1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/kvm_ppc.h> 15 #include <asm/kvm_book3s.h> 16 #include <asm/page.h> 17 #include <asm/mmu.h> 18 #include <asm/pgtable.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 22 /* 23 * Supported radix tree geometry. 24 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 25 * for a page size of 64k or 4k. 26 */ 27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 28 29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 30 struct kvmppc_pte *gpte, bool data, bool iswrite) 31 { 32 struct kvm *kvm = vcpu->kvm; 33 u32 pid; 34 int ret, level, ps; 35 __be64 prte, rpte; 36 unsigned long ptbl; 37 unsigned long root, pte, index; 38 unsigned long rts, bits, offset; 39 unsigned long gpa; 40 unsigned long proc_tbl_size; 41 42 /* Work out effective PID */ 43 switch (eaddr >> 62) { 44 case 0: 45 pid = vcpu->arch.pid; 46 break; 47 case 3: 48 pid = 0; 49 break; 50 default: 51 return -EINVAL; 52 } 53 proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12); 54 if (pid * 16 >= proc_tbl_size) 55 return -EINVAL; 56 57 /* Read partition table to find root of tree for effective PID */ 58 ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16); 59 ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte)); 60 if (ret) 61 return ret; 62 63 root = be64_to_cpu(prte); 64 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 65 ((root & RTS2_MASK) >> RTS2_SHIFT); 66 bits = root & RPDS_MASK; 67 root = root & RPDB_MASK; 68 69 /* P9 DD1 interprets RTS (radix tree size) differently */ 70 offset = rts + 31; 71 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 72 offset -= 3; 73 74 /* current implementations only support 52-bit space */ 75 if (offset != 52) 76 return -EINVAL; 77 78 for (level = 3; level >= 0; --level) { 79 if (level && bits != p9_supported_radix_bits[level]) 80 return -EINVAL; 81 if (level == 0 && !(bits == 5 || bits == 9)) 82 return -EINVAL; 83 offset -= bits; 84 index = (eaddr >> offset) & ((1UL << bits) - 1); 85 /* check that low bits of page table base are zero */ 86 if (root & ((1UL << (bits + 3)) - 1)) 87 return -EINVAL; 88 ret = kvm_read_guest(kvm, root + index * 8, 89 &rpte, sizeof(rpte)); 90 if (ret) 91 return ret; 92 pte = __be64_to_cpu(rpte); 93 if (!(pte & _PAGE_PRESENT)) 94 return -ENOENT; 95 if (pte & _PAGE_PTE) 96 break; 97 bits = pte & 0x1f; 98 root = pte & 0x0fffffffffffff00ul; 99 } 100 /* need a leaf at lowest level; 512GB pages not supported */ 101 if (level < 0 || level == 3) 102 return -EINVAL; 103 104 /* offset is now log base 2 of the page size */ 105 gpa = pte & 0x01fffffffffff000ul; 106 if (gpa & ((1ul << offset) - 1)) 107 return -EINVAL; 108 gpa += eaddr & ((1ul << offset) - 1); 109 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 110 if (offset == mmu_psize_defs[ps].shift) 111 break; 112 gpte->page_size = ps; 113 114 gpte->eaddr = eaddr; 115 gpte->raddr = gpa; 116 117 /* Work out permissions */ 118 gpte->may_read = !!(pte & _PAGE_READ); 119 gpte->may_write = !!(pte & _PAGE_WRITE); 120 gpte->may_execute = !!(pte & _PAGE_EXEC); 121 if (kvmppc_get_msr(vcpu) & MSR_PR) { 122 if (pte & _PAGE_PRIVILEGED) { 123 gpte->may_read = 0; 124 gpte->may_write = 0; 125 gpte->may_execute = 0; 126 } 127 } else { 128 if (!