1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 
22 /*
23  * Supported radix tree geometry.
24  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
25  * for a page size of 64k or 4k.
26  */
27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
28 
29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
30 			   struct kvmppc_pte *gpte, bool data, bool iswrite)
31 {
32 	struct kvm *kvm = vcpu->kvm;
33 	u32 pid;
34 	int ret, level, ps;
35 	__be64 prte, rpte;
36 	unsigned long ptbl;
37 	unsigned long root, pte, index;
38 	unsigned long rts, bits, offset;
39 	unsigned long gpa;
40 	unsigned long proc_tbl_size;
41 
42 	/* Work out effective PID */
43 	switch (eaddr >> 62) {
44 	case 0:
45 		pid = vcpu->arch.pid;
46 		break;
47 	case 3:
48 		pid = 0;
49 		break;
50 	default:
51 		return -EINVAL;
52 	}
53 	proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
54 	if (pid * 16 >= proc_tbl_size)
55 		return -EINVAL;
56 
57 	/* Read partition table to find root of tree for effective PID */
58 	ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
59 	ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
60 	if (ret)
61 		return ret;
62 
63 	root = be64_to_cpu(prte);
64 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
65 		((root & RTS2_MASK) >> RTS2_SHIFT);
66 	bits = root & RPDS_MASK;
67 	root = root & RPDB_MASK;
68 
69 	/* P9 DD1 interprets RTS (radix tree size) differently */
70 	offset = rts + 31;
71 	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
72 		offset -= 3;
73 
74 	/* current implementations only support 52-bit space */
75 	if (offset != 52)
76 		return -EINVAL;
77 
78 	for (level = 3; level >= 0; --level) {
79 		if (level && bits != p9_supported_radix_bits[level])
80 			return -EINVAL;
81 		if (level == 0 && !(bits == 5 || bits == 9))
82 			return -EINVAL;
83 		offset -= bits;
84 		index = (eaddr >> offset) & ((1UL << bits) - 1);
85 		/* check that low bits of page table base are zero */
86 		if (root & ((1UL << (bits + 3)) - 1))
87 			return -EINVAL;
88 		ret = kvm_read_guest(kvm, root + index * 8,
89 				     &rpte, sizeof(rpte));
90 		if (ret)
91 			return ret;
92 		pte = __be64_to_cpu(rpte);
93 		if (!(pte & _PAGE_PRESENT))
94 			return -ENOENT;
95 		if (pte & _PAGE_PTE)
96 			break;
97 		bits = pte & 0x1f;
98 		root = pte & 0x0fffffffffffff00ul;
99 	}
100 	/* need a leaf at lowest level; 512GB pages not supported */
101 	if (level < 0 || level == 3)
102 		return -EINVAL;
103 
104 	/* offset is now log base 2 of the page size */
105 	gpa = pte & 0x01fffffffffff000ul;
106 	if (gpa & ((1ul << offset) - 1))
107 		return -EINVAL;
108 	gpa += eaddr & ((1ul << offset) - 1);
109 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
110 		if (offset == mmu_psize_defs[ps].shift)
111 			break;
112 	gpte->page_size = ps;
113 
114 	gpte->eaddr = eaddr;
115 	gpte->raddr = gpa;
116 
117 	/* Work out permissions */
118 	gpte->may_read = !!(pte & _PAGE_READ);
119 	gpte->may_write = !!(pte & _PAGE_WRITE);
120 	gpte->may_execute = !!(pte & _PAGE_EXEC);
121 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
122 		if (pte & _PAGE_PRIVILEGED) {
123 			gpte->may_read = 0;
