1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/debugfs.h> 16 17 #include <asm/kvm_ppc.h> 18 #include <asm/kvm_book3s.h> 19 #include <asm/page.h> 20 #include <asm/mmu.h> 21 #include <asm/pgtable.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pte-walk.h> 24 25 /* 26 * Supported radix tree geometry. 27 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 28 * for a page size of 64k or 4k. 29 */ 30 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 31 32 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, 33 gva_t eaddr, void *to, void *from, 34 unsigned long n) 35 { 36 int uninitialized_var(old_pid), old_lpid; 37 unsigned long quadrant, ret = n; 38 bool is_load = !!to; 39 40 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ 41 if (kvmhv_on_pseries()) 42 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, 43 __pa(to), __pa(from), n); 44 45 quadrant = 1; 46 if (!pid) 47 quadrant = 2; 48 if (is_load) 49 from = (void *) (eaddr | (quadrant << 62)); 50 else 51 to = (void *) (eaddr | (quadrant << 62)); 52 53 preempt_disable(); 54 55 /* switch the lpid first to avoid running host with unallocated pid */ 56 old_lpid = mfspr(SPRN_LPID); 57 if (old_lpid != lpid) 58 mtspr(SPRN_LPID, lpid); 59 if (quadrant == 1) { 60 old_pid = mfspr(SPRN_PID); 61 if (old_pid != pid) 62 mtspr(SPRN_PID, pid); 63 } 64 isync(); 65 66 pagefault_disable(); 67 if (is_load) 68 ret = raw_copy_from_user(to, from, n); 69 else 70 ret = raw_copy_to_user(to, from, n); 71 pagefault_enable(); 72 73 /* switch the pid first to avoid running host with unallocated pid */ 74 if (quadrant == 1 && pid != old_pid) 75 mtspr(SPRN_PID, old_pid); 76 if (lpid != old_lpid) 77 mtspr(SPRN_LPID, old_lpid); 78 isync(); 79 80 preempt_enable(); 81 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); 85 86 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, 87 void *to, void *from, unsigned long n) 88 { 89 int lpid = vcpu->kvm->arch.lpid; 90 int pid = vcpu->arch.pid; 91 92 /* This would cause a data segment intr so don't allow the access */ 93 if (eaddr & (0x3FFUL << 52)) 94 return -EINVAL; 95 96 /* Should we be using the nested lpid */ 97 if (vcpu->arch.nested) 98 lpid = vcpu->arch.nested->shadow_lpid; 99 100 /* If accessing quadrant 3 then pid is expected to be 0 */ 101 if (((eaddr >> 62) & 0x3) == 0x3) 102 pid = 0; 103 104 eaddr &= ~(0xFFFUL << 52); 105 106 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); 107 } 108 109 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, 110 unsigned long n) 111 { 112 long ret; 113 114 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); 115 if (ret > 0) 116 memset(to + (n - ret), 0, ret); 117 118 return ret; 119 } 120 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); 121 122 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, 123 unsigned long n) 124 { 125 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); 126 } 127 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); 128 129 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, 130 struct kvmppc_pte *gpte, u64 root, 131 u64 *pte_ret_p) 132 { 133 struct kvm *kvm = vcpu->kvm; 134 int ret, level, ps; 135 unsigned long rts, bits, offset, index; 136 u64 pte, base, gpa; 137 __be64 rpte; 138 139 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 140 ((root & RTS2_MASK) >> RTS2_SHIFT); 141 bits = root & RPDS_MASK; 142 base = root & RPDB_MASK; 143 144 offset = rts + 31; 145 146 /* Current implementations only support 52-bit space */ 147 if (offset != 52) 148 return -EINVAL; 149 150 /* Walk each level of the radix tree */ 151 for (level = 3; level >= 0; --level) { 152 u64 addr; 153 /* Check a valid size */ 154 if (level && bits != p9_supported_radix_bits[level]) 155 return -EINVAL; 156 if (level == 0 && !(bits == 5 || bits == 9)) 157 return -EINVAL; 158 offset -= bits; 159 index = (eaddr >> offset) & ((1UL << bits) - 1); 160 /* Check that low bits of page table base are zero */ 161 if (base & ((1UL << (bits + 3)) - 1)) 162 return -EINVAL; 163 /* Read the entry from guest memory */ 164 addr = base + (index * sizeof(rpte)); 165 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); 166 if (ret) { 167 if (pte_ret_p) 168 *pte_ret_p = addr; 169 return ret; 170 } 171 pte = __be64_to_cpu(rpte); 172 if (!(pte & _PAGE_PRESENT)) 173 return -ENOENT; 174 /* Check if a leaf entry */ 175 if (pte & _PAGE_PTE) 176 break; 177 /* Get ready to walk the next level */ 178 base = pte & RPDB_MASK; 179 bits = pte & RPDS_MASK; 180 } 181 182 /* Need a leaf at lowest level; 512GB pages not supported */ 183 if (level < 0 || level == 3) 184 return -EINVAL; 185 186 /* We found a valid leaf PTE */ 187 /* Offset is now log base 2 of the page size */ 188 gpa = pte & 0x01fffffffffff000ul; 189 if (gpa & ((1ul << offset) - 1)) 190 return -EINVAL; 191 gpa |= eaddr & ((1ul << offset) - 1); 192 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 193 if (offset == mmu_psize_defs[ps].shift) 194 break; 195 gpte->page_size = ps; 196 gpte->page_shift = offset; 197 198 gpte->eaddr = eaddr; 199 gpte->raddr = gpa; 200 201 /* Work out permissions */ 202 gpte->may_read = !!