1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 #include <asm/kvm_book3s_uvmem.h> 76 #include <asm/ultravisor.h> 77 78 #include "book3s.h" 79 80 #define CREATE_TRACE_POINTS 81 #include "trace_hv.h" 82 83 /* #define EXIT_DEBUG */ 84 /* #define EXIT_DEBUG_SIMPLE */ 85 /* #define EXIT_DEBUG_INT */ 86 87 /* Used to indicate that a guest page fault needs to be handled */ 88 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 89 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 90 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 91 92 /* Used as a "null" value for timebase values */ 93 #define TB_NIL (~(u64)0) 94 95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 96 97 static int dynamic_mt_modes = 6; 98 module_param(dynamic_mt_modes, int, 0644); 99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 100 static int target_smt_mode; 101 module_param(target_smt_mode, int, 0644); 102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 103 104 static bool indep_threads_mode = true; 105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 107 108 static bool one_vm_per_core; 109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 111 112 #ifdef CONFIG_KVM_XICS 113 static struct kernel_param_ops module_param_ops = { 114 .set = param_set_int, 115 .get = param_get_int, 116 }; 117 118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 120 121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 123 #endif 124 125 /* If set, guests are allowed to create and control nested guests */ 126 static bool nested = true; 127 module_param(nested, bool, S_IRUGO | S_IWUSR); 128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 129 130 static inline bool nesting_enabled(struct kvm *kvm) 131 { 132 return kvm->arch.nested_enable && kvm_is_radix(kvm); 133 } 134 135 /* If set, the threads on each CPU core have to be in the same MMU mode */ 136 static bool no_mixing_hpt_and_radix; 137 138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 139 140 /* 141 * RWMR values for POWER8. These control the rate at which PURR 142 * and SPURR count and should be set according to the number of 143 * online threads in the vcore being run. 144 */ 145 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 147 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 149 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 153 154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 155 RWMR_RPA_P8_1THREAD, 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_2THREAD, 158 RWMR_RPA_P8_3THREAD, 159 RWMR_RPA_P8_4THREAD, 160 RWMR_RPA_P8_5THREAD, 161 RWMR_RPA_P8_6THREAD, 162 RWMR_RPA_P8_7THREAD, 163 RWMR_RPA_P8_8THREAD, 164 }; 165 166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 167 int *ip) 168 { 169 int i = *ip; 170 struct kvm_vcpu *vcpu; 171 172 while (++i < MAX_SMT_THREADS) { 173 vcpu = READ_ONCE(vc->runnable_threads[i]); 174 if (vcpu) { 175 *ip = i; 176 return vcpu; 177 } 178 } 179 return NULL; 180 } 181 182 /* Used to traverse the list of runnable threads for a given vcore */ 183 #define for_each_runnable_thread(i, vcpu, vc) \ 184 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 185 186 static bool kvmppc_ipi_thread(int cpu) 187 { 188 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 189 190 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 191 if (kvmhv_on_pseries()) 192 return false; 193 194 /* On POWER9 we can use msgsnd to IPI any cpu */ 195 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 196 msg |= get_hard_smp_processor_id(cpu); 197 smp_mb(); 198 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 199 return true; 200 } 201 202 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 203 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 204 preempt_disable(); 205 if (cpu_first_thread_sibling(cpu) == 206 cpu_first_thread_sibling(smp_processor_id())) { 207 msg |= cpu_thread_in_core(cpu); 208 smp_mb(); 209 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 210 preempt_enable(); 211 return true; 212 } 213 preempt_enable(); 214 } 215 216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 217 if (cpu >= 0 && cpu < nr_cpu_ids) { 218 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 219 xics_wake_cpu(cpu); 220 return true; 221 } 222 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 223 return true; 224 } 225 #endif 226 227 return false; 228 } 229 230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 231 { 232 int cpu; 233 struct rcuwait *waitp; 234 235 waitp = kvm_arch_vcpu_get_wait(vcpu); 236 if (rcuwait_wake_up(waitp)) 237 ++vcpu->stat.halt_wakeup; 238 239 cpu = READ_ONCE(vcpu->arch.thread_cpu); 240 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 241 return; 242 243 /* CPU points to the first thread of the core */ 244 cpu = vcpu->cpu; 245 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 246 smp_send_reschedule(cpu); 247 } 248 249 /* 250 * We use the vcpu_load/put functions to measure stolen time. 251 * Stolen time is counted as time when either the vcpu is able to 252 * run as part of a virtual core, but the task running the vcore 253 * is preempted or sleeping, or when the vcpu needs something done 254 * in the kernel by the task running the vcpu, but that task is 255 * preempted or sleeping. Those two things have to be counted 256 * separately, since one of the vcpu tasks will take on the job 257 * of running the core, and the other vcpu tasks in the vcore will 258 * sleep waiting for it to do that, but that sleep shouldn't count 259 * as stolen time. 260 * 261 * Hence we accumulate stolen time when the vcpu can run as part of 262 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 263 * needs its task to do other things in the kernel (for example, 264 * service a page fault) in busy_stolen. We don't accumulate 265 * stolen time for a vcore when it is inactive, or for a vcpu 266 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 267 * a misnomer; it means that the vcpu task is not executing in 268 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 269 * the kernel. We don't have any way of dividing up that time 270 * between time that the vcpu is genuinely stopped, time that 271 * the task is actively working on behalf of the vcpu, and time 272 * that the task is preempted, so we don't count any of it as 273 * stolen. 274 * 275 * Updates to busy_stolen are protected by arch.tbacct_lock; 276 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 277 * lock. The stolen times are measured in units of timebase ticks. 278 * (Note that the != TB_NIL checks below are purely defensive; 279 * they should never fail.) 280 */ 281 282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 283 { 284 unsigned long flags; 285 286 spin_lock_irqsave(&vc->stoltb_lock, flags); 287 vc->preempt_tb = mftb(); 288 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 289 } 290 291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 292 { 293 unsigned long flags; 294 295 spin_lock_irqsave(&vc->stoltb_lock, flags); 296 if (vc->preempt_tb != TB_NIL) { 297 vc->stolen_tb += mftb() - vc->preempt_tb; 298 vc->preempt_tb = TB_NIL; 299 } 300 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 301 } 302 303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 304 { 305 struct kvmppc_vcore *vc = vcpu->arch.vcore; 306 unsigned long flags; 307 308 /* 309 * We can test vc->runner without taking the vcore lock, 310 * because only this task ever sets vc->runner to this 311 * vcpu, and once it is set to this vcpu, only this task 312 * ever sets it to NULL. 313 */ 314 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 315 kvmppc_core_end_stolen(vc); 316 317 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 318 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 319 vcpu->arch.busy_preempt != TB_NIL) { 320 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 321 vcpu->arch.busy_preempt = TB_NIL; 322 } 323 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 324 } 325 326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 327 { 328 struct kvmppc_vcore *vc = vcpu->arch.vcore; 329 unsigned long flags; 330 331 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 332 kvmppc_core_start_stolen(vc); 333 334 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 335 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 336 vcpu->arch.busy_preempt = mftb(); 337 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 338 } 339 340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 341 { 342 vcpu->arch.pvr = pvr; 343 } 344 345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 346 { 347 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 348 struct kvmppc_vcore *vc = vcpu->arch.vcore; 349 350 /* We can (emulate) our own architecture version and anything older */ 351 if (cpu_has_feature(CPU_FTR_ARCH_300)) 352 host_pcr_bit = PCR_ARCH_300; 353 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 354 host_pcr_bit = PCR_ARCH_207; 355 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 356 host_pcr_bit = PCR_ARCH_206; 357 else 358 host_pcr_bit = PCR_ARCH_205; 359 360 /* Determine lowest PCR bit needed to run guest in given PVR level */ 361 guest_pcr_bit = host_pcr_bit; 362 if (arch_compat) { 363 switch (arch_compat) { 364 case PVR_ARCH_205: 365 guest_pcr_bit = PCR_ARCH_205; 366 break; 367 case PVR_ARCH_206: 368 case PVR_ARCH_206p: 369 guest_pcr_bit = PCR_ARCH_206; 370 break; 371 case PVR_ARCH_207: 372 guest_pcr_bit = PCR_ARCH_207; 373 break; 374 case PVR_ARCH_300: 375 guest_pcr_bit = PCR_ARCH_300; 376 break; 377 default: 378 return -EINVAL; 379 } 380 } 381 382 /* Check requested PCR bits don't exceed our capabilities */ 383 if (guest_pcr_bit > host_pcr_bit) 384 return -EINVAL; 385 386 spin_lock(&vc->lock); 387 vc->arch_compat = arch_compat; 388 /* 389 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 390 * Also set all reserved PCR bits 391 */ 392 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 393 spin_unlock(&vc->lock); 394 395 return 0; 396 } 397 398 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 399 { 400 int r; 401 402 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 403 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 404 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 405 for (r = 0; r < 16; ++r) 406 pr_err("r%2d = %.16lx r%d = %.16lx\n", 407 r, kvmppc_get_gpr(vcpu, r), 408 r+16, kvmppc_get_gpr(vcpu, r+16)); 409 pr_err("ctr = %.16lx lr = %.16lx\n", 410 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 411 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 412 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 413 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 414 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 415 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 416 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 417 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 418 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 419 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 420 pr_err("fault dar = %.16lx dsisr = %.8x\n", 421 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 422 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 423 for (r = 0; r < vcpu->arch.slb_max; ++r) 424 pr_err(" ESID = %.16llx VSID = %.16llx\n", 425 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 426 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 427 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 428 vcpu->arch.last_inst); 429 } 430 431 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 432 { 433 return kvm_get_vcpu_by_id(kvm, id); 434 } 435 436 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 437 { 438 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 439 vpa->yield_count = cpu_to_be32(1); 440 } 441 442 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 443 unsigned long addr, unsigned long len) 444 { 445 /* check address is cacheline aligned */ 446 if (addr & (L1_CACHE_BYTES - 1)) 447 return -EINVAL; 448 spin_lock(&vcpu->arch.vpa_update_lock); 449 if (v->next_gpa != addr || v->len != len) { 450 v->next_gpa = addr; 451 v->len = addr ? len : 0; 452 v->update_pending = 1; 453 } 454 spin_unlock(&vcpu->arch.vpa_update_lock); 455 return 0; 456 } 457 458 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 459 struct reg_vpa { 460 u32 dummy; 461 union { 462 __be16 hword; 463 __be32 word; 464 } length; 465 }; 466 467 static int vpa_is_registered(struct kvmppc_vpa *vpap) 468 { 469 if (vpap->update_pending) 470 return vpap->next_gpa != 0; 471 return vpap->pinned_addr != NULL; 472 } 473 474 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 475 unsigned long flags, 476 unsigned long vcpuid, unsigned long vpa) 477 { 478 struct kvm *kvm = vcpu->kvm; 479 unsigned long len, nb; 480 void *va; 481 struct kvm_vcpu *tvcpu; 482 int err; 483 int subfunc; 484 struct kvmppc_vpa *vpap; 485 486 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 487 if (!tvcpu) 488 return H_PARAMETER; 489 490 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 491 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 492 subfunc == H_VPA_REG_SLB) { 493 /* Registering new area - address must be cache-line aligned */ 494 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 495 return H_PARAMETER; 496 497 /* convert logical addr to kernel addr and read length */ 498 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 499 if (va == NULL) 500 return H_PARAMETER; 501 if (subfunc == H_VPA_REG_VPA) 502 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 503 else 504 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 505 kvmppc_unpin_guest_page(kvm, va, vpa, false); 506 507 /* Check length */ 508 if (len > nb || len < sizeof(struct reg_vpa)) 509 return H_PARAMETER; 510 } else { 511 vpa = 0; 512 len = 0; 513 } 514 515 err = H_PARAMETER; 516 vpap = NULL; 517 spin_lock(&tvcpu->arch.vpa_update_lock); 518 519 switch (subfunc) { 520 case H_VPA_REG_VPA: /* register VPA */ 521 /* 522 * The size of our lppaca is 1kB because of the way we align 523 * it for the guest to avoid crossing a 4kB boundary. We only 524 * use 640 bytes of the structure though, so we should accept 525 * clients that set a size of 640. 526 */ 527 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 528 if (len < sizeof(struct lppaca)) 529 break; 530 vpap = &tvcpu->arch.vpa; 531 err = 0; 532 break; 533 534 case H_VPA_REG_DTL: /* register DTL */ 535 if (len < sizeof(struct dtl_entry)) 536 break; 537 len -= len % sizeof(struct dtl_entry); 538 539 /* Check that they have previously registered a VPA */ 540 err = H_RESOURCE; 541 if (!vpa_is_registered(&tvcpu->arch.vpa)) 542 break; 543 544 vpap = &tvcpu->arch.dtl; 545 err = 0; 546 break; 547 548 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 549 /* Check that they have previously registered a VPA */ 550 err = H_RESOURCE; 551 if (!vpa_is_registered(&tvcpu->arch.vpa)) 552 break; 553 554 vpap = &tvcpu->arch.slb_shadow; 555 err = 0; 556 break; 557 558 case H_VPA_DEREG_VPA: /* deregister VPA */ 559 /* Check they don't still have a DTL or SLB buf registered */ 560 err = H_RESOURCE; 561 if (vpa_is_registered(&tvcpu->arch.dtl) || 562 vpa_is_registered(&tvcpu->arch.slb_shadow)) 563 break; 564 565 vpap = &tvcpu->arch.vpa; 566 err = 0; 567 break; 568 569 case H_VPA_DEREG_DTL: /* deregister DTL */ 570 vpap = &tvcpu->arch.dtl; 571 err = 0; 572 break; 573 574 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 575 vpap = &tvcpu->arch.slb_shadow; 576 err = 0; 577 break; 578 } 579 580 if (vpap) { 581 vpap->next_gpa = vpa; 582 vpap->len = len; 583 vpap->update_pending = 1; 584 } 585 586 spin_unlock(&tvcpu->arch.vpa_update_lock); 587 588 return err; 589 } 590 591 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 592 { 593 struct kvm *kvm = vcpu->kvm; 594 void *va; 595 unsigned long nb; 596 unsigned long gpa; 597 598 /* 599 * We need to pin the page pointed to by vpap->next_gpa, 600 * but we can't call kvmppc_pin_guest_page under the lock 601 * as it does get_user_pages() and down_read(). So we 602 * have to drop the lock, pin the page, then get the lock 603 * again and check that a new area didn't get registered 604 * in the meantime. 605 */ 606 for (;;) { 607 gpa = vpap->next_gpa; 608 spin_unlock(&vcpu->arch.vpa_update_lock); 609 va = NULL; 610 nb = 0; 611 if (gpa) 612 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 613 spin_lock(&vcpu->arch.vpa_update_lock); 614 if (gpa == vpap->next_gpa) 615 break; 616 /* sigh... unpin that one and try again */ 617 if (va) 618 kvmppc_unpin_guest_page(kvm, va, gpa, false); 619 } 620 621 vpap->update_pending = 0; 622 if (va && nb < vpap->len) { 623 /* 624 * If it's now too short, it must be that userspace 625 * has changed the mappings underlying guest memory, 626 * so unregister the region. 627 */ 628 kvmppc_unpin_guest_page(kvm, va, gpa, false); 629 va = NULL; 630 } 631 if (vpap->pinned_addr) 632 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 633 vpap->dirty); 634 vpap->gpa = gpa; 635 vpap->pinned_addr = va; 636 vpap->dirty = false; 637 if (va) 638 vpap->pinned_end = va + vpap->len; 639 } 640 641 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 642 { 643 if (!(vcpu->arch.vpa.update_pending || 644 vcpu->arch.slb_shadow.update_pending || 645 vcpu->arch.dtl.update_pending)) 646 return; 647 648 spin_lock(&vcpu->arch.vpa_update_lock); 649 if (vcpu->arch.vpa.update_pending) { 650 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 651 if (vcpu->arch.vpa.pinned_addr) 652 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 653 } 654 if (vcpu->arch.dtl.update_pending) { 655 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 656 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 657 vcpu->arch.dtl_index = 0; 658 } 659 if (vcpu->arch.slb_shadow.update_pending) 660 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 661 spin_unlock(&vcpu->arch.vpa_update_lock); 662 } 663 664 /* 665 * Return the accumulated stolen time for the vcore up until `now'. 666 * The caller should hold the vcore lock. 667 */ 668 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 669 { 670 u64 p; 671 unsigned long flags; 672 673 spin_lock_irqsave(&vc->stoltb_lock, flags); 674 p = vc->stolen_tb; 675 if (vc->vcore_state != VCORE_INACTIVE && 676 vc->preempt_tb != TB_NIL) 677 p += now - vc->preempt_tb; 678 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 679 return p; 680 } 681 682 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 683 struct kvmppc_vcore *vc) 684 { 685 struct dtl_entry *dt; 686 struct lppaca *vpa; 687 unsigned long stolen; 688 unsigned long core_stolen; 689 u64 now; 690 unsigned long flags; 691 692 dt = vcpu->arch.dtl_ptr; 693 vpa = vcpu->arch.vpa.pinned_addr; 694 now = mftb(); 695 core_stolen = vcore_stolen_time(vc, now); 696 stolen = core_stolen - vcpu->arch.stolen_logged; 697 vcpu->arch.stolen_logged = core_stolen; 698 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 699 stolen += vcpu->arch.busy_stolen; 700 vcpu->arch.busy_stolen = 0; 701 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 702 if (!dt || !vpa) 703 return; 704 memset(dt, 0, sizeof(struct dtl_entry)); 705 dt->dispatch_reason = 7; 706 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 707 dt->timebase = cpu_to_be64(now + vc->tb_offset); 708 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 709 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 710 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 711 ++dt; 712 if (dt == vcpu->arch.dtl.pinned_end) 713 dt = vcpu->arch.dtl.pinned_addr; 714 vcpu->arch.dtl_ptr = dt; 715 /* order writing *dt vs. writing vpa->dtl_idx */ 716 smp_wmb(); 717 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 718 vcpu->arch.dtl.dirty = true; 719 } 720 721 /* See if there is a doorbell interrupt pending for a vcpu */ 722 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 723 { 724 int thr; 725 struct kvmppc_vcore *vc; 726 727 if (vcpu->arch.doorbell_request) 728 return true; 729 /* 730 * Ensure that the read of vcore->dpdes comes after the read 731 * of vcpu->doorbell_request. This barrier matches the 732 * smp_wmb() in kvmppc_guest_entry_inject(). 733 */ 734 smp_rmb(); 735 vc = vcpu->arch.vcore; 736 thr = vcpu->vcpu_id - vc->first_vcpuid; 737 return !!