xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 1ab142d4)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <linux/gfp.h>
49 #include <linux/vmalloc.h>
50 #include <linux/highmem.h>
51 
52 /*
53  * For now, limit memory to 64GB and require it to be large pages.
54  * This value is chosen because it makes the ram_pginfo array be
55  * 64kB in size, which is about as large as we want to be trying
56  * to allocate with kmalloc.
57  */
58 #define MAX_MEM_ORDER		36
59 
60 #define LARGE_PAGE_ORDER	24	/* 16MB pages */
61 
62 /* #define EXIT_DEBUG */
63 /* #define EXIT_DEBUG_SIMPLE */
64 /* #define EXIT_DEBUG_INT */
65 
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 
68 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
69 {
70 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
71 	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
72 }
73 
74 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
75 {
76 }
77 
78 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
79 {
80 	vcpu->arch.shregs.msr = msr;
81 	kvmppc_end_cede(vcpu);
82 }
83 
84 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
85 {
86 	vcpu->arch.pvr = pvr;
87 }
88 
89 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
90 {
91 	int r;
92 
93 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
94 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
95 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
96 	for (r = 0; r < 16; ++r)
97 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
98 		       r, kvmppc_get_gpr(vcpu, r),
99 		       r+16, kvmppc_get_gpr(vcpu, r+16));
100 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
101 	       vcpu->arch.ctr, vcpu->arch.lr);
102 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
103 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
104 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
105 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
106 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
107 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
108 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
109 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
110 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
111 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
112 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
113 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
114 	for (r = 0; r < vcpu->arch.slb_max; ++r)
115 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
116 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
117 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
118 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
119 	       vcpu->arch.last_inst);
120 }
121 
122 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
123 {
124 	int r;
125 	struct kvm_vcpu *v, *ret = NULL;
126 
127 	mutex_lock(&kvm->lock);
128 	kvm_for_each_vcpu(r, v, kvm) {
129 		if (v->vcpu_id == id) {
130 			ret = v;
131 			break;
132 		}
133 	}
134 	mutex_unlock(&kvm->lock);
135 	return ret;
136 }
137 
138 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
139 {
140 	vpa->shared_proc = 1;
141 	vpa->yield_count = 1;
142 }
143 
144 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
145 				       unsigned long flags,
146 				       unsigned long vcpuid, unsigned long vpa)
147 {
148 	struct kvm *kvm = vcpu->kvm;
149 	unsigned long pg_index, ra, len;
150 	unsigned long pg_offset;
151 	void *va;
152 	struct kvm_vcpu *tvcpu;
153 
154 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
155 	if (!tvcpu)
156 		return H_PARAMETER;
157 
158 	flags >>= 63 - 18;
159 	flags &= 7;
160 	if (flags == 0 || flags == 4)
161 		return H_PARAMETER;
162 	if (flags < 4) {
163 		if (vpa & 0x7f)
164 			return H_PARAMETER;
165 		/* registering new area; convert logical addr to real */
166 		pg_index = vpa >> kvm->arch.ram_porder;
167 		pg_offset = vpa & (kvm->arch.ram_psize - 1);
168 		if (pg_index >= kvm->arch.ram_npages)
169 			return H_PARAMETER;
170 		if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
171 			return H_PARAMETER;
172 		ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
173 		ra |= pg_offset;
174 		va = __va(ra);
175 		if (flags <= 1)
176 			len = *(unsigned short *)(va + 4);
177 		else
178 			len = *(unsigned int *)(va + 4);
179 		if (pg_offset + len > kvm->arch.ram_psize)
180 			return H_PARAMETER;
181 		switch (flags) {
182 		case 1:		/* register VPA */
183 			if (len < 640)
184 				return H_PARAMETER;
185 			tvcpu->arch.vpa = va;
186 			init_vpa(vcpu, va);
187 			break;
188 		case 2:		/* register DTL */
