xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cache.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <linux/gfp.h>
56 #include <linux/vmalloc.h>
57 #include <linux/highmem.h>
58 #include <linux/hugetlb.h>
59 #include <linux/module.h>
60 
61 #include "book3s.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include "trace_hv.h"
65 
66 /* #define EXIT_DEBUG */
67 /* #define EXIT_DEBUG_SIMPLE */
68 /* #define EXIT_DEBUG_INT */
69 
70 /* Used to indicate that a guest page fault needs to be handled */
71 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
72 
73 /* Used as a "null" value for timebase values */
74 #define TB_NIL	(~(u64)0)
75 
76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77 
78 #if defined(CONFIG_PPC_64K_PAGES)
79 #define MPP_BUFFER_ORDER	0
80 #elif defined(CONFIG_PPC_4K_PAGES)
81 #define MPP_BUFFER_ORDER	3
82 #endif
83 
84 static int dynamic_mt_modes = 6;
85 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
87 static int target_smt_mode;
88 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
90 
91 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
92 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
93 
94 static bool kvmppc_ipi_thread(int cpu)
95 {
96 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
97 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
98 		preempt_disable();
99 		if (cpu_first_thread_sibling(cpu) ==
100 		    cpu_first_thread_sibling(smp_processor_id())) {
101 			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
102 			msg |= cpu_thread_in_core(cpu);
103 			smp_mb();
104 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
105 			preempt_enable();
106 			return true;
107 		}
108 		preempt_enable();
109 	}
110 
111 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
112 	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
113 		xics_wake_cpu(cpu);
114 		return true;
115 	}
116 #endif
117 
118 	return false;
119 }
120 
121 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 	wait_queue_head_t *wqp;
125 
126 	wqp = kvm_arch_vcpu_wq(vcpu);
127 	if (waitqueue_active(wqp)) {
128 		wake_up_interruptible(wqp);
129 		++vcpu->stat.halt_wakeup;
130 	}
131 
132 	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
133 		return;
134 
135 	/* CPU points to the first thread of the core */
136 	cpu = vcpu->cpu;
137 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
138 		smp_send_reschedule(cpu);
139 }
140 
141 /*
142  * We use the vcpu_load/put functions to measure stolen time.
143  * Stolen time is counted as time when either the vcpu is able to
144  * run as part of a virtual core, but the task running the vcore
145  * is preempted or sleeping, or when the vcpu needs something done
146  * in the kernel by the task running the vcpu, but that task is
147  * preempted or sleeping.  Those two things have to be counted
148  * separately, since one of the vcpu tasks will take on the job
149  * of running the core, and the other vcpu tasks in the vcore will
150  * sleep waiting for it to do that, but that sleep shouldn't count
151  * as stolen time.
152  *
153  * Hence we accumulate stolen time when the vcpu can run as part of
154  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
155  * needs its task to do other things in the kernel (for example,
156  * service a page fault) in busy_stolen.  We don't accumulate
157  * stolen time for a vcore when it is inactive, or for a vcpu
158  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
159  * a misnomer; it means that the vcpu task is not executing in
160  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
161  * the kernel.  We don't have any way of dividing up that time
162  * between time that the vcpu is genuinely stopped, time that
163  * the task is actively working on behalf of the vcpu, and time
164  * that the task is preempted, so we don't count any of it as
165  * stolen.
166  *
167  * Updates to busy_stolen are protected by arch.tbacct_lock;
168  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
169  * lock.  The stolen times are measured in units of timebase ticks.
170  * (Note that the != TB_NIL checks below are purely defensive;
171  * they should never fail.)
172  */
173 
174 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
175 {
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(&vc->stoltb_lock, flags);
179 	vc->preempt_tb = mftb();
180 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
181 }
182 
183 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
184 {
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&vc->stoltb_lock, flags);
188 	if (vc->preempt_tb != TB_NIL) {
189 		vc->stolen_tb += mftb() - vc->preempt_tb;
190 		vc->preempt_tb = TB_NIL;
191 	}
192 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
193 }
194 
195 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
196 {
197 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
198 	unsigned long flags;
199 
200 	/*
201 	 * We can test vc->runner without taking the vcore lock,
202 	 * because only this task ever sets vc->runner to this
203 	 * vcpu, and once it is set to this vcpu, only this task
204 	 * ever sets it to NULL.
205 	 */
206 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
207 		kvmppc_core_end_stolen(vc);
208 
209 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
210 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
211 	    vcpu->arch.busy_preempt != TB_NIL) {
212 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
213 		vcpu->arch.busy_preempt = TB_NIL;
214 	}
215 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
216 }
217 
218 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
219 {
220 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
221 	unsigned long flags;
222 
223 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
224 		kvmppc_core_start_stolen(vc);
225 
226 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
227 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
228 		vcpu->arch.busy_preempt = mftb();
229 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
230 }
231 
232 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
233 {
234 	vcpu->arch.shregs.msr = msr;
235 	kvmppc_end_cede(vcpu);
236 }
237 
238 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
239 {
240 	vcpu->arch.pvr = pvr;
241 }
242 
243 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
244 {
245 	unsigned long pcr = 0;
246 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
247 
248 	if (arch_compat) {
249 		switch (arch_compat) {
250 		case PVR_ARCH_205:
251 			/*
252 			 * If an arch bit is set in PCR, all the defined
253 			 * higher-order arch bits also have to be set.
254 			 */
255 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
256 			break;
257 		case PVR_ARCH_206:
258 		case PVR_ARCH_206p:
259 			pcr = PCR_ARCH_206;
260 			break;
261 		case PVR_ARCH_207:
262 			break;
263 		default:
264 			return -EINVAL;
265 		}
266 
267 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
268 			/* POWER7 can't emulate POWER8 */
269 			if (!(pcr & PCR_ARCH_206))
270 				return -EINVAL;
271 			pcr &= ~PCR_ARCH_206;
272 		}
273 	}
274 
275 	spin_lock(&vc->lock);
276 	vc->arch_compat = arch_compat;
277 	vc->pcr = pcr;
278 	spin_unlock(&vc->lock);
279 
280 	return 0;
281 }
282 
283 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
284 {
285 	int r;
286 
287 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
288 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
289 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
290 	for (r = 0; r < 16; ++r)
291 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
292 		       r, kvmppc_get_gpr(vcpu, r),
293 		       r+16, kvmppc_get_gpr(vcpu, r+16));
294 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
295 	       vcpu->arch.ctr, vcpu->arch.lr);
296 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
297 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
298 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
299 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
300 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
301 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
302 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
303 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
304 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
305 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
306 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
307 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
308 	for (r = 0; r < vcpu->arch.slb_max; ++r)
309 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
310 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
311 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
312 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
313 	       vcpu->arch.last_inst);
314 }
315 
316 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
317 {
318 	int r;
319 	struct kvm_vcpu *v, *ret = NULL;
320 
321 	mutex_lock(&kvm->lock);
322 	kvm_for_each_vcpu(r, v, kvm) {
323 		if (v->vcpu_id == id) {
324 			ret = v;
325 			break;
326 		}
327 	}
328 	mutex_unlock(&kvm->lock);
329 	return ret;
330 }
331 
332 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
333 {
334 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
335 	vpa->yield_count = cpu_to_be32(1);
336 }
337 
338 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
339 		   unsigned long addr, unsigned long len)
340 {
341 	/* check address is cacheline aligned */
342 	if (addr & (L1_CACHE_BYTES - 1))
343 		return -EINVAL;
344 	spin_lock(&vcpu->arch.vpa_update_lock);
345 	if (v->next_gpa != addr || v->len != len) {
346 		v->next_gpa = addr;
347 		v->len = addr ? len : 0;
348 		v->update_pending = 1;
349 	}
350 	spin_unlock(&vcpu->arch.vpa_update_lock);
351 	return 0;
352 }
353 
354 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
355 struct reg_vpa {
356 	u32 dummy;
357 	union {
358 		__be16 hword;
359 		__be32 word;
360 	} length;
361 };
362 
363 static int vpa_is_registered(struct kvmppc_vpa *vpap)
364 {
365 	if (vpap->update_pending)
366 		return vpap->next_gpa != 0;
367 	return vpap->pinned_addr != NULL;
368 }
369 
370 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
371 				       unsigned long flags,
372 				       unsigned long vcpuid, unsigned long vpa)
373 {
374 	struct kvm *kvm = vcpu->kvm;
375 	unsigned long len, nb;
376 	void *va;
377 	struct kvm_vcpu *tvcpu;
378 	int err;
379 	int subfunc;
380 	struct kvmppc_vpa *vpap;
381 
382 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
383 	if (!tvcpu)
384 		return H_PARAMETER;
385 
386 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
387 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
388 	    subfunc == H_VPA_REG_SLB) {
389 		/* Registering new area - address must be cache-line aligned */
390 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
391 			return H_PARAMETER;
392 
393 		/* convert logical addr to kernel addr and read length */
394 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
395 		if (va == NULL)
396 			return H_PARAMETER;
397 		if (subfunc == H_VPA_REG_VPA)
398 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
399 		else
400 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
401 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
402 
403 		/* Check length */
404 		if (len > nb || len < sizeof(struct reg_vpa))
405 			return H_PARAMETER;
406 	} else {
407 		vpa = 0;
408 		len = 0;
409 	}
410 
411 	err = H_PARAMETER;
412 	vpap = NULL;
413 	spin_lock(&tvcpu->arch.vpa_update_lock);
414 
415 	switch (subfunc) {
416 	case H_VPA_REG_VPA:		/* register VPA */
417 		if (len < sizeof(struct lppaca))
418 			break;
419 		vpap = &tvcpu->arch.vpa;
420 		err = 0;
421 		break;
422 
423 	case H_VPA_REG_DTL:		/* register DTL */
424 		if (len < sizeof(struct dtl_entry))
425 			break;
426 		len -= len % sizeof(struct dtl_entry);
427 
428 		/* Check that they have previously registered a VPA */
429 		err = H_RESOURCE;
430 		if (!vpa_is_registered(&tvcpu->arch.vpa))
431 			break;
432 
433 		vpap = &tvcpu->arch.dtl;
434 		err = 0;
435 		break;
436 
437 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
438 		/* Check that they have previously registered a VPA */
439 		err = H_RESOURCE;
440 		if (!vpa_is_registered(&tvcpu->arch.vpa))
441 			break;
442 
443 		vpap = &tvcpu->arch.slb_shadow;
444 		err = 0;
445 		break;
446 
447 	case H_VPA_DEREG_VPA:		/* deregister VPA */
448 		/* Check they don't still have a DTL or SLB buf registered */
449 		err = H_RESOURCE;
450 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
451 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
452 			break;
453 
454 		vpap = &tvcpu->arch.vpa;
455 		err = 0;
456 		break;
457 
458 	case H_VPA_DEREG_DTL:		/* deregister DTL */
459 		vpap = &tvcpu->arch.dtl;
460 		err = 0;
461 		break;
462 
463 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
464 		vpap = &tvcpu->arch.slb_shadow;
465 		err = 0;
466 		break;
467 	}
468 
469 	if (vpap) {
470 		vpap->next_gpa = vpa;
471 		vpap->len = len;
472 		vpap->update_pending = 1;
473 	}
474 
475 	spin_unlock(&tvcpu->arch.vpa_update_lock);
476 
477 	return err;
478 }
479 
480 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
481 {
482 	struct kvm *kvm = vcpu->kvm;
483 	void *va;
484 	unsigned long nb;
485 	unsigned long gpa;
486 
487 	/*
488 	 * We need to pin the page pointed to by vpap->next_gpa,
489 	 * but we can't call kvmppc_pin_guest_page under the lock
490 	 * as it does get_user_pages() and down_read().  So we
491 	 * have to drop the lock, pin the page, then get the lock
492 	 * again and check that a new area didn't get registered
493 	 * in the meantime.
494 	 */
495 	for (;;) {
496 		gpa = vpap->next_gpa;
497 		spin_unlock(&vcpu->arch.vpa_update_lock);
498 		va = NULL;
499 		nb = 0;
500 		if (gpa)
501 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
502 		spin_lock(&vcpu->arch.vpa_update_lock);
503 		if (gpa == vpap->next_gpa)
504 			break;
505 		/* sigh... unpin that one and try again */
506 		if (va)
507 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
508 	}
509 
510 	vpap->update_pending = 0;
511 	if (va && nb < vpap->len) {
512 		/*
513 		 * If it's now too short, it must be that userspace
514 		 * has changed the mappings underlying guest memory,
515 		 * so unregister the region.
