1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 37 #include <asm/reg.h> 38 #include <asm/cputable.h> 39 #include <asm/cache.h> 40 #include <asm/cacheflush.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/kvm_book3s.h> 46 #include <asm/mmu_context.h> 47 #include <asm/lppaca.h> 48 #include <asm/processor.h> 49 #include <asm/cputhreads.h> 50 #include <asm/page.h> 51 #include <asm/hvcall.h> 52 #include <asm/switch_to.h> 53 #include <asm/smp.h> 54 #include <asm/dbell.h> 55 #include <linux/gfp.h> 56 #include <linux/vmalloc.h> 57 #include <linux/highmem.h> 58 #include <linux/hugetlb.h> 59 #include <linux/module.h> 60 61 #include "book3s.h" 62 63 #define CREATE_TRACE_POINTS 64 #include "trace_hv.h" 65 66 /* #define EXIT_DEBUG */ 67 /* #define EXIT_DEBUG_SIMPLE */ 68 /* #define EXIT_DEBUG_INT */ 69 70 /* Used to indicate that a guest page fault needs to be handled */ 71 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 72 73 /* Used as a "null" value for timebase values */ 74 #define TB_NIL (~(u64)0) 75 76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 77 78 #if defined(CONFIG_PPC_64K_PAGES) 79 #define MPP_BUFFER_ORDER 0 80 #elif defined(CONFIG_PPC_4K_PAGES) 81 #define MPP_BUFFER_ORDER 3 82 #endif 83 84 static int dynamic_mt_modes = 6; 85 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 86 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 87 static int target_smt_mode; 88 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 89 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 90 91 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 92 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 93 94 static bool kvmppc_ipi_thread(int cpu) 95 { 96 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 97 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 98 preempt_disable(); 99 if (cpu_first_thread_sibling(cpu) == 100 cpu_first_thread_sibling(smp_processor_id())) { 101 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 102 msg |= cpu_thread_in_core(cpu); 103 smp_mb(); 104 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 105 preempt_enable(); 106 return true; 107 } 108 preempt_enable(); 109 } 110 111 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 112 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 113 xics_wake_cpu(cpu); 114 return true; 115 } 116 #endif 117 118 return false; 119 } 120 121 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 122 { 123 int cpu; 124 wait_queue_head_t *wqp; 125 126 wqp = kvm_arch_vcpu_wq(vcpu); 127 if (waitqueue_active(wqp)) { 128 wake_up_interruptible(wqp); 129 ++vcpu->stat.halt_wakeup; 130 } 131 132 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu)) 133 return; 134 135 /* CPU points to the first thread of the core */ 136 cpu = vcpu->cpu; 137 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 138 smp_send_reschedule(cpu); 139 } 140 141 /* 142 * We use the vcpu_load/put functions to measure stolen time. 143 * Stolen time is counted as time when either the vcpu is able to 144 * run as part of a virtual core, but the task running the vcore 145 * is preempted or sleeping, or when the vcpu needs something done 146 * in the kernel by the task running the vcpu, but that task is 147 * preempted or sleeping. Those two things have to be counted 148 * separately, since one of the vcpu tasks will take on the job 149 * of running the core, and the other vcpu tasks in the vcore will 150 * sleep waiting for it to do that, but that sleep shouldn't count 151 * as stolen time. 152 * 153 * Hence we accumulate stolen time when the vcpu can run as part of 154 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 155 * needs its task to do other things in the kernel (for example, 156 * service a page fault) in busy_stolen. We don't accumulate 157 * stolen time for a vcore when it is inactive, or for a vcpu 158 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 159 * a misnomer; it means that the vcpu task is not executing in 160 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 161 * the kernel. We don't have any way of dividing up that time 162 * between time that the vcpu is genuinely stopped, time that 163 * the task is actively working on behalf of the vcpu, and time 164 * that the task is preempted, so we don't count any of it as 165 * stolen. 166 * 167 * Updates to busy_stolen are protected by arch.tbacct_lock; 168 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 169 * lock. The stolen times are measured in units of timebase ticks. 170 * (Note that the != TB_NIL checks below are purely defensive; 171 * they should never fail.) 172 */ 173 174 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 175 { 176 unsigned long flags; 177 178 spin_lock_irqsave(&vc->stoltb_lock, flags); 179 vc->preempt_tb = mftb(); 180 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 181 } 182 183 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&vc->stoltb_lock, flags); 188 if (vc->preempt_tb != TB_NIL) { 189 vc->stolen_tb += mftb() - vc->preempt_tb; 190 vc->preempt_tb = TB_NIL; 191 } 192 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 193 } 194 195 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 196 { 197 struct kvmppc_vcore *vc = vcpu->arch.vcore; 198 unsigned long flags; 199 200 /* 201 * We can test vc->runner without taking the vcore lock, 202 * because only this task ever sets vc->runner to this 203 * vcpu, and once it is set to this vcpu, only this task 204 * ever sets it to NULL. 205 */ 206 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 207 kvmppc_core_end_stolen(vc); 208 209 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 210 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 211 vcpu->arch.busy_preempt != TB_NIL) { 212 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 213 vcpu->arch.busy_preempt = TB_NIL; 214 } 215 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 216 } 217 218 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 219 { 220 struct kvmppc_vcore *vc = vcpu->arch.vcore; 221 unsigned long flags; 222 223 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 224 kvmppc_core_start_stolen(vc); 225 226 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 227 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 228 vcpu->arch.busy_preempt = mftb(); 229 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 230 } 231 232 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 233 { 234 vcpu->arch.shregs.msr = msr; 235 kvmppc_end_cede(vcpu); 236 } 237 238 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 239 { 240 vcpu->arch.pvr = pvr; 241 } 242 243 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 244 { 245 unsigned long pcr = 0; 246 struct kvmppc_vcore *vc = vcpu->arch.vcore; 247 248 if (arch_compat) { 249 switch (arch_compat) { 250 case PVR_ARCH_205: 251 /* 252 * If an arch bit is set in PCR, all the defined 253 * higher-order arch bits also have to be set. 254 */ 255 pcr = PCR_ARCH_206 | PCR_ARCH_205; 256 break; 257 case PVR_ARCH_206: 258 case PVR_ARCH_206p: 259 pcr = PCR_ARCH_206; 260 break; 261 case PVR_ARCH_207: 262 break; 263 default: 264 return -EINVAL; 265 } 266 267 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 268 /* POWER7 can't emulate POWER8 */ 269 if (!(pcr & PCR_ARCH_206)) 270 return -EINVAL; 271 pcr &= ~PCR_ARCH_206; 272 } 273 } 274 275 spin_lock(&vc->lock); 276 vc->arch_compat = arch_compat; 277 vc->pcr = pcr; 278 spin_unlock(&vc->lock); 279 280 return 0; 281 } 282 283 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 284 { 285 int r; 286 287 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 288 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 289 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 290 for (r = 0; r < 16; ++r) 291 pr_err("r%2d = %.16lx r%d = %.16lx\n", 292 r, kvmppc_get_gpr(vcpu, r), 293 r+16, kvmppc_get_gpr(vcpu, r+16)); 294 pr_err("ctr = %.16lx lr = %.16lx\n", 295 vcpu->arch.ctr, vcpu->arch.lr); 296 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 297 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 298 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 299 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 300 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 301 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 302 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 303 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 304 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 305 pr_err("fault dar = %.16lx dsisr = %.8x\n", 306 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 307 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 308 for (r = 0; r < vcpu->arch.slb_max; ++r) 309 pr_err(" ESID = %.16llx VSID = %.16llx\n", 310 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 311 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 312 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 313 vcpu->arch.last_inst); 314 } 315 316 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 317 { 318 int r; 319 struct kvm_vcpu *v, *ret = NULL; 320 321 mutex_lock(&kvm->lock); 322 kvm_for_each_vcpu(r, v, kvm) { 323 if (v->vcpu_id == id) { 324 ret = v; 325 break; 326 } 327 } 328 mutex_unlock(&kvm->lock); 329 return ret; 330 } 331 332 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 333 { 334 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 335 vpa->yield_count = cpu_to_be32(1); 336 } 337 338 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 339 unsigned long addr, unsigned long len) 340 { 341 /* check address is cacheline aligned */ 342 if (addr & (L1_CACHE_BYTES - 1)) 343 return -EINVAL; 344 spin_lock(&vcpu->arch.vpa_update_lock); 345 if (v->next_gpa != addr || v->len != len) { 346 v->next_gpa = addr; 347 v->len = addr ? len : 0; 348 v->update_pending = 1; 349 } 350 spin_unlock(&vcpu->arch.vpa_update_lock); 351 return 0; 352 } 353 354 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 355 struct reg_vpa { 356 u32 dummy; 357 union { 358 __be16 hword; 359 __be32 word; 360 } length; 361 }; 362 363 static int vpa_is_registered(struct kvmppc_vpa *vpap) 364 { 365 if (vpap->update_pending) 366 return vpap->next_gpa != 0; 367 return vpap->pinned_addr != NULL; 368 } 369 370 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 371 unsigned long flags, 372 unsigned long vcpuid, unsigned long vpa) 373 { 374 struct kvm *kvm = vcpu->kvm; 375 unsigned long len, nb; 376 void *va; 377 struct kvm_vcpu *tvcpu; 378 int err; 379 int subfunc; 380 struct kvmppc_vpa *vpap; 381 382 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 383 if (!tvcpu) 384 return H_PARAMETER; 385 386 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 387 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 388 subfunc == H_VPA_REG_SLB) { 389 /* Registering new area - address must be cache-line aligned */ 390 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 391 return H_PARAMETER; 392 393 /* convert logical addr to kernel addr and read length */ 394 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 395 if (va == NULL) 396 return H_PARAMETER; 397 if (subfunc == H_VPA_REG_VPA) 398 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 399 else 400 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 401 kvmppc_unpin_guest_page(kvm, va, vpa, false); 402 403 /* Check length */ 404 if (len > nb || len < sizeof(struct reg_vpa)) 405 return H_PARAMETER; 406 } else { 407 vpa = 0; 408 len = 0; 409 } 410 411 err = H_PARAMETER; 412 vpap = NULL; 413 spin_lock(&tvcpu->arch.vpa_update_lock); 414 415 switch (subfunc) { 416 case H_VPA_REG_VPA: /* register VPA */ 417 if (len < sizeof(struct lppaca)) 418 break; 419 vpap = &tvcpu->arch.vpa; 420 err = 0; 421 break; 422 423 case H_VPA_REG_DTL: /* register DTL */ 424 if (len < sizeof(struct dtl_entry)) 425 break; 426 len -= len % sizeof(struct dtl_entry); 427 428 /* Check that they have previously registered a VPA */ 429 err = H_RESOURCE; 430 if (!vpa_is_registered(&tvcpu->arch.vpa)) 431 break; 432 433 vpap = &tvcpu->arch.dtl; 434 err = 0; 435 break; 436 437 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 438 /* Check that they have previously registered a VPA */ 439 err = H_RESOURCE; 440 if (!vpa_is_registered(&tvcpu->arch.vpa)) 441 break; 442 443 vpap = &tvcpu->arch.slb_shadow; 444 err = 0; 445 break; 446 447 case H_VPA_DEREG_VPA: /* deregister VPA */ 448 /* Check they don't still have a DTL or SLB buf registered */ 449 err = H_RESOURCE; 450 if (vpa_is_registered(&tvcpu->arch.dtl) || 451 vpa_is_registered(&tvcpu->arch.slb_shadow)) 452 break; 453 454 vpap = &tvcpu->arch.vpa; 455 err = 0; 456 break; 457 458 case H_VPA_DEREG_DTL: /* deregister DTL */ 459 vpap = &tvcpu->arch.dtl; 460 err = 0; 461 break; 462 463 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 464 vpap = &tvcpu->arch.slb_shadow; 465 err = 0; 466 break; 467 } 468 469 if (vpap) { 470 vpap->next_gpa = vpa; 471 vpap->len = len; 472 vpap->update_pending = 1; 473 } 474 475 spin_unlock(&tvcpu->arch.vpa_update_lock); 476 477 return err; 478 } 479 480 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 481 { 482 struct kvm *kvm = vcpu->kvm; 483 void *va; 484 unsigned long nb; 485 unsigned long gpa; 486 487 /* 488 * We need to pin the page pointed to by vpap->next_gpa, 489 * but we can't call kvmppc_pin_guest_page under the lock 490 * as it does get_user_pages() and down_read(). So we 491 * have to drop the lock, pin the page, then get the lock 492 * again and check that a new area didn't get registered 493 * in the meantime. 