(pte & _PAGE_PRIVILEGED)) { 129 /* Check AMR/IAMR to see if strict mode is in force */ 130 if (vcpu->arch.amr & (1ul << 62)) 131 gpte->may_read = 0; 132 if (vcpu->arch.amr & (1ul << 63)) 133 gpte->may_write = 0; 134 if (vcpu->arch.iamr & (1ul << 62)) 135 gpte->may_execute = 0; 136 } 137 } 138 139 return 0; 140 } 141 142 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 143 unsigned int pshift) 144 { 145 unsigned long psize = PAGE_SIZE; 146 147 if (pshift) 148 psize = 1UL << pshift; 149 150 addr &= ~(psize - 1); 151 radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize); 152 } 153 154 static void kvmppc_radix_flush_pwc(struct kvm *kvm) 155 { 156 radix__flush_pwc_lpid(kvm->arch.lpid); 157 } 158 159 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 160 unsigned long clr, unsigned long set, 161 unsigned long addr, unsigned int shift) 162 { 163 unsigned long old = 0; 164 165 if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) && 166 pte_present(*ptep)) { 167 /* have to invalidate it first */ 168 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0); 169 kvmppc_radix_tlbie_page(kvm, addr, shift); 170 set |= _PAGE_PRESENT; 171 old &= _PAGE_PRESENT; 172 } 173 return __radix_pte_update(ptep, clr, set) | old; 174 } 175 176 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 177 pte_t *ptep, pte_t pte) 178 { 179 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 180 } 181 182 static struct kmem_cache *kvm_pte_cache; 183 static struct kmem_cache *kvm_pmd_cache; 184 185 static pte_t *kvmppc_pte_alloc(void) 186 { 187 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 188 } 189 190 static void kvmppc_pte_free(pte_t *ptep) 191 { 192 kmem_cache_free(kvm_pte_cache, ptep); 193 } 194 195 /* Like pmd_huge() and pmd_large(), but works regardless of config options */ 196 static inline int pmd_is_leaf(pmd_t pmd) 197 { 198 return !!(pmd_val(pmd) & _PAGE_PTE); 199 } 200 201 static pmd_t *kvmppc_pmd_alloc(void) 202 { 203 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); 204 } 205 206 static void kvmppc_pmd_free(pmd_t *pmdp) 207 { 208 kmem_cache_free(kvm_pmd_cache, pmdp); 209 } 210 211 static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, 212 unsigned long gpa, unsigned int shift) 213 214 { 215 unsigned long page_size = 1ul << shift; 216 unsigned long old; 217 218 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); 219 kvmppc_radix_tlbie_page(kvm, gpa, shift); 220 if (old & _PAGE_DIRTY) { 221 unsigned long gfn = gpa >> PAGE_SHIFT; 222 struct kvm_memory_slot *memslot; 223 224 memslot = gfn_to_memslot(kvm, gfn); 225 if (memslot && memslot->dirty_bitmap) 226 kvmppc_update_dirty_map(memslot, gfn, page_size); 227 } 228 } 229 230 /* 231 * kvmppc_free_p?d are used to free existing page tables, and recursively 232 * descend and clear and free children. 233 * Callers are responsible for flushing the PWC. 234 * 235 * When page tables are being unmapped/freed as part of page fault path 236 * (full == false), ptes are not expected. There is code to unmap them 237 * and emit a warning if encountered, but there may already be data 238 * corruption due to the unexpected mappings. 239 */ 240 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full) 241 { 242 if (full) { 243 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 244 } else { 245 pte_t *p = pte; 246 unsigned long it; 247 248 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { 249 if (pte_val(*p) == 0) 250 continue; 251 WARN_ON_ONCE(1); 252 kvmppc_unmap_pte(kvm, p, 253 pte_pfn(*p) << PAGE_SHIFT, 254 PAGE_SHIFT); 255 } 256 } 257 258 kvmppc_pte_free(pte); 259 } 260 261 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full) 262 { 263 unsigned long im; 264 pmd_t *p = pmd; 265 266 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { 267 if (!pmd_present(*p)) 268 continue; 269 if (pmd_is_leaf(*p)) { 270 if (full) { 271 pmd_clear(p); 