516 		 */
517 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
518 		va = NULL;
519 	}
520 	if (vpap->pinned_addr)
521 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
522 					vpap->dirty);
523 	vpap->gpa = gpa;
524 	vpap->pinned_addr = va;
525 	vpap->dirty = false;
526 	if (va)
527 		vpap->pinned_end = va + vpap->len;
528 }
529 
530 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
531 {
532 	if (!(vcpu->arch.vpa.update_pending ||
533 	      vcpu->arch.slb_shadow.update_pending ||
534 	      vcpu->arch.dtl.update_pending))
535 		return;
536 
537 	spin_lock(&vcpu->arch.vpa_update_lock);
538 	if (vcpu->arch.vpa.update_pending) {
539 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
540 		if (vcpu->arch.vpa.pinned_addr)
541 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
542 	}
543 	if (vcpu->arch.dtl.update_pending) {
544 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
545 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
546 		vcpu->arch.dtl_index = 0;
547 	}
548 	if (vcpu->arch.slb_shadow.update_pending)
549 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
550 	spin_unlock(&vcpu->arch.vpa_update_lock);
551 }
552 
553 /*
554  * Return the accumulated stolen time for the vcore up until `now'.
555  * The caller should hold the vcore lock.
556  */
557 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
558 {
559 	u64 p;
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&vc->stoltb_lock, flags);
563 	p = vc->stolen_tb;
564 	if (vc->vcore_state != VCORE_INACTIVE &&
565 	    vc->preempt_tb != TB_NIL)
566 		p += now - vc->preempt_tb;
567 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
568 	return p;
569 }
570 
571 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
572 				    struct kvmppc_vcore *vc)
573 {
574 	struct dtl_entry *dt;
575 	struct lppaca *vpa;
576 	unsigned long stolen;
577 	unsigned long core_stolen;
578 	u64 now;
579 
580 	dt = vcpu->arch.dtl_ptr;
581 	vpa = vcpu->arch.vpa.pinned_addr;
582 	now = mftb();
583 	core_stolen = vcore_stolen_time(vc, now);
584 	stolen = core_stolen - vcpu->arch.stolen_logged;
585 	vcpu->arch.stolen_logged = core_stolen;
586 	spin_lock_irq(&vcpu->arch.tbacct_lock);
587 	stolen += vcpu->arch.busy_stolen;
588 	vcpu->arch.busy_stolen = 0;
589 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
590 	if (!dt || !vpa)
591 		return;
592 	memset(dt, 0, sizeof(struct dtl_entry));
593 	dt->dispatch_reason = 7;
594 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
595 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
596 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
597 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
598 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
599 	++dt;
600 	if (dt == vcpu->arch.dtl.pinned_end)
601 		dt = vcpu->arch.dtl.pinned_addr;
602 	vcpu->arch.dtl_ptr = dt;
603 	/* order writing *dt vs. writing vpa->dtl_idx */
604 	smp_wmb();
605 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
606 	vcpu->arch.dtl.dirty = true;
607 }
608 
609 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
610 {
611 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
612 		return true;
613 	if ((!vcpu->arch.vcore->arch_compat) &&
614 	    cpu_has_feature(CPU_FTR_ARCH_207S))
615 		return true;
616 	return false;
617 }
618 
619 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
620 			     unsigned long resource, unsigned long value1,
621 			     unsigned long value2)
622 {
623 	switch (resource) {
624 	case H_SET_MODE_RESOURCE_SET_CIABR:
625 		if (!kvmppc_power8_compatible(vcpu))
626 			return H_P2;
627 		if (value2)
628 			return H_P4;
629 		if (mflags)
630 			return H_UNSUPPORTED_FLAG_START;
631 		/* Guests can't breakpoint the hypervisor */
632 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
633 			return H_P3;
634 		vcpu->arch.ciabr  = value1;
635 		return H_SUCCESS;
636 	case H_SET_MODE_RESOURCE_SET_DAWR:
637 		if (!kvmppc_power8_compatible(vcpu))
638 			return H_P2;
639 		if (mflags)
640 			return H_UNSUPPORTED_FLAG_START;
641 		if (value2 & DABRX_HYP)
642 			return H_P4;
643 		vcpu->arch.dawr  = value1;
644 		vcpu->arch.dawrx = value2;
645 		return H_SUCCESS;
646 	default:
647 		return H_TOO_HARD;
648 	}
649 }
650 
651 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
652 {
653 	struct kvmppc_vcore *vcore = target->arch.vcore;
654 
655 	/*
656 	 * We expect to have been called by the real mode handler
657 	 * (kvmppc_rm_h_confer()) which would have directly returned
658 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
659 	 * have useful work to do and should not confer) so we don't
660 	 * recheck that here.
661 	 */
662 
663 	spin_lock(&vcore->lock);
664 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
665 	    vcore->vcore_state != VCORE_INACTIVE &&
666 	    vcore->runner)
667 		target = vcore->runner;
668 	spin_unlock(&vcore->lock);
669 
670 	return kvm_vcpu_yield_to(target);
671 }
672 
673 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
674 {
675 	int yield_count = 0;
676 	struct lppaca *lppaca;
677 
678 	spin_lock(&vcpu->arch.vpa_update_lock);
679 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
680 	if (lppaca)
681 		yield_count = be32_to_cpu(lppaca->yield_count);
682 	spin_unlock(&vcpu->arch.vpa_update_lock);
683 	return yield_count;
684 }
685 
686 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
687 {
688 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
689 	unsigned long target, ret = H_SUCCESS;
690 	int yield_count;
691 	struct kvm_vcpu *tvcpu;
692 	int idx, rc;
693 
694 	if (req <= MAX_HCALL_OPCODE &&
695 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
696 		return RESUME_HOST;
697 
698 	switch (req) {
699 	case H_CEDE:
700 		break;
701 	case H_PROD:
702 		target = kvmppc_get_gpr(vcpu, 4);
703 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
704 		if (!tvcpu) {
705 			ret = H_PARAMETER;
706 			break;
707 		}
708 		tvcpu->arch.prodded = 1;
709 		smp_mb();
710 		if (vcpu->arch.ceded) {
711 			if (waitqueue_active(&vcpu->wq)) {
712 				wake_up_interruptible(&vcpu->wq);
713 				vcpu->stat.halt_wakeup++;
714 			}
715 		}
716 		break;
717 	case H_CONFER:
718 		target = kvmppc_get_gpr(vcpu, 4);
719 		if (target == -1)
720 			break;
721 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
722 		if (!tvcpu) {
723 			ret = H_PARAMETER;
724 			break;
725 		}
726 		yield_count = kvmppc_get_gpr(vcpu, 5);
727 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
728 			break;
729 		kvm_arch_vcpu_yield_to(tvcpu);
730 		break;
731 	case H_REGISTER_VPA:
732 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
733 					kvmppc_get_gpr(vcpu, 5),
734 					kvmppc_get_gpr(vcpu, 6));
735 		break;
736 	case H_RTAS:
737 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
738 			return RESUME_HOST;
739 
740 		idx = srcu_read_lock(&vcpu->kvm->srcu);
741 		rc = kvmppc_rtas_hcall(vcpu);
742 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
743 
744 		if (rc == -ENOENT)
745 			return RESUME_HOST;
746 		else if (rc == 0)
747 			break;
748 
749 		/* Send the error out to userspace via KVM_RUN */
750 		return rc;
751 	case H_LOGICAL_CI_LOAD:
752 		ret = kvmppc_h_logical_ci_load(vcpu);
753 		if (ret == H_TOO_HARD)
754 			return RESUME_HOST;
755 		break;
756 	case H_LOGICAL_CI_STORE:
757 		ret = kvmppc_h_logical_ci_store(vcpu);
758 		if (ret == H_TOO_HARD)
759 			return RESUME_HOST;
760 		break;
761 	case H_SET_MODE:
762 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
763 					kvmppc_get_gpr(vcpu, 5),
764 					kvmppc_get_gpr(vcpu, 6),
765 					kvmppc_get_gpr(vcpu, 7));
766 		if (ret == H_TOO_HARD)
767 			return RESUME_HOST;
768 		break;
769 	case H_XIRR:
770 	case H_CPPR:
771 	case H_EOI:
772 	case H_IPI:
773 	case H_IPOLL:
774 	case H_XIRR_X:
775 		if (kvmppc_xics_enabled(vcpu)) {
776 			ret = kvmppc_xics_hcall(vcpu, req);
777 			break;
778 		} /* fallthrough */
779 	default:
780 		return RESUME_HOST;
781 	}
782 	kvmppc_set_gpr(vcpu, 3, ret);
783 	vcpu->arch.hcall_needed = 0;
784 	return RESUME_GUEST;
785 }
786 
787 static int kvmppc_hcall_impl_hv(unsigned long cmd)
788 {
789 	switch (cmd) {
790 	case H_CEDE:
791 	case H_PROD:
792 	case H_CONFER:
793 	case H_REGISTER_VPA:
794 	case H_SET_MODE:
795 	case H_LOGICAL_CI_LOAD:
796 	case H_LOGICAL_CI_STORE:
797 #ifdef CONFIG_KVM_XICS
798 	case H_XIRR:
799 	case H_CPPR:
800 	case H_EOI:
801 	case H_IPI:
802 	case H_IPOLL:
803 	case H_XIRR_X:
804 #endif
805 		return 1;
806 	}
807 
808 	/* See if it's in the real-mode table */
809 	return kvmppc_hcall_impl_hv_realmode(cmd);
810 }
811 
812 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
813 					struct kvm_vcpu *vcpu)
814 {
815 	u32 last_inst;
816 
817 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
818 					EMULATE_DONE) {
819 		/*
820 		 * Fetch failed, so return to guest and
821 		 * try executing it again.
822 		 */
823 		return RESUME_GUEST;
824 	}
825 
826 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
827 		run->exit_reason = KVM_EXIT_DEBUG;
828 		run->debug.arch.address = kvmppc_get_pc(vcpu);
829 		return RESUME_HOST;
830 	} else {
831 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
832 		return RESUME_GUEST;
833 	}
834 }
835 
836 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
837 				 struct task_struct *tsk)
838 {
839 	int r = RESUME_HOST;
840 
841 	vcpu->stat.sum_exits++;
842 
843 	run->exit_reason = KVM_EXIT_UNKNOWN;
844 	run->ready_for_interrupt_injection = 1;
845 	switch (vcpu->arch.trap) {
846 	/* We're good on these - the host merely wanted to get our attention */
847 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
848 		vcpu->stat.dec_exits++;
849 		r = RESUME_GUEST;
850 		break;
851 	case BOOK3S_INTERRUPT_EXTERNAL:
852 	case BOOK3S_INTERRUPT_H_DOORBELL:
853 		vcpu->stat.ext_intr_exits++;
854 		r = RESUME_GUEST;
855 		break;
856 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
857 	case BOOK3S_INTERRUPT_HMI:
858 	case BOOK3S_INTERRUPT_PERFMON:
859 		r = RESUME_GUEST;
860 		break;
861 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
862 		/*
863 		 * Deliver a machine check interrupt to the guest.
864 		 * We have to do this, even if the host has handled the
865 		 * machine check, because machine checks use SRR0/1 and
866 		 * the interrupt might have trashed guest state in them.
867 		 */
868 		kvmppc_book3s_queue_irqprio(vcpu,
869 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
870 		r = RESUME_GUEST;
871 		break;
872 	case BOOK3S_INTERRUPT_PROGRAM:
873 	{
874 		ulong flags;
875 		/*
876 		 * Normally program interrupts are delivered directly
877 		 * to the guest by the hardware, but we can get here
878 		 * as a result of a hypervisor emulation interrupt
879 		 * (e40) getting turned into a 700 by BML RTAS.
880 		 */
881 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
882 		kvmppc_core_queue_program(vcpu, flags);
883 		r = RESUME_GUEST;
884 		break;
885 	}
886 	case BOOK3S_INTERRUPT_SYSCALL:
887 	{
888 		/* hcall - punt to userspace */
889 		int i;
890 
891 		/* hypercall with MSR_PR has already been handled in rmode,
892 		 * and never reaches here.
893 		 */
894 
895 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
896 		for (i = 0; i < 9; ++i)
897 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
898 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
899 		vcpu->arch.hcall_needed = 1;
900 		r = RESUME_HOST;
901 		break;
902 	}
903 	/*
904 	 * We get these next two if the guest accesses a page which it thinks
905 	 * it has mapped but which is not actually present, either because
906 	 * it is for an emulated I/O device or because the corresonding
907 	 * host page has been paged out.  Any other HDSI/HISI interrupts
908 	 * have been handled already.
909 	 */
910 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
911 		r = RESUME_PAGE_FAULT;
912 		break;
913 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
914 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
915 		vcpu->arch.fault_dsisr = 0;
916 		r = RESUME_PAGE_FAULT;
917 		break;
918 	/*
919 	 * This occurs if the guest executes an illegal instruction.
