up hypervisor-mode registers on P9.
3322  */
3323 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3324 				     unsigned long lpcr)
3325 {
3326 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3327 	s64 hdec;
3328 	u64 tb, purr, spurr;
3329 	int trap;
3330 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3331 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3332 	unsigned long host_dawr = mfspr(SPRN_DAWR);
3333 	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3334 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3335 	unsigned long host_pidr = mfspr(SPRN_PID);
3336 
3337 	hdec = time_limit - mftb();
3338 	if (hdec < 0)
3339 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3340 	mtspr(SPRN_HDEC, hdec);
3341 
3342 	if (vc->tb_offset) {
3343 		u64 new_tb = mftb() + vc->tb_offset;
3344 		mtspr(SPRN_TBU40, new_tb);
3345 		tb = mftb();
3346 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3347 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3348 		vc->tb_offset_applied = vc->tb_offset;
3349 	}
3350 
3351 	if (vc->pcr)
3352 		mtspr(SPRN_PCR, vc->pcr);
3353 	mtspr(SPRN_DPDES, vc->dpdes);
3354 	mtspr(SPRN_VTB, vc->vtb);
3355 
3356 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3357 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3358 	mtspr(SPRN_PURR, vcpu->arch.purr);
3359 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3360 
3361 	if (cpu_has_feature(CPU_FTR_DAWR)) {
3362 		mtspr(SPRN_DAWR, vcpu->arch.dawr);
3363 		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3364 	}
3365 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3366 	mtspr(SPRN_IC, vcpu->arch.ic);
3367 	mtspr(SPRN_PID, vcpu->arch.pid);
3368 
3369 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3370 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3371 
3372 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3373 
3374 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3375 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3376 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3377 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3378 
3379 	mtspr(SPRN_AMOR, ~0UL);
3380 
3381 	mtspr(SPRN_LPCR, lpcr);
3382 	isync();
3383 
3384 	kvmppc_xive_push_vcpu(vcpu);
3385 
3386 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3387 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3388 
3389 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3390 
3391 	/* Advance host PURR/SPURR by the amount used by guest */
3392 	purr = mfspr(SPRN_PURR);
3393 	spurr = mfspr(SPRN_SPURR);
3394 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3395 	      purr - vcpu->arch.purr);
3396 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3397 	      spurr - vcpu->arch.spurr);
3398 	vcpu->arch.purr = purr;
3399 	vcpu->arch.spurr = spurr;
3400 
3401 	vcpu->arch.ic = mfspr(SPRN_IC);
3402 	vcpu->arch.pid = mfspr(SPRN_PID);
3403 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3404 
3405 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3406 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3407 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3408 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3409 
3410 	mtspr(SPRN_PSSCR, host_psscr);
3411 	mtspr(SPRN_HFSCR, host_hfscr);
3412 	mtspr(SPRN_CIABR, host_ciabr);
3413 	mtspr(SPRN_DAWR, host_dawr);
3414 	mtspr(SPRN_DAWRX, host_dawrx);
3415 	mtspr(SPRN_PID, host_pidr);
3416 
3417 	/*
3418 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3419 	 * case we interrupted the guest between a tlbie and a ptesync.
3420 	 */
3421 	asm volatile("eieio; tlbsync; ptesync");
3422 
3423 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3424 	isync();
3425 
3426 	vc->dpdes = mfspr(SPRN_DPDES);
3427 	vc->vtb = mfspr(SPRN_VTB);
3428 	mtspr(SPRN_DPDES, 0);
3429 	if (vc->pcr)
3430 		mtspr(SPRN_PCR, 0);
3431 
3432 	if (vc->tb_offset_applied) {
3433 		u64 new_tb = mftb() - vc->tb_offset_applied;
3434 		mtspr(SPRN_TBU40, new_tb);
3435 		tb = mftb();
3436 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3437 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3438 		vc->tb_offset_applied = 0;
3439 	}
3440 
3441 	mtspr(SPRN_HDEC, 0x7fffffff);
3442 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3443 
3444 	return trap;
3445 }
3446 
3447 /*
3448  * Virtual-mode guest entry for POWER9 and later when the host and
3449  * guest are both using the radix MMU.  The LPIDR has already been set.
3450  */
3451 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3452 			 unsigned long lpcr)
3453 {
3454 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3455 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3456 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3457 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3458 	s64 dec;
3459 	u64 tb;
3460 	int trap, save_pmu;
3461 
3462 	dec = mfspr(SPRN_DEC);
3463 	tb = mftb();
3464 	if (dec < 512)
3465 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3466 	local_paca->kvm_hstate.dec_expires = dec + tb;
3467 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3468 		time_limit = local_paca->kvm_hstate.dec_expires;
3469 
3470 	vcpu->arch.ceded = 0;
3471 
3472 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3473 
3474 	kvmppc_subcore_enter_guest();
3475 
3476 	vc->entry_exit_map = 1;
3477 	vc->in_guest = 1;
3478 
3479 	if (vcpu->arch.vpa.pinned_addr) {
3480 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3481 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3482 		lp->yield_count = cpu_to_be32(yield_count);
3483 		vcpu->arch.vpa.dirty = 1;
3484 	}
3485 
3486 	if (cpu_has_feature(CPU_FTR_TM) ||
3487 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3488 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3489 
3490 	kvmhv_load_guest_pmu(vcpu);
3491 
3492 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3493 	load_fp_state(&vcpu->arch.fp);
3494 #ifdef CONFIG_ALTIVEC
3495 	load_vr_state(&vcpu->arch.vr);
3496 #endif
3497 
3498 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3499 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3500 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3501 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3502 	mtspr(SPRN_TAR, vcpu->arch.tar);
3503 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3504 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3505 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3506 	mtspr(SPRN_WORT, vcpu->arch.wort);
3507 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3508 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3509 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3510 	mtspr(SPRN_AMR, vcpu->arch.amr);
3511 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3512 
3513 	if (!(vcpu->arch.ctrl & 1))
3514 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3515 
3516 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3517 
3518 	if (kvmhv_on_pseries()) {
3519 		/* call our hypervisor to load up HV regs and go */
3520 		struct hv_guest_state hvregs;
3521 
3522 		kvmhv_save_hv_regs(vcpu, &hvregs);
3523 		hvregs.lpcr = lpcr;
3524 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3525 		hvregs.version = HV_GUEST_STATE_VERSION;
3526 		if (vcpu->arch.nested) {
3527 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3528 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3529 		} else {
3530 			hvregs.lpid = vcpu->kvm->arch.lpid;
3531 			hvregs.vcpu_token = vcpu->vcpu_id;
3532 		}
3533 		hvregs.hdec_expiry = time_limit;
3534 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3535 					  __pa(&vcpu->arch.regs));
3536 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3537 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3538 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3539 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3540 
3541 		/* H_CEDE has to be handled now, not later */
3542 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3543 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3544 			kvmppc_nested_cede(vcpu);
3545 			trap = 0;
3546 		}
3547 	} else {
3548 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3549 	}
3550 
3551 	vcpu->arch.slb_max = 0;
3552 	dec = mfspr(SPRN_DEC);
3553 	tb = mftb();
3554 	vcpu->arch.dec_expires = dec + tb;
3555 	vcpu->cpu = -1;
3556 	vcpu->arch.thread_cpu = -1;
3557 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3558 
3559 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3560 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3561 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3562 	vcpu->arch.tar = mfspr(SPRN_TAR);
3563 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3564 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3565 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3566 	vcpu->arch.wort = mfspr(SPRN_WORT);
3567 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3568 	vcpu->arch.amr = mfspr(SPRN_AMR);
3569 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3570 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3571 
3572 	mtspr(SPRN_PSPB, 0);
3573 	mtspr(SPRN_WORT, 0);
3574 	mtspr(SPRN_AMR, 0);
3575 	mtspr(SPRN_UAMOR, 0);
3576 	mtspr(SPRN_DSCR, host_dscr);
3577 	mtspr(SPRN_TIDR, host_tidr);
3578 	mtspr(SPRN_IAMR, host_iamr);
3579 	mtspr(SPRN_PSPB, 0);
3580 
3581 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3582 	store_fp_state(&vcpu->arch.fp);
3583 #ifdef CONFIG_ALTIVEC
3584 	store_vr_state(&vcpu->arch.vr);
3585 #endif
3586 
3587 	if (cpu_has_feature(CPU_FTR_TM) ||
3588 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3589 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3590 
3591 	save_pmu = 1;
3592 	if (vcpu->arch.vpa.pinned_addr) {
3593 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3594 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3595 		lp->yield_count = cpu_to_be32(yield_count);
3596 		vcpu->arch.vpa.dirty = 1;
3597 		save_pmu = lp->pmcregs_in_use;
3598 	}
3599 
3600 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3601 
3602 	vc->entry_exit_map = 0x101;
3603 	vc->in_guest = 0;
3604 
3605 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3606 
3607 	kvmhv_load_host_pmu();
3608 
3609 	kvmppc_subcore_exit_guest();
3610 
3611 	return trap;
3612 }
3613 
3614 /*
3615  * Wait for some other vcpu thread to execute us, and
3616  * wake us up when we need to handle something in the host.