272 } else { 273 WARN_ON_ONCE(1); 274 kvmppc_unmap_pte(kvm, (pte_t *)p, 275 pte_pfn(*(pte_t *)p) << PAGE_SHIFT, 276 PMD_SHIFT); 277 } 278 } else { 279 pte_t *pte; 280 281 pte = pte_offset_map(p, 0); 282 kvmppc_unmap_free_pte(kvm, pte, full); 283 pmd_clear(p); 284 } 285 } 286 kvmppc_pmd_free(pmd); 287 } 288 289 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud) 290 { 291 unsigned long iu; 292 pud_t *p = pud; 293 294 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { 295 if (!pud_present(*p)) 296 continue; 297 if (pud_huge(*p)) { 298 pud_clear(p); 299 } else { 300 pmd_t *pmd; 301 302 pmd = pmd_offset(p, 0); 303 kvmppc_unmap_free_pmd(kvm, pmd, true); 304 pud_clear(p); 305 } 306 } 307 pud_free(kvm->mm, pud); 308 } 309 310 void kvmppc_free_radix(struct kvm *kvm) 311 { 312 unsigned long ig; 313 pgd_t *pgd; 314 315 if (!kvm->arch.pgtable) 316 return; 317 pgd = kvm->arch.pgtable; 318 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 319 pud_t *pud; 320 321 if (!pgd_present(*pgd)) 322 continue; 323 pud = pud_offset(pgd, 0); 324 kvmppc_unmap_free_pud(kvm, pud); 325 pgd_clear(pgd); 326 } 327 pgd_free(kvm->mm, kvm->arch.pgtable); 328 kvm->arch.pgtable = NULL; 329 } 330 331 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, 332 unsigned long gpa) 333 { 334 pte_t *pte = pte_offset_kernel(pmd, 0); 335 336 /* 337 * Clearing the pmd entry then flushing the PWC ensures that the pte 338 * page no longer be cached by the MMU, so can be freed without 339 * flushing the PWC again. 340 */ 341 pmd_clear(pmd); 342 kvmppc_radix_flush_pwc(kvm); 343 344 kvmppc_unmap_free_pte(kvm, pte, false); 345 } 346 347 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, 348 unsigned long gpa) 349 { 350 pmd_t *pmd = pmd_offset(pud, 0); 351 352 /* 353 * Clearing the pud entry then flushing the PWC ensures that the pmd 354 * page and any children pte pages will no longer be cached by the MMU, 355 * so can be freed without flushing the PWC again. 356 */ 357 pud_clear(pud); 358 kvmppc_radix_flush_pwc(kvm); 359 360 kvmppc_unmap_free_pmd(kvm, pmd, false); 361 } 362 363 /* 364 * There are a number of bits which may differ between different faults to 365 * the same partition scope entry. RC bits, in the course of cleaning and 366 * aging. And the write bit can change, either the access could have been 367 * upgraded, or a read fault could happen concurrently with a write fault 368 * that sets those bits first. 369 */ 370 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) 371 372 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa, 373 unsigned int level, unsigned long mmu_seq) 374 { 375 pgd_t *pgd; 376 pud_t *pud, *new_pud = NULL; 377 pmd_t *pmd, *new_pmd = NULL; 378 pte_t *ptep, *new_ptep = NULL; 379 int ret; 380 381 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 382 pgd = kvm->arch.pgtable + pgd_index(gpa); 383 pud = NULL; 384 if (pgd_present(*pgd)) 385 pud = pud_offset(pgd, gpa); 386 else 387 new_pud = pud_alloc_one(kvm->mm, gpa); 388 389 pmd = NULL; 390 if (pud && pud_present(*pud) && !pud_huge(*pud)) 391 pmd = pmd_offset(pud, gpa); 392 else if (level <= 1) 393 new_pmd = kvmppc_pmd_alloc(); 394 395 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 396 new_ptep = kvmppc_pte_alloc(); 397 398 /* Check if we might have been invalidated; let the guest retry if so */ 399 spin_lock(&kvm->mmu_lock); 400 ret = -EAGAIN; 401 if (mmu_notifier_retry(kvm, mmu_seq)) 402 goto out_unlock; 403 404 /* Now traverse again under the lock and change the tree */ 405 ret = -ENOMEM; 406 if (pgd_none(*pgd)) { 407 if (!new_pud) 