189 			if (len < 48)
190 				return H_PARAMETER;
191 			if (!tvcpu->arch.vpa)
192 				return H_RESOURCE;
193 			len -= len % 48;
194 			tvcpu->arch.dtl = va;
195 			tvcpu->arch.dtl_end = va + len;
196 			break;
197 		case 3:		/* register SLB shadow buffer */
198 			if (len < 8)
199 				return H_PARAMETER;
200 			if (!tvcpu->arch.vpa)
201 				return H_RESOURCE;
202 			tvcpu->arch.slb_shadow = va;
203 			len = (len - 16) / 16;
204 			tvcpu->arch.slb_shadow = va;
205 			break;
206 		}
207 	} else {
208 		switch (flags) {
209 		case 5:		/* unregister VPA */
210 			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
211 				return H_RESOURCE;
212 			tvcpu->arch.vpa = NULL;
213 			break;
214 		case 6:		/* unregister DTL */
215 			tvcpu->arch.dtl = NULL;
216 			break;
217 		case 7:		/* unregister SLB shadow buffer */
218 			tvcpu->arch.slb_shadow = NULL;
219 			break;
220 		}
221 	}
222 	return H_SUCCESS;
223 }
224 
225 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
226 {
227 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
228 	unsigned long target, ret = H_SUCCESS;
229 	struct kvm_vcpu *tvcpu;
230 
231 	switch (req) {
232 	case H_CEDE:
233 		break;
234 	case H_PROD:
235 		target = kvmppc_get_gpr(vcpu, 4);
236 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
237 		if (!tvcpu) {
238 			ret = H_PARAMETER;
239 			break;
240 		}
241 		tvcpu->arch.prodded = 1;
242 		smp_mb();
243 		if (vcpu->arch.ceded) {
244 			if (waitqueue_active(&vcpu->wq)) {
245 				wake_up_interruptible(&vcpu->wq);
246 				vcpu->stat.halt_wakeup++;
247 			}
248 		}
249 		break;
250 	case H_CONFER:
251 		break;
252 	case H_REGISTER_VPA:
253 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
254 					kvmppc_get_gpr(vcpu, 5),
255 					kvmppc_get_gpr(vcpu, 6));
256 		break;
257 	default:
258 		return RESUME_HOST;
259 	}
260 	kvmppc_set_gpr(vcpu, 3, ret);
261 	vcpu->arch.hcall_needed = 0;
262 	return RESUME_GUEST;
263 }
264 
265 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
266 			      struct task_struct *tsk)
267 {
268 	int r = RESUME_HOST;
269 
270 	vcpu->stat.sum_exits++;
271 
272 	run->exit_reason = KVM_EXIT_UNKNOWN;
273 	run->ready_for_interrupt_injection = 1;
274 	switch (vcpu->arch.trap) {
275 	/* We're good on these - the host merely wanted to get our attention */
276 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
277 		vcpu->stat.dec_exits++;
278 		r = RESUME_GUEST;
279 		break;
280 	case BOOK3S_INTERRUPT_EXTERNAL:
281 		vcpu->stat.ext_intr_exits++;
282 		r = RESUME_GUEST;
283 		break;
284 	case BOOK3S_INTERRUPT_PERFMON:
285 		r = RESUME_GUEST;
286 		break;
287 	case BOOK3S_INTERRUPT_PROGRAM:
288 	{
289 		ulong flags;
290 		/*
291 		 * Normally program interrupts are delivered directly
292 		 * to the guest by the hardware, but we can get here
293 		 * as a result of a hypervisor emulation interrupt
294 		 * (e40) getting turned into a 700 by BML RTAS.
295 		 */
296 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
297 		kvmppc_core_queue_program(vcpu, flags);
298 		r = RESUME_GUEST;
299 		break;
300 	}
301 	case BOOK3S_INTERRUPT_SYSCALL:
302 	{
303 		/* hcall - punt to userspace */
304 		int i;
305 
306 		if (vcpu->arch.shregs.msr & MSR_PR) {
307 			/* sc 1 from userspace - reflect to guest syscall */
308 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
309 			r = RESUME_GUEST;
310 			break;
311 		}
312 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
313 		for (i = 0; i < 9; ++i)
314 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
315 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
316 		vcpu->arch.hcall_needed = 1;
317 		r = RESUME_HOST;
318 		break;
319 	}
320 	/*
321 	 * We get these next two if the guest does a bad real-mode access,
322 	 * as we have enabled VRMA (virtualized real mode area) mode in the
323 	 * LPCR.  We just generate an appropriate DSI/ISI to the guest.
324 	 */
325 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
326 		vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
327 		vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
328 		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
329 		r = RESUME_GUEST;
330 		break;
331 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
332 		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
333 					0x08000000);
334 		r = RESUME_GUEST;
335 		break;
336 	/*
337 	 * This occurs if the guest executes an illegal instruction.
338 	 * We just generate a program interrupt to the guest, since
339 	 * we don't emulate any guest instructions at this stage.