(vc->dpdes & (1 << thr)); 738 } 739 740 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 741 { 742 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 743 return true; 744 if ((!vcpu->arch.vcore->arch_compat) && 745 cpu_has_feature(CPU_FTR_ARCH_207S)) 746 return true; 747 return false; 748 } 749 750 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 751 unsigned long resource, unsigned long value1, 752 unsigned long value2) 753 { 754 switch (resource) { 755 case H_SET_MODE_RESOURCE_SET_CIABR: 756 if (!kvmppc_power8_compatible(vcpu)) 757 return H_P2; 758 if (value2) 759 return H_P4; 760 if (mflags) 761 return H_UNSUPPORTED_FLAG_START; 762 /* Guests can't breakpoint the hypervisor */ 763 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 764 return H_P3; 765 vcpu->arch.ciabr = value1; 766 return H_SUCCESS; 767 case H_SET_MODE_RESOURCE_SET_DAWR: 768 if (!kvmppc_power8_compatible(vcpu)) 769 return H_P2; 770 if (!ppc_breakpoint_available()) 771 return H_P2; 772 if (mflags) 773 return H_UNSUPPORTED_FLAG_START; 774 if (value2 & DABRX_HYP) 775 return H_P4; 776 vcpu->arch.dawr = value1; 777 vcpu->arch.dawrx = value2; 778 return H_SUCCESS; 779 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 780 /* KVM does not support mflags=2 (AIL=2) */ 781 if (mflags != 0 && mflags != 3) 782 return H_UNSUPPORTED_FLAG_START; 783 return H_TOO_HARD; 784 default: 785 return H_TOO_HARD; 786 } 787 } 788 789 /* Copy guest memory in place - must reside within a single memslot */ 790 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 791 unsigned long len) 792 { 793 struct kvm_memory_slot *to_memslot = NULL; 794 struct kvm_memory_slot *from_memslot = NULL; 795 unsigned long to_addr, from_addr; 796 int r; 797 798 /* Get HPA for from address */ 799 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 800 if (!from_memslot) 801 return -EFAULT; 802 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 803 << PAGE_SHIFT)) 804 return -EINVAL; 805 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 806 if (kvm_is_error_hva(from_addr)) 807 return -EFAULT; 808 from_addr |= (from & (PAGE_SIZE - 1)); 809 810 /* Get HPA for to address */ 811 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 812 if (!to_memslot) 813 return -EFAULT; 814 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 815 << PAGE_SHIFT)) 816 return -EINVAL; 817 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 818 if (kvm_is_error_hva(to_addr)) 819 return -EFAULT; 820 to_addr |= (to & (PAGE_SIZE - 1)); 821 822 /* Perform copy */ 823 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 824 len); 825 if (r) 826 return -EFAULT; 827 mark_page_dirty(kvm, to >> PAGE_SHIFT); 828 return 0; 829 } 830 831 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 832 unsigned long dest, unsigned long src) 833 { 834 u64 pg_sz = SZ_4K; /* 4K page size */ 835 u64 pg_mask = SZ_4K - 1; 836 int ret; 837 838 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 839 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 840 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 841 return H_PARAMETER; 842 843 /* dest (and src if copy_page flag set) must be page aligned */ 844 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 845 return H_PARAMETER; 846 847 /* zero and/or copy the page as determined by the flags */ 848 if (flags & H_COPY_PAGE) { 849 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 850 if (ret < 0) 851 return H_PARAMETER; 852 } else if (flags & H_ZERO_PAGE) { 853 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 854 if (ret < 0) 855 return H_PARAMETER; 856 } 857 858 /* We can ignore the remaining flags */ 859 860 return H_SUCCESS; 861 } 862 863 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 864 { 865 struct kvmppc_vcore *vcore = target->arch.vcore; 866 867 /* 868 * We expect to have been called by the real mode handler 869 * (kvmppc_rm_h_confer()) which would have directly returned 870 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 871 * have useful work to do and should not confer) so we don't 872 * recheck that here. 873 */ 874 875 spin_lock(&vcore->lock); 876 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 877 vcore->vcore_state != VCORE_INACTIVE && 878 vcore->runner) 879 target = vcore->runner; 880 spin_unlock(&vcore->lock); 881 882 return kvm_vcpu_yield_to(target); 883 } 884 885 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 886 { 887 int yield_count = 0; 888 struct lppaca *lppaca; 889 890 spin_lock(&vcpu->arch.vpa_update_lock); 891 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 892 if (lppaca) 893 yield_count = be32_to_cpu(lppaca->yield_count); 894 spin_unlock(&vcpu->arch.vpa_update_lock); 895 return yield_count; 896 } 897 898 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 899 { 900 unsigned long req = kvmppc_get_gpr(vcpu, 3); 901 unsigned long target, ret = H_SUCCESS; 902 int yield_count; 903 struct kvm_vcpu *tvcpu; 904 int idx, rc; 905 906 if (req <= MAX_HCALL_OPCODE && 907 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 908 return RESUME_HOST; 909 910 switch (req) { 911 case H_CEDE: 912 break; 913 case H_PROD: 914 target = kvmppc_get_gpr(vcpu, 4); 915 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 916 if (!tvcpu) { 917 ret = H_PARAMETER; 918 break; 919 } 920 tvcpu->arch.prodded = 1; 921 smp_mb(); 922 if (tvcpu->arch.ceded) 923 kvmppc_fast_vcpu_kick_hv(tvcpu); 924 break; 925 case H_CONFER: 926 target = kvmppc_get_gpr(vcpu, 4); 927 if (target == -1) 928 break; 929 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 930 if (!tvcpu) { 931 ret = H_PARAMETER; 932 break; 933 } 934 yield_count = kvmppc_get_gpr(vcpu, 5); 935 if (kvmppc_get_yield_count(tvcpu) != yield_count) 936 break; 937 kvm_arch_vcpu_yield_to(tvcpu); 938 break; 939 case H_REGISTER_VPA: 940 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 941 kvmppc_get_gpr(vcpu, 5), 942 kvmppc_get_gpr(vcpu, 6)); 943 break; 944 case H_RTAS: 945 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 946 return RESUME_HOST; 947 948 idx = srcu_read_lock(&vcpu->kvm->srcu); 949 rc = kvmppc_rtas_hcall(vcpu); 950 srcu_read_unlock(&vcpu->kvm->srcu, idx); 951 952 if (rc == -ENOENT) 953 return RESUME_HOST; 954 else if (rc == 0) 955 break; 956 957 /* Send the error out to userspace via KVM_RUN */ 958 return rc; 959 case H_LOGICAL_CI_LOAD: 960 ret = kvmppc_h_logical_ci_load(vcpu); 961 if (ret == H_TOO_HARD) 962 return RESUME_HOST; 963 break; 964 case H_LOGICAL_CI_STORE: 965 ret = kvmppc_h_logical_ci_store(vcpu); 966 if (ret == H_TOO_HARD) 967 return RESUME_HOST; 968 break; 969 case H_SET_MODE: 970 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 971 kvmppc_get_gpr(vcpu, 5), 972 kvmppc_get_gpr(vcpu, 6), 973 kvmppc_get_gpr(vcpu, 7)); 974 if (ret == H_TOO_HARD) 975 return RESUME_HOST; 976 break; 977 case H_XIRR: 978 case H_CPPR: 979 case H_EOI: 980 case H_IPI: 981 case H_IPOLL: 982 case H_XIRR_X: 983 if (kvmppc_xics_enabled(vcpu)) { 984 if (xics_on_xive()) { 985 ret = H_NOT_AVAILABLE; 986 return RESUME_GUEST; 987 } 988 ret = kvmppc_xics_hcall(vcpu, req); 989 break; 990 } 991 return RESUME_HOST; 992 case H_SET_DABR: 993 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 994 break; 995 case H_SET_XDABR: 996 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 997 kvmppc_get_gpr(vcpu, 5)); 998 break; 999 #ifdef CONFIG_SPAPR_TCE_IOMMU 1000 case H_GET_TCE: 1001 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1002 kvmppc_get_gpr(vcpu, 5)); 1003 if (ret == H_TOO_HARD) 1004 return RESUME_HOST; 1005 break; 1006 case H_PUT_TCE: 1007 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1008 kvmppc_get_gpr(vcpu, 5), 1009 kvmppc_get_gpr(vcpu, 6)); 1010 if (ret == H_TOO_HARD) 1011 return RESUME_HOST; 1012 break; 1013 case H_PUT_TCE_INDIRECT: 1014 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1015 kvmppc_get_gpr(vcpu, 5), 1016 kvmppc_get_gpr(vcpu, 6), 1017 kvmppc_get_gpr(vcpu, 7)); 1018 if (ret == H_TOO_HARD) 1019 return RESUME_HOST; 1020 break; 1021 case H_STUFF_TCE: 1022 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1023 kvmppc_get_gpr(vcpu, 5), 1024 kvmppc_get_gpr(vcpu, 6), 1025 kvmppc_get_gpr(vcpu, 7)); 1026 if (ret == H_TOO_HARD) 1027 return RESUME_HOST; 1028 break; 1029 #endif 1030 case H_RANDOM: 1031 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1032 ret = H_HARDWARE; 1033 break; 1034 1035 case H_SET_PARTITION_TABLE: 1036 ret = H_FUNCTION; 1037 if (nesting_enabled(vcpu->kvm)) 1038 ret = kvmhv_set_partition_table(vcpu); 1039 break; 1040 case H_ENTER_NESTED: 1041 ret = H_FUNCTION; 1042 if (!nesting_enabled(vcpu->kvm)) 1043 break; 1044 ret = kvmhv_enter_nested_guest(vcpu); 1045 if (ret == H_INTERRUPT) { 1046 kvmppc_set_gpr(vcpu, 3, 0); 1047 vcpu->arch.hcall_needed = 0; 1048 return -EINTR; 1049 } else if (ret == H_TOO_HARD) { 1050 kvmppc_set_gpr(vcpu, 3, 0); 1051 vcpu->arch.hcall_needed = 0; 1052 return RESUME_HOST; 1053 } 1054 break; 1055 case H_TLB_INVALIDATE: 1056 ret = H_FUNCTION; 1057 if (nesting_enabled(vcpu->kvm)) 1058 ret = kvmhv_do_nested_tlbie(vcpu); 1059 break; 1060 case H_COPY_TOFROM_GUEST: 1061 ret = H_FUNCTION; 1062 if (nesting_enabled(vcpu->kvm)) 1063 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1064 break; 1065 case H_PAGE_INIT: 1066 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1067 kvmppc_get_gpr(vcpu, 5), 1068 kvmppc_get_gpr(vcpu, 6)); 1069 break; 1070 case H_SVM_PAGE_IN: 1071 ret = H_UNSUPPORTED; 1072 if (kvmppc_get_srr1(vcpu) & MSR_S) 1073 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1074 kvmppc_get_gpr(vcpu, 4), 1075 kvmppc_get_gpr(vcpu, 5), 1076 kvmppc_get_gpr(vcpu, 6)); 1077 break; 1078 case H_SVM_PAGE_OUT: 1079 ret = H_UNSUPPORTED; 1080 if (kvmppc_get_srr1(vcpu) & MSR_S) 1081 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1082 kvmppc_get_gpr(vcpu, 4), 1083 kvmppc_get_gpr(vcpu, 5), 1084 kvmppc_get_gpr(vcpu, 6)); 1085 break; 1086 case H_SVM_INIT_START: 1087 ret = H_UNSUPPORTED; 1088 if (kvmppc_get_srr1(vcpu) & MSR_S) 1089 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1090 break; 1091 case H_SVM_INIT_DONE: 1092 ret = H_UNSUPPORTED; 1093 if (kvmppc_get_srr1(vcpu) & MSR_S) 1094 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1095 break; 1096 case H_SVM_INIT_ABORT: 1097 /* 1098 * Even if that call is made by the Ultravisor, the SSR1 value 1099 * is the guest context one, with the secure bit clear as it has 1100 * not yet been secured. So we can't check it here. 1101 * Instead the kvm->arch.secure_guest flag is checked inside 1102 * kvmppc_h_svm_init_abort(). 1103 */ 1104 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1105 break; 1106 1107 default: 1108 return RESUME_HOST; 1109 } 1110 kvmppc_set_gpr(vcpu, 3, ret); 1111 vcpu->arch.hcall_needed = 0; 1112 return RESUME_GUEST; 1113 } 1114 1115 /* 1116 * Handle H_CEDE in the nested virtualization case where we haven't 1117 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1118 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1119 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1120 */ 1121 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1122 { 1123 vcpu->arch.shregs.msr |= MSR_EE; 1124 vcpu->arch.ceded = 1; 1125 smp_mb(); 1126 if (vcpu->arch.prodded) { 1127 vcpu->arch.prodded = 0; 1128 smp_mb(); 1129 vcpu->arch.ceded = 0; 1130 } 1131 } 1132 1133 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1134 { 1135 switch (cmd) { 1136 case H_CEDE: 1137 case H_PROD: 1138 case H_CONFER: 1139 case H_REGISTER_VPA: 1140 case H_SET_MODE: 1141 case H_LOGICAL_CI_LOAD: 1142 case H_LOGICAL_CI_STORE: 1143 #ifdef CONFIG_KVM_XICS 1144 case H_XIRR: 1145 case H_CPPR: 1146 case H_EOI: 1147 case H_IPI: 1148 case H_IPOLL: 1149 case H_XIRR_X: 1150 #endif 1151 case H_PAGE_INIT: 1152 return 1; 1153 } 1154 1155 /* See if it's in the real-mode table */ 1156 return kvmppc_hcall_impl_hv_realmode(cmd); 1157 } 1158 1159 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1160 { 1161 u32 last_inst; 1162 1163 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1164 EMULATE_DONE) { 1165 /* 1166 * Fetch failed, so return to guest and 1167 * try executing it again. 1168 */ 1169 return RESUME_GUEST; 1170 } 1171 1172 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1173 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1174 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1175 return RESUME_HOST; 1176 } else { 1177 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1178 return RESUME_GUEST; 1179 } 1180 } 1181 1182 static void do_nothing(void *x) 1183 { 1184 } 1185 1186 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1187 { 1188 int thr, cpu, pcpu, nthreads; 1189 struct kvm_vcpu *v; 1190 unsigned long dpdes; 1191 1192 nthreads = vcpu->kvm->arch.emul_smt_mode; 1193 dpdes = 0; 1194 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1195 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1196 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1197 if (!v) 1198 continue; 1199 /* 1200 * If the vcpu is currently running on a physical cpu thread, 1201 * interrupt it in order to pull it out of the guest briefly, 1202 * which will update its vcore->dpdes value. 1203 */ 1204 pcpu = READ_ONCE(v->cpu); 1205 if (pcpu >= 0) 1206 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1207 if (kvmppc_doorbell_pending(v)) 1208 dpdes |= 1 << thr; 1209 } 1210 return dpdes; 1211 } 1212 1213 /* 1214 * On POWER9, emulate doorbell-related instructions in order to 1215 * give the guest the illusion of running on a multi-threaded core. 1216 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1217 * and mfspr DPDES. 1218 */ 1219 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1220 { 1221 u32 inst, rb, thr; 1222 unsigned long arg; 1223 struct kvm *kvm = vcpu->kvm; 1224 struct kvm_vcpu *tvcpu; 1225 1226 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1227 return RESUME_GUEST; 1228 if (get_op(inst) != 31) 1229 return EMULATE_FAIL; 1230 rb = get_rb(inst); 1231 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1232 switch (get_xop(inst)) { 1233 case OP_31_XOP_MSGSNDP: 1234 arg = kvmppc_get_gpr(vcpu, rb); 1235 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1236 break; 1237 arg &= 0x3f; 1238 if (arg >= kvm->arch.emul_smt_mode) 1239 break; 1240 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1241 if (!tvcpu) 1242 break; 1243 if (!tvcpu->arch.doorbell_request) { 1244 tvcpu->arch.doorbell_request = 1; 1245 kvmppc_fast_vcpu_kick_hv(tvcpu); 1246 } 1247 break; 1248 case OP_31_XOP_MSGCLRP: 1249 arg = kvmppc_get_gpr(vcpu, rb); 1250 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1251 break; 1252 vcpu->arch.vcore->dpdes = 0; 1253 vcpu->arch.doorbell_request = 0; 1254 break; 1255 case OP_31_XOP_MFSPR: 1256 switch (get_sprn(inst)) { 1257 case SPRN_TIR: 1258 arg = thr; 1259 break; 1260 case SPRN_DPDES: 1261 arg = kvmppc_read_dpdes(vcpu); 1262 break; 1263 default: 1264 return EMULATE_FAIL; 1265 } 1266 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1267 break; 1268 default: 1269 return EMULATE_FAIL; 1270 } 1271 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1272 return RESUME_GUEST; 1273 } 1274 1275 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1276 struct task_struct *tsk) 1277 { 1278 struct kvm_run *run = vcpu->run; 1279 int r = RESUME_HOST; 1280 1281 vcpu->stat.sum_exits++; 1282 1283 /* 1284 * This can happen if an interrupt occurs in the last stages 1285 * of guest entry or the first stages of guest exit (i.e. after 1286 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1287 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1288 * That can happen due to a bug, or due to a machine check 1289 * occurring at just the wrong time. 1290 */ 1291 if (vcpu->arch.shregs.msr & MSR_HV) { 1292 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1293 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1294 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1295 vcpu->arch.shregs.msr); 1296 kvmppc_dump_regs(vcpu); 1297 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1298 run->hw.hardware_exit_reason = vcpu->arch.trap; 1299 return RESUME_HOST; 1300 } 1301 run->exit_reason = KVM_EXIT_UNKNOWN; 1302 run->ready_for_interrupt_injection = 1; 1303 switch (vcpu->arch.trap) { 1304 /* We're good on these - the host merely wanted to get our attention */ 1305 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1306 vcpu->stat.dec_exits++; 1307 r = RESUME_GUEST; 1308 break; 1309 case BOOK3S_INTERRUPT_EXTERNAL: 1310 case BOOK3S_INTERRUPT_H_DOORBELL: 1311 case BOOK3S_INTERRUPT_H_VIRT: 1312 vcpu->stat.ext_intr_exits++; 1313 r = RESUME_GUEST; 1314 break; 1315 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1316 case BOOK3S_INTERRUPT_HMI: 1317 case BOOK3S_INTERRUPT_PERFMON: 1318 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1319 r = RESUME_GUEST; 1320 break; 1321 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1322 /* Print the MCE event to host console. */ 1323 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1324 1325 /* 1326 * If the guest can do FWNMI, exit to userspace so it can 1327 * deliver a FWNMI to the guest. 1328 * Otherwise we synthesize a machine check for the guest 1329 * so that it knows that the machine check occurred. 1330 */ 1331 if (!vcpu->kvm->arch.fwnmi_enabled) { 1332 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1333 kvmppc_core_queue_machine_check(vcpu, flags); 1334 r = RESUME_GUEST; 1335 break; 1336 } 1337 1338 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1339 run->exit_reason = KVM_EXIT_NMI; 1340 run->hw.hardware_exit_reason = vcpu->arch.trap; 1341 /* Clear out the old NMI status from run->flags */ 1342 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1343 /* Now set the NMI status */ 1344 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1345 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1346 else 1347 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1348 1349 r = RESUME_HOST; 1350 break; 1351 case BOOK3S_INTERRUPT_PROGRAM: 1352 { 1353 ulong flags; 1354 /* 1355 * Normally program interrupts are delivered directly 1356 * to the guest by the hardware, but we can get here 1357 * as a result of a hypervisor emulation interrupt 1358 * (e40) getting turned into a 700 by BML RTAS. 1359 */ 1360 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1361 kvmppc_core_queue_program(vcpu, flags); 1362 r = RESUME_GUEST; 1363 break; 1364 } 1365 case BOOK3S_INTERRUPT_SYSCALL: 1366 { 1367 /* hcall - punt to userspace */ 1368 int i; 1369 1370 /* hypercall with MSR_PR has already been handled in rmode, 1371 * and never reaches here. 1372 */ 1373 1374 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1375 for (i = 0; i < 9; ++i) 1376 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1377 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1378 vcpu->arch.hcall_needed = 1; 1379 r = RESUME_HOST; 1380 break; 1381 } 1382 /* 1383 * We get these next two if the guest accesses a page which it thinks 1384 * it has mapped but which is not actually present, either because 1385 * it is for an emulated I/O device or because the corresonding 1386 * host page has been paged out. Any other HDSI/HISI interrupts 1387 * have been handled already. 1388 */ 1389 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1390 r = RESUME_PAGE_FAULT; 1391 break; 1392 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1393 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1394 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1395 DSISR_SRR1_MATCH_64S; 1396 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1397 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1398 r = RESUME_PAGE_FAULT; 1399 break; 1400 /* 1401 * This occurs if the guest executes an illegal instruction. 1402 * If the guest debug is disabled, generate a program interrupt 1403 * to the guest. If guest debug is enabled, we need to check 1404 * whether the instruction is a software breakpoint instruction. 1405 * Accordingly return to Guest or Host. 1406 */ 1407 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1408 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1409 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1410 swab32(vcpu->arch.emul_inst) : 1411 vcpu->arch.emul_inst; 1412 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1413 r = kvmppc_emulate_debug_inst(vcpu); 1414 } else { 1415 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1416 r = RESUME_GUEST; 1417 } 1418 break; 1419 /* 1420 * This occurs if the guest (kernel or userspace), does something that 1421 * is prohibited by HFSCR. 1422 * On POWER9, this could be a doorbell instruction that we need 1423 * to emulate. 1424 * Otherwise, we just generate a program interrupt to the guest. 1425 */ 1426 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1427 r = EMULATE_FAIL; 1428 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1429 cpu_has_feature(CPU_FTR_ARCH_300)) 1430 r = kvmppc_emulate_doorbell_instr(vcpu); 1431 if (r == EMULATE_FAIL) { 1432 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1433 r = RESUME_GUEST; 1434 } 1435 break; 1436 1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1438 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1439 /* 1440 * This occurs for various TM-related instructions that 1441 * we need to emulate on POWER9 DD2.2. We have already 1442 * handled the cases where the guest was in real-suspend 1443 * mode and was transitioning to transactional state. 