xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 015d239a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_host.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 
79 #include "book3s.h"
80 
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83 
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87 
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92 
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL	(~(u64)0)
95 
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97 
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104 
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108 
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112 
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops = {
115 	.set = param_set_int,
116 	.get = param_get_int,
117 };
118 
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121 
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125 
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130 
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135 
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138 
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140 
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_2THREAD,
159 	RWMR_RPA_P8_3THREAD,
160 	RWMR_RPA_P8_4THREAD,
161 	RWMR_RPA_P8_5THREAD,
162 	RWMR_RPA_P8_6THREAD,
163 	RWMR_RPA_P8_7THREAD,
164 	RWMR_RPA_P8_8THREAD,
165 };
166 
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 		int *ip)
169 {
170 	int i = *ip;
171 	struct kvm_vcpu *vcpu;
172 
173 	while (++i < MAX_SMT_THREADS) {
174 		vcpu = READ_ONCE(vc->runnable_threads[i]);
175 		if (vcpu) {
176 			*ip = i;
177 			return vcpu;
178 		}
179 	}
180 	return NULL;
181 }
182 
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186 
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190 
191 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 	if (kvmhv_on_pseries())
193 		return false;
194 
195 	/* On POWER9 we can use msgsnd to IPI any cpu */
196 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 		msg |= get_hard_smp_processor_id(cpu);
198 		smp_mb();
199 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 		return true;
201 	}
202 
203 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 		preempt_disable();
206 		if (cpu_first_thread_sibling(cpu) ==
207 		    cpu_first_thread_sibling(smp_processor_id())) {
208 			msg |= cpu_thread_in_core(cpu);
209 			smp_mb();
210 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 			preempt_enable();
212 			return true;
213 		}
214 		preempt_enable();
215 	}
216 
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 	if (cpu >= 0 && cpu < nr_cpu_ids) {
219 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 			xics_wake_cpu(cpu);
221 			return true;
222 		}
223 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 		return true;
225 	}
226 #endif
227 
228 	return false;
229 }
230 
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233 	int cpu;
234 	struct swait_queue_head *wqp;
235 
236 	wqp = kvm_arch_vcpu_wq(vcpu);
237 	if (swq_has_sleeper(wqp)) {
238 		swake_up_one(wqp);
239 		++vcpu->stat.halt_wakeup;
240 	}
241 
242 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
243 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244 		return;
245 
246 	/* CPU points to the first thread of the core */
247 	cpu = vcpu->cpu;
248 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249 		smp_send_reschedule(cpu);
250 }
251 
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284 
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&vc->stoltb_lock, flags);
290 	vc->preempt_tb = mftb();
291 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293 
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&vc->stoltb_lock, flags);
299 	if (vc->preempt_tb != TB_NIL) {
300 		vc->stolen_tb += mftb() - vc->preempt_tb;
301 		vc->preempt_tb = TB_NIL;
302 	}
303 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305 
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309 	unsigned long flags;
310 
311 	/*
312 	 * We can test vc->runner without taking the vcore lock,
313 	 * because only this task ever sets vc->runner to this
314 	 * vcpu, and once it is set to this vcpu, only this task
315 	 * ever sets it to NULL.
316 	 */
317 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318 		kvmppc_core_end_stolen(vc);
319 
320 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322 	    vcpu->arch.busy_preempt != TB_NIL) {
323 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324 		vcpu->arch.busy_preempt = TB_NIL;
325 	}
326 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328 
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332 	unsigned long flags;
333 
334 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335 		kvmppc_core_start_stolen(vc);
336 
337 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339 		vcpu->arch.busy_preempt = mftb();
340 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342 
343 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
344 {
345 	vcpu->arch.pvr = pvr;
346 }
347 
348 /* Dummy value used in computing PCR value below */
349 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
350 
351 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
352 {
353 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
354 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
355 
356 	/* We can (emulate) our own architecture version and anything older */
357 	if (cpu_has_feature(CPU_FTR_ARCH_300))
358 		host_pcr_bit = PCR_ARCH_300;
359 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360 		host_pcr_bit = PCR_ARCH_207;
361 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
362 		host_pcr_bit = PCR_ARCH_206;
363 	else
364 		host_pcr_bit = PCR_ARCH_205;
365 
366 	/* Determine lowest PCR bit needed to run guest in given PVR level */
367 	guest_pcr_bit = host_pcr_bit;
368 	if (arch_compat) {
369 		switch (arch_compat) {
370 		case PVR_ARCH_205:
371 			guest_pcr_bit = PCR_ARCH_205;
372 			break;
373 		case PVR_ARCH_206:
374 		case PVR_ARCH_206p:
375 			guest_pcr_bit = PCR_ARCH_206;
376 			break;
377 		case PVR_ARCH_207:
378 			guest_pcr_bit = PCR_ARCH_207;
379 			break;
380 		case PVR_ARCH_300:
381 			guest_pcr_bit = PCR_ARCH_300;
382 			break;
383 		default:
384 			return -EINVAL;
385 		}
386 	}
387 
388 	/* Check requested PCR bits don't exceed our capabilities */
389 	if (guest_pcr_bit > host_pcr_bit)
390 		return -EINVAL;
391 
392 	spin_lock(&vc->lock);
393 	vc->arch_compat = arch_compat;
394 	/*
395 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
396 	 * Also set all reserved PCR bits
397 	 */
398 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
399 	spin_unlock(&vc->lock);
400 
401 	return 0;
402 }
403 
404 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
405 {
406 	int r;
407 
408 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
409 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
410 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
411 	for (r = 0; r < 16; ++r)
412 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
413 		       r, kvmppc_get_gpr(vcpu, r),
414 		       r+16, kvmppc_get_gpr(vcpu, r+16));
415 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
416 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
417 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
418 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
419 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
420 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
421 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
422 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
423 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
424 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
425 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
426 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
427 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
428 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
429 	for (r = 0; r < vcpu->arch.slb_max; ++r)
430 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
431 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
432 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
433 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
434 	       vcpu->arch.last_inst);
435 }
436 
437 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
438 {
439 	return kvm_get_vcpu_by_id(kvm, id);
440 }
441 
442 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
443 {
444 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
445 	vpa->yield_count = cpu_to_be32(1);
446 }
447 
448 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
449 		   unsigned long addr, unsigned long len)
450 {
451 	/* check address is cacheline aligned */
452 	if (addr & (L1_CACHE_BYTES - 1))
453 		return -EINVAL;
454 	spin_lock(&vcpu->arch.vpa_update_lock);
455 	if (v->next_gpa != addr || v->len != len) {
456 		v->next_gpa = addr;
457 		v->len = addr ? len : 0;
458 		v->update_pending = 1;
459 	}
460 	spin_unlock(&vcpu->arch.vpa_update_lock);
461 	return 0;
462 }
463 
464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
465 struct reg_vpa {
466 	u32 dummy;
467 	union {
468 		__be16 hword;
469 		__be32 word;
470 	} length;
471 };
472 
473 static int vpa_is_registered(struct kvmppc_vpa *vpap)
474 {
475 	if (vpap->update_pending)
476 		return vpap->next_gpa != 0;
477 	return vpap->pinned_addr != NULL;
478 }
479 
480 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
481 				       unsigned long flags,
482 				       unsigned long vcpuid, unsigned long vpa)
483 {
484 	struct kvm *kvm = vcpu->kvm;
485 	unsigned long len, nb;
486 	void *va;
487 	struct kvm_vcpu *tvcpu;
488 	int err;
489 	int subfunc;
490 	struct kvmppc_vpa *vpap;
491 
492 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
493 	if (!tvcpu)
494 		return H_PARAMETER;
495 
496 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
497 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
498 	    subfunc == H_VPA_REG_SLB) {
499 		/* Registering new area - address must be cache-line aligned */
500 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
501 			return H_PARAMETER;
502 
503 		/* convert logical addr to kernel addr and read length */
504 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
505 		if (va == NULL)
506 			return H_PARAMETER;
507 		if (subfunc == H_VPA_REG_VPA)
508 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
509 		else
510 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
511 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
512 
513 		/* Check length */
514 		if (len > nb || len < sizeof(struct reg_vpa))
515 			return H_PARAMETER;
516 	} else {
517 		vpa = 0;
518 		len = 0;
519 	}
520 
521 	err = H_PARAMETER;
522 	vpap = NULL;
523 	spin_lock(&tvcpu->arch.vpa_update_lock);
524 
525 	switch (subfunc) {
526 	case H_VPA_REG_VPA:		/* register VPA */
527 		/*
528 		 * The size of our lppaca is 1kB because of the way we align
529 		 * it for the guest to avoid crossing a 4kB boundary. We only
530 		 * use 640 bytes of the structure though, so we should accept
531 		 * clients that set a size of 640.
532 		 */
533 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
534 		if (len < sizeof(struct lppaca))
535 			break;
536 		vpap = &tvcpu->arch.vpa;
537 		err = 0;
538 		break;
539 
540 	case H_VPA_REG_DTL:		/* register DTL */
541 		if (len < sizeof(struct dtl_entry))
542 			break;
543 		len -= len % sizeof(struct dtl_entry);
544 
545 		/* Check that they have previously registered a VPA */
546 		err = H_RESOURCE;
547 		if (!vpa_is_registered(&tvcpu->arch.vpa))
548 			break;
549 
550 		vpap = &tvcpu->arch.dtl;
551 		err = 0;
552 		break;
553 
554 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
555 		/* Check that they have previously registered a VPA */
556 		err = H_RESOURCE;
557 		if (!vpa_is_registered(&tvcpu->arch.vpa))
558 			break;
559 
560 		vpap = &tvcpu->arch.slb_shadow;
561 		err = 0;
562 		break;
563 
564 	case H_VPA_DEREG_VPA:		/* deregister VPA */
565 		/* Check they don't still have a DTL or SLB buf registered */
566 		err = H_RESOURCE;
567 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
568 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
569 			break;
570 
571 		vpap = &tvcpu->arch.vpa;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_DTL:		/* deregister DTL */
576 		vpap = &tvcpu->arch.dtl;
577 		err = 0;
578 		break;
579 
580 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
581 		vpap = &tvcpu->arch.slb_shadow;
582 		err = 0;
583 		break;
584 	}
585 
586 	if (vpap) {
587 		vpap->next_gpa = vpa;
588 		vpap->len = len;
589 		vpap->update_pending = 1;
590 	}
591 
592 	spin_unlock(&tvcpu->arch.vpa_update_lock);
593 
594 	return err;
595 }
596 
597 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
598 {
599 	struct kvm *kvm = vcpu->kvm;
600 	void *va;
601 	unsigned long nb;
602 	unsigned long gpa;
603 
604 	/*
605 	 * We need to pin the page pointed to by vpap->next_gpa,
606 	 * but we can't call kvmppc_pin_guest_page under the lock
607 	 * as it does get_user_pages() and down_read().  So we
608 	 * have to drop the lock, pin the page, then get the lock
609 	 * again and check that a new area didn't get registered
610 	 * in the meantime.
611 	 */
612 	for (;;) {
613 		gpa = vpap->next_gpa;
614 		spin_unlock(&vcpu->arch.vpa_update_lock);
615 		va = NULL;
616 		nb = 0;
617 		if (gpa)
618 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
619 		spin_lock(&vcpu->arch.vpa_update_lock);
620 		if (gpa == vpap->next_gpa)
621 			break;
622 		/* sigh... unpin that one and try again */
623 		if (va)
624 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
625 	}
626 
627 	vpap->update_pending = 0;
628 	if (va && nb < vpap->len) {
629 		/*
630 		 * If it's now too short, it must be that userspace
631 		 * has changed the mappings underlying guest memory,
632 		 * so unregister the region.
633 		 */
634 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
635 		va = NULL;
636 	}
637 	if (vpap->pinned_addr)
638 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
639 					vpap->dirty);
640 	vpap->gpa = gpa;
641 	vpap->pinned_addr = va;
642 	vpap->dirty = false;
643 	if (va)
644 		vpap->pinned_end = va + vpap->len;
645 }
646 
647 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
648 {
649 	if (!(vcpu->arch.vpa.update_pending ||
650 	      vcpu->arch.slb_shadow.update_pending ||
651 	      vcpu->arch.dtl.update_pending))
652 		return;
653 
654 	spin_lock(&vcpu->arch.vpa_update_lock);
655 	if (vcpu->arch.vpa.update_pending) {
656 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
657 		if (vcpu->arch.vpa.pinned_addr)
658 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
659 	}
660 	if (vcpu->arch.dtl.update_pending) {
661 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
662 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
663 		vcpu->arch.dtl_index = 0;
664 	}
665 	if (vcpu->arch.slb_shadow.update_pending)
666 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
667 	spin_unlock(&vcpu->arch.vpa_update_lock);
668 }
669 
670 /*
671  * Return the accumulated stolen time for the vcore up until `now'.
672  * The caller should hold the vcore lock.
673  */
674 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
675 {
676 	u64 p;
677 	unsigned long flags;
678 
679 	spin_lock_irqsave(&vc->stoltb_lock, flags);
680 	p = vc->stolen_tb;
681 	if (vc->vcore_state != VCORE_INACTIVE &&
682 	    vc->preempt_tb != TB_NIL)
683 		p += now - vc->preempt_tb;
684 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
685 	return p;
686 }
687 
688 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
689 				    struct kvmppc_vcore *vc)
690 {
691 	struct dtl_entry *dt;
692 	struct lppaca *vpa;
693 	unsigned long stolen;
694 	unsigned long core_stolen;
695 	u64 now;
696 	unsigned long flags;
697 
698 	dt = vcpu->arch.dtl_ptr;
699 	vpa = vcpu->arch.vpa.pinned_addr;
700 	now = mftb();
701 	core_stolen = vcore_stolen_time(vc, now);
702 	stolen = core_stolen - vcpu->arch.stolen_logged;
703 	vcpu->arch.stolen_logged = core_stolen;
704 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
705 	stolen += vcpu->arch.busy_stolen;
706 	vcpu->arch.busy_stolen = 0;
707 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
708 	if (!dt || !vpa)
709 		return;
710 	memset(dt, 0, sizeof(struct dtl_entry));
711 	dt->dispatch_reason = 7;
712 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
713 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
714 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
715 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
716 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
717 	++dt;
718 	if (dt == vcpu->arch.dtl.pinned_end)
719 		dt = vcpu->arch.dtl.pinned_addr;
720 	vcpu->arch.dtl_ptr = dt;
721 	/* order writing *dt vs. writing vpa->dtl_idx */
722 	smp_wmb();
723 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
724 	vcpu->arch.dtl.dirty = true;
725 }
726 
727 /* See if there is a doorbell interrupt pending for a vcpu */
728 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
729 {
730 	int thr;
731 	struct kvmppc_vcore *vc;
732 
733 	if (vcpu->arch.doorbell_request)
734 		return true;
735 	/*
736 	 * Ensure that the read of vcore->dpdes comes after the read
737 	 * of vcpu->doorbell_request.  This barrier matches the
738 	 * smp_wmb() in kvmppc_guest_entry_inject().
739 	 */
740 	smp_rmb();
741 	vc = vcpu->arch.vcore;
742 	thr = vcpu->vcpu_id - vc->first_vcpuid;
743 	return !!(vc->dpdes & (1 << thr));
744 }
745 
746 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
747 {
748 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
749 		return true;
750 	if ((!vcpu->arch.vcore->arch_compat) &&
751 	    cpu_has_feature(CPU_FTR_ARCH_207S))
752 		return true;
753 	return false;
754 }
755 
756 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
757 			     unsigned long resource, unsigned long value1,
758 			     unsigned long value2)
759 {
760 	switch (resource) {
761 	case H_SET_MODE_RESOURCE_SET_CIABR:
762 		if (!kvmppc_power8_compatible(vcpu))
763 			return H_P2;
764 		if (value2)
765 			return H_P4;
766 		if (mflags)
767 			return H_UNSUPPORTED_FLAG_START;
768 		/* Guests can't breakpoint the hypervisor */
769 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
770 			return H_P3;
771 		vcpu->arch.ciabr  = value1;
772 		return H_SUCCESS;
773 	case H_SET_MODE_RESOURCE_SET_DAWR:
774 		if (!kvmppc_power8_compatible(vcpu))
775 			return H_P2;
776 		if (!ppc_breakpoint_available())
777 			return H_P2;
778 		if (mflags)
779 			return H_UNSUPPORTED_FLAG_START;
780 		if (value2 & DABRX_HYP)
781 			return H_P4;
782 		vcpu->arch.dawr  = value1;
783 		vcpu->arch.dawrx = value2;
784 		return H_SUCCESS;
785 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
786 		/* KVM does not support mflags=2 (AIL=2) */
787 		if (mflags != 0 && mflags != 3)
788 			return H_UNSUPPORTED_FLAG_START;
789 		return H_TOO_HARD;
790 	default:
791 		return H_TOO_HARD;
792 	}
793 }
794 
795 /* Copy guest memory in place - must reside within a single memslot */
796 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
797 				  unsigned long len)
798 {
799 	struct kvm_memory_slot *to_memslot = NULL;
800 	struct kvm_memory_slot *from_memslot = NULL;
801 	unsigned long to_addr, from_addr;
802 	int r;
803 
804 	/* Get HPA for from address */
805 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
806 	if (!from_memslot)
807 		return -EFAULT;
808 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
809 			     << PAGE_SHIFT))
810 		return -EINVAL;
811 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
812 	if (kvm_is_error_hva(from_addr))
813 		return -EFAULT;
814 	from_addr |= (from & (PAGE_SIZE - 1));
815 
816 	/* Get HPA for to address */
817 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
818 	if (!to_memslot)
819 		return -EFAULT;
820 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
821 			   << PAGE_SHIFT))
822 		return -EINVAL;
823 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
824 	if (kvm_is_error_hva(to_addr))
825 		return -EFAULT;
826 	to_addr |= (to & (PAGE_SIZE - 1));
827 
828 	/* Perform copy */
829 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
830 			     len);
831 	if (r)
832 		return -EFAULT;
833 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
834 	return 0;
835 }
836 
837 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
838 			       unsigned long dest, unsigned long src)
839 {
840 	u64 pg_sz = SZ_4K;		/* 4K page size */
841 	u64 pg_mask = SZ_4K - 1;
842 	int ret;
843 
844 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
845 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
846 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
847 		return H_PARAMETER;
848 
849 	/* dest (and src if copy_page flag set) must be page aligned */
850 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
851 		return H_PARAMETER;
852 
853 	/* zero and/or copy the page as determined by the flags */
854 	if (flags & H_COPY_PAGE) {
855 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
856 		if (ret < 0)
857 			return H_PARAMETER;
858 	} else if (flags & H_ZERO_PAGE) {
859 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
860 		if (ret < 0)
861 			return H_PARAMETER;
862 	}
863 
864 	/* We can ignore the remaining flags */
865 
866 	return H_SUCCESS;
867 }
868 
869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
870 {
871 	struct kvmppc_vcore *vcore = target->arch.vcore;
872 
873 	/*
874 	 * We expect to have been called by the real mode handler
875 	 * (kvmppc_rm_h_confer()) which would have directly returned
876 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
877 	 * have useful work to do and should not confer) so we don't
878 	 * recheck that here.