340 	 */
341 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
342 		kvmppc_core_queue_program(vcpu, 0x80000);
343 		r = RESUME_GUEST;
344 		break;
345 	default:
346 		kvmppc_dump_regs(vcpu);
347 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
348 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
349 			vcpu->arch.shregs.msr);
350 		r = RESUME_HOST;
351 		BUG();
352 		break;
353 	}
354 
355 	return r;
356 }
357 
358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
359                                   struct kvm_sregs *sregs)
360 {
361 	int i;
362 
363 	sregs->pvr = vcpu->arch.pvr;
364 
365 	memset(sregs, 0, sizeof(struct kvm_sregs));
366 	for (i = 0; i < vcpu->arch.slb_max; i++) {
367 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
368 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
369 	}
370 
371 	return 0;
372 }
373 
374 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
375                                   struct kvm_sregs *sregs)
376 {
377 	int i, j;
378 
379 	kvmppc_set_pvr(vcpu, sregs->pvr);
380 
381 	j = 0;
382 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
383 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
384 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
385 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
386 			++j;
387 		}
388 	}
389 	vcpu->arch.slb_max = j;
390 
391 	return 0;
392 }
393 
394 int kvmppc_core_check_processor_compat(void)
395 {
396 	if (cpu_has_feature(CPU_FTR_HVMODE))
397 		return 0;
398 	return -EIO;
399 }
400 
401 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
402 {
403 	struct kvm_vcpu *vcpu;
404 	int err = -EINVAL;
405 	int core;
406 	struct kvmppc_vcore *vcore;
407 
408 	core = id / threads_per_core;
409 	if (core >= KVM_MAX_VCORES)
410 		goto out;
411 
412 	err = -ENOMEM;
413 	vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
414 	if (!vcpu)
415 		goto out;
416 
417 	err = kvm_vcpu_init(vcpu, kvm, id);
418 	if (err)
419 		goto free_vcpu;
420 
421 	vcpu->arch.shared = &vcpu->arch.shregs;
422 	vcpu->arch.last_cpu = -1;
423 	vcpu->arch.mmcr[0] = MMCR0_FC;
424 	vcpu->arch.ctrl = CTRL_RUNLATCH;
425 	/* default to host PVR, since we can't spoof it */
426 	vcpu->arch.pvr = mfspr(SPRN_PVR);
427 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
428 
429 	kvmppc_mmu_book3s_hv_init(vcpu);
430 
431 	/*
432 	 * We consider the vcpu stopped until we see the first run ioctl for it.
433 	 */
434 	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
435 
436 	init_waitqueue_head(&vcpu->arch.cpu_run);
437 
438 	mutex_lock(&kvm->lock);
439 	vcore = kvm->arch.vcores[core];
440 	if (!vcore) {
441 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
442 		if (vcore) {
443 			INIT_LIST_HEAD(&vcore->runnable_threads);
444 			spin_lock_init(&vcore->lock);
445 			init_waitqueue_head(&vcore->wq);
446 		}
447 		kvm->arch.vcores[core] = vcore;
448 	}
449 	mutex_unlock(&kvm->lock);
450 
451 	if (!vcore)
452 		goto free_vcpu;
453 
454 	spin_lock(&vcore->lock);
455 	++vcore->num_threads;
456 	spin_unlock(&vcore->lock);
457 	vcpu->arch.vcore = vcore;
458 
459 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
460 	kvmppc_sanity_check(vcpu);
461 
462 	return vcpu;
463 
464 free_vcpu:
465 	kfree(vcpu);
466 out:
467 	return ERR_PTR(err);
468 }
469 
470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
471 {
472 	kvm_vcpu_uninit(vcpu);
473 	kfree(vcpu);
474 }
475 
476 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
477 {
478 	unsigned long dec_nsec, now;
479 
480 	now = get_tb();
481 	if (now > vcpu->arch.dec_expires) {
482 		/* decrementer has already gone negative */
483 		kvmppc_core_queue_dec(vcpu);
484 		kvmppc_core_deliver_interrupts(vcpu);
485 		return;
486 	}
487 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
488 		   / tb_ticks_per_sec;
489 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
490 		      HRTIMER_MODE_REL);
491 	vcpu->arch.timer_running = 1;
492 }
493 
494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
495 {
496 	vcpu->arch.ceded = 0;
497 	if (vcpu->arch.timer_running) {
498 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
499 		vcpu->arch.timer_running = 0;
500 	}
501 }
502 
503 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
504 extern void xics_wake_cpu(int cpu);
505 
506 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
507 				   struct kvm_vcpu *vcpu)
508 {
509 	struct kvm_vcpu *v;
510 
511 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
512 		return;
513 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
514 	--vc->n_runnable;
515 	++vc->n_busy;
516 	/* decrement the physical thread id of each following vcpu */
517 	v = vcpu;
518 	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
519 		--v->arch.ptid;
520 	list_del(&vcpu->arch.run_list);
521 }
522 
523 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
524 {
525 	int cpu;
526 	struct paca_struct *tpaca;
527 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
528 
529 	if (vcpu->arch.timer_running) {
530 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
531 		vcpu->arch.timer_running = 0;
532 	}
533 	cpu = vc->pcpu + vcpu->arch.ptid;
534 	tpaca = &paca[cpu];
535 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
536 	tpaca->kvm_hstate.kvm_vcore = vc;
537 	tpaca->kvm_hstate.napping = 0;
538 	vcpu->cpu = vc->pcpu;
539 	smp_wmb();
540 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
541 	if (vcpu->arch.ptid) {
542 		tpaca->cpu_start = 0x80;
543 		wmb();
544 		xics_wake_cpu(cpu);
545 		++vc->n_woken;
546 	}
547 #endif
548 }
549 
550 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
551 {
552 	int i;
553 
554 	HMT_low();
555 	i = 0;
556 	while (vc->nap_count < vc->n_woken) {
557 		if (++i >= 1000000) {
558 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
559 			       vc->nap_count, vc->n_woken);
560 			break;
561 		}
562 		cpu_relax();
563 	}
564 	HMT_medium();
565 }
566 
567 /*
568  * Check that we are on thread 0 and that any other threads in
569  * this core are off-line.