1444 */ 1445 r = kvmhv_p9_tm_emulation(vcpu); 1446 break; 1447 #endif 1448 1449 case BOOK3S_INTERRUPT_HV_RM_HARD: 1450 r = RESUME_PASSTHROUGH; 1451 break; 1452 default: 1453 kvmppc_dump_regs(vcpu); 1454 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1455 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1456 vcpu->arch.shregs.msr); 1457 run->hw.hardware_exit_reason = vcpu->arch.trap; 1458 r = RESUME_HOST; 1459 break; 1460 } 1461 1462 return r; 1463 } 1464 1465 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1466 { 1467 int r; 1468 int srcu_idx; 1469 1470 vcpu->stat.sum_exits++; 1471 1472 /* 1473 * This can happen if an interrupt occurs in the last stages 1474 * of guest entry or the first stages of guest exit (i.e. after 1475 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1476 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1477 * That can happen due to a bug, or due to a machine check 1478 * occurring at just the wrong time. 1479 */ 1480 if (vcpu->arch.shregs.msr & MSR_HV) { 1481 pr_emerg("KVM trap in HV mode while nested!\n"); 1482 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1483 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1484 vcpu->arch.shregs.msr); 1485 kvmppc_dump_regs(vcpu); 1486 return RESUME_HOST; 1487 } 1488 switch (vcpu->arch.trap) { 1489 /* We're good on these - the host merely wanted to get our attention */ 1490 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1491 vcpu->stat.dec_exits++; 1492 r = RESUME_GUEST; 1493 break; 1494 case BOOK3S_INTERRUPT_EXTERNAL: 1495 vcpu->stat.ext_intr_exits++; 1496 r = RESUME_HOST; 1497 break; 1498 case BOOK3S_INTERRUPT_H_DOORBELL: 1499 case BOOK3S_INTERRUPT_H_VIRT: 1500 vcpu->stat.ext_intr_exits++; 1501 r = RESUME_GUEST; 1502 break; 1503 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1504 case BOOK3S_INTERRUPT_HMI: 1505 case BOOK3S_INTERRUPT_PERFMON: 1506 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1507 r = RESUME_GUEST; 1508 break; 1509 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1510 /* Pass the machine check to the L1 guest */ 1511 r = RESUME_HOST; 1512 /* Print the MCE event to host console. */ 1513 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1514 break; 1515 /* 1516 * We get these next two if the guest accesses a page which it thinks 1517 * it has mapped but which is not actually present, either because 1518 * it is for an emulated I/O device or because the corresonding 1519 * host page has been paged out. 1520 */ 1521 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1522 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1523 r = kvmhv_nested_page_fault(vcpu); 1524 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1525 break; 1526 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1527 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1528 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1529 DSISR_SRR1_MATCH_64S; 1530 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1531 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1532 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1533 r = kvmhv_nested_page_fault(vcpu); 1534 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1535 break; 1536 1537 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1538 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1539 /* 1540 * This occurs for various TM-related instructions that 1541 * we need to emulate on POWER9 DD2.2. We have already 1542 * handled the cases where the guest was in real-suspend 1543 * mode and was transitioning to transactional state. 1544 */ 1545 r = kvmhv_p9_tm_emulation(vcpu); 1546 break; 1547 #endif 1548 1549 case BOOK3S_INTERRUPT_HV_RM_HARD: 1550 vcpu->arch.trap = 0; 1551 r = RESUME_GUEST; 1552 if (!xics_on_xive()) 1553 kvmppc_xics_rm_complete(vcpu, 0); 1554 break; 1555 default: 1556 r = RESUME_HOST; 1557 break; 1558 } 1559 1560 return r; 1561 } 1562 1563 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1564 struct kvm_sregs *sregs) 1565 { 1566 int i; 1567 1568 memset(sregs, 0, sizeof(struct kvm_sregs)); 1569 sregs->pvr = vcpu->arch.pvr; 1570 for (i = 0; i < vcpu->arch.slb_max; i++) { 1571 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1572 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1573 } 1574 1575 return 0; 1576 } 1577 1578 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1579 struct kvm_sregs *sregs) 1580 { 1581 int i, j; 1582 1583 /* Only accept the same PVR as the host's, since we can't spoof it */ 1584 if (sregs->pvr != vcpu->arch.pvr) 1585 return -EINVAL; 1586 1587 j = 0; 1588 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1589 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1590 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1591 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1592 ++j; 1593 } 1594 } 1595 vcpu->arch.slb_max = j; 1596 1597 return 0; 1598 } 1599 1600 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1601 bool preserve_top32) 1602 { 1603 struct kvm *kvm = vcpu->kvm; 1604 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1605 u64 mask; 1606 1607 spin_lock(&vc->lock); 1608 /* 1609 * If ILE (interrupt little-endian) has changed, update the 1610 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1611 */ 1612 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1613 struct kvm_vcpu *vcpu; 1614 int i; 1615 1616 kvm_for_each_vcpu(i, vcpu, kvm) { 1617 if (vcpu->arch.vcore != vc) 1618 continue; 1619 if (new_lpcr & LPCR_ILE) 1620 vcpu->arch.intr_msr |= MSR_LE; 1621 else 1622 vcpu->arch.intr_msr &= ~MSR_LE; 1623 } 1624 } 1625 1626 /* 1627 * Userspace can only modify DPFD (default prefetch depth), 1628 * ILE (interrupt little-endian) and TC (translation control). 1629 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1630 */ 1631 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1632 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1633 mask |= LPCR_AIL; 1634 /* 1635 * On POWER9, allow userspace to enable large decrementer for the 1636 * guest, whether or not the host has it enabled. 1637 */ 1638 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1639 mask |= LPCR_LD; 1640 1641 /* Broken 32-bit version of LPCR must not clear top bits */ 1642 if (preserve_top32) 1643 mask &= 0xFFFFFFFF; 1644 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1645 spin_unlock(&vc->lock); 1646 } 1647 1648 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1649 union kvmppc_one_reg *val) 1650 { 1651 int r = 0; 1652 long int i; 1653 1654 switch (id) { 1655 case KVM_REG_PPC_DEBUG_INST: 1656 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1657 break; 1658 case KVM_REG_PPC_HIOR: 1659 *val = get_reg_val(id, 0); 1660 break; 1661 case KVM_REG_PPC_DABR: 1662 *val = get_reg_val(id, vcpu->arch.dabr); 1663 break; 1664 case KVM_REG_PPC_DABRX: 1665 *val = get_reg_val(id, vcpu->arch.dabrx); 1666 break; 1667 case KVM_REG_PPC_DSCR: 1668 *val = get_reg_val(id, vcpu->arch.dscr); 1669 break; 1670 case KVM_REG_PPC_PURR: 1671 *val = get_reg_val(id, vcpu->arch.purr); 1672 break; 1673 case KVM_REG_PPC_SPURR: 1674 *val = get_reg_val(id, vcpu->arch.spurr); 1675 break; 1676 case KVM_REG_PPC_AMR: 1677 *val = get_reg_val(id, vcpu->arch.amr); 1678 break; 1679 case KVM_REG_PPC_UAMOR: 1680 *val = get_reg_val(id, vcpu->arch.uamor); 1681 break; 1682 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1683 i = id - KVM_REG_PPC_MMCR0; 1684 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1685 break; 1686 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1687 i = id - KVM_REG_PPC_PMC1; 1688 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1689 break; 1690 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1691 i = id - KVM_REG_PPC_SPMC1; 1692 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1693 break; 1694 case KVM_REG_PPC_SIAR: 1695 *val = get_reg_val(id, vcpu->arch.siar); 1696 break; 1697 case KVM_REG_PPC_SDAR: 1698 *val = get_reg_val(id, vcpu->arch.sdar); 1699 break; 1700 case KVM_REG_PPC_SIER: 1701 *val = get_reg_val(id, vcpu->arch.sier); 1702 break; 1703 case KVM_REG_PPC_IAMR: 1704 *val = get_reg_val(id, vcpu->arch.iamr); 1705 break; 1706 case KVM_REG_PPC_PSPB: 1707 *val = get_reg_val(id, vcpu->arch.pspb); 1708 break; 1709 case KVM_REG_PPC_DPDES: 1710 /* 1711 * On POWER9, where we are emulating msgsndp etc., 1712 * we return 1 bit for each vcpu, which can come from 1713 * either vcore->dpdes or doorbell_request. 1714 * On POWER8, doorbell_request is 0. 1715 */ 1716 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1717 vcpu->arch.doorbell_request); 1718 break; 1719 case KVM_REG_PPC_VTB: 1720 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1721 break; 1722 case KVM_REG_PPC_DAWR: 1723 *val = get_reg_val(id, vcpu->arch.dawr); 1724 break; 1725 case KVM_REG_PPC_DAWRX: 1726 *val = get_reg_val(id, vcpu->arch.dawrx); 1727 break; 1728 case KVM_REG_PPC_CIABR: 1729 *val = get_reg_val(id, vcpu->arch.ciabr); 1730 break; 1731 case KVM_REG_PPC_CSIGR: 1732 *val = get_reg_val(id, vcpu->arch.csigr); 1733 break; 1734 case KVM_REG_PPC_TACR: 1735 *val = get_reg_val(id, vcpu->arch.tacr); 1736 break; 1737 case KVM_REG_PPC_TCSCR: 1738 *val = get_reg_val(id, vcpu->arch.tcscr); 1739 break; 1740 case KVM_REG_PPC_PID: 1741 *val = get_reg_val(id, vcpu->arch.pid); 1742 break; 1743 case KVM_REG_PPC_ACOP: 1744 *val = get_reg_val(id, vcpu->arch.acop); 1745 break; 1746 case KVM_REG_PPC_WORT: 1747 *val = get_reg_val(id, vcpu->arch.wort); 1748 break; 1749 case KVM_REG_PPC_TIDR: 1750 *val = get_reg_val(id, vcpu->arch.tid); 1751 break; 1752 case KVM_REG_PPC_PSSCR: 1753 *val = get_reg_val(id, vcpu->arch.psscr); 1754 break; 1755 case KVM_REG_PPC_VPA_ADDR: 1756 spin_lock(&vcpu->arch.vpa_update_lock); 1757 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1758 spin_unlock(&vcpu->arch.vpa_update_lock); 1759 break; 1760 case KVM_REG_PPC_VPA_SLB: 1761 spin_lock(&vcpu->arch.vpa_update_lock); 1762 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1763 val->vpaval.length = vcpu->arch.slb_shadow.len; 1764 spin_unlock(&vcpu->arch.vpa_update_lock); 1765 break; 1766 case KVM_REG_PPC_VPA_DTL: 1767 spin_lock(&vcpu->arch.vpa_update_lock); 1768 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1769 val->vpaval.length = vcpu->arch.dtl.len; 1770 spin_unlock(&vcpu->arch.vpa_update_lock); 1771 break; 1772 case KVM_REG_PPC_TB_OFFSET: 1773 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1774 break; 1775 case KVM_REG_PPC_LPCR: 1776 case KVM_REG_PPC_LPCR_64: 1777 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1778 break; 1779 case KVM_REG_PPC_PPR: 1780 *val = get_reg_val(id, vcpu->arch.ppr); 1781 break; 1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1783 case KVM_REG_PPC_TFHAR: 1784 *val = get_reg_val(id, vcpu->arch.tfhar); 1785 break; 1786 case KVM_REG_PPC_TFIAR: 1787 *val = get_reg_val(id, vcpu->arch.tfiar); 1788 break; 1789 case KVM_REG_PPC_TEXASR: 1790 *val = get_reg_val(id, vcpu->arch.texasr); 1791 break; 1792 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1793 i = id - KVM_REG_PPC_TM_GPR0; 1794 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1795 break; 1796 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1797 { 1798 int j; 1799 i = id - KVM_REG_PPC_TM_VSR0; 1800 if (i < 32) 1801 for (j = 0; j < TS_FPRWIDTH; j++) 1802 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1803 else { 1804 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1805 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1806 else 1807 r = -ENXIO; 1808 } 1809 break; 1810 } 1811 case KVM_REG_PPC_TM_CR: 1812 *val = get_reg_val(id, vcpu->arch.cr_tm); 1813 break; 1814 case KVM_REG_PPC_TM_XER: 1815 *val = get_reg_val(id, vcpu->arch.xer_tm); 1816 break; 1817 case KVM_REG_PPC_TM_LR: 1818 *val = get_reg_val(id, vcpu->arch.lr_tm); 1819 break; 1820 case KVM_REG_PPC_TM_CTR: 1821 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1822 break; 1823 case KVM_REG_PPC_TM_FPSCR: 1824 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1825 break; 1826 case KVM_REG_PPC_TM_AMR: 1827 *val = get_reg_val(id, vcpu->arch.amr_tm); 1828 break; 1829 case KVM_REG_PPC_TM_PPR: 1830 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1831 break; 1832 case KVM_REG_PPC_TM_VRSAVE: 1833 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1834 break; 1835 case KVM_REG_PPC_TM_VSCR: 1836 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1837 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1838 else 1839 r = -ENXIO; 1840 break; 1841 case KVM_REG_PPC_TM_DSCR: 1842 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1843 break; 1844 case KVM_REG_PPC_TM_TAR: 1845 *val = get_reg_val(id, vcpu->arch.tar_tm); 1846 break; 1847 #endif 1848 case KVM_REG_PPC_ARCH_COMPAT: 1849 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1850 break; 1851 case KVM_REG_PPC_DEC_EXPIRY: 1852 *val = get_reg_val(id, vcpu->arch.dec_expires + 1853 vcpu->arch.vcore->tb_offset); 1854 break; 1855 case KVM_REG_PPC_ONLINE: 1856 *val = get_reg_val(id, vcpu->arch.online); 1857 break; 1858 case KVM_REG_PPC_PTCR: 1859 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1860 break; 1861 default: 1862 r = -EINVAL; 1863 break; 1864 } 1865 1866 return r; 1867 } 1868 1869 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1870 union kvmppc_one_reg *val) 1871 { 1872 int r = 0; 1873 long int i; 1874 unsigned long addr, len; 1875 1876 switch (id) { 1877 case KVM_REG_PPC_HIOR: 1878 /* Only allow this to be set to zero */ 1879 if (set_reg_val(id, *val)) 1880 r = -EINVAL; 1881 break; 1882 case KVM_REG_PPC_DABR: 1883 vcpu->arch.dabr = set_reg_val(id, *val); 1884 break; 1885 case KVM_REG_PPC_DABRX: 1886 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1887 break; 1888 case KVM_REG_PPC_DSCR: 1889 vcpu->arch.dscr = set_reg_val(id, *val); 1890 break; 1891 case KVM_REG_PPC_PURR: 1892 vcpu->arch.purr = set_reg_val(id, *val); 1893 break; 1894 case KVM_REG_PPC_SPURR: 1895 vcpu->arch.spurr = set_reg_val(id, *val); 1896 break; 1897 case KVM_REG_PPC_AMR: 1898 vcpu->arch.amr = set_reg_val(id, *val); 1899 break; 1900 case KVM_REG_PPC_UAMOR: 1901 vcpu->arch.uamor = set_reg_val(id, *val); 1902 break; 1903 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1904 i = id - KVM_REG_PPC_MMCR0; 1905 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1906 break; 1907 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1908 i = id - KVM_REG_PPC_PMC1; 1909 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1910 break; 1911 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1912 i = id - KVM_REG_PPC_SPMC1; 1913 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1914 break; 1915 case KVM_REG_PPC_SIAR: 1916 vcpu->arch.siar = set_reg_val(id, *val); 1917 break; 1918 case KVM_REG_PPC_SDAR: 1919 vcpu->arch.sdar = set_reg_val(id, *val); 1920 break; 1921 case KVM_REG_PPC_SIER: 1922 vcpu->arch.sier = set_reg_val(id, *val); 1923 break; 1924 case KVM_REG_PPC_IAMR: 1925 vcpu->arch.iamr = set_reg_val(id, *val); 1926 break; 1927 case KVM_REG_PPC_PSPB: 1928 vcpu->arch.pspb = set_reg_val(id, *val); 1929 break; 1930 case KVM_REG_PPC_DPDES: 1931 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1932 break; 1933 case KVM_REG_PPC_VTB: 1934 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1935 break; 1936 case KVM_REG_PPC_DAWR: 1937 vcpu->arch.dawr = set_reg_val(id, *val); 1938 break; 1939 case KVM_REG_PPC_DAWRX: 1940 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1941 break; 1942 case KVM_REG_PPC_CIABR: 1943 vcpu->arch.ciabr = set_reg_val(id, *val); 1944 /* Don't allow setting breakpoints in hypervisor code */ 1945 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1946 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1947 break; 1948 case KVM_REG_PPC_CSIGR: 1949 vcpu->arch.csigr = set_reg_val(id, *val); 1950 break; 1951 case KVM_REG_PPC_TACR: 1952 vcpu->arch.tacr = set_reg_val(id, *val); 1953 break; 1954 case KVM_REG_PPC_TCSCR: 1955 vcpu->arch.tcscr = set_reg_val(id, *val); 1956 break; 1957 case KVM_REG_PPC_PID: 1958 vcpu->arch.pid = set_reg_val(id, *val); 1959 break; 1960 case KVM_REG_PPC_ACOP: 1961 vcpu->arch.acop = set_reg_val(id, *val); 1962 break; 1963 case KVM_REG_PPC_WORT: 1964 vcpu->arch.wort = set_reg_val(id, *val); 1965 break; 1966 case KVM_REG_PPC_TIDR: 1967 vcpu->arch.tid = set_reg_val(id, *val); 1968 break; 1969 case KVM_REG_PPC_PSSCR: 1970 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1971 break; 1972 case KVM_REG_PPC_VPA_ADDR: 1973 addr = set_reg_val(id, *val); 1974 r = -EINVAL; 1975 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1976 vcpu->arch.dtl.next_gpa)) 1977 break; 1978 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1979 break; 1980 case KVM_REG_PPC_VPA_SLB: 1981 addr = val->vpaval.addr; 1982 len = val->vpaval.length; 1983 r = -EINVAL; 1984 if (addr && !vcpu->arch.vpa.next_gpa) 1985 break; 1986 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1987 break; 1988 case KVM_REG_PPC_VPA_DTL: 1989 addr = val->vpaval.addr; 1990 len = val->vpaval.length; 1991 r = -EINVAL; 1992 if (addr && (len < sizeof(struct dtl_entry) || 1993 !vcpu->arch.vpa.next_gpa)) 1994 break; 1995 len -= len % sizeof(struct dtl_entry); 1996 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1997 break; 1998 case KVM_REG_PPC_TB_OFFSET: 1999 /* round up to multiple of 2^24 */ 2000 vcpu->arch.vcore->tb_offset = 2001 ALIGN(set_reg_val(id, *val), 1UL << 24); 2002 break; 2003 case KVM_REG_PPC_LPCR: 2004 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2005 break; 2006 case KVM_REG_PPC_LPCR_64: 2007 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2008 break; 2009 case KVM_REG_PPC_PPR: 2010 vcpu->arch.ppr = set_reg_val(id, *val); 2011 break; 2012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2013 case KVM_REG_PPC_TFHAR: 2014 vcpu->arch.tfhar = set_reg_val(id, *val); 2015 break; 2016 case KVM_REG_PPC_TFIAR: 2017 vcpu->arch.tfiar = set_reg_val(id, *val); 2018 break; 2019 case KVM_REG_PPC_TEXASR: 2020 vcpu->arch.texasr = set_reg_val(id, *val); 2021 break; 2022 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2023 i = id - KVM_REG_PPC_TM_GPR0; 2024 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2025 break; 2026 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2027 { 2028 int j; 2029 i = id - KVM_REG_PPC_TM_VSR0; 2030 if (i < 32) 2031 for (j = 0; j < TS_FPRWIDTH; j++) 2032 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2033 else 2034 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2035 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2036 else 2037 r = -ENXIO; 2038 break; 2039 } 2040 case KVM_REG_PPC_TM_CR: 2041 vcpu->arch.cr_tm = set_reg_val(id, *val); 2042 break; 2043 case KVM_REG_PPC_TM_XER: 2044 vcpu->arch.xer_tm = set_reg_val(id, *val); 2045 break; 2046 case KVM_REG_PPC_TM_LR: 2047 vcpu->arch.lr_tm = set_reg_val(id, *val); 2048 break; 2049 case KVM_REG_PPC_TM_CTR: 2050 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2051 break; 2052 case KVM_REG_PPC_TM_FPSCR: 2053 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2054 break; 2055 case KVM_REG_PPC_TM_AMR: 2056 vcpu->arch.amr_tm = set_reg_val(id, *val); 2057 break; 2058 case KVM_REG_PPC_TM_PPR: 2059 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2060 break; 2061 case KVM_REG_PPC_TM_VRSAVE: 2062 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2063 break; 2064 case KVM_REG_PPC_TM_VSCR: 2065 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2066 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2067 else 2068 r = - ENXIO; 2069 break; 2070 case KVM_REG_PPC_TM_DSCR: 2071 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2072 break; 2073 case KVM_REG_PPC_TM_TAR: 2074 vcpu->arch.tar_tm = set_reg_val(id, *val); 2075 break; 2076 #endif 2077 case KVM_REG_PPC_ARCH_COMPAT: 2078 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2079 break; 2080 case KVM_REG_PPC_DEC_EXPIRY: 2081 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2082 vcpu->arch.vcore->tb_offset; 2083 break; 2084 case KVM_REG_PPC_ONLINE: 2085 i = set_reg_val(id, *val); 2086 if (i && !vcpu->arch.online) 2087 atomic_inc(&vcpu->arch.vcore->online_count); 2088 else if (!i && vcpu->arch.online) 2089 atomic_dec(&vcpu->arch.vcore->online_count); 2090 vcpu->arch.online = i; 2091 break; 2092 case KVM_REG_PPC_PTCR: 2093 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2094 break; 2095 default: 2096 r = -EINVAL; 2097 break; 2098 } 2099 2100 return r; 2101 } 2102 2103 /* 2104 * On POWER9, threads are independent and can be in different partitions. 2105 * Therefore we consider each thread to be a subcore. 