879 	 */
880 
881 	spin_lock(&vcore->lock);
882 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
883 	    vcore->vcore_state != VCORE_INACTIVE &&
884 	    vcore->runner)
885 		target = vcore->runner;
886 	spin_unlock(&vcore->lock);
887 
888 	return kvm_vcpu_yield_to(target);
889 }
890 
891 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
892 {
893 	int yield_count = 0;
894 	struct lppaca *lppaca;
895 
896 	spin_lock(&vcpu->arch.vpa_update_lock);
897 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
898 	if (lppaca)
899 		yield_count = be32_to_cpu(lppaca->yield_count);
900 	spin_unlock(&vcpu->arch.vpa_update_lock);
901 	return yield_count;
902 }
903 
904 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
905 {
906 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
907 	unsigned long target, ret = H_SUCCESS;
908 	int yield_count;
909 	struct kvm_vcpu *tvcpu;
910 	int idx, rc;
911 
912 	if (req <= MAX_HCALL_OPCODE &&
913 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
914 		return RESUME_HOST;
915 
916 	switch (req) {
917 	case H_CEDE:
918 		break;
919 	case H_PROD:
920 		target = kvmppc_get_gpr(vcpu, 4);
921 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
922 		if (!tvcpu) {
923 			ret = H_PARAMETER;
924 			break;
925 		}
926 		tvcpu->arch.prodded = 1;
927 		smp_mb();
928 		if (tvcpu->arch.ceded)
929 			kvmppc_fast_vcpu_kick_hv(tvcpu);
930 		break;
931 	case H_CONFER:
932 		target = kvmppc_get_gpr(vcpu, 4);
933 		if (target == -1)
934 			break;
935 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
936 		if (!tvcpu) {
937 			ret = H_PARAMETER;
938 			break;
939 		}
940 		yield_count = kvmppc_get_gpr(vcpu, 5);
941 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
942 			break;
943 		kvm_arch_vcpu_yield_to(tvcpu);
944 		break;
945 	case H_REGISTER_VPA:
946 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
947 					kvmppc_get_gpr(vcpu, 5),
948 					kvmppc_get_gpr(vcpu, 6));
949 		break;
950 	case H_RTAS:
951 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
952 			return RESUME_HOST;
953 
954 		idx = srcu_read_lock(&vcpu->kvm->srcu);
955 		rc = kvmppc_rtas_hcall(vcpu);
956 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
957 
958 		if (rc == -ENOENT)
959 			return RESUME_HOST;
960 		else if (rc == 0)
961 			break;
962 
963 		/* Send the error out to userspace via KVM_RUN */
964 		return rc;
965 	case H_LOGICAL_CI_LOAD:
966 		ret = kvmppc_h_logical_ci_load(vcpu);
967 		if (ret == H_TOO_HARD)
968 			return RESUME_HOST;
969 		break;
970 	case H_LOGICAL_CI_STORE:
971 		ret = kvmppc_h_logical_ci_store(vcpu);
972 		if (ret == H_TOO_HARD)
973 			return RESUME_HOST;
974 		break;
975 	case H_SET_MODE:
976 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
977 					kvmppc_get_gpr(vcpu, 5),
978 					kvmppc_get_gpr(vcpu, 6),
979 					kvmppc_get_gpr(vcpu, 7));
980 		if (ret == H_TOO_HARD)
981 			return RESUME_HOST;
982 		break;
983 	case H_XIRR:
984 	case H_CPPR:
985 	case H_EOI:
986 	case H_IPI:
987 	case H_IPOLL:
988 	case H_XIRR_X:
989 		if (kvmppc_xics_enabled(vcpu)) {
990 			if (xics_on_xive()) {
991 				ret = H_NOT_AVAILABLE;
992 				return RESUME_GUEST;
993 			}
994 			ret = kvmppc_xics_hcall(vcpu, req);
995 			break;
996 		}
997 		return RESUME_HOST;
998 	case H_SET_DABR:
999 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1000 		break;
1001 	case H_SET_XDABR:
1002 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1003 						kvmppc_get_gpr(vcpu, 5));
1004 		break;
1005 #ifdef CONFIG_SPAPR_TCE_IOMMU
1006 	case H_GET_TCE:
1007 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 						kvmppc_get_gpr(vcpu, 5));
1009 		if (ret == H_TOO_HARD)
1010 			return RESUME_HOST;
1011 		break;
1012 	case H_PUT_TCE:
1013 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1014 						kvmppc_get_gpr(vcpu, 5),
1015 						kvmppc_get_gpr(vcpu, 6));
1016 		if (ret == H_TOO_HARD)
1017 			return RESUME_HOST;
1018 		break;
1019 	case H_PUT_TCE_INDIRECT:
1020 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1021 						kvmppc_get_gpr(vcpu, 5),
1022 						kvmppc_get_gpr(vcpu, 6),
1023 						kvmppc_get_gpr(vcpu, 7));
1024 		if (ret == H_TOO_HARD)
1025 			return RESUME_HOST;
1026 		break;
1027 	case H_STUFF_TCE:
1028 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1029 						kvmppc_get_gpr(vcpu, 5),
1030 						kvmppc_get_gpr(vcpu, 6),
1031 						kvmppc_get_gpr(vcpu, 7));
1032 		if (ret == H_TOO_HARD)
1033 			return RESUME_HOST;
1034 		break;
1035 #endif
1036 	case H_RANDOM:
1037 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1038 			ret = H_HARDWARE;
1039 		break;
1040 
1041 	case H_SET_PARTITION_TABLE:
1042 		ret = H_FUNCTION;
1043 		if (nesting_enabled(vcpu->kvm))
1044 			ret = kvmhv_set_partition_table(vcpu);
1045 		break;
1046 	case H_ENTER_NESTED:
1047 		ret = H_FUNCTION;
1048 		if (!nesting_enabled(vcpu->kvm))
1049 			break;
1050 		ret = kvmhv_enter_nested_guest(vcpu);
1051 		if (ret == H_INTERRUPT) {
1052 			kvmppc_set_gpr(vcpu, 3, 0);
1053 			vcpu->arch.hcall_needed = 0;
1054 			return -EINTR;
1055 		} else if (ret == H_TOO_HARD) {
1056 			kvmppc_set_gpr(vcpu, 3, 0);
1057 			vcpu->arch.hcall_needed = 0;
1058 			return RESUME_HOST;
1059 		}
1060 		break;
1061 	case H_TLB_INVALIDATE:
1062 		ret = H_FUNCTION;
1063 		if (nesting_enabled(vcpu->kvm))
1064 			ret = kvmhv_do_nested_tlbie(vcpu);
1065 		break;
1066 	case H_COPY_TOFROM_GUEST:
1067 		ret = H_FUNCTION;
1068 		if (nesting_enabled(vcpu->kvm))
1069 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1070 		break;
1071 	case H_PAGE_INIT:
1072 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1073 					 kvmppc_get_gpr(vcpu, 5),
1074 					 kvmppc_get_gpr(vcpu, 6));
1075 		break;
1076 	case H_SVM_PAGE_IN:
1077 		ret = kvmppc_h_svm_page_in(vcpu->kvm,
1078 					   kvmppc_get_gpr(vcpu, 4),
1079 					   kvmppc_get_gpr(vcpu, 5),
1080 					   kvmppc_get_gpr(vcpu, 6));
1081 		break;
1082 	case H_SVM_PAGE_OUT:
1083 		ret = kvmppc_h_svm_page_out(vcpu->kvm,
1084 					    kvmppc_get_gpr(vcpu, 4),
1085 					    kvmppc_get_gpr(vcpu, 5),
1086 					    kvmppc_get_gpr(vcpu, 6));
1087 		break;
1088 	case H_SVM_INIT_START:
1089 		ret = kvmppc_h_svm_init_start(vcpu->kvm);
1090 		break;
1091 	case H_SVM_INIT_DONE:
1092 		ret = kvmppc_h_svm_init_done(vcpu->kvm);
1093 		break;
1094 	case H_SVM_INIT_ABORT:
1095 		ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1096 		break;
1097 
1098 	default:
1099 		return RESUME_HOST;
1100 	}
1101 	kvmppc_set_gpr(vcpu, 3, ret);
1102 	vcpu->arch.hcall_needed = 0;
1103 	return RESUME_GUEST;
1104 }
1105 
1106 /*
1107  * Handle H_CEDE in the nested virtualization case where we haven't
1108  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1109  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1110  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1111  */
1112 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1113 {
1114 	vcpu->arch.shregs.msr |= MSR_EE;
1115 	vcpu->arch.ceded = 1;
1116 	smp_mb();
1117 	if (vcpu->arch.prodded) {
1118 		vcpu->arch.prodded = 0;
1119 		smp_mb();
1120 		vcpu->arch.ceded = 0;
1121 	}
1122 }
1123 
1124 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1125 {
1126 	switch (cmd) {
1127 	case H_CEDE:
1128 	case H_PROD:
1129 	case H_CONFER:
1130 	case H_REGISTER_VPA:
1131 	case H_SET_MODE:
1132 	case H_LOGICAL_CI_LOAD:
1133 	case H_LOGICAL_CI_STORE:
1134 #ifdef CONFIG_KVM_XICS
1135 	case H_XIRR:
1136 	case H_CPPR:
1137 	case H_EOI:
1138 	case H_IPI:
1139 	case H_IPOLL:
1140 	case H_XIRR_X:
1141 #endif
1142 	case H_PAGE_INIT:
1143 		return 1;
1144 	}
1145 
1146 	/* See if it's in the real-mode table */
1147 	return kvmppc_hcall_impl_hv_realmode(cmd);
1148 }
1149 
1150 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1151 					struct kvm_vcpu *vcpu)
1152 {
1153 	u32 last_inst;
1154 
1155 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1156 					EMULATE_DONE) {
1157 		/*
1158 		 * Fetch failed, so return to guest and
1159 		 * try executing it again.
1160 		 */
1161 		return RESUME_GUEST;
1162 	}
1163 
1164 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1165 		run->exit_reason = KVM_EXIT_DEBUG;
1166 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1167 		return RESUME_HOST;
1168 	} else {
1169 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1170 		return RESUME_GUEST;
1171 	}
1172 }
1173 
1174 static void do_nothing(void *x)
1175 {
1176 }
1177 
1178 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1179 {
1180 	int thr, cpu, pcpu, nthreads;
1181 	struct kvm_vcpu *v;
1182 	unsigned long dpdes;
1183 
1184 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1185 	dpdes = 0;
1186 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1187 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1188 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1189 		if (!v)
1190 			continue;
1191 		/*
1192 		 * If the vcpu is currently running on a physical cpu thread,
1193 		 * interrupt it in order to pull it out of the guest briefly,
1194 		 * which will update its vcore->dpdes value.
1195 		 */
1196 		pcpu = READ_ONCE(v->cpu);
1197 		if (pcpu >= 0)
1198 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1199 		if (kvmppc_doorbell_pending(v))
1200 			dpdes |= 1 << thr;
1201 	}
1202 	return dpdes;
1203 }
1204 
1205 /*
1206  * On POWER9, emulate doorbell-related instructions in order to
1207  * give the guest the illusion of running on a multi-threaded core.
1208  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1209  * and mfspr DPDES.
1210  */
1211 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1212 {
1213 	u32 inst, rb, thr;
1214 	unsigned long arg;
1215 	struct kvm *kvm = vcpu->kvm;
1216 	struct kvm_vcpu *tvcpu;
1217 
1218 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1219 		return RESUME_GUEST;
1220 	if (get_op(inst) != 31)
1221 		return EMULATE_FAIL;
1222 	rb = get_rb(inst);
1223 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1224 	switch (get_xop(inst)) {
1225 	case OP_31_XOP_MSGSNDP:
1226 		arg = kvmppc_get_gpr(vcpu, rb);
1227 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1228 			break;
1229 		arg &= 0x3f;
1230 		if (arg >= kvm->arch.emul_smt_mode)
1231 			break;
1232 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1233 		if (!tvcpu)
1234 			break;
1235 		if (!tvcpu->arch.doorbell_request) {
1236 			tvcpu->arch.doorbell_request = 1;
1237 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1238 		}
1239 		break;
1240 	case OP_31_XOP_MSGCLRP:
1241 		arg = kvmppc_get_gpr(vcpu, rb);
1242 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1243 			break;
1244 		vcpu->arch.vcore->dpdes = 0;
1245 		vcpu->arch.doorbell_request = 0;
1246 		break;
1247 	case OP_31_XOP_MFSPR:
1248 		switch (get_sprn(inst)) {
1249 		case SPRN_TIR:
1250 			arg = thr;
1251 			break;
1252 		case SPRN_DPDES:
1253 			arg = kvmppc_read_dpdes(vcpu);
1254 			break;
1255 		default:
1256 			return EMULATE_FAIL;
1257 		}
1258 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1259 		break;
1260 	default:
1261 		return EMULATE_FAIL;
1262 	}
1263 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1264 	return RESUME_GUEST;
1265 }
1266 
1267 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1268 				 struct task_struct *tsk)
1269 {
1270 	int r = RESUME_HOST;
1271 
1272 	vcpu->stat.sum_exits++;
1273 
1274 	/*
1275 	 * This can happen if an interrupt occurs in the last stages
1276 	 * of guest entry or the first stages of guest exit (i.e. after
1277 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1278 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1279 	 * That can happen due to a bug, or due to a machine check
1280 	 * occurring at just the wrong time.
1281 	 */
1282 	if (vcpu->arch.shregs.msr & MSR_HV) {
1283 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1284 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1285 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1286 			vcpu->arch.shregs.msr);
1287 		kvmppc_dump_regs(vcpu);
1288 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1289 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1290 		return RESUME_HOST;
1291 	}
1292 	run->exit_reason = KVM_EXIT_UNKNOWN;
1293 	run->ready_for_interrupt_injection = 1;
1294 	switch (vcpu->arch.trap) {
1295 	/* We're good on these - the host merely wanted to get our attention */
1296 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1297 		vcpu->stat.dec_exits++;
1298 		r = RESUME_GUEST;
1299 		break;
1300 	case BOOK3S_INTERRUPT_EXTERNAL:
1301 	case BOOK3S_INTERRUPT_H_DOORBELL:
1302 	case BOOK3S_INTERRUPT_H_VIRT:
1303 		vcpu->stat.ext_intr_exits++;
1304 		r = RESUME_GUEST;
1305 		break;
1306 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1307 	case BOOK3S_INTERRUPT_HMI:
1308 	case BOOK3S_INTERRUPT_PERFMON:
1309 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1310 		r = RESUME_GUEST;
1311 		break;
1312 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1313 		/* Print the MCE event to host console. */
1314 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1315 
1316 		/*
1317 		 * If the guest can do FWNMI, exit to userspace so it can
1318 		 * deliver a FWNMI to the guest.
1319 		 * Otherwise we synthesize a machine check for the guest
1320 		 * so that it knows that the machine check occurred.
1321 		 */
1322 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1323 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1324 			kvmppc_core_queue_machine_check(vcpu, flags);
1325 			r = RESUME_GUEST;
1326 			break;
1327 		}
1328 
1329 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1330 		run->exit_reason = KVM_EXIT_NMI;
1331 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1332 		/* Clear out the old NMI status from run->flags */
1333 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1334 		/* Now set the NMI status */
1335 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1336 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1337 		else
1338 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1339 
1340 		r = RESUME_HOST;
1341 		break;
1342 	case BOOK3S_INTERRUPT_PROGRAM:
1343 	{
1344 		ulong flags;
1345 		/*
1346 		 * Normally program interrupts are delivered directly
1347 		 * to the guest by the hardware, but we can get here
1348 		 * as a result of a hypervisor emulation interrupt
1349 		 * (e40) getting turned into a 700 by BML RTAS.
1350 		 */
1351 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1352 		kvmppc_core_queue_program(vcpu, flags);
1353 		r = RESUME_GUEST;
1354 		break;
1355 	}
1356 	case BOOK3S_INTERRUPT_SYSCALL:
1357 	{
1358 		/* hcall - punt to userspace */
1359 		int i;
1360 
1361 		/* hypercall with MSR_PR has already been handled in rmode,
1362 		 * and never reaches here.
1363 		 */
1364 
1365 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1366 		for (i = 0; i < 9; ++i)
1367 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1368 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1369 		vcpu->arch.hcall_needed = 1;
1370 		r = RESUME_HOST;
1371 		break;
1372 	}
1373 	/*
1374 	 * We get these next two if the guest accesses a page which it thinks
1375 	 * it has mapped but which is not actually present, either because
1376 	 * it is for an emulated I/O device or because the corresonding
1377 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1378 	 * have been handled already.
1379 	 */
1380 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1381 		r = RESUME_PAGE_FAULT;
1382 		break;
1383 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1384 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1385 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1386 			DSISR_SRR1_MATCH_64S;
1387 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1388 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1389 		r = RESUME_PAGE_FAULT;
1390 		break;
1391 	/*
1392 	 * This occurs if the guest executes an illegal instruction.
1393 	 * If the guest debug is disabled, generate a program interrupt
1394 	 * to the guest. If guest debug is enabled, we need to check
1395 	 * whether the instruction is a software breakpoint instruction.
1396 	 * Accordingly return to Guest or Host.
1397 	 */
1398 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1399 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1400 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1401 				swab32(vcpu->arch.emul_inst) :
1402 				vcpu->arch.emul_inst;
1403 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1404 			r = kvmppc_emulate_debug_inst(run, vcpu);
1405 		} else {
1406 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1407 			r = RESUME_GUEST;
1408 		}
1409 		break;
1410 	/*
1411 	 * This occurs if the guest (kernel or userspace), does something that
1412 	 * is prohibited by HFSCR.
1413 	 * On POWER9, this could be a doorbell instruction that we need
1414 	 * to emulate.
1415 	 * Otherwise, we just generate a program interrupt to the guest.
1416 	 */
1417 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1418 		r = EMULATE_FAIL;
1419 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1420 		    cpu_has_feature(CPU_FTR_ARCH_300))
1421 			r = kvmppc_emulate_doorbell_instr(vcpu);
1422 		if (r == EMULATE_FAIL) {
1423 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1424 			r = RESUME_GUEST;
1425 		}
1426 		break;
1427 
1428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1429 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1430 		/*
1431 		 * This occurs for various TM-related instructions that
1432 		 * we need to emulate on POWER9 DD2.2.  We have already
1433 		 * handled the cases where the guest was in real-suspend
1434 		 * mode and was transitioning to transactional state.
1435 		 */
1436 		r = kvmhv_p9_tm_emulation(vcpu);
1437 		break;
1438 #endif
1439 
1440 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1441 		r = RESUME_PASSTHROUGH;
1442 		break;
1443 	default:
1444 		kvmppc_dump_regs(vcpu);
1445 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1446 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1447 			vcpu->arch.shregs.msr);
1448 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1449 		r = RESUME_HOST;
1450 		break;
1451 	}
1452 
1453 	return r;
1454 }
1455 
1456 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1457 {
1458 	int r;
1459 	int srcu_idx;
1460 
1461 	vcpu->stat.sum_exits++;
1462 
1463 	/*
1464 	 * This can happen if an interrupt occurs in the last stages
1465 	 * of guest entry or the first stages of guest exit (i.e. after
1466 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1467 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1468 	 * That can happen due to a bug, or due to a machine check
1469 	 * occurring at just the wrong time.
1470 	 */
1471 	if (vcpu->arch.shregs.msr & MSR_HV) {
1472 		pr_emerg("KVM trap in HV mode while nested!\n");
1473 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1474 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1475 			 vcpu->arch.shregs.msr);
1476 		kvmppc_dump_regs(vcpu);
1477 		return RESUME_HOST;
1478 	}
1479 	switch (vcpu->arch.trap) {
1480 	/* We're good on these - the host merely wanted to get our attention */
1481 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1482 		vcpu->stat.dec_exits++;
1483 		r = RESUME_GUEST;
1484 		break;
1485 	case BOOK3S_INTERRUPT_EXTERNAL:
1486 		vcpu->stat.ext_intr_exits++;
1487 		r = RESUME_HOST;
1488 		break;
1489 	case BOOK3S_INTERRUPT_H_DOORBELL:
1490 	case BOOK3S_INTERRUPT_H_VIRT:
1491 		vcpu->stat.ext_intr_exits++;
1492 		r = RESUME_GUEST;
1493 		break;
1494 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1495 	case BOOK3S_INTERRUPT_HMI:
1496 	case BOOK3S_INTERRUPT_PERFMON:
1497 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1498 		r = RESUME_GUEST;
1499 		break;
1500 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1501 		/* Pass the machine check to the L1 guest */
1502 		r = RESUME_HOST;
1503 		/* Print the MCE event to host console. */
1504 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1505 		break;
1506 	/*
1507 	 * We get these next two if the guest accesses a page which it thinks
1508 	 * it has mapped but which is not actually present, either because
1509 	 * it is for an emulated I/O device or because the corresonding
1510 	 * host page has been paged out.
1511 	 */
1512 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1513 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1514 		r = kvmhv_nested_page_fault(run, vcpu);
1515 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1516 		break;
1517 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1518 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1519 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1520 					 DSISR_SRR1_MATCH_64S;
1521 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1522 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1523 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1524 		r = kvmhv_nested_page_fault(run, vcpu);
1525 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1526 		break;
1527 
1528 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1529 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1530 		/*
1531 		 * This occurs for various TM-related instructions that
1532 		 * we need to emulate on POWER9 DD2.2.  We have already
1533 		 * handled the cases where the guest was in real-suspend
1534 		 * mode and was transitioning to transactional state.
1535 		 */
1536 		r = kvmhv_p9_tm_emulation(vcpu);
1537 		break;
1538 #endif
1539 
1540 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1541 		vcpu->arch.trap = 0;
1542 		r = RESUME_GUEST;
1543 		if (!xics_on_xive())
1544 			kvmppc_xics_rm_complete(vcpu, 0);
1545 		break;
1546 	default:
1547 		r = RESUME_HOST;
1548 		break;
1549 	}
1550 
1551 	return r;
1552 }
1553 
1554 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1555 					    struct kvm_sregs *sregs)
1556 {
1557 	int i;
1558 
1559 	memset(sregs, 0, sizeof(struct kvm_sregs));
1560 	sregs->pvr = vcpu->arch.pvr;
1561 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1562 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1563 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1570 					    struct kvm_sregs *sregs)
1571 {
1572 	int i, j;
1573 
1574 	/* Only accept the same PVR as the host's, since we can't spoof it */
1575 	if (sregs->pvr != vcpu->arch.pvr)
1576 		return -EINVAL;
1577 
1578 	j = 0;
1579 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1580 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1581 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1582 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1583 			++j;
1584 		}
1585 	}
1586 	vcpu->arch.slb_max = j;
1587 
1588 	return 0;
1589 }
1590 
1591 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1592 		bool preserve_top32)
1593 {
1594 	struct kvm *kvm = vcpu->kvm;
1595 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1596 	u64 mask;
1597 
1598 	spin_lock(&vc->lock);
1599 	/*
1600 	 * If ILE (interrupt little-endian) has changed, update the
1601 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1602 	 */
1603 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1604 		struct kvm_vcpu *vcpu;
1605 		int i;
1606 
1607 		kvm_for_each_vcpu(i, vcpu, kvm) {
1608 			if (vcpu->arch.vcore != vc)
1609 				continue;
1610 			if (new_lpcr & LPCR_ILE)
1611 				vcpu->arch.intr_msr |= MSR_LE;
1612 			else
1613 				vcpu->arch.intr_msr &= ~MSR_LE;
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Userspace can only modify DPFD (default prefetch depth),
1619 	 * ILE (interrupt little-endian) and TC (translation control).
1620 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1621 	 */
1622 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1623 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1624 		mask |= LPCR_AIL;
1625 	/*
1626 	 * On POWER9, allow userspace to enable large decrementer for the
1627 	 * guest, whether or not the host has it enabled.