920 	 * If the guest debug is disabled, generate a program interrupt
921 	 * to the guest. If guest debug is enabled, we need to check
922 	 * whether the instruction is a software breakpoint instruction.
923 	 * Accordingly return to Guest or Host.
924 	 */
925 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
926 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
927 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
928 				swab32(vcpu->arch.emul_inst) :
929 				vcpu->arch.emul_inst;
930 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
931 			r = kvmppc_emulate_debug_inst(run, vcpu);
932 		} else {
933 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
934 			r = RESUME_GUEST;
935 		}
936 		break;
937 	/*
938 	 * This occurs if the guest (kernel or userspace), does something that
939 	 * is prohibited by HFSCR.  We just generate a program interrupt to
940 	 * the guest.
941 	 */
942 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
943 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
944 		r = RESUME_GUEST;
945 		break;
946 	default:
947 		kvmppc_dump_regs(vcpu);
948 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
949 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
950 			vcpu->arch.shregs.msr);
951 		run->hw.hardware_exit_reason = vcpu->arch.trap;
952 		r = RESUME_HOST;
953 		break;
954 	}
955 
956 	return r;
957 }
958 
959 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
960 					    struct kvm_sregs *sregs)
961 {
962 	int i;
963 
964 	memset(sregs, 0, sizeof(struct kvm_sregs));
965 	sregs->pvr = vcpu->arch.pvr;
966 	for (i = 0; i < vcpu->arch.slb_max; i++) {
967 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
968 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
969 	}
970 
971 	return 0;
972 }
973 
974 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
975 					    struct kvm_sregs *sregs)
976 {
977 	int i, j;
978 
979 	/* Only accept the same PVR as the host's, since we can't spoof it */
980 	if (sregs->pvr != vcpu->arch.pvr)
981 		return -EINVAL;
982 
983 	j = 0;
984 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
985 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
986 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
987 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
988 			++j;
989 		}
990 	}
991 	vcpu->arch.slb_max = j;
992 
993 	return 0;
994 }
995 
996 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
997 		bool preserve_top32)
998 {
999 	struct kvm *kvm = vcpu->kvm;
1000 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1001 	u64 mask;
1002 
1003 	mutex_lock(&kvm->lock);
1004 	spin_lock(&vc->lock);
1005 	/*
1006 	 * If ILE (interrupt little-endian) has changed, update the
1007 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1008 	 */
1009 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1010 		struct kvm_vcpu *vcpu;
1011 		int i;
1012 
1013 		kvm_for_each_vcpu(i, vcpu, kvm) {
1014 			if (vcpu->arch.vcore != vc)
1015 				continue;
1016 			if (new_lpcr & LPCR_ILE)
1017 				vcpu->arch.intr_msr |= MSR_LE;
1018 			else
1019 				vcpu->arch.intr_msr &= ~MSR_LE;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Userspace can only modify DPFD (default prefetch depth),
1025 	 * ILE (interrupt little-endian) and TC (translation control).
1026 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1027 	 */
1028 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1029 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1030 		mask |= LPCR_AIL;
1031 
1032 	/* Broken 32-bit version of LPCR must not clear top bits */
1033 	if (preserve_top32)
1034 		mask &= 0xFFFFFFFF;
1035 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1036 	spin_unlock(&vc->lock);
1037 	mutex_unlock(&kvm->lock);
1038 }
1039 
1040 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1041 				 union kvmppc_one_reg *val)
1042 {
1043 	int r = 0;
1044 	long int i;
1045 
1046 	switch (id) {
1047 	case KVM_REG_PPC_DEBUG_INST:
1048 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1049 		break;
1050 	case KVM_REG_PPC_HIOR:
1051 		*val = get_reg_val(id, 0);
1052 		break;
1053 	case KVM_REG_PPC_DABR:
1054 		*val = get_reg_val(id, vcpu->arch.dabr);
1055 		break;
1056 	case KVM_REG_PPC_DABRX:
1057 		*val = get_reg_val(id, vcpu->arch.dabrx);
1058 		break;
1059 	case KVM_REG_PPC_DSCR:
1060 		*val = get_reg_val(id, vcpu->arch.dscr);
1061 		break;
1062 	case KVM_REG_PPC_PURR:
1063 		*val = get_reg_val(id, vcpu->arch.purr);
1064 		break;
1065 	case KVM_REG_PPC_SPURR:
1066 		*val = get_reg_val(id, vcpu->arch.spurr);
1067 		break;
1068 	case KVM_REG_PPC_AMR:
1069 		*val = get_reg_val(id, vcpu->arch.amr);
1070 		break;
1071 	case KVM_REG_PPC_UAMOR:
1072 		*val = get_reg_val(id, vcpu->arch.uamor);
1073 		break;
1074 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1075 		i = id - KVM_REG_PPC_MMCR0;
1076 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1077 		break;
1078 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1079 		i = id - KVM_REG_PPC_PMC1;
1080 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1081 		break;
1082 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1083 		i = id - KVM_REG_PPC_SPMC1;
1084 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1085 		break;
1086 	case KVM_REG_PPC_SIAR:
1087 		*val = get_reg_val(id, vcpu->arch.siar);
1088 		break;
1089 	case KVM_REG_PPC_SDAR:
1090 		*val = get_reg_val(id, vcpu->arch.sdar);
1091 		break;
1092 	case KVM_REG_PPC_SIER:
1093 		*val = get_reg_val(id, vcpu->arch.sier);
1094 		break;
1095 	case KVM_REG_PPC_IAMR:
1096 		*val = get_reg_val(id, vcpu->arch.iamr);
1097 		break;
1098 	case KVM_REG_PPC_PSPB:
1099 		*val = get_reg_val(id, vcpu->arch.pspb);
1100 		break;
1101 	case KVM_REG_PPC_DPDES:
1102 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1103 		break;
1104 	case KVM_REG_PPC_DAWR:
1105 		*val = get_reg_val(id, vcpu->arch.dawr);
1106 		break;
1107 	case KVM_REG_PPC_DAWRX:
1108 		*val = get_reg_val(id, vcpu->arch.dawrx);
1109 		break;
1110 	case KVM_REG_PPC_CIABR:
1111 		*val = get_reg_val(id, vcpu->arch.ciabr);
1112 		break;
1113 	case KVM_REG_PPC_CSIGR:
1114 		*val = get_reg_val(id, vcpu->arch.csigr);
1115 		break;
1116 	case KVM_REG_PPC_TACR:
1117 		*val = get_reg_val(id, vcpu->arch.tacr);
1118 		break;
1119 	case KVM_REG_PPC_TCSCR:
1120 		*val = get_reg_val(id, vcpu->arch.tcscr);
1121 		break;
1122 	case KVM_REG_PPC_PID:
1123 		*val = get_reg_val(id, vcpu->arch.pid);
1124 		break;
1125 	case KVM_REG_PPC_ACOP:
1126 		*val = get_reg_val(id, vcpu->arch.acop);
1127 		break;
1128 	case KVM_REG_PPC_WORT:
1129 		*val = get_reg_val(id, vcpu->arch.wort);
1130 		break;
1131 	case KVM_REG_PPC_VPA_ADDR:
1132 		spin_lock(&vcpu->arch.vpa_update_lock);
1133 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1134 		spin_unlock(&vcpu->arch.vpa_update_lock);
1135 		break;
1136 	case KVM_REG_PPC_VPA_SLB:
1137 		spin_lock(&vcpu->arch.vpa_update_lock);
1138 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1139 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1140 		spin_unlock(&vcpu->arch.vpa_update_lock);
1141 		break;
1142 	case KVM_REG_PPC_VPA_DTL:
1143 		spin_lock(&vcpu->arch.vpa_update_lock);
1144 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1145 		val->vpaval.length = vcpu->arch.dtl.len;
1146 		spin_unlock(&vcpu->arch.vpa_update_lock);
1147 		break;
1148 	case KVM_REG_PPC_TB_OFFSET:
1149 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1150 		break;
1151 	case KVM_REG_PPC_LPCR:
1152 	case KVM_REG_PPC_LPCR_64:
1153 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1154 		break;
1155 	case KVM_REG_PPC_PPR:
1156 		*val = get_reg_val(id, vcpu->arch.ppr);
1157 		break;
1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1159 	case KVM_REG_PPC_TFHAR:
1160 		*val = get_reg_val(id, vcpu->arch.tfhar);
1161 		break;
1162 	case KVM_REG_PPC_TFIAR:
1163 		*val = get_reg_val(id, vcpu->arch.tfiar);
1164 		break;
1165 	case KVM_REG_PPC_TEXASR:
1166 		*val = get_reg_val(id, vcpu->arch.texasr);
1167 		break;
1168 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1169 		i = id - KVM_REG_PPC_TM_GPR0;
1170 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1171 		break;
1172 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1173 	{
1174 		int j;
1175 		i = id - KVM_REG_PPC_TM_VSR0;
1176 		if (i < 32)
1177 			for (j = 0; j < TS_FPRWIDTH; j++)
1178 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1179 		else {
1180 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1181 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1182 			else
1183 				r = -ENXIO;
1184 		}
1185 		break;
1186 	}
1187 	case KVM_REG_PPC_TM_CR:
1188 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1189 		break;
1190 	case KVM_REG_PPC_TM_LR:
1191 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1192 		break;
1193 	case KVM_REG_PPC_TM_CTR:
1194 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1195 		break;
1196 	case KVM_REG_PPC_TM_FPSCR:
1197 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1198 		break;
1199 	case KVM_REG_PPC_TM_AMR:
1200 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1201 		break;
1202 	case KVM_REG_PPC_TM_PPR:
1203 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1204 		break;
1205 	case KVM_REG_PPC_TM_VRSAVE:
1206 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1207 		break;
1208 	case KVM_REG_PPC_TM_VSCR:
1209 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1210 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1211 		else
1212 			r = -ENXIO;
1213 		break;
1214 	case KVM_REG_PPC_TM_DSCR:
1215 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1216 		break;
1217 	case KVM_REG_PPC_TM_TAR:
1218 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1219 		break;
1220 #endif
1221 	case KVM_REG_PPC_ARCH_COMPAT:
1222 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1223 		break;
1224 	default:
1225 		r = -EINVAL;
1226 		break;
1227 	}
1228 
1229 	return r;
1230 }
1231 
1232 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1233 				 union kvmppc_one_reg *val)
1234 {
1235 	int r = 0;
1236 	long int i;
1237 	unsigned long addr, len;
1238 
1239 	switch (id) {
1240 	case KVM_REG_PPC_HIOR:
1241 		/* Only allow this to be set to zero */
1242 		if (set_reg_val(id, *val))
1243 			r = -EINVAL;
1244 		break;
1245 	case KVM_REG_PPC_DABR:
1246 		vcpu->arch.dabr = set_reg_val(id, *val);
1247 		break;
1248 	case KVM_REG_PPC_DABRX:
1249 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1250 		break;
1251 	case KVM_REG_PPC_DSCR:
1252 		vcpu->arch.dscr = set_reg_val(id, *val);
1253 		break;
1254 	case KVM_REG_PPC_PURR:
1255 		vcpu->arch.purr = set_reg_val(id, *val);
1256 		break;
1257 	case KVM_REG_PPC_SPURR:
1258 		vcpu->arch.spurr = set_reg_val(id, *val);
1259 		break;
1260 	case KVM_REG_PPC_AMR:
1261 		vcpu->arch.amr = set_reg_val(id, *val);
1262 		break;
1263 	case KVM_REG_PPC_UAMOR:
1264 		vcpu->arch.uamor = set_reg_val(id, *val);
1265 		break;
1266 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1267 		i = id - KVM_REG_PPC_MMCR0;
1268 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1269 		break;
1270 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1271 		i = id - KVM_REG_PPC_PMC1;
1272 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1273 		break;
1274 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1275 		i = id - KVM_REG_PPC_SPMC1;
1276 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1277 		break;
1278 	case KVM_REG_PPC_SIAR:
1279 		vcpu->arch.siar = set_reg_val(id, *val);
1280 		break;
1281 	case KVM_REG_PPC_SDAR:
1282 		vcpu->arch.sdar = set_reg_val(id, *val);
1283 		break;
1284 	case KVM_REG_PPC_SIER:
1285 		vcpu->arch.sier = set_reg_val(id, *val);
1286 		break;
1287 	case KVM_REG_PPC_IAMR:
1288 		vcpu->arch.iamr = set_reg_val(id, *val);
1289 		break;
1290 	case KVM_REG_PPC_PSPB:
1291 		vcpu->arch.pspb = set_reg_val(id, *val);
1292 		break;
1293 	case KVM_REG_PPC_DPDES:
1294 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1295 		break;
1296 	case KVM_REG_PPC_DAWR:
1297 		vcpu->arch.dawr = set_reg_val(id, *val);
1298 		break;
1299 	case KVM_REG_PPC_DAWRX:
1300 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1301 		break;
1302 	case KVM_REG_PPC_CIABR:
1303 		vcpu->arch.ciabr = set_reg_val(id, *val);
1304 		/* Don't allow setting breakpoints in hypervisor code */
1305 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1306 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1307 		break;
1308 	case KVM_REG_PPC_CSIGR:
1309 		vcpu->arch.csigr = set_reg_val(id, *val);
1310 		break;
1311 	case KVM_REG_PPC_TACR:
1312 		vcpu->arch.tacr = set_reg_val(id, *val);
1313 		break;
1314 	case KVM_REG_PPC_TCSCR:
1315 		vcpu->arch.tcscr = set_reg_val(id, *val);
1316 		break;
1317 	case KVM_REG_PPC_PID:
1318 		vcpu->arch.pid = set_reg_val(id, *val);
1319 		break;
1320 	case KVM_REG_PPC_ACOP:
1321 		vcpu->arch.acop = set_reg_val(id, *val);
1322 		break;
1323 	case KVM_REG_PPC_WORT:
1324 		vcpu->arch.wort = set_reg_val(id, *val);
1325 		break;
1326 	case KVM_REG_PPC_VPA_ADDR:
1327 		addr = set_reg_val(id, *val);
1328 		r = -EINVAL;
1329 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1330 			      vcpu->arch.dtl.next_gpa))
1331 			break;
1332 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1333 		break;
1334 	case KVM_REG_PPC_VPA_SLB:
1335 		addr = val->vpaval.addr;
1336 		len = val->vpaval.length;