494 */ 495 for (;;) { 496 gpa = vpap->next_gpa; 497 spin_unlock(&vcpu->arch.vpa_update_lock); 498 va = NULL; 499 nb = 0; 500 if (gpa) 501 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 502 spin_lock(&vcpu->arch.vpa_update_lock); 503 if (gpa == vpap->next_gpa) 504 break; 505 /* sigh... unpin that one and try again */ 506 if (va) 507 kvmppc_unpin_guest_page(kvm, va, gpa, false); 508 } 509 510 vpap->update_pending = 0; 511 if (va && nb < vpap->len) { 512 /* 513 * If it's now too short, it must be that userspace 514 * has changed the mappings underlying guest memory, 515 * so unregister the region. 516 */ 517 kvmppc_unpin_guest_page(kvm, va, gpa, false); 518 va = NULL; 519 } 520 if (vpap->pinned_addr) 521 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 522 vpap->dirty); 523 vpap->gpa = gpa; 524 vpap->pinned_addr = va; 525 vpap->dirty = false; 526 if (va) 527 vpap->pinned_end = va + vpap->len; 528 } 529 530 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 531 { 532 if (!(vcpu->arch.vpa.update_pending || 533 vcpu->arch.slb_shadow.update_pending || 534 vcpu->arch.dtl.update_pending)) 535 return; 536 537 spin_lock(&vcpu->arch.vpa_update_lock); 538 if (vcpu->arch.vpa.update_pending) { 539 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 540 if (vcpu->arch.vpa.pinned_addr) 541 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 542 } 543 if (vcpu->arch.dtl.update_pending) { 544 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 545 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 546 vcpu->arch.dtl_index = 0; 547 } 548 if (vcpu->arch.slb_shadow.update_pending) 549 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 550 spin_unlock(&vcpu->arch.vpa_update_lock); 551 } 552 553 /* 554 * Return the accumulated stolen time for the vcore up until `now'. 555 * The caller should hold the vcore lock. 556 */ 557 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 558 { 559 u64 p; 560 unsigned long flags; 561 562 spin_lock_irqsave(&vc->stoltb_lock, flags); 563 p = vc->stolen_tb; 564 if (vc->vcore_state != VCORE_INACTIVE && 565 vc->preempt_tb != TB_NIL) 566 p += now - vc->preempt_tb; 567 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 568 return p; 569 } 570 571 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 572 struct kvmppc_vcore *vc) 573 { 574 struct dtl_entry *dt; 575 struct lppaca *vpa; 576 unsigned long stolen; 577 unsigned long core_stolen; 578 u64 now; 579 580 dt = vcpu->arch.dtl_ptr; 581 vpa = vcpu->arch.vpa.pinned_addr; 582 now = mftb(); 583 core_stolen = vcore_stolen_time(vc, now); 584 stolen = core_stolen - vcpu->arch.stolen_logged; 585 vcpu->arch.stolen_logged = core_stolen; 586 spin_lock_irq(&vcpu->arch.tbacct_lock); 587 stolen += vcpu->arch.busy_stolen; 588 vcpu->arch.busy_stolen = 0; 589 spin_unlock_irq(&vcpu->arch.tbacct_lock); 590 if (!dt || !vpa) 591 return; 592 memset(dt, 0, sizeof(struct dtl_entry)); 593 dt->dispatch_reason = 7; 594 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 595 dt->timebase = cpu_to_be64(now + vc->tb_offset); 596 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 597 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 598 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 599 ++dt; 600 if (dt == vcpu->arch.dtl.pinned_end) 601 dt = vcpu->arch.dtl.pinned_addr; 602 vcpu->arch.dtl_ptr = dt; 603 /* order writing *dt vs. writing vpa->dtl_idx */ 604 smp_wmb(); 605 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 606 vcpu->arch.dtl.dirty = true; 607 } 608 609 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 610 { 611 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 612 return true; 613 if ((!vcpu->arch.vcore->arch_compat) && 614 cpu_has_feature(CPU_FTR_ARCH_207S)) 615 return true; 616 return false; 617 } 618 619 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 620 unsigned long resource, unsigned long value1, 621 unsigned long value2) 622 { 623 switch (resource) { 624 case H_SET_MODE_RESOURCE_SET_CIABR: 625 if (!kvmppc_power8_compatible(vcpu)) 626 return H_P2; 627 if (value2) 628 return H_P4; 629 if (mflags) 630 return H_UNSUPPORTED_FLAG_START; 631 /* Guests can't breakpoint the hypervisor */ 632 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 633 return H_P3; 634 vcpu->arch.ciabr = value1; 635 return H_SUCCESS; 636 case H_SET_MODE_RESOURCE_SET_DAWR: 637 if (!kvmppc_power8_compatible(vcpu)) 638 return H_P2; 639 if (mflags) 640 return H_UNSUPPORTED_FLAG_START; 641 if (value2 & DABRX_HYP) 642 return H_P4; 643 vcpu->arch.dawr = value1; 644 vcpu->arch.dawrx = value2; 645 return H_SUCCESS; 646 default: 647 return H_TOO_HARD; 648 } 649 } 650 651 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 652 { 653 struct kvmppc_vcore *vcore = target->arch.vcore; 654 655 /* 656 * We expect to have been called by the real mode handler 657 * (kvmppc_rm_h_confer()) which would have directly returned 658 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 659 * have useful work to do and should not confer) so we don't 660 * recheck that here. 661 */ 662 663 spin_lock(&vcore->lock); 664 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 665 vcore->vcore_state != VCORE_INACTIVE && 666 vcore->runner) 667 target = vcore->runner; 668 spin_unlock(&vcore->lock); 669 670 return kvm_vcpu_yield_to(target); 671 } 672 673 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 674 { 675 int yield_count = 0; 676 struct lppaca *lppaca; 677 678 spin_lock(&vcpu->arch.vpa_update_lock); 679 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 680 if (lppaca) 681 yield_count = be32_to_cpu(lppaca->yield_count); 682 spin_unlock(&vcpu->arch.vpa_update_lock); 683 return yield_count; 684 } 685 686 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 687 { 688 unsigned long req = kvmppc_get_gpr(vcpu, 3); 689 unsigned long target, ret = H_SUCCESS; 690 int yield_count; 691 struct kvm_vcpu *tvcpu; 692 int idx, rc; 693 694 if (req <= MAX_HCALL_OPCODE && 695 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 696 return RESUME_HOST; 697 698 switch (req) { 699 case H_CEDE: 700 break; 701 case H_PROD: 702 target = kvmppc_get_gpr(vcpu, 4); 703 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 704 if (!tvcpu) { 705 ret = H_PARAMETER; 706 break; 707 } 708 tvcpu->arch.prodded = 1; 709 smp_mb(); 710 if (vcpu->arch.ceded) { 711 if (waitqueue_active(&vcpu->wq)) { 712 wake_up_interruptible(&vcpu->wq); 713 vcpu->stat.halt_wakeup++; 714 } 715 } 716 break; 717 case H_CONFER: 718 target = kvmppc_get_gpr(vcpu, 4); 719 if (target == -1) 720 break; 721 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 722 if (!tvcpu) { 723 ret = H_PARAMETER; 724 break; 725 } 726 yield_count = kvmppc_get_gpr(vcpu, 5); 727 if (kvmppc_get_yield_count(tvcpu) != yield_count) 728 break; 729 kvm_arch_vcpu_yield_to(tvcpu); 730 break; 731 case H_REGISTER_VPA: 732 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 733 kvmppc_get_gpr(vcpu, 5), 734 kvmppc_get_gpr(vcpu, 6)); 735 break; 736 case H_RTAS: 737 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 738 return RESUME_HOST; 739 740 idx = srcu_read_lock(&vcpu->kvm->srcu); 741 rc = kvmppc_rtas_hcall(vcpu); 742 srcu_read_unlock(&vcpu->kvm->srcu, idx); 743 744 if (rc == -ENOENT) 745 return RESUME_HOST; 746 else if (rc == 0) 747 break; 748 749 /* Send the error out to userspace via KVM_RUN */ 750 return rc; 751 case H_LOGICAL_CI_LOAD: 752 ret = kvmppc_h_logical_ci_load(vcpu); 753 if (ret == H_TOO_HARD) 754 return RESUME_HOST; 755 break; 756 case H_LOGICAL_CI_STORE: 757 ret = kvmppc_h_logical_ci_store(vcpu); 758 if (ret == H_TOO_HARD) 759 return RESUME_HOST; 760 break; 761 case H_SET_MODE: 762 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 763 kvmppc_get_gpr(vcpu, 5), 764 kvmppc_get_gpr(vcpu, 6), 765 kvmppc_get_gpr(vcpu, 7)); 766 if (ret == H_TOO_HARD) 767 return RESUME_HOST; 768 break; 769 case H_XIRR: 770 case H_CPPR: 771 case H_EOI: 772 case H_IPI: 773 case H_IPOLL: 774 case H_XIRR_X: 775 if (kvmppc_xics_enabled(vcpu)) { 776 ret = kvmppc_xics_hcall(vcpu, req); 777 break; 778 } /* fallthrough */ 779 default: 780 return RESUME_HOST; 781 } 782 kvmppc_set_gpr(vcpu, 3, ret); 783 vcpu->arch.hcall_needed = 0; 784 return RESUME_GUEST; 785 } 786 787 static int kvmppc_hcall_impl_hv(unsigned long cmd) 788 { 789 switch (cmd) { 790 case H_CEDE: 791 case H_PROD: 792 case H_CONFER: 793 case H_REGISTER_VPA: 794 case H_SET_MODE: 795 case H_LOGICAL_CI_LOAD: 796 case H_LOGICAL_CI_STORE: 797 #ifdef CONFIG_KVM_XICS 798 case H_XIRR: 799 case H_CPPR: 800 case H_EOI: 801 case H_IPI: 802 case H_IPOLL: 803 case H_XIRR_X: 804 #endif 805 return 1; 806 } 807 808 /* See if it's in the real-mode table */ 809 return kvmppc_hcall_impl_hv_realmode(cmd); 810 } 811 812 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 813 struct kvm_vcpu *vcpu) 814 { 815 u32 last_inst; 816 817 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 818 EMULATE_DONE) { 819 /* 820 * Fetch failed, so return to guest and 821 * try executing it again. 822 */ 823 return RESUME_GUEST; 824 } 825 826 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 827 run->exit_reason = KVM_EXIT_DEBUG; 828 run->debug.arch.address = kvmppc_get_pc(vcpu); 829 return RESUME_HOST; 830 } else { 831 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 832 return RESUME_GUEST; 833 } 834 } 835 836 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 837 struct task_struct *tsk) 838 { 839 int r = RESUME_HOST; 840 841 vcpu->stat.sum_exits++; 842 843 run->exit_reason = KVM_EXIT_UNKNOWN; 844 run->ready_for_interrupt_injection = 1; 845 switch (vcpu->arch.trap) { 846 /* We're good on these - the host merely wanted to get our attention */ 847 case BOOK3S_INTERRUPT_HV_DECREMENTER: 848 vcpu->stat.dec_exits++; 849 r = RESUME_GUEST; 850 break; 851 case BOOK3S_INTERRUPT_EXTERNAL: 852 case BOOK3S_INTERRUPT_H_DOORBELL: 853 vcpu->stat.ext_intr_exits++; 854 r = RESUME_GUEST; 855 break; 856 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 857 case BOOK3S_INTERRUPT_HMI: 858 case BOOK3S_INTERRUPT_PERFMON: 859 r = RESUME_GUEST; 860 break; 861 case BOOK3S_INTERRUPT_MACHINE_CHECK: 862 /* 863 * Deliver a machine check interrupt to the guest. 