408 goto out_unlock; 409 pgd_populate(kvm->mm, pgd, new_pud); 410 new_pud = NULL; 411 } 412 pud = pud_offset(pgd, gpa); 413 if (pud_huge(*pud)) { 414 unsigned long hgpa = gpa & PUD_MASK; 415 416 /* Check if we raced and someone else has set the same thing */ 417 if (level == 2) { 418 if (pud_raw(*pud) == pte_raw(pte)) { 419 ret = 0; 420 goto out_unlock; 421 } 422 /* Valid 1GB page here already, add our extra bits */ 423 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & 424 PTE_BITS_MUST_MATCH); 425 kvmppc_radix_update_pte(kvm, (pte_t *)pud, 426 0, pte_val(pte), hgpa, PUD_SHIFT); 427 ret = 0; 428 goto out_unlock; 429 } 430 /* 431 * If we raced with another CPU which has just put 432 * a 1GB pte in after we saw a pmd page, try again. 433 */ 434 if (!new_pmd) { 435 ret = -EAGAIN; 436 goto out_unlock; 437 } 438 /* Valid 1GB page here already, remove it */ 439 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT); 440 } 441 if (level == 2) { 442 if (!pud_none(*pud)) { 443 /* 444 * There's a page table page here, but we wanted to 445 * install a large page, so remove and free the page 446 * table page. 447 */ 448 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa); 449 } 450 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); 451 ret = 0; 452 goto out_unlock; 453 } 454 if (pud_none(*pud)) { 455 if (!new_pmd) 456 goto out_unlock; 457 pud_populate(kvm->mm, pud, new_pmd); 458 new_pmd = NULL; 459 } 460 pmd = pmd_offset(pud, gpa); 461 if (pmd_is_leaf(*pmd)) { 462 unsigned long lgpa = gpa & PMD_MASK; 463 464 /* Check if we raced and someone else has set the same thing */ 465 if (level == 1) { 466 if (pmd_raw(*pmd) == pte_raw(pte)) { 467 ret = 0; 468 goto out_unlock; 469 } 470 /* Valid 2MB page here already, add our extra bits */ 471 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & 472 PTE_BITS_MUST_MATCH); 473 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 474 0, pte_val(pte), lgpa, PMD_SHIFT); 475 ret = 0; 476 goto out_unlock; 477 } 478 479 /* 480 * If we raced with another CPU which has just put 481 * a 2MB pte in after we saw a pte page, try again. 482 */ 483 if (!new_ptep) { 484 ret = -EAGAIN; 485 goto out_unlock; 486 } 487 /* Valid 2MB page here already, remove it */ 488 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT); 489 } 490 if (level == 1) { 491 if (!pmd_none(*pmd)) { 492 /* 493 * There's a page table page here, but we wanted to 494 * install a large page, so remove and free the page 495 * table page. 496 */ 497 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa); 498 } 499 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 500 ret = 0; 501 goto out_unlock; 502 } 503 if (pmd_none(*pmd)) { 504 if (!new_ptep) 505 goto out_unlock; 506 pmd_populate(kvm->mm, pmd, new_ptep); 507 new_ptep = NULL; 508 } 509 ptep = pte_offset_kernel(pmd, gpa); 510 if (pte_present(*ptep)) { 511 /* Check if someone else set the same thing */ 512 if (pte_raw(*ptep) == pte_raw(pte)) { 513 ret = 0; 514 goto out_unlock; 515 } 516 /* Valid page here already, add our extra bits */ 517 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & 518 PTE_BITS_MUST_MATCH); 519 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); 520 ret = 0; 521 goto out_unlock; 522 } 523 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 524 ret = 0; 525 526 out_unlock: 527 spin_unlock(&kvm->mmu_lock); 528 if (new_pud) 529 pud_free(kvm->mm, new_pud); 530 if (new_pmd) 531 kvmppc_pmd_free(new_pmd); 532 if (new_ptep) 533 kvmppc_pte_free(new_ptep); 534 return ret; 535 } 536 537 