1337 		r = -EINVAL;
1338 		if (addr && !vcpu->arch.vpa.next_gpa)
1339 			break;
1340 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1341 		break;
1342 	case KVM_REG_PPC_VPA_DTL:
1343 		addr = val->vpaval.addr;
1344 		len = val->vpaval.length;
1345 		r = -EINVAL;
1346 		if (addr && (len < sizeof(struct dtl_entry) ||
1347 			     !vcpu->arch.vpa.next_gpa))
1348 			break;
1349 		len -= len % sizeof(struct dtl_entry);
1350 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1351 		break;
1352 	case KVM_REG_PPC_TB_OFFSET:
1353 		/* round up to multiple of 2^24 */
1354 		vcpu->arch.vcore->tb_offset =
1355 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1356 		break;
1357 	case KVM_REG_PPC_LPCR:
1358 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1359 		break;
1360 	case KVM_REG_PPC_LPCR_64:
1361 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1362 		break;
1363 	case KVM_REG_PPC_PPR:
1364 		vcpu->arch.ppr = set_reg_val(id, *val);
1365 		break;
1366 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1367 	case KVM_REG_PPC_TFHAR:
1368 		vcpu->arch.tfhar = set_reg_val(id, *val);
1369 		break;
1370 	case KVM_REG_PPC_TFIAR:
1371 		vcpu->arch.tfiar = set_reg_val(id, *val);
1372 		break;
1373 	case KVM_REG_PPC_TEXASR:
1374 		vcpu->arch.texasr = set_reg_val(id, *val);
1375 		break;
1376 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1377 		i = id - KVM_REG_PPC_TM_GPR0;
1378 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1379 		break;
1380 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1381 	{
1382 		int j;
1383 		i = id - KVM_REG_PPC_TM_VSR0;
1384 		if (i < 32)
1385 			for (j = 0; j < TS_FPRWIDTH; j++)
1386 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1387 		else
1388 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1389 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1390 			else
1391 				r = -ENXIO;
1392 		break;
1393 	}
1394 	case KVM_REG_PPC_TM_CR:
1395 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1396 		break;
1397 	case KVM_REG_PPC_TM_LR:
1398 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1399 		break;
1400 	case KVM_REG_PPC_TM_CTR:
1401 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1402 		break;
1403 	case KVM_REG_PPC_TM_FPSCR:
1404 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1405 		break;
1406 	case KVM_REG_PPC_TM_AMR:
1407 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1408 		break;
1409 	case KVM_REG_PPC_TM_PPR:
1410 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1411 		break;
1412 	case KVM_REG_PPC_TM_VRSAVE:
1413 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1414 		break;
1415 	case KVM_REG_PPC_TM_VSCR:
1416 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1417 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1418 		else
1419 			r = - ENXIO;
1420 		break;
1421 	case KVM_REG_PPC_TM_DSCR:
1422 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1423 		break;
1424 	case KVM_REG_PPC_TM_TAR:
1425 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1426 		break;
1427 #endif
1428 	case KVM_REG_PPC_ARCH_COMPAT:
1429 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1430 		break;
1431 	default:
1432 		r = -EINVAL;
1433 		break;
1434 	}
1435 
1436 	return r;
1437 }
1438 
1439 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1440 {
1441 	struct kvmppc_vcore *vcore;
1442 
1443 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1444 
1445 	if (vcore == NULL)
1446 		return NULL;
1447 
1448 	INIT_LIST_HEAD(&vcore->runnable_threads);
1449 	spin_lock_init(&vcore->lock);
1450 	spin_lock_init(&vcore->stoltb_lock);
1451 	init_waitqueue_head(&vcore->wq);
1452 	vcore->preempt_tb = TB_NIL;
1453 	vcore->lpcr = kvm->arch.lpcr;
1454 	vcore->first_vcpuid = core * threads_per_subcore;
1455 	vcore->kvm = kvm;
1456 	INIT_LIST_HEAD(&vcore->preempt_list);
1457 
1458 	vcore->mpp_buffer_is_valid = false;
1459 
1460 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1461 		vcore->mpp_buffer = (void *)__get_free_pages(
1462 			GFP_KERNEL|__GFP_ZERO,
1463 			MPP_BUFFER_ORDER);
1464 
1465 	return vcore;
1466 }
1467 
1468 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1469 static struct debugfs_timings_element {
1470 	const char *name;
1471 	size_t offset;
1472 } timings[] = {
1473 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1474 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1475 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1476 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1477 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1478 };
1479 
1480 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1481 
1482 struct debugfs_timings_state {
1483 	struct kvm_vcpu	*vcpu;
1484 	unsigned int	buflen;
1485 	char		buf[N_TIMINGS * 100];
1486 };
1487 
1488 static int debugfs_timings_open(struct inode *inode, struct file *file)
1489 {
1490 	struct kvm_vcpu *vcpu = inode->i_private;
1491 	struct debugfs_timings_state *p;
1492 
1493 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1494 	if (!p)
1495 		return -ENOMEM;
1496 
1497 	kvm_get_kvm(vcpu->kvm);
1498 	p->vcpu = vcpu;
1499 	file->private_data = p;
1500 
1501 	return nonseekable_open(inode, file);
1502 }
1503 
1504 static int debugfs_timings_release(struct inode *inode, struct file *file)
1505 {
1506 	struct debugfs_timings_state *p = file->private_data;
1507 
1508 	kvm_put_kvm(p->vcpu->kvm);
1509 	kfree(p);
1510 	return 0;
1511 }
1512 
1513 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1514 				    size_t len, loff_t *ppos)
1515 {
1516 	struct debugfs_timings_state *p = file->private_data;
1517 	struct kvm_vcpu *vcpu = p->vcpu;
1518 	char *s, *buf_end;
1519 	struct kvmhv_tb_accumulator tb;
1520 	u64 count;
1521 	loff_t pos;
1522 	ssize_t n;
1523 	int i, loops;
1524 	bool ok;
1525 
1526 	if (!p->buflen) {
1527 		s = p->buf;
1528 		buf_end = s + sizeof(p->buf);
1529 		for (i = 0; i < N_TIMINGS; ++i) {
1530 			struct kvmhv_tb_accumulator *acc;
1531 
1532 			acc = (struct kvmhv_tb_accumulator *)
1533 				((unsigned long)vcpu + timings[i].offset);
1534 			ok = false;
1535 			for (loops = 0; loops < 1000; ++loops) {
1536 				count = acc->seqcount;
1537 				if (!(count & 1)) {
1538 					smp_rmb();
1539 					tb = *acc;
1540 					smp_rmb();
1541 					if (count == acc->seqcount) {
1542 						ok = true;
1543 						break;
1544 					}
1545 				}
1546 				udelay(1);
1547 			}
1548 			if (!ok)
1549 				snprintf(s, buf_end - s, "%s: stuck\n",
1550 					timings[i].name);
1551 			else
1552 				snprintf(s, buf_end - s,
1553 					"%s: %llu %llu %llu %llu\n",
1554 					timings[i].name, count / 2,
1555 					tb_to_ns(tb.tb_total),
1556 					tb_to_ns(tb.tb_min),
1557 					tb_to_ns(tb.tb_max));
1558 			s += strlen(s);
1559 		}
1560 		p->buflen = s - p->buf;
1561 	}
1562 
1563 	pos = *ppos;
1564 	if (pos >= p->buflen)
1565 		return 0;
1566 	if (len > p->buflen - pos)
1567 		len = p->buflen - pos;
1568 	n = copy_to_user(buf, p->buf + pos, len);
1569 	if (n) {
1570 		if (n == len)
1571 			return -EFAULT;
1572 		len -= n;
1573 	}
1574 	*ppos = pos + len;
1575 	return len;
1576 }
1577 
1578 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1579 				     size_t len, loff_t *ppos)
1580 {
1581 	return -EACCES;
1582 }
1583 
1584 static const struct file_operations debugfs_timings_ops = {
1585 	.owner	 = THIS_MODULE,
1586 	.open	 = debugfs_timings_open,
1587 	.release = debugfs_timings_release,
1588 	.read	 = debugfs_timings_read,
1589 	.write	 = debugfs_timings_write,
1590 	.llseek	 = generic_file_llseek,
1591 };
1592 
1593 /* Create a debugfs directory for the vcpu */
1594 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1595 {
1596 	char buf[16];
1597 	struct kvm *kvm = vcpu->kvm;
1598 
1599 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1600 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1601 		return;
1602 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1603 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1604 		return;
1605 	vcpu->arch.debugfs_timings =
1606 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1607 				    vcpu, &debugfs_timings_ops);
1608 }
1609 
1610 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1611 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1612 {
1613 }
1614 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1615 
1616 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1617 						   unsigned int id)
1618 {
1619 	struct kvm_vcpu *vcpu;
1620 	int err = -EINVAL;
1621 	int core;
1622 	struct kvmppc_vcore *vcore;
1623 
1624 	core = id / threads_per_subcore;
1625 	if (core >= KVM_MAX_VCORES)
1626 		goto out;
1627 
1628 	err = -ENOMEM;
1629 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1630 	if (!vcpu)
1631 		goto out;
1632 
1633 	err = kvm_vcpu_init(vcpu, kvm, id);
1634 	if (err)
1635 		goto free_vcpu;
1636 
1637 	vcpu->arch.shared = &vcpu->arch.shregs;
1638 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1639 	/*
1640 	 * The shared struct is never shared on HV,
1641 	 * so we can always use host endianness
1642 	 */
1643 #ifdef __BIG_ENDIAN__
1644 	vcpu->arch.shared_big_endian = true;
1645 #else
1646 	vcpu->arch.shared_big_endian = false;
1647 #endif
1648 #endif
1649 	vcpu->arch.mmcr[0] = MMCR0_FC;
1650 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1651 	/* default to host PVR, since we can't spoof it */
1652 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1653 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1654 	spin_lock_init(&vcpu->arch.tbacct_lock);
1655 	vcpu->arch.busy_preempt = TB_NIL;
1656 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1657 
1658 	kvmppc_mmu_book3s_hv_init(vcpu);
1659 
1660 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1661 
1662 	init_waitqueue_head(&vcpu->arch.cpu_run);
1663 
1664 	mutex_lock(&kvm->lock);
1665 	vcore = kvm->arch.vcores[core];
1666 	if (!vcore) {
1667 		vcore = kvmppc_vcore_create(kvm, core);
1668 		kvm->arch.vcores[core] = vcore;
1669 		kvm->arch.online_vcores++;
1670 	}
1671 	mutex_unlock(&kvm->lock);
1672 
1673 	if (!vcore)
1674 		goto free_vcpu;
1675 
1676 	spin_lock(&vcore->lock);
1677 	++vcore->num_threads;
1678 	spin_unlock(&vcore->lock);
1679 	vcpu->arch.vcore = vcore;
1680 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1681 	vcpu->arch.thread_cpu = -1;
1682 
1683 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1684 	kvmppc_sanity_check(vcpu);
1685 
1686 	debugfs_vcpu_init(vcpu, id);
1687 
1688 	return vcpu;
1689 
1690 free_vcpu:
1691 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1692 out:
1693 	return ERR_PTR(err);
1694 }
1695 
1696 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1697 {
1698 	if (vpa->pinned_addr)
1699 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1700 					vpa->dirty);
1701 }
1702 
1703 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1704 {
1705 	spin_lock(&vcpu->arch.vpa_update_lock);
1706 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1707 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1708 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1709 	spin_unlock(&vcpu->arch.vpa_update_lock);
1710 	kvm_vcpu_uninit(vcpu);
1711 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1712 }
1713 
1714 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1715 {
1716 	/* Indicate we want to get back into the guest */
1717 	return 1;
1718 }
1719 
1720 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1721 {
1722 	unsigned long dec_nsec, now;
1723 
1724 	now = get_tb();
1725 	if (now > vcpu->arch.dec_expires) {
1726 		/* decrementer has already gone negative */
1727 		kvmppc_core_queue_dec(vcpu);
1728 		kvmppc_core_prepare_to_enter(vcpu);
1729 		return;
1730 	}
1731 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1732 		   / tb_ticks_per_sec;
1733 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1734 		      HRTIMER_MODE_REL);
1735 	vcpu->arch.timer_running = 1;
1736 }
1737 
1738 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1739 {
1740 	vcpu->arch.ceded = 0;
1741 	if (vcpu->arch.timer_running) {
1742 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1743 		vcpu->arch.timer_running = 0;
1744 	}
1745 }
1746 
1747 extern void __kvmppc_vcore_entry(void);
1748 
1749 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1750 				   struct kvm_vcpu *vcpu)
1751 {
1752 	u64 now;
1753 
1754 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1755 		return;
1756 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1757 	now = mftb();
1758 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1759 		vcpu->arch.stolen_logged;
1760 	vcpu->arch.busy_preempt = now;
1761 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1762 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1763 	--vc->n_runnable;
1764 	list_del(&vcpu->arch.run_list);
1765 }
1766 
1767 static int kvmppc_grab_hwthread(int cpu)
1768 {
1769 	struct paca_struct *tpaca;
1770 	long timeout = 10000;
1771 
1772 	tpaca = &paca[cpu];
1773 
1774 	/* Ensure the thread won't go into the kernel if it wakes */
1775 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1776 	tpaca->kvm_hstate.kvm_vcore = NULL;
1777 	tpaca->kvm_hstate.napping = 0;
1778 	smp_wmb();
1779 	tpaca->kvm_hstate.hwthread_req = 1;
1780 
1781 	/*
1782 	 * If the thread is already executing in the kernel (e.g. handling
1783 	 * a stray interrupt), wait for it to get back to nap mode.
