1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 35 #include <asm/reg.h> 36 #include <asm/cputable.h> 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/kvm_ppc.h> 42 #include <asm/kvm_book3s.h> 43 #include <asm/mmu_context.h> 44 #include <asm/lppaca.h> 45 #include <asm/processor.h> 46 #include <asm/cputhreads.h> 47 #include <asm/page.h> 48 #include <asm/hvcall.h> 49 #include <asm/switch_to.h> 50 #include <asm/smp.h> 51 #include <linux/gfp.h> 52 #include <linux/vmalloc.h> 53 #include <linux/highmem.h> 54 #include <linux/hugetlb.h> 55 56 /* #define EXIT_DEBUG */ 57 /* #define EXIT_DEBUG_SIMPLE */ 58 /* #define EXIT_DEBUG_INT */ 59 60 /* Used to indicate that a guest page fault needs to be handled */ 61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 62 63 /* Used as a "null" value for timebase values */ 64 #define TB_NIL (~(u64)0) 65 66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 68 69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu) 70 { 71 int me; 72 int cpu = vcpu->cpu; 73 wait_queue_head_t *wqp; 74 75 wqp = kvm_arch_vcpu_wq(vcpu); 76 if (waitqueue_active(wqp)) { 77 wake_up_interruptible(wqp); 78 ++vcpu->stat.halt_wakeup; 79 } 80 81 me = get_cpu(); 82 83 /* CPU points to the first thread of the core */ 84 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 85 int real_cpu = cpu + vcpu->arch.ptid; 86 if (paca[real_cpu].kvm_hstate.xics_phys) 87 xics_wake_cpu(real_cpu); 88 else if (cpu_online(cpu)) 89 smp_send_reschedule(cpu); 90 } 91 put_cpu(); 92 } 93 94 /* 95 * We use the vcpu_load/put functions to measure stolen time. 96 * Stolen time is counted as time when either the vcpu is able to 97 * run as part of a virtual core, but the task running the vcore 98 * is preempted or sleeping, or when the vcpu needs something done 99 * in the kernel by the task running the vcpu, but that task is 100 * preempted or sleeping. Those two things have to be counted 101 * separately, since one of the vcpu tasks will take on the job 102 * of running the core, and the other vcpu tasks in the vcore will 103 * sleep waiting for it to do that, but that sleep shouldn't count 104 * as stolen time. 105 * 106 * Hence we accumulate stolen time when the vcpu can run as part of 107 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 108 * needs its task to do other things in the kernel (for example, 109 * service a page fault) in busy_stolen. We don't accumulate 110 * stolen time for a vcore when it is inactive, or for a vcpu 111 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 112 * a misnomer; it means that the vcpu task is not executing in 113 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 114 * the kernel. We don't have any way of dividing up that time 115 * between time that the vcpu is genuinely stopped, time that 116 * the task is actively working on behalf of the vcpu, and time 117 * that the task is preempted, so we don't count any of it as 118 * stolen. 119 * 120 * Updates to busy_stolen are protected by arch.tbacct_lock; 121 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 122 * of the vcpu that has taken responsibility for running the vcore 123 * (i.e. vc->runner). The stolen times are measured in units of 124 * timebase ticks. (Note that the != TB_NIL checks below are 125 * purely defensive; they should never fail.) 126 */ 127 128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 129 { 130 struct kvmppc_vcore *vc = vcpu->arch.vcore; 131 132 spin_lock(&vcpu->arch.tbacct_lock); 133 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 134 vc->preempt_tb != TB_NIL) { 135 vc->stolen_tb += mftb() - vc->preempt_tb; 136 vc->preempt_tb = TB_NIL; 137 } 138 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 139 vcpu->arch.busy_preempt != TB_NIL) { 140 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 141 vcpu->arch.busy_preempt = TB_NIL; 142 } 143 spin_unlock(&vcpu->arch.tbacct_lock); 144 } 145 146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) 147 { 148 struct kvmppc_vcore *vc = vcpu->arch.vcore; 149 150 spin_lock(&vcpu->arch.tbacct_lock); 151 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 152 vc->preempt_tb = mftb(); 153 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 154 vcpu->arch.busy_preempt = mftb(); 155 spin_unlock(&vcpu->arch.tbacct_lock); 156 } 157 158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) 159 { 160 vcpu->arch.shregs.msr = msr; 161 kvmppc_end_cede(vcpu); 162 } 163 164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) 165 { 166 vcpu->arch.pvr = pvr; 167 } 168 169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 170 { 171 int r; 172 173 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 174 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 175 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 176 for (r = 0; r < 16; ++r) 177 pr_err("r%2d = %.16lx r%d = %.16lx\n", 178 r, kvmppc_get_gpr(vcpu, r), 179 r+16, kvmppc_get_gpr(vcpu, r+16)); 180 pr_err("ctr = %.16lx lr = %.16lx\n", 181 vcpu->arch.ctr, vcpu->arch.lr); 182 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 183 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 184 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 185 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 186 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 187 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 188 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 189 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 190 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 191 pr_err("fault dar = %.16lx dsisr = %.8x\n", 192 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 193 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 194 for (r = 0; r < vcpu->arch.slb_max; ++r) 195 pr_err(" ESID = %.16llx VSID = %.16llx\n", 196 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 197 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 198 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, 199 vcpu->arch.last_inst); 200 } 201 202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 203 { 204 int r; 205 struct kvm_vcpu *v, *ret = NULL; 206 207 mutex_lock(&kvm->lock); 208 kvm_for_each_vcpu(r, v, kvm) { 209 if (v->vcpu_id == id) { 210 ret = v; 211 break; 212 } 213 } 214 mutex_unlock(&kvm->lock); 215 return ret; 216 } 217 218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 219 { 220 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 221 vpa->yield_count = 1; 222 } 223 224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 225 unsigned long addr, unsigned long len) 226 { 227 /* check address is cacheline aligned */ 228 if (addr & (L1_CACHE_BYTES - 1)) 229 return -EINVAL; 230 spin_lock(&vcpu->arch.vpa_update_lock); 231 if (v->next_gpa != addr || v->len != len) { 232 v->next_gpa = addr; 233 v->len = addr ? len : 0; 234 v->update_pending = 1; 235 } 236 spin_unlock(&vcpu->arch.vpa_update_lock); 237 return 0; 238 } 239 240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 241 struct reg_vpa { 242 u32 dummy; 243 union { 244 u16 hword; 