2106 * There is a restriction that all threads have to be in the same 2107 * MMU mode (radix or HPT), unfortunately, but since we only support 2108 * HPT guests on a HPT host so far, that isn't an impediment yet. 2109 */ 2110 static int threads_per_vcore(struct kvm *kvm) 2111 { 2112 if (kvm->arch.threads_indep) 2113 return 1; 2114 return threads_per_subcore; 2115 } 2116 2117 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2118 { 2119 struct kvmppc_vcore *vcore; 2120 2121 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2122 2123 if (vcore == NULL) 2124 return NULL; 2125 2126 spin_lock_init(&vcore->lock); 2127 spin_lock_init(&vcore->stoltb_lock); 2128 rcuwait_init(&vcore->wait); 2129 vcore->preempt_tb = TB_NIL; 2130 vcore->lpcr = kvm->arch.lpcr; 2131 vcore->first_vcpuid = id; 2132 vcore->kvm = kvm; 2133 INIT_LIST_HEAD(&vcore->preempt_list); 2134 2135 return vcore; 2136 } 2137 2138 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2139 static struct debugfs_timings_element { 2140 const char *name; 2141 size_t offset; 2142 } timings[] = { 2143 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2144 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2145 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2146 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2147 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2148 }; 2149 2150 #define N_TIMINGS (ARRAY_SIZE(timings)) 2151 2152 struct debugfs_timings_state { 2153 struct kvm_vcpu *vcpu; 2154 unsigned int buflen; 2155 char buf[N_TIMINGS * 100]; 2156 }; 2157 2158 static int debugfs_timings_open(struct inode *inode, struct file *file) 2159 { 2160 struct kvm_vcpu *vcpu = inode->i_private; 2161 struct debugfs_timings_state *p; 2162 2163 p = kzalloc(sizeof(*p), GFP_KERNEL); 2164 if (!p) 2165 return -ENOMEM; 2166 2167 kvm_get_kvm(vcpu->kvm); 2168 p->vcpu = vcpu; 2169 file->private_data = p; 2170 2171 return nonseekable_open(inode, file); 2172 } 2173 2174 static int debugfs_timings_release(struct inode *inode, struct file *file) 2175 { 2176 struct debugfs_timings_state *p = file->private_data; 2177 2178 kvm_put_kvm(p->vcpu->kvm); 2179 kfree(p); 2180 return 0; 2181 } 2182 2183 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2184 size_t len, loff_t *ppos) 2185 { 2186 struct debugfs_timings_state *p = file->private_data; 2187 struct kvm_vcpu *vcpu = p->vcpu; 2188 char *s, *buf_end; 2189 struct kvmhv_tb_accumulator tb; 2190 u64 count; 2191 loff_t pos; 2192 ssize_t n; 2193 int i, loops; 2194 bool ok; 2195 2196 if (!p->buflen) { 2197 s = p->buf; 2198 buf_end = s + sizeof(p->buf); 2199 for (i = 0; i < N_TIMINGS; ++i) { 2200 struct kvmhv_tb_accumulator *acc; 2201 2202 acc = (struct kvmhv_tb_accumulator *) 2203 ((unsigned long)vcpu + timings[i].offset); 2204 ok = false; 2205 for (loops = 0; loops < 1000; ++loops) { 2206 count = acc->seqcount; 2207 if (!(count & 1)) { 2208 smp_rmb(); 2209 tb = *acc; 2210 smp_rmb(); 2211 if (count == acc->seqcount) { 2212 ok = true; 2213 break; 2214 } 2215 } 2216 udelay(1); 2217 } 2218 if (!ok) 2219 snprintf(s, buf_end - s, "%s: stuck\n", 2220 timings[i].name); 2221 else 2222 snprintf(s, buf_end - s, 2223 "%s: %llu %llu %llu %llu\n", 2224 timings[i].name, count / 2, 2225 tb_to_ns(tb.tb_total), 2226 tb_to_ns(tb.tb_min), 2227 tb_to_ns(tb.tb_max)); 2228 s += strlen(s); 2229 } 2230 p->buflen = s - p->buf; 2231 } 2232 2233 pos = *ppos; 2234 if (pos >= p->buflen) 2235 return 0; 2236 if (len > p->buflen - pos) 2237 len = p->buflen - pos; 2238 n = copy_to_user(buf, p->buf + pos, len); 2239 if (n) { 2240 if (n == len) 2241 return -EFAULT; 2242 len -= n; 2243 } 2244 *ppos = pos + len; 2245 return len; 2246 } 2247 2248 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2249 size_t len, loff_t *ppos) 2250 { 2251 return -EACCES; 2252 } 2253 2254 static const struct file_operations debugfs_timings_ops = { 2255 .owner = THIS_MODULE, 2256 .open = debugfs_timings_open, 2257 .release = debugfs_timings_release, 2258 .read = debugfs_timings_read, 2259 .write = debugfs_timings_write, 2260 .llseek = generic_file_llseek, 2261 }; 2262 2263 /* Create a debugfs directory for the vcpu */ 2264 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2265 { 2266 char buf[16]; 2267 struct kvm *kvm = vcpu->kvm; 2268 2269 snprintf(buf, sizeof(buf), "vcpu%u", id); 2270 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2271 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2272 &debugfs_timings_ops); 2273 } 2274 2275 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2276 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2277 { 2278 } 2279 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2280 2281 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2282 { 2283 int err; 2284 int core; 2285 struct kvmppc_vcore *vcore; 2286 struct kvm *kvm; 2287 unsigned int id; 2288 2289 kvm = vcpu->kvm; 2290 id = vcpu->vcpu_id; 2291 2292 vcpu->arch.shared = &vcpu->arch.shregs; 2293 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2294 /* 2295 * The shared struct is never shared on HV, 2296 * so we can always use host endianness 2297 */ 2298 #ifdef __BIG_ENDIAN__ 2299 vcpu->arch.shared_big_endian = true; 2300 #else 2301 vcpu->arch.shared_big_endian = false; 2302 #endif 2303 #endif 2304 vcpu->arch.mmcr[0] = MMCR0_FC; 2305 vcpu->arch.ctrl = CTRL_RUNLATCH; 2306 /* default to host PVR, since we can't spoof it */ 2307 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2308 spin_lock_init(&vcpu->arch.vpa_update_lock); 2309 spin_lock_init(&vcpu->arch.tbacct_lock); 2310 vcpu->arch.busy_preempt = TB_NIL; 2311 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2312 2313 /* 2314 * Set the default HFSCR for the guest from the host value. 2315 * This value is only used on POWER9. 2316 * On POWER9, we want to virtualize the doorbell facility, so we 2317 * don't set the HFSCR_MSGP bit, and that causes those instructions 2318 * to trap and then we emulate them. 2319 */ 2320 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2321 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2322 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2323 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2324 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2325 vcpu->arch.hfscr |= HFSCR_TM; 2326 } 2327 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2328 vcpu->arch.hfscr |= HFSCR_TM; 2329 2330 kvmppc_mmu_book3s_hv_init(vcpu); 2331 2332 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2333 2334 init_waitqueue_head(&vcpu->arch.cpu_run); 2335 2336 mutex_lock(&kvm->lock); 2337 vcore = NULL; 2338 err = -EINVAL; 2339 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2340 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2341 pr_devel("KVM: VCPU ID too high\n"); 2342 core = KVM_MAX_VCORES; 2343 } else { 2344 BUG_ON(kvm->arch.smt_mode != 1); 2345 core = kvmppc_pack_vcpu_id(kvm, id); 2346 } 2347 } else { 2348 core = id / kvm->arch.smt_mode; 2349 } 2350 if (core < KVM_MAX_VCORES) { 2351 vcore = kvm->arch.vcores[core]; 2352 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2353 pr_devel("KVM: collision on id %u", id); 2354 vcore = NULL; 2355 } else if (!vcore) { 2356 /* 2357 * Take mmu_setup_lock for mutual exclusion 2358 * with kvmppc_update_lpcr(). 2359 */ 2360 err = -ENOMEM; 2361 vcore = kvmppc_vcore_create(kvm, 2362 id & ~(kvm->arch.smt_mode - 1)); 2363 mutex_lock(&kvm->arch.mmu_setup_lock); 2364 kvm->arch.vcores[core] = vcore; 2365 kvm->arch.online_vcores++; 2366 mutex_unlock(&kvm->arch.mmu_setup_lock); 2367 } 2368 } 2369 mutex_unlock(&kvm->lock); 2370 2371 if (!vcore) 2372 return err; 2373 2374 spin_lock(&vcore->lock); 2375 ++vcore->num_threads; 2376 spin_unlock(&vcore->lock); 2377 vcpu->arch.vcore = vcore; 2378 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2379 vcpu->arch.thread_cpu = -1; 2380 vcpu->arch.prev_cpu = -1; 2381 2382 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2383 kvmppc_sanity_check(vcpu); 2384 2385 debugfs_vcpu_init(vcpu, id); 2386 2387 return 0; 2388 } 2389 2390 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2391 unsigned long flags) 2392 { 2393 int err; 2394 int esmt = 0; 2395 2396 if (flags) 2397 return -EINVAL; 2398 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2399 return -EINVAL; 2400 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2401 /* 2402 * On POWER8 (or POWER7), the threading mode is "strict", 2403 * so we pack smt_mode vcpus per vcore. 2404 */ 2405 if (smt_mode > threads_per_subcore) 2406 return -EINVAL; 2407 } else { 2408 /* 2409 * On POWER9, the threading mode is "loose", 2410 * so each vcpu gets its own vcore. 2411 */ 2412 esmt = smt_mode; 2413 smt_mode = 1; 2414 } 2415 mutex_lock(&kvm->lock); 2416 err = -EBUSY; 2417 if (!kvm->arch.online_vcores) { 2418 kvm->arch.smt_mode = smt_mode; 2419 kvm->arch.emul_smt_mode = esmt; 2420 err = 0; 2421 } 2422 mutex_unlock(&kvm->lock); 2423 2424 return err; 2425 } 2426 2427 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2428 { 2429 if (vpa->pinned_addr) 2430 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2431 vpa->dirty); 2432 } 2433 2434 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2435 { 2436 spin_lock(&vcpu->arch.vpa_update_lock); 2437 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2438 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2439 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2440 spin_unlock(&vcpu->arch.vpa_update_lock); 2441 } 2442 2443 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2444 { 2445 /* Indicate we want to get back into the guest */ 2446 return 1; 2447 } 2448 2449 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2450 { 2451 unsigned long dec_nsec, now; 2452 2453 now = get_tb(); 2454 if (now > vcpu->arch.dec_expires) { 2455 /* decrementer has already gone negative */ 2456 kvmppc_core_queue_dec(vcpu); 2457 kvmppc_core_prepare_to_enter(vcpu); 2458 return; 2459 } 2460 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2461 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2462 vcpu->arch.timer_running = 1; 2463 } 2464 2465 extern int __kvmppc_vcore_entry(void); 2466 2467 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2468 struct kvm_vcpu *vcpu) 2469 { 2470 u64 now; 2471 2472 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2473 return; 2474 spin_lock_irq(&vcpu->arch.tbacct_lock); 2475 now = mftb(); 2476 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2477 vcpu->arch.stolen_logged; 2478 vcpu->arch.busy_preempt = now; 2479 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2480 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2481 --vc->n_runnable; 2482 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2483 } 2484 2485 static int kvmppc_grab_hwthread(int cpu) 2486 { 2487 struct paca_struct *tpaca; 2488 long timeout = 10000; 2489 2490 tpaca = paca_ptrs[cpu]; 2491 2492 /* Ensure the thread won't go into the kernel if it wakes */ 2493 tpaca->kvm_hstate.kvm_vcpu = NULL; 2494 tpaca->kvm_hstate.kvm_vcore = NULL; 2495 tpaca->kvm_hstate.napping = 0; 2496 smp_wmb(); 2497 tpaca->kvm_hstate.hwthread_req = 1; 2498 2499 /* 2500 * If the thread is already executing in the kernel (e.g. handling 2501 * a stray interrupt), wait for it to get back to nap mode. 2502 * The smp_mb() is to ensure that our setting of hwthread_req 2503 * is visible before we look at hwthread_state, so if this 2504 * races with the code at system_reset_pSeries and the thread 2505 * misses our setting of hwthread_req, we are sure to see its 2506 * setting of hwthread_state, and vice versa. 2507 */ 2508 smp_mb(); 2509 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2510 if (--timeout <= 0) { 2511 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2512 return -EBUSY; 2513 } 2514 udelay(1); 2515 } 2516 return 0; 2517 } 2518 2519 static void kvmppc_release_hwthread(int cpu) 2520 { 2521 struct paca_struct *tpaca; 2522 2523 tpaca = paca_ptrs[cpu]; 2524 tpaca->kvm_hstate.hwthread_req = 0; 2525 tpaca->kvm_hstate.kvm_vcpu = NULL; 2526 tpaca->kvm_hstate.kvm_vcore = NULL; 2527 tpaca->kvm_hstate.kvm_split_mode = NULL; 2528 } 2529 2530 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2531 { 2532 struct kvm_nested_guest *nested = vcpu->arch.nested; 2533 cpumask_t *cpu_in_guest; 2534 int i; 2535 2536 cpu = cpu_first_thread_sibling(cpu); 2537 if (nested) { 2538 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2539 cpu_in_guest = &nested->cpu_in_guest; 2540 } else { 2541 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2542 cpu_in_guest = &kvm->arch.cpu_in_guest; 2543 } 2544 /* 2545 * Make sure setting of bit in need_tlb_flush precedes 2546 * testing of cpu_in_guest bits. The matching barrier on 2547 * the other side is the first smp_mb() in kvmppc_run_core(). 2548 */ 2549 smp_mb(); 2550 for (i = 0; i < threads_per_core; ++i) 2551 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2552 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2553 } 2554 2555 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2556 { 2557 struct kvm_nested_guest *nested = vcpu->arch.nested; 2558 struct kvm *kvm = vcpu->kvm; 2559 int prev_cpu; 2560 2561 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2562 return; 2563 2564 if (nested) 2565 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2566 else 2567 prev_cpu = vcpu->arch.prev_cpu; 2568 2569 /* 2570 * With radix, the guest can do TLB invalidations itself, 2571 * and it could choose to use the local form (tlbiel) if 2572 * it is invalidating a translation that has only ever been 2573 * used on one vcpu. However, that doesn't mean it has 2574 * only ever been used on one physical cpu, since vcpus 2575 * can move around between pcpus. To cope with this, when 2576 * a vcpu moves from one pcpu to another, we need to tell 2577 * any vcpus running on the same core as this vcpu previously 2578 * ran to flush the TLB. The TLB is shared between threads, 2579 * so we use a single bit in .need_tlb_flush for all 4 threads. 2580 */ 2581 if (prev_cpu != pcpu) { 2582 if (prev_cpu >= 0 && 2583 cpu_first_thread_sibling(prev_cpu) != 2584 cpu_first_thread_sibling(pcpu)) 2585 radix_flush_cpu(kvm, prev_cpu, vcpu); 2586 if (nested) 2587 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2588 else 2589 vcpu->arch.prev_cpu = pcpu; 2590 } 2591 } 2592 2593 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2594 { 2595 int cpu; 2596 struct paca_struct *tpaca; 2597 struct kvm *kvm = vc->kvm; 2598 2599 cpu = vc->pcpu; 2600 if (vcpu) { 2601 if (vcpu->arch.timer_running) { 2602 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2603 vcpu->arch.timer_running = 0; 2604 } 2605 cpu += vcpu->arch.ptid; 2606 vcpu->cpu = vc->pcpu; 2607 vcpu->arch.thread_cpu = cpu; 2608 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2609 } 2610 tpaca = paca_ptrs[cpu]; 2611 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2612 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2613 tpaca->kvm_hstate.fake_suspend = 0; 2614 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2615 smp_wmb(); 2616 tpaca->kvm_hstate.kvm_vcore = vc; 2617 if (cpu != smp_processor_id()) 2618 kvmppc_ipi_thread(cpu); 2619 } 2620 2621 static void kvmppc_wait_for_nap(int n_threads) 2622 { 2623 int cpu = smp_processor_id(); 2624 int i, loops; 2625 2626 if (n_threads <= 1) 2627 return; 2628 for (loops = 0; loops < 1000000; ++loops) { 2629 /* 2630 * Check if all threads are finished. 2631 * We set the vcore pointer when starting a thread 2632 * and the thread clears it when finished, so we look 2633 * for any threads that still have a non-NULL vcore ptr. 2634 */ 2635 for (i = 1; i < n_threads; ++i) 2636 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2637 break; 2638 if (i == n_threads) { 2639 HMT_medium(); 2640 return; 2641 } 2642 HMT_low(); 2643 } 2644 HMT_medium(); 2645 for (i = 1; i < n_threads; ++i) 2646 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2647 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2648 } 2649 2650 /* 2651 * Check that we are on thread 0 and that any other threads in 2652 * this core are off-line. Then grab the threads so they can't 2653 * enter the kernel. 2654 */ 2655 static int on_primary_thread(void) 2656 { 2657 int cpu = smp_processor_id(); 2658 int thr; 2659 2660 /* Are we on a primary subcore? */ 2661 if (cpu_thread_in_subcore(cpu)) 2662 return 0; 2663 2664 thr = 0; 2665 while (++thr < threads_per_subcore) 2666 if (cpu_online(cpu + thr)) 2667 return 0; 2668 2669 /* Grab all hw threads so they can't go into the kernel */ 2670 for (thr = 1; thr < threads_per_subcore; ++thr) { 2671 if (kvmppc_grab_hwthread(cpu + thr)) { 2672 /* Couldn't grab one; let the others go */ 2673 do { 2674 kvmppc_release_hwthread(cpu + thr); 2675 } while (--thr > 0); 2676 return 0; 2677 } 2678 } 2679 return 1; 2680 } 2681 2682 /* 2683 * A list of virtual cores for each physical CPU. 2684 * These are vcores that could run but their runner VCPU tasks are 2685 * (or may be) preempted. 2686 */ 2687 struct preempted_vcore_list { 2688 struct list_head list; 2689 spinlock_t lock; 2690 }; 2691 2692 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2693 2694 static void init_vcore_lists(void) 2695 { 2696 int cpu; 2697 2698 for_each_possible_cpu(cpu) { 2699 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2700 spin_lock_init(&lp->lock); 2701 INIT_LIST_HEAD(&lp->list); 2702 } 2703 } 2704 2705 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2706 { 2707 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2708 2709 vc->vcore_state = VCORE_PREEMPT; 2710 vc->pcpu = smp_processor_id(); 2711 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2712 spin_lock(&lp->lock); 2713 list_add_tail(&vc->preempt_list, &lp->list); 2714 spin_unlock(&lp->lock); 2715 } 2716 2717 /* Start accumulating stolen time */ 2718 kvmppc_core_start_stolen(vc); 2719 } 2720 2721 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2722 { 2723 struct preempted_vcore_list *lp; 2724 2725 kvmppc_core_end_stolen(vc); 2726 if (!list_empty(&vc->preempt_list)) { 2727 lp = &per_cpu(preempted_vcores, vc->pcpu); 2728 spin_lock(&lp->lock); 2729 list_del_init(&vc->preempt_list); 2730 spin_unlock(&lp->lock); 2731 } 2732 vc->vcore_state = VCORE_INACTIVE; 2733 } 2734 2735 /* 2736 * This stores information about the virtual cores currently 2737 * assigned to a physical core. 2738 */ 2739 struct core_info { 2740 int n_subcores; 2741 int max_subcore_threads; 2742 int total_threads; 2743 int subcore_threads[MAX_SUBCORES]; 2744 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2745 }; 2746 2747 /* 2748 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2749 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2750 */ 2751 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2752 2753 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2754 { 2755 memset(cip, 0, sizeof(*cip)); 2756 cip->n_subcores = 1; 2757 cip->max_subcore_threads = vc->num_threads; 2758 cip->total_threads = vc->num_threads; 2759 cip->subcore_threads[0] = vc->num_threads; 2760 cip->vc[0] = vc; 2761 } 2762 2763 static bool subcore_config_ok(int n_subcores, int n_threads) 2764 { 2765 /* 2766 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2767 * split-core mode, with one thread per subcore. 2768 */ 2769 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2770 return n_subcores <= 4 && n_threads == 1; 2771 2772 /* On POWER8, can only dynamically split if unsplit to begin with */ 2773 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2774 return false; 2775 if (n_subcores > MAX_SUBCORES) 2776 return false; 2777 if (n_subcores > 1) { 2778 if (!