1784 	 * The smp_mb() is to ensure that our setting of hwthread_req
1785 	 * is visible before we look at hwthread_state, so if this
1786 	 * races with the code at system_reset_pSeries and the thread
1787 	 * misses our setting of hwthread_req, we are sure to see its
1788 	 * setting of hwthread_state, and vice versa.
1789 	 */
1790 	smp_mb();
1791 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1792 		if (--timeout <= 0) {
1793 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1794 			return -EBUSY;
1795 		}
1796 		udelay(1);
1797 	}
1798 	return 0;
1799 }
1800 
1801 static void kvmppc_release_hwthread(int cpu)
1802 {
1803 	struct paca_struct *tpaca;
1804 
1805 	tpaca = &paca[cpu];
1806 	tpaca->kvm_hstate.hwthread_req = 0;
1807 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1808 	tpaca->kvm_hstate.kvm_vcore = NULL;
1809 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1810 }
1811 
1812 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1813 {
1814 	int cpu;
1815 	struct paca_struct *tpaca;
1816 	struct kvmppc_vcore *mvc = vc->master_vcore;
1817 
1818 	cpu = vc->pcpu;
1819 	if (vcpu) {
1820 		if (vcpu->arch.timer_running) {
1821 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1822 			vcpu->arch.timer_running = 0;
1823 		}
1824 		cpu += vcpu->arch.ptid;
1825 		vcpu->cpu = mvc->pcpu;
1826 		vcpu->arch.thread_cpu = cpu;
1827 	}
1828 	tpaca = &paca[cpu];
1829 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1830 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1831 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1832 	smp_wmb();
1833 	tpaca->kvm_hstate.kvm_vcore = mvc;
1834 	if (cpu != smp_processor_id())
1835 		kvmppc_ipi_thread(cpu);
1836 }
1837 
1838 static void kvmppc_wait_for_nap(void)
1839 {
1840 	int cpu = smp_processor_id();
1841 	int i, loops;
1842 
1843 	for (loops = 0; loops < 1000000; ++loops) {
1844 		/*
1845 		 * Check if all threads are finished.
1846 		 * We set the vcore pointer when starting a thread
1847 		 * and the thread clears it when finished, so we look
1848 		 * for any threads that still have a non-NULL vcore ptr.
1849 		 */
1850 		for (i = 1; i < threads_per_subcore; ++i)
1851 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1852 				break;
1853 		if (i == threads_per_subcore) {
1854 			HMT_medium();
1855 			return;
1856 		}
1857 		HMT_low();
1858 	}
1859 	HMT_medium();
1860 	for (i = 1; i < threads_per_subcore; ++i)
1861 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1862 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1863 }
1864 
1865 /*
1866  * Check that we are on thread 0 and that any other threads in
1867  * this core are off-line.  Then grab the threads so they can't
1868  * enter the kernel.
1869  */
1870 static int on_primary_thread(void)
1871 {
1872 	int cpu = smp_processor_id();
1873 	int thr;
1874 
1875 	/* Are we on a primary subcore? */
1876 	if (cpu_thread_in_subcore(cpu))
1877 		return 0;
1878 
1879 	thr = 0;
1880 	while (++thr < threads_per_subcore)
1881 		if (cpu_online(cpu + thr))
1882 			return 0;
1883 
1884 	/* Grab all hw threads so they can't go into the kernel */
1885 	for (thr = 1; thr < threads_per_subcore; ++thr) {
1886 		if (kvmppc_grab_hwthread(cpu + thr)) {
1887 			/* Couldn't grab one; let the others go */
1888 			do {
1889 				kvmppc_release_hwthread(cpu + thr);
1890 			} while (--thr > 0);
1891 			return 0;
1892 		}
1893 	}
1894 	return 1;
1895 }
1896 
1897 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1898 {
1899 	phys_addr_t phy_addr, mpp_addr;
1900 
1901 	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1902 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1903 
1904 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1905 	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1906 
1907 	vc->mpp_buffer_is_valid = true;
1908 }
1909 
1910 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1911 {
1912 	phys_addr_t phy_addr, mpp_addr;
1913 
1914 	phy_addr = virt_to_phys(vc->mpp_buffer);
1915 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1916 
1917 	/* We must abort any in-progress save operations to ensure
1918 	 * the table is valid so that prefetch engine knows when to
1919 	 * stop prefetching. */
1920 	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1921 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1922 }
1923 
1924 /*
1925  * A list of virtual cores for each physical CPU.
1926  * These are vcores that could run but their runner VCPU tasks are
1927  * (or may be) preempted.
1928  */
1929 struct preempted_vcore_list {
1930 	struct list_head	list;
1931 	spinlock_t		lock;
1932 };
1933 
1934 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1935 
1936 static void init_vcore_lists(void)
1937 {
1938 	int cpu;
1939 
1940 	for_each_possible_cpu(cpu) {
1941 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1942 		spin_lock_init(&lp->lock);
1943 		INIT_LIST_HEAD(&lp->list);
1944 	}
1945 }
1946 
1947 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1948 {
1949 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1950 
1951 	vc->vcore_state = VCORE_PREEMPT;
1952 	vc->pcpu = smp_processor_id();
1953 	if (vc->num_threads < threads_per_subcore) {
1954 		spin_lock(&lp->lock);
1955 		list_add_tail(&vc->preempt_list, &lp->list);
1956 		spin_unlock(&lp->lock);
1957 	}
1958 
1959 	/* Start accumulating stolen time */
1960 	kvmppc_core_start_stolen(vc);
1961 }
1962 
1963 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1964 {
1965 	struct preempted_vcore_list *lp;
1966 
1967 	kvmppc_core_end_stolen(vc);
1968 	if (!list_empty(&vc->preempt_list)) {
1969 		lp = &per_cpu(preempted_vcores, vc->pcpu);
1970 		spin_lock(&lp->lock);
1971 		list_del_init(&vc->preempt_list);
1972 		spin_unlock(&lp->lock);
1973 	}
1974 	vc->vcore_state = VCORE_INACTIVE;
1975 }
1976 
1977 /*
1978  * This stores information about the virtual cores currently
1979  * assigned to a physical core.
1980  */
1981 struct core_info {
1982 	int		n_subcores;
1983 	int		max_subcore_threads;
1984 	int		total_threads;
1985 	int		subcore_threads[MAX_SUBCORES];
1986 	struct kvm	*subcore_vm[MAX_SUBCORES];
1987 	struct list_head vcs[MAX_SUBCORES];
1988 };
1989 
1990 /*
1991  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1992  * respectively in 2-way micro-threading (split-core) mode.
1993  */
1994 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1995 
1996 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1997 {
1998 	int sub;
1999 
2000 	memset(cip, 0, sizeof(*cip));
2001 	cip->n_subcores = 1;
2002 	cip->max_subcore_threads = vc->num_threads;
2003 	cip->total_threads = vc->num_threads;
2004 	cip->subcore_threads[0] = vc->num_threads;
2005 	cip->subcore_vm[0] = vc->kvm;
2006 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2007 		INIT_LIST_HEAD(&cip->vcs[sub]);
2008 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2009 }
2010 
2011 static bool subcore_config_ok(int n_subcores, int n_threads)
2012 {
2013 	/* Can only dynamically split if unsplit to begin with */
2014 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2015 		return false;
2016 	if (n_subcores > MAX_SUBCORES)
2017 		return false;
2018 	if (n_subcores > 1) {
2019 		if (!(dynamic_mt_modes & 2))
2020 			n_subcores = 4;
2021 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2022 			return false;
2023 	}
2024 
2025 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2026 }
2027 
2028 static void init_master_vcore(struct kvmppc_vcore *vc)
2029 {
2030 	vc->master_vcore = vc;
2031 	vc->entry_exit_map = 0;
2032 	vc->in_guest = 0;
2033 	vc->napping_threads = 0;
2034 	vc->conferring_threads = 0;
2035 }
2036 
2037 /*
2038  * See if the existing subcores can be split into 3 (or fewer) subcores
2039  * of at most two threads each, so we can fit in another vcore.  This
2040  * assumes there are at most two subcores and at most 6 threads in total.
2041  */
2042 static bool can_split_piggybacked_subcores(struct core_info *cip)
2043 {
2044 	int sub, new_sub;
2045 	int large_sub = -1;
2046 	int thr;
2047 	int n_subcores = cip->n_subcores;
2048 	struct kvmppc_vcore *vc, *vcnext;
2049 	struct kvmppc_vcore *master_vc = NULL;
2050 
2051 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2052 		if (cip->subcore_threads[sub] <= 2)
2053 			continue;
2054 		if (large_sub >= 0)
2055 			return false;
2056 		large_sub = sub;
2057 		vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2058 				      preempt_list);
2059 		if (vc->num_threads > 2)
2060 			return false;
2061 		n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2062 	}
2063 	if (n_subcores > 3 || large_sub < 0)
2064 		return false;
2065 
2066 	/*
2067 	 * Seems feasible, so go through and move vcores to new subcores.
2068 	 * Note that when we have two or more vcores in one subcore,
2069 	 * all those vcores must have only one thread each.
2070 	 */
2071 	new_sub = cip->n_subcores;
2072 	thr = 0;
2073 	sub = large_sub;
2074 	list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2075 		if (thr >= 2) {
2076 			list_del(&vc->preempt_list);
2077 			list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2078 			/* vc->num_threads must be 1 */
2079 			if (++cip->subcore_threads[new_sub] == 1) {
2080 				cip->subcore_vm[new_sub] = vc->kvm;
2081 				init_master_vcore(vc);
2082 				master_vc = vc;
2083 				++cip->n_subcores;
2084 			} else {
2085 				vc->master_vcore = master_vc;
2086 				++new_sub;
2087 			}
2088 		}
2089 		thr += vc->num_threads;
2090 	}
2091 	cip->subcore_threads[large_sub] = 2;
2092 	cip->max_subcore_threads = 2;
2093 
2094 	return true;
2095 }
2096 
2097 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2098 {
2099 	int n_threads = vc->num_threads;
2100 	int sub;
2101 
2102 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2103 		return false;
2104 
2105 	if (n_threads < cip->max_subcore_threads)
2106 		n_threads = cip->max_subcore_threads;
2107 	if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2108 		cip->max_subcore_threads = n_threads;
2109 	} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2110 		   vc->num_threads <= 2) {
2111 		/*
2112 		 * We may be able to fit another subcore in by
2113 		 * splitting an existing subcore with 3 or 4
2114 		 * threads into two 2-thread subcores, or one
2115 		 * with 5 or 6 threads into three subcores.