124 			gpte->may_write = 0;
125 			gpte->may_execute = 0;
126 		}
127 	} else {
128 		if (!(pte & _PAGE_PRIVILEGED)) {
129 			/* Check AMR/IAMR to see if strict mode is in force */
130 			if (vcpu->arch.amr & (1ul << 62))
131 				gpte->may_read = 0;
132 			if (vcpu->arch.amr & (1ul << 63))
133 				gpte->may_write = 0;
134 			if (vcpu->arch.iamr & (1ul << 62))
135 				gpte->may_execute = 0;
136 		}
137 	}
138 
139 	return 0;
140 }
141 
142 #ifdef CONFIG_PPC_64K_PAGES
143 #define MMU_BASE_PSIZE	MMU_PAGE_64K
144 #else
145 #define MMU_BASE_PSIZE	MMU_PAGE_4K
146 #endif
147 
148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
149 				    unsigned int pshift)
150 {
151 	int psize = MMU_BASE_PSIZE;
152 
153 	if (pshift >= PUD_SHIFT)
154 		psize = MMU_PAGE_1G;
155 	else if (pshift >= PMD_SHIFT)
156 		psize = MMU_PAGE_2M;
157 	addr &= ~0xfffUL;
158 	addr |= mmu_psize_defs[psize].ap << 5;
159 	asm volatile("ptesync": : :"memory");
160 	asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
161 		     : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
162 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG))
163 		asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
164 			     : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
165 	asm volatile("eieio ; tlbsync ; ptesync": : :"memory");
166 }
167 
168 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned long addr)
169 {
170 	unsigned long rb = 0x2 << PPC_BITLSHIFT(53); /* IS = 2 */
171 
172 	asm volatile("ptesync": : :"memory");
173 	/* RIC=1 PRS=0 R=1 IS=2 */
174 	asm volatile(PPC_TLBIE_5(%0, %1, 1, 0, 1)
175 		     : : "r" (rb), "r" (kvm->arch.lpid) : "memory");
176 	asm volatile("eieio ; tlbsync ; ptesync": : :"memory");
177 }
178 
179 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
180 				      unsigned long clr, unsigned long set,
181 				      unsigned long addr, unsigned int shift)
182 {
183 	unsigned long old = 0;
184 
185 	if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
186 	    pte_present(*ptep)) {
187 		/* have to invalidate it first */
188 		old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
189 		kvmppc_radix_tlbie_page(kvm, addr, shift);
190 		set |= _PAGE_PRESENT;
191 		old &= _PAGE_PRESENT;
192 	}
193 	return __radix_pte_update(ptep, clr, set) | old;
194 }
195 
196 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
197 			     pte_t *ptep, pte_t pte)
198 {
199 	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
200 }
201 
202 static struct kmem_cache *kvm_pte_cache;
203 static struct kmem_cache *kvm_pmd_cache;
204 
205 static pte_t *kvmppc_pte_alloc(void)
206 {
207 	return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
208 }
209 
210 static void kvmppc_pte_free(pte_t *ptep)
211 {
212 	kmem_cache_free(kvm_pte_cache, ptep);
213 }
214 
215 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
216 static inline int pmd_is_leaf(pmd_t pmd)
217 {
218 	return !!(pmd_val(pmd) & _PAGE_PTE);
219 }
220 
221 static pmd_t *kvmppc_pmd_alloc(void)
222 {
223 	return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
224 }
225 
226 static void kvmppc_pmd_free(pmd_t *pmdp)