864 * We have to do this, even if the host has handled the 865 * machine check, because machine checks use SRR0/1 and 866 * the interrupt might have trashed guest state in them. 867 */ 868 kvmppc_book3s_queue_irqprio(vcpu, 869 BOOK3S_INTERRUPT_MACHINE_CHECK); 870 r = RESUME_GUEST; 871 break; 872 case BOOK3S_INTERRUPT_PROGRAM: 873 { 874 ulong flags; 875 /* 876 * Normally program interrupts are delivered directly 877 * to the guest by the hardware, but we can get here 878 * as a result of a hypervisor emulation interrupt 879 * (e40) getting turned into a 700 by BML RTAS. 880 */ 881 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 882 kvmppc_core_queue_program(vcpu, flags); 883 r = RESUME_GUEST; 884 break; 885 } 886 case BOOK3S_INTERRUPT_SYSCALL: 887 { 888 /* hcall - punt to userspace */ 889 int i; 890 891 /* hypercall with MSR_PR has already been handled in rmode, 892 * and never reaches here. 893 */ 894 895 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 896 for (i = 0; i < 9; ++i) 897 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 898 run->exit_reason = KVM_EXIT_PAPR_HCALL; 899 vcpu->arch.hcall_needed = 1; 900 r = RESUME_HOST; 901 break; 902 } 903 /* 904 * We get these next two if the guest accesses a page which it thinks 905 * it has mapped but which is not actually present, either because 906 * it is for an emulated I/O device or because the corresonding 907 * host page has been paged out. Any other HDSI/HISI interrupts 908 * have been handled already. 909 */ 910 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 911 r = RESUME_PAGE_FAULT; 912 break; 913 case BOOK3S_INTERRUPT_H_INST_STORAGE: 914 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 915 vcpu->arch.fault_dsisr = 0; 916 r = RESUME_PAGE_FAULT; 917 break; 918 /* 919 * This occurs if the guest executes an illegal instruction. 920 * If the guest debug is disabled, generate a program interrupt 921 * to the guest. If guest debug is enabled, we need to check 922 * whether the instruction is a software breakpoint instruction. 923 * Accordingly return to Guest or Host. 924 */ 925 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 926 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 927 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 928 swab32(vcpu->arch.emul_inst) : 929 vcpu->arch.emul_inst; 930 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 931 r = kvmppc_emulate_debug_inst(run, vcpu); 932 } else { 933 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 934 r = RESUME_GUEST; 935 } 936 break; 937 /* 938 * This occurs if the guest (kernel or userspace), does something that 939 * is prohibited by HFSCR. We just generate a program interrupt to 940 * the guest. 941 */ 942 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 943 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 944 r = RESUME_GUEST; 945 break; 946 default: 947 kvmppc_dump_regs(vcpu); 948 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 949 vcpu->arch.trap, kvmppc_get_pc(vcpu), 950 vcpu->arch.shregs.msr); 951 run->hw.hardware_exit_reason = vcpu->arch.trap; 952 r = RESUME_HOST; 953 break; 954 } 955 956 return r; 957 } 958 959 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 960 struct kvm_sregs *sregs) 961 { 962 int i; 963 964 memset(sregs, 0, sizeof(struct kvm_sregs)); 965 sregs->pvr = vcpu->arch.pvr; 966 for (i = 0; i < vcpu->arch.slb_max; i++) { 967 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 968 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 969 } 970 971 return 0; 972 } 973 974 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 975 struct kvm_sregs *sregs) 976 { 977 int i, j; 978 979 /* Only accept the same PVR as the host's, since we can't spoof it */ 980 if (sregs->pvr != vcpu->arch.pvr) 981 return -EINVAL; 982 983 j = 0; 984 for (i = 0; i < vcpu->arch.slb_nr; i++) { 985 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 986 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 987 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 988 ++j; 989 } 990 } 991 vcpu->arch.slb_max = j; 992 993 return 0; 994 } 995 996 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 997 bool preserve_top32) 998 { 999 struct kvm *kvm = vcpu->kvm; 1000 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1001 u64 mask; 1002 1003 mutex_lock(&kvm->lock); 1004 spin_lock(&vc->lock); 1005 /* 1006 * If ILE (interrupt little-endian) has changed, update the 1007 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1008 */ 1009 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1010 struct kvm_vcpu *vcpu; 1011 int i; 1012 1013 kvm_for_each_vcpu(i, vcpu, kvm) { 1014 if (vcpu->arch.vcore != vc) 1015 continue; 1016 if (new_lpcr & LPCR_ILE) 1017 vcpu->arch.intr_msr |= MSR_LE; 1018 else 1019 vcpu->arch.intr_msr &= ~MSR_LE; 1020 } 1021 } 1022 1023 /* 1024 * Userspace can only modify DPFD (default prefetch depth), 1025 * ILE (interrupt little-endian) and TC (translation control). 1026 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1027 */ 1028 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1029 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1030 mask |= LPCR_AIL; 1031 1032 /* Broken 32-bit version of LPCR must not clear top bits */ 1033 if (preserve_top32) 1034 mask &= 0xFFFFFFFF; 1035 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1036 spin_unlock(&vc->lock); 1037 mutex_unlock(&kvm->lock); 1038 } 1039 1040 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1041 union kvmppc_one_reg *val) 1042 { 1043 int r = 0; 1044 long int i; 1045 1046 switch (id) { 1047 case KVM_REG_PPC_DEBUG_INST: 1048 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1049 break; 1050 case KVM_REG_PPC_HIOR: 1051 *val = get_reg_val(id, 0); 1052 break; 1053 case KVM_REG_PPC_DABR: 1054 *val = get_reg_val(id, vcpu->arch.dabr); 1055 break; 1056 case KVM_REG_PPC_DABRX: 1057 *val = get_reg_val(id, vcpu->arch.dabrx); 1058 break; 1059 case KVM_REG_PPC_DSCR: 1060 *val = get_reg_val(id, vcpu->arch.dscr); 1061 break; 1062 case KVM_REG_PPC_PURR: 1063 *val = get_reg_val(id, vcpu->arch.purr); 1064 break; 1065 case KVM_REG_PPC_SPURR: 1066 *val = get_reg_val(id, vcpu->arch.spurr); 1067 break; 1068 case KVM_REG_PPC_AMR: 1069 *val = get_reg_val(id, vcpu->arch.amr); 1070 break; 1071 case KVM_REG_PPC_UAMOR: 1072 *val = get_reg_val(id, vcpu->arch.uamor); 1073 break; 1074 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1075 i = id - KVM_REG_PPC_MMCR0; 1076 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1077 break; 1078 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1079 i = id - KVM_REG_PPC_PMC1; 1080 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1081 break; 1082 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1083 i = id - KVM_REG_PPC_SPMC1; 1084 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1085 break; 1086 case KVM_REG_PPC_SIAR: 1087 *val = get_reg_val(id, vcpu->arch.siar); 1088 break; 1089 case KVM_REG_PPC_SDAR: 1090 *val = get_reg_val(id, vcpu->arch.sdar); 1091 break; 1092 case KVM_REG_PPC_SIER: 1093 *val = get_reg_val(id, vcpu->arch.sier); 1094 break; 1095 case KVM_REG_PPC_IAMR: 1096 *val = get_reg_val(id, vcpu->arch.iamr); 1097 break; 1098 case KVM_REG_PPC_PSPB: 1099 *val = get_reg_val(id, vcpu->arch.pspb); 1100 break; 1101 case KVM_REG_PPC_DPDES: 1102 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1103 break; 1104 case KVM_REG_PPC_DAWR: 1105 *val = get_reg_val(id, vcpu->arch.dawr); 1106 break; 1107 case KVM_REG_PPC_DAWRX: 1108 *val = get_reg_val(id, vcpu->arch.dawrx); 1109 break; 1110 case KVM_REG_PPC_CIABR: 1111 *val = get_reg_val(id, vcpu->arch.ciabr); 1112 break; 1113 case KVM_REG_PPC_CSIGR: 1114 *val = get_reg_val(id, vcpu->arch.csigr); 1115 break; 1116 case KVM_REG_PPC_TACR: 1117 *val = get_reg_val(id, vcpu->arch.tacr); 1118 break; 1119 case KVM_REG_PPC_TCSCR: 1120 *val = get_reg_val(id, vcpu->arch.tcscr); 1121 break; 1122 case KVM_REG_PPC_PID: 1123 *val = get_reg_val(id, vcpu->arch.pid); 1124 break; 1125 case KVM_REG_PPC_ACOP: 1126 *val = get_reg_val(id, vcpu->arch.acop); 1127 break; 1128 case KVM_REG_PPC_WORT: 1129 *val = get_reg_val(id, vcpu->arch.wort); 1130 break; 1131 case KVM_REG_PPC_VPA_ADDR: 1132 spin_lock(&vcpu->arch.vpa_update_lock); 1133 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1134 spin_unlock(&vcpu->arch.vpa_update_lock); 1135 break; 1136 case KVM_REG_PPC_VPA_SLB: 1137 spin_lock(&vcpu->arch.vpa_update_lock); 1138 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1139 val->vpaval.length = vcpu->arch.slb_shadow.len; 1140 spin_unlock(&vcpu->arch.vpa_update_lock); 1141 break; 1142 case KVM_REG_PPC_VPA_DTL: 1143 spin_lock(&vcpu->arch.vpa_update_lock); 1144 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1145 val->vpaval.length = vcpu->arch.dtl.len; 1146 spin_unlock(&vcpu->arch.vpa_update_lock); 1147 break; 1148 case KVM_REG_PPC_TB_OFFSET: 1149 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1150 break; 1151 case KVM_REG_PPC_LPCR: 1152 case KVM_REG_PPC_LPCR_64: 1153 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1154 break; 1155 case KVM_REG_PPC_PPR: 1156 *val = get_reg_val(id, vcpu->arch.ppr); 1157 break; 1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1159 case KVM_REG_PPC_TFHAR: 1160 *val = get_reg_val(id, vcpu->arch.tfhar); 1161 break; 1162 case KVM_REG_PPC_TFIAR: 1163 *val = get_reg_val(id, vcpu->arch.tfiar); 1164 break; 1165 case KVM_REG_PPC_TEXASR: 1166 *val = get_reg_val(id, vcpu->arch.texasr); 1167 break; 1168 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1169 i = id - KVM_REG_PPC_TM_GPR0; 1170 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1171 break; 1172 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1173 { 1174 int j; 1175 i = id - KVM_REG_PPC_TM_VSR0; 1176 if (i < 32) 1177 for (j = 0; j < TS_FPRWIDTH; j++) 1178 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1179 else { 1180 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1181 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1182 else 1183 r = -ENXIO; 1184 } 1185 break; 1186 } 1187 case KVM_REG_PPC_TM_CR: 1188 *val = get_reg_val(id, vcpu->arch.cr_tm); 1189 break; 1190 case KVM_REG_PPC_TM_LR: 1191 *val = get_reg_val(id, vcpu->arch.lr_tm); 1192 break; 1193 case KVM_REG_PPC_TM_CTR: 1194 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1195 break; 1196 case KVM_REG_PPC_TM_FPSCR: 1197 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1198 break; 1199 case KVM_REG_PPC_TM_AMR: 1200 *val = get_reg_val(id, vcpu->arch.amr_tm); 1201 break; 1202 case KVM_REG_PPC_TM_PPR: 1203 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1204 break; 1205 case KVM_REG_PPC_TM_VRSAVE: 1206 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1207 break; 1208 case KVM_REG_PPC_TM_VSCR: 1209 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1210 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1211 else 1212 r = -ENXIO; 1213 break; 1214 case KVM_REG_PPC_TM_DSCR: 1215 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1216 break; 1217 case KVM_REG_PPC_TM_TAR: 1218 *val = get_reg_val(id, vcpu->arch.tar_tm); 1219 break; 1220 #endif 1221 case KVM_REG_PPC_ARCH_COMPAT: 1222 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1223 break; 1224 default: 1225 r = -EINVAL; 1226 break; 1227 } 1228 1229 return r; 1230 } 1231 1232 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1233 union kvmppc_one_reg *val) 1234 { 1235 int r = 0; 1236 long int i; 1237 unsigned long addr, len; 1238 1239 switch (id) { 1240 case KVM_REG_PPC_HIOR: 1241 /* Only allow this to be set to zero */ 1242 if (set_reg_val(id, *val)) 1243 r = -EINVAL; 1244 break; 1245 case