2116 		 * We can only do this if those subcores have
2117 		 * piggybacked virtual cores.
2118 		 */
2119 		if (!can_split_piggybacked_subcores(cip))
2120 			return false;
2121 	} else {
2122 		return false;
2123 	}
2124 
2125 	sub = cip->n_subcores;
2126 	++cip->n_subcores;
2127 	cip->total_threads += vc->num_threads;
2128 	cip->subcore_threads[sub] = vc->num_threads;
2129 	cip->subcore_vm[sub] = vc->kvm;
2130 	init_master_vcore(vc);
2131 	list_del(&vc->preempt_list);
2132 	list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2133 
2134 	return true;
2135 }
2136 
2137 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2138 				  struct core_info *cip, int sub)
2139 {
2140 	struct kvmppc_vcore *vc;
2141 	int n_thr;
2142 
2143 	vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2144 			      preempt_list);
2145 
2146 	/* require same VM and same per-core reg values */
2147 	if (pvc->kvm != vc->kvm ||
2148 	    pvc->tb_offset != vc->tb_offset ||
2149 	    pvc->pcr != vc->pcr ||
2150 	    pvc->lpcr != vc->lpcr)
2151 		return false;
2152 
2153 	/* P8 guest with > 1 thread per core would see wrong TIR value */
2154 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2155 	    (vc->num_threads > 1 || pvc->num_threads > 1))
2156 		return false;
2157 
2158 	n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2159 	if (n_thr > cip->max_subcore_threads) {
2160 		if (!subcore_config_ok(cip->n_subcores, n_thr))
2161 			return false;
2162 		cip->max_subcore_threads = n_thr;
2163 	}
2164 
2165 	cip->total_threads += pvc->num_threads;
2166 	cip->subcore_threads[sub] = n_thr;
2167 	pvc->master_vcore = vc;
2168 	list_del(&pvc->preempt_list);
2169 	list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2170 
2171 	return true;
2172 }
2173 
2174 /*
2175  * Work out whether it is possible to piggyback the execution of
2176  * vcore *pvc onto the execution of the other vcores described in *cip.
2177  */
2178 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2179 			  int target_threads)
2180 {
2181 	int sub;
2182 
2183 	if (cip->total_threads + pvc->num_threads > target_threads)
2184 		return false;
2185 	for (sub = 0; sub < cip->n_subcores; ++sub)
2186 		if (cip->subcore_threads[sub] &&
2187 		    can_piggyback_subcore(pvc, cip, sub))
2188 			return true;
2189 
2190 	if (can_dynamic_split(pvc, cip))
2191 		return true;
2192 
2193 	return false;
2194 }
2195 
2196 static void prepare_threads(struct kvmppc_vcore *vc)
2197 {
2198 	struct kvm_vcpu *vcpu, *vnext;
2199 
2200 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2201 				 arch.run_list) {
2202 		if (signal_pending(vcpu->arch.run_task))
2203 			vcpu->arch.ret = -EINTR;
2204 		else if (vcpu->arch.vpa.update_pending ||
2205 			 vcpu->arch.slb_shadow.update_pending ||
2206 			 vcpu->arch.dtl.update_pending)
2207 			vcpu->arch.ret = RESUME_GUEST;
2208 		else
2209 			continue;
2210 		kvmppc_remove_runnable(vc, vcpu);
2211 		wake_up(&vcpu->arch.cpu_run);
2212 	}
2213 }
2214 
2215 static void collect_piggybacks(struct core_info *cip, int target_threads)
2216 {
2217 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2218 	struct kvmppc_vcore *pvc, *vcnext;
2219 
2220 	spin_lock(&lp->lock);
2221 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2222 		if (!spin_trylock(&pvc->lock))
2223 			continue;
2224 		prepare_threads(pvc);
2225 		if (!pvc->n_runnable) {
2226 			list_del_init(&pvc->preempt_list);
2227 			if (pvc->runner == NULL) {
2228 				pvc->vcore_state = VCORE_INACTIVE;
2229 				kvmppc_core_end_stolen(pvc);
2230 			}
2231 			spin_unlock(&pvc->lock);
2232 			continue;
2233 		}
2234 		if (!can_piggyback(pvc, cip, target_threads)) {
2235 			spin_unlock(&pvc->lock);
2236 			continue;
2237 		}
2238 		kvmppc_core_end_stolen(pvc);
2239 		pvc->vcore_state = VCORE_PIGGYBACK;
2240 		if (cip->total_threads >= target_threads)
2241 			break;
2242 	}
2243 	spin_unlock(&lp->lock);
2244 }
2245 
2246 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2247 {
2248 	int still_running = 0;
2249 	u64 now;
2250 	long ret;
2251 	struct kvm_vcpu *vcpu, *vnext;
2252 
2253 	spin_lock(&vc->lock);
2254 	now = get_tb();
2255 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2256 				 arch.run_list) {
2257 		/* cancel pending dec exception if dec is positive */
2258 		if (now < vcpu->arch.dec_expires &&
2259 		    kvmppc_core_pending_dec(vcpu))
2260 			kvmppc_core_dequeue_dec(vcpu);
2261 
2262 		trace_kvm_guest_exit(vcpu);
2263 
2264 		ret = RESUME_GUEST;
2265 		if (vcpu->arch.trap)
2266 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2267 						    vcpu->arch.run_task);
2268 
2269 		vcpu->arch.ret = ret;
2270 		vcpu->arch.trap = 0;
2271 
2272 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2273 			if (vcpu->arch.pending_exceptions)
2274 				kvmppc_core_prepare_to_enter(vcpu);
2275 			if (vcpu->arch.ceded)
2276 				kvmppc_set_timer(vcpu);
2277 			else
2278 				++still_running;
2279 		} else {
2280 			kvmppc_remove_runnable(vc, vcpu);
2281 			wake_up(&vcpu->arch.cpu_run);
2282 		}
2283 	}
2284 	list_del_init(&vc->preempt_list);
2285 	if (!is_master) {
2286 		if (still_running > 0) {
2287 			kvmppc_vcore_preempt(vc);
2288 		} else if (vc->runner) {
2289 			vc->vcore_state = VCORE_PREEMPT;
2290 			kvmppc_core_start_stolen(vc);
2291 		} else {
2292 			vc->vcore_state = VCORE_INACTIVE;
2293 		}
2294 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2295 			/* make sure there's a candidate runner awake */
2296 			vcpu = list_first_entry(&vc->runnable_threads,
2297 						struct kvm_vcpu, arch.run_list);
2298 			wake_up(&vcpu->arch.cpu_run);
2299 		}
2300 	}
2301 	spin_unlock(&vc->lock);
2302 }
2303 
2304 /*
2305  * Run a set of guest threads on a physical core.
2306  * Called with vc->lock held.
2307  */
2308 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2309 {
2310 	struct kvm_vcpu *vcpu, *vnext;
2311 	int i;
2312 	int srcu_idx;
2313 	struct core_info core_info;
2314 	struct kvmppc_vcore *pvc, *vcnext;
2315 	struct kvm_split_mode split_info, *sip;
2316 	int split, subcore_size, active;
2317 	int sub;
2318 	bool thr0_done;
2319 	unsigned long cmd_bit, stat_bit;
2320 	int pcpu, thr;
2321 	int target_threads;
2322 
2323 	/*
2324 	 * Remove from the list any threads that have a signal pending
2325 	 * or need a VPA update done
2326 	 */
2327 	prepare_threads(vc);
2328 
2329 	/* if the runner is no longer runnable, let the caller pick a new one */
2330 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2331 		return;
2332 
2333 	/*
2334 	 * Initialize *vc.
2335 	 */
2336 	init_master_vcore(vc);
2337 	vc->preempt_tb = TB_NIL;
2338 
2339 	/*
2340 	 * Make sure we are running on primary threads, and that secondary
2341 	 * threads are offline.  Also check if the number of threads in this
2342 	 * guest are greater than the current system threads per guest.
2343 	 */
2344 	if ((threads_per_core > 1) &&
2345 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2346 		list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2347 					 arch.run_list) {
2348 			vcpu->arch.ret = -EBUSY;
2349 			kvmppc_remove_runnable(vc, vcpu);
2350 			wake_up(&vcpu->arch.cpu_run);
2351 		}
2352 		goto out;
2353 	}
2354 
2355 	/*
2356 	 * See if we could run any other vcores on the physical core
2357 	 * along with this one.
2358 	 */
2359 	init_core_info(&core_info, vc);
2360 	pcpu = smp_processor_id();
2361 	target_threads = threads_per_subcore;
2362 	if (target_smt_mode && target_smt_mode < target_threads)
2363 		target_threads = target_smt_mode;
2364 	if (vc->num_threads < target_threads)
2365 		collect_piggybacks(&core_info, target_threads);
2366 
2367 	/* Decide on micro-threading (split-core) mode */
2368 	subcore_size = threads_per_subcore;
2369 	cmd_bit = stat_bit = 0;
2370 	split = core_info.n_subcores;
2371 	sip = NULL;
2372 	if (split > 1) {
2373 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2374 		if (split == 2 && (dynamic_mt_modes & 2)) {
2375 			cmd_bit = HID0_POWER8_1TO2LPAR;
2376 			stat_bit = HID0_POWER8_2LPARMODE;
2377 		} else {
2378 			split = 4;
2379 			cmd_bit = HID0_POWER8_1TO4LPAR;
2380 			stat_bit = HID0_POWER8_4LPARMODE;
2381 		}
2382 		subcore_size = MAX_SMT_THREADS / split;
2383 		sip = &split_info;
2384 		memset(&split_info, 0, sizeof(split_info));
2385 		split_info.rpr = mfspr(SPRN_RPR);
2386 		split_info.pmmar = mfspr(SPRN_PMMAR);
2387 		split_info.ldbar = mfspr(SPRN_LDBAR);
2388 		split_info.subcore_size = subcore_size;
2389 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2390 			split_info.master_vcs[sub] =
2391 				list_first_entry(&core_info.vcs[sub],
2392 					struct kvmppc_vcore, preempt_list);
2393 		/* order writes to split_info before kvm_split_mode pointer */
2394 		smp_wmb();
2395 	}
2396 	pcpu = smp_processor_id();
2397 	for (thr = 0; thr < threads_per_subcore; ++thr)
2398 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2399 
2400 	/* Initiate micro-threading (split-core) if required */
2401 	if (cmd_bit) {
2402 		unsigned long hid0 = mfspr(SPRN_HID0);
2403 
2404 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2405 		mb();
2406 		mtspr(SPRN_HID0, hid0);
2407 		isync();
2408 		for (;;) {
2409 			hid0 = mfspr(SPRN_HID0);
2410 			if (hid0 & stat_bit)
2411 				break;
2412 			cpu_relax();
2413 		}
2414 	}
2415 
2416 	/* Start all the threads */
2417 	active = 0;
2418 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2419 		thr = subcore_thread_map[sub];
2420 		thr0_done = false;
2421 		active |= 1 << thr;
2422 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2423 			pvc->pcpu = pcpu + thr;
2424 			list_for_each_entry(vcpu, &pvc->runnable_threads,
2425 					    arch.run_list) {
2426 				kvmppc_start_thread(vcpu, pvc);
2427 				kvmppc_create_dtl_entry(vcpu, pvc);
2428 				trace_kvm_guest_enter(vcpu);
2429 				if (!vcpu->arch.ptid)
2430 					thr0_done = true;
2431 				active |= 1 << (thr + vcpu->arch.ptid);
2432 			}
2433 			/*
2434 			 * We need to start the first thread of each subcore
2435 			 * even if it doesn't have a vcpu.
2436 			 */
2437 			if (pvc->master_vcore == pvc && !thr0_done)
2438 				kvmppc_start_thread(NULL, pvc);
2439 			thr += pvc->num_threads;
2440 		}
2441 	}
2442 
2443 	/*
2444 	 * Ensure that split_info.do_nap is set after setting
2445 	 * the vcore pointer in the PACA of the secondaries.
2446 	 */
2447 	smp_mb();
2448 	if (cmd_bit)
2449 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2450 
2451 	/*
2452 	 * When doing micro-threading, poke the inactive threads as well.