(dynamic_mt_modes & 2)) 2779 n_subcores = 4; 2780 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2781 return false; 2782 } 2783 2784 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2785 } 2786 2787 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2788 { 2789 vc->entry_exit_map = 0; 2790 vc->in_guest = 0; 2791 vc->napping_threads = 0; 2792 vc->conferring_threads = 0; 2793 vc->tb_offset_applied = 0; 2794 } 2795 2796 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2797 { 2798 int n_threads = vc->num_threads; 2799 int sub; 2800 2801 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2802 return false; 2803 2804 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2805 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2806 return false; 2807 2808 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2809 if (no_mixing_hpt_and_radix && 2810 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2811 return false; 2812 2813 if (n_threads < cip->max_subcore_threads) 2814 n_threads = cip->max_subcore_threads; 2815 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2816 return false; 2817 cip->max_subcore_threads = n_threads; 2818 2819 sub = cip->n_subcores; 2820 ++cip->n_subcores; 2821 cip->total_threads += vc->num_threads; 2822 cip->subcore_threads[sub] = vc->num_threads; 2823 cip->vc[sub] = vc; 2824 init_vcore_to_run(vc); 2825 list_del_init(&vc->preempt_list); 2826 2827 return true; 2828 } 2829 2830 /* 2831 * Work out whether it is possible to piggyback the execution of 2832 * vcore *pvc onto the execution of the other vcores described in *cip. 2833 */ 2834 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2835 int target_threads) 2836 { 2837 if (cip->total_threads + pvc->num_threads > target_threads) 2838 return false; 2839 2840 return can_dynamic_split(pvc, cip); 2841 } 2842 2843 static void prepare_threads(struct kvmppc_vcore *vc) 2844 { 2845 int i; 2846 struct kvm_vcpu *vcpu; 2847 2848 for_each_runnable_thread(i, vcpu, vc) { 2849 if (signal_pending(vcpu->arch.run_task)) 2850 vcpu->arch.ret = -EINTR; 2851 else if (vcpu->arch.vpa.update_pending || 2852 vcpu->arch.slb_shadow.update_pending || 2853 vcpu->arch.dtl.update_pending) 2854 vcpu->arch.ret = RESUME_GUEST; 2855 else 2856 continue; 2857 kvmppc_remove_runnable(vc, vcpu); 2858 wake_up(&vcpu->arch.cpu_run); 2859 } 2860 } 2861 2862 static void collect_piggybacks(struct core_info *cip, int target_threads) 2863 { 2864 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2865 struct kvmppc_vcore *pvc, *vcnext; 2866 2867 spin_lock(&lp->lock); 2868 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2869 if (!spin_trylock(&pvc->lock)) 2870 continue; 2871 prepare_threads(pvc); 2872 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2873 list_del_init(&pvc->preempt_list); 2874 if (pvc->runner == NULL) { 2875 pvc->vcore_state = VCORE_INACTIVE; 2876 kvmppc_core_end_stolen(pvc); 2877 } 2878 spin_unlock(&pvc->lock); 2879 continue; 2880 } 2881 if (!can_piggyback(pvc, cip, target_threads)) { 2882 spin_unlock(&pvc->lock); 2883 continue; 2884 } 2885 kvmppc_core_end_stolen(pvc); 2886 pvc->vcore_state = VCORE_PIGGYBACK; 2887 if (cip->total_threads >= target_threads) 2888 break; 2889 } 2890 spin_unlock(&lp->lock); 2891 } 2892 2893 static bool recheck_signals_and_mmu(struct core_info *cip) 2894 { 2895 int sub, i; 2896 struct kvm_vcpu *vcpu; 2897 struct kvmppc_vcore *vc; 2898 2899 for (sub = 0; sub < cip->n_subcores; ++sub) { 2900 vc = cip->vc[sub]; 2901 if (!vc->kvm->arch.mmu_ready) 2902 return true; 2903 for_each_runnable_thread(i, vcpu, vc) 2904 if (signal_pending(vcpu->arch.run_task)) 2905 return true; 2906 } 2907 return false; 2908 } 2909 2910 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2911 { 2912 int still_running = 0, i; 2913 u64 now; 2914 long ret; 2915 struct kvm_vcpu *vcpu; 2916 2917 spin_lock(&vc->lock); 2918 now = get_tb(); 2919 for_each_runnable_thread(i, vcpu, vc) { 2920 /* 2921 * It's safe to unlock the vcore in the loop here, because 2922 * for_each_runnable_thread() is safe against removal of 2923 * the vcpu, and the vcore state is VCORE_EXITING here, 2924 * so any vcpus becoming runnable will have their arch.trap 2925 * set to zero and can't actually run in the guest. 2926 */ 2927 spin_unlock(&vc->lock); 2928 /* cancel pending dec exception if dec is positive */ 2929 if (now < vcpu->arch.dec_expires && 2930 kvmppc_core_pending_dec(vcpu)) 2931 kvmppc_core_dequeue_dec(vcpu); 2932 2933 trace_kvm_guest_exit(vcpu); 2934 2935 ret = RESUME_GUEST; 2936 if (vcpu->arch.trap) 2937 ret = kvmppc_handle_exit_hv(vcpu, 2938 vcpu->arch.run_task); 2939 2940 vcpu->arch.ret = ret; 2941 vcpu->arch.trap = 0; 2942 2943 spin_lock(&vc->lock); 2944 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2945 if (vcpu->arch.pending_exceptions) 2946 kvmppc_core_prepare_to_enter(vcpu); 2947 if (vcpu->arch.ceded) 2948 kvmppc_set_timer(vcpu); 2949 else 2950 ++still_running; 2951 } else { 2952 kvmppc_remove_runnable(vc, vcpu); 2953 wake_up(&vcpu->arch.cpu_run); 2954 } 2955 } 2956 if (!is_master) { 2957 if (still_running > 0) { 2958 kvmppc_vcore_preempt(vc); 2959 } else if (vc->runner) { 2960 vc->vcore_state = VCORE_PREEMPT; 2961 kvmppc_core_start_stolen(vc); 2962 } else { 2963 vc->vcore_state = VCORE_INACTIVE; 2964 } 2965 if (vc->n_runnable > 0 && vc->runner == NULL) { 2966 /* make sure there's a candidate runner awake */ 2967 i = -1; 2968 vcpu = next_runnable_thread(vc, &i); 2969 wake_up(&vcpu->arch.cpu_run); 2970 } 2971 } 2972 spin_unlock(&vc->lock); 2973 } 2974 2975 /* 2976 * Clear core from the list of active host cores as we are about to 2977 * enter the guest. Only do this if it is the primary thread of the 2978 * core (not if a subcore) that is entering the guest. 2979 */ 2980 static inline int kvmppc_clear_host_core(unsigned int cpu) 2981 { 2982 int core; 2983 2984 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2985 return 0; 2986 /* 2987 * Memory barrier can be omitted here as we will do a smp_wmb() 2988 * later in kvmppc_start_thread and we need ensure that state is 2989 * visible to other CPUs only after we enter guest. 2990 */ 2991 core = cpu >> threads_shift; 2992 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2993 return 0; 2994 } 2995 2996 /* 2997 * Advertise this core as an active host core since we exited the guest 2998 * Only need to do this if it is the primary thread of the core that is 2999 * exiting. 3000 */ 3001 static inline int kvmppc_set_host_core(unsigned int cpu) 3002 { 3003 int core; 3004 3005 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3006 return 0; 3007 3008 /* 3009 * Memory barrier can be omitted here because we do a spin_unlock 3010 * immediately after this which provides the memory barrier. 3011 */ 3012 core = cpu >> threads_shift; 3013 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3014 return 0; 3015 } 3016 3017 static void set_irq_happened(int trap) 3018 { 3019 switch (trap) { 3020 case BOOK3S_INTERRUPT_EXTERNAL: 3021 local_paca->irq_happened |= PACA_IRQ_EE; 3022 break; 3023 case BOOK3S_INTERRUPT_H_DOORBELL: 3024 local_paca->irq_happened |= PACA_IRQ_DBELL; 3025 break; 3026 case BOOK3S_INTERRUPT_HMI: 3027 local_paca->irq_happened |= PACA_IRQ_HMI; 3028 break; 3029 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3030 replay_system_reset(); 3031 break; 3032 } 3033 } 3034 3035 /* 3036 * Run a set of guest threads on a physical core. 3037 * Called with vc->lock held. 3038 */ 3039 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3040 { 3041 struct kvm_vcpu *vcpu; 3042 int i; 3043 int srcu_idx; 3044 struct core_info core_info; 3045 struct kvmppc_vcore *pvc; 3046 struct kvm_split_mode split_info, *sip; 3047 int split, subcore_size, active; 3048 int sub; 3049 bool thr0_done; 3050 unsigned long cmd_bit, stat_bit; 3051 int pcpu, thr; 3052 int target_threads; 3053 int controlled_threads; 3054 int trap; 3055 bool is_power8; 3056 bool hpt_on_radix; 3057 3058 /* 3059 * Remove from the list any threads that have a signal pending 3060 * or need a VPA update done 3061 */ 3062 prepare_threads(vc); 3063 3064 /* if the runner is no longer runnable, let the caller pick a new one */ 3065 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3066 return; 3067 3068 /* 3069 * Initialize *vc. 3070 */ 3071 init_vcore_to_run(vc); 3072 vc->preempt_tb = TB_NIL; 3073 3074 /* 3075 * Number of threads that we will be controlling: the same as 3076 * the number of threads per subcore, except on POWER9, 3077 * where it's 1 because the threads are (mostly) independent. 3078 */ 3079 controlled_threads = threads_per_vcore(vc->kvm); 3080 3081 /* 3082 * Make sure we are running on primary threads, and that secondary 3083 * threads are offline. Also check if the number of threads in this 3084 * guest are greater than the current system threads per guest. 3085 * On POWER9, we need to be not in independent-threads mode if 3086 * this is a HPT guest on a radix host machine where the 3087 * CPU threads may not be in different MMU modes. 3088 */ 3089 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3090 !kvm_is_radix(vc->kvm); 3091 if (((controlled_threads > 1) && 3092 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3093 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3094 for_each_runnable_thread(i, vcpu, vc) { 3095 vcpu->arch.ret = -EBUSY; 3096 kvmppc_remove_runnable(vc, vcpu); 3097 wake_up(&vcpu->arch.cpu_run); 3098 } 3099 goto out; 3100 } 3101 3102 /* 3103 * See if we could run any other vcores on the physical core 3104 * along with this one. 3105 */ 3106 init_core_info(&core_info, vc); 3107 pcpu = smp_processor_id(); 3108 target_threads = controlled_threads; 3109 if (target_smt_mode && target_smt_mode < target_threads) 3110 target_threads = target_smt_mode; 3111 if (vc->num_threads < target_threads) 3112 collect_piggybacks(&core_info, target_threads); 3113 3114 /* 3115 * On radix, arrange for TLB flushing if necessary. 3116 * This has to be done before disabling interrupts since 3117 * it uses smp_call_function(). 3118 */ 3119 pcpu = smp_processor_id(); 3120 if (kvm_is_radix(vc->kvm)) { 3121 for (sub = 0; sub < core_info.n_subcores; ++sub) 3122 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3123 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3124 } 3125 3126 /* 3127 * Hard-disable interrupts, and check resched flag and signals. 3128 * If we need to reschedule or deliver a signal, clean up 3129 * and return without going into the guest(s). 3130 * If the mmu_ready flag has been cleared, don't go into the 3131 * guest because that means a HPT resize operation is in progress. 3132 */ 3133 local_irq_disable(); 3134 hard_irq_disable(); 3135 if (lazy_irq_pending() || need_resched() || 3136 recheck_signals_and_mmu(&core_info)) { 3137 local_irq_enable(); 3138 vc->vcore_state = VCORE_INACTIVE; 3139 /* Unlock all except the primary vcore */ 3140 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3141 pvc = core_info.vc[sub]; 3142 /* Put back on to the preempted vcores list */ 3143 kvmppc_vcore_preempt(pvc); 3144 spin_unlock(&pvc->lock); 3145 } 3146 for (i = 0; i < controlled_threads; ++i) 3147 kvmppc_release_hwthread(pcpu + i); 3148 return; 3149 } 3150 3151 kvmppc_clear_host_core(pcpu); 3152 3153 /* Decide on micro-threading (split-core) mode */ 3154 subcore_size = threads_per_subcore; 3155 cmd_bit = stat_bit = 0; 3156 split = core_info.n_subcores; 3157 sip = NULL; 3158 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3159 && !cpu_has_feature(CPU_FTR_ARCH_300); 3160 3161 if (split > 1 || hpt_on_radix) { 3162 sip = &split_info; 3163 memset(&split_info, 0, sizeof(split_info)); 3164 for (sub = 0; sub < core_info.n_subcores; ++sub) 3165 split_info.vc[sub] = core_info.vc[sub]; 3166 3167 if (is_power8) { 3168 if (split == 2 && (dynamic_mt_modes & 2)) { 3169 cmd_bit = HID0_POWER8_1TO2LPAR; 3170 stat_bit = HID0_POWER8_2LPARMODE; 3171 } else { 3172 split = 4; 3173 cmd_bit = HID0_POWER8_1TO4LPAR; 3174 stat_bit = HID0_POWER8_4LPARMODE; 3175 } 3176 subcore_size = MAX_SMT_THREADS / split; 3177 split_info.rpr = mfspr(SPRN_RPR); 3178 split_info.pmmar = mfspr(SPRN_PMMAR); 3179 split_info.ldbar = mfspr(SPRN_LDBAR); 3180 split_info.subcore_size = subcore_size; 3181 } else { 3182 split_info.subcore_size = 1; 3183 if (hpt_on_radix) { 3184 /* Use the split_info for LPCR/LPIDR changes */ 3185 split_info.lpcr_req = vc->lpcr; 3186 split_info.lpidr_req = vc->kvm->arch.lpid; 3187 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3188 split_info.do_set = 1; 3189 } 3190 } 3191 3192 /* order writes to split_info before kvm_split_mode pointer */ 3193 smp_wmb(); 3194 } 3195 3196 for (thr = 0; thr < controlled_threads; ++thr) { 3197 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3198 3199 paca->kvm_hstate.tid = thr; 3200 paca->kvm_hstate.napping = 0; 3201 paca->kvm_hstate.kvm_split_mode = sip; 3202 } 3203 3204 /* Initiate micro-threading (split-core) on POWER8 if required */ 3205 if (cmd_bit) { 3206 unsigned long hid0 = mfspr(SPRN_HID0); 3207 3208 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3209 mb(); 3210 mtspr(SPRN_HID0, hid0); 3211 isync(); 3212 for (;;) { 3213 hid0 = mfspr(SPRN_HID0); 3214 if (hid0 & stat_bit) 3215 break; 3216 cpu_relax(); 3217 } 3218 } 3219 3220 /* 3221 * On POWER8, set RWMR register. 3222 * Since it only affects PURR and SPURR, it doesn't affect 3223 * the host, so we don't save/restore the host value. 3224 */ 3225 if (is_power8) { 3226 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3227 int n_online = atomic_read(&vc->online_count); 3228 3229 /* 3230 * Use the 8-thread value if we're doing split-core 3231 * or if the vcore's online count looks bogus. 3232 */ 3233 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3234 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3235 rwmr_val = p8_rwmr_values[n_online]; 3236 mtspr(SPRN_RWMR, rwmr_val); 3237 } 3238 3239 /* Start all the threads */ 3240 active = 0; 3241 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3242 thr = is_power8 ? subcore_thread_map[sub] : sub; 3243 thr0_done = false; 3244 active |= 1 << thr; 3245 pvc = core_info.vc[sub]; 3246 pvc->pcpu = pcpu + thr; 3247 for_each_runnable_thread(i, vcpu, pvc) { 3248 kvmppc_start_thread(vcpu, pvc); 3249 kvmppc_create_dtl_entry(vcpu, pvc); 3250 trace_kvm_guest_enter(vcpu); 3251 if (!vcpu->arch.ptid) 3252 thr0_done = true; 3253 active |= 1 << (thr + vcpu->arch.ptid); 3254 } 3255 /* 3256 * We need to start the first thread of each subcore 3257 * even if it doesn't have a vcpu. 3258 */ 3259 if (!thr0_done) 3260 kvmppc_start_thread(NULL, pvc); 3261 } 3262 3263 /* 3264 * Ensure that split_info.do_nap is set after setting 3265 * the vcore pointer in the PACA of the secondaries. 3266 */ 3267 smp_mb(); 3268 3269 /* 3270 * When doing micro-threading, poke the inactive threads as well. 3271 * This gets them to the nap instruction after kvm_do_nap, 3272 * which reduces the time taken to unsplit later. 3273 * For POWER9 HPT guest on radix host, we need all the secondary 3274 * threads woken up so they can do the LPCR/LPIDR change. 3275 */ 3276 if (cmd_bit || hpt_on_radix) { 3277 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3278 for (thr = 1; thr < threads_per_subcore; ++thr) 3279 if (!(active & (1 << thr))) 3280 kvmppc_ipi_thread(pcpu + thr); 3281 } 3282 3283 vc->vcore_state = VCORE_RUNNING; 3284 preempt_disable(); 3285 3286 trace_kvmppc_run_core(vc, 0); 3287 3288 for (sub = 0; sub < core_info.n_subcores; ++sub) 3289 spin_unlock(&core_info.vc[sub]->lock); 3290 3291 guest_enter_irqoff(); 3292 3293 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3294 3295 this_cpu_disable_ftrace(); 3296 3297 /* 3298 * Interrupts will be enabled once we get into the guest, 3299 * so tell lockdep that we're about to enable interrupts. 3300 */ 3301 trace_hardirqs_on(); 3302 3303 trap = __kvmppc_vcore_entry(); 3304 3305 trace_hardirqs_off(); 3306 3307 this_cpu_enable_ftrace(); 3308 3309 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3310 3311 set_irq_happened(trap); 3312 3313 spin_lock(&vc->lock); 3314 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3315 vc->vcore_state = VCORE_EXITING; 3316 3317 /* wait for secondary threads to finish writing their state to memory */ 3318 kvmppc_wait_for_nap(controlled_threads); 3319 3320 /* Return to whole-core mode if we split the core earlier */ 3321 if (cmd_bit) { 3322 unsigned long hid0 = mfspr(SPRN_HID0); 3323 unsigned long loops = 0; 3324 3325 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3326 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3327 mb(); 3328 mtspr(SPRN_HID0, hid0); 3329 isync(); 3330 for (;;) { 3331 hid0 = mfspr(SPRN_HID0); 3332 if (!(hid0 & stat_bit)) 3333 break; 3334 cpu_relax(); 3335 ++loops; 3336 } 3337 } else if (hpt_on_radix) { 3338 /* Wait for all threads to have seen final sync */ 3339 for (thr = 1; thr < controlled_threads; ++thr) { 3340 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3341 3342 while (paca->kvm_hstate.kvm_split_mode) { 3343 HMT_low(); 3344 barrier(); 3345 } 3346 HMT_medium(); 3347 } 3348 } 3349 split_info.do_nap = 0; 3350 3351 kvmppc_set_host_core(pcpu); 3352 3353 local_irq_enable(); 3354 guest_exit(); 3355 3356 /* Let secondaries go back to the offline loop */ 3357 for (i = 0; i < controlled_threads; ++i) { 3358 kvmppc_release_hwthread(pcpu + i); 3359 if (sip && sip->napped[i]) 3360 kvmppc_ipi_thread(pcpu + i); 3361 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3362 } 3363 3364 spin_unlock(&vc->lock); 3365 3366 /* make sure updates to secondary vcpu structs are visible now */ 3367 smp_mb(); 3368 3369 preempt_enable(); 3370 3371 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3372 pvc = core_info.vc[sub]; 3373 post_guest_process(pvc, pvc == vc); 3374 } 3375 3376 spin_lock(&vc->lock); 3377 3378 out: 3379 vc->vcore_state = VCORE_INACTIVE; 3380 trace_kvmppc_run_core(vc, 1); 3381 } 3382 3383 /* 3384 * Load up hypervisor-mode registers on P9. 3385 */ 3386 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3387 unsigned long lpcr) 3388 { 3389 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3390 s64 hdec; 3391 u64 tb, purr, spurr; 3392 int trap; 3393 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3394 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3395 unsigned long host_dawr = mfspr(SPRN_DAWR0); 3396 unsigned long host_dawrx = mfspr(SPRN_DAWRX0); 3397 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3398 unsigned long host_pidr = mfspr(SPRN_PID); 3399 3400 hdec = time_limit - mftb(); 3401 if (hdec < 0) 3402 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3403 mtspr(SPRN_HDEC, hdec); 3404 3405 if (vc->tb_offset) { 3406 u64 new_tb = mftb() + vc->tb_offset; 3407 mtspr(SPRN_TBU40, new_tb); 3408 tb = mftb(); 3409 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3410 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3411 vc->tb_offset_applied = vc->tb_offset; 3412 } 3413 3414 if (vc->pcr) 3415 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3416 mtspr(SPRN_DPDES, vc->dpdes); 3417 mtspr(SPRN_VTB, vc->vtb); 3418 3419 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3420 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3421 mtspr(SPRN_PURR, vcpu->arch.purr); 3422 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3423 3424 if (dawr_enabled()) { 3425 mtspr(SPRN_DAWR0, vcpu->arch.dawr); 3426 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx); 3427 } 3428 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3429 mtspr(SPRN_IC, vcpu->arch.ic); 3430 mtspr(SPRN_PID, vcpu->arch.pid); 3431 3432 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3433 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3434 3435 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3436 3437 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3438 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3439 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3440 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3441 3442 mtspr(SPRN_AMOR, ~0UL); 3443 3444 mtspr(SPRN_LPCR, lpcr); 3445 isync(); 3446 3447 kvmppc_xive_push_vcpu(vcpu); 3448 3449 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3450 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3451 3452 trap = __kvmhv_vcpu_entry_p9(vcpu); 3453 3454 /* Advance host PURR/SPURR by the amount used by guest */ 3455 purr = mfspr(SPRN_PURR); 3456 spurr = mfspr(SPRN_SPURR); 3457 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3458 purr - vcpu->arch.purr); 3459 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3460 spurr - vcpu->arch.spurr); 3461 vcpu->arch.purr = purr; 3462 vcpu->arch.spurr = spurr; 3463 3464 vcpu->arch.ic = mfspr(SPRN_IC); 3465 vcpu->arch.pid = mfspr(SPRN_PID); 3466 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3467 3468 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3469 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3470 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3471 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3472 3473 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3474 mtspr(SPRN_PSSCR, host_psscr | 3475 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3476 mtspr(SPRN_HFSCR, host_hfscr); 3477 mtspr(SPRN_CIABR, host_ciabr); 3478 mtspr(SPRN_DAWR0, host_dawr); 3479 mtspr(SPRN_DAWRX0, host_dawrx); 3480 mtspr(SPRN_PID, host_pidr); 3481 3482 /* 3483 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3484 * case we interrupted the guest between a tlbie and a ptesync. 