KVM_REG_PPC_DABR: 1246 vcpu->arch.dabr = set_reg_val(id, *val); 1247 break; 1248 case KVM_REG_PPC_DABRX: 1249 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1250 break; 1251 case KVM_REG_PPC_DSCR: 1252 vcpu->arch.dscr = set_reg_val(id, *val); 1253 break; 1254 case KVM_REG_PPC_PURR: 1255 vcpu->arch.purr = set_reg_val(id, *val); 1256 break; 1257 case KVM_REG_PPC_SPURR: 1258 vcpu->arch.spurr = set_reg_val(id, *val); 1259 break; 1260 case KVM_REG_PPC_AMR: 1261 vcpu->arch.amr = set_reg_val(id, *val); 1262 break; 1263 case KVM_REG_PPC_UAMOR: 1264 vcpu->arch.uamor = set_reg_val(id, *val); 1265 break; 1266 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1267 i = id - KVM_REG_PPC_MMCR0; 1268 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1269 break; 1270 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1271 i = id - KVM_REG_PPC_PMC1; 1272 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1273 break; 1274 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1275 i = id - KVM_REG_PPC_SPMC1; 1276 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1277 break; 1278 case KVM_REG_PPC_SIAR: 1279 vcpu->arch.siar = set_reg_val(id, *val); 1280 break; 1281 case KVM_REG_PPC_SDAR: 1282 vcpu->arch.sdar = set_reg_val(id, *val); 1283 break; 1284 case KVM_REG_PPC_SIER: 1285 vcpu->arch.sier = set_reg_val(id, *val); 1286 break; 1287 case KVM_REG_PPC_IAMR: 1288 vcpu->arch.iamr = set_reg_val(id, *val); 1289 break; 1290 case KVM_REG_PPC_PSPB: 1291 vcpu->arch.pspb = set_reg_val(id, *val); 1292 break; 1293 case KVM_REG_PPC_DPDES: 1294 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1295 break; 1296 case KVM_REG_PPC_DAWR: 1297 vcpu->arch.dawr = set_reg_val(id, *val); 1298 break; 1299 case KVM_REG_PPC_DAWRX: 1300 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1301 break; 1302 case KVM_REG_PPC_CIABR: 1303 vcpu->arch.ciabr = set_reg_val(id, *val); 1304 /* Don't allow setting breakpoints in hypervisor code */ 1305 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1306 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1307 break; 1308 case KVM_REG_PPC_CSIGR: 1309 vcpu->arch.csigr = set_reg_val(id, *val); 1310 break; 1311 case KVM_REG_PPC_TACR: 1312 vcpu->arch.tacr = set_reg_val(id, *val); 1313 break; 1314 case KVM_REG_PPC_TCSCR: 1315 vcpu->arch.tcscr = set_reg_val(id, *val); 1316 break; 1317 case KVM_REG_PPC_PID: 1318 vcpu->arch.pid = set_reg_val(id, *val); 1319 break; 1320 case KVM_REG_PPC_ACOP: 1321 vcpu->arch.acop = set_reg_val(id, *val); 1322 break; 1323 case KVM_REG_PPC_WORT: 1324 vcpu->arch.wort = set_reg_val(id, *val); 1325 break; 1326 case KVM_REG_PPC_VPA_ADDR: 1327 addr = set_reg_val(id, *val); 1328 r = -EINVAL; 1329 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1330 vcpu->arch.dtl.next_gpa)) 1331 break; 1332 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1333 break; 1334 case KVM_REG_PPC_VPA_SLB: 1335 addr = val->vpaval.addr; 1336 len = val->vpaval.length; 1337 r = -EINVAL; 1338 if (addr && !vcpu->arch.vpa.next_gpa) 1339 break; 1340 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1341 break; 1342 case KVM_REG_PPC_VPA_DTL: 1343 addr = val->vpaval.addr; 1344 len = val->vpaval.length; 1345 r = -EINVAL; 1346 if (addr && (len < sizeof(struct dtl_entry) || 1347 !vcpu->arch.vpa.next_gpa)) 1348 break; 1349 len -= len % sizeof(struct dtl_entry); 1350 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1351 break; 1352 case KVM_REG_PPC_TB_OFFSET: 1353 /* round up to multiple of 2^24 */ 1354 vcpu->arch.vcore->tb_offset = 1355 ALIGN(set_reg_val(id, *val), 1UL << 24); 1356 break; 1357 case KVM_REG_PPC_LPCR: 1358 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1359 break; 1360 case KVM_REG_PPC_LPCR_64: 1361 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1362 break; 1363 case KVM_REG_PPC_PPR: 1364 vcpu->arch.ppr = set_reg_val(id, *val); 1365 break; 1366 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1367 case KVM_REG_PPC_TFHAR: 1368 vcpu->arch.tfhar = set_reg_val(id, *val); 1369 break; 1370 case KVM_REG_PPC_TFIAR: 1371 vcpu->arch.tfiar = set_reg_val(id, *val); 1372 break; 1373 case KVM_REG_PPC_TEXASR: 1374 vcpu->arch.texasr = set_reg_val(id, *val); 1375 break; 1376 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1377 i = id - KVM_REG_PPC_TM_GPR0; 1378 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1379 break; 1380 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1381 { 1382 int j; 1383 i = id - KVM_REG_PPC_TM_VSR0; 1384 if (i < 32) 1385 for (j = 0; j < TS_FPRWIDTH; j++) 1386 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1387 else 1388 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1389 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1390 else 1391 r = -ENXIO; 1392 break; 1393 } 1394 case KVM_REG_PPC_TM_CR: 1395 vcpu->arch.cr_tm = set_reg_val(id, *val); 1396 break; 1397 case KVM_REG_PPC_TM_LR: 1398 vcpu->arch.lr_tm = set_reg_val(id, *val); 1399 break; 1400 case KVM_REG_PPC_TM_CTR: 1401 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1402 break; 1403 case KVM_REG_PPC_TM_FPSCR: 1404 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1405 break; 1406 case KVM_REG_PPC_TM_AMR: 1407 vcpu->arch.amr_tm = set_reg_val(id, *val); 1408 break; 1409 case KVM_REG_PPC_TM_PPR: 1410 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1411 break; 1412 case KVM_REG_PPC_TM_VRSAVE: 1413 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1414 break; 1415 case KVM_REG_PPC_TM_VSCR: 1416 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1417 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1418 else 1419 r = - ENXIO; 1420 break; 1421 case KVM_REG_PPC_TM_DSCR: 1422 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1423 break; 1424 case KVM_REG_PPC_TM_TAR: 1425 vcpu->arch.tar_tm = set_reg_val(id, *val); 1426 break; 1427 #endif 1428 case KVM_REG_PPC_ARCH_COMPAT: 1429 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1430 break; 1431 default: 1432 r = -EINVAL; 1433 break; 1434 } 1435 1436 return r; 1437 } 1438 1439 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1440 { 1441 struct kvmppc_vcore *vcore; 1442 1443 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1444 1445 if (vcore == NULL) 1446 return NULL; 1447 1448 INIT_LIST_HEAD(&vcore->runnable_threads); 1449 spin_lock_init(&vcore->lock); 1450 spin_lock_init(&vcore->stoltb_lock); 1451 init_waitqueue_head(&vcore->wq); 1452 vcore->preempt_tb = TB_NIL; 1453 vcore->lpcr = kvm->arch.lpcr; 1454 vcore->first_vcpuid = core * threads_per_subcore; 1455 vcore->kvm = kvm; 1456 INIT_LIST_HEAD(&vcore->preempt_list); 1457 1458 vcore->mpp_buffer_is_valid = false; 1459 1460 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1461 vcore->mpp_buffer = (void *)__get_free_pages( 1462 GFP_KERNEL|__GFP_ZERO, 1463 MPP_BUFFER_ORDER); 1464 1465 return vcore; 1466 } 1467 1468 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1469 static struct debugfs_timings_element { 1470 const char *name; 1471 size_t offset; 1472 } timings[] = { 1473 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1474 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1475 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1476 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1477 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1478 }; 1479 1480 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1481 1482 struct debugfs_timings_state { 1483 struct kvm_vcpu *vcpu; 1484 unsigned int buflen; 1485 char buf[N_TIMINGS * 100]; 1486 }; 1487 1488 static int debugfs_timings_open(struct inode *inode, struct file *file) 1489 { 1490 struct kvm_vcpu *vcpu = inode->i_private; 1491 struct debugfs_timings_state *p; 1492 1493 p = kzalloc(sizeof(*p), GFP_KERNEL); 1494 if (!p) 1495 return -ENOMEM; 1496 1497 kvm_get_kvm(vcpu->kvm); 1498 p->vcpu = vcpu; 1499 file->private_data = p; 1500 1501 return nonseekable_open(inode, file); 1502 } 1503 1504 static int debugfs_timings_release(struct inode *inode, struct file *file) 1505 { 1506 struct debugfs_timings_state *p = file->private_data; 1507 1508 kvm_put_kvm(p->vcpu->kvm); 1509 kfree(p); 1510 return 0; 1511 } 1512 1513 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1514 size_t len, loff_t *ppos) 1515 { 1516 struct debugfs_timings_state *p = file->private_data; 1517 struct kvm_vcpu *vcpu = p->vcpu; 1518 char *s, *buf_end; 1519 struct kvmhv_tb_accumulator tb; 1520 u64 count; 1521 loff_t pos; 1522 ssize_t n; 1523 int i, loops; 1524 bool ok; 1525 1526 if (!p->buflen) { 1527 s = p->buf; 1528 buf_end = s + sizeof(p->buf); 1529 for (i = 0; i < N_TIMINGS; ++i) { 1530 struct kvmhv_tb_accumulator *acc; 1531 1532 acc = (struct kvmhv_tb_accumulator *) 1533 ((unsigned long)vcpu + timings[i].offset); 1534 ok = false; 1535 for (loops = 0; loops < 1000; ++loops) { 1536 count = acc->seqcount; 1537 if (!(count & 1)) { 1538 smp_rmb(); 1539 tb = *acc; 1540 smp_rmb(); 1541 if (count == acc->seqcount) { 1542 ok = true; 1543 break; 1544 } 1545 } 1546 udelay(1); 1547 } 1548 if (!ok) 1549 snprintf(s, buf_end - s, "%s: stuck\n", 1550 timings[i].name); 1551 else 1552 snprintf(s, buf_end - s, 1553 "%s: %llu %llu %llu %llu\n", 1554 timings[i].name, count / 2, 1555 tb_to_ns(tb.tb_total), 1556 tb_to_ns(tb.tb_min), 1557 tb_to_ns(tb.tb_max)); 1558 s += strlen(s); 1559 } 1560 p->buflen = s - p->buf; 1561 } 1562 1563 pos = *ppos; 1564 if (pos >= p->buflen) 1565 return 0; 1566 if (len > p->buflen - pos) 1567 len = p->buflen - pos; 1568 n = copy_to_user(buf, p->buf + pos, len); 1569 if (n) { 1570 if (n == len) 1571 return -EFAULT; 1572 len -= n; 1573 } 1574 *ppos = pos + len; 1575 return len; 1576 } 1577 1578 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1579 size_t len, loff_t *ppos) 1580 { 1581 return -EACCES; 1582 } 1583 1584 static const struct file_operations debugfs_timings_ops = { 1585 .owner = THIS_MODULE, 1586 .open = debugfs_timings_open, 1587 .release = debugfs_timings_release, 1588 .read = debugfs_timings_read, 1589 .write = debugfs_timings_write, 1590 .llseek = generic_file_llseek, 1591 }; 1592 1593 /* Create a debugfs directory for the vcpu */ 1594 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1595 { 1596 char buf[16]; 1597 struct kvm *kvm = vcpu->kvm; 1598 1599 snprintf(buf, sizeof(buf), "vcpu%u", id); 1600 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1601 return; 1602 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1603 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1604 return; 1605 vcpu->arch.debugfs_timings = 1606 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1607 vcpu, &debugfs_timings_ops); 1608 } 1609 1610 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1611 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1612 { 1613 } 1614 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1615 1616 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1617 unsigned int id) 1618 { 1619 struct kvm_vcpu *vcpu; 1620 int err = -EINVAL; 1621 int core; 1622 struct kvmppc_vcore *vcore; 1623 1624 core = id / threads_per_subcore; 1625 if (core >= KVM_MAX_VCORES) 1626 goto out; 1627 1628 err = -ENOMEM; 1629 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1630 if (!vcpu) 1631 goto out; 1632 1633 err = kvm_vcpu_init(vcpu, kvm, id); 1634 if (err) 1635 goto free_vcpu; 1636 1637 vcpu->arch.shared = &vcpu->arch.shregs; 1638 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1639 /* 1640 * The shared struct is never shared on HV, 1641 * so we can always use host endianness 1642 */ 1643 #ifdef __BIG_ENDIAN__ 1644 vcpu->arch.shared_big_endian = true; 1645 #else 1646 vcpu->arch.shared_big_endian = false; 1647 #endif 1648 #endif 1649 vcpu->arch.mmcr[0] = MMCR0_FC; 1650 vcpu->arch.ctrl = CTRL_RUNLATCH; 1651 /* default to host PVR, since we can't spoof it */ 1652 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1653 