2453 	 * This gets them to the nap instruction after kvm_do_nap,
2454 	 * which reduces the time taken to unsplit later.
2455 	 */
2456 	if (split > 1)
2457 		for (thr = 1; thr < threads_per_subcore; ++thr)
2458 			if (!(active & (1 << thr)))
2459 				kvmppc_ipi_thread(pcpu + thr);
2460 
2461 	vc->vcore_state = VCORE_RUNNING;
2462 	preempt_disable();
2463 
2464 	trace_kvmppc_run_core(vc, 0);
2465 
2466 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2467 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2468 			spin_unlock(&pvc->lock);
2469 
2470 	kvm_guest_enter();
2471 
2472 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2473 
2474 	if (vc->mpp_buffer_is_valid)
2475 		kvmppc_start_restoring_l2_cache(vc);
2476 
2477 	__kvmppc_vcore_entry();
2478 
2479 	if (vc->mpp_buffer)
2480 		kvmppc_start_saving_l2_cache(vc);
2481 
2482 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2483 
2484 	spin_lock(&vc->lock);
2485 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2486 	vc->vcore_state = VCORE_EXITING;
2487 
2488 	/* wait for secondary threads to finish writing their state to memory */
2489 	kvmppc_wait_for_nap();
2490 
2491 	/* Return to whole-core mode if we split the core earlier */
2492 	if (split > 1) {
2493 		unsigned long hid0 = mfspr(SPRN_HID0);
2494 		unsigned long loops = 0;
2495 
2496 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2497 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2498 		mb();
2499 		mtspr(SPRN_HID0, hid0);
2500 		isync();
2501 		for (;;) {
2502 			hid0 = mfspr(SPRN_HID0);
2503 			if (!(hid0 & stat_bit))
2504 				break;
2505 			cpu_relax();
2506 			++loops;
2507 		}
2508 		split_info.do_nap = 0;
2509 	}
2510 
2511 	/* Let secondaries go back to the offline loop */
2512 	for (i = 0; i < threads_per_subcore; ++i) {
2513 		kvmppc_release_hwthread(pcpu + i);
2514 		if (sip && sip->napped[i])
2515 			kvmppc_ipi_thread(pcpu + i);
2516 	}
2517 
2518 	spin_unlock(&vc->lock);
2519 
2520 	/* make sure updates to secondary vcpu structs are visible now */
2521 	smp_mb();
2522 	kvm_guest_exit();
2523 
2524 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2525 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2526 					 preempt_list)
2527 			post_guest_process(pvc, pvc == vc);
2528 
2529 	spin_lock(&vc->lock);
2530 	preempt_enable();
2531 
2532  out:
2533 	vc->vcore_state = VCORE_INACTIVE;
2534 	trace_kvmppc_run_core(vc, 1);
2535 }
2536 
2537 /*
2538  * Wait for some other vcpu thread to execute us, and
2539  * wake us up when we need to handle something in the host.
2540  */
2541 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2542 				 struct kvm_vcpu *vcpu, int wait_state)
2543 {
2544 	DEFINE_WAIT(wait);
2545 
2546 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2547 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2548 		spin_unlock(&vc->lock);
2549 		schedule();
2550 		spin_lock(&vc->lock);
2551 	}
2552 	finish_wait(&vcpu->arch.cpu_run, &wait);
2553 }
2554 
2555 /*
2556  * All the vcpus in this vcore are idle, so wait for a decrementer
2557  * or external interrupt to one of the vcpus.  vc->lock is held.
2558  */
2559 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2560 {
2561 	struct kvm_vcpu *vcpu;
2562 	int do_sleep = 1;
2563 
2564 	DEFINE_WAIT(wait);
2565 
2566 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2567 
2568 	/*
2569 	 * Check one last time for pending exceptions and ceded state after
2570 	 * we put ourselves on the wait queue
2571 	 */
2572 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2573 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2574 			do_sleep = 0;
2575 			break;
2576 		}
2577 	}
2578 
2579 	if (!do_sleep) {
2580 		finish_wait(&vc->wq, &wait);
2581 		return;
2582 	}
2583 
2584 	vc->vcore_state = VCORE_SLEEPING;
2585 	trace_kvmppc_vcore_blocked(vc, 0);
2586 	spin_unlock(&vc->lock);
2587 	schedule();
2588 	finish_wait(&vc->wq, &wait);
2589 	spin_lock(&vc->lock);
2590 	vc->vcore_state = VCORE_INACTIVE;
2591 	trace_kvmppc_vcore_blocked(vc, 1);
2592 }
2593 
2594 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2595 {
2596 	int n_ceded;
2597 	struct kvmppc_vcore *vc;
2598 	struct kvm_vcpu *v, *vn;
2599 
2600 	trace_kvmppc_run_vcpu_enter(vcpu);
2601 
2602 	kvm_run->exit_reason = 0;
2603 	vcpu->arch.ret = RESUME_GUEST;
2604 	vcpu->arch.trap = 0;
2605 	kvmppc_update_vpas(vcpu);
2606 
2607 	/*
2608 	 * Synchronize with other threads in this virtual core
2609 	 */
2610 	vc = vcpu->arch.vcore;
2611 	spin_lock(&vc->lock);
2612 	vcpu->arch.ceded = 0;
2613 	vcpu->arch.run_task = current;
2614 	vcpu->arch.kvm_run = kvm_run;
2615 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2616 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2617 	vcpu->arch.busy_preempt = TB_NIL;
2618 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2619 	++vc->n_runnable;
2620 
2621 	/*
2622 	 * This happens the first time this is called for a vcpu.
2623 	 * If the vcore is already running, we may be able to start
2624 	 * this thread straight away and have it join in.
2625 	 */
2626 	if (!signal_pending(current)) {
2627 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2628 			struct kvmppc_vcore *mvc = vc->master_vcore;
2629 			if (spin_trylock(&mvc->lock)) {
2630 				if (mvc->vcore_state == VCORE_RUNNING &&
2631 				    !VCORE_IS_EXITING(mvc)) {
2632 					kvmppc_create_dtl_entry(vcpu, vc);
2633 					kvmppc_start_thread(vcpu, vc);
2634 					trace_kvm_guest_enter(vcpu);
2635 				}
2636 				spin_unlock(&mvc->lock);
2637 			}
2638 		} else if (vc->vcore_state == VCORE_RUNNING &&
2639 			   !VCORE_IS_EXITING(vc)) {
2640 			kvmppc_create_dtl_entry(vcpu, vc);
2641 			kvmppc_start_thread(vcpu, vc);
2642 			trace_kvm_guest_enter(vcpu);
2643 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2644 			wake_up(&vc->wq);
2645 		}
2646 
2647 	}
2648 
2649 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2650 	       !signal_pending(current)) {
2651 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2652 			kvmppc_vcore_end_preempt(vc);
2653 
2654 		if (vc->vcore_state != VCORE_INACTIVE) {
2655 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2656 			continue;
2657 		}
2658 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2659 					 arch.run_list) {
2660 			kvmppc_core_prepare_to_enter(v);
2661 			if (signal_pending(v->arch.run_task)) {
2662 				kvmppc_remove_runnable(vc, v);
2663 				v->stat.signal_exits++;
2664 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2665 				v->arch.ret = -EINTR;
2666 				wake_up(&v->arch.cpu_run);
2667 			}
2668 		}
2669 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2670 			break;
2671 		n_ceded = 0;
2672 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2673 			if (!v->arch.pending_exceptions)
2674 				n_ceded += v->arch.ceded;
2675 			else
2676 				v->arch.ceded = 0;
2677 		}
2678 		vc->runner = vcpu;
2679 		if (n_ceded == vc->n_runnable) {
2680 			kvmppc_vcore_blocked(vc);
2681 		} else if (need_resched()) {
2682 			kvmppc_vcore_preempt(vc);
2683 			/* Let something else run */
2684 			cond_resched_lock(&vc->lock);
2685 			if (vc->vcore_state == VCORE_PREEMPT)
2686 				kvmppc_vcore_end_preempt(vc);
2687 		} else {
2688 			kvmppc_run_core(vc);
2689 		}
2690 		vc->runner = NULL;
2691 	}
2692 
2693 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2694 	       (vc->vcore_state == VCORE_RUNNING ||
2695 		vc->vcore_state == VCORE_EXITING))
2696 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2697 
2698 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2699 		kvmppc_remove_runnable(vc, vcpu);
2700 		vcpu->stat.signal_exits++;
2701 		kvm_run->exit_reason = KVM_EXIT_INTR;
2702 		vcpu->arch.ret = -EINTR;
2703 	}
2704 
2705 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2706 		/* Wake up some vcpu to run the core */
2707 		v = list_first_entry(&vc->runnable_threads,
2708 				     struct kvm_vcpu, arch.run_list);
2709 		wake_up(&v->arch.cpu_run);
2710 	}
2711 
2712 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2713 	spin_unlock(&vc->lock);
2714 	return vcpu->arch.ret;
2715 }
2716 
2717 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2718 {
2719 	int r;
2720 	int srcu_idx;
2721 
2722 	if (!vcpu->arch.sane) {
2723 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2724 		return -EINVAL;
2725 	}
2726 
2727 	kvmppc_core_prepare_to_enter(vcpu);
2728 
2729 	/* No need to go into the guest when all we'll do is come back out */
2730 	if (signal_pending(current)) {
2731 		run->exit_reason = KVM_EXIT_INTR;
2732 		return -EINTR;
2733 	}
2734 
2735 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2736 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2737 	smp_mb();
2738 
2739 	/* On the first time here, set up HTAB and VRMA */
2740 	if (!vcpu->kvm->arch.hpte_setup_done) {
2741 		r = kvmppc_hv_setup_htab_rma(vcpu);
2742 		if (r)
2743 			goto out;
2744 	}
2745 
2746 	flush_fp_to_thread(current);
2747 	flush_altivec_to_thread(current);
2748 	flush_vsx_to_thread(current);
2749 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2750 	vcpu->arch.pgdir = current->mm->pgd;
2751 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2752 
2753 	do {
2754 		r = kvmppc_run_vcpu(run, vcpu);
2755 
2756 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2757 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2758 			trace_kvm_hcall_enter(vcpu);
2759 			r = kvmppc_pseries_do_hcall(vcpu);
2760 			trace_kvm_hcall_exit(vcpu, r);
2761 			kvmppc_core_prepare_to_enter(vcpu);
2762 		} else if (r == RESUME_PAGE_FAULT) {
2763 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2764 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2765 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2766 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2767 		}
2768 	} while (is_kvmppc_resume_guest(r));
2769 
2770  out:
2771 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2772 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2773 	return r;
2774 }
2775 
2776 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2777 				     int linux_psize)
2778 {
2779 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2780 
2781 	if (!def->shift)
2782 		return;
2783 	(*sps)->page_shift = def->shift;
2784 	(*sps)->slb_enc = def->sllp;
2785 	(*sps)->enc[0].page_shift = def->shift;
2786 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2787 	/*
2788 	 * Add 16MB MPSS support if host supports it
2789 	 */
2790 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2791 		(*sps)->enc[1].page_shift = 24;
2792 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2793 	}
2794 	(*sps)++;
2795 }
2796 
2797 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2798 					 struct kvm_ppc_smmu_info *info)
2799 {
2800 	struct kvm_ppc_one_seg_page_size *sps;
2801 
2802 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2803 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2804 		info->flags |= KVM_PPC_1T_SEGMENTS;
2805 	info->slb_size = mmu_slb_size;
2806 
2807 	/* We only support these sizes for now, and no muti-size segments */
2808 	sps = &info->sps[0];
2809 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2810 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2811 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2812 
2813 	return 0;
2814 }
2815 
2816 /*
2817  * Get (and clear) the dirty memory log for a memory slot.