245 u32 word; 246 } length; 247 }; 248 249 static int vpa_is_registered(struct kvmppc_vpa *vpap) 250 { 251 if (vpap->update_pending) 252 return vpap->next_gpa != 0; 253 return vpap->pinned_addr != NULL; 254 } 255 256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 257 unsigned long flags, 258 unsigned long vcpuid, unsigned long vpa) 259 { 260 struct kvm *kvm = vcpu->kvm; 261 unsigned long len, nb; 262 void *va; 263 struct kvm_vcpu *tvcpu; 264 int err; 265 int subfunc; 266 struct kvmppc_vpa *vpap; 267 268 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 269 if (!tvcpu) 270 return H_PARAMETER; 271 272 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 273 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 274 subfunc == H_VPA_REG_SLB) { 275 /* Registering new area - address must be cache-line aligned */ 276 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 277 return H_PARAMETER; 278 279 /* convert logical addr to kernel addr and read length */ 280 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 281 if (va == NULL) 282 return H_PARAMETER; 283 if (subfunc == H_VPA_REG_VPA) 284 len = ((struct reg_vpa *)va)->length.hword; 285 else 286 len = ((struct reg_vpa *)va)->length.word; 287 kvmppc_unpin_guest_page(kvm, va, vpa, false); 288 289 /* Check length */ 290 if (len > nb || len < sizeof(struct reg_vpa)) 291 return H_PARAMETER; 292 } else { 293 vpa = 0; 294 len = 0; 295 } 296 297 err = H_PARAMETER; 298 vpap = NULL; 299 spin_lock(&tvcpu->arch.vpa_update_lock); 300 301 switch (subfunc) { 302 case H_VPA_REG_VPA: /* register VPA */ 303 if (len < sizeof(struct lppaca)) 304 break; 305 vpap = &tvcpu->arch.vpa; 306 err = 0; 307 break; 308 309 case H_VPA_REG_DTL: /* register DTL */ 310 if (len < sizeof(struct dtl_entry)) 311 break; 312 len -= len % sizeof(struct dtl_entry); 313 314 /* Check that they have previously registered a VPA */ 315 err = H_RESOURCE; 316 if (!vpa_is_registered(&tvcpu->arch.vpa)) 317 break; 318 319 vpap = &tvcpu->arch.dtl; 320 err = 0; 321 break; 322 323 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 324 /* Check that they have previously registered a VPA */ 325 err = H_RESOURCE; 326 if (!vpa_is_registered(&tvcpu->arch.vpa)) 327 break; 328 329 vpap = &tvcpu->arch.slb_shadow; 330 err = 0; 331 break; 332 333 case H_VPA_DEREG_VPA: /* deregister VPA */ 334 /* Check they don't still have a DTL or SLB buf registered */ 335 err = H_RESOURCE; 336 if (vpa_is_registered(&tvcpu->arch.dtl) || 337 vpa_is_registered(&tvcpu->arch.slb_shadow)) 338 break; 339 340 vpap = &tvcpu->arch.vpa; 341 err = 0; 342 break; 343 344 case H_VPA_DEREG_DTL: /* deregister DTL */ 345 vpap = &tvcpu->arch.dtl; 346 err = 0; 347 break; 348 349 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 350 vpap = &tvcpu->arch.slb_shadow; 351 err = 0; 352 break; 353 } 354 355 if (vpap) { 356 vpap->next_gpa = vpa; 357 vpap->len = len; 358 vpap->update_pending = 1; 359 } 360 361 spin_unlock(&tvcpu->arch.vpa_update_lock); 362 363 return err; 364 } 365 366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 367 { 368 struct kvm *kvm = vcpu->kvm; 369 void *va; 370 unsigned long nb; 371 unsigned long gpa; 372 373 /* 374 * We need to pin the page pointed to by vpap->next_gpa, 375 * but we can't call kvmppc_pin_guest_page under the lock 376 * as it does get_user_pages() and down_read(). So we 377 * have to drop the lock, pin the page, then get the lock 378 * again and check that a new area didn't get registered 379 * in the meantime. 380 */ 381 for (;;) { 382 gpa = vpap->next_gpa; 383 spin_unlock(&vcpu->arch.vpa_update_lock); 384 va = NULL; 385 nb = 0; 386 if (gpa) 387 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 388 spin_lock(&vcpu->arch.vpa_update_lock); 389 if (gpa == vpap->next_gpa) 390 break; 391 /* sigh... unpin that one and try again */ 392 if (va) 393 kvmppc_unpin_guest_page(kvm, va, gpa, false); 394 } 395 396 vpap->update_pending = 0; 397 if (va && nb < vpap->len) { 398 /* 399 * If it's now too short, it must be that userspace 400 * has changed the mappings underlying guest memory, 401 * so unregister the region. 402 */ 403 kvmppc_unpin_guest_page(kvm, va, gpa, false); 404 va = NULL; 405 } 406 if (vpap->pinned_addr) 407 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 408 vpap->dirty); 409 vpap->gpa = gpa; 410 vpap->pinned_addr = va; 411 vpap->dirty = false; 412 if (va) 413 vpap->pinned_end = va + vpap->len; 414 } 415 416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 417 { 418 if (!(vcpu->arch.vpa.update_pending || 419 vcpu->arch.slb_shadow.update_pending || 420 vcpu->arch.dtl.update_pending)) 421 return; 422 423 spin_lock(&vcpu->arch.vpa_update_lock); 424 if (vcpu->arch.vpa.update_pending) { 425 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 426 if (vcpu->arch.vpa.pinned_addr) 427 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 428 } 429 if (vcpu->arch.dtl.update_pending) { 430 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 431 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 432 vcpu->arch.dtl_index = 0; 433 } 434 if (vcpu->arch.slb_shadow.update_pending) 435 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 436 spin_unlock(&vcpu->arch.vpa_update_lock); 437 } 438 439 /* 440 * Return the accumulated stolen time for the vcore up until `now'. 441 * The caller should hold the vcore lock. 442 */ 443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 444 { 445 u64 p; 446 447 /* 448 * If we are the task running the vcore, then since we hold 449 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 450 * can't be updated, so we don't need the tbacct_lock. 451 * If the vcore is inactive, it can't become active (since we 452 * hold the vcore lock), so the vcpu load/put functions won't 453 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 454 */ 455 if (vc->vcore_state != VCORE_INACTIVE && 456 vc->runner->arch.run_task != current) { 457 spin_lock(&vc->runner->arch.tbacct_lock); 458 p = vc->stolen_tb; 459 if (vc->preempt_tb != TB_NIL) 460 p += now - vc->preempt_tb; 461 spin_unlock(&vc->runner->arch.tbacct_lock); 462 } else { 463 p = vc->stolen_tb; 464 } 465 return p; 466 } 467 468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 469 struct kvmppc_vcore *vc) 470 { 471 struct dtl_entry *dt; 472 struct lppaca *vpa; 473 unsigned long stolen; 474 unsigned long core_stolen; 475 u64 now; 476 477 dt = vcpu->arch.dtl_ptr; 478 vpa = vcpu->arch.vpa.pinned_addr; 479 now = mftb(); 480 core_stolen = vcore_stolen_time(vc, now); 481 stolen = core_stolen - vcpu->arch.stolen_logged; 482 vcpu->arch.stolen_logged = core_stolen; 483 spin_lock(&vcpu->arch.tbacct_lock); 484 stolen += vcpu->arch.busy_stolen; 485 vcpu->arch.busy_stolen = 0; 486 spin_unlock(&vcpu->arch.tbacct_lock); 487 if (!dt || !vpa) 488 return; 489 memset(dt, 0, sizeof(struct dtl_entry)); 490 dt->dispatch_reason = 7; 491 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 492 dt->timebase = now; 493 dt->enqueue_to_dispatch_time = stolen; 494 dt->srr0 = kvmppc_get_pc(vcpu); 495 dt->srr1 = vcpu->arch.shregs.msr; 496 ++dt; 497 if (dt == vcpu->arch.dtl.pinned_end) 498 dt = vcpu->arch.dtl.pinned_addr; 499 vcpu->arch.dtl_ptr = dt; 500 /* order writing *dt vs. writing vpa->dtl_idx */ 501 smp_wmb(); 502 vpa->dtl_idx = ++vcpu->arch.dtl_index; 503 vcpu->arch.dtl.dirty = true; 504 } 505 506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 507 { 508 unsigned long req = kvmppc_get_gpr(vcpu, 3); 509 unsigned long target, ret = H_SUCCESS; 510 struct kvm_vcpu *tvcpu; 511 int idx, rc; 512 513 switch (req) { 514 case H_ENTER: 515 idx = srcu_read_lock(&vcpu->kvm->srcu); 516 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 517 kvmppc_get_gpr(vcpu, 5), 518 kvmppc_get_gpr(vcpu, 6), 519 kvmppc_get_gpr(vcpu, 7)); 520 srcu_read_unlock(&vcpu->kvm->srcu, idx); 521 break; 522 case H_CEDE: 523 break; 524 case H_PROD: 525 target = kvmppc_get_gpr(vcpu, 4); 526 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 527 if (!tvcpu) { 528 ret = H_PARAMETER; 529 break; 530 } 531 tvcpu->arch.prodded = 1; 532 smp_mb(); 533 if (vcpu->arch.ceded) { 534 if (waitqueue_active(&vcpu->wq)) { 535 wake_up_interruptible(&vcpu->wq); 536 vcpu->stat.halt_wakeup++; 537 } 538 } 539 break; 540 case H_CONFER: 541 break; 542 case H_REGISTER_VPA: 543 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 544 kvmppc_get_gpr(vcpu, 5), 545 kvmppc_get_gpr(vcpu, 6)); 546 break; 547 case H_RTAS: 548 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 549 return RESUME_HOST; 550 551 rc = kvmppc_rtas_hcall(vcpu); 552 553 if (rc == -ENOENT) 554 return RESUME_HOST; 555 else if (rc == 0) 556 break; 557 558 /* Send the error out to userspace via KVM_RUN */ 559 return rc; 560 561 case H_XIRR: 562 case H_CPPR: 563 case H_EOI: 564 case H_IPI: 565 case H_IPOLL: 566 case H_XIRR_X: 567 if (kvmppc_xics_enabled(vcpu)) { 568 ret = kvmppc_xics_hcall(vcpu, req); 569 break; 570 } /* fallthrough */ 571 default: 572 return RESUME_HOST; 573 } 574 kvmppc_set_gpr(vcpu, 3, ret); 575 vcpu->arch.hcall_needed = 0; 576 return RESUME_GUEST; 577 } 578 579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, 580 struct task_struct *tsk) 581 { 582 int r = RESUME_HOST; 583 584 vcpu->stat.sum_exits++; 585 586 run->exit_reason = KVM_EXIT_UNKNOWN; 587 run->ready_for_interrupt_injection = 1; 588 switch (vcpu->arch.trap) { 589 /* We're good on these - the host merely wanted to get our attention */ 590 case BOOK3S_INTERRUPT_HV_DECREMENTER: 591 vcpu->stat.dec_exits++; 592 r = RESUME_GUEST; 593 break; 594 case BOOK3S_INTERRUPT_EXTERNAL: 595 vcpu->stat.ext_intr_exits++; 596 r = RESUME_GUEST; 597 break; 598 case BOOK3S_INTERRUPT_PERFMON: 599 r = RESUME_GUEST; 600 break; 601 case BOOK3S_INTERRUPT_MACHINE_CHECK: 602 /* 603 * Deliver a machine check interrupt to the guest. 604 * We have to do this, even if the host has handled the 605 * machine check, because machine checks use SRR0/1 and 606 * the interrupt might have trashed guest state in them. 607 */ 608 kvmppc_book3s_queue_irqprio(vcpu, 609 BOOK3S_INTERRUPT_MACHINE_CHECK); 610 r = RESUME_GUEST; 611 break; 612 case BOOK3S_INTERRUPT_PROGRAM: 613 { 614 ulong flags; 615 /* 616 * Normally program interrupts are delivered directly 617 * to the guest by the hardware, but we can get here 618 * as a result of a hypervisor emulation interrupt 619 * (e40) getting turned into a 700 by BML RTAS. 620 */ 621 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 622 kvmppc_core_queue_program(vcpu, flags); 623 r = RESUME_GUEST; 624 break; 625 } 626 case BOOK3S_INTERRUPT_SYSCALL: 627 { 628 /* hcall - punt to userspace */ 629 int i; 630 631 if (vcpu->arch.shregs.msr & MSR_PR) { 632 /* sc 1 from userspace - reflect to guest syscall */ 633 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 634 r = RESUME_GUEST; 635 break; 636 } 637 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 638 for (i = 0; i < 9; ++i) 639 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 640 run->exit_reason = KVM_EXIT_PAPR_HCALL; 641 vcpu->arch.hcall_needed = 1; 642 r = RESUME_HOST; 643 break; 644 } 645 /* 646 * We get these next two if the guest accesses a page which it thinks 647 * it has mapped but which is not actually present, either because 648 * it is for an emulated I/O device or because the corresonding 649 * host page has been paged out. Any other HDSI/HISI interrupts 650 * have been handled already. 651 */ 652 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 653 r = RESUME_PAGE_FAULT; 654 break; 655 case BOOK3S_INTERRUPT_H_INST_STORAGE: 656 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 657 vcpu->arch.fault_dsisr = 0; 658 r = RESUME_PAGE_FAULT; 659 break; 660 /* 661 * This occurs if the guest executes an illegal instruction. 662 * We just generate a program interrupt to the guest, since 663 * we don't emulate any guest instructions at this stage. 664 */ 665 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 666 kvmppc_core_queue_program(vcpu, 0x80000); 667 r = RESUME_GUEST; 668 break; 669 default: 670 kvmppc_dump_regs(vcpu); 671 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 672 vcpu->arch.trap, kvmppc_get_pc(vcpu), 673 vcpu->arch.shregs.msr); 674 r = RESUME_HOST; 675 BUG(); 676 break; 677 } 678 679 return r; 680 } 681 682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 683 struct kvm_sregs *sregs) 684 { 685 int i; 686 687 memset(sregs, 0, sizeof(struct kvm_sregs)); 688 sregs->pvr = vcpu->arch.pvr; 689 for (i = 0; i < vcpu->arch.slb_max; i++) { 690 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 691 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 692 } 693 694 return 0; 695 } 696 697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 698 struct kvm_sregs *sregs) 699 { 700 int i, j; 701 702 kvmppc_set_pvr(vcpu, sregs->pvr); 703 704 j = 0; 705 for (i = 0; i < vcpu->arch.slb_nr; i++) { 706 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 707 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 708 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 709 ++j; 710 } 711 } 712 vcpu->arch.slb_max = j; 713 714 return 0; 715 } 716 717 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) 718 { 719 int r = 0; 720 long int i; 721 722 switch (id) { 723 case KVM_REG_PPC_HIOR: 724 *val = get_reg_val(id, 0); 725 break; 726 case KVM_REG_PPC_DABR: 727 *val = get_reg_val(id, vcpu->arch.dabr); 728 break; 729 case KVM_REG_PPC_DSCR: 730 *val = get_reg_val(id, vcpu->arch.dscr); 731 break; 732 case KVM_REG_PPC_PURR: 733 *val = get_reg_val(id, vcpu->arch.purr); 734 break; 735 case KVM_REG_PPC_SPURR: 736 *val = get_reg_val(id, vcpu->arch.spurr); 737 break; 738 case KVM_REG_PPC_AMR: 739 *val = get_reg_val(id, vcpu->arch.amr); 740 break; 741 case KVM_REG_PPC_UAMOR: 742 *val = get_reg_val(id, vcpu->arch.uamor); 743 break; 744 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 745 i = id - KVM_REG_PPC_MMCR0; 746 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 747 break; 748 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 749 i = id - KVM_REG_PPC_PMC1; 750 *val = get_reg_val(id, vcpu->arch.pmc[i]); 751 