spin_lock_init(&vcpu->arch.vpa_update_lock); 1654 spin_lock_init(&vcpu->arch.tbacct_lock); 1655 vcpu->arch.busy_preempt = TB_NIL; 1656 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1657 1658 kvmppc_mmu_book3s_hv_init(vcpu); 1659 1660 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1661 1662 init_waitqueue_head(&vcpu->arch.cpu_run); 1663 1664 mutex_lock(&kvm->lock); 1665 vcore = kvm->arch.vcores[core]; 1666 if (!vcore) { 1667 vcore = kvmppc_vcore_create(kvm, core); 1668 kvm->arch.vcores[core] = vcore; 1669 kvm->arch.online_vcores++; 1670 } 1671 mutex_unlock(&kvm->lock); 1672 1673 if (!vcore) 1674 goto free_vcpu; 1675 1676 spin_lock(&vcore->lock); 1677 ++vcore->num_threads; 1678 spin_unlock(&vcore->lock); 1679 vcpu->arch.vcore = vcore; 1680 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1681 vcpu->arch.thread_cpu = -1; 1682 1683 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1684 kvmppc_sanity_check(vcpu); 1685 1686 debugfs_vcpu_init(vcpu, id); 1687 1688 return vcpu; 1689 1690 free_vcpu: 1691 kmem_cache_free(kvm_vcpu_cache, vcpu); 1692 out: 1693 return ERR_PTR(err); 1694 } 1695 1696 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1697 { 1698 if (vpa->pinned_addr) 1699 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1700 vpa->dirty); 1701 } 1702 1703 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1704 { 1705 spin_lock(&vcpu->arch.vpa_update_lock); 1706 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1707 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1708 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1709 spin_unlock(&vcpu->arch.vpa_update_lock); 1710 kvm_vcpu_uninit(vcpu); 1711 kmem_cache_free(kvm_vcpu_cache, vcpu); 1712 } 1713 1714 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1715 { 1716 /* Indicate we want to get back into the guest */ 1717 return 1; 1718 } 1719 1720 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1721 { 1722 unsigned long dec_nsec, now; 1723 1724 now = get_tb(); 1725 if (now > vcpu->arch.dec_expires) { 1726 /* decrementer has already gone negative */ 1727 kvmppc_core_queue_dec(vcpu); 1728 kvmppc_core_prepare_to_enter(vcpu); 1729 return; 1730 } 1731 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1732 / tb_ticks_per_sec; 1733 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1734 HRTIMER_MODE_REL); 1735 vcpu->arch.timer_running = 1; 1736 } 1737 1738 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1739 { 1740 vcpu->arch.ceded = 0; 1741 if (vcpu->arch.timer_running) { 1742 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1743 vcpu->arch.timer_running = 0; 1744 } 1745 } 1746 1747 extern void __kvmppc_vcore_entry(void); 1748 1749 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1750 struct kvm_vcpu *vcpu) 1751 { 1752 u64 now; 1753 1754 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1755 return; 1756 spin_lock_irq(&vcpu->arch.tbacct_lock); 1757 now = mftb(); 1758 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1759 vcpu->arch.stolen_logged; 1760 vcpu->arch.busy_preempt = now; 1761 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1762 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1763 --vc->n_runnable; 1764 list_del(&vcpu->arch.run_list); 1765 } 1766 1767 static int kvmppc_grab_hwthread(int cpu) 1768 { 1769 struct paca_struct *tpaca; 1770 long timeout = 10000; 1771 1772 tpaca = &paca[cpu]; 1773 1774 /* Ensure the thread won't go into the kernel if it wakes */ 1775 tpaca->kvm_hstate.kvm_vcpu = NULL; 1776 tpaca->kvm_hstate.kvm_vcore = NULL; 1777 tpaca->kvm_hstate.napping = 0; 1778 smp_wmb(); 1779 tpaca->kvm_hstate.hwthread_req = 1; 1780 1781 /* 1782 * If the thread is already executing in the kernel (e.g. handling 1783 * a stray interrupt), wait for it to get back to nap mode. 1784 * The smp_mb() is to ensure that our setting of hwthread_req 1785 * is visible before we look at hwthread_state, so if this 1786 * races with the code at system_reset_pSeries and the thread 1787 * misses our setting of hwthread_req, we are sure to see its 1788 * setting of hwthread_state, and vice versa. 1789 */ 1790 smp_mb(); 1791 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1792 if (--timeout <= 0) { 1793 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1794 return -EBUSY; 1795 } 1796 udelay(1); 1797 } 1798 return 0; 1799 } 1800 1801 static void kvmppc_release_hwthread(int cpu) 1802 { 1803 struct paca_struct *tpaca; 1804 1805 tpaca = &paca[cpu]; 1806 tpaca->kvm_hstate.hwthread_req = 0; 1807 tpaca->kvm_hstate.kvm_vcpu = NULL; 1808 tpaca->kvm_hstate.kvm_vcore = NULL; 1809 tpaca->kvm_hstate.kvm_split_mode = NULL; 1810 } 1811 1812 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1813 { 1814 int cpu; 1815 struct paca_struct *tpaca; 1816 struct kvmppc_vcore *mvc = vc->master_vcore; 1817 1818 cpu = vc->pcpu; 1819 if (vcpu) { 1820 if (vcpu->arch.timer_running) { 1821 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1822 vcpu->arch.timer_running = 0; 1823 } 1824 cpu += vcpu->arch.ptid; 1825 vcpu->cpu = mvc->pcpu; 1826 vcpu->arch.thread_cpu = cpu; 1827 } 1828 tpaca = &paca[cpu]; 1829 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1830 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 1831 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 1832 smp_wmb(); 1833 tpaca->kvm_hstate.kvm_vcore = mvc; 1834 if (cpu != smp_processor_id()) 1835 kvmppc_ipi_thread(cpu); 1836 } 1837 1838 static void kvmppc_wait_for_nap(void) 1839 { 1840 int cpu = smp_processor_id(); 1841 int i, loops; 1842 1843 for (loops = 0; loops < 1000000; ++loops) { 1844 /* 1845 * Check if all threads are finished. 1846 * We set the vcore pointer when starting a thread 1847 * and the thread clears it when finished, so we look 1848 * for any threads that still have a non-NULL vcore ptr. 1849 */ 1850 for (i = 1; i < threads_per_subcore; ++i) 1851 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1852 break; 1853 if (i == threads_per_subcore) { 1854 HMT_medium(); 1855 return; 1856 } 1857 HMT_low(); 1858 } 1859 HMT_medium(); 1860 for (i = 1; i < threads_per_subcore; ++i) 1861 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1862 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1863 } 1864 1865 /* 1866 * Check that we are on thread 0 and that any other threads in 1867 * this core are off-line. Then grab the threads so they can't 1868 * enter the kernel. 1869 */ 1870 static int on_primary_thread(void) 1871 { 1872 int cpu = smp_processor_id(); 1873 int thr; 1874 1875 /* Are we on a primary subcore? */ 1876 if (cpu_thread_in_subcore(cpu)) 1877 return 0; 1878 1879 thr = 0; 1880 while (++thr < threads_per_subcore) 1881 if (cpu_online(cpu + thr)) 1882 return 0; 1883 1884 /* Grab all hw threads so they can't go into the kernel */ 1885 for (thr = 1; thr < threads_per_subcore; ++thr) { 1886 if (kvmppc_grab_hwthread(cpu + thr)) { 1887 /* Couldn't grab one; let the others go */ 1888 do { 1889 kvmppc_release_hwthread(cpu + thr); 1890 } while (--thr > 0); 1891 return 0; 1892 } 1893 } 1894 return 1; 1895 } 1896 1897 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc) 1898 { 1899 phys_addr_t phy_addr, mpp_addr; 1900 1901 phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer); 1902 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1903 1904 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT); 1905 logmpp(mpp_addr | PPC_LOGMPP_LOG_L2); 1906 1907 vc->mpp_buffer_is_valid = true; 1908 } 1909 1910 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc) 1911 { 1912 phys_addr_t phy_addr, mpp_addr; 1913 1914 phy_addr = virt_to_phys(vc->mpp_buffer); 1915 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1916 1917 /* We must abort any in-progress save operations to ensure 1918 * the table is valid so that prefetch engine knows when to 1919 * stop prefetching. */ 1920 logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT); 1921 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE); 1922 } 1923 1924 /* 1925 * A list of virtual cores for each physical CPU. 1926 * These are vcores that could run but their runner VCPU tasks are 1927 * (or may be) preempted. 1928 */ 1929 struct preempted_vcore_list { 1930 struct list_head list; 1931 spinlock_t lock; 1932 }; 1933 1934 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 1935 1936 static void init_vcore_lists(void) 1937 { 1938 int cpu; 1939 1940 for_each_possible_cpu(cpu) { 1941 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 1942 spin_lock_init(&lp->lock); 1943 INIT_LIST_HEAD(&lp->list); 1944 } 1945 } 1946 1947 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 1948 { 1949 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 1950 1951 vc->vcore_state = VCORE_PREEMPT; 1952 vc->pcpu = smp_processor_id(); 1953 if (vc->num_threads < threads_per_subcore) { 1954 spin_lock(&lp->lock); 1955 list_add_tail(&vc->preempt_list, &lp->list); 1956 spin_unlock(&lp->lock); 1957 } 1958 1959 /* Start accumulating stolen time */ 1960 kvmppc_core_start_stolen(vc); 1961 } 1962 1963 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 1964 { 1965 struct preempted_vcore_list *lp; 1966 1967 kvmppc_core_end_stolen(vc); 1968 if (!list_empty(&vc->preempt_list)) { 1969 lp = &per_cpu(preempted_vcores, vc->pcpu); 1970 spin_lock(&lp->lock); 1971 list_del_init(&vc->preempt_list); 1972 spin_unlock(&lp->lock); 1973 } 1974 vc->vcore_state = VCORE_INACTIVE; 1975 } 1976 1977 /* 1978 * This stores information about the virtual cores currently 1979 * assigned to a physical core. 1980 */ 1981 struct core_info { 1982 int n_subcores; 1983 int max_subcore_threads; 1984 int total_threads; 1985 int subcore_threads[MAX_SUBCORES]; 1986 struct kvm *subcore_vm[MAX_SUBCORES]; 1987 struct list_head vcs[MAX_SUBCORES]; 1988 }; 1989 1990 /* 1991 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 1992 * respectively in 2-way micro-threading (split-core) mode. 1993 */ 1994 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 1995 1996 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 1997 { 1998 int sub; 1999 2000 memset(cip, 0, sizeof(*cip)); 2001 cip->n_subcores = 1; 2002 cip->max_subcore_threads = vc->num_threads; 2003 cip->total_threads = vc->num_threads; 2004 cip->subcore_threads[0] = vc->num_threads; 2005 cip->subcore_vm[0] = vc->kvm; 2006 for (sub = 0; sub < MAX_SUBCORES; ++sub) 2007 INIT_LIST_HEAD(&cip->vcs[sub]); 2008 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 2009 } 2010 2011 static bool subcore_config_ok(int n_subcores, int n_threads) 2012 { 2013 /* Can only dynamically split if unsplit to begin with */ 2014 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2015 return false; 2016 if (n_subcores > MAX_SUBCORES) 2017 return false; 2018 if (n_subcores > 1) { 2019 if (!(dynamic_mt_modes & 2)) 2020 n_subcores = 4; 2021 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2022 return false; 2023 } 2024 2025 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2026 } 2027 2028 static void init_master_vcore(struct kvmppc_vcore *vc) 2029 { 2030 vc->master_vcore = vc; 2031 vc->entry_exit_map = 0; 2032 vc->in_guest = 0; 2033 vc->napping_threads = 0; 2034 vc->conferring_threads = 0; 2035 } 2036 2037 /* 2038 * See if the existing subcores can be split into 3 (or fewer) subcores 2039 * of at most two threads each, so we can fit in another vcore. This 2040 * assumes there are at most two subcores and at most 6 threads in total. 