570  */
571 static int on_primary_thread(void)
572 {
573 	int cpu = smp_processor_id();
574 	int thr = cpu_thread_in_core(cpu);
575 
576 	if (thr)
577 		return 0;
578 	while (++thr < threads_per_core)
579 		if (cpu_online(cpu + thr))
580 			return 0;
581 	return 1;
582 }
583 
584 /*
585  * Run a set of guest threads on a physical core.
586  * Called with vc->lock held.
587  */
588 static int kvmppc_run_core(struct kvmppc_vcore *vc)
589 {
590 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
591 	long ret;
592 	u64 now;
593 	int ptid;
594 
595 	/* don't start if any threads have a signal pending */
596 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
597 		if (signal_pending(vcpu->arch.run_task))
598 			return 0;
599 
600 	/*
601 	 * Make sure we are running on thread 0, and that
602 	 * secondary threads are offline.
603 	 * XXX we should also block attempts to bring any
604 	 * secondary threads online.
605 	 */
606 	if (threads_per_core > 1 && !on_primary_thread()) {
607 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
608 			vcpu->arch.ret = -EBUSY;
609 		goto out;
610 	}
611 
612 	/*
613 	 * Assign physical thread IDs, first to non-ceded vcpus
614 	 * and then to ceded ones.
615 	 */
616 	ptid = 0;
617 	vcpu0 = NULL;
618 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
619 		if (!vcpu->arch.ceded) {
620 			if (!ptid)
621 				vcpu0 = vcpu;
622 			vcpu->arch.ptid = ptid++;
623 		}
624 	}
625 	if (!vcpu0)
626 		return 0;		/* nothing to run */
627 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
628 		if (vcpu->arch.ceded)
629 			vcpu->arch.ptid = ptid++;
630 
631 	vc->n_woken = 0;
632 	vc->nap_count = 0;
633 	vc->entry_exit_count = 0;
634 	vc->vcore_state = VCORE_RUNNING;
635 	vc->in_guest = 0;
636 	vc->pcpu = smp_processor_id();
637 	vc->napping_threads = 0;
638 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
639 		kvmppc_start_thread(vcpu);
640 
641 	preempt_disable();
642 	spin_unlock(&vc->lock);
643 
644 	kvm_guest_enter();
645 	__kvmppc_vcore_entry(NULL, vcpu0);
646 
647 	spin_lock(&vc->lock);
648 	/* disable sending of IPIs on virtual external irqs */
649 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
650 		vcpu->cpu = -1;
651 	/* wait for secondary threads to finish writing their state to memory */
652 	if (vc->nap_count < vc->n_woken)
653 		kvmppc_wait_for_nap(vc);
654 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
655 	vc->vcore_state = VCORE_EXITING;
656 	spin_unlock(&vc->lock);
657 
658 	/* make sure updates to secondary vcpu structs are visible now */
659 	smp_mb();
660 	kvm_guest_exit();
661 
662 	preempt_enable();
663 	kvm_resched(vcpu);
664 
665 	now = get_tb();
666 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
667 		/* cancel pending dec exception if dec is positive */
668 		if (now < vcpu->arch.dec_expires &&
669 		    kvmppc_core_pending_dec(vcpu))
670 			kvmppc_core_dequeue_dec(vcpu);
671 
672 		ret = RESUME_GUEST;
673 		if (vcpu->arch.trap)
674 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
675 						 vcpu->arch.run_task);
676 
677 		vcpu->arch.ret = ret;
678 		vcpu->arch.trap = 0;
679 
680 		if (vcpu->arch.ceded) {
681 			if (ret != RESUME_GUEST)
682 				kvmppc_end_cede(vcpu);
683 			else
684 				kvmppc_set_timer(vcpu);
685 		}
686 	}
687 
688 	spin_lock(&vc->lock);
689  out:
690 	vc->vcore_state = VCORE_INACTIVE;
691 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
692 				 arch.run_list) {
693 		if (vcpu->arch.ret != RESUME_GUEST) {
694 			kvmppc_remove_runnable(vc, vcpu);
695 			wake_up(&vcpu->arch.cpu_run);
696 		}
697 	}
698 
699 	return 1;
700 }
701 
702 /*
703  * Wait for some other vcpu thread to execute us, and
704  * wake us up when we need to handle something in the host.