227 {
228 	kmem_cache_free(kvm_pmd_cache, pmdp);
229 }
230 
231 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
232 			     unsigned int level, unsigned long mmu_seq)
233 {
234 	pgd_t *pgd;
235 	pud_t *pud, *new_pud = NULL;
236 	pmd_t *pmd, *new_pmd = NULL;
237 	pte_t *ptep, *new_ptep = NULL;
238 	unsigned long old;
239 	int ret;
240 
241 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
242 	pgd = kvm->arch.pgtable + pgd_index(gpa);
243 	pud = NULL;
244 	if (pgd_present(*pgd))
245 		pud = pud_offset(pgd, gpa);
246 	else
247 		new_pud = pud_alloc_one(kvm->mm, gpa);
248 
249 	pmd = NULL;
250 	if (pud && pud_present(*pud) && !pud_huge(*pud))
251 		pmd = pmd_offset(pud, gpa);
252 	else if (level <= 1)
253 		new_pmd = kvmppc_pmd_alloc();
254 
255 	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
256 		new_ptep = kvmppc_pte_alloc();
257 
258 	/* Check if we might have been invalidated; let the guest retry if so */
259 	spin_lock(&kvm->mmu_lock);
260 	ret = -EAGAIN;
261 	if (mmu_notifier_retry(kvm, mmu_seq))
262 		goto out_unlock;
263 
264 	/* Now traverse again under the lock and change the tree */
265 	ret = -ENOMEM;
266 	if (pgd_none(*pgd)) {
267 		if (!new_pud)
268 			goto out_unlock;
269 		pgd_populate(kvm->mm, pgd, new_pud);
270 		new_pud = NULL;
271 	}
272 	pud = pud_offset(pgd, gpa);
273 	if (pud_huge(*pud)) {
274 		unsigned long hgpa = gpa & PUD_MASK;
275 
276 		/*
277 		 * If we raced with another CPU which has just put
278 		 * a 1GB pte in after we saw a pmd page, try again.
279 		 */
280 		if (level <= 1 && !new_pmd) {
281 			ret = -EAGAIN;
282 			goto out_unlock;
283 		}
284 		/* Check if we raced and someone else has set the same thing */
285 		if (level == 2 && pud_raw(*pud) == pte_raw(pte)) {
286 			ret = 0;
287 			goto out_unlock;
288 		}
289 		/* Valid 1GB page here already, remove it */
290 		old = kvmppc_radix_update_pte(kvm, (pte_t *)pud,
291 					      ~0UL, 0, hgpa, PUD_SHIFT);
292 		kvmppc_radix_tlbie_page(kvm, hgpa, PUD_SHIFT);
293 		if (old & _PAGE_DIRTY) {
294 			unsigned long gfn = hgpa >> PAGE_SHIFT;
295 			struct kvm_memory_slot *memslot;
296 			memslot = gfn_to_memslot(kvm, gfn);
297 			if (memslot && memslot->dirty_bitmap)
298 				kvmppc_update_dirty_map(memslot,
299 							gfn, PUD_SIZE);
300 		}
301 	}
302 	if (level == 2) {
303 		if (!pud_none(*pud)) {
304 			/*
305 			 * There's a page table page here, but we wanted to
306 			 * install a large page, so remove and free the page
307 			 * table page.  new_pmd will be NULL since level == 2.
308 			 */
309 			new_pmd = pmd_offset(pud, 0);
310 			pud_clear(pud);
311 			kvmppc_radix_flush_pwc(kvm, gpa);
312 		}
313 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
314 		ret = 0;
315 		goto out_unlock;
316 	}
317 	if (pud_none(*pud)) {
318 		if (!new_pmd)
319 			goto out_unlock;
320 		pud_populate(kvm->mm, pud, new_pmd);
321 		new_pmd = NULL;
322 	}
323 	pmd = pmd_offset(pud, gpa);
324 	if (pmd_is_leaf(*pmd)) {
325 		unsigned long lgpa = gpa & PMD_MASK;
326 
327 		/*
328 		 * If we raced with another CPU which has just put
329 		 * a 2MB pte in after we saw a pte page, try again.