2041 */ 2042 static bool can_split_piggybacked_subcores(struct core_info *cip) 2043 { 2044 int sub, new_sub; 2045 int large_sub = -1; 2046 int thr; 2047 int n_subcores = cip->n_subcores; 2048 struct kvmppc_vcore *vc, *vcnext; 2049 struct kvmppc_vcore *master_vc = NULL; 2050 2051 for (sub = 0; sub < cip->n_subcores; ++sub) { 2052 if (cip->subcore_threads[sub] <= 2) 2053 continue; 2054 if (large_sub >= 0) 2055 return false; 2056 large_sub = sub; 2057 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2058 preempt_list); 2059 if (vc->num_threads > 2) 2060 return false; 2061 n_subcores += (cip->subcore_threads[sub] - 1) >> 1; 2062 } 2063 if (n_subcores > 3 || large_sub < 0) 2064 return false; 2065 2066 /* 2067 * Seems feasible, so go through and move vcores to new subcores. 2068 * Note that when we have two or more vcores in one subcore, 2069 * all those vcores must have only one thread each. 2070 */ 2071 new_sub = cip->n_subcores; 2072 thr = 0; 2073 sub = large_sub; 2074 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) { 2075 if (thr >= 2) { 2076 list_del(&vc->preempt_list); 2077 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]); 2078 /* vc->num_threads must be 1 */ 2079 if (++cip->subcore_threads[new_sub] == 1) { 2080 cip->subcore_vm[new_sub] = vc->kvm; 2081 init_master_vcore(vc); 2082 master_vc = vc; 2083 ++cip->n_subcores; 2084 } else { 2085 vc->master_vcore = master_vc; 2086 ++new_sub; 2087 } 2088 } 2089 thr += vc->num_threads; 2090 } 2091 cip->subcore_threads[large_sub] = 2; 2092 cip->max_subcore_threads = 2; 2093 2094 return true; 2095 } 2096 2097 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2098 { 2099 int n_threads = vc->num_threads; 2100 int sub; 2101 2102 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2103 return false; 2104 2105 if (n_threads < cip->max_subcore_threads) 2106 n_threads = cip->max_subcore_threads; 2107 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) { 2108 cip->max_subcore_threads = n_threads; 2109 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 && 2110 vc->num_threads <= 2) { 2111 /* 2112 * We may be able to fit another subcore in by 2113 * splitting an existing subcore with 3 or 4 2114 * threads into two 2-thread subcores, or one 2115 * with 5 or 6 threads into three subcores. 2116 * We can only do this if those subcores have 2117 * piggybacked virtual cores. 2118 */ 2119 if (!can_split_piggybacked_subcores(cip)) 2120 return false; 2121 } else { 2122 return false; 2123 } 2124 2125 sub = cip->n_subcores; 2126 ++cip->n_subcores; 2127 cip->total_threads += vc->num_threads; 2128 cip->subcore_threads[sub] = vc->num_threads; 2129 cip->subcore_vm[sub] = vc->kvm; 2130 init_master_vcore(vc); 2131 list_del(&vc->preempt_list); 2132 list_add_tail(&vc->preempt_list, &cip->vcs[sub]); 2133 2134 return true; 2135 } 2136 2137 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc, 2138 struct core_info *cip, int sub) 2139 { 2140 struct kvmppc_vcore *vc; 2141 int n_thr; 2142 2143 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2144 preempt_list); 2145 2146 /* require same VM and same per-core reg values */ 2147 if (pvc->kvm != vc->kvm || 2148 pvc->tb_offset != vc->tb_offset || 2149 pvc->pcr != vc->pcr || 2150 pvc->lpcr != vc->lpcr) 2151 return false; 2152 2153 /* P8 guest with > 1 thread per core would see wrong TIR value */ 2154 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2155 (vc->num_threads > 1 || pvc->num_threads > 1)) 2156 return false; 2157 2158 n_thr = cip->subcore_threads[sub] + pvc->num_threads; 2159 if (n_thr > cip->max_subcore_threads) { 2160 if (!subcore_config_ok(cip->n_subcores, n_thr)) 2161 return false; 2162 cip->max_subcore_threads = n_thr; 2163 } 2164 2165 cip->total_threads += pvc->num_threads; 2166 cip->subcore_threads[sub] = n_thr; 2167 pvc->master_vcore = vc; 2168 list_del(&pvc->preempt_list); 2169 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]); 2170 2171 return true; 2172 } 2173 2174 /* 2175 * Work out whether it is possible to piggyback the execution of 2176 * vcore *pvc onto the execution of the other vcores described in *cip. 2177 */ 2178 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2179 int target_threads) 2180 { 2181 int sub; 2182 2183 if (cip->total_threads + pvc->num_threads > target_threads) 2184 return false; 2185 for (sub = 0; sub < cip->n_subcores; ++sub) 2186 if (cip->subcore_threads[sub] && 2187 can_piggyback_subcore(pvc, cip, sub)) 2188 return true; 2189 2190 if (can_dynamic_split(pvc, cip)) 2191 return true; 2192 2193 return false; 2194 } 2195 2196 static void prepare_threads(struct kvmppc_vcore *vc) 2197 { 2198 struct kvm_vcpu *vcpu, *vnext; 2199 2200 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2201 arch.run_list) { 2202 if (signal_pending(vcpu->arch.run_task)) 2203 vcpu->arch.ret = -EINTR; 2204 else if (vcpu->arch.vpa.update_pending || 2205 vcpu->arch.slb_shadow.update_pending || 2206 vcpu->arch.dtl.update_pending) 2207 vcpu->arch.ret = RESUME_GUEST; 2208 else 2209 continue; 2210 kvmppc_remove_runnable(vc, vcpu); 2211 wake_up(&vcpu->arch.cpu_run); 2212 } 2213 } 2214 2215 static void collect_piggybacks(struct core_info *cip, int target_threads) 2216 { 2217 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2218 struct kvmppc_vcore *pvc, *vcnext; 2219 2220 spin_lock(&lp->lock); 2221 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2222 if (!spin_trylock(&pvc->lock)) 2223 continue; 2224 prepare_threads(pvc); 2225 if (!pvc->n_runnable) { 2226 list_del_init(&pvc->preempt_list); 2227 if (pvc->runner == NULL) { 2228 pvc->vcore_state = VCORE_INACTIVE; 2229 kvmppc_core_end_stolen(pvc); 2230 } 2231 spin_unlock(&pvc->lock); 2232 continue; 2233 } 2234 if (!can_piggyback(pvc, cip, target_threads)) { 2235 spin_unlock(&pvc->lock); 2236 continue; 2237 } 2238 kvmppc_core_end_stolen(pvc); 2239 pvc->vcore_state = VCORE_PIGGYBACK; 2240 if (cip->total_threads >= target_threads) 2241 break; 2242 } 2243 spin_unlock(&lp->lock); 2244 } 2245 2246 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2247 { 2248 int still_running = 0; 2249 u64 now; 2250 long ret; 2251 struct kvm_vcpu *vcpu, *vnext; 2252 2253 spin_lock(&vc->lock); 2254 now = get_tb(); 2255 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2256 arch.run_list) { 2257 /* cancel pending dec exception if dec is positive */ 2258 if (now < vcpu->arch.dec_expires && 2259 kvmppc_core_pending_dec(vcpu)) 2260 kvmppc_core_dequeue_dec(vcpu); 2261 2262 trace_kvm_guest_exit(vcpu); 2263 2264 ret = RESUME_GUEST; 2265 if (vcpu->arch.trap) 2266 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2267 vcpu->arch.run_task); 2268 2269 vcpu->arch.ret = ret; 2270 vcpu->arch.trap = 0; 2271 2272 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2273 if (vcpu->arch.pending_exceptions) 2274 kvmppc_core_prepare_to_enter(vcpu); 2275 if (vcpu->arch.ceded) 2276 kvmppc_set_timer(vcpu); 2277 else 2278 ++still_running; 2279 } else { 2280 kvmppc_remove_runnable(vc, vcpu); 2281 wake_up(&vcpu->arch.cpu_run); 2282 } 2283 } 2284 list_del_init(&vc->preempt_list); 2285 if (!is_master) { 2286 if (still_running > 0) { 2287 kvmppc_vcore_preempt(vc); 2288 } else if (vc->runner) { 2289 vc->vcore_state = VCORE_PREEMPT; 2290 kvmppc_core_start_stolen(vc); 2291 } else { 2292 vc->vcore_state = VCORE_INACTIVE; 2293 } 2294 if (vc->n_runnable > 0 && vc->runner == NULL) { 2295 /* make sure there's a candidate runner awake */ 2296 vcpu = list_first_entry(&vc->runnable_threads, 2297 struct kvm_vcpu, arch.run_list); 2298 wake_up(&vcpu->arch.cpu_run); 2299 } 2300 } 2301 spin_unlock(&vc->lock); 2302 } 2303 2304 /* 2305 * Run a set of guest threads on a physical core. 2306 * Called with vc->lock held. 2307 */ 2308 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2309 { 2310 struct kvm_vcpu *vcpu, *vnext; 2311 int i; 2312 int srcu_idx; 2313 struct core_info core_info; 2314 struct kvmppc_vcore *pvc, *vcnext; 2315 struct kvm_split_mode split_info, *sip; 2316 int split, subcore_size, active; 2317 int sub; 2318 bool thr0_done; 2319 unsigned long cmd_bit, stat_bit; 2320 int pcpu, thr; 2321 int target_threads; 2322 2323 /* 2324 * Remove from the list any threads that have a signal pending 2325 * or need a VPA update done 2326 */ 2327 prepare_threads(vc); 2328 2329 /* if the runner is no longer runnable, let the caller pick a new one */ 2330 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2331 return; 2332 2333 /* 2334 * Initialize *vc. 2335 */ 2336 init_master_vcore(vc); 2337 vc->preempt_tb = TB_NIL; 2338 2339 /* 2340 * Make sure we are running on primary threads, and that secondary 2341 * threads are offline. Also check if the number of threads in this 2342 * guest are greater than the current system threads per guest. 2343 */ 2344 if ((threads_per_core > 1) && 2345 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2346 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2347 arch.run_list) { 2348 vcpu->arch.ret = -EBUSY; 2349 kvmppc_remove_runnable(vc, vcpu); 2350 wake_up(&vcpu->arch.cpu_run); 2351 } 2352 goto out; 2353 } 2354 2355 /* 2356 * See if we could run any other vcores on the physical core 2357 * along with this one. 2358 */ 2359 init_core_info(&core_info, vc); 2360 pcpu = smp_processor_id(); 2361 target_threads = threads_per_subcore; 2362 if (target_smt_mode && target_smt_mode < target_threads) 2363 target_threads = target_smt_mode; 2364 if (vc->num_threads < target_threads) 2365 collect_piggybacks(&core_info, target_threads); 2366 2367 /* Decide on micro-threading (split-core) mode */ 2368 subcore_size = threads_per_subcore; 2369 cmd_bit = stat_bit = 0; 2370 split = core_info.n_subcores; 2371 sip = NULL; 2372 if (split > 1) { 2373 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2374 if (split == 2 && (dynamic_mt_modes & 2)) { 2375 cmd_bit = HID0_POWER8_1TO2LPAR; 2376 stat_bit = HID0_POWER8_2LPARMODE; 2377 } else { 2378 split = 4; 2379 cmd_bit = HID0_POWER8_1TO4LPAR; 2380 stat_bit = HID0_POWER8_4LPARMODE; 2381 } 2382 subcore_size = MAX_SMT_THREADS / split; 2383 sip = &split_info; 2384 memset(&split_info, 0, sizeof(split_info)); 2385 split_info.rpr = mfspr(SPRN_RPR); 2386 split_info.pmmar = mfspr(SPRN_PMMAR); 2387 split_info.ldbar = mfspr(SPRN_LDBAR); 2388 split_info.subcore_size = subcore_size; 2389 for (sub = 0; sub < core_info.n_subcores; ++sub) 2390 split_info.master_vcs[sub] = 2391 list_first_entry(&core_info.vcs[sub], 2392 struct kvmppc_vcore, preempt_list); 2393 /* order writes to split_info before kvm_split_mode pointer */ 2394 smp_wmb(); 2395 } 2396 pcpu = smp_processor_id(); 2397 for (thr = 0; thr < threads_per_subcore; ++thr) 2398 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2399 2400 /* Initiate micro-threading (split-core) if required */ 2401 if (cmd_bit) { 2402 unsigned long hid0 = mfspr(SPRN_HID0); 2403 2404 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2405 mb(); 2406 mtspr(SPRN_HID0, hid0); 2407 isync(); 2408 for (;;) { 2409 hid0 = mfspr(SPRN_HID0); 2410 if (hid0 & stat_bit) 2411 break; 2412 cpu_relax(); 2413 } 2414 } 2415 2416 /* Start all the threads */ 2417 active = 0; 2418 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2419 thr = subcore_thread_map[sub]; 2420 thr0_done = false; 2421 active |= 1 << thr; 2422 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2423 pvc->pcpu = pcpu + thr; 2424 list_for_each_entry(vcpu, &pvc->runnable_threads, 2425 arch.run_list) { 2426 kvmppc_start_thread(vcpu, pvc); 2427 kvmppc_create_dtl_entry(vcpu, pvc); 2428 trace_kvm_guest_enter(vcpu); 2429 if (!vcpu->arch.ptid) 2430 thr0_done = true; 2431 active |= 1 << (thr + vcpu->arch.ptid); 2432 } 2433 /* 2434 * We need to start the first thread of each subcore 2435 * even if it doesn't have a vcpu. 2436 */ 2437 if (pvc->master_vcore == pvc && !thr0_done) 2438 kvmppc_start_thread(NULL, pvc); 2439 thr += pvc->num_threads; 2440 } 2441 } 2442 2443 /* 2444 * Ensure that split_info.do_nap is set after setting 2445 * the vcore pointer in the PACA of the secondaries. 2446 */ 2447 smp_mb(); 2448 if (cmd_bit) 2449 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2450 2451 /* 2452 * When doing micro-threading, poke the inactive threads as well. 2453 * This gets them to the nap instruction after kvm_do_nap, 2454 * which reduces the time taken to unsplit later. 