3617  */
3618 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3619 				 struct kvm_vcpu *vcpu, int wait_state)
3620 {
3621 	DEFINE_WAIT(wait);
3622 
3623 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3624 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3625 		spin_unlock(&vc->lock);
3626 		schedule();
3627 		spin_lock(&vc->lock);
3628 	}
3629 	finish_wait(&vcpu->arch.cpu_run, &wait);
3630 }
3631 
3632 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3633 {
3634 	/* 10us base */
3635 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3636 		vc->halt_poll_ns = 10000;
3637 	else
3638 		vc->halt_poll_ns *= halt_poll_ns_grow;
3639 }
3640 
3641 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3642 {
3643 	if (halt_poll_ns_shrink == 0)
3644 		vc->halt_poll_ns = 0;
3645 	else
3646 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3647 }
3648 
3649 #ifdef CONFIG_KVM_XICS
3650 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3651 {
3652 	if (!xive_enabled())
3653 		return false;
3654 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3655 		vcpu->arch.xive_saved_state.cppr;
3656 }
3657 #else
3658 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3659 {
3660 	return false;
3661 }
3662 #endif /* CONFIG_KVM_XICS */
3663 
3664 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3665 {
3666 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3667 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3668 		return true;
3669 
3670 	return false;
3671 }
3672 
3673 /*
3674  * Check to see if any of the runnable vcpus on the vcore have pending
3675  * exceptions or are no longer ceded
3676  */
3677 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3678 {
3679 	struct kvm_vcpu *vcpu;
3680 	int i;
3681 
3682 	for_each_runnable_thread(i, vcpu, vc) {
3683 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3684 			return 1;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 /*
3691  * All the vcpus in this vcore are idle, so wait for a decrementer
3692  * or external interrupt to one of the vcpus.  vc->lock is held.
3693  */
3694 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3695 {
3696 	ktime_t cur, start_poll, start_wait;
3697 	int do_sleep = 1;
3698 	u64 block_ns;
3699 	DECLARE_SWAITQUEUE(wait);
3700 
3701 	/* Poll for pending exceptions and ceded state */
3702 	cur = start_poll = ktime_get();
3703 	if (vc->halt_poll_ns) {
3704 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3705 		++vc->runner->stat.halt_attempted_poll;
3706 
3707 		vc->vcore_state = VCORE_POLLING;
3708 		spin_unlock(&vc->lock);
3709 
3710 		do {
3711 			if (kvmppc_vcore_check_block(vc)) {
3712 				do_sleep = 0;
3713 				break;
3714 			}
3715 			cur = ktime_get();
3716 		} while (single_task_running() && ktime_before(cur, stop));
3717 
3718 		spin_lock(&vc->lock);
3719 		vc->vcore_state = VCORE_INACTIVE;
3720 
3721 		if (!do_sleep) {
3722 			++vc->runner->stat.halt_successful_poll;
3723 			goto out;
3724 		}
3725 	}
3726 
3727 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3728 
3729 	if (kvmppc_vcore_check_block(vc)) {
3730 		finish_swait(&vc->wq, &wait);
3731 		do_sleep = 0;
3732 		/* If we polled, count this as a successful poll */
3733 		if (vc->halt_poll_ns)
3734 			++vc->runner->stat.halt_successful_poll;
3735 		goto out;
3736 	}
3737 
3738 	start_wait = ktime_get();
3739 
3740 	vc->vcore_state = VCORE_SLEEPING;
3741 	trace_kvmppc_vcore_blocked(vc, 0);
3742 	spin_unlock(&vc->lock);
3743 	schedule();
3744 	finish_swait(&vc->wq, &wait);
3745 	spin_lock(&vc->lock);
3746 	vc->vcore_state = VCORE_INACTIVE;
3747 	trace_kvmppc_vcore_blocked(vc, 1);
3748 	++vc->runner->stat.halt_successful_wait;
3749 
3750 	cur = ktime_get();
3751 
3752 out:
3753 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3754 
3755 	/* Attribute wait time */
3756 	if (do_sleep) {
3757 		vc->runner->stat.halt_wait_ns +=
3758 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3759 		/* Attribute failed poll time */
3760 		if (vc->halt_poll_ns)
3761 			vc->runner->stat.halt_poll_fail_ns +=
3762 				ktime_to_ns(start_wait) -
3763 				ktime_to_ns(start_poll);
3764 	} else {
3765 		/* Attribute successful poll time */
3766 		if (vc->halt_poll_ns)
3767 			vc->runner->stat.halt_poll_success_ns +=
3768 				ktime_to_ns(cur) -
3769 				ktime_to_ns(start_poll);
3770 	}
3771 
3772 	/* Adjust poll time */
3773 	if (halt_poll_ns) {
3774 		if (block_ns <= vc->halt_poll_ns)
3775 			;
3776 		/* We slept and blocked for longer than the max halt time */
3777 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3778 			shrink_halt_poll_ns(vc);
3779 		/* We slept and our poll time is too small */
3780 		else if (vc->halt_poll_ns < halt_poll_ns &&
3781 				block_ns < halt_poll_ns)
3782 			grow_halt_poll_ns(vc);
3783 		if (vc->halt_poll_ns > halt_poll_ns)
3784 			vc->halt_poll_ns = halt_poll_ns;
3785 	} else
3786 		vc->halt_poll_ns = 0;
3787 
3788 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3789 }
3790 
3791 /*
3792  * This never fails for a radix guest, as none of the operations it does
3793  * for a radix guest can fail or have a way to report failure.
3794  * kvmhv_run_single_vcpu() relies on this fact.
3795  */
3796 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3797 {
3798 	int r = 0;
3799 	struct kvm *kvm = vcpu->kvm;
3800 
3801 	mutex_lock(&kvm->lock);
3802 	if (!kvm->arch.mmu_ready) {
3803 		if (!kvm_is_radix(kvm))
3804 			r = kvmppc_hv_setup_htab_rma(vcpu);
3805 		if (!r) {
3806 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3807 				kvmppc_setup_partition_table(kvm);
3808 			kvm->arch.mmu_ready = 1;
3809 		}
3810 	}
3811 	mutex_unlock(&kvm->lock);
3812 	return r;
3813 }
3814 
3815 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3816 {
3817 	int n_ceded, i, r;
3818 	struct kvmppc_vcore *vc;
3819 	struct kvm_vcpu *v;
3820 
3821 	trace_kvmppc_run_vcpu_enter(vcpu);
3822 
3823 	kvm_run->exit_reason = 0;
3824 	vcpu->arch.ret = RESUME_GUEST;
3825 	vcpu->arch.trap = 0;
3826 	kvmppc_update_vpas(vcpu);
3827 
3828 	/*
3829 	 * Synchronize with other threads in this virtual core
3830 	 */
3831 	vc = vcpu->arch.vcore;
3832 	spin_lock(&vc->lock);
3833 	vcpu->arch.ceded = 0;
3834 	vcpu->arch.run_task = current;
3835 	vcpu->arch.kvm_run = kvm_run;
3836 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3837 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3838 	vcpu->arch.busy_preempt = TB_NIL;
3839 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3840 	++vc->n_runnable;
3841 
3842 	/*
3843 	 * This happens the first time this is called for a vcpu.
3844 	 * If the vcore is already running, we may be able to start
3845 	 * this thread straight away and have it join in.