3485 */ 3486 asm volatile("eieio; tlbsync; ptesync"); 3487 3488 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3489 isync(); 3490 3491 vc->dpdes = mfspr(SPRN_DPDES); 3492 vc->vtb = mfspr(SPRN_VTB); 3493 mtspr(SPRN_DPDES, 0); 3494 if (vc->pcr) 3495 mtspr(SPRN_PCR, PCR_MASK); 3496 3497 if (vc->tb_offset_applied) { 3498 u64 new_tb = mftb() - vc->tb_offset_applied; 3499 mtspr(SPRN_TBU40, new_tb); 3500 tb = mftb(); 3501 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3502 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3503 vc->tb_offset_applied = 0; 3504 } 3505 3506 mtspr(SPRN_HDEC, 0x7fffffff); 3507 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3508 3509 return trap; 3510 } 3511 3512 /* 3513 * Virtual-mode guest entry for POWER9 and later when the host and 3514 * guest are both using the radix MMU. The LPIDR has already been set. 3515 */ 3516 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3517 unsigned long lpcr) 3518 { 3519 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3520 unsigned long host_dscr = mfspr(SPRN_DSCR); 3521 unsigned long host_tidr = mfspr(SPRN_TIDR); 3522 unsigned long host_iamr = mfspr(SPRN_IAMR); 3523 unsigned long host_amr = mfspr(SPRN_AMR); 3524 s64 dec; 3525 u64 tb; 3526 int trap, save_pmu; 3527 3528 dec = mfspr(SPRN_DEC); 3529 tb = mftb(); 3530 if (dec < 512) 3531 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3532 local_paca->kvm_hstate.dec_expires = dec + tb; 3533 if (local_paca->kvm_hstate.dec_expires < time_limit) 3534 time_limit = local_paca->kvm_hstate.dec_expires; 3535 3536 vcpu->arch.ceded = 0; 3537 3538 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3539 3540 kvmppc_subcore_enter_guest(); 3541 3542 vc->entry_exit_map = 1; 3543 vc->in_guest = 1; 3544 3545 if (vcpu->arch.vpa.pinned_addr) { 3546 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3547 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3548 lp->yield_count = cpu_to_be32(yield_count); 3549 vcpu->arch.vpa.dirty = 1; 3550 } 3551 3552 if (cpu_has_feature(CPU_FTR_TM) || 3553 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3554 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3555 3556 kvmhv_load_guest_pmu(vcpu); 3557 3558 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3559 load_fp_state(&vcpu->arch.fp); 3560 #ifdef CONFIG_ALTIVEC 3561 load_vr_state(&vcpu->arch.vr); 3562 #endif 3563 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3564 3565 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3566 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3567 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3568 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3569 mtspr(SPRN_TAR, vcpu->arch.tar); 3570 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3571 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3572 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3573 mtspr(SPRN_WORT, vcpu->arch.wort); 3574 mtspr(SPRN_TIDR, vcpu->arch.tid); 3575 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3576 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3577 mtspr(SPRN_AMR, vcpu->arch.amr); 3578 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3579 3580 if (!(vcpu->arch.ctrl & 1)) 3581 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3582 3583 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3584 3585 if (kvmhv_on_pseries()) { 3586 /* 3587 * We need to save and restore the guest visible part of the 3588 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3589 * doesn't do this for us. Note only required if pseries since 3590 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3591 */ 3592 unsigned long host_psscr; 3593 /* call our hypervisor to load up HV regs and go */ 3594 struct hv_guest_state hvregs; 3595 3596 host_psscr = mfspr(SPRN_PSSCR_PR); 3597 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3598 kvmhv_save_hv_regs(vcpu, &hvregs); 3599 hvregs.lpcr = lpcr; 3600 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3601 hvregs.version = HV_GUEST_STATE_VERSION; 3602 if (vcpu->arch.nested) { 3603 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3604 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3605 } else { 3606 hvregs.lpid = vcpu->kvm->arch.lpid; 3607 hvregs.vcpu_token = vcpu->vcpu_id; 3608 } 3609 hvregs.hdec_expiry = time_limit; 3610 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3611 __pa(&vcpu->arch.regs)); 3612 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3613 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3614 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3615 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3616 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3617 mtspr(SPRN_PSSCR_PR, host_psscr); 3618 3619 /* H_CEDE has to be handled now, not later */ 3620 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3621 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3622 kvmppc_nested_cede(vcpu); 3623 kvmppc_set_gpr(vcpu, 3, 0); 3624 trap = 0; 3625 } 3626 } else { 3627 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3628 } 3629 3630 vcpu->arch.slb_max = 0; 3631 dec = mfspr(SPRN_DEC); 3632 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3633 dec = (s32) dec; 3634 tb = mftb(); 3635 vcpu->arch.dec_expires = dec + tb; 3636 vcpu->cpu = -1; 3637 vcpu->arch.thread_cpu = -1; 3638 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3639 3640 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3641 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3642 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3643 vcpu->arch.tar = mfspr(SPRN_TAR); 3644 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3645 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3646 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3647 vcpu->arch.wort = mfspr(SPRN_WORT); 3648 vcpu->arch.tid = mfspr(SPRN_TIDR); 3649 vcpu->arch.amr = mfspr(SPRN_AMR); 3650 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3651 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3652 3653 mtspr(SPRN_PSPB, 0); 3654 mtspr(SPRN_WORT, 0); 3655 mtspr(SPRN_UAMOR, 0); 3656 mtspr(SPRN_DSCR, host_dscr); 3657 mtspr(SPRN_TIDR, host_tidr); 3658 mtspr(SPRN_IAMR, host_iamr); 3659 mtspr(SPRN_PSPB, 0); 3660 3661 if (host_amr != vcpu->arch.amr) 3662 mtspr(SPRN_AMR, host_amr); 3663 3664 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3665 store_fp_state(&vcpu->arch.fp); 3666 #ifdef CONFIG_ALTIVEC 3667 store_vr_state(&vcpu->arch.vr); 3668 #endif 3669 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3670 3671 if (cpu_has_feature(CPU_FTR_TM) || 3672 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3673 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3674 3675 save_pmu = 1; 3676 if (vcpu->arch.vpa.pinned_addr) { 3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3679 lp->yield_count = cpu_to_be32(yield_count); 3680 vcpu->arch.vpa.dirty = 1; 3681 save_pmu = lp->pmcregs_in_use; 3682 } 3683 /* Must save pmu if this guest is capable of running nested guests */ 3684 save_pmu |= nesting_enabled(vcpu->kvm); 3685 3686 kvmhv_save_guest_pmu(vcpu, save_pmu); 3687 3688 vc->entry_exit_map = 0x101; 3689 vc->in_guest = 0; 3690 3691 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3692 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3693 3694 kvmhv_load_host_pmu(); 3695 3696 kvmppc_subcore_exit_guest(); 3697 3698 return trap; 3699 } 3700 3701 /* 3702 * Wait for some other vcpu thread to execute us, and 3703 * wake us up when we need to handle something in the host. 3704 */ 3705 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3706 struct kvm_vcpu *vcpu, int wait_state) 3707 { 3708 DEFINE_WAIT(wait); 3709 3710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3712 spin_unlock(&vc->lock); 3713 schedule(); 3714 spin_lock(&vc->lock); 3715 } 3716 finish_wait(&vcpu->arch.cpu_run, &wait); 3717 } 3718 3719 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3720 { 3721 if (!halt_poll_ns_grow) 3722 return; 3723 3724 vc->halt_poll_ns *= halt_poll_ns_grow; 3725 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3726 vc->halt_poll_ns = halt_poll_ns_grow_start; 3727 } 3728 3729 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3730 { 3731 if (halt_poll_ns_shrink == 0) 3732 vc->halt_poll_ns = 0; 3733 else 3734 vc->halt_poll_ns /= halt_poll_ns_shrink; 3735 } 3736 3737 #ifdef CONFIG_KVM_XICS 3738 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3739 { 3740 if (!xics_on_xive()) 3741 return false; 3742 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3743 vcpu->arch.xive_saved_state.cppr; 3744 } 3745 #else 3746 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3747 { 3748 return false; 3749 } 3750 #endif /* CONFIG_KVM_XICS */ 3751 3752 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3753 { 3754 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3755 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3756 return true; 3757 3758 return false; 3759 } 3760 3761 /* 3762 * Check to see if any of the runnable vcpus on the vcore have pending 3763 * exceptions or are no longer ceded 3764 */ 3765 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3766 { 3767 struct kvm_vcpu *vcpu; 3768 int i; 3769 3770 for_each_runnable_thread(i, vcpu, vc) { 3771 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3772 return 1; 3773 } 3774 3775 return 0; 3776 } 3777 3778 /* 3779 * All the vcpus in this vcore are idle, so wait for a decrementer 3780 * or external interrupt to one of the vcpus. vc->lock is held. 3781 */ 3782 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3783 { 3784 ktime_t cur, start_poll, start_wait; 3785 int do_sleep = 1; 3786 u64 block_ns; 3787 3788 /* Poll for pending exceptions and ceded state */ 3789 cur = start_poll = ktime_get(); 3790 if (vc->halt_poll_ns) { 3791 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3792 ++vc->runner->stat.halt_attempted_poll; 3793 3794 vc->vcore_state = VCORE_POLLING; 3795 spin_unlock(&vc->lock); 3796 3797 do { 3798 if (kvmppc_vcore_check_block(vc)) { 3799 do_sleep = 0; 3800 break; 3801 } 3802 cur = ktime_get(); 3803 } while (single_task_running() && ktime_before(cur, stop)); 3804 3805 spin_lock(&vc->lock); 3806 vc->vcore_state = VCORE_INACTIVE; 3807 3808 if (!do_sleep) { 3809 ++vc->runner->stat.halt_successful_poll; 3810 goto out; 3811 } 3812 } 3813 3814 prepare_to_rcuwait(&vc->wait); 3815 set_current_state(TASK_INTERRUPTIBLE); 3816 if (kvmppc_vcore_check_block(vc)) { 3817 finish_rcuwait(&vc->wait); 3818 do_sleep = 0; 3819 /* If we polled, count this as a successful poll */ 3820 if (vc->halt_poll_ns) 3821 ++vc->runner->stat.halt_successful_poll; 3822 goto out; 3823 } 3824 3825 start_wait = ktime_get(); 3826 3827 vc->vcore_state = VCORE_SLEEPING; 3828 trace_kvmppc_vcore_blocked(vc, 0); 3829 spin_unlock(&vc->lock); 3830 schedule(); 3831 finish_rcuwait(&vc->wait); 3832 spin_lock(&vc->lock); 3833 vc->vcore_state = VCORE_INACTIVE; 3834 trace_kvmppc_vcore_blocked(vc, 1); 3835 ++vc->runner->stat.halt_successful_wait; 3836 3837 cur = ktime_get(); 3838 3839 out: 3840 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3841 3842 /* Attribute wait time */ 3843 if (do_sleep) { 3844 vc->runner->stat.halt_wait_ns += 3845 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3846 /* Attribute failed poll time */ 3847 if (vc->halt_poll_ns) 3848 vc->runner->stat.halt_poll_fail_ns += 3849 ktime_to_ns(start_wait) - 3850 ktime_to_ns(start_poll); 3851 } else { 3852 /* Attribute successful poll time */ 3853 if (vc->halt_poll_ns) 3854 vc->runner->stat.halt_poll_success_ns += 3855 ktime_to_ns(cur) - 3856 ktime_to_ns(start_poll); 3857 } 3858 3859 /* Adjust poll time */ 3860 if (halt_poll_ns) { 3861 if (block_ns <= vc->halt_poll_ns) 3862 ; 3863 /* We slept and blocked for longer than the max halt time */ 3864 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3865 shrink_halt_poll_ns(vc); 3866 /* We slept and our poll time is too small */ 3867 else if (vc->halt_poll_ns < halt_poll_ns && 3868 block_ns < halt_poll_ns) 3869 grow_halt_poll_ns(vc); 3870 if (vc->halt_poll_ns > halt_poll_ns) 3871 vc->halt_poll_ns = halt_poll_ns; 3872 } else 3873 vc->halt_poll_ns = 0; 3874 3875 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3876 } 3877 3878 /* 3879 * This never fails for a radix guest, as none of the operations it does 3880 * for a radix guest can fail or have a way to report failure. 3881 * kvmhv_run_single_vcpu() relies on this fact. 3882 */ 3883 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3884 { 3885 int r = 0; 3886 struct kvm *kvm = vcpu->kvm; 3887 3888 mutex_lock(&kvm->arch.mmu_setup_lock); 3889 if (!kvm->arch.mmu_ready) { 3890 if (!kvm_is_radix(kvm)) 3891 r = kvmppc_hv_setup_htab_rma(vcpu); 3892 if (!r) { 3893 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3894 kvmppc_setup_partition_table(kvm); 3895 kvm->arch.mmu_ready = 1; 3896 } 3897 } 3898 mutex_unlock(&kvm->arch.mmu_setup_lock); 3899 return r; 3900 } 3901 3902 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 3903 { 3904 struct kvm_run *run = vcpu->run; 3905 int n_ceded, i, r; 3906 struct kvmppc_vcore *vc; 3907 struct kvm_vcpu *v; 3908 3909 trace_kvmppc_run_vcpu_enter(vcpu); 3910 3911 run->exit_reason = 0; 3912 vcpu->arch.ret = RESUME_GUEST; 3913 vcpu->arch.trap = 0; 3914 kvmppc_update_vpas(vcpu); 3915 3916 /* 3917 * Synchronize with other threads in this virtual core 3918 */ 3919 vc = vcpu->arch.vcore; 3920 spin_lock(&vc->lock); 3921 vcpu->arch.ceded = 0; 3922 vcpu->arch.run_task = current; 3923 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3924 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3925 vcpu->arch.busy_preempt = TB_NIL; 3926 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3927 ++vc->n_runnable; 3928 3929 /* 3930 * This happens the first time this is called for a vcpu. 3931 * If the vcore is already running, we may be able to start 3932 * this thread straight away and have it join in. 3933 */ 3934 if (!signal_pending(current)) { 3935 if ((vc->vcore_state == VCORE_PIGGYBACK || 3936 vc->vcore_state == VCORE_RUNNING) && 3937 !VCORE_IS_EXITING(vc)) { 3938 kvmppc_create_dtl_entry(vcpu, vc); 3939 kvmppc_start_thread(vcpu, vc); 3940 trace_kvm_guest_enter(vcpu); 3941 } else if (vc->vcore_state == VCORE_SLEEPING) { 3942 rcuwait_wake_up(&vc->wait); 3943 } 3944 3945 } 3946 3947 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3948 !signal_pending(current)) { 3949 /* See if the MMU is ready to go */ 3950 if (!vcpu->kvm->arch.mmu_ready) { 3951 spin_unlock(&vc->lock); 3952 r = kvmhv_setup_mmu(vcpu); 3953 spin_lock(&vc->lock); 3954 if (r) { 3955 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3956 run->fail_entry. 3957 hardware_entry_failure_reason = 0; 3958 vcpu->arch.ret = r; 3959 break; 3960 } 3961 } 3962 3963 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3964 kvmppc_vcore_end_preempt(vc); 3965 3966 if (vc->vcore_state != VCORE_INACTIVE) { 3967 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3968 continue; 3969 } 3970 for_each_runnable_thread(i, v, vc) { 3971 kvmppc_core_prepare_to_enter(v); 3972 if (signal_pending(v->arch.run_task)) { 3973 kvmppc_remove_runnable(vc, v); 3974 v->stat.signal_exits++; 3975 v->run->exit_reason = KVM_EXIT_INTR; 3976 v->arch.ret = -EINTR; 3977 wake_up(&v->arch.cpu_run); 3978 } 3979 } 3980 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3981 break; 3982 n_ceded = 0; 3983 for_each_runnable_thread(i, v, vc) { 3984 if (!kvmppc_vcpu_woken(v)) 3985 n_ceded += v->arch.ceded; 3986 else 3987 v->arch.ceded = 0; 3988 } 3989 vc->runner = vcpu; 3990 if (n_ceded == vc->n_runnable) { 3991 kvmppc_vcore_blocked(vc); 3992 } else if (need_resched()) { 3993 kvmppc_vcore_preempt(vc); 3994 /* Let something else run */ 3995 cond_resched_lock(&vc->lock); 3996 if (vc->vcore_state == VCORE_PREEMPT) 3997 kvmppc_vcore_end_preempt(vc); 3998 } else { 3999 kvmppc_run_core(vc); 4000 } 4001 vc->runner = NULL; 4002 } 4003 4004 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4005 (vc->vcore_state == VCORE_RUNNING || 4006 vc->vcore_state == VCORE_EXITING || 4007 vc->vcore_state == VCORE_PIGGYBACK)) 4008 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4009 4010 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4011 kvmppc_vcore_end_preempt(vc); 4012 4013 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4014 kvmppc_remove_runnable(vc, vcpu); 4015 vcpu->stat.signal_exits++; 4016 run->exit_reason = KVM_EXIT_INTR; 4017 vcpu->arch.ret = -EINTR; 4018 } 4019 4020 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4021 /* Wake up some vcpu to run the core */ 4022 i = -1; 4023 v = next_runnable_thread(vc, &i); 4024 wake_up(&v->arch.cpu_run); 4025 } 4026 4027 trace_kvmppc_run_vcpu_exit(vcpu); 4028 spin_unlock(&vc->lock); 4029 return vcpu->arch.ret; 4030 } 4031 4032 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4033 unsigned long lpcr) 4034 { 4035 struct kvm_run *run = vcpu->run; 4036 int trap, r, pcpu; 4037 int srcu_idx, lpid; 4038 struct kvmppc_vcore *vc; 4039 struct kvm *kvm = vcpu->kvm; 4040 struct kvm_nested_guest *nested = vcpu->arch.nested; 4041 4042 trace_kvmppc_run_vcpu_enter(vcpu); 4043 4044 run->exit_reason = 0; 4045 vcpu->arch.ret = RESUME_GUEST; 4046 vcpu->arch.trap = 0; 4047 4048 vc = vcpu->arch.vcore; 4049 vcpu->arch.ceded = 0; 4050 vcpu->arch.run_task = current; 4051 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4052 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4053 vcpu->arch.busy_preempt = TB_NIL; 4054 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4055 vc->runnable_threads[0] = vcpu; 4056 vc->n_runnable = 1; 4057 vc->runner = vcpu; 4058 4059 /* See if the MMU is ready to go */ 4060 if (!kvm->arch.mmu_ready) 4061 kvmhv_setup_mmu(vcpu); 4062 4063 if (need_resched()) 4064 cond_resched(); 4065 4066 kvmppc_update_vpas(vcpu); 4067 4068 init_vcore_to_run(vc); 4069 vc->preempt_tb = TB_NIL; 4070 4071 preempt_disable(); 4072 pcpu = smp_processor_id(); 4073 vc->pcpu = pcpu; 4074 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4075 4076 local_irq_disable(); 4077 hard_irq_disable(); 4078 if (signal_pending(current)) 4079 goto sigpend; 4080 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4081 goto out; 4082 4083 if (!nested) { 4084 kvmppc_core_prepare_to_enter(vcpu); 4085 if (vcpu->arch.doorbell_request) { 4086 vc->dpdes = 1; 4087 smp_wmb(); 4088 vcpu->arch.doorbell_request = 0; 4089 } 4090 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4091 &vcpu->arch.pending_exceptions)) 4092 lpcr |= LPCR_MER; 4093 } else if (vcpu->arch.pending_exceptions || 4094 vcpu->arch.doorbell_request || 4095 xive_interrupt_pending(vcpu)) { 4096 vcpu->arch.ret = RESUME_HOST; 4097 goto out; 4098 } 4099 4100 kvmppc_clear_host_core(pcpu); 4101 4102 local_paca->kvm_hstate.tid = 0; 4103 local_paca->kvm_hstate.napping = 0; 4104 local_paca->kvm_hstate.kvm_split_mode = NULL; 4105 kvmppc_start_thread(vcpu, vc); 4106 kvmppc_create_dtl_entry(vcpu, vc); 4107 trace_kvm_guest_enter(vcpu); 4108 4109 vc->vcore_state = VCORE_RUNNING; 4110 trace_kvmppc_run_core(vc, 0); 4111 4112 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4113 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4114 mtspr(SPRN_LPID, lpid); 4115 isync(); 4116 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4117 } 4118 4119 guest_enter_irqoff(); 4120 4121 srcu_idx = srcu_read_lock(&kvm->srcu); 4122 4123 this_cpu_disable_ftrace(); 4124 4125 /* Tell lockdep that we're about to enable interrupts */ 4126 trace_hardirqs_on(); 4127 4128 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4129 vcpu->arch.trap = trap; 4130 4131 trace_hardirqs_off(); 4132 4133 this_cpu_enable_ftrace(); 4134 4135 srcu_read_unlock(&kvm->srcu, srcu_idx); 4136 4137 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4138 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4139 isync(); 4140 } 4141 4142 set_irq_happened(trap); 4143 4144 kvmppc_set_host_core(pcpu); 4145 4146 local_irq_enable(); 4147 guest_exit(); 4148 4149 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4150 4151 preempt_enable(); 4152 4153 /* 4154 * cancel pending decrementer exception if DEC is now positive, or if 4155 * entering a nested guest in which case the decrementer is now owned 4156 * by L2 and the L1 decrementer is provided in hdec_expires 4157 */ 4158 if (kvmppc_core_pending_dec(vcpu) && 4159 ((get_tb() < vcpu->arch.dec_expires) || 4160 (trap == BOOK3S_INTERRUPT_SYSCALL && 4161 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4162 kvmppc_core_dequeue_dec(vcpu); 4163 4164 trace_kvm_guest_exit(vcpu); 4165 r = RESUME_GUEST; 4166 if (trap) { 4167 if (!nested) 4168 r = kvmppc_handle_exit_hv(vcpu, current); 4169 else 4170 r = kvmppc_handle_nested_exit(vcpu); 4171 } 4172 vcpu->arch.ret = r; 4173 4174 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4175 !kvmppc_vcpu_woken(vcpu)) { 4176 kvmppc_set_timer(vcpu); 4177 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4178 if (signal_pending(current)) { 4179 vcpu->stat.signal_exits++; 4180 run->exit_reason = KVM_EXIT_INTR; 4181 vcpu->arch.ret = -EINTR; 4182 break; 4183 } 4184 spin_lock(&vc->lock); 4185 kvmppc_vcore_blocked(vc); 4186 spin_unlock(&vc->lock); 4187 } 4188 } 4189 vcpu->arch.ceded = 0; 4190 4191 vc->vcore_state = VCORE_INACTIVE; 4192 trace_kvmppc_run_core(vc, 1); 4193 4194 done: 4195 kvmppc_remove_runnable(vc, vcpu); 4196 trace_kvmppc_run_vcpu_exit(vcpu); 4197 4198 return vcpu->arch.ret; 4199 4200 sigpend: 4201 vcpu->stat.signal_exits++; 4202 run->exit_reason = KVM_EXIT_INTR; 4203 vcpu->arch.ret = -EINTR; 4204 out: 4205 local_irq_enable(); 4206 preempt_enable(); 4207 goto done; 4208 } 4209 4210 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4211 { 4212 struct kvm_run *run = vcpu->run; 4213 int r; 4214 int srcu_idx; 4215 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4216 unsigned long user_tar = 0; 4217 unsigned int user_vrsave; 4218 struct kvm *kvm; 4219 4220 if (!vcpu->arch.sane) { 4221 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4222 return -EINVAL; 4223 } 4224 4225 /* 4226 * Don't allow entry with a suspended transaction, because 4227 * the guest entry/exit code will lose it. 4228 * If the guest has TM enabled, save away their TM-related SPRs 4229 * (they will get restored by the TM unavailable interrupt). 