1628 	 */
1629 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1630 		mask |= LPCR_LD;
1631 
1632 	/* Broken 32-bit version of LPCR must not clear top bits */
1633 	if (preserve_top32)
1634 		mask &= 0xFFFFFFFF;
1635 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1636 	spin_unlock(&vc->lock);
1637 }
1638 
1639 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1640 				 union kvmppc_one_reg *val)
1641 {
1642 	int r = 0;
1643 	long int i;
1644 
1645 	switch (id) {
1646 	case KVM_REG_PPC_DEBUG_INST:
1647 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1648 		break;
1649 	case KVM_REG_PPC_HIOR:
1650 		*val = get_reg_val(id, 0);
1651 		break;
1652 	case KVM_REG_PPC_DABR:
1653 		*val = get_reg_val(id, vcpu->arch.dabr);
1654 		break;
1655 	case KVM_REG_PPC_DABRX:
1656 		*val = get_reg_val(id, vcpu->arch.dabrx);
1657 		break;
1658 	case KVM_REG_PPC_DSCR:
1659 		*val = get_reg_val(id, vcpu->arch.dscr);
1660 		break;
1661 	case KVM_REG_PPC_PURR:
1662 		*val = get_reg_val(id, vcpu->arch.purr);
1663 		break;
1664 	case KVM_REG_PPC_SPURR:
1665 		*val = get_reg_val(id, vcpu->arch.spurr);
1666 		break;
1667 	case KVM_REG_PPC_AMR:
1668 		*val = get_reg_val(id, vcpu->arch.amr);
1669 		break;
1670 	case KVM_REG_PPC_UAMOR:
1671 		*val = get_reg_val(id, vcpu->arch.uamor);
1672 		break;
1673 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1674 		i = id - KVM_REG_PPC_MMCR0;
1675 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1676 		break;
1677 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1678 		i = id - KVM_REG_PPC_PMC1;
1679 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1680 		break;
1681 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1682 		i = id - KVM_REG_PPC_SPMC1;
1683 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1684 		break;
1685 	case KVM_REG_PPC_SIAR:
1686 		*val = get_reg_val(id, vcpu->arch.siar);
1687 		break;
1688 	case KVM_REG_PPC_SDAR:
1689 		*val = get_reg_val(id, vcpu->arch.sdar);
1690 		break;
1691 	case KVM_REG_PPC_SIER:
1692 		*val = get_reg_val(id, vcpu->arch.sier);
1693 		break;
1694 	case KVM_REG_PPC_IAMR:
1695 		*val = get_reg_val(id, vcpu->arch.iamr);
1696 		break;
1697 	case KVM_REG_PPC_PSPB:
1698 		*val = get_reg_val(id, vcpu->arch.pspb);
1699 		break;
1700 	case KVM_REG_PPC_DPDES:
1701 		/*
1702 		 * On POWER9, where we are emulating msgsndp etc.,
1703 		 * we return 1 bit for each vcpu, which can come from
1704 		 * either vcore->dpdes or doorbell_request.
1705 		 * On POWER8, doorbell_request is 0.
1706 		 */
1707 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1708 				   vcpu->arch.doorbell_request);
1709 		break;
1710 	case KVM_REG_PPC_VTB:
1711 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1712 		break;
1713 	case KVM_REG_PPC_DAWR:
1714 		*val = get_reg_val(id, vcpu->arch.dawr);
1715 		break;
1716 	case KVM_REG_PPC_DAWRX:
1717 		*val = get_reg_val(id, vcpu->arch.dawrx);
1718 		break;
1719 	case KVM_REG_PPC_CIABR:
1720 		*val = get_reg_val(id, vcpu->arch.ciabr);
1721 		break;
1722 	case KVM_REG_PPC_CSIGR:
1723 		*val = get_reg_val(id, vcpu->arch.csigr);
1724 		break;
1725 	case KVM_REG_PPC_TACR:
1726 		*val = get_reg_val(id, vcpu->arch.tacr);
1727 		break;
1728 	case KVM_REG_PPC_TCSCR:
1729 		*val = get_reg_val(id, vcpu->arch.tcscr);
1730 		break;
1731 	case KVM_REG_PPC_PID:
1732 		*val = get_reg_val(id, vcpu->arch.pid);
1733 		break;
1734 	case KVM_REG_PPC_ACOP:
1735 		*val = get_reg_val(id, vcpu->arch.acop);
1736 		break;
1737 	case KVM_REG_PPC_WORT:
1738 		*val = get_reg_val(id, vcpu->arch.wort);
1739 		break;
1740 	case KVM_REG_PPC_TIDR:
1741 		*val = get_reg_val(id, vcpu->arch.tid);
1742 		break;
1743 	case KVM_REG_PPC_PSSCR:
1744 		*val = get_reg_val(id, vcpu->arch.psscr);
1745 		break;
1746 	case KVM_REG_PPC_VPA_ADDR:
1747 		spin_lock(&vcpu->arch.vpa_update_lock);
1748 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1749 		spin_unlock(&vcpu->arch.vpa_update_lock);
1750 		break;
1751 	case KVM_REG_PPC_VPA_SLB:
1752 		spin_lock(&vcpu->arch.vpa_update_lock);
1753 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1754 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1755 		spin_unlock(&vcpu->arch.vpa_update_lock);
1756 		break;
1757 	case KVM_REG_PPC_VPA_DTL:
1758 		spin_lock(&vcpu->arch.vpa_update_lock);
1759 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1760 		val->vpaval.length = vcpu->arch.dtl.len;
1761 		spin_unlock(&vcpu->arch.vpa_update_lock);
1762 		break;
1763 	case KVM_REG_PPC_TB_OFFSET:
1764 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1765 		break;
1766 	case KVM_REG_PPC_LPCR:
1767 	case KVM_REG_PPC_LPCR_64:
1768 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1769 		break;
1770 	case KVM_REG_PPC_PPR:
1771 		*val = get_reg_val(id, vcpu->arch.ppr);
1772 		break;
1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1774 	case KVM_REG_PPC_TFHAR:
1775 		*val = get_reg_val(id, vcpu->arch.tfhar);
1776 		break;
1777 	case KVM_REG_PPC_TFIAR:
1778 		*val = get_reg_val(id, vcpu->arch.tfiar);
1779 		break;
1780 	case KVM_REG_PPC_TEXASR:
1781 		*val = get_reg_val(id, vcpu->arch.texasr);
1782 		break;
1783 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1784 		i = id - KVM_REG_PPC_TM_GPR0;
1785 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1786 		break;
1787 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1788 	{
1789 		int j;
1790 		i = id - KVM_REG_PPC_TM_VSR0;
1791 		if (i < 32)
1792 			for (j = 0; j < TS_FPRWIDTH; j++)
1793 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1794 		else {
1795 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1796 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1797 			else
1798 				r = -ENXIO;
1799 		}
1800 		break;
1801 	}
1802 	case KVM_REG_PPC_TM_CR:
1803 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1804 		break;
1805 	case KVM_REG_PPC_TM_XER:
1806 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1807 		break;
1808 	case KVM_REG_PPC_TM_LR:
1809 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1810 		break;
1811 	case KVM_REG_PPC_TM_CTR:
1812 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1813 		break;
1814 	case KVM_REG_PPC_TM_FPSCR:
1815 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1816 		break;
1817 	case KVM_REG_PPC_TM_AMR:
1818 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1819 		break;
1820 	case KVM_REG_PPC_TM_PPR:
1821 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1822 		break;
1823 	case KVM_REG_PPC_TM_VRSAVE:
1824 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1825 		break;
1826 	case KVM_REG_PPC_TM_VSCR:
1827 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1828 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1829 		else
1830 			r = -ENXIO;
1831 		break;
1832 	case KVM_REG_PPC_TM_DSCR:
1833 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1834 		break;
1835 	case KVM_REG_PPC_TM_TAR:
1836 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1837 		break;
1838 #endif
1839 	case KVM_REG_PPC_ARCH_COMPAT:
1840 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1841 		break;
1842 	case KVM_REG_PPC_DEC_EXPIRY:
1843 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1844 				   vcpu->arch.vcore->tb_offset);
1845 		break;
1846 	case KVM_REG_PPC_ONLINE:
1847 		*val = get_reg_val(id, vcpu->arch.online);
1848 		break;
1849 	case KVM_REG_PPC_PTCR:
1850 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1851 		break;
1852 	default:
1853 		r = -EINVAL;
1854 		break;
1855 	}
1856 
1857 	return r;
1858 }
1859 
1860 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1861 				 union kvmppc_one_reg *val)
1862 {
1863 	int r = 0;
1864 	long int i;
1865 	unsigned long addr, len;
1866 
1867 	switch (id) {
1868 	case KVM_REG_PPC_HIOR:
1869 		/* Only allow this to be set to zero */
1870 		if (set_reg_val(id, *val))
1871 			r = -EINVAL;
1872 		break;
1873 	case KVM_REG_PPC_DABR:
1874 		vcpu->arch.dabr = set_reg_val(id, *val);
1875 		break;
1876 	case KVM_REG_PPC_DABRX:
1877 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1878 		break;
1879 	case KVM_REG_PPC_DSCR:
1880 		vcpu->arch.dscr = set_reg_val(id, *val);
1881 		break;
1882 	case KVM_REG_PPC_PURR:
1883 		vcpu->arch.purr = set_reg_val(id, *val);
1884 		break;
1885 	case KVM_REG_PPC_SPURR:
1886 		vcpu->arch.spurr = set_reg_val(id, *val);
1887 		break;
1888 	case KVM_REG_PPC_AMR:
1889 		vcpu->arch.amr = set_reg_val(id, *val);
1890 		break;
1891 	case KVM_REG_PPC_UAMOR:
1892 		vcpu->arch.uamor = set_reg_val(id, *val);
1893 		break;
1894 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1895 		i = id - KVM_REG_PPC_MMCR0;
1896 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1897 		break;
1898 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1899 		i = id - KVM_REG_PPC_PMC1;
1900 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1901 		break;
1902 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1903 		i = id - KVM_REG_PPC_SPMC1;
1904 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1905 		break;
1906 	case KVM_REG_PPC_SIAR:
1907 		vcpu->arch.siar = set_reg_val(id, *val);
1908 		break;
1909 	case KVM_REG_PPC_SDAR:
1910 		vcpu->arch.sdar = set_reg_val(id, *val);
1911 		break;
1912 	case KVM_REG_PPC_SIER:
1913 		vcpu->arch.sier = set_reg_val(id, *val);
1914 		break;
1915 	case KVM_REG_PPC_IAMR:
1916 		vcpu->arch.iamr = set_reg_val(id, *val);
1917 		break;
1918 	case KVM_REG_PPC_PSPB:
1919 		vcpu->arch.pspb = set_reg_val(id, *val);
1920 		break;
1921 	case KVM_REG_PPC_DPDES:
1922 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1923 		break;
1924 	case KVM_REG_PPC_VTB:
1925 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1926 		break;
1927 	case KVM_REG_PPC_DAWR:
1928 		vcpu->arch.dawr = set_reg_val(id, *val);
1929 		break;
1930 	case KVM_REG_PPC_DAWRX:
1931 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1932 		break;
1933 	case KVM_REG_PPC_CIABR:
1934 		vcpu->arch.ciabr = set_reg_val(id, *val);
1935 		/* Don't allow setting breakpoints in hypervisor code */
1936 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1937 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1938 		break;
1939 	case KVM_REG_PPC_CSIGR:
1940 		vcpu->arch.csigr = set_reg_val(id, *val);
1941 		break;
1942 	case KVM_REG_PPC_TACR:
1943 		vcpu->arch.tacr = set_reg_val(id, *val);
1944 		break;
1945 	case KVM_REG_PPC_TCSCR:
1946 		vcpu->arch.tcscr = set_reg_val(id, *val);
1947 		break;
1948 	case KVM_REG_PPC_PID:
1949 		vcpu->arch.pid = set_reg_val(id, *val);
1950 		break;
1951 	case KVM_REG_PPC_ACOP:
1952 		vcpu->arch.acop = set_reg_val(id, *val);
1953 		break;
1954 	case KVM_REG_PPC_WORT:
1955 		vcpu->arch.wort = set_reg_val(id, *val);
1956 		break;
1957 	case KVM_REG_PPC_TIDR:
1958 		vcpu->arch.tid = set_reg_val(id, *val);
1959 		break;
1960 	case KVM_REG_PPC_PSSCR:
1961 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1962 		break;
1963 	case KVM_REG_PPC_VPA_ADDR:
1964 		addr = set_reg_val(id, *val);
1965 		r = -EINVAL;
1966 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1967 			      vcpu->arch.dtl.next_gpa))
1968 			break;
1969 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1970 		break;
1971 	case KVM_REG_PPC_VPA_SLB:
1972 		addr = val->vpaval.addr;
1973 		len = val->vpaval.length;
1974 		r = -EINVAL;
1975 		if (addr && !vcpu->arch.vpa.next_gpa)
1976 			break;
1977 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1978 		break;
1979 	case KVM_REG_PPC_VPA_DTL:
1980 		addr = val->vpaval.addr;
1981 		len = val->vpaval.length;
1982 		r = -EINVAL;
1983 		if (addr && (len < sizeof(struct dtl_entry) ||
1984 			     !vcpu->arch.vpa.next_gpa))
1985 			break;
1986 		len -= len % sizeof(struct dtl_entry);
1987 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1988 		break;
1989 	case KVM_REG_PPC_TB_OFFSET:
1990 		/* round up to multiple of 2^24 */
1991 		vcpu->arch.vcore->tb_offset =
1992 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1993 		break;
1994 	case KVM_REG_PPC_LPCR:
1995 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1996 		break;
1997 	case KVM_REG_PPC_LPCR_64:
1998 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1999 		break;
2000 	case KVM_REG_PPC_PPR:
2001 		vcpu->arch.ppr = set_reg_val(id, *val);
2002 		break;
2003 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2004 	case KVM_REG_PPC_TFHAR:
2005 		vcpu->arch.tfhar = set_reg_val(id, *val);
2006 		break;
2007 	case KVM_REG_PPC_TFIAR:
2008 		vcpu->arch.tfiar = set_reg_val(id, *val);
2009 		break;
2010 	case KVM_REG_PPC_TEXASR:
2011 		vcpu->arch.texasr = set_reg_val(id, *val);
2012 		break;
2013 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2014 		i = id - KVM_REG_PPC_TM_GPR0;
2015 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2016 		break;
2017 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2018 	{
2019 		int j;
2020 		i = id - KVM_REG_PPC_TM_VSR0;
2021 		if (i < 32)
2022 			for (j = 0; j < TS_FPRWIDTH; j++)
2023 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2024 		else
2025 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2026 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2027 			else
2028 				r = -ENXIO;
2029 		break;
2030 	}
2031 	case KVM_REG_PPC_TM_CR:
2032 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2033 		break;
2034 	case KVM_REG_PPC_TM_XER:
2035 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2036 		break;
2037 	case KVM_REG_PPC_TM_LR:
2038 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2039 		break;
2040 	case KVM_REG_PPC_TM_CTR:
2041 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2042 		break;
2043 	case KVM_REG_PPC_TM_FPSCR:
2044 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2045 		break;
2046 	case KVM_REG_PPC_TM_AMR:
2047 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2048 		break;
2049 	case KVM_REG_PPC_TM_PPR:
2050 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2051 		break;
2052 	case KVM_REG_PPC_TM_VRSAVE:
2053 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2054 		break;
2055 	case KVM_REG_PPC_TM_VSCR:
2056 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2057 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2058 		else
2059 			r = - ENXIO;
2060 		break;
2061 	case KVM_REG_PPC_TM_DSCR:
2062 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2063 		break;
2064 	case KVM_REG_PPC_TM_TAR:
2065 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2066 		break;
2067 #endif
2068 	case KVM_REG_PPC_ARCH_COMPAT:
2069 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2070 		break;
2071 	case KVM_REG_PPC_DEC_EXPIRY:
2072 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2073 			vcpu->arch.vcore->tb_offset;
2074 		break;
2075 	case KVM_REG_PPC_ONLINE:
2076 		i = set_reg_val(id, *val);
2077 		if (i && !vcpu->arch.online)
2078 			atomic_inc(&vcpu->arch.vcore->online_count);
2079 		else if (!i && vcpu->arch.online)
2080 			atomic_dec(&vcpu->arch.vcore->online_count);
2081 		vcpu->arch.online = i;
2082 		break;
2083 	case KVM_REG_PPC_PTCR:
2084 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2085 		break;
2086 	default:
2087 		r = -EINVAL;
2088 		break;
2089 	}
2090 
2091 	return r;
2092 }
2093 
2094 /*
2095  * On POWER9, threads are independent and can be in different partitions.
2096  * Therefore we consider each thread to be a subcore.
2097  * There is a restriction that all threads have to be in the same
2098  * MMU mode (radix or HPT), unfortunately, but since we only support
2099  * HPT guests on a HPT host so far, that isn't an impediment yet.
2100  */
2101 static int threads_per_vcore(struct kvm *kvm)
2102 {
2103 	if (kvm->arch.threads_indep)
2104 		return 1;
2105 	return threads_per_subcore;
2106 }
2107 
2108 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2109 {
2110 	struct kvmppc_vcore *vcore;
2111 
2112 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2113 
2114 	if (vcore == NULL)
2115 		return NULL;
2116 
2117 	spin_lock_init(&vcore->lock);
2118 	spin_lock_init(&vcore->stoltb_lock);
2119 	init_swait_queue_head(&vcore->wq);
2120 	vcore->preempt_tb = TB_NIL;
2121 	vcore->lpcr = kvm->arch.lpcr;
2122 	vcore->first_vcpuid = id;
2123 	vcore->kvm = kvm;
2124 	INIT_LIST_HEAD(&vcore->preempt_list);
2125 
2126 	return vcore;
2127 }
2128 
2129 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2130 static struct debugfs_timings_element {
2131 	const char *name;
2132 	size_t offset;
2133 } timings[] = {
2134 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2135 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2136 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2137 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2138 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2139 };
2140 
2141 #define N_TIMINGS	(ARRAY_SIZE(timings))
2142 
2143 struct debugfs_timings_state {
2144 	struct kvm_vcpu	*vcpu;
2145 	unsigned int	buflen;
2146 	char		buf[N_TIMINGS * 100];
2147 };
2148 
2149 static int debugfs_timings_open(struct inode *inode, struct file *file)
2150 {
2151 	struct kvm_vcpu *vcpu = inode->i_private;
2152 	struct debugfs_timings_state *p;
2153 
2154 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2155 	if (!p)
2156 		return -ENOMEM;
2157 
2158 	kvm_get_kvm(vcpu->kvm);
2159 	p->vcpu = vcpu;
2160 	file->private_data = p;
2161 
2162 	return nonseekable_open(inode, file);
2163 }
2164 
2165 static int debugfs_timings_release(struct inode *inode, struct file *file)
2166 {
2167 	struct debugfs_timings_state *p = file->private_data;
2168 
2169 	kvm_put_kvm(p->vcpu->kvm);
2170 	kfree(p);
2171 	return 0;
2172 }
2173 
2174 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2175 				    size_t len, loff_t *ppos)
2176 {
2177 	struct debugfs_timings_state *p = file->private_data;
2178 	struct kvm_vcpu *vcpu = p->vcpu;
2179 	char *s, *buf_end;
2180 	struct kvmhv_tb_accumulator tb;
2181 	u64 count;
2182 	loff_t pos;
2183 	ssize_t n;
2184 	int i, loops;
2185 	bool ok;
2186 
2187 	if (!p->buflen) {
2188 		s = p->buf;
2189 		buf_end = s + sizeof(p->buf);
2190 		for (i = 0; i < N_TIMINGS; ++i) {
2191 			struct kvmhv_tb_accumulator *acc;
2192 
2193 			acc = (struct kvmhv_tb_accumulator *)
2194 				((unsigned long)vcpu + timings[i].offset);
2195 			ok = false;
2196 			for (loops = 0; loops < 1000; ++loops) {
2197 				count = acc->seqcount;
2198 				if (!(count & 1)) {
2199 					smp_rmb();
2200 					tb = *acc;
2201 					smp_rmb();
2202 					if (count == acc->seqcount) {
2203 						ok = true;
2204 						break;
2205 					}
2206 				}
2207 				udelay(1);
2208 			}
2209 			if (!ok)
2210 				snprintf(s, buf_end - s, "%s: stuck\n",
2211 					timings[i].name);
2212 			else
2213 				snprintf(s, buf_end - s,
2214 					"%s: %llu %llu %llu %llu\n",
2215 					timings[i].name, count / 2,
2216 					tb_to_ns(tb.tb_total),
2217 					tb_to_ns(tb.tb_min),
2218 					tb_to_ns(tb.tb_max));
2219 			s += strlen(s);
2220 		}
2221 		p->buflen = s - p->buf;
2222 	}
2223 
2224 	pos = *ppos;
2225 	if (pos >= p->buflen)
2226 		return 0;
2227 	if (len > p->buflen - pos)
2228 		len = p->buflen - pos;
2229 	n = copy_to_user(buf, p->buf + pos, len);
2230 	if (n) {
2231 		if (n == len)
2232 			return -EFAULT;
2233 		len -= n;
2234 	}
2235 	*ppos = pos + len;
2236 	return len;
2237 }
2238 
2239 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2240 				     size_t len, loff_t *ppos)
2241 {
2242 	return -EACCES;
2243 }
2244 
2245 static const struct file_operations debugfs_timings_ops = {
2246 	.owner	 = THIS_MODULE,
2247 	.open	 = debugfs_timings_open,
2248 	.release = debugfs_timings_release,
2249 	.read	 = debugfs_timings_read,
2250 	.write	 = debugfs_timings_write,
2251 	.llseek	 = generic_file_llseek,
2252 };
2253 
2254 /* Create a debugfs directory for the vcpu */
2255 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2256 {
2257 	char buf[16];
2258 	struct kvm *kvm = vcpu->kvm;
2259 
2260 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2261 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2262 		return;
2263 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2264 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2265 		return;
2266 	vcpu->arch.debugfs_timings =
2267 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2268 				    vcpu, &debugfs_timings_ops);
2269 }
2270 
2271 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2272 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2273 {
2274 }
2275 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2276 
2277 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2278 {
2279 	int err;
2280 	int core;
2281 	struct kvmppc_vcore *vcore;
2282 	struct kvm *kvm;
2283 	unsigned int id;
2284 
2285 	kvm = vcpu->kvm;
2286 	id = vcpu->vcpu_id;
2287 
2288 	vcpu->arch.shared = &vcpu->arch.shregs;
2289 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2290 	/*
2291 	 * The shared struct is never shared on HV,
2292 	 * so we can always use host endianness
2293 	 */
2294 #ifdef __BIG_ENDIAN__
2295 	vcpu->arch.shared_big_endian = true;
2296 #else
2297 	vcpu->arch.shared_big_endian = false;
2298 #endif
2299 #endif
2300 	vcpu->arch.mmcr[0] = MMCR0_FC;
2301 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2302 	/* default to host PVR, since we can't spoof it */
2303 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2304 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2305 	spin_lock_init(&vcpu->arch.tbacct_lock);
2306 	vcpu->arch.busy_preempt = TB_NIL;
2307 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2308 
2309 	/*
2310 	 * Set the default HFSCR for the guest from the host value.