3846 	 */
3847 	if (!signal_pending(current)) {
3848 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3849 		     vc->vcore_state == VCORE_RUNNING) &&
3850 			   !VCORE_IS_EXITING(vc)) {
3851 			kvmppc_create_dtl_entry(vcpu, vc);
3852 			kvmppc_start_thread(vcpu, vc);
3853 			trace_kvm_guest_enter(vcpu);
3854 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3855 			swake_up_one(&vc->wq);
3856 		}
3857 
3858 	}
3859 
3860 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3861 	       !signal_pending(current)) {
3862 		/* See if the MMU is ready to go */
3863 		if (!vcpu->kvm->arch.mmu_ready) {
3864 			spin_unlock(&vc->lock);
3865 			r = kvmhv_setup_mmu(vcpu);
3866 			spin_lock(&vc->lock);
3867 			if (r) {
3868 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3869 				kvm_run->fail_entry.
3870 					hardware_entry_failure_reason = 0;
3871 				vcpu->arch.ret = r;
3872 				break;
3873 			}
3874 		}
3875 
3876 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3877 			kvmppc_vcore_end_preempt(vc);
3878 
3879 		if (vc->vcore_state != VCORE_INACTIVE) {
3880 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3881 			continue;
3882 		}
3883 		for_each_runnable_thread(i, v, vc) {
3884 			kvmppc_core_prepare_to_enter(v);
3885 			if (signal_pending(v->arch.run_task)) {
3886 				kvmppc_remove_runnable(vc, v);
3887 				v->stat.signal_exits++;
3888 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3889 				v->arch.ret = -EINTR;
3890 				wake_up(&v->arch.cpu_run);
3891 			}
3892 		}
3893 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3894 			break;
3895 		n_ceded = 0;
3896 		for_each_runnable_thread(i, v, vc) {
3897 			if (!kvmppc_vcpu_woken(v))
3898 				n_ceded += v->arch.ceded;
3899 			else
3900 				v->arch.ceded = 0;
3901 		}
3902 		vc->runner = vcpu;
3903 		if (n_ceded == vc->n_runnable) {
3904 			kvmppc_vcore_blocked(vc);
3905 		} else if (need_resched()) {
3906 			kvmppc_vcore_preempt(vc);
3907 			/* Let something else run */
3908 			cond_resched_lock(&vc->lock);
3909 			if (vc->vcore_state == VCORE_PREEMPT)
3910 				kvmppc_vcore_end_preempt(vc);
3911 		} else {
3912 			kvmppc_run_core(vc);
3913 		}
3914 		vc->runner = NULL;
3915 	}
3916 
3917 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3918 	       (vc->vcore_state == VCORE_RUNNING ||
3919 		vc->vcore_state == VCORE_EXITING ||
3920 		vc->vcore_state == VCORE_PIGGYBACK))
3921 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3922 
3923 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3924 		kvmppc_vcore_end_preempt(vc);
3925 
3926 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3927 		kvmppc_remove_runnable(vc, vcpu);
3928 		vcpu->stat.signal_exits++;
3929 		kvm_run->exit_reason = KVM_EXIT_INTR;
3930 		vcpu->arch.ret = -EINTR;
3931 	}
3932 
3933 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3934 		/* Wake up some vcpu to run the core */
3935 		i = -1;
3936 		v = next_runnable_thread(vc, &i);
3937 		wake_up(&v->arch.cpu_run);
3938 	}
3939 
3940 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3941 	spin_unlock(&vc->lock);
3942 	return vcpu->arch.ret;
3943 }
3944 
3945 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
3946 			  struct kvm_vcpu *vcpu, u64 time_limit,
3947 			  unsigned long lpcr)
3948 {
3949 	int trap, r, pcpu;
3950 	int srcu_idx;
3951 	struct kvmppc_vcore *vc;
3952 	struct kvm *kvm = vcpu->kvm;
3953 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3954 
3955 	trace_kvmppc_run_vcpu_enter(vcpu);
3956 
3957 	kvm_run->exit_reason = 0;
3958 	vcpu->arch.ret = RESUME_GUEST;
3959 	vcpu->arch.trap = 0;
3960 
3961 	vc = vcpu->arch.vcore;
3962 	vcpu->arch.ceded = 0;
3963 	vcpu->arch.run_task = current;
3964 	vcpu->arch.kvm_run = kvm_run;
3965 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3966 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3967 	vcpu->arch.busy_preempt = TB_NIL;
3968 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
3969 	vc->runnable_threads[0] = vcpu;
3970 	vc->n_runnable = 1;
3971 	vc->runner = vcpu;
3972 
3973 	/* See if the MMU is ready to go */
3974 	if (!kvm->arch.mmu_ready)
3975 		kvmhv_setup_mmu(vcpu);
3976 
3977 	if (need_resched())
3978 		cond_resched();
3979 
3980 	kvmppc_update_vpas(vcpu);
3981 
3982 	init_vcore_to_run(vc);
3983 	vc->preempt_tb = TB_NIL;
3984 
3985 	preempt_disable();
3986 	pcpu = smp_processor_id();
3987 	vc->pcpu = pcpu;
3988 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3989 
3990 	local_irq_disable();
3991 	hard_irq_disable();
3992 	if (signal_pending(current))
3993 		goto sigpend;
3994 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
3995 		goto out;
3996 
3997 	if (!nested) {
3998 		kvmppc_core_prepare_to_enter(vcpu);
3999 		if (vcpu->arch.doorbell_request) {
4000 			vc->dpdes = 1;
4001 			smp_wmb();
4002 			vcpu->arch.doorbell_request = 0;
4003 		}
4004 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4005 			     &vcpu->arch.pending_exceptions))
4006 			lpcr |= LPCR_MER;
4007 	} else if (vcpu->arch.pending_exceptions ||
4008 		   vcpu->arch.doorbell_request ||
4009 		   xive_interrupt_pending(vcpu)) {
4010 		vcpu->arch.ret = RESUME_HOST;
4011 		goto out;
4012 	}
4013 
4014 	kvmppc_clear_host_core(pcpu);
4015 
4016 	local_paca->kvm_hstate.tid = 0;
4017 	local_paca->kvm_hstate.napping = 0;
4018 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4019 	kvmppc_start_thread(vcpu, vc);
4020 	kvmppc_create_dtl_entry(vcpu, vc);
4021 	trace_kvm_guest_enter(vcpu);
4022 
4023 	vc->vcore_state = VCORE_RUNNING;
4024 	trace_kvmppc_run_core(vc, 0);
4025 
4026 	if (cpu_has_feature(CPU_FTR_HVMODE))
4027 		kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested);
4028 
4029 	trace_hardirqs_on();
4030 	guest_enter_irqoff();
4031 
4032 	srcu_idx = srcu_read_lock(&kvm->srcu);
4033 
4034 	this_cpu_disable_ftrace();
4035 
4036 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4037 	vcpu->arch.trap = trap;
4038 
4039 	this_cpu_enable_ftrace();
4040 
4041 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4042 
4043 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4044 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4045 		isync();
4046 	}
4047 
4048 	trace_hardirqs_off();
4049 	set_irq_happened(trap);
4050 
4051 	kvmppc_set_host_core(pcpu);
4052 
4053 	local_irq_enable();
4054 	guest_exit();
4055 
4056 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4057 
4058 	preempt_enable();
4059 
4060 	/* cancel pending decrementer exception if DEC is now positive */
4061 	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
4062 		kvmppc_core_dequeue_dec(vcpu);
4063 
4064 	trace_kvm_guest_exit(vcpu);
4065 	r = RESUME_GUEST;
4066 	if (trap) {
4067 		if (!nested)
4068 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4069 		else
4070 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4071 	}
4072 	vcpu->arch.ret = r;
4073 
4074 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4075 	    !kvmppc_vcpu_woken(vcpu)) {
4076 		kvmppc_set_timer(vcpu);
4077 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4078 			if (signal_pending(current)) {
4079 				vcpu->stat.signal_exits++;
4080 				kvm_run->exit_reason = KVM_EXIT_INTR;
4081 				vcpu->arch.ret = -EINTR;
4082 				break;
4083 			}
4084 			spin_lock(&vc->lock);
4085 			kvmppc_vcore_blocked(vc);
4086 			spin_unlock(&vc->lock);
4087 		}
4088 	}
4089 	vcpu->arch.ceded = 0;
4090 
4091 	vc->vcore_state = VCORE_INACTIVE;
4092 	trace_kvmppc_run_core(vc, 1);
4093 
4094  done:
4095 	kvmppc_remove_runnable(vc, vcpu);
4096 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4097 
4098 	return vcpu->arch.ret;
4099 
4100  sigpend:
4101 	vcpu->stat.signal_exits++;
4102 	kvm_run->exit_reason = KVM_EXIT_INTR;
4103 	vcpu->arch.ret = -EINTR;
4104  out:
4105 	local_irq_enable();
4106 	preempt_enable();
4107 	goto done;
4108 }
4109 
4110 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4111 {
4112 	int r;
4113 	int srcu_idx;
4114 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4115 	unsigned long user_tar = 0;
4116 	unsigned int user_vrsave;
4117 	struct kvm *kvm;
4118 
4119 	if (!vcpu->arch.sane) {
4120 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4121 		return -EINVAL;
4122 	}
4123 
4124 	/*
4125 	 * Don't allow entry with a suspended transaction, because
4126 	 * the guest entry/exit code will lose it.