2818  */
2819 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2820 					 struct kvm_dirty_log *log)
2821 {
2822 	struct kvm_memslots *slots;
2823 	struct kvm_memory_slot *memslot;
2824 	int r;
2825 	unsigned long n;
2826 
2827 	mutex_lock(&kvm->slots_lock);
2828 
2829 	r = -EINVAL;
2830 	if (log->slot >= KVM_USER_MEM_SLOTS)
2831 		goto out;
2832 
2833 	slots = kvm_memslots(kvm);
2834 	memslot = id_to_memslot(slots, log->slot);
2835 	r = -ENOENT;
2836 	if (!memslot->dirty_bitmap)
2837 		goto out;
2838 
2839 	n = kvm_dirty_bitmap_bytes(memslot);
2840 	memset(memslot->dirty_bitmap, 0, n);
2841 
2842 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2843 	if (r)
2844 		goto out;
2845 
2846 	r = -EFAULT;
2847 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2848 		goto out;
2849 
2850 	r = 0;
2851 out:
2852 	mutex_unlock(&kvm->slots_lock);
2853 	return r;
2854 }
2855 
2856 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2857 					struct kvm_memory_slot *dont)
2858 {
2859 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2860 		vfree(free->arch.rmap);
2861 		free->arch.rmap = NULL;
2862 	}
2863 }
2864 
2865 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2866 					 unsigned long npages)
2867 {
2868 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2869 	if (!slot->arch.rmap)
2870 		return -ENOMEM;
2871 
2872 	return 0;
2873 }
2874 
2875 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2876 					struct kvm_memory_slot *memslot,
2877 					const struct kvm_userspace_memory_region *mem)
2878 {
2879 	return 0;
2880 }
2881 
2882 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2883 				const struct kvm_userspace_memory_region *mem,
2884 				const struct kvm_memory_slot *old,
2885 				const struct kvm_memory_slot *new)
2886 {
2887 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2888 	struct kvm_memslots *slots;
2889 	struct kvm_memory_slot *memslot;
2890 
2891 	if (npages && old->npages) {
2892 		/*
2893 		 * If modifying a memslot, reset all the rmap dirty bits.
2894 		 * If this is a new memslot, we don't need to do anything
2895 		 * since the rmap array starts out as all zeroes,
2896 		 * i.e. no pages are dirty.
2897 		 */
2898 		slots = kvm_memslots(kvm);
2899 		memslot = id_to_memslot(slots, mem->slot);
2900 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2901 	}
2902 }
2903 
2904 /*
2905  * Update LPCR values in kvm->arch and in vcores.
2906  * Caller must hold kvm->lock.
2907  */
2908 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2909 {
2910 	long int i;
2911 	u32 cores_done = 0;
2912 
2913 	if ((kvm->arch.lpcr & mask) == lpcr)
2914 		return;
2915 
2916 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2917 
2918 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2919 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2920 		if (!vc)
2921 			continue;
2922 		spin_lock(&vc->lock);
2923 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2924 		spin_unlock(&vc->lock);
2925 		if (++cores_done >= kvm->arch.online_vcores)
2926 			break;
2927 	}
2928 }
2929 
2930 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2931 {
2932 	return;
2933 }
2934 
2935 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2936 {
2937 	int err = 0;
2938 	struct kvm *kvm = vcpu->kvm;
2939 	unsigned long hva;
2940 	struct kvm_memory_slot *memslot;
2941 	struct vm_area_struct *vma;
2942 	unsigned long lpcr = 0, senc;
2943 	unsigned long psize, porder;
2944 	int srcu_idx;
2945 
2946 	mutex_lock(&kvm->lock);
2947 	if (kvm->arch.hpte_setup_done)
2948 		goto out;	/* another vcpu beat us to it */
2949 
2950 	/* Allocate hashed page table (if not done already) and reset it */
2951 	if (!kvm->arch.hpt_virt) {
2952 		err = kvmppc_alloc_hpt(kvm, NULL);
2953 		if (err) {
2954 			pr_err("KVM: Couldn't alloc HPT\n");
2955 			goto out;
2956 		}
2957 	}
2958 
2959 	/* Look up the memslot for guest physical address 0 */
2960 	srcu_idx = srcu_read_lock(&kvm->srcu);
2961 	memslot = gfn_to_memslot(kvm, 0);
2962 
2963 	/* We must have some memory at 0 by now */
2964 	err = -EINVAL;
2965 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2966 		goto out_srcu;
2967 
2968 	/* Look up the VMA for the start of this memory slot */
2969 	hva = memslot->userspace_addr;
2970 	down_read(&current->mm->mmap_sem);
2971 	vma = find_vma(current->mm, hva);
2972 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2973 		goto up_out;
2974 
2975 	psize = vma_kernel_pagesize(vma);
2976 	porder = __ilog2(psize);
2977 
2978 	up_read(&current->mm->mmap_sem);
2979 
2980 	/* We can handle 4k, 64k or 16M pages in the VRMA */
2981 	err = -EINVAL;
2982 	if (!(psize == 0x1000 || psize == 0x10000 ||
2983 	      psize == 0x1000000))
2984 		goto out_srcu;
2985 
2986 	/* Update VRMASD field in the LPCR */
2987 	senc = slb_pgsize_encoding(psize);
2988 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2989 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
2990 	/* the -4 is to account for senc values starting at 0x10 */
2991 	lpcr = senc << (LPCR_VRMASD_SH - 4);
2992 
2993 	/* Create HPTEs in the hash page table for the VRMA */
2994 	kvmppc_map_vrma(vcpu, memslot, porder);
2995 
2996 	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2997 
2998 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2999 	smp_wmb();
3000 	kvm->arch.hpte_setup_done = 1;
3001 	err = 0;
3002  out_srcu:
3003 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3004  out:
3005 	mutex_unlock(&kvm->lock);
3006 	return err;
3007 
3008  up_out:
3009 	up_read(&current->mm->mmap_sem);
3010 	goto out_srcu;
3011 }
3012 
3013 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3014 {
3015 	unsigned long lpcr, lpid;
3016 	char buf[32];
3017 
3018 	/* Allocate the guest's logical partition ID */
3019 
3020 	lpid = kvmppc_alloc_lpid();
3021 	if ((long)lpid < 0)
3022 		return -ENOMEM;
3023 	kvm->arch.lpid = lpid;
3024 
3025 	/*
3026 	 * Since we don't flush the TLB when tearing down a VM,
3027 	 * and this lpid might have previously been used,
3028 	 * make sure we flush on each core before running the new VM.
3029 	 */
3030 	cpumask_setall(&kvm->arch.need_tlb_flush);
3031 
3032 	/* Start out with the default set of hcalls enabled */
3033 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3034 	       sizeof(kvm->arch.enabled_hcalls));
3035 
3036 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3037 
3038 	/* Init LPCR for virtual RMA mode */
3039 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3040 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3041 	lpcr &= LPCR_PECE | LPCR_LPES;
3042 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3043 		LPCR_VPM0 | LPCR_VPM1;
3044 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3045 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3046 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3047 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3048 		lpcr |= LPCR_ONL;
3049 	kvm->arch.lpcr = lpcr;
3050 
3051 	/*
3052 	 * Track that we now have a HV mode VM active. This blocks secondary
3053 	 * CPU threads from coming online.
3054 	 */
3055 	kvm_hv_vm_activated();
3056 
3057 	/*
3058 	 * Create a debugfs directory for the VM
3059 	 */
3060 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3061 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3062 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3063 		kvmppc_mmu_debugfs_init(kvm);
3064 
3065 	return 0;
3066 }
3067 
3068 static void kvmppc_free_vcores(struct kvm *kvm)
3069 {
3070 	long int i;
3071 
3072 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3073 		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
3074 			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3075 			free_pages((unsigned long)vc->mpp_buffer,
3076 				   MPP_BUFFER_ORDER);
3077 		}
3078 		kfree(kvm->arch.vcores[i]);
3079 	}
3080 	kvm->arch.online_vcores = 0;
3081 }
3082 
3083 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3084 {
3085 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3086 
3087 	kvm_hv_vm_deactivated();
3088 
3089 	kvmppc_free_vcores(kvm);
3090 
3091 	kvmppc_free_hpt(kvm);
3092 }
3093 
3094 /* We don't need to emulate any privileged instructions or dcbz */
3095 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3096 				     unsigned int inst, int *advance)
3097 {
3098 	return EMULATE_FAIL;
3099 }
3100 
3101 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3102 					ulong spr_val)
3103 {
3104 	return EMULATE_FAIL;
3105 }
3106 
3107 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3108 					ulong *spr_val)
3109 {
3110 	return EMULATE_FAIL;
3111 }
3112 
3113 static int kvmppc_core_check_processor_compat_hv(void)
3114 {
3115 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3116 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3117 		return -EIO;
3118 	return 0;
3119 }
3120 
3121 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3122 				 unsigned int ioctl, unsigned long arg)
3123 {
3124 	struct kvm *kvm __maybe_unused = filp->private_data;
3125 	void __user *argp = (void __user *)arg;
3126 	long r;
3127 
3128 	switch (ioctl) {
3129 
3130 	case KVM_PPC_ALLOCATE_HTAB: {
3131 		u32 htab_order;
3132 
3133 		r = -EFAULT;
3134 		if (get_user(htab_order, (u32 __user *)argp))
3135 			break;
3136 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3137 		if (r)
3138 			break;
3139 		r = -EFAULT;
3140 		if (put_user(htab_order, (u32 __user *)argp))
3141 			break;
3142 		r = 0;
3143 		break;
3144 	}
3145 
3146 	case KVM_PPC_GET_HTAB_FD: {
3147 		struct kvm_get_htab_fd ghf;
3148 
3149 		r = -EFAULT;
3150 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3151 			break;
3152 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3153 		break;
3154 	}
3155 
3156 	default:
3157 		r = -ENOTTY;
3158 	}
3159 
3160 	return r;
3161 }
3162 
3163 /*
3164  * List of hcall numbers to enable by default.
3165  * For compatibility with old userspace, we enable by default
3166  * all hcalls that were implemented before the hcall-enabling
3167  * facility was added.  Note this list should not include H_RTAS.
3168  */
3169 static unsigned int default_hcall_list[] = {
3170 	H_REMOVE,
3171 	H_ENTER,
3172 	H_READ,
3173 	H_PROTECT,
3174 	H_BULK_REMOVE,
3175 	H_GET_TCE,
3176 	H_PUT_TCE,
3177 	H_SET_DABR,
3178 	H_SET_XDABR,
3179 	H_CEDE,
3180 	H_PROD,
3181 	H_CONFER,
3182 	H_REGISTER_VPA,
3183 #ifdef CONFIG_KVM_XICS
3184 	H_EOI,
3185 	H_CPPR,
3186 	H_IPI,
3187 	H_IPOLL,
3188 	H_XIRR,
3189 	H_XIRR_X,
3190 #endif
3191 	0
3192 };
3193 
3194 static void init_default_hcalls(void)
3195 {
3196 	int i;
3197 	unsigned int hcall;
3198 
3199 	for (i = 0; default_hcall_list[i]; ++i) {
3200 		hcall = default_hcall_list[i];
3201 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3202 		__set_bit(hcall / 4, default_enabled_hcalls);
3203 	}
3204 }
3205 
3206 static struct kvmppc_ops kvm_ops_hv = {
3207 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3208 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3209 	.get_one_reg = kvmppc_get_one_reg_hv,
3210 	.set_one_reg = kvmppc_set_one_reg_hv,
3211 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3212 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3213 	.set_msr     = kvmppc_set_msr_hv,
3214 	.vcpu_run    = kvmppc_vcpu_run_hv,
3215 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3216 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3217 	.check_requests = kvmppc_core_check_requests_hv,
3218 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3219 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3220 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3221 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3222 	.unmap_hva = kvm_unmap_hva_hv,
3223 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3224 	.age_hva  = kvm_age_hva_hv,
3225 	.test_age_hva = kvm_test_age_hva_hv,
3226 	.set_spte_hva = kvm_set_spte_hva_hv,
3227 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3228 	.free_memslot = kvmppc_core_free_memslot_hv,
3229 	.create_memslot = kvmppc_core_create_memslot_hv,
3230 	.init_vm =  kvmppc_core_init_vm_hv,
3231 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3232 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3233 	.emulate_op = kvmppc_core_emulate_op_hv,
3234 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3235 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3236 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3237 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3238 	.hcall_implemented = kvmppc_hcall_impl_hv,
3239 };
3240 
3241 static int kvmppc_book3s_init_hv(void)
3242 {
3243 	int r;
3244 	/*
3245 	 * FIXME!! Do we need to check on all cpus ?
3246 	 */
3247 	r = kvmppc_core_check_processor_compat_hv();
3248 	if (r < 0)
3249 		return -ENODEV;
3250 
3251 	kvm_ops_hv.owner = THIS_MODULE;
3252 	kvmppc_hv_ops = &kvm_ops_hv;
3253 
3254 	init_default_hcalls();
3255 
3256 	init_vcore_lists();
3257 
3258 	r = kvmppc_mmu_hv_init();
3259 	return r;
3260 }
3261 
3262 static void kvmppc_book3s_exit_hv(void)
3263 {
3264 	kvmppc_hv_ops = NULL;
3265 }
3266 
3267 module_init(kvmppc_book3s_init_hv);
3268 module_exit(kvmppc_book3s_exit_hv);
3269 MODULE_LICENSE("GPL");
3270 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3271 MODULE_ALIAS("devname:kvm");
3272