2311 	 * This value is only used on POWER9.
2312 	 * On POWER9, we want to virtualize the doorbell facility, so we
2313 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2314 	 * to trap and then we emulate them.
2315 	 */
2316 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2317 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2318 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2319 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2320 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2321 			vcpu->arch.hfscr |= HFSCR_TM;
2322 	}
2323 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2324 		vcpu->arch.hfscr |= HFSCR_TM;
2325 
2326 	kvmppc_mmu_book3s_hv_init(vcpu);
2327 
2328 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2329 
2330 	init_waitqueue_head(&vcpu->arch.cpu_run);
2331 
2332 	mutex_lock(&kvm->lock);
2333 	vcore = NULL;
2334 	err = -EINVAL;
2335 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2336 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2337 			pr_devel("KVM: VCPU ID too high\n");
2338 			core = KVM_MAX_VCORES;
2339 		} else {
2340 			BUG_ON(kvm->arch.smt_mode != 1);
2341 			core = kvmppc_pack_vcpu_id(kvm, id);
2342 		}
2343 	} else {
2344 		core = id / kvm->arch.smt_mode;
2345 	}
2346 	if (core < KVM_MAX_VCORES) {
2347 		vcore = kvm->arch.vcores[core];
2348 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2349 			pr_devel("KVM: collision on id %u", id);
2350 			vcore = NULL;
2351 		} else if (!vcore) {
2352 			/*
2353 			 * Take mmu_setup_lock for mutual exclusion
2354 			 * with kvmppc_update_lpcr().
2355 			 */
2356 			err = -ENOMEM;
2357 			vcore = kvmppc_vcore_create(kvm,
2358 					id & ~(kvm->arch.smt_mode - 1));
2359 			mutex_lock(&kvm->arch.mmu_setup_lock);
2360 			kvm->arch.vcores[core] = vcore;
2361 			kvm->arch.online_vcores++;
2362 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2363 		}
2364 	}
2365 	mutex_unlock(&kvm->lock);
2366 
2367 	if (!vcore)
2368 		return err;
2369 
2370 	spin_lock(&vcore->lock);
2371 	++vcore->num_threads;
2372 	spin_unlock(&vcore->lock);
2373 	vcpu->arch.vcore = vcore;
2374 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2375 	vcpu->arch.thread_cpu = -1;
2376 	vcpu->arch.prev_cpu = -1;
2377 
2378 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2379 	kvmppc_sanity_check(vcpu);
2380 
2381 	debugfs_vcpu_init(vcpu, id);
2382 
2383 	return 0;
2384 }
2385 
2386 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2387 			      unsigned long flags)
2388 {
2389 	int err;
2390 	int esmt = 0;
2391 
2392 	if (flags)
2393 		return -EINVAL;
2394 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2395 		return -EINVAL;
2396 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2397 		/*
2398 		 * On POWER8 (or POWER7), the threading mode is "strict",
2399 		 * so we pack smt_mode vcpus per vcore.
2400 		 */
2401 		if (smt_mode > threads_per_subcore)
2402 			return -EINVAL;
2403 	} else {
2404 		/*
2405 		 * On POWER9, the threading mode is "loose",
2406 		 * so each vcpu gets its own vcore.
2407 		 */
2408 		esmt = smt_mode;
2409 		smt_mode = 1;
2410 	}
2411 	mutex_lock(&kvm->lock);
2412 	err = -EBUSY;
2413 	if (!kvm->arch.online_vcores) {
2414 		kvm->arch.smt_mode = smt_mode;
2415 		kvm->arch.emul_smt_mode = esmt;
2416 		err = 0;
2417 	}
2418 	mutex_unlock(&kvm->lock);
2419 
2420 	return err;
2421 }
2422 
2423 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2424 {
2425 	if (vpa->pinned_addr)
2426 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2427 					vpa->dirty);
2428 }
2429 
2430 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2431 {
2432 	spin_lock(&vcpu->arch.vpa_update_lock);
2433 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2434 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2435 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2436 	spin_unlock(&vcpu->arch.vpa_update_lock);
2437 }
2438 
2439 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2440 {
2441 	/* Indicate we want to get back into the guest */
2442 	return 1;
2443 }
2444 
2445 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2446 {
2447 	unsigned long dec_nsec, now;
2448 
2449 	now = get_tb();
2450 	if (now > vcpu->arch.dec_expires) {
2451 		/* decrementer has already gone negative */
2452 		kvmppc_core_queue_dec(vcpu);
2453 		kvmppc_core_prepare_to_enter(vcpu);
2454 		return;
2455 	}
2456 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2457 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2458 	vcpu->arch.timer_running = 1;
2459 }
2460 
2461 extern int __kvmppc_vcore_entry(void);
2462 
2463 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2464 				   struct kvm_vcpu *vcpu)
2465 {
2466 	u64 now;
2467 
2468 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2469 		return;
2470 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2471 	now = mftb();
2472 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2473 		vcpu->arch.stolen_logged;
2474 	vcpu->arch.busy_preempt = now;
2475 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2476 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2477 	--vc->n_runnable;
2478 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2479 }
2480 
2481 static int kvmppc_grab_hwthread(int cpu)
2482 {
2483 	struct paca_struct *tpaca;
2484 	long timeout = 10000;
2485 
2486 	tpaca = paca_ptrs[cpu];
2487 
2488 	/* Ensure the thread won't go into the kernel if it wakes */
2489 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2490 	tpaca->kvm_hstate.kvm_vcore = NULL;
2491 	tpaca->kvm_hstate.napping = 0;
2492 	smp_wmb();
2493 	tpaca->kvm_hstate.hwthread_req = 1;
2494 
2495 	/*
2496 	 * If the thread is already executing in the kernel (e.g. handling
2497 	 * a stray interrupt), wait for it to get back to nap mode.
2498 	 * The smp_mb() is to ensure that our setting of hwthread_req
2499 	 * is visible before we look at hwthread_state, so if this
2500 	 * races with the code at system_reset_pSeries and the thread
2501 	 * misses our setting of hwthread_req, we are sure to see its
2502 	 * setting of hwthread_state, and vice versa.
2503 	 */
2504 	smp_mb();
2505 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2506 		if (--timeout <= 0) {
2507 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2508 			return -EBUSY;
2509 		}
2510 		udelay(1);
2511 	}
2512 	return 0;
2513 }
2514 
2515 static void kvmppc_release_hwthread(int cpu)
2516 {
2517 	struct paca_struct *tpaca;
2518 
2519 	tpaca = paca_ptrs[cpu];
2520 	tpaca->kvm_hstate.hwthread_req = 0;
2521 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2522 	tpaca->kvm_hstate.kvm_vcore = NULL;
2523 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2524 }
2525 
2526 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2527 {
2528 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2529 	cpumask_t *cpu_in_guest;
2530 	int i;
2531 
2532 	cpu = cpu_first_thread_sibling(cpu);
2533 	if (nested) {
2534 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2535 		cpu_in_guest = &nested->cpu_in_guest;
2536 	} else {
2537 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2538 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2539 	}
2540 	/*
2541 	 * Make sure setting of bit in need_tlb_flush precedes
2542 	 * testing of cpu_in_guest bits.  The matching barrier on
2543 	 * the other side is the first smp_mb() in kvmppc_run_core().
2544 	 */
2545 	smp_mb();
2546 	for (i = 0; i < threads_per_core; ++i)
2547 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2548 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2549 }
2550 
2551 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2552 {
2553 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2554 	struct kvm *kvm = vcpu->kvm;
2555 	int prev_cpu;
2556 
2557 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2558 		return;
2559 
2560 	if (nested)
2561 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2562 	else
2563 		prev_cpu = vcpu->arch.prev_cpu;
2564 
2565 	/*
2566 	 * With radix, the guest can do TLB invalidations itself,
2567 	 * and it could choose to use the local form (tlbiel) if
2568 	 * it is invalidating a translation that has only ever been
2569 	 * used on one vcpu.  However, that doesn't mean it has
2570 	 * only ever been used on one physical cpu, since vcpus
2571 	 * can move around between pcpus.  To cope with this, when
2572 	 * a vcpu moves from one pcpu to another, we need to tell
2573 	 * any vcpus running on the same core as this vcpu previously
2574 	 * ran to flush the TLB.  The TLB is shared between threads,
2575 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2576 	 */
2577 	if (prev_cpu != pcpu) {
2578 		if (prev_cpu >= 0 &&
2579 		    cpu_first_thread_sibling(prev_cpu) !=
2580 		    cpu_first_thread_sibling(pcpu))
2581 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2582 		if (nested)
2583 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2584 		else
2585 			vcpu->arch.prev_cpu = pcpu;
2586 	}
2587 }
2588 
2589 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2590 {
2591 	int cpu;
2592 	struct paca_struct *tpaca;
2593 	struct kvm *kvm = vc->kvm;
2594 
2595 	cpu = vc->pcpu;
2596 	if (vcpu) {
2597 		if (vcpu->arch.timer_running) {
2598 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2599 			vcpu->arch.timer_running = 0;
2600 		}
2601 		cpu += vcpu->arch.ptid;
2602 		vcpu->cpu = vc->pcpu;
2603 		vcpu->arch.thread_cpu = cpu;
2604 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2605 	}
2606 	tpaca = paca_ptrs[cpu];
2607 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2608 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2609 	tpaca->kvm_hstate.fake_suspend = 0;
2610 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2611 	smp_wmb();
2612 	tpaca->kvm_hstate.kvm_vcore = vc;
2613 	if (cpu != smp_processor_id())
2614 		kvmppc_ipi_thread(cpu);
2615 }
2616 
2617 static void kvmppc_wait_for_nap(int n_threads)
2618 {
2619 	int cpu = smp_processor_id();
2620 	int i, loops;
2621 
2622 	if (n_threads <= 1)
2623 		return;
2624 	for (loops = 0; loops < 1000000; ++loops) {
2625 		/*
2626 		 * Check if all threads are finished.
2627 		 * We set the vcore pointer when starting a thread
2628 		 * and the thread clears it when finished, so we look
2629 		 * for any threads that still have a non-NULL vcore ptr.
2630 		 */
2631 		for (i = 1; i < n_threads; ++i)
2632 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2633 				break;
2634 		if (i == n_threads) {
2635 			HMT_medium();
2636 			return;
2637 		}
2638 		HMT_low();
2639 	}
2640 	HMT_medium();
2641 	for (i = 1; i < n_threads; ++i)
2642 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2643 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2644 }
2645 
2646 /*
2647  * Check that we are on thread 0 and that any other threads in
2648  * this core are off-line.  Then grab the threads so they can't
2649  * enter the kernel.
2650  */
2651 static int on_primary_thread(void)
2652 {
2653 	int cpu = smp_processor_id();
2654 	int thr;
2655 
2656 	/* Are we on a primary subcore? */
2657 	if (cpu_thread_in_subcore(cpu))
2658 		return 0;
2659 
2660 	thr = 0;
2661 	while (++thr < threads_per_subcore)
2662 		if (cpu_online(cpu + thr))
2663 			return 0;
2664 
2665 	/* Grab all hw threads so they can't go into the kernel */
2666 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2667 		if (kvmppc_grab_hwthread(cpu + thr)) {
2668 			/* Couldn't grab one; let the others go */
2669 			do {
2670 				kvmppc_release_hwthread(cpu + thr);
2671 			} while (--thr > 0);
2672 			return 0;
2673 		}
2674 	}
2675 	return 1;
2676 }
2677 
2678 /*
2679  * A list of virtual cores for each physical CPU.
2680  * These are vcores that could run but their runner VCPU tasks are
2681  * (or may be) preempted.
2682  */
2683 struct preempted_vcore_list {
2684 	struct list_head	list;
2685 	spinlock_t		lock;
2686 };
2687 
2688 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2689 
2690 static void init_vcore_lists(void)
2691 {
2692 	int cpu;
2693 
2694 	for_each_possible_cpu(cpu) {
2695 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2696 		spin_lock_init(&lp->lock);
2697 		INIT_LIST_HEAD(&lp->list);
2698 	}
2699 }
2700 
2701 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2702 {
2703 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2704 
2705 	vc->vcore_state = VCORE_PREEMPT;
2706 	vc->pcpu = smp_processor_id();
2707 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2708 		spin_lock(&lp->lock);
2709 		list_add_tail(&vc->preempt_list, &lp->list);
2710 		spin_unlock(&lp->lock);
2711 	}
2712 
2713 	/* Start accumulating stolen time */
2714 	kvmppc_core_start_stolen(vc);
2715 }
2716 
2717 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2718 {
2719 	struct preempted_vcore_list *lp;
2720 
2721 	kvmppc_core_end_stolen(vc);
2722 	if (!list_empty(&vc->preempt_list)) {
2723 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2724 		spin_lock(&lp->lock);
2725 		list_del_init(&vc->preempt_list);
2726 		spin_unlock(&lp->lock);
2727 	}
2728 	vc->vcore_state = VCORE_INACTIVE;
2729 }
2730 
2731 /*
2732  * This stores information about the virtual cores currently
2733  * assigned to a physical core.
2734  */
2735 struct core_info {
2736 	int		n_subcores;
2737 	int		max_subcore_threads;
2738 	int		total_threads;
2739 	int		subcore_threads[MAX_SUBCORES];
2740 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2741 };
2742 
2743 /*
2744  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2745  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2746  */
2747 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2748 
2749 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2750 {
2751 	memset(cip, 0, sizeof(*cip));
2752 	cip->n_subcores = 1;
2753 	cip->max_subcore_threads = vc->num_threads;
2754 	cip->total_threads = vc->num_threads;
2755 	cip->subcore_threads[0] = vc->num_threads;
2756 	cip->vc[0] = vc;
2757 }
2758 
2759 static bool subcore_config_ok(int n_subcores, int n_threads)
2760 {
2761 	/*
2762 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2763 	 * split-core mode, with one thread per subcore.
2764 	 */
2765 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2766 		return n_subcores <= 4 && n_threads == 1;
2767 
2768 	/* On POWER8, can only dynamically split if unsplit to begin with */
2769 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2770 		return false;
2771 	if (n_subcores > MAX_SUBCORES)
2772 		return false;
2773 	if (n_subcores > 1) {
2774 		if (!(dynamic_mt_modes & 2))
2775 			n_subcores = 4;
2776 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2777 			return false;
2778 	}
2779 
2780 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2781 }
2782 
2783 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2784 {
2785 	vc->entry_exit_map = 0;
2786 	vc->in_guest = 0;
2787 	vc->napping_threads = 0;
2788 	vc->conferring_threads = 0;
2789 	vc->tb_offset_applied = 0;
2790 }
2791 
2792 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2793 {
2794 	int n_threads = vc->num_threads;
2795 	int sub;
2796 
2797 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2798 		return false;
2799 
2800 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2801 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2802 		return false;
2803 
2804 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2805 	if (no_mixing_hpt_and_radix &&
2806 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2807 		return false;
2808 
2809 	if (n_threads < cip->max_subcore_threads)
2810 		n_threads = cip->max_subcore_threads;
2811 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2812 		return false;
2813 	cip->max_subcore_threads = n_threads;
2814 
2815 	sub = cip->n_subcores;
2816 	++cip->n_subcores;
2817 	cip->total_threads += vc->num_threads;
2818 	cip->subcore_threads[sub] = vc->num_threads;
2819 	cip->vc[sub] = vc;
2820 	init_vcore_to_run(vc);
2821 	list_del_init(&vc->preempt_list);
2822 
2823 	return true;
2824 }
2825 
2826 /*
2827  * Work out whether it is possible to piggyback the execution of
2828  * vcore *pvc onto the execution of the other vcores described in *cip.
2829  */
2830 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2831 			  int target_threads)
2832 {
2833 	if (cip->total_threads + pvc->num_threads > target_threads)
2834 		return false;
2835 
2836 	return can_dynamic_split(pvc, cip);
2837 }
2838 
2839 static void prepare_threads(struct kvmppc_vcore *vc)
2840 {
2841 	int i;
2842 	struct kvm_vcpu *vcpu;
2843 
2844 	for_each_runnable_thread(i, vcpu, vc) {
2845 		if (signal_pending(vcpu->arch.run_task))
2846 			vcpu->arch.ret = -EINTR;
2847 		else if (vcpu->arch.vpa.update_pending ||
2848 			 vcpu->arch.slb_shadow.update_pending ||
2849 			 vcpu->arch.dtl.update_pending)
2850 			vcpu->arch.ret = RESUME_GUEST;
2851 		else
2852 			continue;
2853 		kvmppc_remove_runnable(vc, vcpu);
2854 		wake_up(&vcpu->arch.cpu_run);
2855 	}
2856 }
2857 
2858 static void collect_piggybacks(struct core_info *cip, int target_threads)
2859 {
2860 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2861 	struct kvmppc_vcore *pvc, *vcnext;
2862 
2863 	spin_lock(&lp->lock);
2864 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2865 		if (!spin_trylock(&pvc->lock))
2866 			continue;
2867 		prepare_threads(pvc);
2868 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2869 			list_del_init(&pvc->preempt_list);
2870 			if (pvc->runner == NULL) {
2871 				pvc->vcore_state = VCORE_INACTIVE;
2872 				kvmppc_core_end_stolen(pvc);
2873 			}
2874 			spin_unlock(&pvc->lock);
2875 			continue;
2876 		}
2877 		if (!can_piggyback(pvc, cip, target_threads)) {
2878 			spin_unlock(&pvc->lock);
2879 			continue;
2880 		}
2881 		kvmppc_core_end_stolen(pvc);
2882 		pvc->vcore_state = VCORE_PIGGYBACK;
2883 		if (cip->total_threads >= target_threads)
2884 			break;
2885 	}
2886 	spin_unlock(&lp->lock);
2887 }
2888 
2889 static bool recheck_signals_and_mmu(struct core_info *cip)
2890 {
2891 	int sub, i;
2892 	struct kvm_vcpu *vcpu;
2893 	struct kvmppc_vcore *vc;
2894 
2895 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2896 		vc = cip->vc[sub];
2897 		if (!vc->kvm->arch.mmu_ready)
2898 			return true;
2899 		for_each_runnable_thread(i, vcpu, vc)
2900 			if (signal_pending(vcpu->arch.run_task))
2901 				return true;
2902 	}
2903 	return false;
2904 }
2905 
2906 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2907 {
2908 	int still_running = 0, i;
2909 	u64 now;
2910 	long ret;
2911 	struct kvm_vcpu *vcpu;
2912 
2913 	spin_lock(&vc->lock);
2914 	now = get_tb();
2915 	for_each_runnable_thread(i, vcpu, vc) {
2916 		/*
2917 		 * It's safe to unlock the vcore in the loop here, because
2918 		 * for_each_runnable_thread() is safe against removal of
2919 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2920 		 * so any vcpus becoming runnable will have their arch.trap
2921 		 * set to zero and can't actually run in the guest.