4127 	 * If the guest has TM enabled, save away their TM-related SPRs
4128 	 * (they will get restored by the TM unavailable interrupt).
4129 	 */
4130 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4131 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4132 	    (current->thread.regs->msr & MSR_TM)) {
4133 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4134 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4135 			run->fail_entry.hardware_entry_failure_reason = 0;
4136 			return -EINVAL;
4137 		}
4138 		/* Enable TM so we can read the TM SPRs */
4139 		mtmsr(mfmsr() | MSR_TM);
4140 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4141 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4142 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4143 		current->thread.regs->msr &= ~MSR_TM;
4144 	}
4145 #endif
4146 
4147 	/*
4148 	 * Force online to 1 for the sake of old userspace which doesn't
4149 	 * set it.
4150 	 */
4151 	if (!vcpu->arch.online) {
4152 		atomic_inc(&vcpu->arch.vcore->online_count);
4153 		vcpu->arch.online = 1;
4154 	}
4155 
4156 	kvmppc_core_prepare_to_enter(vcpu);
4157 
4158 	/* No need to go into the guest when all we'll do is come back out */
4159 	if (signal_pending(current)) {
4160 		run->exit_reason = KVM_EXIT_INTR;
4161 		return -EINTR;
4162 	}
4163 
4164 	kvm = vcpu->kvm;
4165 	atomic_inc(&kvm->arch.vcpus_running);
4166 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4167 	smp_mb();
4168 
4169 	flush_all_to_thread(current);
4170 
4171 	/* Save userspace EBB and other register values */
4172 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4173 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4174 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4175 		ebb_regs[2] = mfspr(SPRN_BESCR);
4176 		user_tar = mfspr(SPRN_TAR);
4177 	}
4178 	user_vrsave = mfspr(SPRN_VRSAVE);
4179 
4180 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4181 	vcpu->arch.pgdir = current->mm->pgd;
4182 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4183 
4184 	do {
4185 		/*
4186 		 * The early POWER9 chips that can't mix radix and HPT threads
4187 		 * on the same core also need the workaround for the problem
4188 		 * where the TLB would prefetch entries in the guest exit path
4189 		 * for radix guests using the guest PIDR value and LPID 0.
4190 		 * The workaround is in the old path (kvmppc_run_vcpu())
4191 		 * but not the new path (kvmhv_run_single_vcpu()).
4192 		 */
4193 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4194 		    !no_mixing_hpt_and_radix)
4195 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4196 						  vcpu->arch.vcore->lpcr);
4197 		else
4198 			r = kvmppc_run_vcpu(run, vcpu);
4199 
4200 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4201 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4202 			trace_kvm_hcall_enter(vcpu);
4203 			r = kvmppc_pseries_do_hcall(vcpu);
4204 			trace_kvm_hcall_exit(vcpu, r);
4205 			kvmppc_core_prepare_to_enter(vcpu);
4206 		} else if (r == RESUME_PAGE_FAULT) {
4207 			srcu_idx = srcu_read_lock(&kvm->srcu);
4208 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4209 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4210 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4211 		} else if (r == RESUME_PASSTHROUGH) {
4212 			if (WARN_ON(xive_enabled()))
4213 				r = H_SUCCESS;
4214 			else
4215 				r = kvmppc_xics_rm_complete(vcpu, 0);
4216 		}
4217 	} while (is_kvmppc_resume_guest(r));
4218 
4219 	/* Restore userspace EBB and other register values */
4220 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4221 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4222 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4223 		mtspr(SPRN_BESCR, ebb_regs[2]);
4224 		mtspr(SPRN_TAR, user_tar);
4225 		mtspr(SPRN_FSCR, current->thread.fscr);
4226 	}
4227 	mtspr(SPRN_VRSAVE, user_vrsave);
4228 
4229 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4230 	atomic_dec(&kvm->arch.vcpus_running);
4231 	return r;
4232 }
4233 
4234 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4235 				     int shift, int sllp)
4236 {
4237 	(*sps)->page_shift = shift;
4238 	(*sps)->slb_enc = sllp;
4239 	(*sps)->enc[0].page_shift = shift;
4240 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4241 	/*
4242 	 * Add 16MB MPSS support (may get filtered out by userspace)
4243 	 */
4244 	if (shift != 24) {
4245 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4246 		if (penc != -1) {
4247 			(*sps)->enc[1].page_shift = 24;
4248 			(*sps)->enc[1].pte_enc = penc;
4249 		}
4250 	}
4251 	(*sps)++;
4252 }
4253 
4254 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4255 					 struct kvm_ppc_smmu_info *info)
4256 {
4257 	struct kvm_ppc_one_seg_page_size *sps;
4258 
4259 	/*
4260 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4261 	 * POWER7 doesn't support keys for instruction accesses,
4262 	 * POWER8 and POWER9 do.
4263 	 */
4264 	info->data_keys = 32;
4265 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4266 
4267 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4268 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4269 	info->slb_size = 32;
4270 
4271 	/* We only support these sizes for now, and no muti-size segments */
4272 	sps = &info->sps[0];
4273 	kvmppc_add_seg_page_size(&sps, 12, 0);
4274 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4275 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4276 
4277 	/* If running as a nested hypervisor, we don't support HPT guests */
4278 	if (kvmhv_on_pseries())
4279 		info->flags |= KVM_PPC_NO_HASH;
4280 
4281 	return 0;
4282 }
4283 
4284 /*
4285  * Get (and clear) the dirty memory log for a memory slot.
4286  */
4287 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4288 					 struct kvm_dirty_log *log)
4289 {
4290 	struct kvm_memslots *slots;
4291 	struct kvm_memory_slot *memslot;
4292 	int i, r;
4293 	unsigned long n;
4294 	unsigned long *buf, *p;
4295 	struct kvm_vcpu *vcpu;
4296 
4297 	mutex_lock(&kvm->slots_lock);
4298 
4299 	r = -EINVAL;
4300 	if (log->slot >= KVM_USER_MEM_SLOTS)
4301 		goto out;
4302 
4303 	slots = kvm_memslots(kvm);
4304 	memslot = id_to_memslot(slots, log->slot);
4305 	r = -ENOENT;
4306 	if (!memslot->dirty_bitmap)
4307 		goto out;
4308 
4309 	/*
4310 	 * Use second half of bitmap area because both HPT and radix
4311 	 * accumulate bits in the first half.
4312 	 */
4313 	n = kvm_dirty_bitmap_bytes(memslot);
4314 	buf = memslot->dirty_bitmap + n / sizeof(long);
4315 	memset(buf, 0, n);
4316 
4317 	if (kvm_is_radix(kvm))
4318 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4319 	else
4320 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4321 	if (r)
4322 		goto out;
4323 
4324 	/*
4325 	 * We accumulate dirty bits in the first half of the
4326 	 * memslot's dirty_bitmap area, for when pages are paged
4327 	 * out or modified by the host directly.  Pick up these
4328 	 * bits and add them to the map.