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 538 unsigned long ea, unsigned long dsisr) 539 { 540 struct kvm *kvm = vcpu->kvm; 541 unsigned long mmu_seq, pte_size; 542 unsigned long gpa, gfn, hva, pfn; 543 struct kvm_memory_slot *memslot; 544 struct page *page = NULL; 545 long ret; 546 bool writing; 547 bool upgrade_write = false; 548 bool *upgrade_p = &upgrade_write; 549 pte_t pte, *ptep; 550 unsigned long pgflags; 551 unsigned int shift, level; 552 553 /* Check for unusual errors */ 554 if (dsisr & DSISR_UNSUPP_MMU) { 555 pr_err("KVM: Got unsupported MMU fault\n"); 556 return -EFAULT; 557 } 558 if (dsisr & DSISR_BADACCESS) { 559 /* Reflect to the guest as DSI */ 560 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 561 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 562 return RESUME_GUEST; 563 } 564 565 /* Translate the logical address and get the page */ 566 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 567 gpa &= ~0xF000000000000000ul; 568 gfn = gpa >> PAGE_SHIFT; 569 if (!(dsisr & DSISR_PRTABLE_FAULT)) 570 gpa |= ea & 0xfff; 571 memslot = gfn_to_memslot(kvm, gfn); 572 573 /* No memslot means it's an emulated MMIO region */ 574 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 575 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 576 DSISR_SET_RC)) { 577 /* 578 * Bad address in guest page table tree, or other 579 * unusual error - reflect it to the guest as DSI. 580 */ 581 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 582 return RESUME_GUEST; 583 } 584 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 585 dsisr & DSISR_ISSTORE); 586 } 587 588 writing = (dsisr & DSISR_ISSTORE) != 0; 589 if (memslot->flags & KVM_MEM_READONLY) { 590 if (writing) { 591 /* give the guest a DSI */ 592 dsisr = DSISR_ISSTORE | DSISR_PROTFAULT; 593 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 594 return RESUME_GUEST; 595 } 596 upgrade_p = NULL; 597 } 598 599 if (dsisr & DSISR_SET_RC) { 600 /* 601 * Need to set an R or C bit in the 2nd-level tables; 602 * since we are just helping out the hardware here, 603 * it is sufficient to do what the hardware does. 604 */ 605 pgflags = _PAGE_ACCESSED; 606 if (writing) 607 pgflags |= _PAGE_DIRTY; 608 /* 609 * We are walking the secondary page table here. We can do this 610 * without disabling irq. 611 */ 612 spin_lock(&kvm->mmu_lock); 613 ptep = __find_linux_pte(kvm->arch.pgtable, 614 gpa, NULL, &shift); 615 if (ptep && pte_present(*ptep) && 616 (!writing || pte_write(*ptep))) { 617 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, 618 gpa, shift); 619 dsisr &= ~DSISR_SET_RC; 620 } 621 spin_unlock(&kvm->mmu_lock); 622 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 623 DSISR_PROTFAULT | DSISR_SET_RC))) 624 return RESUME_GUEST; 625 } 626 627 /* used to check for invalidations in progress */ 628 mmu_seq = kvm->mmu_notifier_seq; 629 smp_rmb(); 630 631 /* 632 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 633 * do it with !atomic && !async, which is how we call it. 634 * We always ask for write permission since the common case 635 * is that the page is writable. 