break; 752 #ifdef CONFIG_VSX 753 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 754 if (cpu_has_feature(CPU_FTR_VSX)) { 755 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 756 long int i = id - KVM_REG_PPC_FPR0; 757 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); 758 } else { 759 /* let generic code handle it */ 760 r = -EINVAL; 761 } 762 break; 763 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 764 if (cpu_has_feature(CPU_FTR_VSX)) { 765 long int i = id - KVM_REG_PPC_VSR0; 766 val->vsxval[0] = vcpu->arch.vsr[2 * i]; 767 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; 768 } else { 769 r = -ENXIO; 770 } 771 break; 772 #endif /* CONFIG_VSX */ 773 case KVM_REG_PPC_VPA_ADDR: 774 spin_lock(&vcpu->arch.vpa_update_lock); 775 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 776 spin_unlock(&vcpu->arch.vpa_update_lock); 777 break; 778 case KVM_REG_PPC_VPA_SLB: 779 spin_lock(&vcpu->arch.vpa_update_lock); 780 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 781 val->vpaval.length = vcpu->arch.slb_shadow.len; 782 spin_unlock(&vcpu->arch.vpa_update_lock); 783 break; 784 case KVM_REG_PPC_VPA_DTL: 785 spin_lock(&vcpu->arch.vpa_update_lock); 786 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 787 val->vpaval.length = vcpu->arch.dtl.len; 788 spin_unlock(&vcpu->arch.vpa_update_lock); 789 break; 790 default: 791 r = -EINVAL; 792 break; 793 } 794 795 return r; 796 } 797 798 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) 799 { 800 int r = 0; 801 long int i; 802 unsigned long addr, len; 803 804 switch (id) { 805 case KVM_REG_PPC_HIOR: 806 /* Only allow this to be set to zero */ 807 if (set_reg_val(id, *val)) 808 r = -EINVAL; 809 break; 810 case KVM_REG_PPC_DABR: 811 vcpu->arch.dabr = set_reg_val(id, *val); 812 break; 813 case KVM_REG_PPC_DSCR: 814 vcpu->arch.dscr = set_reg_val(id, *val); 815 break; 816 case KVM_REG_PPC_PURR: 817 vcpu->arch.purr = set_reg_val(id, *val); 818 break; 819 case KVM_REG_PPC_SPURR: 820 vcpu->arch.spurr = set_reg_val(id, *val); 821 break; 822 case KVM_REG_PPC_AMR: 823 vcpu->arch.amr = set_reg_val(id, *val); 824 break; 825 case KVM_REG_PPC_UAMOR: 826 vcpu->arch.uamor = set_reg_val(id, *val); 827 break; 828 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 829 i = id - KVM_REG_PPC_MMCR0; 830 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 831 break; 832 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 833 i = id - KVM_REG_PPC_PMC1; 834 vcpu->arch.pmc[i] = set_reg_val(id, *val); 835 break; 836 #ifdef CONFIG_VSX 837 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 838 if (cpu_has_feature(CPU_FTR_VSX)) { 839 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 840 long int i = id - KVM_REG_PPC_FPR0; 841 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); 842 } else { 843 /* let generic code handle it */ 844 r = -EINVAL; 845 } 846 break; 847 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 848 if (cpu_has_feature(CPU_FTR_VSX)) { 849 long int i = id - KVM_REG_PPC_VSR0; 850 vcpu->arch.vsr[2 * i] = val->vsxval[0]; 851 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; 852 } else { 853 r = -ENXIO; 854 } 855 break; 856 #endif /* CONFIG_VSX */ 857 case KVM_REG_PPC_VPA_ADDR: 858 addr = set_reg_val(id, *val); 859 r = -EINVAL; 860 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 861 vcpu->arch.dtl.next_gpa)) 862 break; 863 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 864 break; 865 case KVM_REG_PPC_VPA_SLB: 866 addr = val->vpaval.addr; 867 len = val->vpaval.length; 868 r = -EINVAL; 869 if (addr && !vcpu->arch.vpa.next_gpa) 870 break; 871 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 872 break; 873 case KVM_REG_PPC_VPA_DTL: 874 addr = val->vpaval.addr; 875 len = val->vpaval.length; 876 r = -EINVAL; 877 if (addr && (len < sizeof(struct dtl_entry) || 878 !vcpu->arch.vpa.next_gpa)) 879 break; 880 len -= len % sizeof(struct dtl_entry); 881 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 882 break; 883 default: 884 r = -EINVAL; 885 break; 886 } 887 888 return r; 889 } 890 891 int kvmppc_core_check_processor_compat(void) 892 { 893 if (cpu_has_feature(CPU_FTR_HVMODE)) 894 return 0; 895 return -EIO; 896 } 897 898 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) 899 { 900 struct kvm_vcpu *vcpu; 901 int err = -EINVAL; 902 int core; 903 struct kvmppc_vcore *vcore; 904 905 core = id / threads_per_core; 906 if (core >= KVM_MAX_VCORES) 907 goto out; 908 909 err = -ENOMEM; 910 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 911 if (!vcpu) 912 goto out; 913 914 err = kvm_vcpu_init(vcpu, kvm, id); 915 if (err) 916 goto free_vcpu; 917 918 vcpu->arch.shared = &vcpu->arch.shregs; 919 vcpu->arch.mmcr[0] = MMCR0_FC; 920 vcpu->arch.ctrl = CTRL_RUNLATCH; 921 /* default to host PVR, since we can't spoof it */ 922 vcpu->arch.pvr = mfspr(SPRN_PVR); 923 kvmppc_set_pvr(vcpu, vcpu->arch.pvr); 924 spin_lock_init(&vcpu->arch.vpa_update_lock); 925 spin_lock_init(&vcpu->arch.tbacct_lock); 926 vcpu->arch.busy_preempt = TB_NIL; 927 928 kvmppc_mmu_book3s_hv_init(vcpu); 929 930 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 931 932 init_waitqueue_head(&vcpu->arch.cpu_run); 933 934 mutex_lock(&kvm->lock); 935 vcore = kvm->arch.vcores[core]; 936 if (!vcore) { 937 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 938 if (vcore) { 939 INIT_LIST_HEAD(&vcore->runnable_threads); 940 spin_lock_init(&vcore->lock); 941 init_waitqueue_head(&vcore->wq); 942 vcore->preempt_tb = TB_NIL; 943 } 944 kvm->arch.vcores[core] = vcore; 945 kvm->arch.online_vcores++; 946 } 947 mutex_unlock(&kvm->lock); 948 949 if (!vcore) 950 goto free_vcpu; 951 952 spin_lock(&vcore->lock); 953 ++vcore->num_threads; 954 spin_unlock(&vcore->lock); 955 vcpu->arch.vcore = vcore; 956 957 vcpu->arch.cpu_type = KVM_CPU_3S_64; 958 kvmppc_sanity_check(vcpu); 959 960 return vcpu; 961 962 free_vcpu: 963 kmem_cache_free(kvm_vcpu_cache, vcpu); 964 out: 965 return ERR_PTR(err); 966 } 967 968 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 969 { 970 if (vpa->pinned_addr) 971 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 972 vpa->dirty); 973 } 974 975 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) 976 { 977 spin_lock(&vcpu->arch.vpa_update_lock); 978 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 979 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 980 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 981 spin_unlock(&vcpu->arch.vpa_update_lock); 982 kvm_vcpu_uninit(vcpu); 983 kmem_cache_free(kvm_vcpu_cache, vcpu); 984 } 985 986 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 987 { 988 unsigned long dec_nsec, now; 989 990 now = get_tb(); 991 if (now > vcpu->arch.dec_expires) { 992 /* decrementer has already gone negative */ 993 kvmppc_core_queue_dec(vcpu); 994 kvmppc_core_prepare_to_enter(vcpu); 995 return; 996 } 997 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 998 / tb_ticks_per_sec; 999 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1000 HRTIMER_MODE_REL); 1001 vcpu->arch.timer_running = 1; 1002 } 1003 1004 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1005 { 1006 vcpu->arch.ceded = 0; 1007 if (vcpu->arch.timer_running) { 1008 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1009 vcpu->arch.timer_running = 0; 1010 } 1011 } 1012 1013 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 1014 1015 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1016 struct kvm_vcpu *vcpu) 1017 { 1018 u64 now; 1019 1020 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1021 return; 1022 spin_lock(&vcpu->arch.tbacct_lock); 1023 now = mftb(); 1024 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1025 vcpu->arch.stolen_logged; 1026 vcpu->arch.busy_preempt = now; 1027 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1028 spin_unlock(&vcpu->arch.tbacct_lock); 1029 --vc->n_runnable; 1030 list_del(&vcpu->arch.run_list); 1031 } 1032 1033 static int kvmppc_grab_hwthread(int cpu) 1034 { 1035 struct paca_struct *tpaca; 1036 long timeout = 1000; 1037 1038 tpaca = &paca[cpu]; 1039 1040 /* Ensure the thread won't go into the kernel if it wakes */ 1041 tpaca->kvm_hstate.hwthread_req = 1; 1042 tpaca->kvm_hstate.kvm_vcpu = NULL; 1043 1044 /* 1045 * If the thread is already executing in the kernel (e.g. handling 1046 * a stray interrupt), wait for it to get back to nap mode. 1047 * The smp_mb() is to ensure that our setting of hwthread_req 1048 * is visible before we look at hwthread_state, so if this 1049 * races with the code at system_reset_pSeries and the thread 1050 * misses our setting of hwthread_req, we are sure to see its 1051 * setting of hwthread_state, and vice versa. 1052 */ 1053 smp_mb(); 1054 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1055 if (--timeout <= 0) { 1056 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1057 return -EBUSY; 1058 } 1059 udelay(1); 1060 } 1061 return 0; 1062 } 1063 1064 static void kvmppc_release_hwthread(int cpu) 1065 { 1066 struct paca_struct *tpaca; 1067 1068 tpaca = &paca[cpu]; 1069 tpaca->kvm_hstate.hwthread_req = 0; 1070 tpaca->kvm_hstate.kvm_vcpu = NULL; 1071 } 1072 1073 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1074 { 1075 int cpu; 1076 struct paca_struct *tpaca; 1077 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1078 1079 if (vcpu->arch.timer_running) { 1080 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1081 vcpu->arch.timer_running = 0; 1082 } 1083 cpu = vc->pcpu + vcpu->arch.ptid; 1084 tpaca = &paca[cpu]; 1085 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1086 tpaca->kvm_hstate.kvm_vcore = vc; 1087 tpaca->kvm_hstate.napping = 0; 1088 vcpu->cpu = vc->pcpu; 1089 smp_wmb(); 1090 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1091 if (vcpu->arch.ptid) { 1092 xics_wake_cpu(cpu); 1093 ++vc->n_woken; 1094 } 1095 #endif 1096 } 1097 1098 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1099 { 1100 int i; 1101 1102 HMT_low(); 1103 i = 0; 1104 while (vc->nap_count < vc->n_woken) { 1105 if (++i >= 1000000) { 1106 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1107 vc->nap_count, vc->n_woken); 1108 break; 1109 } 1110 cpu_relax(); 1111 } 1112 HMT_medium(); 1113 } 1114 1115 /* 1116 * Check that we are on thread 0 and that any other threads in 1117 * this core are off-line. Then grab the threads so they can't 1118 * enter the kernel. 1119 */ 1120 static int on_primary_thread(void) 1121 { 1122 int cpu = smp_processor_id(); 1123 int thr = cpu_thread_in_core(cpu); 1124 1125 if (thr) 1126 return 0; 1127 while (++thr < threads_per_core) 1128 if (cpu_online(cpu + thr)) 1129 return 0; 1130 1131 /* Grab all hw threads so they can't go into the kernel */ 1132 for (thr = 1; thr < threads_per_core; ++thr) { 1133 if (kvmppc_grab_hwthread(cpu + thr)) { 1134 /* Couldn't grab one; let the others go */ 1135 do { 1136 kvmppc_release_hwthread(cpu + thr); 1137 } while (--thr > 0); 1138 return 0; 1139 } 1140 } 1141 return 1; 1142 } 1143 1144 /* 1145 * Run a set of guest threads on a physical core. 1146 * Called with vc->lock held. 1147 */ 1148 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1149 { 1150 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 1151 long ret; 1152 u64 now; 1153 int ptid, i, need_vpa_update; 1154 int srcu_idx; 1155 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1156 1157 /* don't start if any threads have a signal pending */ 1158 need_vpa_update = 0; 1159 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1160 if (signal_pending(vcpu->arch.run_task)) 1161 return; 1162 if (vcpu->arch.vpa.update_pending || 1163 vcpu->arch.slb_shadow.update_pending || 1164 vcpu->arch.dtl.update_pending) 1165 vcpus_to_update[need_vpa_update++] = vcpu; 1166 } 1167 1168 /* 1169 * Initialize *vc, in particular vc->vcore_state, so we can 1170 * drop the vcore lock if necessary. 1171 */ 1172 vc->n_woken = 0; 1173 vc->nap_count = 0; 1174 vc->entry_exit_count = 0; 1175 vc->vcore_state = VCORE_STARTING; 1176 vc->in_guest = 0; 1177 vc->napping_threads = 0; 1178 1179 /* 1180 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1181 * which can't be called with any spinlocks held. 1182 */ 1183 if (need_vpa_update) { 1184 spin_unlock(&vc->lock); 1185 for (i = 0; i < need_vpa_update; ++i) 1186 kvmppc_update_vpas(vcpus_to_update[i]); 1187 spin_lock(&vc->lock); 1188 } 1189 1190 /* 1191 * Assign physical thread IDs, first to non-ceded vcpus 1192 * and then to ceded ones. 1193 */ 1194 ptid = 0; 1195 vcpu0 = NULL; 1196 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1197 if (!vcpu->arch.ceded) { 1198 if (!ptid) 1199 vcpu0 = vcpu; 1200 vcpu->arch.ptid = ptid++; 1201 } 1202 } 1203 if (!vcpu0) 1204 goto out; /* nothing to run; should never happen */ 1205 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1206 if (vcpu->arch.ceded) 1207 vcpu->arch.ptid = ptid++; 1208 1209 /* 1210 * Make sure we are running on thread 0, and that 1211 * secondary threads are offline. 1212 */ 1213 if (threads_per_core > 1 && !on_primary_thread()) { 1214 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1215 vcpu->arch.ret = -EBUSY; 1216 goto out; 1217 } 1218 1219 vc->pcpu = smp_processor_id(); 1220 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1221 kvmppc_start_thread(vcpu); 1222 kvmppc_create_dtl_entry(vcpu, vc); 1223 } 1224 1225 vc->vcore_state = VCORE_RUNNING; 1226 preempt_disable(); 1227 spin_unlock(&vc->lock); 1228 1229 kvm_guest_enter(); 1230 1231 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); 1232 1233 __kvmppc_vcore_entry(NULL, vcpu0); 1234 1235 spin_lock(&vc->lock); 1236 /* disable sending of IPIs on virtual external irqs */ 1237 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1238 vcpu->cpu = -1; 1239 /* wait for secondary threads to finish writing their state to memory */ 1240 if (vc->nap_count < vc->n_woken) 1241 kvmppc_wait_for_nap(vc); 1242 for (i = 0; i < threads_per_core; ++i) 1243 kvmppc_release_hwthread(vc->pcpu + i); 1244 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1245 vc->vcore_state = VCORE_EXITING; 1246 spin_unlock(&vc->lock); 1247 1248 