4329 	 */
4330 	p = memslot->dirty_bitmap;
4331 	for (i = 0; i < n / sizeof(long); ++i)
4332 		buf[i] |= xchg(&p[i], 0);
4333 
4334 	/* Harvest dirty bits from VPA and DTL updates */
4335 	/* Note: we never modify the SLB shadow buffer areas */
4336 	kvm_for_each_vcpu(i, vcpu, kvm) {
4337 		spin_lock(&vcpu->arch.vpa_update_lock);
4338 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4339 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4340 		spin_unlock(&vcpu->arch.vpa_update_lock);
4341 	}
4342 
4343 	r = -EFAULT;
4344 	if (copy_to_user(log->dirty_bitmap, buf, n))
4345 		goto out;
4346 
4347 	r = 0;
4348 out:
4349 	mutex_unlock(&kvm->slots_lock);
4350 	return r;
4351 }
4352 
4353 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4354 					struct kvm_memory_slot *dont)
4355 {
4356 	if (!dont || free->arch.rmap != dont->arch.rmap) {
4357 		vfree(free->arch.rmap);
4358 		free->arch.rmap = NULL;
4359 	}
4360 }
4361 
4362 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4363 					 unsigned long npages)
4364 {
4365 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4366 	if (!slot->arch.rmap)
4367 		return -ENOMEM;
4368 
4369 	return 0;
4370 }
4371 
4372 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4373 					struct kvm_memory_slot *memslot,
4374 					const struct kvm_userspace_memory_region *mem)
4375 {
4376 	return 0;
4377 }
4378 
4379 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4380 				const struct kvm_userspace_memory_region *mem,
4381 				const struct kvm_memory_slot *old,
4382 				const struct kvm_memory_slot *new,
4383 				enum kvm_mr_change change)
4384 {
4385 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4386 
4387 	/*
4388 	 * If we are making a new memslot, it might make
4389 	 * some address that was previously cached as emulated
4390 	 * MMIO be no longer emulated MMIO, so invalidate
4391 	 * all the caches of emulated MMIO translations.
4392 	 */
4393 	if (npages)
4394 		atomic64_inc(&kvm->arch.mmio_update);
4395 
4396 	/*
4397 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4398 	 * have already called kvm_arch_flush_shadow_memslot() to
4399 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4400 	 * previous mappings.  So the only case to handle is
4401 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4402 	 * has been changed.
4403 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4404 	 * to get rid of any THP PTEs in the partition-scoped page tables
4405 	 * so we can track dirtiness at the page level; we flush when
4406 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4407 	 * using THP PTEs.
4408 	 */
4409 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4410 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4411 		kvmppc_radix_flush_memslot(kvm, old);
4412 }
4413 
4414 /*
4415  * Update LPCR values in kvm->arch and in vcores.
4416  * Caller must hold kvm->lock.
4417  */
4418 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4419 {
4420 	long int i;
4421 	u32 cores_done = 0;
4422 
4423 	if ((kvm->arch.lpcr & mask) == lpcr)
4424 		return;
4425 
4426 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4427 
4428 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4429 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4430 		if (!vc)
4431 			continue;
4432 		spin_lock(&vc->lock);
4433 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4434 		spin_unlock(&vc->lock);
4435 		if (++cores_done >= kvm->arch.online_vcores)
4436 			break;
4437 	}
4438 }
4439 
4440 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4441 {
4442 	return;
4443 }
4444 
4445 void kvmppc_setup_partition_table(struct kvm *kvm)
4446 {
4447 	unsigned long dw0, dw1;
4448 
4449 	if (!kvm_is_radix(kvm)) {
4450 		/* PS field - page size for VRMA */
4451 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4452 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4453 		/* HTABSIZE and HTABORG fields */
4454 		dw0 |= kvm->arch.sdr1;
4455 
4456 		/* Second dword as set by userspace */
4457 		dw1 = kvm->arch.process_table;
4458 	} else {
4459 		dw0 = PATB_HR | radix__get_tree_size() |
4460 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4461 		dw1 = PATB_GR | kvm->arch.process_table;
4462 	}
4463 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4464 }
4465 
4466 /*
4467  * Set up HPT (hashed page table) and RMA (real-mode area).
4468  * Must be called with kvm->lock held.
4469  */
4470 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4471 {
4472 	int err = 0;
4473 	struct kvm *kvm = vcpu->kvm;
4474 	unsigned long hva;
4475 	struct kvm_memory_slot *memslot;
4476 	struct vm_area_struct *vma;
4477 	unsigned long lpcr = 0, senc;
4478 	unsigned long psize, porder;
4479 	int srcu_idx;
4480 
4481 	/* Allocate hashed page table (if not done already) and reset it */
4482 	if (!kvm->arch.hpt.virt) {
4483 		int order = KVM_DEFAULT_HPT_ORDER;
4484 		struct kvm_hpt_info info;
4485 
4486 		err = kvmppc_allocate_hpt(&info, order);
4487 		/* If we get here, it means userspace didn't specify a
4488 		 * size explicitly.  So, try successively smaller
4489 		 * sizes if the default failed. */
4490 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4491 			err  = kvmppc_allocate_hpt(&info, order);
4492 
4493 		if (err < 0) {
4494 			pr_err("KVM: Couldn't alloc HPT\n");
4495 			goto out;
4496 		}
4497 
4498 		kvmppc_set_hpt(kvm, &info);
4499 	}
4500 
4501 	/* Look up the memslot for guest physical address 0 */
4502 	srcu_idx = srcu_read_lock(&kvm->srcu);
4503 	memslot = gfn_to_memslot(kvm, 0);
4504 
4505 	/* We must have some memory at 0 by now */
4506 	err = -EINVAL;
4507 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4508 		goto out_srcu;
4509 
4510 	/* Look up the VMA for the start of this memory slot */
4511 	hva = memslot->userspace_addr;
4512 	down_read(&current->mm->mmap_sem);
4513 	vma = find_vma(current->mm, hva);
4514 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4515 		goto up_out;
4516 
4517 	psize = vma_kernel_pagesize(vma);
4518 
4519 	up_read(&current->mm->mmap_sem);
4520 
4521 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4522 	if (psize >= 0x1000000)
4523 		psize = 0x1000000;
4524 	else if (psize >= 0x10000)
4525 		psize = 0x10000;
4526 	else
4527 		psize = 0x1000;
4528 	porder = __ilog2(psize);
4529 
4530 	senc = slb_pgsize_encoding(psize);
4531 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4532 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4533 	/* Create HPTEs in the hash page table for the VRMA */
4534 	kvmppc_map_vrma(vcpu, memslot, porder);
4535 
4536 	/* Update VRMASD field in the LPCR */
4537 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4538 		/* the -4 is to account for senc values starting at 0x10 */
4539 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4540 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4541 	}
4542 
4543 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4544 	smp_wmb();
4545 	err = 0;
4546  out_srcu:
4547 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4548  out:
4549 	return err;
4550 
4551  up_out:
4552 	up_read(&current->mm->mmap_sem);
4553 	goto out_srcu;
4554 }
4555 
4556 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4557 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4558 {
4559 	if (nesting_enabled(kvm))
4560 		kvmhv_release_all_nested(kvm);
4561 	kvmppc_rmap_reset(kvm);
4562 	kvm->arch.process_table = 0;
4563 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4564 	spin_lock(&kvm->mmu_lock);
4565 	kvm->arch.radix = 0;
4566 	spin_unlock(&kvm->mmu_lock);
4567 	kvmppc_free_radix(kvm);
4568 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4569 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4570 	return 0;
4571 }
4572 
4573 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4574 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4575 {
4576 	int err;
4577 
4578 	err = kvmppc_init_vm_radix(kvm);
4579 	if (err)
4580 		return err;
4581 	kvmppc_rmap_reset(kvm);
4582 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4583 	spin_lock(&kvm->mmu_lock);
4584 	kvm->arch.radix = 1;
4585 	spin_unlock(&kvm->mmu_lock);
4586 	kvmppc_free_hpt(&kvm->arch.hpt);
4587 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4588 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4589 	return 0;
4590 }
4591 
4592 #ifdef CONFIG_KVM_XICS
4593 /*
4594  * Allocate a per-core structure for managing state about which cores are
4595  * running in the host versus the guest and for exchanging data between
4596  * real mode KVM and CPU running in the host.
4597  * This is only done for the first VM.
4598  * The allocated structure stays even if all VMs have stopped.
4599  * It is only freed when the kvm-hv module is unloaded.
4600  * It's OK for this routine to fail, we just don't support host
4601  * core operations like redirecting H_IPI wakeups.