636 */ 637 hva = gfn_to_hva_memslot(memslot, gfn); 638 if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) { 639 pfn = page_to_pfn(page); 640 upgrade_write = true; 641 } else { 642 /* Call KVM generic code to do the slow-path check */ 643 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 644 writing, upgrade_p); 645 if (is_error_noslot_pfn(pfn)) 646 return -EFAULT; 647 page = NULL; 648 if (pfn_valid(pfn)) { 649 page = pfn_to_page(pfn); 650 if (PageReserved(page)) 651 page = NULL; 652 } 653 } 654 655 /* See if we can insert a 1GB or 2MB large PTE here */ 656 level = 0; 657 if (page && PageCompound(page)) { 658 pte_size = PAGE_SIZE << compound_order(compound_head(page)); 659 if (pte_size >= PUD_SIZE && 660 (gpa & (PUD_SIZE - PAGE_SIZE)) == 661 (hva & (PUD_SIZE - PAGE_SIZE))) { 662 level = 2; 663 pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1); 664 } else if (pte_size >= PMD_SIZE && 665 (gpa & (PMD_SIZE - PAGE_SIZE)) == 666 (hva & (PMD_SIZE - PAGE_SIZE))) { 667 level = 1; 668 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1); 669 } 670 } 671 672 /* 673 * Compute the PTE value that we need to insert. 674 */ 675 if (page) { 676 pgflags = _PAGE_READ | _PAGE_EXEC | _PAGE_PRESENT | _PAGE_PTE | 677 _PAGE_ACCESSED; 678 if (writing || upgrade_write) 679 pgflags |= _PAGE_WRITE | _PAGE_DIRTY; 680 pte = pfn_pte(pfn, __pgprot(pgflags)); 681 } else { 682 /* 683 * Read the PTE from the process' radix tree and use that 684 * so we get the attribute bits. 685 */ 686 local_irq_disable(); 687 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); 688 pte = *ptep; 689 local_irq_enable(); 690 if (shift == PUD_SHIFT && 691 (gpa & (PUD_SIZE - PAGE_SIZE)) == 692 (hva & (PUD_SIZE - PAGE_SIZE))) { 693 level = 2; 694 } else if (shift == PMD_SHIFT && 695 (gpa & (PMD_SIZE - PAGE_SIZE)) == 696 (hva & (PMD_SIZE - PAGE_SIZE))) { 697 level = 1; 698 } else if (shift && shift != PAGE_SHIFT) { 699 /* Adjust PFN */ 700 unsigned long mask = (1ul << shift) - PAGE_SIZE; 701 pte = __pte(pte_val(pte) | (hva & mask)); 702 } 703 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); 704 if (writing || upgrade_write) { 705 if (pte_val(pte) & _PAGE_WRITE) 706 pte = __pte(pte_val(pte) | _PAGE_DIRTY); 707 } else { 708 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); 709 } 710 } 711 712 /* Allocate space in the tree and write the PTE */ 713 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); 714 715 if (page) { 716 if (!ret && (pte_val(pte) & _PAGE_WRITE)) 717 set_page_dirty_lock(page); 718 put_page(page); 719 } 720 721 if (ret == 0 || ret == -EAGAIN) 722 ret = RESUME_GUEST; 723 return ret; 724 } 725 726 /* Called with kvm->lock held */ 727 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 728 unsigned long gfn) 729 { 730 pte_t *ptep; 731 unsigned long gpa = gfn << PAGE_SHIFT; 732 unsigned int shift; 733 unsigned long old; 734 735 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 736 if (ptep && pte_present(*ptep)) { 737 old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0, 738 gpa, shift); 739 kvmppc_radix_tlbie_page(kvm, gpa, shift); 740 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) { 741 unsigned long npages = 1; 742 if (shift) 743 npages = 1ul << (shift - PAGE_SHIFT); 744 kvmppc_update_dirty_map(memslot, gfn, npages); 745 } 746 } 747 return 0; 748 } 749 750 /* Called with kvm->lock held */ 751 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 752 unsigned long gfn) 753 { 754 pte_t *ptep; 755 unsigned long gpa = gfn << PAGE_SHIFT; 756 unsigned int shift; 757 int ref = 0; 758 759 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 760 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 761 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 762 gpa, shift); 763 /* XXX need to flush tlb here? */ 764 ref = 1; 765 } 766 return ref; 767 } 768 769 /* Called with kvm->lock held */ 770 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 771 unsigned long gfn) 772 { 773 pte_t *ptep; 774 unsigned long gpa = gfn << PAGE_SHIFT; 775 unsigned int