4230 */ 4231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4232 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4233 (current->thread.regs->msr & MSR_TM)) { 4234 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4235 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4236 run->fail_entry.hardware_entry_failure_reason = 0; 4237 return -EINVAL; 4238 } 4239 /* Enable TM so we can read the TM SPRs */ 4240 mtmsr(mfmsr() | MSR_TM); 4241 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4242 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4243 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4244 current->thread.regs->msr &= ~MSR_TM; 4245 } 4246 #endif 4247 4248 /* 4249 * Force online to 1 for the sake of old userspace which doesn't 4250 * set it. 4251 */ 4252 if (!vcpu->arch.online) { 4253 atomic_inc(&vcpu->arch.vcore->online_count); 4254 vcpu->arch.online = 1; 4255 } 4256 4257 kvmppc_core_prepare_to_enter(vcpu); 4258 4259 /* No need to go into the guest when all we'll do is come back out */ 4260 if (signal_pending(current)) { 4261 run->exit_reason = KVM_EXIT_INTR; 4262 return -EINTR; 4263 } 4264 4265 kvm = vcpu->kvm; 4266 atomic_inc(&kvm->arch.vcpus_running); 4267 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4268 smp_mb(); 4269 4270 flush_all_to_thread(current); 4271 4272 /* Save userspace EBB and other register values */ 4273 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4274 ebb_regs[0] = mfspr(SPRN_EBBHR); 4275 ebb_regs[1] = mfspr(SPRN_EBBRR); 4276 ebb_regs[2] = mfspr(SPRN_BESCR); 4277 user_tar = mfspr(SPRN_TAR); 4278 } 4279 user_vrsave = mfspr(SPRN_VRSAVE); 4280 4281 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4282 vcpu->arch.pgdir = kvm->mm->pgd; 4283 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4284 4285 do { 4286 /* 4287 * The early POWER9 chips that can't mix radix and HPT threads 4288 * on the same core also need the workaround for the problem 4289 * where the TLB would prefetch entries in the guest exit path 4290 * for radix guests using the guest PIDR value and LPID 0. 4291 * The workaround is in the old path (kvmppc_run_vcpu()) 4292 * but not the new path (kvmhv_run_single_vcpu()). 4293 */ 4294 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4295 !no_mixing_hpt_and_radix) 4296 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4297 vcpu->arch.vcore->lpcr); 4298 else 4299 r = kvmppc_run_vcpu(vcpu); 4300 4301 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4302 !(vcpu->arch.shregs.msr & MSR_PR)) { 4303 trace_kvm_hcall_enter(vcpu); 4304 r = kvmppc_pseries_do_hcall(vcpu); 4305 trace_kvm_hcall_exit(vcpu, r); 4306 kvmppc_core_prepare_to_enter(vcpu); 4307 } else if (r == RESUME_PAGE_FAULT) { 4308 srcu_idx = srcu_read_lock(&kvm->srcu); 4309 r = kvmppc_book3s_hv_page_fault(vcpu, 4310 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4311 srcu_read_unlock(&kvm->srcu, srcu_idx); 4312 } else if (r == RESUME_PASSTHROUGH) { 4313 if (WARN_ON(xics_on_xive())) 4314 r = H_SUCCESS; 4315 else 4316 r = kvmppc_xics_rm_complete(vcpu, 0); 4317 } 4318 } while (is_kvmppc_resume_guest(r)); 4319 4320 /* Restore userspace EBB and other register values */ 4321 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4322 mtspr(SPRN_EBBHR, ebb_regs[0]); 4323 mtspr(SPRN_EBBRR, ebb_regs[1]); 4324 mtspr(SPRN_BESCR, ebb_regs[2]); 4325 mtspr(SPRN_TAR, user_tar); 4326 mtspr(SPRN_FSCR, current->thread.fscr); 4327 } 4328 mtspr(SPRN_VRSAVE, user_vrsave); 4329 4330 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4331 atomic_dec(&kvm->arch.vcpus_running); 4332 return r; 4333 } 4334 4335 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4336 int shift, int sllp) 4337 { 4338 (*sps)->page_shift = shift; 4339 (*sps)->slb_enc = sllp; 4340 (*sps)->enc[0].page_shift = shift; 4341 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4342 /* 4343 * Add 16MB MPSS support (may get filtered out by userspace) 4344 */ 4345 if (shift != 24) { 4346 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4347 if (penc != -1) { 4348 (*sps)->enc[1].page_shift = 24; 4349 (*sps)->enc[1].pte_enc = penc; 4350 } 4351 } 4352 (*sps)++; 4353 } 4354 4355 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4356 struct kvm_ppc_smmu_info *info) 4357 { 4358 struct kvm_ppc_one_seg_page_size *sps; 4359 4360 /* 4361 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4362 * POWER7 doesn't support keys for instruction accesses, 4363 * POWER8 and POWER9 do. 4364 */ 4365 info->data_keys = 32; 4366 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4367 4368 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4369 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4370 info->slb_size = 32; 4371 4372 /* We only support these sizes for now, and no muti-size segments */ 4373 sps = &info->sps[0]; 4374 kvmppc_add_seg_page_size(&sps, 12, 0); 4375 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4376 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4377 4378 /* If running as a nested hypervisor, we don't support HPT guests */ 4379 if (kvmhv_on_pseries()) 4380 info->flags |= KVM_PPC_NO_HASH; 4381 4382 return 0; 4383 } 4384 4385 /* 4386 * Get (and clear) the dirty memory log for a memory slot. 4387 */ 4388 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4389 struct kvm_dirty_log *log) 4390 { 4391 struct kvm_memslots *slots; 4392 struct kvm_memory_slot *memslot; 4393 int i, r; 4394 unsigned long n; 4395 unsigned long *buf, *p; 4396 struct kvm_vcpu *vcpu; 4397 4398 mutex_lock(&kvm->slots_lock); 4399 4400 r = -EINVAL; 4401 if (log->slot >= KVM_USER_MEM_SLOTS) 4402 goto out; 4403 4404 slots = kvm_memslots(kvm); 4405 memslot = id_to_memslot(slots, log->slot); 4406 r = -ENOENT; 4407 if (!memslot || !memslot->dirty_bitmap) 4408 goto out; 4409 4410 /* 4411 * Use second half of bitmap area because both HPT and radix 4412 * accumulate bits in the first half. 4413 */ 4414 n = kvm_dirty_bitmap_bytes(memslot); 4415 buf = memslot->dirty_bitmap + n / sizeof(long); 4416 memset(buf, 0, n); 4417 4418 if (kvm_is_radix(kvm)) 4419 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4420 else 4421 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4422 if (r) 4423 goto out; 4424 4425 /* 4426 * We accumulate dirty bits in the first half of the 4427 * memslot's dirty_bitmap area, for when pages are paged 4428 * out or modified by the host directly. Pick up these 4429 * bits and add them to the map. 4430 */ 4431 p = memslot->dirty_bitmap; 4432 for (i = 0; i < n / sizeof(long); ++i) 4433 buf[i] |= xchg(&p[i], 0); 4434 4435 /* Harvest dirty bits from VPA and DTL updates */ 4436 /* Note: we never modify the SLB shadow buffer areas */ 4437 kvm_for_each_vcpu(i, vcpu, kvm) { 4438 spin_lock(&vcpu->arch.vpa_update_lock); 4439 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4440 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4441 spin_unlock(&vcpu->arch.vpa_update_lock); 4442 } 4443 4444 r = -EFAULT; 4445 if (copy_to_user(log->dirty_bitmap, buf, n)) 4446 goto out; 4447 4448 r = 0; 4449 out: 4450 mutex_unlock(&kvm->slots_lock); 4451 return r; 4452 } 4453 4454 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4455 { 4456 vfree(slot->arch.rmap); 4457 slot->arch.rmap = NULL; 4458 } 4459 4460 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4461 struct kvm_memory_slot *slot, 4462 const struct kvm_userspace_memory_region *mem, 4463 enum kvm_mr_change change) 4464 { 4465 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4466 4467 if (change == KVM_MR_CREATE) { 4468 slot->arch.rmap = vzalloc(array_size(npages, 4469 sizeof(*slot->arch.rmap))); 4470 if (!slot->arch.rmap) 4471 return -ENOMEM; 4472 } 4473 4474 return 0; 4475 } 4476 4477 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4478 const struct kvm_userspace_memory_region *mem, 4479 const struct kvm_memory_slot *old, 4480 const struct kvm_memory_slot *new, 4481 enum kvm_mr_change change) 4482 { 4483 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4484 4485 /* 4486 * If we are making a new memslot, it might make 4487 * some address that was previously cached as emulated 4488 * MMIO be no longer emulated MMIO, so invalidate 4489 * all the caches of emulated MMIO translations. 4490 */ 4491 if (npages) 4492 atomic64_inc(&kvm->arch.mmio_update); 4493 4494 /* 4495 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4496 * have already called kvm_arch_flush_shadow_memslot() to 4497 * flush shadow mappings. For KVM_MR_CREATE we have no 4498 * previous mappings. So the only case to handle is 4499 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4500 * has been changed. 4501 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4502 * to get rid of any THP PTEs in the partition-scoped page tables 4503 * so we can track dirtiness at the page level; we flush when 4504 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4505 * using THP PTEs. 4506 */ 4507 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4508 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4509 kvmppc_radix_flush_memslot(kvm, old); 4510 /* 4511 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4512 */ 4513 if (!kvm->arch.secure_guest) 4514 return; 4515 4516 switch (change) { 4517 case KVM_MR_CREATE: 4518 if (kvmppc_uvmem_slot_init(kvm, new)) 4519 return; 4520 uv_register_mem_slot(kvm->arch.lpid, 4521 new->base_gfn << PAGE_SHIFT, 4522 new->npages * PAGE_SIZE, 4523 0, new->id); 4524 break; 4525 case KVM_MR_DELETE: 4526 uv_unregister_mem_slot(kvm->arch.lpid, old->id); 4527 kvmppc_uvmem_slot_free(kvm, old); 4528 break; 4529 default: 4530 /* TODO: Handle KVM_MR_MOVE */ 4531 break; 4532 } 4533 } 4534 4535 /* 4536 * Update LPCR values in kvm->arch and in vcores. 4537 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4538 * of kvm->arch.lpcr update). 4539 */ 4540 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4541 { 4542 long int i; 4543 u32 cores_done = 0; 4544 4545 if ((kvm->arch.lpcr & mask) == lpcr) 4546 return; 4547 4548 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4549 4550 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4551 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4552 if (!vc) 4553 continue; 4554 spin_lock(&vc->lock); 4555 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4556 spin_unlock(&vc->lock); 4557 if (++cores_done >= kvm->arch.online_vcores) 4558 break; 4559 } 4560 } 4561 4562 void kvmppc_setup_partition_table(struct kvm *kvm) 4563 { 4564 unsigned long dw0, dw1; 4565 4566 if (!kvm_is_radix(kvm)) { 4567 /* PS field - page size for VRMA */ 4568 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4569 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4570 /* HTABSIZE and HTABORG fields */ 4571 dw0 |= kvm->arch.sdr1; 4572 4573 /* Second dword as set by userspace */ 4574 dw1 = kvm->arch.process_table; 4575 } else { 4576 dw0 = PATB_HR | radix__get_tree_size() | 4577 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4578 dw1 = PATB_GR | kvm->arch.process_table; 4579 } 4580 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4581 } 4582 4583 /* 4584 * Set up HPT (hashed page table) and RMA (real-mode area). 4585 * Must be called with kvm->arch.mmu_setup_lock held. 4586 */ 4587 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4588 { 4589 int err = 0; 4590 struct kvm *kvm = vcpu->kvm; 4591 unsigned long hva; 4592 struct kvm_memory_slot *memslot; 4593 struct vm_area_struct *vma; 4594 unsigned long lpcr = 0, senc; 4595 unsigned long psize, porder; 4596 int srcu_idx; 4597 4598 /* Allocate hashed page table (if not done already) and reset it */ 4599 if (!kvm->arch.hpt.virt) { 4600 int order = KVM_DEFAULT_HPT_ORDER; 4601 struct kvm_hpt_info info; 4602 4603 err = kvmppc_allocate_hpt(&info, order); 4604 /* If we get here, it means userspace didn't specify a 4605 * size explicitly. So, try successively smaller 4606 * sizes if the default failed. */ 4607 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4608 err = kvmppc_allocate_hpt(&info, order); 4609 4610 if (err < 0) { 4611 pr_err("KVM: Couldn't alloc HPT\n"); 4612 goto out; 4613 } 4614 4615 kvmppc_set_hpt(kvm, &info); 4616 } 4617 4618 /* Look up the memslot for guest physical address 0 */ 4619 srcu_idx = srcu_read_lock(&kvm->srcu); 4620 memslot = gfn_to_memslot(kvm, 0); 4621 4622 /* We must have some memory at 0 by now */ 4623 err = -EINVAL; 4624 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4625 goto out_srcu; 4626 4627 /* Look up the VMA for the start of this memory slot */ 4628 hva = memslot->userspace_addr; 4629 mmap_read_lock(kvm->mm); 4630 vma = find_vma(kvm->mm, hva); 4631 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4632 goto up_out; 4633 4634 psize = vma_kernel_pagesize(vma); 4635 4636 mmap_read_unlock(kvm->mm); 4637 4638 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4639 if (psize >= 0x1000000) 4640 psize = 0x1000000; 4641 else if (psize >= 0x10000) 4642 psize = 0x10000; 4643 else 4644 psize = 0x1000; 4645 porder = __ilog2(psize); 4646 4647 senc = slb_pgsize_encoding(psize); 4648 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4649 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4650 /* Create HPTEs in the hash page table for the VRMA */ 4651 kvmppc_map_vrma(vcpu, memslot, porder); 4652 4653 /* Update VRMASD field in the LPCR */ 4654 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4655 /* the -4 is to account for senc values starting at 0x10 */ 4656 lpcr = senc << (LPCR_VRMASD_SH - 4); 4657 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4658 } 4659 4660 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4661 smp_wmb(); 4662 err = 0; 4663 out_srcu: 4664 srcu_read_unlock(&kvm->srcu, srcu_idx); 4665 out: 4666 return err; 4667 4668 up_out: 4669 mmap_read_unlock(kvm->mm); 4670 goto out_srcu; 4671 } 4672 4673 /* 4674 * Must be called with kvm->arch.mmu_setup_lock held and 4675 * mmu_ready = 0 and no vcpus running. 4676 */ 4677 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4678 { 4679 if (nesting_enabled(kvm)) 4680 kvmhv_release_all_nested(kvm); 4681 kvmppc_rmap_reset(kvm); 4682 kvm->arch.process_table = 0; 4683 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4684 spin_lock(&kvm->mmu_lock); 4685 kvm->arch.radix = 0; 4686 spin_unlock(&kvm->mmu_lock); 4687 kvmppc_free_radix(kvm); 4688 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4689 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4690 return 0; 4691 } 4692 4693 /* 4694 * Must be called with kvm->arch.mmu_setup_lock held and 4695 * mmu_ready = 0 and no vcpus running. 4696 */ 4697 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4698 { 4699 int err; 4700 4701 err = kvmppc_init_vm_radix(kvm); 4702 if (err) 4703 return err; 4704 kvmppc_rmap_reset(kvm); 4705 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4706 spin_lock(&kvm->mmu_lock); 4707 kvm->arch.radix = 1; 4708 spin_unlock(&kvm->mmu_lock); 4709 kvmppc_free_hpt(&kvm->arch.hpt); 4710 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4711 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4712 return 0; 4713 } 4714 4715 #ifdef CONFIG_KVM_XICS 4716 /* 4717 * Allocate a per-core structure for managing state about which cores are 4718 * running in the host versus the guest and for exchanging data between 4719 * real mode KVM and CPU running in the host. 4720 * This is only done for the first VM. 4721 * The allocated structure stays even if all VMs have stopped. 4722 * It is only freed when the kvm-hv module is unloaded. 4723 * It's OK for this routine to fail, we just don't support host 4724 * core operations like redirecting H_IPI wakeups. 4725 */ 4726 void kvmppc_alloc_host_rm_ops(void) 4727 { 4728 struct kvmppc_host_rm_ops *ops; 4729 unsigned long l_ops; 4730 int cpu, core; 4731 int size; 4732 4733 /* Not the first time here ? */ 4734 if (kvmppc_host_rm_ops_hv != NULL) 4735 return; 4736 4737 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4738 if (!ops) 4739 return; 4740 4741 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4742 ops->rm_core = kzalloc(size, GFP_KERNEL); 4743 4744 if (!ops->rm_core) { 4745 kfree(ops); 4746 return; 4747 } 4748 4749 cpus_read_lock(); 4750 4751 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4752 if (!cpu_online(cpu)) 4753 continue; 4754 4755 core = cpu >> threads_shift; 4756 ops->rm_core[core].rm_state.in_host = 1; 4757 } 4758 4759 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4760 4761 /* 4762 * Make the contents of the kvmppc_host_rm_ops structure visible 4763 * to other CPUs before we assign it to the global variable. 4764 * Do an atomic assignment (no locks used here), but if someone 4765 * beats us to it, just free our copy and return. 4766 */ 4767 smp_wmb(); 4768 l_ops = (unsigned long) ops; 4769 4770 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4771 cpus_read_unlock(); 4772 kfree(ops->rm_core); 4773 kfree(ops); 4774 return; 4775 } 4776 4777 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4778 "ppc/kvm_book3s:prepare", 4779 kvmppc_set_host_core, 4780 kvmppc_clear_host_core); 4781 cpus_read_unlock(); 4782 } 4783 4784 void kvmppc_free_host_rm_ops(void) 4785 { 4786 if (kvmppc_host_rm_ops_hv) { 4787 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4788 kfree(kvmppc_host_rm_ops_hv->rm_core); 4789 kfree(kvmppc_host_rm_ops_hv); 4790 kvmppc_host_rm_ops_hv = NULL; 4791 } 4792 } 4793 #endif 4794 4795 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4796 { 4797 unsigned long lpcr, lpid; 4798 char buf[32]; 4799 int ret; 4800 4801 mutex_init(&kvm->arch.uvmem_lock); 4802 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4803 mutex_init(&kvm->arch.mmu_setup_lock); 4804 4805 /* Allocate the guest's logical partition ID */ 4806 4807 lpid = kvmppc_alloc_lpid(); 4808 if ((long)lpid < 0) 4809 return -ENOMEM; 4810 kvm->arch.lpid = lpid; 4811 4812 kvmppc_alloc_host_rm_ops(); 4813 4814 kvmhv_vm_nested_init(kvm); 4815 4816 /* 4817 * Since we don't flush the TLB when tearing down a VM, 4818 * and this lpid might have previously been used, 4819 * make sure we flush on each core before running the new VM. 4820 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4821 * does this flush for us. 4822 */ 4823 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4824 cpumask_setall(&kvm->arch.need_tlb_flush); 4825 4826 /* Start out with the default set of hcalls enabled */ 4827 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4828 sizeof(kvm->arch.enabled_hcalls)); 4829 4830 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4831 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4832 4833 /* Init LPCR for virtual RMA mode */ 4834 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4835 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4836 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4837 lpcr &= LPCR_PECE | LPCR_LPES; 4838 } else { 4839 lpcr = 0; 4840 } 4841 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4842 LPCR_VPM0 | LPCR_VPM1; 4843 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4844 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4845 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4846 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4847 lpcr |= LPCR_ONL; 4848 /* 4849 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4850 * Set HVICE bit to enable hypervisor virtualization interrupts. 4851 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4852 * be unnecessary but better safe than sorry in case we re-enable 4853 * EE in HV mode with this LPCR still set) 4854 */ 4855 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4856 lpcr &= ~LPCR_VPM0; 4857 lpcr |= LPCR_HVICE | LPCR_HEIC; 4858 4859 /* 4860 * If xive is enabled, we route 0x500 interrupts directly 4861 * to the guest. 4862 */ 4863 if (xics_on_xive()) 4864 lpcr |= LPCR_LPES; 4865 } 4866 4867 /* 4868 * If the host uses radix, the guest starts out as radix. 4869 */ 4870 if (radix_enabled()) { 4871 kvm->arch.radix = 1; 4872 kvm->arch.mmu_ready = 1; 4873 lpcr &= ~LPCR_VPM1; 4874 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4875 ret = kvmppc_init_vm_radix(kvm); 4876 if (ret) { 4877 kvmppc_free_lpid(kvm->arch.lpid); 4878 return ret; 4879 } 4880 kvmppc_setup_partition_table(kvm); 4881 } 4882 4883 kvm->arch.lpcr = lpcr; 4884 4885 /* Initialization for future HPT resizes */ 4886 kvm->arch.resize_hpt = NULL; 4887 4888 /* 4889 * Work out how many sets the TLB has, for the use of 4890 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4891 */ 4892 if (radix_enabled()) 4893 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4894 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4895 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4896 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4897 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4898 else 4899 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4900 4901 /* 4902 * Track that we now have a HV mode VM active. This blocks secondary 4903 * CPU threads from coming online. 4904 * On POWER9, we only need to do this if the "indep_threads_mode" 4905 * module parameter has been set to N. 4906 */ 4907 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4908 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4909 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4910 kvm->arch.threads_indep = true; 4911 } else { 4912 kvm->arch.threads_indep = indep_threads_mode; 4913 } 4914 } 4915 if (!kvm->arch.threads_indep) 4916 kvm_hv_vm_activated(); 4917 4918 /* 4919 * Initialize smt_mode depending on processor. 