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); 1249 1250 /* make sure updates to secondary vcpu structs are visible now */ 1251 smp_mb(); 1252 kvm_guest_exit(); 1253 1254 preempt_enable(); 1255 kvm_resched(vcpu); 1256 1257 spin_lock(&vc->lock); 1258 now = get_tb(); 1259 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1260 /* cancel pending dec exception if dec is positive */ 1261 if (now < vcpu->arch.dec_expires && 1262 kvmppc_core_pending_dec(vcpu)) 1263 kvmppc_core_dequeue_dec(vcpu); 1264 1265 ret = RESUME_GUEST; 1266 if (vcpu->arch.trap) 1267 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, 1268 vcpu->arch.run_task); 1269 1270 vcpu->arch.ret = ret; 1271 vcpu->arch.trap = 0; 1272 1273 if (vcpu->arch.ceded) { 1274 if (ret != RESUME_GUEST) 1275 kvmppc_end_cede(vcpu); 1276 else 1277 kvmppc_set_timer(vcpu); 1278 } 1279 } 1280 1281 out: 1282 vc->vcore_state = VCORE_INACTIVE; 1283 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1284 arch.run_list) { 1285 if (vcpu->arch.ret != RESUME_GUEST) { 1286 kvmppc_remove_runnable(vc, vcpu); 1287 wake_up(&vcpu->arch.cpu_run); 1288 } 1289 } 1290 } 1291 1292 /* 1293 * Wait for some other vcpu thread to execute us, and 1294 * wake us up when we need to handle something in the host. 1295 */ 1296 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1297 { 1298 DEFINE_WAIT(wait); 1299 1300 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1301 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1302 schedule(); 1303 finish_wait(&vcpu->arch.cpu_run, &wait); 1304 } 1305 1306 /* 1307 * All the vcpus in this vcore are idle, so wait for a decrementer 1308 * or external interrupt to one of the vcpus. vc->lock is held. 1309 */ 1310 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1311 { 1312 DEFINE_WAIT(wait); 1313 1314 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1315 vc->vcore_state = VCORE_SLEEPING; 1316 spin_unlock(&vc->lock); 1317 schedule(); 1318 finish_wait(&vc->wq, &wait); 1319 spin_lock(&vc->lock); 1320 vc->vcore_state = VCORE_INACTIVE; 1321 } 1322 1323 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1324 { 1325 int n_ceded; 1326 struct kvmppc_vcore *vc; 1327 struct kvm_vcpu *v, *vn; 1328 1329 kvm_run->exit_reason = 0; 1330 vcpu->arch.ret = RESUME_GUEST; 1331 vcpu->arch.trap = 0; 1332 kvmppc_update_vpas(vcpu); 1333 1334 /* 1335 * Synchronize with other threads in this virtual core 1336 */ 1337 vc = vcpu->arch.vcore; 1338 spin_lock(&vc->lock); 1339 vcpu->arch.ceded = 0; 1340 vcpu->arch.run_task = current; 1341 vcpu->arch.kvm_run = kvm_run; 1342 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1343 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1344 vcpu->arch.busy_preempt = TB_NIL; 1345 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1346 ++vc->n_runnable; 1347 1348 /* 1349 * This happens the first time this is called for a vcpu. 1350 * If the vcore is already running, we may be able to start 1351 * this thread straight away and have it join in. 1352 */ 1353 if (!signal_pending(current)) { 1354 if (vc->vcore_state == VCORE_RUNNING && 1355 VCORE_EXIT_COUNT(vc) == 0) { 1356 vcpu->arch.ptid = vc->n_runnable - 1; 1357 kvmppc_create_dtl_entry(vcpu, vc); 1358 kvmppc_start_thread(vcpu); 1359 } else if (vc->vcore_state == VCORE_SLEEPING) { 1360 wake_up(&vc->wq); 1361 } 1362 1363 } 1364 1365 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1366 !signal_pending(current)) { 1367 if (vc->vcore_state != VCORE_INACTIVE) { 1368 spin_unlock(&vc->lock); 1369 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1370 spin_lock(&vc->lock); 1371 continue; 1372 } 1373 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1374 arch.run_list) { 1375 kvmppc_core_prepare_to_enter(v); 1376 if (signal_pending(v->arch.run_task)) { 1377 kvmppc_remove_runnable(vc, v); 1378 v->stat.signal_exits++; 1379 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1380 v->arch.ret = -EINTR; 1381 wake_up(&v->arch.cpu_run); 1382 } 1383 } 1384 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1385 break; 1386 vc->runner = vcpu; 1387 n_ceded = 0; 1388 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1389 if (!v->arch.pending_exceptions) 1390 n_ceded += v->arch.ceded; 1391 else 1392 v->arch.ceded = 0; 1393 } 1394 if (n_ceded == vc->n_runnable) 1395 kvmppc_vcore_blocked(vc); 1396 else 1397 kvmppc_run_core(vc); 1398 vc->runner = NULL; 1399 } 1400 1401 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1402 (vc->vcore_state == VCORE_RUNNING || 1403 vc->vcore_state == VCORE_EXITING)) { 1404 spin_unlock(&vc->lock); 1405 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1406 spin_lock(&vc->lock); 1407 } 1408 1409 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1410 kvmppc_remove_runnable(vc, vcpu); 1411 vcpu->stat.signal_exits++; 1412 kvm_run->exit_reason = KVM_EXIT_INTR; 1413 vcpu->arch.ret = -EINTR; 1414 } 1415 1416 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1417 /* Wake up some vcpu to run the core */ 1418 v = list_first_entry(&vc->runnable_threads, 1419 struct kvm_vcpu, arch.run_list); 1420 wake_up(&v->arch.cpu_run); 1421 } 1422 1423 spin_unlock(&vc->lock); 1424 return vcpu->arch.ret; 1425 } 1426 1427 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) 1428 { 1429 int r; 1430 int srcu_idx; 1431 1432 if (!vcpu->arch.sane) { 1433 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1434 return -EINVAL; 1435 } 1436 1437 kvmppc_core_prepare_to_enter(vcpu); 1438 1439 /* No need to go into the guest when all we'll do is come back out */ 1440 if (signal_pending(current)) { 1441 run->exit_reason = KVM_EXIT_INTR; 1442 return -EINTR; 1443 } 1444 1445 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1446 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1447 smp_mb(); 1448 1449 /* On the first time here, set up HTAB and VRMA or RMA */ 1450 if (!vcpu->kvm->arch.rma_setup_done) { 1451 r = kvmppc_hv_setup_htab_rma(vcpu); 1452 if (r) 1453 goto out; 1454 } 1455 1456 flush_fp_to_thread(current); 1457 flush_altivec_to_thread(current); 1458 flush_vsx_to_thread(current); 1459 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1460 vcpu->arch.pgdir = current->mm->pgd; 1461 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1462 1463 do { 1464 r = kvmppc_run_vcpu(run, vcpu); 1465 1466 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1467 !