4602  */
4603 void kvmppc_alloc_host_rm_ops(void)
4604 {
4605 	struct kvmppc_host_rm_ops *ops;
4606 	unsigned long l_ops;
4607 	int cpu, core;
4608 	int size;
4609 
4610 	/* Not the first time here ? */
4611 	if (kvmppc_host_rm_ops_hv != NULL)
4612 		return;
4613 
4614 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4615 	if (!ops)
4616 		return;
4617 
4618 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4619 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4620 
4621 	if (!ops->rm_core) {
4622 		kfree(ops);
4623 		return;
4624 	}
4625 
4626 	cpus_read_lock();
4627 
4628 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4629 		if (!cpu_online(cpu))
4630 			continue;
4631 
4632 		core = cpu >> threads_shift;
4633 		ops->rm_core[core].rm_state.in_host = 1;
4634 	}
4635 
4636 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4637 
4638 	/*
4639 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4640 	 * to other CPUs before we assign it to the global variable.
4641 	 * Do an atomic assignment (no locks used here), but if someone
4642 	 * beats us to it, just free our copy and return.
4643 	 */
4644 	smp_wmb();
4645 	l_ops = (unsigned long) ops;
4646 
4647 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4648 		cpus_read_unlock();
4649 		kfree(ops->rm_core);
4650 		kfree(ops);
4651 		return;
4652 	}
4653 
4654 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4655 					     "ppc/kvm_book3s:prepare",
4656 					     kvmppc_set_host_core,
4657 					     kvmppc_clear_host_core);
4658 	cpus_read_unlock();
4659 }
4660 
4661 void kvmppc_free_host_rm_ops(void)
4662 {
4663 	if (kvmppc_host_rm_ops_hv) {
4664 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4665 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4666 		kfree(kvmppc_host_rm_ops_hv);
4667 		kvmppc_host_rm_ops_hv = NULL;
4668 	}
4669 }
4670 #endif
4671 
4672 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4673 {
4674 	unsigned long lpcr, lpid;
4675 	char buf[32];
4676 	int ret;
4677 
4678 	/* Allocate the guest's logical partition ID */
4679 
4680 	lpid = kvmppc_alloc_lpid();
4681 	if ((long)lpid < 0)
4682 		return -ENOMEM;
4683 	kvm->arch.lpid = lpid;
4684 
4685 	kvmppc_alloc_host_rm_ops();
4686 
4687 	kvmhv_vm_nested_init(kvm);
4688 
4689 	/*
4690 	 * Since we don't flush the TLB when tearing down a VM,
4691 	 * and this lpid might have previously been used,
4692 	 * make sure we flush on each core before running the new VM.
4693 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4694 	 * does this flush for us.
4695 	 */
4696 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4697 		cpumask_setall(&kvm->arch.need_tlb_flush);
4698 
4699 	/* Start out with the default set of hcalls enabled */
4700 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4701 	       sizeof(kvm->arch.enabled_hcalls));
4702 
4703 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4704 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4705 
4706 	/* Init LPCR for virtual RMA mode */
4707 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4708 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4709 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4710 		lpcr &= LPCR_PECE | LPCR_LPES;
4711 	} else {
4712 		lpcr = 0;
4713 	}
4714 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4715 		LPCR_VPM0 | LPCR_VPM1;
4716 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4717 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4718 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4719 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4720 		lpcr |= LPCR_ONL;
4721 	/*
4722 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4723 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4724 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4725 	 * be unnecessary but better safe than sorry in case we re-enable
4726 	 * EE in HV mode with this LPCR still set)
4727 	 */
4728 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4729 		lpcr &= ~LPCR_VPM0;
4730 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4731 
4732 		/*
4733 		 * If xive is enabled, we route 0x500 interrupts directly
4734 		 * to the guest.
4735 		 */
4736 		if (xive_enabled())
4737 			lpcr |= LPCR_LPES;
4738 	}
4739 
4740 	/*
4741 	 * If the host uses radix, the guest starts out as radix.
4742 	 */
4743 	if (radix_enabled()) {
4744 		kvm->arch.radix = 1;
4745 		kvm->arch.mmu_ready = 1;
4746 		lpcr &= ~LPCR_VPM1;
4747 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4748 		ret = kvmppc_init_vm_radix(kvm);
4749 		if (ret) {
4750 			kvmppc_free_lpid(kvm->arch.lpid);
4751 			return ret;
4752 		}
4753 		kvmppc_setup_partition_table(kvm);
4754 	}
4755 
4756 	kvm->arch.lpcr = lpcr;
4757 
4758 	/* Initialization for future HPT resizes */
4759 	kvm->arch.resize_hpt = NULL;
4760 
4761 	/*
4762 	 * Work out how many sets the TLB has, for the use of
4763 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4764 	 */
4765 	if (radix_enabled())
4766 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4767 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4768 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4769 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4770 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4771 	else
4772 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4773 
4774 	/*
4775 	 * Track that we now have a HV mode VM active. This blocks secondary
4776 	 * CPU threads from coming online.
4777 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4778 	 * module parameter has been set to N.
4779 	 */
4780 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4781 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4782 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4783 			kvm->arch.threads_indep = true;
4784 		} else {
4785 			kvm->arch.threads_indep = indep_threads_mode;
4786 		}
4787 	}
4788 	if (!kvm->arch.threads_indep)
4789 		kvm_hv_vm_activated();
4790 
4791 	/*
4792 	 * Initialize smt_mode depending on processor.
4793 	 * POWER8 and earlier have to use "strict" threading, where
4794 	 * all vCPUs in a vcore have to run on the same (sub)core,
4795 	 * whereas on POWER9 the threads can each run a different
4796 	 * guest.
4797 	 */
4798 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4799 		kvm->arch.smt_mode = threads_per_subcore;
4800 	else
4801 		kvm->arch.smt_mode = 1;
4802 	kvm->arch.emul_smt_mode = 1;
4803 
4804 	/*
4805 	 * Create a debugfs directory for the VM
4806 	 */
4807 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4808 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4809 	kvmppc_mmu_debugfs_init(kvm);
4810 	if (radix_enabled())
4811 		kvmhv_radix_debugfs_init(kvm);
4812 
4813 	return 0;
4814 }
4815 
4816 static void kvmppc_free_vcores(struct kvm *kvm)
4817 {
4818 	long int i;
4819 
4820 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4821 		kfree(kvm->arch.vcores[i]);
4822 	kvm->arch.online_vcores = 0;
4823 }
4824 
4825 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4826 {
4827 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4828 
4829 	if (!kvm->arch.threads_indep)
4830 		kvm_hv_vm_deactivated();
4831 
4832 	kvmppc_free_vcores(kvm);
4833 
4834 
4835 	if (kvm_is_radix(kvm))
4836 		kvmppc_free_radix(kvm);
4837 	else
4838 		kvmppc_free_hpt(&kvm->arch.hpt);
4839 
4840 	/* Perform global invalidation and return lpid to the pool */
4841 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4842 		if (nesting_enabled(kvm))
4843 			kvmhv_release_all_nested(kvm);
4844 		kvm->arch.process_table = 0;
4845 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4846 	}
4847 	kvmppc_free_lpid(kvm->arch.lpid);
4848 
4849 	kvmppc_free_pimap(kvm);
4850 }
4851 
4852 /* We don't need to emulate any privileged instructions or dcbz */
4853 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4854 				     unsigned int inst, int *advance)
4855 {
4856 	return EMULATE_FAIL;
4857 }
4858 
4859 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4860 					ulong spr_val)
4861 {
4862 	return EMULATE_FAIL;
4863 }
4864 
4865 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4866 					ulong *spr_val)
4867 {
4868 	return EMULATE_FAIL;
4869 }
4870 
4871 static int kvmppc_core_check_processor_compat_hv(void)
4872 {
4873 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
4874 	    cpu_has_feature(CPU_FTR_ARCH_206))
4875 		return 0;
4876 
4877 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
4878 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4879 		return 0;
4880 
4881 	return -EIO;
4882 }
4883 
4884 #ifdef CONFIG_KVM_XICS
4885 
4886 void kvmppc_free_pimap(struct kvm *kvm)
4887 {
4888 	kfree(kvm->arch.pimap);
4889 }
4890 
4891 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4892 {
4893 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4894 }
4895 
4896 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4897 {
4898 	struct irq_desc *desc;
4899 	struct kvmppc_irq_map *irq_map;
4900 	struct kvmppc_passthru_irqmap *pimap;
4901 	struct irq_chip *chip;
4902 	int i, rc = 0;
4903 
4904 	if (!kvm_irq_bypass)
4905 		return 1;
4906 
4907 	desc = irq_to_desc(host_irq);
4908 	if (!desc)
4909 		return -EIO;
4910 
4911 	mutex_lock(&kvm->lock);
4912 
4913 	pimap = kvm->arch.pimap;
4914 	if (pimap == NULL) {
4915 		/* First call, allocate structure to hold IRQ map */
4916 		pimap = kvmppc_alloc_pimap();
4917 		if (pimap == NULL) {
4918 			mutex_unlock(&kvm->lock);
4919 			return -ENOMEM;
4920 		}
4921 		kvm->arch.pimap = pimap;
4922 	}
4923 
4924 	/*
4925 	 * For now, we only support interrupts for which the EOI operation
4926 	 * is an OPAL call followed by a write to XIRR, since that's
4927 	 * what our real-mode EOI code does, or a XIVE interrupt
4928 	 */
4929 	chip = irq_data_get_irq_chip(&desc->irq_data);
4930 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4931 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4932 			host_irq, guest_gsi);
4933 		mutex_unlock(&kvm->lock);
4934 		return -ENOENT;
4935 	}
4936 
4937 	/*
4938 	 * See if we already have an entry for this guest IRQ number.