705  */
706 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
707 {
708 	DEFINE_WAIT(wait);
709 
710 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
711 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
712 		schedule();
713 	finish_wait(&vcpu->arch.cpu_run, &wait);
714 }
715 
716 /*
717  * All the vcpus in this vcore are idle, so wait for a decrementer
718  * or external interrupt to one of the vcpus.  vc->lock is held.
719  */
720 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
721 {
722 	DEFINE_WAIT(wait);
723 	struct kvm_vcpu *v;
724 	int all_idle = 1;
725 
726 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
727 	vc->vcore_state = VCORE_SLEEPING;
728 	spin_unlock(&vc->lock);
729 	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
730 		if (!v->arch.ceded || v->arch.pending_exceptions) {
731 			all_idle = 0;
732 			break;
733 		}
734 	}
735 	if (all_idle)
736 		schedule();
737 	finish_wait(&vc->wq, &wait);
738 	spin_lock(&vc->lock);
739 	vc->vcore_state = VCORE_INACTIVE;
740 }
741 
742 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
743 {
744 	int n_ceded;
745 	int prev_state;
746 	struct kvmppc_vcore *vc;
747 	struct kvm_vcpu *v, *vn;
748 
749 	kvm_run->exit_reason = 0;
750 	vcpu->arch.ret = RESUME_GUEST;
751 	vcpu->arch.trap = 0;
752 
753 	/*
754 	 * Synchronize with other threads in this virtual core
755 	 */
756 	vc = vcpu->arch.vcore;
757 	spin_lock(&vc->lock);
758 	vcpu->arch.ceded = 0;
759 	vcpu->arch.run_task = current;
760 	vcpu->arch.kvm_run = kvm_run;
761 	prev_state = vcpu->arch.state;
762 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
763 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
764 	++vc->n_runnable;
765 
766 	/*
767 	 * This happens the first time this is called for a vcpu.
768 	 * If the vcore is already running, we may be able to start
769 	 * this thread straight away and have it join in.
770 	 */
771 	if (prev_state == KVMPPC_VCPU_STOPPED) {
772 		if (vc->vcore_state == VCORE_RUNNING &&
773 		    VCORE_EXIT_COUNT(vc) == 0) {
774 			vcpu->arch.ptid = vc->n_runnable - 1;
775 			kvmppc_start_thread(vcpu);
776 		}
777 
778 	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
779 		--vc->n_busy;
780 
781 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
782 	       !signal_pending(current)) {
783 		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
784 			spin_unlock(&vc->lock);
785 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
786 			spin_lock(&vc->lock);
787 			continue;
788 		}
789 		n_ceded = 0;
790 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
791 			n_ceded += v->arch.ceded;
792 		if (n_ceded == vc->n_runnable)
793 			kvmppc_vcore_blocked(vc);
794 		else
795 			kvmppc_run_core(vc);
796 
797 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
798 					 arch.run_list) {
799 			kvmppc_core_deliver_interrupts(v);
800 			if (signal_pending(v->arch.run_task)) {
801 				kvmppc_remove_runnable(vc, v);
802 				v->stat.signal_exits++;
803 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
804 				v->arch.ret = -EINTR;
805 				wake_up(&v->arch.cpu_run);
806 			}
807 		}
808 	}
809 
810 	if (signal_pending(current)) {
811 		if (vc->vcore_state == VCORE_RUNNING ||
812 		    vc->vcore_state == VCORE_EXITING) {
813 			spin_unlock(&vc->lock);
814 			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
815 			spin_lock(&vc->lock);
816 		}
817 		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
818 			kvmppc_remove_runnable(vc, vcpu);
819 			vcpu->stat.signal_exits++;
820 			kvm_run->exit_reason = KVM_EXIT_INTR;
821 			vcpu->arch.ret = -EINTR;
822 		}
823 	}
824 
825 	spin_unlock(&vc->lock);
826 	return vcpu->arch.ret;
827 }
828 
829 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
830 {
831 	int r;
832 
833 	if (!vcpu->arch.sane) {
834 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
835 		return -EINVAL;
836 	}
837 
838 	/* No need to go into the guest when all we'll do is come back out */
839 	if (signal_pending(current)) {
840 		run->exit_reason = KVM_EXIT_INTR;
841 		return -EINTR;
842 	}
843 
844 	/* On PPC970, check that we have an RMA region */
845 	if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
846 		return -EPERM;
847 
848 	flush_fp_to_thread(current);
849 	flush_altivec_to_thread(current);
850 	flush_vsx_to_thread(current);