(vcpu->arch.shregs.msr & MSR_PR)) { 1468 r = kvmppc_pseries_do_hcall(vcpu); 1469 kvmppc_core_prepare_to_enter(vcpu); 1470 } else if (r == RESUME_PAGE_FAULT) { 1471 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1472 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1473 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1474 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1475 } 1476 } while (r == RESUME_GUEST); 1477 1478 out: 1479 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1480 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1481 return r; 1482 } 1483 1484 1485 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1486 Assumes POWER7 or PPC970. */ 1487 static inline int lpcr_rmls(unsigned long rma_size) 1488 { 1489 switch (rma_size) { 1490 case 32ul << 20: /* 32 MB */ 1491 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1492 return 8; /* only supported on POWER7 */ 1493 return -1; 1494 case 64ul << 20: /* 64 MB */ 1495 return 3; 1496 case 128ul << 20: /* 128 MB */ 1497 return 7; 1498 case 256ul << 20: /* 256 MB */ 1499 return 4; 1500 case 1ul << 30: /* 1 GB */ 1501 return 2; 1502 case 16ul << 30: /* 16 GB */ 1503 return 1; 1504 case 256ul << 30: /* 256 GB */ 1505 return 0; 1506 default: 1507 return -1; 1508 } 1509 } 1510 1511 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1512 { 1513 struct page *page; 1514 struct kvm_rma_info *ri = vma->vm_file->private_data; 1515 1516 if (vmf->pgoff >= kvm_rma_pages) 1517 return VM_FAULT_SIGBUS; 1518 1519 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1520 get_page(page); 1521 vmf->page = page; 1522 return 0; 1523 } 1524 1525 static const struct vm_operations_struct kvm_rma_vm_ops = { 1526 .fault = kvm_rma_fault, 1527 }; 1528 1529 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1530 { 1531 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1532 vma->vm_ops = &kvm_rma_vm_ops; 1533 return 0; 1534 } 1535 1536 static int kvm_rma_release(struct inode *inode, struct file *filp) 1537 { 1538 struct kvm_rma_info *ri = filp->private_data; 1539 1540 kvm_release_rma(ri); 1541 return 0; 1542 } 1543 1544 static const struct file_operations kvm_rma_fops = { 1545 .mmap = kvm_rma_mmap, 1546 .release = kvm_rma_release, 1547 }; 1548 1549 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) 1550 { 1551 long fd; 1552 struct kvm_rma_info *ri; 1553 /* 1554 * Only do this on PPC970 in HV mode 1555 */ 1556 if (!cpu_has_feature(CPU_FTR_HVMODE) || 1557 !cpu_has_feature(CPU_FTR_ARCH_201)) 1558 return -EINVAL; 1559 1560 if (!kvm_rma_pages) 1561 return -EINVAL; 1562 1563 ri = kvm_alloc_rma(); 1564 if (!ri) 1565 return -ENOMEM; 1566 1567 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 1568 if (fd < 0) 1569 kvm_release_rma(ri); 1570 1571 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 1572 return fd; 1573 } 1574 1575 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1576 int linux_psize) 1577 { 1578 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1579 1580 if (!def->shift) 1581 return; 1582 (*sps)->page_shift = def->shift; 1583 (*sps)->slb_enc = def->sllp; 1584 (*sps)->enc[0].page_shift = def->shift; 1585 /* 1586 * Only return base page encoding. We don't want to return 1587 * all the supporting pte_enc, because our H_ENTER doesn't 1588 * support MPSS yet. Once they do, we can start passing all 1589 * support pte_enc here 1590 */ 1591 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1592 (*sps)++; 1593 } 1594 1595 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) 1596 { 1597 struct kvm_ppc_one_seg_page_size *sps; 1598 1599 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1600 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1601 info->flags |= KVM_PPC_1T_SEGMENTS; 1602 info->slb_size = mmu_slb_size; 1603 1604 /* We only support these sizes for now, and no muti-size segments */ 1605 sps = &info->sps[0]; 1606 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1607 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1608 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1609 1610 return 0; 1611 } 1612 1613 /* 1614 * Get (and clear) the dirty memory log for a memory slot. 1615 */ 1616 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1617 { 1618 struct kvm_memory_slot *memslot; 1619 int r; 1620 unsigned long n; 1621 1622 mutex_lock(&kvm->slots_lock); 1623 1624 r = -EINVAL; 1625 if (log->slot >= KVM_USER_MEM_SLOTS) 1626 goto out; 1627 1628 memslot = id_to_memslot(kvm->memslots, log->slot); 1629 r = -ENOENT; 1630 if (!memslot->dirty_bitmap) 1631 goto out; 1632 1633 n = kvm_dirty_bitmap_bytes(memslot); 1634 memset(memslot->dirty_bitmap, 0, n); 1635 1636 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1637 if (r) 1638 goto out; 1639 1640 r = -EFAULT; 1641 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1642 goto out; 1643 1644 r = 0; 1645 out: 1646 mutex_unlock(&kvm->slots_lock); 1647 return r; 1648 } 1649 1650 static void unpin_slot(struct kvm_memory_slot *memslot) 1651 { 1652 unsigned long *physp; 1653 unsigned long j, npages, pfn; 1654 struct page *page; 1655 1656 physp = memslot->arch.slot_phys; 1657 npages = memslot->npages; 1658 if (!physp) 1659 return; 1660 for (j = 0; j < npages; j++) { 1661 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1662 continue; 1663 pfn = physp[j] >> PAGE_SHIFT; 1664 page = pfn_to_page(pfn); 1665 SetPageDirty(page); 1666 put_page(page); 1667 } 1668 } 1669 1670 void kvmppc_core_free_memslot(struct kvm_memory_slot *free, 1671 struct kvm_memory_slot *dont) 1672 { 1673 if (!dont || free->arch.rmap != dont->arch.rmap) { 1674 vfree(free->arch.rmap); 1675 free->arch.rmap = NULL; 1676 } 1677 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 1678 unpin_slot(free); 1679 vfree(free->arch.slot_phys); 1680 free->arch.slot_phys = NULL; 1681 } 1682 } 1683 1684 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, 1685 unsigned long npages) 1686 { 1687 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 1688 if (!slot->arch.rmap) 1689 return -ENOMEM; 1690 slot->arch.slot_phys = NULL; 1691 1692 return 0; 1693 } 1694 1695 int kvmppc_core_prepare_memory_region(struct kvm *kvm, 1696 struct kvm_memory_slot *memslot, 1697 struct kvm_userspace_memory_region *mem) 1698 { 1699 unsigned long *phys; 1700 1701 /* Allocate a slot_phys array if needed */ 1702 phys = memslot->arch.slot_phys; 1703 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 1704 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 1705 if (!phys) 1706 return -ENOMEM; 1707 memslot->arch.slot_phys = phys; 1708 } 1709 1710 return 0; 1711 } 1712 1713 void kvmppc_core_commit_memory_region(struct kvm *kvm, 1714 struct kvm_userspace_memory_region *mem, 1715 const struct kvm_memory_slot *old) 1716 { 1717 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 1718 struct kvm_memory_slot *memslot; 1719 1720 if (npages && old->npages) { 1721 /* 1722 * If modifying a memslot, reset all the rmap dirty bits. 1723 * If this is a new memslot, we don't need to do anything 1724 * since the rmap array starts out as all zeroes, 1725 * i.e. no pages are dirty. 