2922 		 */
2923 		spin_unlock(&vc->lock);
2924 		/* cancel pending dec exception if dec is positive */
2925 		if (now < vcpu->arch.dec_expires &&
2926 		    kvmppc_core_pending_dec(vcpu))
2927 			kvmppc_core_dequeue_dec(vcpu);
2928 
2929 		trace_kvm_guest_exit(vcpu);
2930 
2931 		ret = RESUME_GUEST;
2932 		if (vcpu->arch.trap)
2933 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2934 						    vcpu->arch.run_task);
2935 
2936 		vcpu->arch.ret = ret;
2937 		vcpu->arch.trap = 0;
2938 
2939 		spin_lock(&vc->lock);
2940 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2941 			if (vcpu->arch.pending_exceptions)
2942 				kvmppc_core_prepare_to_enter(vcpu);
2943 			if (vcpu->arch.ceded)
2944 				kvmppc_set_timer(vcpu);
2945 			else
2946 				++still_running;
2947 		} else {
2948 			kvmppc_remove_runnable(vc, vcpu);
2949 			wake_up(&vcpu->arch.cpu_run);
2950 		}
2951 	}
2952 	if (!is_master) {
2953 		if (still_running > 0) {
2954 			kvmppc_vcore_preempt(vc);
2955 		} else if (vc->runner) {
2956 			vc->vcore_state = VCORE_PREEMPT;
2957 			kvmppc_core_start_stolen(vc);
2958 		} else {
2959 			vc->vcore_state = VCORE_INACTIVE;
2960 		}
2961 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2962 			/* make sure there's a candidate runner awake */
2963 			i = -1;
2964 			vcpu = next_runnable_thread(vc, &i);
2965 			wake_up(&vcpu->arch.cpu_run);
2966 		}
2967 	}
2968 	spin_unlock(&vc->lock);
2969 }
2970 
2971 /*
2972  * Clear core from the list of active host cores as we are about to
2973  * enter the guest. Only do this if it is the primary thread of the
2974  * core (not if a subcore) that is entering the guest.
2975  */
2976 static inline int kvmppc_clear_host_core(unsigned int cpu)
2977 {
2978 	int core;
2979 
2980 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2981 		return 0;
2982 	/*
2983 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2984 	 * later in kvmppc_start_thread and we need ensure that state is
2985 	 * visible to other CPUs only after we enter guest.
2986 	 */
2987 	core = cpu >> threads_shift;
2988 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2989 	return 0;
2990 }
2991 
2992 /*
2993  * Advertise this core as an active host core since we exited the guest
2994  * Only need to do this if it is the primary thread of the core that is
2995  * exiting.
2996  */
2997 static inline int kvmppc_set_host_core(unsigned int cpu)
2998 {
2999 	int core;
3000 
3001 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3002 		return 0;
3003 
3004 	/*
3005 	 * Memory barrier can be omitted here because we do a spin_unlock
3006 	 * immediately after this which provides the memory barrier.
3007 	 */
3008 	core = cpu >> threads_shift;
3009 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3010 	return 0;
3011 }
3012 
3013 static void set_irq_happened(int trap)
3014 {
3015 	switch (trap) {
3016 	case BOOK3S_INTERRUPT_EXTERNAL:
3017 		local_paca->irq_happened |= PACA_IRQ_EE;
3018 		break;
3019 	case BOOK3S_INTERRUPT_H_DOORBELL:
3020 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3021 		break;
3022 	case BOOK3S_INTERRUPT_HMI:
3023 		local_paca->irq_happened |= PACA_IRQ_HMI;
3024 		break;
3025 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3026 		replay_system_reset();
3027 		break;
3028 	}
3029 }
3030 
3031 /*
3032  * Run a set of guest threads on a physical core.
3033  * Called with vc->lock held.
3034  */
3035 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3036 {
3037 	struct kvm_vcpu *vcpu;
3038 	int i;
3039 	int srcu_idx;
3040 	struct core_info core_info;
3041 	struct kvmppc_vcore *pvc;
3042 	struct kvm_split_mode split_info, *sip;
3043 	int split, subcore_size, active;
3044 	int sub;
3045 	bool thr0_done;
3046 	unsigned long cmd_bit, stat_bit;
3047 	int pcpu, thr;
3048 	int target_threads;
3049 	int controlled_threads;
3050 	int trap;
3051 	bool is_power8;
3052 	bool hpt_on_radix;
3053 
3054 	/*
3055 	 * Remove from the list any threads that have a signal pending
3056 	 * or need a VPA update done
3057 	 */
3058 	prepare_threads(vc);
3059 
3060 	/* if the runner is no longer runnable, let the caller pick a new one */
3061 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3062 		return;
3063 
3064 	/*
3065 	 * Initialize *vc.
3066 	 */
3067 	init_vcore_to_run(vc);
3068 	vc->preempt_tb = TB_NIL;
3069 
3070 	/*
3071 	 * Number of threads that we will be controlling: the same as
3072 	 * the number of threads per subcore, except on POWER9,
3073 	 * where it's 1 because the threads are (mostly) independent.
3074 	 */
3075 	controlled_threads = threads_per_vcore(vc->kvm);
3076 
3077 	/*
3078 	 * Make sure we are running on primary threads, and that secondary
3079 	 * threads are offline.  Also check if the number of threads in this
3080 	 * guest are greater than the current system threads per guest.
3081 	 * On POWER9, we need to be not in independent-threads mode if
3082 	 * this is a HPT guest on a radix host machine where the
3083 	 * CPU threads may not be in different MMU modes.
3084 	 */
3085 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3086 		!kvm_is_radix(vc->kvm);
3087 	if (((controlled_threads > 1) &&
3088 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3089 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3090 		for_each_runnable_thread(i, vcpu, vc) {
3091 			vcpu->arch.ret = -EBUSY;
3092 			kvmppc_remove_runnable(vc, vcpu);
3093 			wake_up(&vcpu->arch.cpu_run);
3094 		}
3095 		goto out;
3096 	}
3097 
3098 	/*
3099 	 * See if we could run any other vcores on the physical core
3100 	 * along with this one.
3101 	 */
3102 	init_core_info(&core_info, vc);
3103 	pcpu = smp_processor_id();
3104 	target_threads = controlled_threads;
3105 	if (target_smt_mode && target_smt_mode < target_threads)
3106 		target_threads = target_smt_mode;
3107 	if (vc->num_threads < target_threads)
3108 		collect_piggybacks(&core_info, target_threads);
3109 
3110 	/*
3111 	 * On radix, arrange for TLB flushing if necessary.
3112 	 * This has to be done before disabling interrupts since
3113 	 * it uses smp_call_function().
3114 	 */
3115 	pcpu = smp_processor_id();
3116 	if (kvm_is_radix(vc->kvm)) {
3117 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3118 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3119 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3120 	}
3121 
3122 	/*
3123 	 * Hard-disable interrupts, and check resched flag and signals.
3124 	 * If we need to reschedule or deliver a signal, clean up
3125 	 * and return without going into the guest(s).
3126 	 * If the mmu_ready flag has been cleared, don't go into the
3127 	 * guest because that means a HPT resize operation is in progress.
3128 	 */
3129 	local_irq_disable();
3130 	hard_irq_disable();
3131 	if (lazy_irq_pending() || need_resched() ||
3132 	    recheck_signals_and_mmu(&core_info)) {
3133 		local_irq_enable();
3134 		vc->vcore_state = VCORE_INACTIVE;
3135 		/* Unlock all except the primary vcore */
3136 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3137 			pvc = core_info.vc[sub];
3138 			/* Put back on to the preempted vcores list */
3139 			kvmppc_vcore_preempt(pvc);
3140 			spin_unlock(&pvc->lock);
3141 		}
3142 		for (i = 0; i < controlled_threads; ++i)
3143 			kvmppc_release_hwthread(pcpu + i);
3144 		return;
3145 	}
3146 
3147 	kvmppc_clear_host_core(pcpu);
3148 
3149 	/* Decide on micro-threading (split-core) mode */
3150 	subcore_size = threads_per_subcore;
3151 	cmd_bit = stat_bit = 0;
3152 	split = core_info.n_subcores;
3153 	sip = NULL;
3154 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3155 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3156 
3157 	if (split > 1 || hpt_on_radix) {
3158 		sip = &split_info;
3159 		memset(&split_info, 0, sizeof(split_info));
3160 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3161 			split_info.vc[sub] = core_info.vc[sub];
3162 
3163 		if (is_power8) {
3164 			if (split == 2 && (dynamic_mt_modes & 2)) {
3165 				cmd_bit = HID0_POWER8_1TO2LPAR;
3166 				stat_bit = HID0_POWER8_2LPARMODE;
3167 			} else {
3168 				split = 4;
3169 				cmd_bit = HID0_POWER8_1TO4LPAR;
3170 				stat_bit = HID0_POWER8_4LPARMODE;
3171 			}
3172 			subcore_size = MAX_SMT_THREADS / split;
3173 			split_info.rpr = mfspr(SPRN_RPR);
3174 			split_info.pmmar = mfspr(SPRN_PMMAR);
3175 			split_info.ldbar = mfspr(SPRN_LDBAR);
3176 			split_info.subcore_size = subcore_size;
3177 		} else {
3178 			split_info.subcore_size = 1;
3179 			if (hpt_on_radix) {
3180 				/* Use the split_info for LPCR/LPIDR changes */
3181 				split_info.lpcr_req = vc->lpcr;
3182 				split_info.lpidr_req = vc->kvm->arch.lpid;
3183 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3184 				split_info.do_set = 1;
3185 			}
3186 		}
3187 
3188 		/* order writes to split_info before kvm_split_mode pointer */
3189 		smp_wmb();
3190 	}
3191 
3192 	for (thr = 0; thr < controlled_threads; ++thr) {
3193 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3194 
3195 		paca->kvm_hstate.tid = thr;
3196 		paca->kvm_hstate.napping = 0;
3197 		paca->kvm_hstate.kvm_split_mode = sip;
3198 	}
3199 
3200 	/* Initiate micro-threading (split-core) on POWER8 if required */
3201 	if (cmd_bit) {
3202 		unsigned long hid0 = mfspr(SPRN_HID0);
3203 
3204 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3205 		mb();
3206 		mtspr(SPRN_HID0, hid0);
3207 		isync();
3208 		for (;;) {
3209 			hid0 = mfspr(SPRN_HID0);
3210 			if (hid0 & stat_bit)
3211 				break;
3212 			cpu_relax();
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * On POWER8, set RWMR register.
3218 	 * Since it only affects PURR and SPURR, it doesn't affect
3219 	 * the host, so we don't save/restore the host value.
3220 	 */
3221 	if (is_power8) {
3222 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3223 		int n_online = atomic_read(&vc->online_count);
3224 
3225 		/*
3226 		 * Use the 8-thread value if we're doing split-core
3227 		 * or if the vcore's online count looks bogus.
3228 		 */
3229 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3230 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3231 			rwmr_val = p8_rwmr_values[n_online];
3232 		mtspr(SPRN_RWMR, rwmr_val);
3233 	}
3234 
3235 	/* Start all the threads */
3236 	active = 0;
3237 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3238 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3239 		thr0_done = false;
3240 		active |= 1 << thr;
3241 		pvc = core_info.vc[sub];
3242 		pvc->pcpu = pcpu + thr;
3243 		for_each_runnable_thread(i, vcpu, pvc) {
3244 			kvmppc_start_thread(vcpu, pvc);
3245 			kvmppc_create_dtl_entry(vcpu, pvc);
3246 			trace_kvm_guest_enter(vcpu);
3247 			if (!vcpu->arch.ptid)
3248 				thr0_done = true;
3249 			active |= 1 << (thr + vcpu->arch.ptid);
3250 		}
3251 		/*
3252 		 * We need to start the first thread of each subcore
3253 		 * even if it doesn't have a vcpu.
3254 		 */
3255 		if (!thr0_done)
3256 			kvmppc_start_thread(NULL, pvc);
3257 	}
3258 
3259 	/*
3260 	 * Ensure that split_info.do_nap is set after setting
3261 	 * the vcore pointer in the PACA of the secondaries.
3262 	 */
3263 	smp_mb();
3264 
3265 	/*
3266 	 * When doing micro-threading, poke the inactive threads as well.
3267 	 * This gets them to the nap instruction after kvm_do_nap,
3268 	 * which reduces the time taken to unsplit later.
3269 	 * For POWER9 HPT guest on radix host, we need all the secondary
3270 	 * threads woken up so they can do the LPCR/LPIDR change.
3271 	 */
3272 	if (cmd_bit || hpt_on_radix) {
3273 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3274 		for (thr = 1; thr < threads_per_subcore; ++thr)
3275 			if (!(active & (1 << thr)))
3276 				kvmppc_ipi_thread(pcpu + thr);
3277 	}
3278 
3279 	vc->vcore_state = VCORE_RUNNING;
3280 	preempt_disable();
3281 
3282 	trace_kvmppc_run_core(vc, 0);
3283 
3284 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3285 		spin_unlock(&core_info.vc[sub]->lock);
3286 
3287 	guest_enter_irqoff();
3288 
3289 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3290 
3291 	this_cpu_disable_ftrace();
3292 
3293 	/*
3294 	 * Interrupts will be enabled once we get into the guest,
3295 	 * so tell lockdep that we're about to enable interrupts.
3296 	 */
3297 	trace_hardirqs_on();
3298 
3299 	trap = __kvmppc_vcore_entry();
3300 
3301 	trace_hardirqs_off();
3302 
3303 	this_cpu_enable_ftrace();
3304 
3305 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3306 
3307 	set_irq_happened(trap);
3308 
3309 	spin_lock(&vc->lock);
3310 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3311 	vc->vcore_state = VCORE_EXITING;
3312 
3313 	/* wait for secondary threads to finish writing their state to memory */
3314 	kvmppc_wait_for_nap(controlled_threads);
3315 
3316 	/* Return to whole-core mode if we split the core earlier */
3317 	if (cmd_bit) {
3318 		unsigned long hid0 = mfspr(SPRN_HID0);
3319 		unsigned long loops = 0;
3320 
3321 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3322 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3323 		mb();
3324 		mtspr(SPRN_HID0, hid0);
3325 		isync();
3326 		for (;;) {
3327 			hid0 = mfspr(SPRN_HID0);
3328 			if (!(hid0 & stat_bit))
3329 				break;
3330 			cpu_relax();
3331 			++loops;
3332 		}
3333 	} else if (hpt_on_radix) {
3334 		/* Wait for all threads to have seen final sync */
3335 		for (thr = 1; thr < controlled_threads; ++thr) {
3336 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3337 
3338 			while (paca->kvm_hstate.kvm_split_mode) {
3339 				HMT_low();
3340 				barrier();
3341 			}
3342 			HMT_medium();
3343 		}
3344 	}
3345 	split_info.do_nap = 0;
3346 
3347 	kvmppc_set_host_core(pcpu);
3348 
3349 	local_irq_enable();
3350 	guest_exit();
3351 
3352 	/* Let secondaries go back to the offline loop */
3353 	for (i = 0; i < controlled_threads; ++i) {
3354 		kvmppc_release_hwthread(pcpu + i);
3355 		if (sip && sip->napped[i])
3356 			kvmppc_ipi_thread(pcpu + i);
3357 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3358 	}
3359 
3360 	spin_unlock(&vc->lock);
3361 
3362 	/* make sure updates to secondary vcpu structs are visible now */
3363 	smp_mb();
3364 
3365 	preempt_enable();
3366 
3367 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3368 		pvc = core_info.vc[sub];
3369 		post_guest_process(pvc, pvc == vc);
3370 	}
3371 
3372 	spin_lock(&vc->lock);
3373 
3374  out:
3375 	vc->vcore_state = VCORE_INACTIVE;
3376 	trace_kvmppc_run_core(vc, 1);
3377 }
3378 
3379 /*
3380  * Load up hypervisor-mode registers on P9.
3381  */
3382 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3383 				     unsigned long lpcr)
3384 {
3385 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3386 	s64 hdec;
3387 	u64 tb, purr, spurr;
3388 	int trap;
3389 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3390 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3391 	unsigned long host_dawr = mfspr(SPRN_DAWR);
3392 	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3393 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3394 	unsigned long host_pidr = mfspr(SPRN_PID);
3395 
3396 	hdec = time_limit - mftb();
3397 	if (hdec < 0)
3398 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3399 	mtspr(SPRN_HDEC, hdec);
3400 
3401 	if (vc->tb_offset) {
3402 		u64 new_tb = mftb() + vc->tb_offset;
3403 		mtspr(SPRN_TBU40, new_tb);
3404 		tb = mftb();
3405 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3406 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3407 		vc->tb_offset_applied = vc->tb_offset;
3408 	}
3409 
3410 	if (vc->pcr)
3411 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3412 	mtspr(SPRN_DPDES, vc->dpdes);
3413 	mtspr(SPRN_VTB, vc->vtb);
3414 
3415 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3416 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3417 	mtspr(SPRN_PURR, vcpu->arch.purr);
3418 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3419 
3420 	if (dawr_enabled()) {
3421 		mtspr(SPRN_DAWR, vcpu->arch.dawr);
3422 		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3423 	}
3424 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3425 	mtspr(SPRN_IC, vcpu->arch.ic);
3426 	mtspr(SPRN_PID, vcpu->arch.pid);
3427 
3428 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3429 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3430 
3431 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3432 
3433 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3434 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3435 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3436 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3437 
3438 	mtspr(SPRN_AMOR, ~0UL);
3439 
3440 	mtspr(SPRN_LPCR, lpcr);
3441 	isync();
3442 
3443 	kvmppc_xive_push_vcpu(vcpu);
3444 
3445 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3446 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3447 
3448 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3449 
3450 	/* Advance host PURR/SPURR by the amount used by guest */
3451 	purr = mfspr(SPRN_PURR);
3452 	spurr = mfspr(SPRN_SPURR);
3453 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3454 	      purr - vcpu->arch.purr);
3455 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3456 	      spurr - vcpu->arch.spurr);
3457 	vcpu->arch.purr = purr;
3458 	vcpu->arch.spurr = spurr;
3459 
3460 	vcpu->arch.ic = mfspr(SPRN_IC);
3461 	vcpu->arch.pid = mfspr(SPRN_PID);
3462 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3463 
3464 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3465 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3466 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3467 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3468 
3469 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3470 	mtspr(SPRN_PSSCR, host_psscr |
3471 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3472 	mtspr(SPRN_HFSCR, host_hfscr);
3473 	mtspr(SPRN_CIABR, host_ciabr);
3474 	mtspr(SPRN_DAWR, host_dawr);
3475 	mtspr(SPRN_DAWRX, host_dawrx);
3476 	mtspr(SPRN_PID, host_pidr);
3477 
3478 	/*
3479 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3480 	 * case we interrupted the guest between a tlbie and a ptesync.
3481 	 */
3482 	asm volatile("eieio; tlbsync; ptesync");
3483 
3484 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3485 	isync();
3486 
3487 	vc->dpdes = mfspr(SPRN_DPDES);
3488 	vc->vtb = mfspr(SPRN_VTB);
3489 	mtspr(SPRN_DPDES, 0);
3490 	if (vc->pcr)
3491 		mtspr(SPRN_PCR, PCR_MASK);
3492 
3493 	if (vc->tb_offset_applied) {
3494 		u64 new_tb = mftb() - vc->tb_offset_applied;
3495 		mtspr(SPRN_TBU40, new_tb);
3496 		tb = mftb();
3497 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3498 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3499 		vc->tb_offset_applied = 0;
3500 	}
3501 
3502 	mtspr(SPRN_HDEC, 0x7fffffff);
3503 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3504 
3505 	return trap;
3506 }
3507 
3508 /*
3509  * Virtual-mode guest entry for POWER9 and later when the host and
3510  * guest are both using the radix MMU.  The LPIDR has already been set.