4920 * POWER8 and earlier have to use "strict" threading, where 4921 * all vCPUs in a vcore have to run on the same (sub)core, 4922 * whereas on POWER9 the threads can each run a different 4923 * guest. 4924 */ 4925 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4926 kvm->arch.smt_mode = threads_per_subcore; 4927 else 4928 kvm->arch.smt_mode = 1; 4929 kvm->arch.emul_smt_mode = 1; 4930 4931 /* 4932 * Create a debugfs directory for the VM 4933 */ 4934 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4935 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4936 kvmppc_mmu_debugfs_init(kvm); 4937 if (radix_enabled()) 4938 kvmhv_radix_debugfs_init(kvm); 4939 4940 return 0; 4941 } 4942 4943 static void kvmppc_free_vcores(struct kvm *kvm) 4944 { 4945 long int i; 4946 4947 for (i = 0; i < KVM_MAX_VCORES; ++i) 4948 kfree(kvm->arch.vcores[i]); 4949 kvm->arch.online_vcores = 0; 4950 } 4951 4952 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4953 { 4954 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4955 4956 if (!kvm->arch.threads_indep) 4957 kvm_hv_vm_deactivated(); 4958 4959 kvmppc_free_vcores(kvm); 4960 4961 4962 if (kvm_is_radix(kvm)) 4963 kvmppc_free_radix(kvm); 4964 else 4965 kvmppc_free_hpt(&kvm->arch.hpt); 4966 4967 /* Perform global invalidation and return lpid to the pool */ 4968 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4969 if (nesting_enabled(kvm)) 4970 kvmhv_release_all_nested(kvm); 4971 kvm->arch.process_table = 0; 4972 if (kvm->arch.secure_guest) 4973 uv_svm_terminate(kvm->arch.lpid); 4974 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4975 } 4976 4977 kvmppc_free_lpid(kvm->arch.lpid); 4978 4979 kvmppc_free_pimap(kvm); 4980 } 4981 4982 /* We don't need to emulate any privileged instructions or dcbz */ 4983 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 4984 unsigned int inst, int *advance) 4985 { 4986 return EMULATE_FAIL; 4987 } 4988 4989 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4990 ulong spr_val) 4991 { 4992 return EMULATE_FAIL; 4993 } 4994 4995 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4996 ulong *spr_val) 4997 { 4998 return EMULATE_FAIL; 4999 } 5000 5001 static int kvmppc_core_check_processor_compat_hv(void) 5002 { 5003 if (cpu_has_feature(CPU_FTR_HVMODE) && 5004 cpu_has_feature(CPU_FTR_ARCH_206)) 5005 return 0; 5006 5007 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5008 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5009 return 0; 5010 5011 return -EIO; 5012 } 5013 5014 #ifdef CONFIG_KVM_XICS 5015 5016 void kvmppc_free_pimap(struct kvm *kvm) 5017 { 5018 kfree(kvm->arch.pimap); 5019 } 5020 5021 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5022 { 5023 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5024 } 5025 5026 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5027 { 5028 struct irq_desc *desc; 5029 struct kvmppc_irq_map *irq_map; 5030 struct kvmppc_passthru_irqmap *pimap; 5031 struct irq_chip *chip; 5032 int i, rc = 0; 5033 5034 if (!kvm_irq_bypass) 5035 return 1; 5036 5037 desc = irq_to_desc(host_irq); 5038 if (!desc) 5039 return -EIO; 5040 5041 mutex_lock(&kvm->lock); 5042 5043 pimap = kvm->arch.pimap; 5044 if (pimap == NULL) { 5045 /* First call, allocate structure to hold IRQ map */ 5046 pimap = kvmppc_alloc_pimap(); 5047 if (pimap == NULL) { 5048 mutex_unlock(&kvm->lock); 5049 return -ENOMEM; 5050 } 5051 kvm->arch.pimap = pimap; 5052 } 5053 5054 /* 5055 * For now, we only support interrupts for which the EOI operation 5056 * is an OPAL call followed by a write to XIRR, since that's 5057 * what our real-mode EOI code does, or a XIVE interrupt 5058 */ 5059 chip = irq_data_get_irq_chip(&desc->irq_data); 5060 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5061 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5062 host_irq, guest_gsi); 5063 mutex_unlock(&kvm->lock); 5064 return -ENOENT; 5065 } 5066 5067 /* 5068 * See if we already have an entry for this guest IRQ number. 5069 * If it's mapped to a hardware IRQ number, that's an error, 5070 * otherwise re-use this entry. 5071 */ 5072 for (i = 0; i < pimap->n_mapped; i++) { 5073 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5074 if (pimap->mapped[i].r_hwirq) { 5075 mutex_unlock(&kvm->lock); 5076 return -EINVAL; 5077 } 5078 break; 5079 } 5080 } 5081 5082 if (i == KVMPPC_PIRQ_MAPPED) { 5083 mutex_unlock(&kvm->lock); 5084 return -EAGAIN; /* table is full */ 5085 } 5086 5087 irq_map = &pimap->mapped[i]; 5088 5089 irq_map->v_hwirq = guest_gsi; 5090 irq_map->desc = desc; 5091 5092 /* 5093 * Order the above two stores before the next to serialize with 5094 * the KVM real mode handler. 5095 */ 5096 smp_wmb(); 5097 irq_map->r_hwirq = desc->irq_data.hwirq; 5098 5099 if (i == pimap->n_mapped) 5100 pimap->n_mapped++; 5101 5102 if (xics_on_xive()) 5103 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5104 else 5105 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5106 if (rc) 5107 irq_map->r_hwirq = 0; 5108 5109 mutex_unlock(&kvm->lock); 5110 5111 return 0; 5112 } 5113 5114 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5115 { 5116 struct irq_desc *desc; 5117 struct kvmppc_passthru_irqmap *pimap; 5118 int i, rc = 0; 5119 5120 if (!kvm_irq_bypass) 5121 return 0; 5122 5123 desc = irq_to_desc(host_irq); 5124 if (!desc) 5125 return -EIO; 5126 5127 mutex_lock(&kvm->lock); 5128 if (!kvm->arch.pimap) 5129 goto unlock; 5130 5131 pimap = kvm->arch.pimap; 5132 5133 for (i = 0; i < pimap->n_mapped; i++) { 5134 if (guest_gsi == pimap->mapped[i].v_hwirq) 5135 break; 5136 } 5137 5138 if (i == pimap->n_mapped) { 5139 mutex_unlock(&kvm->lock); 5140 return -ENODEV; 5141 } 5142 5143 if (xics_on_xive()) 5144 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5145 else 5146 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5147 5148 /* invalidate the entry (what do do on error from the above ?) */ 5149 pimap->mapped[i].r_hwirq = 0; 5150 5151 /* 5152 * We don't free this structure even when the count goes to 5153 * zero. The structure is freed when we destroy the VM. 5154 */ 5155 unlock: 5156 mutex_unlock(&kvm->lock); 5157 return rc; 5158 } 5159 5160 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5161 struct irq_bypass_producer *prod) 5162 { 5163 int ret = 0; 5164 struct kvm_kernel_irqfd *irqfd = 5165 container_of(cons, struct kvm_kernel_irqfd, consumer); 5166 5167 irqfd->producer = prod; 5168 5169 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5170 if (ret) 5171 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5172 prod->irq, irqfd->gsi, ret); 5173 5174 return ret; 5175 } 5176 5177 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5178 struct irq_bypass_producer *prod) 5179 { 5180 int ret; 5181 struct kvm_kernel_irqfd *irqfd = 5182 container_of(cons, struct kvm_kernel_irqfd, consumer); 5183 5184 irqfd->producer = NULL; 5185 5186 /* 5187 * When producer of consumer is unregistered, we change back to 5188 * default external interrupt handling mode - KVM real mode 5189 * will switch back to host. 5190 */ 5191 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5192 if (ret) 5193 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5194 prod->irq, irqfd->gsi, ret); 5195 } 5196 #endif 5197 5198 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5199 unsigned int ioctl, unsigned long arg) 5200 { 5201 struct kvm *kvm __maybe_unused = filp->private_data; 5202 void __user *argp = (void __user *)arg; 5203 long r; 5204 5205 switch (ioctl) { 5206 5207 case KVM_PPC_ALLOCATE_HTAB: { 5208 u32 htab_order; 5209 5210 r = -EFAULT; 5211 if (get_user(htab_order, (u32 __user *)argp)) 5212 break; 5213 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5214 if (r) 5215 break; 5216 r = 0; 5217 break; 5218 } 5219 5220 case KVM_PPC_GET_HTAB_FD: { 5221 struct kvm_get_htab_fd ghf; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5225 break; 5226 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5227 break; 5228 } 5229 5230 case KVM_PPC_RESIZE_HPT_PREPARE: { 5231 struct kvm_ppc_resize_hpt rhpt; 5232 5233 r = -EFAULT; 5234 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5235 break; 5236 5237 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5238 break; 5239 } 5240 5241 case KVM_PPC_RESIZE_HPT_COMMIT: { 5242 struct kvm_ppc_resize_hpt rhpt; 5243 5244 r = -EFAULT; 5245 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5246 break; 5247 5248 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5249 break; 5250 } 5251 5252 default: 5253 r = -ENOTTY; 5254 } 5255 5256 return r; 5257 } 5258 5259 /* 5260 * List of hcall numbers to enable by default. 5261 * For compatibility with old userspace, we enable by default 5262 * all hcalls that were implemented before the hcall-enabling 5263 * facility was added. Note this list should not include H_RTAS. 5264 */ 5265 static unsigned int default_hcall_list[] = { 5266 H_REMOVE, 5267 H_ENTER, 5268 H_READ, 5269 H_PROTECT, 5270 H_BULK_REMOVE, 5271 H_GET_TCE, 5272 H_PUT_TCE, 5273 H_SET_DABR, 5274 H_SET_XDABR, 5275 H_CEDE, 5276 H_PROD, 5277 H_CONFER, 5278 H_REGISTER_VPA, 5279 #ifdef CONFIG_KVM_XICS 5280 H_EOI, 5281 H_CPPR, 5282 H_IPI, 5283 H_IPOLL, 5284 H_XIRR, 5285 H_XIRR_X, 5286 #endif 5287 0 5288 }; 5289 5290 static void init_default_hcalls(void) 5291 { 5292 int i; 5293 unsigned int hcall; 5294 5295 for (i = 0; default_hcall_list[i]; ++i) { 5296 hcall = default_hcall_list[i]; 5297 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5298 __set_bit(hcall / 4, default_enabled_hcalls); 5299 } 5300 } 5301 5302 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5303 { 5304 unsigned long lpcr; 5305 int radix; 5306 int err; 5307 5308 /* If not on a POWER9, reject it */ 5309 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5310 return -ENODEV; 5311 5312 /* If any unknown flags set, reject it */ 5313 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5314 return -EINVAL; 5315 5316 /* GR (guest radix) bit in process_table field must match */ 5317 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5318 if (!!(cfg->process_table & PATB_GR) != radix) 5319 return -EINVAL; 5320 5321 /* Process table size field must be reasonable, i.e. <= 24 */ 5322 if ((cfg->process_table & PRTS_MASK) > 24) 5323 return -EINVAL; 5324 5325 /* We can change a guest to/from radix now, if the host is radix */ 5326 if (radix && !radix_enabled()) 5327 return -EINVAL; 5328 5329 /* If we're a nested hypervisor, we currently only support radix */ 5330 if (kvmhv_on_pseries() && !radix) 5331 return -EINVAL; 5332 5333 mutex_lock(&kvm->arch.mmu_setup_lock); 5334 if (radix != kvm_is_radix(kvm)) { 5335 if (kvm->arch.mmu_ready) { 5336 kvm->arch.mmu_ready = 0; 5337 /* order mmu_ready vs. vcpus_running */ 5338 smp_mb(); 5339 if (atomic_read(&kvm->arch.vcpus_running)) { 5340 kvm->arch.mmu_ready = 1; 5341 err = -EBUSY; 5342 goto out_unlock; 5343 } 5344 } 5345 if (radix) 5346 err = kvmppc_switch_mmu_to_radix(kvm); 5347 else 5348 err = kvmppc_switch_mmu_to_hpt(kvm); 5349 if (err) 5350 goto out_unlock; 5351 } 5352 5353 kvm->arch.process_table = cfg->process_table; 5354 kvmppc_setup_partition_table(kvm); 5355 5356 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5357 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5358 err = 0; 5359 5360 out_unlock: 5361 mutex_unlock(&kvm->arch.mmu_setup_lock); 5362 return err; 5363 } 5364 5365 static int kvmhv_enable_nested(struct kvm *kvm) 5366 { 5367 if (!nested) 5368 return -EPERM; 5369 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5370 return -ENODEV; 5371 5372 /* kvm == NULL means the caller is testing if the capability exists */ 5373 if (kvm) 5374 kvm->arch.nested_enable = true; 5375 return 0; 5376 } 5377 5378 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5379 int size) 5380 { 5381 int rc = -EINVAL; 5382 5383 if (kvmhv_vcpu_is_radix(vcpu)) { 5384 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5385 5386 if (rc > 0) 5387 rc = -EINVAL; 5388 } 5389 5390 /* For now quadrants are the only way to access nested guest memory */ 5391 if (rc && vcpu->arch.nested) 5392 rc = -EAGAIN; 5393 5394 return rc; 5395 } 5396 5397 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5398 int size) 5399 { 5400 int rc = -EINVAL; 5401 5402 if (kvmhv_vcpu_is_radix(vcpu)) { 5403 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5404 5405 if (rc > 0) 5406 rc = -EINVAL; 5407 } 5408 5409 /* For now quadrants are the only way to access nested guest memory */ 5410 if (rc && vcpu->arch.nested) 5411 rc = -EAGAIN; 5412 5413 return rc; 5414 } 5415 5416 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5417 { 5418 unpin_vpa(kvm, vpa); 5419 vpa->gpa = 0; 5420 vpa->pinned_addr = NULL; 5421 vpa->dirty = false; 5422 vpa->update_pending = 0; 5423 } 5424 5425 /* 5426 * Enable a guest to become a secure VM, or test whether 5427 * that could be enabled. 5428 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5429 * tested (kvm == NULL) or enabled (kvm != NULL). 5430 */ 5431 static int kvmhv_enable_svm(struct kvm *kvm) 5432 { 5433 if (!kvmppc_uvmem_available()) 5434 return -EINVAL; 5435 if (kvm) 5436 kvm->arch.svm_enabled = 1; 5437 return 0; 5438 } 5439 5440 /* 5441 * IOCTL handler to turn off secure mode of guest 5442 * 5443 * - Release all device pages 5444 * - Issue ucall to terminate the guest on the UV side 5445 * - Unpin the VPA pages. 5446 * - Reinit the partition scoped page tables 5447 */ 5448 static int kvmhv_svm_off(struct kvm *kvm) 5449 { 5450 struct kvm_vcpu *vcpu; 5451 int mmu_was_ready; 5452 int srcu_idx; 5453 int ret = 0; 5454 int i; 5455 5456 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5457 return ret; 5458 5459 mutex_lock(&kvm->arch.mmu_setup_lock); 5460 mmu_was_ready = kvm->arch.mmu_ready; 5461 if (kvm->arch.mmu_ready) { 5462 kvm->arch.mmu_ready = 0; 5463 /* order mmu_ready vs. vcpus_running */ 5464 smp_mb(); 5465 if (atomic_read(&kvm->arch.vcpus_running)) { 5466 kvm->arch.mmu_ready = 1; 5467 ret = -EBUSY; 5468 goto out; 5469 } 5470 } 5471 5472 srcu_idx = srcu_read_lock(&kvm->srcu); 5473 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5474 struct kvm_memory_slot *memslot; 5475 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5476 5477 if (!slots) 5478 continue; 5479 5480 kvm_for_each_memslot(memslot, slots) { 5481 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5482 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5483 } 5484 } 5485 srcu_read_unlock(&kvm->srcu, srcu_idx); 5486 5487 ret = uv_svm_terminate(kvm->arch.lpid); 5488 if (ret != U_SUCCESS) { 5489 ret = -EINVAL; 5490 goto out; 5491 } 5492 5493 /* 5494 * When secure guest is reset, all the guest pages are sent 5495 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5496 * chance to run and unpin their VPA pages. Unpinning of all 5497 * VPA pages is done here explicitly so that VPA pages 5498 * can be migrated to the secure side. 5499 * 5500 * This is required to for the secure SMP guest to reboot 5501 * correctly. 5502 */ 5503 kvm_for_each_vcpu(i, vcpu, kvm) { 5504 spin_lock(&vcpu->arch.vpa_update_lock); 5505 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5506 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5507 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5508 spin_unlock(&vcpu->arch.vpa_update_lock); 5509 } 5510 5511 kvmppc_setup_partition_table(kvm); 5512 kvm->arch.secure_guest = 0; 5513 kvm->arch.mmu_ready = mmu_was_ready; 5514 out: 5515 mutex_unlock(&kvm->arch.mmu_setup_lock); 5516 return ret; 5517 } 5518 5519 static struct kvmppc_ops kvm_ops_hv = { 5520 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5521 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5522 .get_one_reg = kvmppc_get_one_reg_hv, 5523 .set_one_reg = kvmppc_set_one_reg_hv, 5524 .vcpu_load = kvmppc_core_vcpu_load_hv, 5525 .vcpu_put = kvmppc_core_vcpu_put_hv, 5526 .inject_interrupt = kvmppc_inject_interrupt_hv, 5527 .set_msr = kvmppc_set_msr_hv, 5528 .vcpu_run = kvmppc_vcpu_run_hv, 5529 .vcpu_create = kvmppc_core_vcpu_create_hv, 5530 .vcpu_free = kvmppc_core_vcpu_free_hv, 5531 .check_requests = kvmppc_core_check_requests_hv, 5532 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5533 .flush_memslot = kvmppc_core_flush_memslot_hv, 5534 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5535 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5536 .unmap_hva_range = kvm_unmap_hva_range_hv, 5537 .age_hva = kvm_age_hva_hv, 5538 .test_age_hva = kvm_test_age_hva_hv, 5539 .set_spte_hva = kvm_set_spte_hva_hv, 5540 .free_memslot = kvmppc_core_free_memslot_hv, 5541 .init_vm = kvmppc_core_init_vm_hv, 5542 .destroy_vm = kvmppc_core_destroy_vm_hv, 5543 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5544 .emulate_op = kvmppc_core_emulate_op_hv, 5545 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5546 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5547 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5548 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5549 .hcall_implemented = kvmppc_hcall_impl_hv, 5550 #ifdef CONFIG_KVM_XICS 5551 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5552 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5553 #endif 5554 .configure_mmu = kvmhv_configure_mmu, 5555 .get_rmmu_info = kvmhv_get_rmmu_info, 5556 .set_smt_mode = kvmhv_set_smt_mode, 5557 .enable_nested = kvmhv_enable_nested, 5558 .load_from_eaddr = kvmhv_load_from_eaddr, 5559 .store_to_eaddr = kvmhv_store_to_eaddr, 5560 .enable_svm = kvmhv_enable_svm, 5561 .svm_off = kvmhv_svm_off, 5562 }; 5563 5564 static int kvm_init_subcore_bitmap(void) 5565 { 5566 int i, j; 5567 int nr_cores = cpu_nr_cores(); 5568 struct sibling_subcore_state *sibling_subcore_state; 5569 5570 for (i = 0; i < nr_cores; i++) { 5571 int first_cpu = i * threads_per_core; 5572 int node = cpu_to_node(first_cpu); 5573 5574 /* Ignore if it is already allocated. */ 5575 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5576 continue; 5577 5578 sibling_subcore_state = 5579 kzalloc_node(sizeof(struct sibling_subcore_state), 5580 GFP_KERNEL, node); 5581 if (!sibling_subcore_state) 5582 return -ENOMEM; 5583 5584 5585 for (j = 0; j < threads_per_core; j++) { 5586 int cpu = first_cpu + j; 5587 5588 paca_ptrs[cpu]->sibling_subcore_state = 5589 sibling_subcore_state; 5590 } 5591 } 5592 return 0; 5593 } 5594 5595 static int kvmppc_radix_possible(void) 5596 { 5597 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5598 } 5599 5600 static int kvmppc_book3s_init_hv(void) 5601 { 5602 int r; 5603 5604 if (!tlbie_capable) { 5605 pr_err("KVM-HV: Host does not support TLBIE\n"); 5606 return -ENODEV; 5607 } 5608 5609 /* 5610 * FIXME!! Do we need to check on all cpus ? 5611 */ 5612 r = kvmppc_core_check_processor_compat_hv(); 5613 if (r < 0) 5614 return -ENODEV; 5615 5616 r = kvmhv_nested_init(); 5617 if (r) 5618 return r; 5619 5620 r = kvm_init_subcore_bitmap(); 5621 if (r) 5622 return r; 5623 5624 /* 5625 * We need a way of accessing the XICS interrupt controller, 5626 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5627 * indirectly, via OPAL. 5628 */ 5629 #ifdef CONFIG_SMP 5630 if (!xics_on_xive() && !kvmhv_on_pseries() && 5631 !local_paca->kvm_hstate.xics_phys) { 5632 struct device_node *np; 5633 5634 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5635 if (!np) { 5636 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5637 return -ENODEV; 5638 } 5639 /* presence of intc confirmed - node can be dropped again */ 5640 of_node_put(np); 5641 } 5642 #endif 5643 5644 kvm_ops_hv.owner = THIS_MODULE; 5645 kvmppc_hv_ops = &kvm_ops_hv; 5646 5647 init_default_hcalls(); 5648 5649 init_vcore_lists(); 5650 5651 r = kvmppc_mmu_hv_init(); 5652 if (r) 5653 return r; 5654 5655 if (kvmppc_radix_possible()) 5656 r = kvmppc_radix_init(); 5657 5658 /* 5659 * POWER9 chips before version 2.02 can't have some threads in 5660 * HPT mode and some in radix mode on the same core. 5661 */ 5662 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5663 unsigned int pvr = mfspr(SPRN_PVR); 5664 if ((pvr >> 16) == PVR_POWER9 && 5665 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5666 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5667 no_mixing_hpt_and_radix = true; 5668 } 5669 5670 r = kvmppc_uvmem_init(); 5671 if (r < 0) 5672 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5673 5674 return r; 5675 } 5676 5677 static void kvmppc_book3s_exit_hv(void) 5678 { 5679 kvmppc_uvmem_free(); 5680 kvmppc_free_host_rm_ops(); 5681 if (kvmppc_radix_possible()) 5682 kvmppc_radix_exit(); 5683 kvmppc_hv_ops = NULL; 5684 kvmhv_nested_exit(); 5685 } 5686 5687 module_init(kvmppc_book3s_init_hv); 5688 module_exit(kvmppc_book3s_exit_hv); 5689 MODULE_LICENSE("GPL"); 5690 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5691 MODULE_ALIAS("devname:kvm"); 5692