851 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
852 
853 	do {
854 		r = kvmppc_run_vcpu(run, vcpu);
855 
856 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
857 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
858 			r = kvmppc_pseries_do_hcall(vcpu);
859 			kvmppc_core_deliver_interrupts(vcpu);
860 		}
861 	} while (r == RESUME_GUEST);
862 	return r;
863 }
864 
865 static long kvmppc_stt_npages(unsigned long window_size)
866 {
867 	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
868 		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
869 }
870 
871 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
872 {
873 	struct kvm *kvm = stt->kvm;
874 	int i;
875 
876 	mutex_lock(&kvm->lock);
877 	list_del(&stt->list);
878 	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
879 		__free_page(stt->pages[i]);
880 	kfree(stt);
881 	mutex_unlock(&kvm->lock);
882 
883 	kvm_put_kvm(kvm);
884 }
885 
886 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
887 {
888 	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
889 	struct page *page;
890 
891 	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
892 		return VM_FAULT_SIGBUS;
893 
894 	page = stt->pages[vmf->pgoff];
895 	get_page(page);
896 	vmf->page = page;
897 	return 0;
898 }
899 
900 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
901 	.fault = kvm_spapr_tce_fault,
902 };
903 
904 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
905 {
906 	vma->vm_ops = &kvm_spapr_tce_vm_ops;
907 	return 0;
908 }
909 
910 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
911 {
912 	struct kvmppc_spapr_tce_table *stt = filp->private_data;
913 
914 	release_spapr_tce_table(stt);
915 	return 0;
916 }
917 
918 static struct file_operations kvm_spapr_tce_fops = {
919 	.mmap           = kvm_spapr_tce_mmap,
920 	.release	= kvm_spapr_tce_release,
921 };
922 
923 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
924 				   struct kvm_create_spapr_tce *args)
925 {
926 	struct kvmppc_spapr_tce_table *stt = NULL;
927 	long npages;
928 	int ret = -ENOMEM;
929 	int i;
930 
931 	/* Check this LIOBN hasn't been previously allocated */
932 	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
933 		if (stt->liobn == args->liobn)
934 			return -EBUSY;
935 	}
936 
937 	npages = kvmppc_stt_npages(args->window_size);
938 
939 	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
940 		      GFP_KERNEL);
941 	if (!stt)
942 		goto fail;
943 
944 	stt->liobn = args->liobn;
945 	stt->window_size = args->window_size;
946 	stt->kvm = kvm;
947 
948 	for (i = 0; i < npages; i++) {
949 		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
950 		if (!stt->pages[i])
951 			goto fail;
952 	}
953 
954 	kvm_get_kvm(kvm);
955 
956 	mutex_lock(&kvm->lock);
957 	list_add(&stt->list, &kvm->arch.spapr_tce_tables);
958 
959 	mutex_unlock(&kvm->lock);
960 
961 	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
962 				stt, O_RDWR);
963 
964 fail:
965 	if (stt) {
966 		for (i = 0; i < npages; i++)
967 			if (stt->pages[i])
968 				__free_page(stt->pages[i]);
969 
970 		kfree(stt);
971 	}
972 	return ret;
973 }
974 
975 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
976    Assumes POWER7 or PPC970. */
977 static inline int lpcr_rmls(unsigned long rma_size)
978 {
979 	switch (rma_size) {
980 	case 32ul << 20:	/* 32 MB */
981 		if (cpu_has_feature(CPU_FTR_ARCH_206))
982 			return 8;	/* only supported on POWER7 */
983 		return -1;
984 	case 64ul << 20:	/* 64 MB */
985 		return 3;
986 	case 128ul << 20:	/* 128 MB */
987 		return 7;
988 	case 256ul << 20:	/* 256 MB */
989 		return 4;
990 	case 1ul << 30:		/* 1 GB */
991 		return 2;
992 	case 16ul << 30:	/* 16 GB */
993 		return 1;
994 	case 256ul << 30:	/* 256 GB */
995 		return 0;
996 	default:
997 		return -1;
998 	}
999 }
1000 
1001 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1002 {
1003 	struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1004 	struct page *page;
1005 
1006 	if (vmf->pgoff >= ri->npages)
1007 		return VM_FAULT_SIGBUS;
1008 
1009 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1010 	get_page(page);
1011 	vmf->page = page;
1012 	return 0;
1013 }
1014 
1015 static const struct vm_operations_struct kvm_rma_vm_ops = {
1016 	.fault = kvm_rma_fault,
1017 };
1018 
1019 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1020 {