shift; 776 int ref = 0; 777 778 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 779 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 780 ref = 1; 781 return ref; 782 } 783 784 /* Returns the number of PAGE_SIZE pages that are dirty */ 785 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 786 struct kvm_memory_slot *memslot, int pagenum) 787 { 788 unsigned long gfn = memslot->base_gfn + pagenum; 789 unsigned long gpa = gfn << PAGE_SHIFT; 790 pte_t *ptep; 791 unsigned int shift; 792 int ret = 0; 793 794 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 795 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 796 ret = 1; 797 if (shift) 798 ret = 1 << (shift - PAGE_SHIFT); 799 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 800 gpa, shift); 801 kvmppc_radix_tlbie_page(kvm, gpa, shift); 802 } 803 return ret; 804 } 805 806 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 807 struct kvm_memory_slot *memslot, unsigned long *map) 808 { 809 unsigned long i, j; 810 int npages; 811 812 for (i = 0; i < memslot->npages; i = j) { 813 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 814 815 /* 816 * Note that if npages > 0 then i must be a multiple of npages, 817 * since huge pages are only used to back the guest at guest 818 * real addresses that are a multiple of their size. 819 * Since we have at most one PTE covering any given guest 820 * real address, if npages > 1 we can skip to i + npages. 821 */ 822 j = i + 1; 823 if (npages) { 824 set_dirty_bits(map, i, npages); 825 j = i + npages; 826 } 827 } 828 return 0; 829 } 830 831 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 832 int psize, int *indexp) 833 { 834 if (!mmu_psize_defs[psize].shift) 835 return; 836 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 837 (mmu_psize_defs[psize].ap << 29); 838 ++(*indexp); 839 } 840 841 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 842 { 843 int i; 844 845 if (!radix_enabled()) 846 return -EINVAL; 847 memset(info, 0, sizeof(*info)); 848 849 /* 4k page size */ 850 info->geometries[0].page_shift = 12; 851 info->geometries[0].level_bits[0] = 9; 852 for (i = 1; i < 4; ++i) 853 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 854 /* 64k page size */ 855 info->geometries[1].page_shift = 16; 856 for (i = 0; i < 4; ++i) 857 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 858 859 i = 0; 860 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 861 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 862 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 863 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 864 865 return 0; 866 } 867 868 int kvmppc_init_vm_radix(struct kvm *kvm) 869 { 870 kvm->arch.pgtable = pgd_alloc(kvm->mm); 871 if (!kvm->arch.pgtable) 872 return -ENOMEM; 873 return 0; 874 } 875 876 static void pte_ctor(void *addr) 877 { 878 memset(addr, 0, RADIX_PTE_TABLE_SIZE); 879 } 880 881 static void pmd_ctor(void *addr) 882 { 883 memset(addr, 0, RADIX_PMD_TABLE_SIZE); 884 } 885 886 int kvmppc_radix_init(void) 887 { 888 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; 889 890 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 891 if (!kvm_pte_cache) 892 return -ENOMEM; 893 894 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; 895 896 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); 897 if (!kvm_pmd_cache) { 898 kmem_cache_destroy(kvm_pte_cache); 899 return -ENOMEM; 900 } 901 902 return 0; 903 } 904 905 void kvmppc_radix_exit(void) 906 { 907 kmem_cache_destroy(kvm_pte_cache); 908 kmem_cache_destroy(kvm_pmd_cache); 909 } 910