3511  */
3512 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3513 			 unsigned long lpcr)
3514 {
3515 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3516 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3517 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3518 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3519 	unsigned long host_amr = mfspr(SPRN_AMR);
3520 	s64 dec;
3521 	u64 tb;
3522 	int trap, save_pmu;
3523 
3524 	dec = mfspr(SPRN_DEC);
3525 	tb = mftb();
3526 	if (dec < 512)
3527 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3528 	local_paca->kvm_hstate.dec_expires = dec + tb;
3529 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3530 		time_limit = local_paca->kvm_hstate.dec_expires;
3531 
3532 	vcpu->arch.ceded = 0;
3533 
3534 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3535 
3536 	kvmppc_subcore_enter_guest();
3537 
3538 	vc->entry_exit_map = 1;
3539 	vc->in_guest = 1;
3540 
3541 	if (vcpu->arch.vpa.pinned_addr) {
3542 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3543 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3544 		lp->yield_count = cpu_to_be32(yield_count);
3545 		vcpu->arch.vpa.dirty = 1;
3546 	}
3547 
3548 	if (cpu_has_feature(CPU_FTR_TM) ||
3549 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3550 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3551 
3552 	kvmhv_load_guest_pmu(vcpu);
3553 
3554 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3555 	load_fp_state(&vcpu->arch.fp);
3556 #ifdef CONFIG_ALTIVEC
3557 	load_vr_state(&vcpu->arch.vr);
3558 #endif
3559 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3560 
3561 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3562 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3563 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3564 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3565 	mtspr(SPRN_TAR, vcpu->arch.tar);
3566 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3567 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3568 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3569 	mtspr(SPRN_WORT, vcpu->arch.wort);
3570 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3571 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3572 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3573 	mtspr(SPRN_AMR, vcpu->arch.amr);
3574 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3575 
3576 	if (!(vcpu->arch.ctrl & 1))
3577 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3578 
3579 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3580 
3581 	if (kvmhv_on_pseries()) {
3582 		/*
3583 		 * We need to save and restore the guest visible part of the
3584 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3585 		 * doesn't do this for us. Note only required if pseries since
3586 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3587 		 */
3588 		unsigned long host_psscr;
3589 		/* call our hypervisor to load up HV regs and go */
3590 		struct hv_guest_state hvregs;
3591 
3592 		host_psscr = mfspr(SPRN_PSSCR_PR);
3593 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3594 		kvmhv_save_hv_regs(vcpu, &hvregs);
3595 		hvregs.lpcr = lpcr;
3596 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3597 		hvregs.version = HV_GUEST_STATE_VERSION;
3598 		if (vcpu->arch.nested) {
3599 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3600 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3601 		} else {
3602 			hvregs.lpid = vcpu->kvm->arch.lpid;
3603 			hvregs.vcpu_token = vcpu->vcpu_id;
3604 		}
3605 		hvregs.hdec_expiry = time_limit;
3606 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3607 					  __pa(&vcpu->arch.regs));
3608 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3609 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3610 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3611 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3612 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3613 		mtspr(SPRN_PSSCR_PR, host_psscr);
3614 
3615 		/* H_CEDE has to be handled now, not later */
3616 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3617 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3618 			kvmppc_nested_cede(vcpu);
3619 			trap = 0;
3620 		}
3621 	} else {
3622 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3623 	}
3624 
3625 	vcpu->arch.slb_max = 0;
3626 	dec = mfspr(SPRN_DEC);
3627 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3628 		dec = (s32) dec;
3629 	tb = mftb();
3630 	vcpu->arch.dec_expires = dec + tb;
3631 	vcpu->cpu = -1;
3632 	vcpu->arch.thread_cpu = -1;
3633 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3634 
3635 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3636 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3637 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3638 	vcpu->arch.tar = mfspr(SPRN_TAR);
3639 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3640 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3641 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3642 	vcpu->arch.wort = mfspr(SPRN_WORT);
3643 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3644 	vcpu->arch.amr = mfspr(SPRN_AMR);
3645 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3646 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3647 
3648 	mtspr(SPRN_PSPB, 0);
3649 	mtspr(SPRN_WORT, 0);
3650 	mtspr(SPRN_UAMOR, 0);
3651 	mtspr(SPRN_DSCR, host_dscr);
3652 	mtspr(SPRN_TIDR, host_tidr);
3653 	mtspr(SPRN_IAMR, host_iamr);
3654 	mtspr(SPRN_PSPB, 0);
3655 
3656 	if (host_amr != vcpu->arch.amr)
3657 		mtspr(SPRN_AMR, host_amr);
3658 
3659 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3660 	store_fp_state(&vcpu->arch.fp);
3661 #ifdef CONFIG_ALTIVEC
3662 	store_vr_state(&vcpu->arch.vr);
3663 #endif
3664 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3665 
3666 	if (cpu_has_feature(CPU_FTR_TM) ||
3667 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3668 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3669 
3670 	save_pmu = 1;
3671 	if (vcpu->arch.vpa.pinned_addr) {
3672 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3673 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3674 		lp->yield_count = cpu_to_be32(yield_count);
3675 		vcpu->arch.vpa.dirty = 1;
3676 		save_pmu = lp->pmcregs_in_use;
3677 	}
3678 	/* Must save pmu if this guest is capable of running nested guests */
3679 	save_pmu |= nesting_enabled(vcpu->kvm);
3680 
3681 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3682 
3683 	vc->entry_exit_map = 0x101;
3684 	vc->in_guest = 0;
3685 
3686 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3687 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3688 
3689 	kvmhv_load_host_pmu();
3690 
3691 	kvmppc_subcore_exit_guest();
3692 
3693 	return trap;
3694 }
3695 
3696 /*
3697  * Wait for some other vcpu thread to execute us, and
3698  * wake us up when we need to handle something in the host.
3699  */
3700 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3701 				 struct kvm_vcpu *vcpu, int wait_state)
3702 {
3703 	DEFINE_WAIT(wait);
3704 
3705 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3706 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3707 		spin_unlock(&vc->lock);
3708 		schedule();
3709 		spin_lock(&vc->lock);
3710 	}
3711 	finish_wait(&vcpu->arch.cpu_run, &wait);
3712 }
3713 
3714 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3715 {
3716 	if (!halt_poll_ns_grow)
3717 		return;
3718 
3719 	vc->halt_poll_ns *= halt_poll_ns_grow;
3720 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3721 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3722 }
3723 
3724 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3725 {
3726 	if (halt_poll_ns_shrink == 0)
3727 		vc->halt_poll_ns = 0;
3728 	else
3729 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3730 }
3731 
3732 #ifdef CONFIG_KVM_XICS
3733 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3734 {
3735 	if (!xics_on_xive())
3736 		return false;
3737 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3738 		vcpu->arch.xive_saved_state.cppr;
3739 }
3740 #else
3741 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3742 {
3743 	return false;
3744 }
3745 #endif /* CONFIG_KVM_XICS */
3746 
3747 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3748 {
3749 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3750 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3751 		return true;
3752 
3753 	return false;
3754 }
3755 
3756 /*
3757  * Check to see if any of the runnable vcpus on the vcore have pending
3758  * exceptions or are no longer ceded
3759  */
3760 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3761 {
3762 	struct kvm_vcpu *vcpu;
3763 	int i;
3764 
3765 	for_each_runnable_thread(i, vcpu, vc) {
3766 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3767 			return 1;
3768 	}
3769 
3770 	return 0;
3771 }
3772 
3773 /*
3774  * All the vcpus in this vcore are idle, so wait for a decrementer
3775  * or external interrupt to one of the vcpus.  vc->lock is held.
3776  */
3777 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3778 {
3779 	ktime_t cur, start_poll, start_wait;
3780 	int do_sleep = 1;
3781 	u64 block_ns;
3782 	DECLARE_SWAITQUEUE(wait);
3783 
3784 	/* Poll for pending exceptions and ceded state */
3785 	cur = start_poll = ktime_get();
3786 	if (vc->halt_poll_ns) {
3787 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3788 		++vc->runner->stat.halt_attempted_poll;
3789 
3790 		vc->vcore_state = VCORE_POLLING;
3791 		spin_unlock(&vc->lock);
3792 
3793 		do {
3794 			if (kvmppc_vcore_check_block(vc)) {
3795 				do_sleep = 0;
3796 				break;
3797 			}
3798 			cur = ktime_get();
3799 		} while (single_task_running() && ktime_before(cur, stop));
3800 
3801 		spin_lock(&vc->lock);
3802 		vc->vcore_state = VCORE_INACTIVE;
3803 
3804 		if (!do_sleep) {
3805 			++vc->runner->stat.halt_successful_poll;
3806 			goto out;
3807 		}
3808 	}
3809 
3810 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3811 
3812 	if (kvmppc_vcore_check_block(vc)) {
3813 		finish_swait(&vc->wq, &wait);
3814 		do_sleep = 0;
3815 		/* If we polled, count this as a successful poll */
3816 		if (vc->halt_poll_ns)
3817 			++vc->runner->stat.halt_successful_poll;
3818 		goto out;
3819 	}
3820 
3821 	start_wait = ktime_get();
3822 
3823 	vc->vcore_state = VCORE_SLEEPING;
3824 	trace_kvmppc_vcore_blocked(vc, 0);
3825 	spin_unlock(&vc->lock);
3826 	schedule();
3827 	finish_swait(&vc->wq, &wait);
3828 	spin_lock(&vc->lock);
3829 	vc->vcore_state = VCORE_INACTIVE;
3830 	trace_kvmppc_vcore_blocked(vc, 1);
3831 	++vc->runner->stat.halt_successful_wait;
3832 
3833 	cur = ktime_get();
3834 
3835 out:
3836 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3837 
3838 	/* Attribute wait time */
3839 	if (do_sleep) {
3840 		vc->runner->stat.halt_wait_ns +=
3841 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3842 		/* Attribute failed poll time */
3843 		if (vc->halt_poll_ns)
3844 			vc->runner->stat.halt_poll_fail_ns +=
3845 				ktime_to_ns(start_wait) -
3846 				ktime_to_ns(start_poll);
3847 	} else {
3848 		/* Attribute successful poll time */
3849 		if (vc->halt_poll_ns)
3850 			vc->runner->stat.halt_poll_success_ns +=
3851 				ktime_to_ns(cur) -
3852 				ktime_to_ns(start_poll);
3853 	}
3854 
3855 	/* Adjust poll time */
3856 	if (halt_poll_ns) {
3857 		if (block_ns <= vc->halt_poll_ns)
3858 			;
3859 		/* We slept and blocked for longer than the max halt time */
3860 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3861 			shrink_halt_poll_ns(vc);
3862 		/* We slept and our poll time is too small */
3863 		else if (vc->halt_poll_ns < halt_poll_ns &&
3864 				block_ns < halt_poll_ns)
3865 			grow_halt_poll_ns(vc);
3866 		if (vc->halt_poll_ns > halt_poll_ns)
3867 			vc->halt_poll_ns = halt_poll_ns;
3868 	} else
3869 		vc->halt_poll_ns = 0;
3870 
3871 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3872 }
3873 
3874 /*
3875  * This never fails for a radix guest, as none of the operations it does
3876  * for a radix guest can fail or have a way to report failure.
3877  * kvmhv_run_single_vcpu() relies on this fact.
3878  */
3879 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3880 {
3881 	int r = 0;
3882 	struct kvm *kvm = vcpu->kvm;
3883 
3884 	mutex_lock(&kvm->arch.mmu_setup_lock);
3885 	if (!kvm->arch.mmu_ready) {
3886 		if (!kvm_is_radix(kvm))
3887 			r = kvmppc_hv_setup_htab_rma(vcpu);
3888 		if (!r) {
3889 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3890 				kvmppc_setup_partition_table(kvm);
3891 			kvm->arch.mmu_ready = 1;
3892 		}
3893 	}
3894 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3895 	return r;
3896 }
3897 
3898 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3899 {
3900 	int n_ceded, i, r;
3901 	struct kvmppc_vcore *vc;
3902 	struct kvm_vcpu *v;
3903 
3904 	trace_kvmppc_run_vcpu_enter(vcpu);
3905 
3906 	kvm_run->exit_reason = 0;
3907 	vcpu->arch.ret = RESUME_GUEST;
3908 	vcpu->arch.trap = 0;
3909 	kvmppc_update_vpas(vcpu);
3910 
3911 	/*
3912 	 * Synchronize with other threads in this virtual core
3913 	 */
3914 	vc = vcpu->arch.vcore;
3915 	spin_lock(&vc->lock);
3916 	vcpu->arch.ceded = 0;
3917 	vcpu->arch.run_task = current;
3918 	vcpu->arch.kvm_run = kvm_run;
3919 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3920 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3921 	vcpu->arch.busy_preempt = TB_NIL;
3922 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3923 	++vc->n_runnable;
3924 
3925 	/*
3926 	 * This happens the first time this is called for a vcpu.
3927 	 * If the vcore is already running, we may be able to start
3928 	 * this thread straight away and have it join in.
3929 	 */
3930 	if (!signal_pending(current)) {
3931 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3932 		     vc->vcore_state == VCORE_RUNNING) &&
3933 			   !VCORE_IS_EXITING(vc)) {
3934 			kvmppc_create_dtl_entry(vcpu, vc);
3935 			kvmppc_start_thread(vcpu, vc);
3936 			trace_kvm_guest_enter(vcpu);
3937 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3938 			swake_up_one(&vc->wq);
3939 		}
3940 
3941 	}
3942 
3943 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3944 	       !signal_pending(current)) {
3945 		/* See if the MMU is ready to go */
3946 		if (!vcpu->kvm->arch.mmu_ready) {
3947 			spin_unlock(&vc->lock);
3948 			r = kvmhv_setup_mmu(vcpu);
3949 			spin_lock(&vc->lock);
3950 			if (r) {
3951 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3952 				kvm_run->fail_entry.
3953 					hardware_entry_failure_reason = 0;
3954 				vcpu->arch.ret = r;
3955 				break;
3956 			}
3957 		}
3958 
3959 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3960 			kvmppc_vcore_end_preempt(vc);
3961 
3962 		if (vc->vcore_state != VCORE_INACTIVE) {
3963 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3964 			continue;
3965 		}
3966 		for_each_runnable_thread(i, v, vc) {
3967 			kvmppc_core_prepare_to_enter(v);
3968 			if (signal_pending(v->arch.run_task)) {
3969 				kvmppc_remove_runnable(vc, v);
3970 				v->stat.signal_exits++;
3971 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3972 				v->arch.ret = -EINTR;
3973 				wake_up(&v->arch.cpu_run);
3974 			}
3975 		}
3976 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3977 			break;
3978 		n_ceded = 0;
3979 		for_each_runnable_thread(i, v, vc) {
3980 			if (!kvmppc_vcpu_woken(v))
3981 				n_ceded += v->arch.ceded;
3982 			else
3983 				v->arch.ceded = 0;
3984 		}
3985 		vc->runner = vcpu;
3986 		if (n_ceded == vc->n_runnable) {
3987 			kvmppc_vcore_blocked(vc);
3988 		} else if (need_resched()) {
3989 			kvmppc_vcore_preempt(vc);
3990 			/* Let something else run */
3991 			cond_resched_lock(&vc->lock);
3992 			if (vc->vcore_state == VCORE_PREEMPT)
3993 				kvmppc_vcore_end_preempt(vc);
3994 		} else {
3995 			kvmppc_run_core(vc);
3996 		}
3997 		vc->runner = NULL;
3998 	}
3999 
4000 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4001 	       (vc->vcore_state == VCORE_RUNNING ||
4002 		vc->vcore_state == VCORE_EXITING ||
4003 		vc->vcore_state == VCORE_PIGGYBACK))
4004 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4005 
4006 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4007 		kvmppc_vcore_end_preempt(vc);
4008 
4009 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4010 		kvmppc_remove_runnable(vc, vcpu);
4011 		vcpu->stat.signal_exits++;
4012 		kvm_run->exit_reason = KVM_EXIT_INTR;
4013 		vcpu->arch.ret = -EINTR;
4014 	}
4015 
4016 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4017 		/* Wake up some vcpu to run the core */
4018 		i = -1;
4019 		v = next_runnable_thread(vc, &i);
4020 		wake_up(&v->arch.cpu_run);
4021 	}
4022 
4023 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4024 	spin_unlock(&vc->lock);
4025 	return vcpu->arch.ret;
4026 }
4027 
4028 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4029 			  struct kvm_vcpu *vcpu, u64 time_limit,
4030 			  unsigned long lpcr)
4031 {
4032 	int trap, r, pcpu;
4033 	int srcu_idx, lpid;
4034 	struct kvmppc_vcore *vc;
4035 	struct kvm *kvm = vcpu->kvm;
4036 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4037 
4038 	trace_kvmppc_run_vcpu_enter(vcpu);
4039 
4040 	kvm_run->exit_reason = 0;
4041 	vcpu->arch.ret = RESUME_GUEST;
4042 	vcpu->arch.trap = 0;
4043 
4044 	vc = vcpu->arch.vcore;
4045 	vcpu->arch.ceded = 0;
4046 	vcpu->arch.run_task = current;
4047 	vcpu->arch.kvm_run = kvm_run;
4048 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4049 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4050 	vcpu->arch.busy_preempt = TB_NIL;
4051 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4052 	vc->runnable_threads[0] = vcpu;
4053 	vc->n_runnable = 1;
4054 	vc->runner = vcpu;
4055 
4056 	/* See if the MMU is ready to go */
4057 	if (!kvm->arch.mmu_ready)
4058 		kvmhv_setup_mmu(vcpu);
4059 
4060 	if (need_resched())
4061 		cond_resched();
4062 
4063 	kvmppc_update_vpas(vcpu);
4064 
4065 	init_vcore_to_run(vc);
4066 	vc->preempt_tb = TB_NIL;
4067 
4068 	preempt_disable();
4069 	pcpu = smp_processor_id();
4070 	vc->pcpu = pcpu;
4071 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4072 
4073 	local_irq_disable();
4074 	hard_irq_disable();
4075 	if (signal_pending(current))
4076 		goto sigpend;
4077 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4078 		goto out;
4079 
4080 	if (!nested) {
4081 		kvmppc_core_prepare_to_enter(vcpu);
4082 		if (vcpu->arch.doorbell_request) {
4083 			vc->dpdes = 1;
4084 			smp_wmb();
4085 			vcpu->arch.doorbell_request = 0;
4086 		}
4087 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4088 			     &vcpu->arch.pending_exceptions))
4089 			lpcr |= LPCR_MER;
4090 	} else if (vcpu->arch.pending_exceptions ||
4091 		   vcpu->arch.doorbell_request ||
4092 		   xive_interrupt_pending(vcpu)) {
4093 		vcpu->arch.ret = RESUME_HOST;
4094 		goto out;
4095 	}
4096 
4097 	kvmppc_clear_host_core(pcpu);
4098 
4099 	local_paca->kvm_hstate.tid = 0;
4100 	local_paca->kvm_hstate.napping = 0;
4101 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4102 	kvmppc_start_thread(vcpu, vc);
4103 	kvmppc_create_dtl_entry(vcpu, vc);
4104 	trace_kvm_guest_enter(vcpu);
4105 
4106 	vc->vcore_state = VCORE_RUNNING;
4107 	trace_kvmppc_run_core(vc, 0);
4108 
4109 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4110 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4111 		mtspr(SPRN_LPID, lpid);
4112 		isync();
4113 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4114 	}
4115 
4116 	guest_enter_irqoff();
4117 
4118 	srcu_idx = srcu_read_lock(&kvm->srcu);
4119 
4120 	this_cpu_disable_ftrace();
4121 
4122 	/* Tell lockdep that we're about to enable interrupts */
4123 	trace_hardirqs_on();
4124 
4125 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4126 	vcpu->arch.trap = trap;
4127 
4128 	trace_hardirqs_off();
4129 
4130 	this_cpu_enable_ftrace();
4131 
4132 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4133 
4134 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4135 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4136 		isync();
4137 	}
4138 
4139 	set_irq_happened(trap);
4140 
4141 	kvmppc_set_host_core(pcpu);
4142 
4143 	local_irq_enable();
4144 	guest_exit();
4145 
4146 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4147 
4148 	preempt_enable();
4149 
4150 	/*
4151 	 * cancel pending decrementer exception if DEC is now positive, or if
4152 	 * entering a nested guest in which case the decrementer is now owned
4153 	 * by L2 and the L1 decrementer is provided in hdec_expires
4154 	 */
4155 	if (kvmppc_core_pending_dec(vcpu) &&
4156 			((get_tb() < vcpu->arch.dec_expires) ||
4157 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4158 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4159 		kvmppc_core_dequeue_dec(vcpu);
4160 
4161 	trace_kvm_guest_exit(vcpu);
4162 	r = RESUME_GUEST;
4163 	if (trap) {
4164 		if (!nested)
4165 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4166 		else
4167 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4168 	}
4169 	vcpu->arch.ret = r;
4170 
4171 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4172 	    !kvmppc_vcpu_woken(vcpu)) {
4173 		kvmppc_set_timer(vcpu);
4174 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4175 			if (signal_pending(current)) {
4176 				vcpu->stat.signal_exits++;
4177 				kvm_run->exit_reason = KVM_EXIT_INTR;
4178 				vcpu->arch.ret = -EINTR;
4179 				break;
4180 			}
4181 			spin_lock(&vc->lock);
4182 			kvmppc_vcore_blocked(vc);
4183 			spin_unlock(&vc->lock);
4184 		}
4185 	}
4186 	vcpu->arch.ceded = 0;
4187 
4188 	vc->vcore_state = VCORE_INACTIVE;
4189 	trace_kvmppc_run_core(vc, 1);
4190 
4191  done:
4192 	kvmppc_remove_runnable(vc, vcpu);
4193 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4194 
4195 	return vcpu->arch.ret;
4196 
4197  sigpend:
4198 	vcpu->stat.signal_exits++;
4199 	kvm_run->exit_reason = KVM_EXIT_INTR;
4200 	vcpu->arch.ret = -EINTR;
4201  out:
4202 	local_irq_enable();
4203 	preempt_enable();
4204 	goto done;
4205 }
4206 
4207 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4208 {
4209 	int r;
4210 	int srcu_idx;
4211 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4212 	unsigned long user_tar = 0;
4213 	unsigned int user_vrsave;
4214 	struct kvm *kvm;
4215 
4216 	if (!vcpu->arch.sane) {
4217 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4218 		return -EINVAL;
4219 	}
4220 
4221 	/*
4222 	 * Don't allow entry with a suspended transaction, because
4223 	 * the guest entry/exit code will lose it.
4224 	 * If the guest has TM enabled, save away their TM-related SPRs
4225 	 * (they will get restored by the TM unavailable interrupt).
4226 	 */
4227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4228 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4229 	    (current->thread.regs->msr & MSR_TM)) {
4230 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4231 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4232 			run->fail_entry.hardware_entry_failure_reason = 0;
4233 			return -EINVAL;
4234 		}
4235 		/* Enable TM so we can read the TM SPRs */
4236 		mtmsr(mfmsr() | MSR_TM);
4237 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4238 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4239 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4240 		current->thread.regs->msr &= ~MSR_TM;
4241 	}
4242 #endif
4243 
4244 	/*
4245 	 * Force online to 1 for the sake of old userspace which doesn't
4246 	 * set it.
4247 	 */
4248 	if (!vcpu->arch.online) {
4249 		atomic_inc(&vcpu->arch.vcore->online_count);
4250 		vcpu->arch.online = 1;
4251 	}
4252 
4253 	kvmppc_core_prepare_to_enter(vcpu);
4254 
4255 	/* No need to go into the guest when all we'll do is come back out */
4256 	if (signal_pending(current)) {
4257 		run->exit_reason = KVM_EXIT_INTR;
4258 		return -EINTR;
4259 	}
4260 
4261 	kvm = vcpu->kvm;
4262 	atomic_inc(&kvm->arch.vcpus_running);
4263 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4264 	smp_mb();
4265 
4266 	flush_all_to_thread(current);
4267 
4268 	/* Save userspace EBB and other register values */
4269 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4270 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4271 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4272 		ebb_regs[2] = mfspr(SPRN_BESCR);
4273 		user_tar = mfspr(SPRN_TAR);
4274 	}
4275 	user_vrsave = mfspr(SPRN_VRSAVE);
4276 
4277 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4278 	vcpu->arch.pgdir = kvm->mm->pgd;
4279 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4280 
4281 	do {
4282 		/*
4283 		 * The early POWER9 chips that can't mix radix and HPT threads
4284 		 * on the same core also need the workaround for the problem
4285 		 * where the TLB would prefetch entries in the guest exit path
4286 		 * for radix guests using the guest PIDR value and LPID 0.