1021 	vma->vm_flags |= VM_RESERVED;
1022 	vma->vm_ops = &kvm_rma_vm_ops;
1023 	return 0;
1024 }
1025 
1026 static int kvm_rma_release(struct inode *inode, struct file *filp)
1027 {
1028 	struct kvmppc_rma_info *ri = filp->private_data;
1029 
1030 	kvm_release_rma(ri);
1031 	return 0;
1032 }
1033 
1034 static struct file_operations kvm_rma_fops = {
1035 	.mmap           = kvm_rma_mmap,
1036 	.release	= kvm_rma_release,
1037 };
1038 
1039 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1040 {
1041 	struct kvmppc_rma_info *ri;
1042 	long fd;
1043 
1044 	ri = kvm_alloc_rma();
1045 	if (!ri)
1046 		return -ENOMEM;
1047 
1048 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1049 	if (fd < 0)
1050 		kvm_release_rma(ri);
1051 
1052 	ret->rma_size = ri->npages << PAGE_SHIFT;
1053 	return fd;
1054 }
1055 
1056 static struct page *hva_to_page(unsigned long addr)
1057 {
1058 	struct page *page[1];
1059 	int npages;
1060 
1061 	might_sleep();
1062 
1063 	npages = get_user_pages_fast(addr, 1, 1, page);
1064 
1065 	if (unlikely(npages != 1))
1066 		return 0;
1067 
1068 	return page[0];
1069 }
1070 
1071 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1072 				struct kvm_userspace_memory_region *mem)
1073 {
1074 	unsigned long psize, porder;
1075 	unsigned long i, npages, totalpages;
1076 	unsigned long pg_ix;
1077 	struct kvmppc_pginfo *pginfo;
1078 	unsigned long hva;
1079 	struct kvmppc_rma_info *ri = NULL;
1080 	struct page *page;
1081 
1082 	/* For now, only allow 16MB pages */
1083 	porder = LARGE_PAGE_ORDER;
1084 	psize = 1ul << porder;
1085 	if ((mem->memory_size & (psize - 1)) ||
1086 	    (mem->guest_phys_addr & (psize - 1))) {
1087 		pr_err("bad memory_size=%llx @ %llx\n",
1088 		       mem->memory_size, mem->guest_phys_addr);
1089 		return -EINVAL;
1090 	}
1091 
1092 	npages = mem->memory_size >> porder;
1093 	totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1094 
1095 	/* More memory than we have space to track? */
1096 	if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1097 		return -EINVAL;
1098 
1099 	/* Do we already have an RMA registered? */
1100 	if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1101 		return -EINVAL;
1102 
1103 	if (totalpages > kvm->arch.ram_npages)
1104 		kvm->arch.ram_npages = totalpages;
1105 
1106 	/* Is this one of our preallocated RMAs? */
1107 	if (mem->guest_phys_addr == 0) {
1108 		struct vm_area_struct *vma;
1109 
1110 		down_read(&current->mm->mmap_sem);
1111 		vma = find_vma(current->mm, mem->userspace_addr);
1112 		if (vma && vma->vm_file &&
1113 		    vma->vm_file->f_op == &kvm_rma_fops &&
1114 		    mem->userspace_addr == vma->vm_start)
1115 			ri = vma->vm_file->private_data;
1116 		up_read(&current->mm->mmap_sem);
1117 		if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1118 			pr_err("CPU requires an RMO\n");
1119 			return -EINVAL;
1120 		}
1121 	}
1122 
1123 	if (ri) {
1124 		unsigned long rma_size;
1125 		unsigned long lpcr;
1126 		long rmls;
1127 
1128 		rma_size = ri->npages << PAGE_SHIFT;
1129 		if (rma_size > mem->memory_size)
1130 			rma_size = mem->memory_size;
1131 		rmls = lpcr_rmls(rma_size);
1132 		if (rmls < 0) {
1133 			pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1134 			return -EINVAL;
1135 		}
1136 		atomic_inc(&ri->use_count);
1137 		kvm->arch.rma = ri;
1138 		kvm->arch.n_rma_pages = rma_size >> porder;
1139 
1140 		/* Update LPCR and RMOR */
1141 		lpcr = kvm->arch.lpcr;
1142 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1143 			/* PPC970; insert RMLS value (split field) in HID4 */
1144 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1145 				  (3ul << HID4_RMLS2_SH));
1146 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1147 				((rmls & 3) << HID4_RMLS2_SH);
1148 			/* RMOR is also in HID4 */
1149 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1150 				<< HID4_RMOR_SH;
1151 		} else {
1152 			/* POWER7 */
1153 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1154 			lpcr |= rmls << LPCR_RMLS_SH;
1155 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1156 		}
1157 		kvm->arch.lpcr = lpcr;
1158 		pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1159 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1160 	}
1161 
1162 	pg_ix = mem->guest_phys_addr >> porder;
1163 	pginfo = kvm->arch.ram_pginfo + pg_ix;