2455 */ 2456 if (split > 1) 2457 for (thr = 1; thr < threads_per_subcore; ++thr) 2458 if (!(active & (1 << thr))) 2459 kvmppc_ipi_thread(pcpu + thr); 2460 2461 vc->vcore_state = VCORE_RUNNING; 2462 preempt_disable(); 2463 2464 trace_kvmppc_run_core(vc, 0); 2465 2466 for (sub = 0; sub < core_info.n_subcores; ++sub) 2467 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2468 spin_unlock(&pvc->lock); 2469 2470 kvm_guest_enter(); 2471 2472 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2473 2474 if (vc->mpp_buffer_is_valid) 2475 kvmppc_start_restoring_l2_cache(vc); 2476 2477 __kvmppc_vcore_entry(); 2478 2479 if (vc->mpp_buffer) 2480 kvmppc_start_saving_l2_cache(vc); 2481 2482 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2483 2484 spin_lock(&vc->lock); 2485 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2486 vc->vcore_state = VCORE_EXITING; 2487 2488 /* wait for secondary threads to finish writing their state to memory */ 2489 kvmppc_wait_for_nap(); 2490 2491 /* Return to whole-core mode if we split the core earlier */ 2492 if (split > 1) { 2493 unsigned long hid0 = mfspr(SPRN_HID0); 2494 unsigned long loops = 0; 2495 2496 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2497 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2498 mb(); 2499 mtspr(SPRN_HID0, hid0); 2500 isync(); 2501 for (;;) { 2502 hid0 = mfspr(SPRN_HID0); 2503 if (!(hid0 & stat_bit)) 2504 break; 2505 cpu_relax(); 2506 ++loops; 2507 } 2508 split_info.do_nap = 0; 2509 } 2510 2511 /* Let secondaries go back to the offline loop */ 2512 for (i = 0; i < threads_per_subcore; ++i) { 2513 kvmppc_release_hwthread(pcpu + i); 2514 if (sip && sip->napped[i]) 2515 kvmppc_ipi_thread(pcpu + i); 2516 } 2517 2518 spin_unlock(&vc->lock); 2519 2520 /* make sure updates to secondary vcpu structs are visible now */ 2521 smp_mb(); 2522 kvm_guest_exit(); 2523 2524 for (sub = 0; sub < core_info.n_subcores; ++sub) 2525 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2526 preempt_list) 2527 post_guest_process(pvc, pvc == vc); 2528 2529 spin_lock(&vc->lock); 2530 preempt_enable(); 2531 2532 out: 2533 vc->vcore_state = VCORE_INACTIVE; 2534 trace_kvmppc_run_core(vc, 1); 2535 } 2536 2537 /* 2538 * Wait for some other vcpu thread to execute us, and 2539 * wake us up when we need to handle something in the host. 2540 */ 2541 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2542 struct kvm_vcpu *vcpu, int wait_state) 2543 { 2544 DEFINE_WAIT(wait); 2545 2546 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2547 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2548 spin_unlock(&vc->lock); 2549 schedule(); 2550 spin_lock(&vc->lock); 2551 } 2552 finish_wait(&vcpu->arch.cpu_run, &wait); 2553 } 2554 2555 /* 2556 * All the vcpus in this vcore are idle, so wait for a decrementer 2557 * or external interrupt to one of the vcpus. vc->lock is held. 2558 */ 2559 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2560 { 2561 struct kvm_vcpu *vcpu; 2562 int do_sleep = 1; 2563 2564 DEFINE_WAIT(wait); 2565 2566 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2567 2568 /* 2569 * Check one last time for pending exceptions and ceded state after 2570 * we put ourselves on the wait queue 2571 */ 2572 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2573 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2574 do_sleep = 0; 2575 break; 2576 } 2577 } 2578 2579 if (!do_sleep) { 2580 finish_wait(&vc->wq, &wait); 2581 return; 2582 } 2583 2584 vc->vcore_state = VCORE_SLEEPING; 2585 trace_kvmppc_vcore_blocked(vc, 0); 2586 spin_unlock(&vc->lock); 2587 schedule(); 2588 finish_wait(&vc->wq, &wait); 2589 spin_lock(&vc->lock); 2590 vc->vcore_state = VCORE_INACTIVE; 2591 trace_kvmppc_vcore_blocked(vc, 1); 2592 } 2593 2594 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2595 { 2596 int n_ceded; 2597 struct kvmppc_vcore *vc; 2598 struct kvm_vcpu *v, *vn; 2599 2600 trace_kvmppc_run_vcpu_enter(vcpu); 2601 2602 kvm_run->exit_reason = 0; 2603 vcpu->arch.ret = RESUME_GUEST; 2604 vcpu->arch.trap = 0; 2605 kvmppc_update_vpas(vcpu); 2606 2607 /* 2608 * Synchronize with other threads in this virtual core 2609 */ 2610 vc = vcpu->arch.vcore; 2611 spin_lock(&vc->lock); 2612 vcpu->arch.ceded = 0; 2613 vcpu->arch.run_task = current; 2614 vcpu->arch.kvm_run = kvm_run; 2615 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2616 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2617 vcpu->arch.busy_preempt = TB_NIL; 2618 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2619 ++vc->n_runnable; 2620 2621 /* 2622 * This happens the first time this is called for a vcpu. 2623 * If the vcore is already running, we may be able to start 2624 * this thread straight away and have it join in. 2625 */ 2626 if (!signal_pending(current)) { 2627 if (vc->vcore_state == VCORE_PIGGYBACK) { 2628 struct kvmppc_vcore *mvc = vc->master_vcore; 2629 if (spin_trylock(&mvc->lock)) { 2630 if (mvc->vcore_state == VCORE_RUNNING && 2631 !VCORE_IS_EXITING(mvc)) { 2632 kvmppc_create_dtl_entry(vcpu, vc); 2633 kvmppc_start_thread(vcpu, vc); 2634 trace_kvm_guest_enter(vcpu); 2635 } 2636 spin_unlock(&mvc->lock); 2637 } 2638 } else if (vc->vcore_state == VCORE_RUNNING && 2639 !VCORE_IS_EXITING(vc)) { 2640 kvmppc_create_dtl_entry(vcpu, vc); 2641 kvmppc_start_thread(vcpu, vc); 2642 trace_kvm_guest_enter(vcpu); 2643 } else if (vc->vcore_state == VCORE_SLEEPING) { 2644 wake_up(&vc->wq); 2645 } 2646 2647 } 2648 2649 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2650 !signal_pending(current)) { 2651 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2652 kvmppc_vcore_end_preempt(vc); 2653 2654 if (vc->vcore_state != VCORE_INACTIVE) { 2655 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2656 continue; 2657 } 2658 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2659 arch.run_list) { 2660 kvmppc_core_prepare_to_enter(v); 2661 if (signal_pending(v->arch.run_task)) { 2662 kvmppc_remove_runnable(vc, v); 2663 v->stat.signal_exits++; 2664 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2665 v->arch.ret = -EINTR; 2666 wake_up(&v->arch.cpu_run); 2667 } 2668 } 2669 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2670 break; 2671 n_ceded = 0; 2672 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2673 if (!v->arch.pending_exceptions) 2674 n_ceded += v->arch.ceded; 2675 else 2676 v->arch.ceded = 0; 2677 } 2678 vc->runner = vcpu; 2679 if (n_ceded == vc->n_runnable) { 2680 kvmppc_vcore_blocked(vc); 2681 } else if (need_resched()) { 2682 kvmppc_vcore_preempt(vc); 2683 /* Let something else run */ 2684 cond_resched_lock(&vc->lock); 2685 if (vc->vcore_state == VCORE_PREEMPT) 2686 kvmppc_vcore_end_preempt(vc); 2687 } else { 2688 kvmppc_run_core(vc); 2689 } 2690 vc->runner = NULL; 2691 } 2692 2693 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2694 (vc->vcore_state == VCORE_RUNNING || 2695 vc->vcore_state == VCORE_EXITING)) 2696 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2697 2698 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2699 kvmppc_remove_runnable(vc, vcpu); 2700 vcpu->stat.signal_exits++; 2701 kvm_run->exit_reason = KVM_EXIT_INTR; 2702 vcpu->arch.ret = -EINTR; 2703 } 2704 2705 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2706 /* Wake up some vcpu to run the core */ 2707 v = list_first_entry(&vc->runnable_threads, 2708 struct kvm_vcpu, arch.run_list); 2709 wake_up(&v->arch.cpu_run); 2710 } 2711 2712 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2713 spin_unlock(&vc->lock); 2714 return vcpu->arch.ret; 2715 } 2716 2717 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2718 { 2719 int r; 2720 int srcu_idx; 2721 2722 if (!vcpu->arch.sane) { 2723 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2724 return -EINVAL; 2725 } 2726 2727 kvmppc_core_prepare_to_enter(vcpu); 2728 2729 /* No need to go into the guest when all we'll do is come back out */ 2730 if (signal_pending(current)) { 2731 run->exit_reason = KVM_EXIT_INTR; 2732 return -EINTR; 2733 } 2734 2735 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2736 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2737 smp_mb(); 2738 2739 /* On the first time here, set up HTAB and VRMA */ 2740 if (!vcpu->kvm->arch.hpte_setup_done) { 2741 r = kvmppc_hv_setup_htab_rma(vcpu); 2742 if (r) 2743 goto out; 2744 } 2745 2746 flush_fp_to_thread(current); 2747 flush_altivec_to_thread(current); 2748 flush_vsx_to_thread(current); 2749 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2750 vcpu->arch.pgdir = current->mm->pgd; 2751 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2752 2753 do { 2754 r = kvmppc_run_vcpu(run, vcpu); 2755 2756 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2757 !(vcpu->arch.shregs.msr & MSR_PR)) { 2758 trace_kvm_hcall_enter(vcpu); 2759 r = kvmppc_pseries_do_hcall(vcpu); 2760 trace_kvm_hcall_exit(vcpu, r); 2761 kvmppc_core_prepare_to_enter(vcpu); 2762 } else if (r == RESUME_PAGE_FAULT) { 2763 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2764 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2765 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2766 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2767 } 2768 } while (is_kvmppc_resume_guest(r)); 2769 2770 out: 2771 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2772 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2773 return r; 2774 } 2775 2776 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2777 int linux_psize) 2778 { 2779 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2780 2781 if (!def->shift) 2782 return; 2783 (*sps)->page_shift = def->shift; 2784 (*sps)->slb_enc = def->sllp; 2785 (*sps)->enc[0].page_shift = def->shift; 2786 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2787 /* 2788 * Add 16MB MPSS support if host supports it 2789 */ 2790 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2791 (*sps)->enc[1].page_shift = 24; 2792 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2793 } 2794 (*sps)++; 2795 } 2796 2797 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2798 struct kvm_ppc_smmu_info *info) 2799 { 2800 struct kvm_ppc_one_seg_page_size *sps; 2801 2802 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2803 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2804 info->flags |= KVM_PPC_1T_SEGMENTS; 2805 info->slb_size = mmu_slb_size; 2806 2807 /* We only support these sizes for now, and no muti-size segments */ 2808 sps = &info->sps[0]; 2809 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2810 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2811 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2812 2813 return 0; 2814 } 2815 2816 /* 2817 * Get (and clear) the dirty memory log for a memory slot. 2818 */ 2819 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2820 struct kvm_dirty_log *log) 2821 { 2822 struct kvm_memslots *slots; 2823 struct kvm_memory_slot *memslot; 2824 int r; 2825 unsigned long n; 2826 2827 mutex_lock(&kvm->slots_lock); 2828 2829 r = -EINVAL; 2830 if (log->slot >= KVM_USER_MEM_SLOTS) 2831 goto out; 2832 2833 slots = kvm_memslots(kvm); 2834 memslot = id_to_memslot(slots, log->slot); 2835 r = -ENOENT; 2836 if (!memslot->dirty_bitmap) 2837 goto out; 2838 2839 n = kvm_dirty_bitmap_bytes(memslot); 2840 memset(memslot->dirty_bitmap, 0, n); 2841 2842 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2843 if (r) 2844 goto out; 2845 2846 r = -EFAULT; 2847 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2848 goto out; 2849 2850 r = 0; 2851 out: 2852 mutex_unlock(&kvm->slots_lock); 2853 return r; 2854 } 2855 2856 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2857 struct kvm_memory_slot *dont) 2858 { 2859 if (!dont || free->arch.rmap != dont->arch.rmap) { 2860 vfree(free->arch.rmap); 2861 free->arch.rmap = NULL; 2862 } 2863 } 2864 2865 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2866 unsigned long npages) 2867 { 2868 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2869 if (!slot->arch.rmap) 2870 return -ENOMEM; 2871 2872 return 0; 2873 } 2874 2875 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2876 struct kvm_memory_slot *memslot, 2877 const struct kvm_userspace_memory_region *mem) 2878 { 2879 return 0; 2880 } 2881 2882 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2883 const struct kvm_userspace_memory_region *mem, 2884 const struct kvm_memory_slot *old, 2885 const struct kvm_memory_slot *new) 2886 { 2887 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2888 struct kvm_memslots *slots; 2889 struct kvm_memory_slot *memslot; 2890 2891 if (npages && old->npages) { 2892 /* 2893 * If modifying a memslot, reset all the rmap dirty bits. 2894 * If this is a new memslot, we don't need to do anything 2895 * since the rmap array starts out as all zeroes, 2896 * i.e. no pages are dirty. 