4939 	 * If it's mapped to a hardware IRQ number, that's an error,
4940 	 * otherwise re-use this entry.
4941 	 */
4942 	for (i = 0; i < pimap->n_mapped; i++) {
4943 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4944 			if (pimap->mapped[i].r_hwirq) {
4945 				mutex_unlock(&kvm->lock);
4946 				return -EINVAL;
4947 			}
4948 			break;
4949 		}
4950 	}
4951 
4952 	if (i == KVMPPC_PIRQ_MAPPED) {
4953 		mutex_unlock(&kvm->lock);
4954 		return -EAGAIN;		/* table is full */
4955 	}
4956 
4957 	irq_map = &pimap->mapped[i];
4958 
4959 	irq_map->v_hwirq = guest_gsi;
4960 	irq_map->desc = desc;
4961 
4962 	/*
4963 	 * Order the above two stores before the next to serialize with
4964 	 * the KVM real mode handler.
4965 	 */
4966 	smp_wmb();
4967 	irq_map->r_hwirq = desc->irq_data.hwirq;
4968 
4969 	if (i == pimap->n_mapped)
4970 		pimap->n_mapped++;
4971 
4972 	if (xive_enabled())
4973 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4974 	else
4975 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4976 	if (rc)
4977 		irq_map->r_hwirq = 0;
4978 
4979 	mutex_unlock(&kvm->lock);
4980 
4981 	return 0;
4982 }
4983 
4984 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4985 {
4986 	struct irq_desc *desc;
4987 	struct kvmppc_passthru_irqmap *pimap;
4988 	int i, rc = 0;
4989 
4990 	if (!kvm_irq_bypass)
4991 		return 0;
4992 
4993 	desc = irq_to_desc(host_irq);
4994 	if (!desc)
4995 		return -EIO;
4996 
4997 	mutex_lock(&kvm->lock);
4998 	if (!kvm->arch.pimap)
4999 		goto unlock;
5000 
5001 	pimap = kvm->arch.pimap;
5002 
5003 	for (i = 0; i < pimap->n_mapped; i++) {
5004 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5005 			break;
5006 	}
5007 
5008 	if (i == pimap->n_mapped) {
5009 		mutex_unlock(&kvm->lock);
5010 		return -ENODEV;
5011 	}
5012 
5013 	if (xive_enabled())
5014 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5015 	else
5016 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5017 
5018 	/* invalidate the entry (what do do on error from the above ?) */
5019 	pimap->mapped[i].r_hwirq = 0;
5020 
5021 	/*
5022 	 * We don't free this structure even when the count goes to
5023 	 * zero. The structure is freed when we destroy the VM.
5024 	 */
5025  unlock:
5026 	mutex_unlock(&kvm->lock);
5027 	return rc;
5028 }
5029 
5030 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5031 					     struct irq_bypass_producer *prod)
5032 {
5033 	int ret = 0;
5034 	struct kvm_kernel_irqfd *irqfd =
5035 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5036 
5037 	irqfd->producer = prod;
5038 
5039 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5040 	if (ret)
5041 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5042 			prod->irq, irqfd->gsi, ret);
5043 
5044 	return ret;
5045 }
5046 
5047 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5048 					      struct irq_bypass_producer *prod)
5049 {
5050 	int ret;
5051 	struct kvm_kernel_irqfd *irqfd =
5052 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5053 
5054 	irqfd->producer = NULL;
5055 
5056 	/*
5057 	 * When producer of consumer is unregistered, we change back to
5058 	 * default external interrupt handling mode - KVM real mode
5059 	 * will switch back to host.
5060 	 */
5061 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5062 	if (ret)
5063 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5064 			prod->irq, irqfd->gsi, ret);
5065 }
5066 #endif
5067 
5068 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5069 				 unsigned int ioctl, unsigned long arg)
5070 {
5071 	struct kvm *kvm __maybe_unused = filp->private_data;
5072 	void __user *argp = (void __user *)arg;
5073 	long r;
5074 
5075 	switch (ioctl) {
5076 
5077 	case KVM_PPC_ALLOCATE_HTAB: {
5078 		u32 htab_order;
5079 
5080 		r = -EFAULT;
5081 		if (get_user(htab_order, (u32 __user *)argp))
5082 			break;
5083 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5084 		if (r)
5085 			break;
5086 		r = 0;
5087 		break;
5088 	}
5089 
5090 	case KVM_PPC_GET_HTAB_FD: {
5091 		struct kvm_get_htab_fd ghf;
5092 
5093 		r = -EFAULT;
5094 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5095 			break;
5096 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5097 		break;
5098 	}
5099 
5100 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5101 		struct kvm_ppc_resize_hpt rhpt;
5102 
5103 		r = -EFAULT;
5104 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5105 			break;
5106 
5107 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5108 		break;
5109 	}
5110 
5111 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5112 		struct kvm_ppc_resize_hpt rhpt;
5113 
5114 		r = -EFAULT;
5115 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5116 			break;
5117 
5118 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5119 		break;
5120 	}
5121 
5122 	default:
5123 		r = -ENOTTY;
5124 	}
5125 
5126 	return r;
5127 }
5128 
5129 /*
5130  * List of hcall numbers to enable by default.
5131  * For compatibility with old userspace, we enable by default
5132  * all hcalls that were implemented before the hcall-enabling
5133  * facility was added.  Note this list should not include H_RTAS.