1164 	for (i = 0; i < npages; ++i, ++pg_ix) {
1165 		if (ri && pg_ix < kvm->arch.n_rma_pages) {
1166 			pginfo[i].pfn = ri->base_pfn +
1167 				(pg_ix << (porder - PAGE_SHIFT));
1168 			continue;
1169 		}
1170 		hva = mem->userspace_addr + (i << porder);
1171 		page = hva_to_page(hva);
1172 		if (!page) {
1173 			pr_err("oops, no pfn for hva %lx\n", hva);
1174 			goto err;
1175 		}
1176 		/* Check it's a 16MB page */
1177 		if (!PageHead(page) ||
1178 		    compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1179 			pr_err("page at %lx isn't 16MB (o=%d)\n",
1180 			       hva, compound_order(page));
1181 			goto err;
1182 		}
1183 		pginfo[i].pfn = page_to_pfn(page);
1184 	}
1185 
1186 	return 0;
1187 
1188  err:
1189 	return -EINVAL;
1190 }
1191 
1192 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1193 				struct kvm_userspace_memory_region *mem)
1194 {
1195 	if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1196 	    !kvm->arch.rma)
1197 		kvmppc_map_vrma(kvm, mem);
1198 }
1199 
1200 int kvmppc_core_init_vm(struct kvm *kvm)
1201 {
1202 	long r;
1203 	unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1204 	long err = -ENOMEM;
1205 	unsigned long lpcr;
1206 
1207 	/* Allocate hashed page table */
1208 	r = kvmppc_alloc_hpt(kvm);
1209 	if (r)
1210 		return r;
1211 
1212 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1213 
1214 	kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1215 				       GFP_KERNEL);
1216 	if (!kvm->arch.ram_pginfo) {
1217 		pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1218 		       npages * sizeof(struct kvmppc_pginfo));
1219 		goto out_free;
1220 	}
1221 
1222 	kvm->arch.ram_npages = 0;
1223 	kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1224 	kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1225 	kvm->arch.rma = NULL;
1226 	kvm->arch.n_rma_pages = 0;
1227 
1228 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1229 
1230 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1231 		/* PPC970; HID4 is effectively the LPCR */
1232 		unsigned long lpid = kvm->arch.lpid;
1233 		kvm->arch.host_lpid = 0;
1234 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1235 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1236 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1237 			((lpid & 0xf) << HID4_LPID5_SH);
1238 	} else {
1239 		/* POWER7; init LPCR for virtual RMA mode */
1240 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1241 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1242 		lpcr &= LPCR_PECE | LPCR_LPES;
1243 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1244 			LPCR_VPM0 | LPCR_VRMA_L;
1245 	}
1246 	kvm->arch.lpcr = lpcr;
1247 
1248 	return 0;
1249 
1250  out_free:
1251 	kvmppc_free_hpt(kvm);
1252 	return err;
1253 }
1254 
1255 void kvmppc_core_destroy_vm(struct kvm *kvm)
1256 {
1257 	struct kvmppc_pginfo *pginfo;
1258 	unsigned long i;
1259 
1260 	if (kvm->arch.ram_pginfo) {
1261 		pginfo = kvm->arch.ram_pginfo;
1262 		kvm->arch.ram_pginfo = NULL;
1263 		for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1264 			if (pginfo[i].pfn)
1265 				put_page(pfn_to_page(pginfo[i].pfn));
1266 		kfree(pginfo);
1267 	}
1268 	if (kvm->arch.rma) {
1269 		kvm_release_rma(kvm->arch.rma);
1270 		kvm->arch.rma = NULL;
1271 	}
1272 
1273 	kvmppc_free_hpt(kvm);
1274 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1275 }
1276 
1277 /* These are stubs for now */
1278 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1279 {
1280 }
1281 
1282 /* We don't need to emulate any privileged instructions or dcbz */
1283 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284                            unsigned int inst, int *advance)
1285 {
1286 	return EMULATE_FAIL;
1287 }
1288 
1289 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1290 {
1291 	return EMULATE_FAIL;
1292 }
1293 
1294 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1295 {
1296 	return EMULATE_FAIL;
1297 }
1298 
1299 static int kvmppc_book3s_hv_init(void)
1300 {
1301 	int r;
1302 
1303 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1304 
1305 	if (r)
1306 		return r;
1307 
1308 	r = kvmppc_mmu_hv_init();
1309 
1310 	return r;
1311 }
1312 
1313 static void kvmppc_book3s_hv_exit(void)
1314 {
1315 	kvm_exit();
1316 }
1317 
1318 module_init(kvmppc_book3s_hv_init);
1319 module_exit(kvmppc_book3s_hv_exit);
1320