2897 */ 2898 slots = kvm_memslots(kvm); 2899 memslot = id_to_memslot(slots, mem->slot); 2900 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2901 } 2902 } 2903 2904 /* 2905 * Update LPCR values in kvm->arch and in vcores. 2906 * Caller must hold kvm->lock. 2907 */ 2908 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2909 { 2910 long int i; 2911 u32 cores_done = 0; 2912 2913 if ((kvm->arch.lpcr & mask) == lpcr) 2914 return; 2915 2916 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2917 2918 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2919 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2920 if (!vc) 2921 continue; 2922 spin_lock(&vc->lock); 2923 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2924 spin_unlock(&vc->lock); 2925 if (++cores_done >= kvm->arch.online_vcores) 2926 break; 2927 } 2928 } 2929 2930 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2931 { 2932 return; 2933 } 2934 2935 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2936 { 2937 int err = 0; 2938 struct kvm *kvm = vcpu->kvm; 2939 unsigned long hva; 2940 struct kvm_memory_slot *memslot; 2941 struct vm_area_struct *vma; 2942 unsigned long lpcr = 0, senc; 2943 unsigned long psize, porder; 2944 int srcu_idx; 2945 2946 mutex_lock(&kvm->lock); 2947 if (kvm->arch.hpte_setup_done) 2948 goto out; /* another vcpu beat us to it */ 2949 2950 /* Allocate hashed page table (if not done already) and reset it */ 2951 if (!kvm->arch.hpt_virt) { 2952 err = kvmppc_alloc_hpt(kvm, NULL); 2953 if (err) { 2954 pr_err("KVM: Couldn't alloc HPT\n"); 2955 goto out; 2956 } 2957 } 2958 2959 /* Look up the memslot for guest physical address 0 */ 2960 srcu_idx = srcu_read_lock(&kvm->srcu); 2961 memslot = gfn_to_memslot(kvm, 0); 2962 2963 /* We must have some memory at 0 by now */ 2964 err = -EINVAL; 2965 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2966 goto out_srcu; 2967 2968 /* Look up the VMA for the start of this memory slot */ 2969 hva = memslot->userspace_addr; 2970 down_read(¤t->mm->mmap_sem); 2971 vma = find_vma(current->mm, hva); 2972 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2973 goto up_out; 2974 2975 psize = vma_kernel_pagesize(vma); 2976 porder = __ilog2(psize); 2977 2978 up_read(¤t->mm->mmap_sem); 2979 2980 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2981 err = -EINVAL; 2982 if (!(psize == 0x1000 || psize == 0x10000 || 2983 psize == 0x1000000)) 2984 goto out_srcu; 2985 2986 /* Update VRMASD field in the LPCR */ 2987 senc = slb_pgsize_encoding(psize); 2988 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2989 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2990 /* the -4 is to account for senc values starting at 0x10 */ 2991 lpcr = senc << (LPCR_VRMASD_SH - 4); 2992 2993 /* Create HPTEs in the hash page table for the VRMA */ 2994 kvmppc_map_vrma(vcpu, memslot, porder); 2995 2996 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 2997 2998 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 2999 smp_wmb(); 3000 kvm->arch.hpte_setup_done = 1; 3001 err = 0; 3002 out_srcu: 3003 srcu_read_unlock(&kvm->srcu, srcu_idx); 3004 out: 3005 mutex_unlock(&kvm->lock); 3006 return err; 3007 3008 up_out: 3009 up_read(¤t->mm->mmap_sem); 3010 goto out_srcu; 3011 } 3012 3013 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3014 { 3015 unsigned long lpcr, lpid; 3016 char buf[32]; 3017 3018 /* Allocate the guest's logical partition ID */ 3019 3020 lpid = kvmppc_alloc_lpid(); 3021 if ((long)lpid < 0) 3022 return -ENOMEM; 3023 kvm->arch.lpid = lpid; 3024 3025 /* 3026 * Since we don't flush the TLB when tearing down a VM, 3027 * and this lpid might have previously been used, 3028 * make sure we flush on each core before running the new VM. 3029 */ 3030 cpumask_setall(&kvm->arch.need_tlb_flush); 3031 3032 /* Start out with the default set of hcalls enabled */ 3033 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3034 sizeof(kvm->arch.enabled_hcalls)); 3035 3036 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3037 3038 /* Init LPCR for virtual RMA mode */ 3039 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3040 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3041 lpcr &= LPCR_PECE | LPCR_LPES; 3042 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3043 LPCR_VPM0 | LPCR_VPM1; 3044 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3045 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3046 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3047 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3048 lpcr |= LPCR_ONL; 3049 kvm->arch.lpcr = lpcr; 3050 3051 /* 3052 * Track that we now have a HV mode VM active. This blocks secondary 3053 * CPU threads from coming online. 3054 */ 3055 kvm_hv_vm_activated(); 3056 3057 /* 3058 * Create a debugfs directory for the VM 3059 */ 3060 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3061 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3062 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3063 kvmppc_mmu_debugfs_init(kvm); 3064 3065 return 0; 3066 } 3067 3068 static void kvmppc_free_vcores(struct kvm *kvm) 3069 { 3070 long int i; 3071 3072 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3073 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) { 3074 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3075 free_pages((unsigned long)vc->mpp_buffer, 3076 MPP_BUFFER_ORDER); 3077 } 3078 kfree(kvm->arch.vcores[i]); 3079 } 3080 kvm->arch.online_vcores = 0; 3081 } 3082 3083 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3084 { 3085 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3086 3087 kvm_hv_vm_deactivated(); 3088 3089 kvmppc_free_vcores(kvm); 3090 3091 kvmppc_free_hpt(kvm); 3092 } 3093 3094 /* We don't need to emulate any privileged instructions or dcbz */ 3095 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3096 unsigned int inst, int *advance) 3097 { 3098 return EMULATE_FAIL; 3099 } 3100 3101 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3102 ulong spr_val) 3103 { 3104 return EMULATE_FAIL; 3105 } 3106 3107 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3108 ulong *spr_val) 3109 { 3110 return EMULATE_FAIL; 3111 } 3112 3113 static int kvmppc_core_check_processor_compat_hv(void) 3114 { 3115 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3116 !cpu_has_feature(CPU_FTR_ARCH_206)) 3117 return -EIO; 3118 return 0; 3119 } 3120 3121 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3122 unsigned int ioctl, unsigned long arg) 3123 { 3124 struct kvm *kvm __maybe_unused = filp->private_data; 3125 void __user *argp = (void __user *)arg; 3126 long r; 3127 3128 switch (ioctl) { 3129 3130 case KVM_PPC_ALLOCATE_HTAB: { 3131 u32 htab_order; 3132 3133 r = -EFAULT; 3134 if (get_user(htab_order, (u32 __user *)argp)) 3135 break; 3136 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 3137 if (r) 3138 break; 3139 r = -EFAULT; 3140 if (put_user(htab_order, (u32 __user *)argp)) 3141 break; 3142 r = 0; 3143 break; 3144 } 3145 3146 case KVM_PPC_GET_HTAB_FD: { 3147 struct kvm_get_htab_fd ghf; 3148 3149 r = -EFAULT; 3150 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3151 break; 3152 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3153 break; 3154 } 3155 3156 default: 3157 r = -ENOTTY; 3158 } 3159 3160 return r; 3161 } 3162 3163 /* 3164 * List of hcall numbers to enable by default. 3165 * For compatibility with old userspace, we enable by default 3166 * all hcalls that were implemented before the hcall-enabling 3167 * facility was added. Note this list should not include H_RTAS. 3168 */ 3169 static unsigned int default_hcall_list[] = { 3170 H_REMOVE, 3171 H_ENTER, 3172 H_READ, 3173 H_PROTECT, 3174 H_BULK_REMOVE, 3175 H_GET_TCE, 3176 H_PUT_TCE, 3177 H_SET_DABR, 3178 H_SET_XDABR, 3179 H_CEDE, 3180 H_PROD, 3181 H_CONFER, 3182 H_REGISTER_VPA, 3183 #ifdef CONFIG_KVM_XICS 3184 H_EOI, 3185 H_CPPR, 3186 H_IPI, 3187 H_IPOLL, 3188 H_XIRR, 3189 H_XIRR_X, 3190 #endif 3191 0 3192 }; 3193 3194 static void init_default_hcalls(void) 3195 { 3196 int i; 3197 unsigned int hcall; 3198 3199 for (i = 0; default_hcall_list[i]; ++i) { 3200 hcall = default_hcall_list[i]; 3201 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3202 __set_bit(hcall / 4, default_enabled_hcalls); 3203 } 3204 } 3205 3206 static struct kvmppc_ops kvm_ops_hv = { 3207 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3208 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3209 .get_one_reg = kvmppc_get_one_reg_hv, 3210 .set_one_reg = kvmppc_set_one_reg_hv, 3211 .vcpu_load = kvmppc_core_vcpu_load_hv, 3212 .vcpu_put = kvmppc_core_vcpu_put_hv, 3213 .set_msr = kvmppc_set_msr_hv, 3214 .vcpu_run = kvmppc_vcpu_run_hv, 3215 .vcpu_create = kvmppc_core_vcpu_create_hv, 3216 .vcpu_free = kvmppc_core_vcpu_free_hv, 3217 .check_requests = kvmppc_core_check_requests_hv, 3218 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3219 .flush_memslot = kvmppc_core_flush_memslot_hv, 3220 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3221 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3222 .unmap_hva = kvm_unmap_hva_hv, 3223 .unmap_hva_range = kvm_unmap_hva_range_hv, 3224 .age_hva = kvm_age_hva_hv, 3225 .test_age_hva = kvm_test_age_hva_hv, 3226 .set_spte_hva = kvm_set_spte_hva_hv, 3227 .mmu_destroy = kvmppc_mmu_destroy_hv, 3228 .free_memslot = kvmppc_core_free_memslot_hv, 3229 .create_memslot = kvmppc_core_create_memslot_hv, 3230 .init_vm = kvmppc_core_init_vm_hv, 3231 .destroy_vm = kvmppc_core_destroy_vm_hv, 3232 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3233 .emulate_op = kvmppc_core_emulate_op_hv, 3234 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3235 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3236 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3237 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3238 .hcall_implemented = kvmppc_hcall_impl_hv, 3239 }; 3240 3241 static int kvmppc_book3s_init_hv(void) 3242 { 3243 int r; 3244 /* 3245 * FIXME!! Do we need to check on all cpus ? 3246 */ 3247 r = kvmppc_core_check_processor_compat_hv(); 3248 if (r < 0) 3249 return -ENODEV; 3250 3251 kvm_ops_hv.owner = THIS_MODULE; 3252 kvmppc_hv_ops = &kvm_ops_hv; 3253 3254 init_default_hcalls(); 3255 3256 init_vcore_lists(); 3257 3258 r = kvmppc_mmu_hv_init(); 3259 return r; 3260 } 3261 3262 static void kvmppc_book3s_exit_hv(void) 3263 { 3264 kvmppc_hv_ops = NULL; 3265 } 3266 3267 module_init(kvmppc_book3s_init_hv); 3268 module_exit(kvmppc_book3s_exit_hv); 3269 MODULE_LICENSE("GPL"); 3270 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3271 MODULE_ALIAS("devname:kvm"); 3272