4287 		 * The workaround is in the old path (kvmppc_run_vcpu())
4288 		 * but not the new path (kvmhv_run_single_vcpu()).
4289 		 */
4290 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4291 		    !no_mixing_hpt_and_radix)
4292 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4293 						  vcpu->arch.vcore->lpcr);
4294 		else
4295 			r = kvmppc_run_vcpu(run, vcpu);
4296 
4297 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4298 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4299 			trace_kvm_hcall_enter(vcpu);
4300 			r = kvmppc_pseries_do_hcall(vcpu);
4301 			trace_kvm_hcall_exit(vcpu, r);
4302 			kvmppc_core_prepare_to_enter(vcpu);
4303 		} else if (r == RESUME_PAGE_FAULT) {
4304 			srcu_idx = srcu_read_lock(&kvm->srcu);
4305 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4306 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4307 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4308 		} else if (r == RESUME_PASSTHROUGH) {
4309 			if (WARN_ON(xics_on_xive()))
4310 				r = H_SUCCESS;
4311 			else
4312 				r = kvmppc_xics_rm_complete(vcpu, 0);
4313 		}
4314 	} while (is_kvmppc_resume_guest(r));
4315 
4316 	/* Restore userspace EBB and other register values */
4317 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4318 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4319 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4320 		mtspr(SPRN_BESCR, ebb_regs[2]);
4321 		mtspr(SPRN_TAR, user_tar);
4322 		mtspr(SPRN_FSCR, current->thread.fscr);
4323 	}
4324 	mtspr(SPRN_VRSAVE, user_vrsave);
4325 
4326 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4327 	atomic_dec(&kvm->arch.vcpus_running);
4328 	return r;
4329 }
4330 
4331 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4332 				     int shift, int sllp)
4333 {
4334 	(*sps)->page_shift = shift;
4335 	(*sps)->slb_enc = sllp;
4336 	(*sps)->enc[0].page_shift = shift;
4337 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4338 	/*
4339 	 * Add 16MB MPSS support (may get filtered out by userspace)
4340 	 */
4341 	if (shift != 24) {
4342 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4343 		if (penc != -1) {
4344 			(*sps)->enc[1].page_shift = 24;
4345 			(*sps)->enc[1].pte_enc = penc;
4346 		}
4347 	}
4348 	(*sps)++;
4349 }
4350 
4351 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4352 					 struct kvm_ppc_smmu_info *info)
4353 {
4354 	struct kvm_ppc_one_seg_page_size *sps;
4355 
4356 	/*
4357 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4358 	 * POWER7 doesn't support keys for instruction accesses,
4359 	 * POWER8 and POWER9 do.
4360 	 */
4361 	info->data_keys = 32;
4362 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4363 
4364 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4365 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4366 	info->slb_size = 32;
4367 
4368 	/* We only support these sizes for now, and no muti-size segments */
4369 	sps = &info->sps[0];
4370 	kvmppc_add_seg_page_size(&sps, 12, 0);
4371 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4372 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4373 
4374 	/* If running as a nested hypervisor, we don't support HPT guests */
4375 	if (kvmhv_on_pseries())
4376 		info->flags |= KVM_PPC_NO_HASH;
4377 
4378 	return 0;
4379 }
4380 
4381 /*
4382  * Get (and clear) the dirty memory log for a memory slot.
4383  */
4384 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4385 					 struct kvm_dirty_log *log)
4386 {
4387 	struct kvm_memslots *slots;
4388 	struct kvm_memory_slot *memslot;
4389 	int i, r;
4390 	unsigned long n;
4391 	unsigned long *buf, *p;
4392 	struct kvm_vcpu *vcpu;
4393 
4394 	mutex_lock(&kvm->slots_lock);
4395 
4396 	r = -EINVAL;
4397 	if (log->slot >= KVM_USER_MEM_SLOTS)
4398 		goto out;
4399 
4400 	slots = kvm_memslots(kvm);
4401 	memslot = id_to_memslot(slots, log->slot);
4402 	r = -ENOENT;
4403 	if (!memslot->dirty_bitmap)
4404 		goto out;
4405 
4406 	/*
4407 	 * Use second half of bitmap area because both HPT and radix
4408 	 * accumulate bits in the first half.
4409 	 */
4410 	n = kvm_dirty_bitmap_bytes(memslot);
4411 	buf = memslot->dirty_bitmap + n / sizeof(long);
4412 	memset(buf, 0, n);
4413 
4414 	if (kvm_is_radix(kvm))
4415 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4416 	else
4417 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4418 	if (r)
4419 		goto out;
4420 
4421 	/*
4422 	 * We accumulate dirty bits in the first half of the
4423 	 * memslot's dirty_bitmap area, for when pages are paged
4424 	 * out or modified by the host directly.  Pick up these
4425 	 * bits and add them to the map.
4426 	 */
4427 	p = memslot->dirty_bitmap;
4428 	for (i = 0; i < n / sizeof(long); ++i)
4429 		buf[i] |= xchg(&p[i], 0);
4430 
4431 	/* Harvest dirty bits from VPA and DTL updates */
4432 	/* Note: we never modify the SLB shadow buffer areas */
4433 	kvm_for_each_vcpu(i, vcpu, kvm) {
4434 		spin_lock(&vcpu->arch.vpa_update_lock);
4435 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4436 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4437 		spin_unlock(&vcpu->arch.vpa_update_lock);
4438 	}
4439 
4440 	r = -EFAULT;
4441 	if (copy_to_user(log->dirty_bitmap, buf, n))
4442 		goto out;
4443 
4444 	r = 0;
4445 out:
4446 	mutex_unlock(&kvm->slots_lock);
4447 	return r;
4448 }
4449 
4450 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4451 					struct kvm_memory_slot *dont)
4452 {
4453 	if (!dont || free->arch.rmap != dont->arch.rmap) {
4454 		vfree(free->arch.rmap);
4455 		free->arch.rmap = NULL;
4456 	}
4457 }
4458 
4459 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4460 					 unsigned long npages)
4461 {
4462 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4463 	if (!slot->arch.rmap)
4464 		return -ENOMEM;
4465 
4466 	return 0;
4467 }
4468 
4469 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4470 					struct kvm_memory_slot *memslot,
4471 					const struct kvm_userspace_memory_region *mem)
4472 {
4473 	return 0;
4474 }
4475 
4476 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4477 				const struct kvm_userspace_memory_region *mem,
4478 				const struct kvm_memory_slot *old,
4479 				const struct kvm_memory_slot *new,
4480 				enum kvm_mr_change change)
4481 {
4482 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4483 
4484 	/*
4485 	 * If we are making a new memslot, it might make
4486 	 * some address that was previously cached as emulated
4487 	 * MMIO be no longer emulated MMIO, so invalidate
4488 	 * all the caches of emulated MMIO translations.
4489 	 */
4490 	if (npages)
4491 		atomic64_inc(&kvm->arch.mmio_update);
4492 
4493 	/*
4494 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4495 	 * have already called kvm_arch_flush_shadow_memslot() to
4496 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4497 	 * previous mappings.  So the only case to handle is
4498 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4499 	 * has been changed.
4500 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4501 	 * to get rid of any THP PTEs in the partition-scoped page tables
4502 	 * so we can track dirtiness at the page level; we flush when
4503 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4504 	 * using THP PTEs.
4505 	 */
4506 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4507 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4508 		kvmppc_radix_flush_memslot(kvm, old);
4509 	/*
4510 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4511 	 */
4512 	if (!kvm->arch.secure_guest)
4513 		return;
4514 
4515 	switch (change) {
4516 	case KVM_MR_CREATE:
4517 		if (kvmppc_uvmem_slot_init(kvm, new))
4518 			return;
4519 		uv_register_mem_slot(kvm->arch.lpid,
4520 				     new->base_gfn << PAGE_SHIFT,
4521 				     new->npages * PAGE_SIZE,
4522 				     0, new->id);
4523 		break;
4524 	case KVM_MR_DELETE:
4525 		uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4526 		kvmppc_uvmem_slot_free(kvm, old);
4527 		break;
4528 	default:
4529 		/* TODO: Handle KVM_MR_MOVE */
4530 		break;
4531 	}
4532 }
4533 
4534 /*
4535  * Update LPCR values in kvm->arch and in vcores.
4536  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4537  * of kvm->arch.lpcr update).
4538  */
4539 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4540 {
4541 	long int i;
4542 	u32 cores_done = 0;
4543 
4544 	if ((kvm->arch.lpcr & mask) == lpcr)
4545 		return;
4546 
4547 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4548 
4549 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4550 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4551 		if (!vc)
4552 			continue;
4553 		spin_lock(&vc->lock);
4554 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4555 		spin_unlock(&vc->lock);
4556 		if (++cores_done >= kvm->arch.online_vcores)
4557 			break;
4558 	}
4559 }
4560 
4561 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4562 {
4563 	return;
4564 }
4565 
4566 void kvmppc_setup_partition_table(struct kvm *kvm)
4567 {
4568 	unsigned long dw0, dw1;
4569 
4570 	if (!kvm_is_radix(kvm)) {
4571 		/* PS field - page size for VRMA */
4572 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4573 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4574 		/* HTABSIZE and HTABORG fields */
4575 		dw0 |= kvm->arch.sdr1;
4576 
4577 		/* Second dword as set by userspace */
4578 		dw1 = kvm->arch.process_table;
4579 	} else {
4580 		dw0 = PATB_HR | radix__get_tree_size() |
4581 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4582 		dw1 = PATB_GR | kvm->arch.process_table;
4583 	}
4584 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4585 }
4586 
4587 /*
4588  * Set up HPT (hashed page table) and RMA (real-mode area).
4589  * Must be called with kvm->arch.mmu_setup_lock held.
4590  */
4591 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4592 {
4593 	int err = 0;
4594 	struct kvm *kvm = vcpu->kvm;
4595 	unsigned long hva;
4596 	struct kvm_memory_slot *memslot;
4597 	struct vm_area_struct *vma;
4598 	unsigned long lpcr = 0, senc;
4599 	unsigned long psize, porder;
4600 	int srcu_idx;
4601 
4602 	/* Allocate hashed page table (if not done already) and reset it */
4603 	if (!kvm->arch.hpt.virt) {
4604 		int order = KVM_DEFAULT_HPT_ORDER;
4605 		struct kvm_hpt_info info;
4606 
4607 		err = kvmppc_allocate_hpt(&info, order);
4608 		/* If we get here, it means userspace didn't specify a
4609 		 * size explicitly.  So, try successively smaller
4610 		 * sizes if the default failed. */
4611 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4612 			err  = kvmppc_allocate_hpt(&info, order);
4613 
4614 		if (err < 0) {
4615 			pr_err("KVM: Couldn't alloc HPT\n");
4616 			goto out;
4617 		}
4618 
4619 		kvmppc_set_hpt(kvm, &info);
4620 	}
4621 
4622 	/* Look up the memslot for guest physical address 0 */
4623 	srcu_idx = srcu_read_lock(&kvm->srcu);
4624 	memslot = gfn_to_memslot(kvm, 0);
4625 
4626 	/* We must have some memory at 0 by now */
4627 	err = -EINVAL;
4628 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4629 		goto out_srcu;
4630 
4631 	/* Look up the VMA for the start of this memory slot */
4632 	hva = memslot->userspace_addr;
4633 	down_read(&kvm->mm->mmap_sem);
4634 	vma = find_vma(kvm->mm, hva);
4635 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4636 		goto up_out;
4637 
4638 	psize = vma_kernel_pagesize(vma);
4639 
4640 	up_read(&kvm->mm->mmap_sem);
4641 
4642 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4643 	if (psize >= 0x1000000)
4644 		psize = 0x1000000;
4645 	else if (psize >= 0x10000)
4646 		psize = 0x10000;
4647 	else
4648 		psize = 0x1000;
4649 	porder = __ilog2(psize);
4650 
4651 	senc = slb_pgsize_encoding(psize);
4652 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4653 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4654 	/* Create HPTEs in the hash page table for the VRMA */
4655 	kvmppc_map_vrma(vcpu, memslot, porder);
4656 
4657 	/* Update VRMASD field in the LPCR */
4658 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4659 		/* the -4 is to account for senc values starting at 0x10 */
4660 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4661 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4662 	}
4663 
4664 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4665 	smp_wmb();
4666 	err = 0;
4667  out_srcu:
4668 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4669  out:
4670 	return err;
4671 
4672  up_out:
4673 	up_read(&kvm->mm->mmap_sem);
4674 	goto out_srcu;
4675 }
4676 
4677 /*
4678  * Must be called with kvm->arch.mmu_setup_lock held and
4679  * mmu_ready = 0 and no vcpus running.
4680  */
4681 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4682 {
4683 	if (nesting_enabled(kvm))
4684 		kvmhv_release_all_nested(kvm);
4685 	kvmppc_rmap_reset(kvm);
4686 	kvm->arch.process_table = 0;
4687 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4688 	spin_lock(&kvm->mmu_lock);
4689 	kvm->arch.radix = 0;
4690 	spin_unlock(&kvm->mmu_lock);
4691 	kvmppc_free_radix(kvm);
4692 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4693 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4694 	return 0;
4695 }
4696 
4697 /*
4698  * Must be called with kvm->arch.mmu_setup_lock held and
4699  * mmu_ready = 0 and no vcpus running.
4700  */
4701 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4702 {
4703 	int err;
4704 
4705 	err = kvmppc_init_vm_radix(kvm);
4706 	if (err)
4707 		return err;
4708 	kvmppc_rmap_reset(kvm);
4709 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4710 	spin_lock(&kvm->mmu_lock);
4711 	kvm->arch.radix = 1;
4712 	spin_unlock(&kvm->mmu_lock);
4713 	kvmppc_free_hpt(&kvm->arch.hpt);
4714 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4715 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4716 	return 0;
4717 }
4718 
4719 #ifdef CONFIG_KVM_XICS
4720 /*
4721  * Allocate a per-core structure for managing state about which cores are
4722  * running in the host versus the guest and for exchanging data between
4723  * real mode KVM and CPU running in the host.
4724  * This is only done for the first VM.
4725  * The allocated structure stays even if all VMs have stopped.
4726  * It is only freed when the kvm-hv module is unloaded.
4727  * It's OK for this routine to fail, we just don't support host
4728  * core operations like redirecting H_IPI wakeups.
4729  */
4730 void kvmppc_alloc_host_rm_ops(void)
4731 {
4732 	struct kvmppc_host_rm_ops *ops;
4733 	unsigned long l_ops;
4734 	int cpu, core;
4735 	int size;
4736 
4737 	/* Not the first time here ? */
4738 	if (kvmppc_host_rm_ops_hv != NULL)
4739 		return;
4740 
4741 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4742 	if (!ops)
4743 		return;
4744 
4745 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4746 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4747 
4748 	if (!ops->rm_core) {
4749 		kfree(ops);
4750 		return;
4751 	}
4752 
4753 	cpus_read_lock();
4754 
4755 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4756 		if (!cpu_online(cpu))
4757 			continue;
4758 
4759 		core = cpu >> threads_shift;
4760 		ops->rm_core[core].rm_state.in_host = 1;
4761 	}
4762 
4763 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4764 
4765 	/*
4766 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4767 	 * to other CPUs before we assign it to the global variable.
4768 	 * Do an atomic assignment (no locks used here), but if someone
4769 	 * beats us to it, just free our copy and return.
4770 	 */
4771 	smp_wmb();
4772 	l_ops = (unsigned long) ops;
4773 
4774 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4775 		cpus_read_unlock();
4776 		kfree(ops->rm_core);
4777 		kfree(ops);
4778 		return;
4779 	}
4780 
4781 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4782 					     "ppc/kvm_book3s:prepare",
4783 					     kvmppc_set_host_core,
4784 					     kvmppc_clear_host_core);
4785 	cpus_read_unlock();
4786 }
4787 
4788 void kvmppc_free_host_rm_ops(void)
4789 {
4790 	if (kvmppc_host_rm_ops_hv) {
4791 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4792 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4793 		kfree(kvmppc_host_rm_ops_hv);
4794 		kvmppc_host_rm_ops_hv = NULL;
4795 	}
4796 }
4797 #endif
4798 
4799 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4800 {
4801 	unsigned long lpcr, lpid;
4802 	char buf[32];
4803 	int ret;
4804 
4805 	mutex_init(&kvm->arch.uvmem_lock);
4806 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4807 	mutex_init(&kvm->arch.mmu_setup_lock);
4808 
4809 	/* Allocate the guest's logical partition ID */
4810 
4811 	lpid = kvmppc_alloc_lpid();
4812 	if ((long)lpid < 0)
4813 		return -ENOMEM;
4814 	kvm->arch.lpid = lpid;
4815 
4816 	kvmppc_alloc_host_rm_ops();
4817 
4818 	kvmhv_vm_nested_init(kvm);
4819 
4820 	/*
4821 	 * Since we don't flush the TLB when tearing down a VM,
4822 	 * and this lpid might have previously been used,
4823 	 * make sure we flush on each core before running the new VM.
4824 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4825 	 * does this flush for us.
4826 	 */
4827 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4828 		cpumask_setall(&kvm->arch.need_tlb_flush);
4829 
4830 	/* Start out with the default set of hcalls enabled */
4831 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4832 	       sizeof(kvm->arch.enabled_hcalls));
4833 
4834 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4835 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4836 
4837 	/* Init LPCR for virtual RMA mode */
4838 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4839 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4840 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4841 		lpcr &= LPCR_PECE | LPCR_LPES;
4842 	} else {
4843 		lpcr = 0;
4844 	}
4845 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4846 		LPCR_VPM0 | LPCR_VPM1;
4847 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4848 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4849 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4850 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4851 		lpcr |= LPCR_ONL;
4852 	/*
4853 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4854 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4855 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4856 	 * be unnecessary but better safe than sorry in case we re-enable
4857 	 * EE in HV mode with this LPCR still set)
4858 	 */
4859 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4860 		lpcr &= ~LPCR_VPM0;
4861 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4862 
4863 		/*
4864 		 * If xive is enabled, we route 0x500 interrupts directly
4865 		 * to the guest.
4866 		 */
4867 		if (xics_on_xive())
4868 			lpcr |= LPCR_LPES;
4869 	}
4870 
4871 	/*
4872 	 * If the host uses radix, the guest starts out as radix.
4873 	 */
4874 	if (radix_enabled()) {
4875 		kvm->arch.radix = 1;
4876 		kvm->arch.mmu_ready = 1;
4877 		lpcr &= ~LPCR_VPM1;
4878 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4879 		ret = kvmppc_init_vm_radix(kvm);
4880 		if (ret) {
4881 			kvmppc_free_lpid(kvm->arch.lpid);
4882 			return ret;
4883 		}
4884 		kvmppc_setup_partition_table(kvm);
4885 	}
4886 
4887 	kvm->arch.lpcr = lpcr;
4888 
4889 	/* Initialization for future HPT resizes */
4890 	kvm->arch.resize_hpt = NULL;
4891 
4892 	/*
4893 	 * Work out how many sets the TLB has, for the use of
4894 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4895 	 */
4896 	if (radix_enabled())
4897 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4898 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4899 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4900 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4901 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4902 	else
4903 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4904 
4905 	/*
4906 	 * Track that we now have a HV mode VM active. This blocks secondary
4907 	 * CPU threads from coming online.
4908 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4909 	 * module parameter has been set to N.
4910 	 */
4911 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4912 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4913 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4914 			kvm->arch.threads_indep = true;
4915 		} else {
4916 			kvm->arch.threads_indep = indep_threads_mode;
4917 		}
4918 	}
4919 	if (!kvm->arch.threads_indep)
4920 		kvm_hv_vm_activated();
4921 
4922 	/*
4923 	 * Initialize smt_mode depending on processor.
4924 	 * POWER8 and earlier have to use "strict" threading, where
4925 	 * all vCPUs in a vcore have to run on the same (sub)core,
4926 	 * whereas on POWER9 the threads can each run a different
4927 	 * guest.