330 		 */
331 		if (level == 0 && !new_ptep) {
332 			ret = -EAGAIN;
333 			goto out_unlock;
334 		}
335 		/* Check if we raced and someone else has set the same thing */
336 		if (level == 1 && pmd_raw(*pmd) == pte_raw(pte)) {
337 			ret = 0;
338 			goto out_unlock;
339 		}
340 		/* Valid 2MB page here already, remove it */
341 		old = kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
342 					      ~0UL, 0, lgpa, PMD_SHIFT);
343 		kvmppc_radix_tlbie_page(kvm, lgpa, PMD_SHIFT);
344 		if (old & _PAGE_DIRTY) {
345 			unsigned long gfn = lgpa >> PAGE_SHIFT;
346 			struct kvm_memory_slot *memslot;
347 			memslot = gfn_to_memslot(kvm, gfn);
348 			if (memslot && memslot->dirty_bitmap)
349 				kvmppc_update_dirty_map(memslot,
350 							gfn, PMD_SIZE);
351 		}
352 	}
353 	if (level == 1) {
354 		if (!pmd_none(*pmd)) {
355 			/*
356 			 * There's a page table page here, but we wanted to
357 			 * install a large page, so remove and free the page
358 			 * table page.  new_ptep will be NULL since level == 1.
359 			 */
360 			new_ptep = pte_offset_kernel(pmd, 0);
361 			pmd_clear(pmd);
362 			kvmppc_radix_flush_pwc(kvm, gpa);
363 		}
364 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
365 		ret = 0;
366 		goto out_unlock;
367 	}
368 	if (pmd_none(*pmd)) {
369 		if (!new_ptep)
370 			goto out_unlock;
371 		pmd_populate(kvm->mm, pmd, new_ptep);
372 		new_ptep = NULL;
373 	}
374 	ptep = pte_offset_kernel(pmd, gpa);
375 	if (pte_present(*ptep)) {
376 		/* Check if someone else set the same thing */
377 		if (pte_raw(*ptep) == pte_raw(pte)) {
378 			ret = 0;
379 			goto out_unlock;
380 		}
381 		/* PTE was previously valid, so invalidate it */
382 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
383 					      0, gpa, 0);
384 		kvmppc_radix_tlbie_page(kvm, gpa, 0);
385 		if (old & _PAGE_DIRTY)
386 			mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
387 	}
388 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
389 	ret = 0;
390 
391  out_unlock:
392 	spin_unlock(&kvm->mmu_lock);
393 	if (new_pud)
394 		pud_free(kvm->mm, new_pud);
395 	if (new_pmd)
396 		kvmppc_pmd_free(new_pmd);
397 	if (new_ptep)
398 		kvmppc_pte_free(new_ptep);
399 	return ret;
400 }
401 
402 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
403 				   unsigned long ea, unsigned long dsisr)
404 {
405 	struct kvm *kvm = vcpu->kvm;
406 	unsigned long mmu_seq, pte_size;
407 	unsigned long gpa, gfn, hva, pfn;
408 	struct kvm_memory_slot *memslot;
409 	struct page *page = NULL;
410 	long ret;
411 	bool writing;
412 	bool upgrade_write = false;
413 	bool *upgrade_p = &upgrade_write;
414 	pte_t pte, *ptep;
415 	unsigned long pgflags;
416 	unsigned int shift, level;
417 
418 	/* Check for unusual errors */
419 	if (dsisr & DSISR_UNSUPP_MMU) {
420 		pr_err("KVM: Got unsupported MMU fault\n");
421 		return -EFAULT;
422 	}
423 	if (dsisr & DSISR_BADACCESS) {
424 		/* Reflect to the guest as DSI */
425 		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
426 		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
427 		return RESUME_GUEST;
428 	}
429 
430 	/* Translate the logical address and get the page */
431 	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
432 	gpa &= ~0xF000000000000000ul;
433 	gfn = gpa >> PAGE_SHIFT;
434 	if (!(dsisr & DSISR_PRTABLE_FAULT))
435 		gpa |= ea & 0xfff;
436 	memslot = gfn_to_memslot(kvm, gfn);
437 
438 	/* No memslot means it's an emulated MMIO region */
439 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
440 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
441 			     DSISR_SET_RC)) {
442 			/*
443 			 * Bad address in guest page table tree, or other
444 			 * unusual error - reflect it to the guest as DSI.