5134  */
5135 static unsigned int default_hcall_list[] = {
5136 	H_REMOVE,
5137 	H_ENTER,
5138 	H_READ,
5139 	H_PROTECT,
5140 	H_BULK_REMOVE,
5141 	H_GET_TCE,
5142 	H_PUT_TCE,
5143 	H_SET_DABR,
5144 	H_SET_XDABR,
5145 	H_CEDE,
5146 	H_PROD,
5147 	H_CONFER,
5148 	H_REGISTER_VPA,
5149 #ifdef CONFIG_KVM_XICS
5150 	H_EOI,
5151 	H_CPPR,
5152 	H_IPI,
5153 	H_IPOLL,
5154 	H_XIRR,
5155 	H_XIRR_X,
5156 #endif
5157 	0
5158 };
5159 
5160 static void init_default_hcalls(void)
5161 {
5162 	int i;
5163 	unsigned int hcall;
5164 
5165 	for (i = 0; default_hcall_list[i]; ++i) {
5166 		hcall = default_hcall_list[i];
5167 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5168 		__set_bit(hcall / 4, default_enabled_hcalls);
5169 	}
5170 }
5171 
5172 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5173 {
5174 	unsigned long lpcr;
5175 	int radix;
5176 	int err;
5177 
5178 	/* If not on a POWER9, reject it */
5179 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5180 		return -ENODEV;
5181 
5182 	/* If any unknown flags set, reject it */
5183 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5184 		return -EINVAL;
5185 
5186 	/* GR (guest radix) bit in process_table field must match */
5187 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5188 	if (!!(cfg->process_table & PATB_GR) != radix)
5189 		return -EINVAL;
5190 
5191 	/* Process table size field must be reasonable, i.e. <= 24 */
5192 	if ((cfg->process_table & PRTS_MASK) > 24)
5193 		return -EINVAL;
5194 
5195 	/* We can change a guest to/from radix now, if the host is radix */
5196 	if (radix && !radix_enabled())
5197 		return -EINVAL;
5198 
5199 	/* If we're a nested hypervisor, we currently only support radix */
5200 	if (kvmhv_on_pseries() && !radix)
5201 		return -EINVAL;
5202 
5203 	mutex_lock(&kvm->lock);
5204 	if (radix != kvm_is_radix(kvm)) {
5205 		if (kvm->arch.mmu_ready) {
5206 			kvm->arch.mmu_ready = 0;
5207 			/* order mmu_ready vs. vcpus_running */
5208 			smp_mb();
5209 			if (atomic_read(&kvm->arch.vcpus_running)) {
5210 				kvm->arch.mmu_ready = 1;
5211 				err = -EBUSY;
5212 				goto out_unlock;
5213 			}
5214 		}
5215 		if (radix)
5216 			err = kvmppc_switch_mmu_to_radix(kvm);
5217 		else
5218 			err = kvmppc_switch_mmu_to_hpt(kvm);
5219 		if (err)
5220 			goto out_unlock;
5221 	}
5222 
5223 	kvm->arch.process_table = cfg->process_table;
5224 	kvmppc_setup_partition_table(kvm);
5225 
5226 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5227 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5228 	err = 0;
5229 
5230  out_unlock:
5231 	mutex_unlock(&kvm->lock);
5232 	return err;
5233 }
5234 
5235 static int kvmhv_enable_nested(struct kvm *kvm)
5236 {
5237 	if (!nested)
5238 		return -EPERM;
5239 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5240 		return -ENODEV;
5241 
5242 	/* kvm == NULL means the caller is testing if the capability exists */
5243 	if (kvm)
5244 		kvm->arch.nested_enable = true;
5245 	return 0;
5246 }
5247 
5248 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5249 				 int size)
5250 {
5251 	int rc = -EINVAL;
5252 
5253 	if (kvmhv_vcpu_is_radix(vcpu)) {
5254 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5255 
5256 		if (rc > 0)
5257 			rc = -EINVAL;
5258 	}
5259 
5260 	/* For now quadrants are the only way to access nested guest memory */
5261 	if (rc && vcpu->arch.nested)
5262 		rc = -EAGAIN;
5263 
5264 	return rc;
5265 }
5266 
5267 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5268 				int size)
5269 {
5270 	int rc = -EINVAL;
5271 
5272 	if (kvmhv_vcpu_is_radix(vcpu)) {
5273 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5274 
5275 		if (rc > 0)
5276 			rc = -EINVAL;
5277 	}
5278 
5279 	/* For now quadrants are the only way to access nested guest memory */
5280 	if (rc && vcpu->arch.nested)
5281 		rc = -EAGAIN;
5282 
5283 	return rc;
5284 }
5285 
5286 static struct kvmppc_ops kvm_ops_hv = {
5287 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5288 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5289 	.get_one_reg = kvmppc_get_one_reg_hv,
5290 	.set_one_reg = kvmppc_set_one_reg_hv,
5291 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5292 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5293 	.set_msr     = kvmppc_set_msr_hv,
5294 	.vcpu_run    = kvmppc_vcpu_run_hv,
5295 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5296 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5297 	.check_requests = kvmppc_core_check_requests_hv,
5298 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5299 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5300 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5301 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5302 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5303 	.age_hva  = kvm_age_hva_hv,
5304 	.test_age_hva = kvm_test_age_hva_hv,
5305 	.set_spte_hva = kvm_set_spte_hva_hv,
5306 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
5307 	.free_memslot = kvmppc_core_free_memslot_hv,
5308 	.create_memslot = kvmppc_core_create_memslot_hv,
5309 	.init_vm =  kvmppc_core_init_vm_hv,
5310 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5311 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5312 	.emulate_op = kvmppc_core_emulate_op_hv,
5313 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5314 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5315 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5316 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5317 	.hcall_implemented = kvmppc_hcall_impl_hv,
5318 #ifdef CONFIG_KVM_XICS
5319 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5320 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5321 #endif
5322 	.configure_mmu = kvmhv_configure_mmu,
5323 	.get_rmmu_info = kvmhv_get_rmmu_info,
5324 	.set_smt_mode = kvmhv_set_smt_mode,
5325 	.enable_nested = kvmhv_enable_nested,
5326 	.load_from_eaddr = kvmhv_load_from_eaddr,
5327 	.store_to_eaddr = kvmhv_store_to_eaddr,
5328 };
5329 
5330 static int kvm_init_subcore_bitmap(void)
5331 {
5332 	int i, j;
5333 	int nr_cores = cpu_nr_cores();
5334 	struct sibling_subcore_state *sibling_subcore_state;
5335 
5336 	for (i = 0; i < nr_cores; i++) {
5337 		int first_cpu = i * threads_per_core;
5338 		int node = cpu_to_node(first_cpu);
5339 
5340 		/* Ignore if it is already allocated. */
5341 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5342 			continue;
5343 
5344 		sibling_subcore_state =
5345 			kmalloc_node(sizeof(struct sibling_subcore_state),
5346 							GFP_KERNEL, node);
5347 		if (!sibling_subcore_state)
5348 			return -ENOMEM;
5349 
5350 		memset(sibling_subcore_state, 0,
5351 				sizeof(struct sibling_subcore_state));
5352 
5353 		for (j = 0; j < threads_per_core; j++) {
5354 			int cpu = first_cpu + j;
5355 
5356 			paca_ptrs[cpu]->sibling_subcore_state =
5357 						sibling_subcore_state;
5358 		}
5359 	}
5360 	return 0;
5361 }
5362 
5363 static int kvmppc_radix_possible(void)
5364 {
5365 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5366 }
5367 
5368 static int kvmppc_book3s_init_hv(void)
5369 {
5370 	int r;
5371 	/*
5372 	 * FIXME!! Do we need to check on all cpus ?
5373 	 */
5374 	r = kvmppc_core_check_processor_compat_hv();
5375 	if (r < 0)
5376 		return -ENODEV;
5377 
5378 	r = kvmhv_nested_init();
5379 	if (r)
5380 		return r;
5381 
5382 	r = kvm_init_subcore_bitmap();
5383 	if (r)
5384 		return r;
5385 
5386 	/*
5387 	 * We need a way of accessing the XICS interrupt controller,
5388 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5389 	 * indirectly, via OPAL.
5390 	 */
5391 #ifdef CONFIG_SMP
5392 	if (!xive_enabled() && !kvmhv_on_pseries() &&
5393 	    !local_paca->kvm_hstate.xics_phys) {
5394 		struct device_node *np;
5395 
5396 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5397 		if (!np) {
5398 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5399 			return -ENODEV;
5400 		}
5401 		/* presence of intc confirmed - node can be dropped again */
5402 		of_node_put(np);
5403 	}
5404 #endif
5405 
5406 	kvm_ops_hv.owner = THIS_MODULE;
5407 	kvmppc_hv_ops = &kvm_ops_hv;
5408 
5409 	init_default_hcalls();
5410 
5411 	init_vcore_lists();
5412 
5413 	r = kvmppc_mmu_hv_init();
5414 	if (r)
5415 		return r;
5416 
5417 	if (kvmppc_radix_possible())
5418 		r = kvmppc_radix_init();
5419 
5420 	/*
5421 	 * POWER9 chips before version 2.02 can't have some threads in
5422 	 * HPT mode and some in radix mode on the same core.
5423 	 */
5424 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5425 		unsigned int pvr = mfspr(SPRN_PVR);
5426 		if ((pvr >> 16) == PVR_POWER9 &&
5427 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5428 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5429 			no_mixing_hpt_and_radix = true;
5430 	}
5431 
5432 	return r;
5433 }
5434 
5435 static void kvmppc_book3s_exit_hv(void)
5436 {
5437 	kvmppc_free_host_rm_ops();
5438 	if (kvmppc_radix_possible())
5439 		kvmppc_radix_exit();
5440 	kvmppc_hv_ops = NULL;
5441 	kvmhv_nested_exit();
5442 }
5443 
5444 module_init(kvmppc_book3s_init_hv);
5445 module_exit(kvmppc_book3s_exit_hv);
5446 MODULE_LICENSE("GPL");
5447 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5448 MODULE_ALIAS("devname:kvm");
5449