4928 	 */
4929 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4930 		kvm->arch.smt_mode = threads_per_subcore;
4931 	else
4932 		kvm->arch.smt_mode = 1;
4933 	kvm->arch.emul_smt_mode = 1;
4934 
4935 	/*
4936 	 * Create a debugfs directory for the VM
4937 	 */
4938 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4939 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4940 	kvmppc_mmu_debugfs_init(kvm);
4941 	if (radix_enabled())
4942 		kvmhv_radix_debugfs_init(kvm);
4943 
4944 	return 0;
4945 }
4946 
4947 static void kvmppc_free_vcores(struct kvm *kvm)
4948 {
4949 	long int i;
4950 
4951 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4952 		kfree(kvm->arch.vcores[i]);
4953 	kvm->arch.online_vcores = 0;
4954 }
4955 
4956 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4957 {
4958 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4959 
4960 	if (!kvm->arch.threads_indep)
4961 		kvm_hv_vm_deactivated();
4962 
4963 	kvmppc_free_vcores(kvm);
4964 
4965 
4966 	if (kvm_is_radix(kvm))
4967 		kvmppc_free_radix(kvm);
4968 	else
4969 		kvmppc_free_hpt(&kvm->arch.hpt);
4970 
4971 	/* Perform global invalidation and return lpid to the pool */
4972 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4973 		if (nesting_enabled(kvm))
4974 			kvmhv_release_all_nested(kvm);
4975 		kvm->arch.process_table = 0;
4976 		if (kvm->arch.secure_guest)
4977 			uv_svm_terminate(kvm->arch.lpid);
4978 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4979 	}
4980 
4981 	kvmppc_free_lpid(kvm->arch.lpid);
4982 
4983 	kvmppc_free_pimap(kvm);
4984 }
4985 
4986 /* We don't need to emulate any privileged instructions or dcbz */
4987 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4988 				     unsigned int inst, int *advance)
4989 {
4990 	return EMULATE_FAIL;
4991 }
4992 
4993 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4994 					ulong spr_val)
4995 {
4996 	return EMULATE_FAIL;
4997 }
4998 
4999 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5000 					ulong *spr_val)
5001 {
5002 	return EMULATE_FAIL;
5003 }
5004 
5005 static int kvmppc_core_check_processor_compat_hv(void)
5006 {
5007 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5008 	    cpu_has_feature(CPU_FTR_ARCH_206))
5009 		return 0;
5010 
5011 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5012 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5013 		return 0;
5014 
5015 	return -EIO;
5016 }
5017 
5018 #ifdef CONFIG_KVM_XICS
5019 
5020 void kvmppc_free_pimap(struct kvm *kvm)
5021 {
5022 	kfree(kvm->arch.pimap);
5023 }
5024 
5025 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5026 {
5027 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5028 }
5029 
5030 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5031 {
5032 	struct irq_desc *desc;
5033 	struct kvmppc_irq_map *irq_map;
5034 	struct kvmppc_passthru_irqmap *pimap;
5035 	struct irq_chip *chip;
5036 	int i, rc = 0;
5037 
5038 	if (!kvm_irq_bypass)
5039 		return 1;
5040 
5041 	desc = irq_to_desc(host_irq);
5042 	if (!desc)
5043 		return -EIO;
5044 
5045 	mutex_lock(&kvm->lock);
5046 
5047 	pimap = kvm->arch.pimap;
5048 	if (pimap == NULL) {
5049 		/* First call, allocate structure to hold IRQ map */
5050 		pimap = kvmppc_alloc_pimap();
5051 		if (pimap == NULL) {
5052 			mutex_unlock(&kvm->lock);
5053 			return -ENOMEM;
5054 		}
5055 		kvm->arch.pimap = pimap;
5056 	}
5057 
5058 	/*
5059 	 * For now, we only support interrupts for which the EOI operation
5060 	 * is an OPAL call followed by a write to XIRR, since that's
5061 	 * what our real-mode EOI code does, or a XIVE interrupt
5062 	 */
5063 	chip = irq_data_get_irq_chip(&desc->irq_data);
5064 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5065 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5066 			host_irq, guest_gsi);
5067 		mutex_unlock(&kvm->lock);
5068 		return -ENOENT;
5069 	}
5070 
5071 	/*
5072 	 * See if we already have an entry for this guest IRQ number.
5073 	 * If it's mapped to a hardware IRQ number, that's an error,
5074 	 * otherwise re-use this entry.
5075 	 */
5076 	for (i = 0; i < pimap->n_mapped; i++) {
5077 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5078 			if (pimap->mapped[i].r_hwirq) {
5079 				mutex_unlock(&kvm->lock);
5080 				return -EINVAL;
5081 			}
5082 			break;
5083 		}
5084 	}
5085 
5086 	if (i == KVMPPC_PIRQ_MAPPED) {
5087 		mutex_unlock(&kvm->lock);
5088 		return -EAGAIN;		/* table is full */
5089 	}
5090 
5091 	irq_map = &pimap->mapped[i];
5092 
5093 	irq_map->v_hwirq = guest_gsi;
5094 	irq_map->desc = desc;
5095 
5096 	/*
5097 	 * Order the above two stores before the next to serialize with
5098 	 * the KVM real mode handler.
5099 	 */
5100 	smp_wmb();
5101 	irq_map->r_hwirq = desc->irq_data.hwirq;
5102 
5103 	if (i == pimap->n_mapped)
5104 		pimap->n_mapped++;
5105 
5106 	if (xics_on_xive())
5107 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5108 	else
5109 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5110 	if (rc)
5111 		irq_map->r_hwirq = 0;
5112 
5113 	mutex_unlock(&kvm->lock);
5114 
5115 	return 0;
5116 }
5117 
5118 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5119 {
5120 	struct irq_desc *desc;
5121 	struct kvmppc_passthru_irqmap *pimap;
5122 	int i, rc = 0;
5123 
5124 	if (!kvm_irq_bypass)
5125 		return 0;
5126 
5127 	desc = irq_to_desc(host_irq);
5128 	if (!desc)
5129 		return -EIO;
5130 
5131 	mutex_lock(&kvm->lock);
5132 	if (!kvm->arch.pimap)
5133 		goto unlock;
5134 
5135 	pimap = kvm->arch.pimap;
5136 
5137 	for (i = 0; i < pimap->n_mapped; i++) {
5138 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5139 			break;
5140 	}
5141 
5142 	if (i == pimap->n_mapped) {
5143 		mutex_unlock(&kvm->lock);
5144 		return -ENODEV;
5145 	}
5146 
5147 	if (xics_on_xive())
5148 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5149 	else
5150 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5151 
5152 	/* invalidate the entry (what do do on error from the above ?) */
5153 	pimap->mapped[i].r_hwirq = 0;
5154 
5155 	/*
5156 	 * We don't free this structure even when the count goes to
5157 	 * zero. The structure is freed when we destroy the VM.
5158 	 */
5159  unlock:
5160 	mutex_unlock(&kvm->lock);
5161 	return rc;
5162 }
5163 
5164 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5165 					     struct irq_bypass_producer *prod)
5166 {
5167 	int ret = 0;
5168 	struct kvm_kernel_irqfd *irqfd =
5169 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5170 
5171 	irqfd->producer = prod;
5172 
5173 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5174 	if (ret)
5175 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5176 			prod->irq, irqfd->gsi, ret);
5177 
5178 	return ret;
5179 }
5180 
5181 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5182 					      struct irq_bypass_producer *prod)
5183 {
5184 	int ret;
5185 	struct kvm_kernel_irqfd *irqfd =
5186 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5187 
5188 	irqfd->producer = NULL;
5189 
5190 	/*
5191 	 * When producer of consumer is unregistered, we change back to
5192 	 * default external interrupt handling mode - KVM real mode
5193 	 * will switch back to host.
5194 	 */
5195 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5196 	if (ret)
5197 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5198 			prod->irq, irqfd->gsi, ret);
5199 }
5200 #endif
5201 
5202 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5203 				 unsigned int ioctl, unsigned long arg)
5204 {
5205 	struct kvm *kvm __maybe_unused = filp->private_data;
5206 	void __user *argp = (void __user *)arg;
5207 	long r;
5208 
5209 	switch (ioctl) {
5210 
5211 	case KVM_PPC_ALLOCATE_HTAB: {
5212 		u32 htab_order;
5213 
5214 		r = -EFAULT;
5215 		if (get_user(htab_order, (u32 __user *)argp))
5216 			break;
5217 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5218 		if (r)
5219 			break;
5220 		r = 0;
5221 		break;
5222 	}
5223 
5224 	case KVM_PPC_GET_HTAB_FD: {
5225 		struct kvm_get_htab_fd ghf;
5226 
5227 		r = -EFAULT;
5228 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5229 			break;
5230 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5231 		break;
5232 	}
5233 
5234 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5235 		struct kvm_ppc_resize_hpt rhpt;
5236 
5237 		r = -EFAULT;
5238 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5239 			break;
5240 
5241 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5242 		break;
5243 	}
5244 
5245 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5246 		struct kvm_ppc_resize_hpt rhpt;
5247 
5248 		r = -EFAULT;
5249 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5250 			break;
5251 
5252 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5253 		break;
5254 	}
5255 
5256 	default:
5257 		r = -ENOTTY;
5258 	}
5259 
5260 	return r;
5261 }
5262 
5263 /*
5264  * List of hcall numbers to enable by default.
5265  * For compatibility with old userspace, we enable by default
5266  * all hcalls that were implemented before the hcall-enabling
5267  * facility was added.  Note this list should not include H_RTAS.
5268  */
5269 static unsigned int default_hcall_list[] = {
5270 	H_REMOVE,
5271 	H_ENTER,
5272 	H_READ,
5273 	H_PROTECT,
5274 	H_BULK_REMOVE,
5275 	H_GET_TCE,
5276 	H_PUT_TCE,
5277 	H_SET_DABR,
5278 	H_SET_XDABR,
5279 	H_CEDE,
5280 	H_PROD,
5281 	H_CONFER,
5282 	H_REGISTER_VPA,
5283 #ifdef CONFIG_KVM_XICS
5284 	H_EOI,
5285 	H_CPPR,
5286 	H_IPI,
5287 	H_IPOLL,
5288 	H_XIRR,
5289 	H_XIRR_X,
5290 #endif
5291 	0
5292 };
5293 
5294 static void init_default_hcalls(void)
5295 {
5296 	int i;
5297 	unsigned int hcall;
5298 
5299 	for (i = 0; default_hcall_list[i]; ++i) {
5300 		hcall = default_hcall_list[i];
5301 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5302 		__set_bit(hcall / 4, default_enabled_hcalls);
5303 	}
5304 }
5305 
5306 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5307 {
5308 	unsigned long lpcr;
5309 	int radix;
5310 	int err;
5311 
5312 	/* If not on a POWER9, reject it */
5313 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5314 		return -ENODEV;
5315 
5316 	/* If any unknown flags set, reject it */
5317 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5318 		return -EINVAL;
5319 
5320 	/* GR (guest radix) bit in process_table field must match */
5321 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5322 	if (!!(cfg->process_table & PATB_GR) != radix)
5323 		return -EINVAL;
5324 
5325 	/* Process table size field must be reasonable, i.e. <= 24 */
5326 	if ((cfg->process_table & PRTS_MASK) > 24)
5327 		return -EINVAL;
5328 
5329 	/* We can change a guest to/from radix now, if the host is radix */
5330 	if (radix && !radix_enabled())
5331 		return -EINVAL;
5332 
5333 	/* If we're a nested hypervisor, we currently only support radix */
5334 	if (kvmhv_on_pseries() && !radix)
5335 		return -EINVAL;
5336 
5337 	mutex_lock(&kvm->arch.mmu_setup_lock);
5338 	if (radix != kvm_is_radix(kvm)) {
5339 		if (kvm->arch.mmu_ready) {
5340 			kvm->arch.mmu_ready = 0;
5341 			/* order mmu_ready vs. vcpus_running */
5342 			smp_mb();
5343 			if (atomic_read(&kvm->arch.vcpus_running)) {
5344 				kvm->arch.mmu_ready = 1;
5345 				err = -EBUSY;
5346 				goto out_unlock;
5347 			}
5348 		}
5349 		if (radix)
5350 			err = kvmppc_switch_mmu_to_radix(kvm);
5351 		else
5352 			err = kvmppc_switch_mmu_to_hpt(kvm);
5353 		if (err)
5354 			goto out_unlock;
5355 	}
5356 
5357 	kvm->arch.process_table = cfg->process_table;
5358 	kvmppc_setup_partition_table(kvm);
5359 
5360 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5361 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5362 	err = 0;
5363 
5364  out_unlock:
5365 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5366 	return err;
5367 }
5368 
5369 static int kvmhv_enable_nested(struct kvm *kvm)
5370 {
5371 	if (!nested)
5372 		return -EPERM;
5373 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5374 		return -ENODEV;
5375 
5376 	/* kvm == NULL means the caller is testing if the capability exists */
5377 	if (kvm)
5378 		kvm->arch.nested_enable = true;
5379 	return 0;
5380 }
5381 
5382 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5383 				 int size)
5384 {
5385 	int rc = -EINVAL;
5386 
5387 	if (kvmhv_vcpu_is_radix(vcpu)) {
5388 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5389 
5390 		if (rc > 0)
5391 			rc = -EINVAL;
5392 	}
5393 
5394 	/* For now quadrants are the only way to access nested guest memory */
5395 	if (rc && vcpu->arch.nested)
5396 		rc = -EAGAIN;
5397 
5398 	return rc;
5399 }
5400 
5401 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5402 				int size)
5403 {
5404 	int rc = -EINVAL;
5405 
5406 	if (kvmhv_vcpu_is_radix(vcpu)) {
5407 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5408 
5409 		if (rc > 0)
5410 			rc = -EINVAL;
5411 	}
5412 
5413 	/* For now quadrants are the only way to access nested guest memory */
5414 	if (rc && vcpu->arch.nested)
5415 		rc = -EAGAIN;
5416 
5417 	return rc;
5418 }
5419 
5420 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5421 {
5422 	unpin_vpa(kvm, vpa);
5423 	vpa->gpa = 0;
5424 	vpa->pinned_addr = NULL;
5425 	vpa->dirty = false;
5426 	vpa->update_pending = 0;
5427 }
5428 
5429 /*
5430  *  IOCTL handler to turn off secure mode of guest
5431  *
5432  * - Release all device pages
5433  * - Issue ucall to terminate the guest on the UV side
5434  * - Unpin the VPA pages.
5435  * - Reinit the partition scoped page tables
5436  */
5437 static int kvmhv_svm_off(struct kvm *kvm)
5438 {
5439 	struct kvm_vcpu *vcpu;
5440 	int mmu_was_ready;
5441 	int srcu_idx;
5442 	int ret = 0;
5443 	int i;
5444 
5445 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5446 		return ret;
5447 
5448 	mutex_lock(&kvm->arch.mmu_setup_lock);
5449 	mmu_was_ready = kvm->arch.mmu_ready;
5450 	if (kvm->arch.mmu_ready) {
5451 		kvm->arch.mmu_ready = 0;
5452 		/* order mmu_ready vs. vcpus_running */
5453 		smp_mb();
5454 		if (atomic_read(&kvm->arch.vcpus_running)) {
5455 			kvm->arch.mmu_ready = 1;
5456 			ret = -EBUSY;
5457 			goto out;
5458 		}
5459 	}
5460 
5461 	srcu_idx = srcu_read_lock(&kvm->srcu);
5462 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5463 		struct kvm_memory_slot *memslot;
5464 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5465 
5466 		if (!slots)
5467 			continue;
5468 
5469 		kvm_for_each_memslot(memslot, slots) {
5470 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5471 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5472 		}
5473 	}
5474 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5475 
5476 	ret = uv_svm_terminate(kvm->arch.lpid);
5477 	if (ret != U_SUCCESS) {
5478 		ret = -EINVAL;
5479 		goto out;
5480 	}
5481 
5482 	/*
5483 	 * When secure guest is reset, all the guest pages are sent
5484 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5485 	 * chance to run and unpin their VPA pages. Unpinning of all
5486 	 * VPA pages is done here explicitly so that VPA pages
5487 	 * can be migrated to the secure side.
5488 	 *
5489 	 * This is required to for the secure SMP guest to reboot
5490 	 * correctly.
5491 	 */
5492 	kvm_for_each_vcpu(i, vcpu, kvm) {
5493 		spin_lock(&vcpu->arch.vpa_update_lock);
5494 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5495 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5496 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5497 		spin_unlock(&vcpu->arch.vpa_update_lock);
5498 	}
5499 
5500 	kvmppc_setup_partition_table(kvm);
5501 	kvm->arch.secure_guest = 0;
5502 	kvm->arch.mmu_ready = mmu_was_ready;
5503 out:
5504 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5505 	return ret;
5506 }
5507 
5508 static struct kvmppc_ops kvm_ops_hv = {
5509 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5510 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5511 	.get_one_reg = kvmppc_get_one_reg_hv,
5512 	.set_one_reg = kvmppc_set_one_reg_hv,
5513 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5514 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5515 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5516 	.set_msr     = kvmppc_set_msr_hv,
5517 	.vcpu_run    = kvmppc_vcpu_run_hv,
5518 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5519 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5520 	.check_requests = kvmppc_core_check_requests_hv,
5521 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5522 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5523 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5524 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5525 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5526 	.age_hva  = kvm_age_hva_hv,
5527 	.test_age_hva = kvm_test_age_hva_hv,
5528 	.set_spte_hva = kvm_set_spte_hva_hv,
5529 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
5530 	.free_memslot = kvmppc_core_free_memslot_hv,
5531 	.create_memslot = kvmppc_core_create_memslot_hv,
5532 	.init_vm =  kvmppc_core_init_vm_hv,
5533 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5534 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5535 	.emulate_op = kvmppc_core_emulate_op_hv,
5536 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5537 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5538 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5539 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5540 	.hcall_implemented = kvmppc_hcall_impl_hv,
5541 #ifdef CONFIG_KVM_XICS
5542 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5543 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5544 #endif
5545 	.configure_mmu = kvmhv_configure_mmu,
5546 	.get_rmmu_info = kvmhv_get_rmmu_info,
5547 	.set_smt_mode = kvmhv_set_smt_mode,
5548 	.enable_nested = kvmhv_enable_nested,
5549 	.load_from_eaddr = kvmhv_load_from_eaddr,
5550 	.store_to_eaddr = kvmhv_store_to_eaddr,
5551 	.svm_off = kvmhv_svm_off,
5552 };
5553 
5554 static int kvm_init_subcore_bitmap(void)
5555 {
5556 	int i, j;
5557 	int nr_cores = cpu_nr_cores();
5558 	struct sibling_subcore_state *sibling_subcore_state;
5559 
5560 	for (i = 0; i < nr_cores; i++) {
5561 		int first_cpu = i * threads_per_core;
5562 		int node = cpu_to_node(first_cpu);
5563 
5564 		/* Ignore if it is already allocated. */
5565 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5566 			continue;
5567 
5568 		sibling_subcore_state =
5569 			kzalloc_node(sizeof(struct sibling_subcore_state),
5570 							GFP_KERNEL, node);
5571 		if (!sibling_subcore_state)
5572 			return -ENOMEM;
5573 
5574 
5575 		for (j = 0; j < threads_per_core; j++) {
5576 			int cpu = first_cpu + j;
5577 
5578 			paca_ptrs[cpu]->sibling_subcore_state =
5579 						sibling_subcore_state;
5580 		}
5581 	}
5582 	return 0;
5583 }
5584 
5585 static int kvmppc_radix_possible(void)
5586 {
5587 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5588 }
5589 
5590 static int kvmppc_book3s_init_hv(void)
5591 {
5592 	int r;
5593 
5594 	if (!tlbie_capable) {
5595 		pr_err("KVM-HV: Host does not support TLBIE\n");
5596 		return -ENODEV;
5597 	}
5598 
5599 	/*
5600 	 * FIXME!! Do we need to check on all cpus ?
5601 	 */
5602 	r = kvmppc_core_check_processor_compat_hv();
5603 	if (r < 0)
5604 		return -ENODEV;
5605 
5606 	r = kvmhv_nested_init();
5607 	if (r)
5608 		return r;
5609 
5610 	r = kvm_init_subcore_bitmap();
5611 	if (r)
5612 		return r;
5613 
5614 	/*
5615 	 * We need a way of accessing the XICS interrupt controller,
5616 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5617 	 * indirectly, via OPAL.
5618 	 */
5619 #ifdef CONFIG_SMP
5620 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5621 	    !local_paca->kvm_hstate.xics_phys) {
5622 		struct device_node *np;
5623 
5624 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5625 		if (!np) {
5626 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5627 			return -ENODEV;
5628 		}
5629 		/* presence of intc confirmed - node can be dropped again */
5630 		of_node_put(np);
5631 	}
5632 #endif
5633 
5634 	kvm_ops_hv.owner = THIS_MODULE;
5635 	kvmppc_hv_ops = &kvm_ops_hv;
5636 
5637 	init_default_hcalls();
5638 
5639 	init_vcore_lists();
5640 
5641 	r = kvmppc_mmu_hv_init();
5642 	if (r)
5643 		return r;
5644 
5645 	if (kvmppc_radix_possible())
5646 		r = kvmppc_radix_init();
5647 
5648 	/*
5649 	 * POWER9 chips before version 2.02 can't have some threads in
5650 	 * HPT mode and some in radix mode on the same core.
5651 	 */
5652 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5653 		unsigned int pvr = mfspr(SPRN_PVR);
5654 		if ((pvr >> 16) == PVR_POWER9 &&
5655 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5656 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5657 			no_mixing_hpt_and_radix = true;
5658 	}
5659 
5660 	r = kvmppc_uvmem_init();
5661 	if (r < 0)
5662 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5663 
5664 	return r;
5665 }
5666 
5667 static void kvmppc_book3s_exit_hv(void)
5668 {
5669 	kvmppc_uvmem_free();
5670 	kvmppc_free_host_rm_ops();
5671 	if (kvmppc_radix_possible())
5672 		kvmppc_radix_exit();
5673 	kvmppc_hv_ops = NULL;
5674 	kvmhv_nested_exit();
5675 }
5676 
5677 module_init(kvmppc_book3s_init_hv);
5678 module_exit(kvmppc_book3s_exit_hv);
5679 MODULE_LICENSE("GPL");
5680 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5681 MODULE_ALIAS("devname:kvm");
5682