445 			 */
446 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
447 			return RESUME_GUEST;
448 		}
449 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
450 					      dsisr & DSISR_ISSTORE);
451 	}
452 
453 	writing = (dsisr & DSISR_ISSTORE) != 0;
454 	if (memslot->flags & KVM_MEM_READONLY) {
455 		if (writing) {
456 			/* give the guest a DSI */
457 			dsisr = DSISR_ISSTORE | DSISR_PROTFAULT;
458 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
459 			return RESUME_GUEST;
460 		}
461 		upgrade_p = NULL;
462 	}
463 
464 	if (dsisr & DSISR_SET_RC) {
465 		/*
466 		 * Need to set an R or C bit in the 2nd-level tables;
467 		 * since we are just helping out the hardware here,
468 		 * it is sufficient to do what the hardware does.
469 		 */
470 		pgflags = _PAGE_ACCESSED;
471 		if (writing)
472 			pgflags |= _PAGE_DIRTY;
473 		/*
474 		 * We are walking the secondary page table here. We can do this
475 		 * without disabling irq.
476 		 */
477 		spin_lock(&kvm->mmu_lock);
478 		ptep = __find_linux_pte(kvm->arch.pgtable,
479 					gpa, NULL, &shift);
480 		if (ptep && pte_present(*ptep) &&
481 		    (!writing || pte_write(*ptep))) {
482 			kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
483 						gpa, shift);
484 			dsisr &= ~DSISR_SET_RC;
485 		}
486 		spin_unlock(&kvm->mmu_lock);
487 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
488 			       DSISR_PROTFAULT | DSISR_SET_RC)))
489 			return RESUME_GUEST;
490 	}
491 
492 	/* used to check for invalidations in progress */
493 	mmu_seq = kvm->mmu_notifier_seq;
494 	smp_rmb();
495 
496 	/*
497 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
498 	 * do it with !atomic && !async, which is how we call it.
499 	 * We always ask for write permission since the common case
500 	 * is that the page is writable.
501 	 */
502 	hva = gfn_to_hva_memslot(memslot, gfn);
503 	if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
504 		pfn = page_to_pfn(page);
505 		upgrade_write = true;
506 	} else {
507 		/* Call KVM generic code to do the slow-path check */
508 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
509 					   writing, upgrade_p);
510 		if (is_error_noslot_pfn(pfn))
511 			return -EFAULT;
512 		page = NULL;
513 		if (pfn_valid(pfn)) {
514 			page = pfn_to_page(pfn);
515 			if (PageReserved(page))
516 				page = NULL;
517 		}
518 	}
519 
520 	/* See if we can insert a 1GB or 2MB large PTE here */
521 	level = 0;
522 	if (page && PageCompound(page)) {
523 		pte_size = PAGE_SIZE << compound_order(compound_head(page));
524 		if (pte_size >= PUD_SIZE &&
525 		    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
526 		    (hva & (PUD_SIZE - PAGE_SIZE))) {
527 			level = 2;
528 			pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1);
529 		} else if (pte_size >= PMD_SIZE &&
530 			   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
531 			   (hva & (PMD_SIZE - PAGE_SIZE))) {
532 			level = 1;
533 			pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
534 		}
535 	}
536 
537 	/*
538 	 * Compute the PTE value that we need to insert.
539 	 */
540 	if (page) {
541 		pgflags = _PAGE_READ | _PAGE_EXEC | _PAGE_PRESENT | _PAGE_PTE |
542 			_PAGE_ACCESSED;
543 		if (writing || upgrade_write)
544 			pgflags |= _PAGE_WRITE | _PAGE_DIRTY;
545 		pte = pfn_pte(pfn, __pgprot(pgflags));
546 	} else {
547 		/*
548 		 * Read the PTE from the process' radix tree and use that
549 		 * so we get the attribute bits.