1726 */ 1727 memslot = id_to_memslot(kvm->memslots, mem->slot); 1728 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 1729 } 1730 } 1731 1732 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 1733 { 1734 int err = 0; 1735 struct kvm *kvm = vcpu->kvm; 1736 struct kvm_rma_info *ri = NULL; 1737 unsigned long hva; 1738 struct kvm_memory_slot *memslot; 1739 struct vm_area_struct *vma; 1740 unsigned long lpcr, senc; 1741 unsigned long psize, porder; 1742 unsigned long rma_size; 1743 unsigned long rmls; 1744 unsigned long *physp; 1745 unsigned long i, npages; 1746 int srcu_idx; 1747 1748 mutex_lock(&kvm->lock); 1749 if (kvm->arch.rma_setup_done) 1750 goto out; /* another vcpu beat us to it */ 1751 1752 /* Allocate hashed page table (if not done already) and reset it */ 1753 if (!kvm->arch.hpt_virt) { 1754 err = kvmppc_alloc_hpt(kvm, NULL); 1755 if (err) { 1756 pr_err("KVM: Couldn't alloc HPT\n"); 1757 goto out; 1758 } 1759 } 1760 1761 /* Look up the memslot for guest physical address 0 */ 1762 srcu_idx = srcu_read_lock(&kvm->srcu); 1763 memslot = gfn_to_memslot(kvm, 0); 1764 1765 /* We must have some memory at 0 by now */ 1766 err = -EINVAL; 1767 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1768 goto out_srcu; 1769 1770 /* Look up the VMA for the start of this memory slot */ 1771 hva = memslot->userspace_addr; 1772 down_read(¤t->mm->mmap_sem); 1773 vma = find_vma(current->mm, hva); 1774 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 1775 goto up_out; 1776 1777 psize = vma_kernel_pagesize(vma); 1778 porder = __ilog2(psize); 1779 1780 /* Is this one of our preallocated RMAs? */ 1781 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 1782 hva == vma->vm_start) 1783 ri = vma->vm_file->private_data; 1784 1785 up_read(¤t->mm->mmap_sem); 1786 1787 if (!ri) { 1788 /* On POWER7, use VRMA; on PPC970, give up */ 1789 err = -EPERM; 1790 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1791 pr_err("KVM: CPU requires an RMO\n"); 1792 goto out_srcu; 1793 } 1794 1795 /* We can handle 4k, 64k or 16M pages in the VRMA */ 1796 err = -EINVAL; 1797 if (!(psize == 0x1000 || psize == 0x10000 || 1798 psize == 0x1000000)) 1799 goto out_srcu; 1800 1801 /* Update VRMASD field in the LPCR */ 1802 senc = slb_pgsize_encoding(psize); 1803 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1804 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1805 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; 1806 lpcr |= senc << (LPCR_VRMASD_SH - 4); 1807 kvm->arch.lpcr = lpcr; 1808 1809 /* Create HPTEs in the hash page table for the VRMA */ 1810 kvmppc_map_vrma(vcpu, memslot, porder); 1811 1812 } else { 1813 /* Set up to use an RMO region */ 1814 rma_size = kvm_rma_pages; 1815 if (rma_size > memslot->npages) 1816 rma_size = memslot->npages; 1817 rma_size <<= PAGE_SHIFT; 1818 rmls = lpcr_rmls(rma_size); 1819 err = -EINVAL; 1820 if ((long)rmls < 0) { 1821 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 1822 goto out_srcu; 1823 } 1824 atomic_inc(&ri->use_count); 1825 kvm->arch.rma = ri; 1826 1827 /* Update LPCR and RMOR */ 1828 lpcr = kvm->arch.lpcr; 1829 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1830 /* PPC970; insert RMLS value (split field) in HID4 */ 1831 lpcr &= ~((1ul << HID4_RMLS0_SH) | 1832 (3ul << HID4_RMLS2_SH)); 1833 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | 1834 ((rmls & 3) << HID4_RMLS2_SH); 1835 /* RMOR is also in HID4 */ 1836 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1837 << HID4_RMOR_SH; 1838 } else { 1839 /* POWER7 */ 1840 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); 1841 lpcr |= rmls << LPCR_RMLS_SH; 1842 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 1843 } 1844 kvm->arch.lpcr = lpcr; 1845 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 1846 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1847 1848 /* Initialize phys addrs of pages in RMO */ 1849 npages = kvm_rma_pages; 1850 porder = __ilog2(npages); 1851 physp = memslot->arch.slot_phys; 1852 if (physp) { 1853 if (npages > memslot->npages) 1854 npages = memslot->npages; 1855 spin_lock(&kvm->arch.slot_phys_lock); 1856 for (i = 0; i < npages; ++i) 1857 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 1858 porder; 1859 spin_unlock(&kvm->arch.slot_phys_lock); 1860 } 1861 } 1862 1863 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 1864 smp_wmb(); 1865 kvm->arch.rma_setup_done = 1; 1866 err = 0; 1867 out_srcu: 1868 srcu_read_unlock(&kvm->srcu, srcu_idx); 1869 out: 1870 mutex_unlock(&kvm->lock); 1871 return err; 1872 1873 up_out: 1874 up_read(¤t->mm->mmap_sem); 1875 goto out_srcu; 1876 } 1877 1878 int kvmppc_core_init_vm(struct kvm *kvm) 1879 { 1880 unsigned long lpcr, lpid; 1881 1882 /* Allocate the guest's logical partition ID */ 1883 1884 lpid = kvmppc_alloc_lpid(); 1885 if ((long)lpid < 0) 1886 return -ENOMEM; 1887 kvm->arch.lpid = lpid; 1888 1889 /* 1890 * Since we don't flush the TLB when tearing down a VM, 1891 * and this lpid might have previously been used, 1892 * make sure we flush on each core before running the new VM. 1893 */ 1894 cpumask_setall(&kvm->arch.need_tlb_flush); 1895 1896 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); 1897 INIT_LIST_HEAD(&kvm->arch.rtas_tokens); 1898 1899 kvm->arch.rma = NULL; 1900 1901 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 1902 1903 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1904 /* PPC970; HID4 is effectively the LPCR */ 1905 kvm->arch.host_lpid = 0; 1906 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 1907 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 1908 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 1909 ((lpid & 0xf) << HID4_LPID5_SH); 1910 } else { 1911 /* POWER7; init LPCR for virtual RMA mode */ 1912 kvm->arch.host_lpid = mfspr(SPRN_LPID); 1913 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 1914 lpcr &= LPCR_PECE | LPCR_LPES; 1915 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 1916 LPCR_VPM0 | LPCR_VPM1; 1917 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 1918 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1919 } 1920 kvm->arch.lpcr = lpcr; 1921 1922 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 1923 spin_lock_init(&kvm->arch.slot_phys_lock); 1924 1925 /* 1926 * Don't allow secondary CPU threads to come online 1927 * while any KVM VMs exist. 1928 */ 1929 inhibit_secondary_onlining(); 1930 1931 return 0; 1932 } 1933 1934 void kvmppc_core_destroy_vm(struct kvm *kvm) 1935 { 1936 uninhibit_secondary_onlining(); 1937 1938 if (kvm->arch.rma) { 1939 kvm_release_rma(kvm->arch.rma); 1940 kvm->arch.rma = NULL; 1941 } 1942 1943 kvmppc_rtas_tokens_free(kvm); 1944 1945 kvmppc_free_hpt(kvm); 1946 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1947 } 1948 1949 /* These are stubs for now */ 1950 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) 1951 { 1952 } 1953 1954 /* We don't need to emulate any privileged instructions or dcbz */ 1955 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, 1956 unsigned int inst, int *advance) 1957 { 1958 return EMULATE_FAIL; 1959 } 1960 1961 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) 1962 { 1963 return EMULATE_FAIL; 1964 } 1965 1966 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) 1967 { 1968 return EMULATE_FAIL; 1969 } 1970 1971 static int kvmppc_book3s_hv_init(void) 1972 { 1973 int r; 1974 1975 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1976 1977 if (r) 1978 return r; 1979 1980 r = kvmppc_mmu_hv_init(); 1981 1982 return r; 1983 } 1984 1985 static void kvmppc_book3s_hv_exit(void) 1986 { 1987 kvm_exit(); 1988 } 1989 1990 module_init(kvmppc_book3s_hv_init); 1991 module_exit(kvmppc_book3s_hv_exit); 1992