550 		 */
551 		local_irq_disable();
552 		ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
553 		pte = *ptep;
554 		local_irq_enable();
555 		if (shift == PUD_SHIFT &&
556 		    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
557 		    (hva & (PUD_SIZE - PAGE_SIZE))) {
558 			level = 2;
559 		} else if (shift == PMD_SHIFT &&
560 			   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
561 			   (hva & (PMD_SIZE - PAGE_SIZE))) {
562 			level = 1;
563 		} else if (shift && shift != PAGE_SHIFT) {
564 			/* Adjust PFN */
565 			unsigned long mask = (1ul << shift) - PAGE_SIZE;
566 			pte = __pte(pte_val(pte) | (hva & mask));
567 		}
568 		if (!(writing || upgrade_write))
569 			pte = __pte(pte_val(pte) & ~ _PAGE_WRITE);
570 		pte = __pte(pte_val(pte) | _PAGE_EXEC);
571 	}
572 
573 	/* Allocate space in the tree and write the PTE */
574 	ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
575 
576 	if (page) {
577 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
578 			set_page_dirty_lock(page);
579 		put_page(page);
580 	}
581 
582 	if (ret == 0 || ret == -EAGAIN)
583 		ret = RESUME_GUEST;
584 	return ret;
585 }
586 
587 /* Called with kvm->lock held */
588 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
589 		    unsigned long gfn)
590 {
591 	pte_t *ptep;
592 	unsigned long gpa = gfn << PAGE_SHIFT;
593 	unsigned int shift;
594 	unsigned long old;
595 
596 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
597 	if (ptep && pte_present(*ptep)) {
598 		old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0,
599 					      gpa, shift);
600 		kvmppc_radix_tlbie_page(kvm, gpa, shift);
601 		if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
602 			unsigned long npages = 1;
603 			if (shift)
604 				npages = 1ul << (shift - PAGE_SHIFT);
605 			kvmppc_update_dirty_map(memslot, gfn, npages);
606 		}
607 	}
608 	return 0;
609 }
610 
611 /* Called with kvm->lock held */
612 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
613 		  unsigned long gfn)
614 {
615 	pte_t *ptep;
616 	unsigned long gpa = gfn << PAGE_SHIFT;
617 	unsigned int shift;
618 	int ref = 0;
619 
620 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
621 	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
622 		kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
623 					gpa, shift);
624 		/* XXX need to flush tlb here? */
625 		ref = 1;
626 	}
627 	return ref;
628 }
629 
630 /* Called with kvm->lock held */
631 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
632 		       unsigned long gfn)
633 {
634 	pte_t *ptep;
635 	unsigned long gpa = gfn << PAGE_SHIFT;
636 	unsigned int shift;
637 	int ref = 0;
638 
639 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
640 	if (ptep && pte_present(*ptep) && pte_young(*ptep))
641 		ref = 1;
642 	return ref;
643 }
644 
645 /* Returns the number of PAGE_SIZE pages that are dirty */
646 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
647 				struct kvm_memory_slot *memslot, int pagenum)
648 {
649 	unsigned long gfn = memslot->base_gfn + pagenum;
650 	unsigned long gpa = gfn << PAGE_SHIFT;
651 	pte_t *ptep;
652 	unsigned int shift;
653 	int ret = 0;
654 
655 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
656 	if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
657 		ret = 1;
658 		if (shift)
659 			ret = 1 << (shift - PAGE_SHIFT);
660 		kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
661 					gpa, shift);
662 		kvmppc_radix_tlbie_page(kvm, gpa, shift);
663 	}
664 	return ret;
665 }
666 
667 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
668 			struct kvm_memory_slot *memslot, unsigned long *map)
669 {
670 	unsigned long i, j;
671 	int npages;
672 
673 	for (i = 0; i < memslot->npages; i = j) {
674 		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
675 
676 		/*
677 		 * Note that if npages > 0 then i must be a multiple of npages,
678 		 * since huge pages are only used to back the guest at guest
679 		 * real addresses that are a multiple of their size.
680 		 * Since we have at most one PTE covering any given guest
681 		 * real address, if npages > 1 we can skip to i + npages.
682 		 */
683 		j = i + 1;
684 		if (npages) {
685 			set_dirty_bits(map, i, npages);
686 			j = i + npages;
687 		}
688 	}
689 	return 0;
690 }
691 
692 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
693 				 int psize, int *indexp)
694 {
695 	if (!mmu_psize_defs[psize].shift)
696 		return;
697 	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
698 		(mmu_psize_defs[psize].ap << 29);
699 	++(*indexp);
700 }
701 
702 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
703 {
704 	int i;
705 
706 	if (!radix_enabled())
707 		return -EINVAL;
708 	memset(info, 0, sizeof(*info));
709 
710 	/* 4k page size */
711 	info->geometries[0].page_shift = 12;
712 	info->geometries[0].level_bits[0] = 9;
713 	for (i = 1; i < 4; ++i)
714 		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
715 	/* 64k page size */
716 	info->geometries[1].page_shift = 16;
717 	for (i = 0; i < 4; ++i)
718 		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
719 
720 	i = 0;
721 	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
722 	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
723 	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
724 	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
725 
726 	return 0;
727 }
728 
729 int kvmppc_init_vm_radix(struct kvm *kvm)
730 {
731 	kvm->arch.pgtable = pgd_alloc(kvm->mm);
732 	if (!kvm->arch.pgtable)
733 		return -ENOMEM;
734 	return 0;
735 }
736 
737 void kvmppc_free_radix(struct kvm *kvm)
738 {
739 	unsigned long ig, iu, im;
740 	pte_t *pte;
741 	pmd_t *pmd;
742 	pud_t *pud;
743 	pgd_t *pgd;
744 
745 	if (!kvm->arch.pgtable)
746 		return;
747 	pgd = kvm->arch.pgtable;
748 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
749 		if (!pgd_present(*pgd))
750 			continue;
751 		pud = pud_offset(pgd, 0);
752 		for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
753 			if (!pud_present(*pud))
754 				continue;
755 			if (pud_huge(*pud)) {
756 				pud_clear(pud);
757 				continue;
758 			}
759 			pmd = pmd_offset(pud, 0);
760 			for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
761 				if (pmd_is_leaf(*pmd)) {
762 					pmd_clear(pmd);
763 					continue;
764 				}
765 				if (!pmd_present(*pmd))
766 					continue;
767 				pte = pte_offset_map(pmd, 0);
768 				memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
769 				kvmppc_pte_free(pte);
770 				pmd_clear(pmd);
771 			}
772 			kvmppc_pmd_free(pmd_offset(pud, 0));
773 			pud_clear(pud);
774 		}
775 		pud_free(kvm->mm, pud_offset(pgd, 0));
776 		pgd_clear(pgd);
777 	}
778 	pgd_free(kvm->mm, kvm->arch.pgtable);
779 	kvm->arch.pgtable = NULL;
780 }
781 
782 static void pte_ctor(void *addr)
783 {
784 	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
785 }
786 
787 static void pmd_ctor(void *addr)
788 {
789 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
790 }
791 
792 int kvmppc_radix_init(void)
793 {
794 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
795 
796 	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
797 	if (!kvm_pte_cache)
798 		return -ENOMEM;
799 
800 	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
801 
802 	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
803 	if (!kvm_pmd_cache) {
804 		kmem_cache_destroy(kvm_pte_cache);
805 		return -ENOMEM;
806 	}
807 
808 	return 0;
809 }
810 
811 void kvmppc_radix_exit(void)
812 {
813 	kmem_cache_destroy(kvm_pte_cache);
814 	kmem_cache_destroy(kvm_pmd_cache);
815 }
816