(pte & _PAGE_READ); 203 gpte->may_write = !!(pte & _PAGE_WRITE); 204 gpte->may_execute = !!(pte & _PAGE_EXEC); 205 206 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); 207 208 if (pte_ret_p) 209 *pte_ret_p = pte; 210 211 return 0; 212 } 213 214 /* 215 * Used to walk a partition or process table radix tree in guest memory 216 * Note: We exploit the fact that a partition table and a process 217 * table have the same layout, a partition-scoped page table and a 218 * process-scoped page table have the same layout, and the 2nd 219 * doubleword of a partition table entry has the same layout as 220 * the PTCR register. 221 */ 222 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, 223 struct kvmppc_pte *gpte, u64 table, 224 int table_index, u64 *pte_ret_p) 225 { 226 struct kvm *kvm = vcpu->kvm; 227 int ret; 228 unsigned long size, ptbl, root; 229 struct prtb_entry entry; 230 231 if ((table & PRTS_MASK) > 24) 232 return -EINVAL; 233 size = 1ul << ((table & PRTS_MASK) + 12); 234 235 /* Is the table big enough to contain this entry? */ 236 if ((table_index * sizeof(entry)) >= size) 237 return -EINVAL; 238 239 /* Read the table to find the root of the radix tree */ 240 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); 241 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); 242 if (ret) 243 return ret; 244 245 /* Root is stored in the first double word */ 246 root = be64_to_cpu(entry.prtb0); 247 248 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); 249 } 250 251 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 252 struct kvmppc_pte *gpte, bool data, bool iswrite) 253 { 254 u32 pid; 255 u64 pte; 256 int ret; 257 258 /* Work out effective PID */ 259 switch (eaddr >> 62) { 260 case 0: 261 pid = vcpu->arch.pid; 262 break; 263 case 3: 264 pid = 0; 265 break; 266 default: 267 return -EINVAL; 268 } 269 270 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, 271 vcpu->kvm->arch.process_table, pid, &pte); 272 if (ret) 273 return ret; 274 275 /* Check privilege (applies only to process scoped translations) */ 276 if (kvmppc_get_msr(vcpu) & MSR_PR) { 277 if (pte & _PAGE_PRIVILEGED) { 278 gpte->may_read = 0; 279 gpte->may_write = 0; 280 gpte->may_execute = 0; 281 } 282 } else { 283 if (!(pte & _PAGE_PRIVILEGED)) { 284 /* Check AMR/IAMR to see if strict mode is in force */ 285 if (vcpu->arch.amr & (1ul << 62)) 286 gpte->may_read = 0; 287 if (vcpu->arch.amr & (1ul << 63)) 288 gpte->may_write = 0; 289 if (vcpu->arch.iamr & (1ul << 62)) 290 gpte->may_execute = 0; 291 } 292 } 293 294 return 0; 295 } 296 297 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 298 unsigned int pshift, unsigned int lpid) 299 { 300 unsigned long psize = PAGE_SIZE; 301 int psi; 302 long rc; 303 unsigned long rb; 304 305 if (pshift) 306 psize = 1UL << pshift; 307 else 308 pshift = PAGE_SHIFT; 309 310 addr &= ~(psize - 1); 311 312 if (!kvmhv_on_pseries()) { 313 radix__flush_tlb_lpid_page(lpid, addr, psize); 314 return; 315 } 316 317 psi = shift_to_mmu_psize(pshift); 318 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); 319 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), 320 lpid, rb); 321 if (rc) 322 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); 323 } 324 325 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) 326 { 327 long rc; 328 329 if (!kvmhv_on_pseries()) { 330 radix__flush_pwc_lpid(lpid); 331 return; 332 } 333 334 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), 335 lpid, TLBIEL_INVAL_SET_LPID); 336 if (rc) 337 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); 338 } 339 340 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 341 unsigned long clr, unsigned long set, 342 unsigned long addr, unsigned int shift) 343 { 344 return __radix_pte_update(ptep, clr, set); 345 } 346 347 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 348 pte_t *ptep, pte_t pte) 349 { 350 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 351 } 352 353 static struct kmem_cache *kvm_pte_cache; 354 static struct kmem_cache *kvm_pmd_cache; 355 356 static pte_t *kvmppc_pte_alloc(void) 357 { 358 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 359 } 360 361 static void kvmppc_pte_free(pte_t *ptep) 362 { 363 kmem_cache_free(kvm_pte_cache, ptep); 364 } 365 366 /* Like pmd_huge() and pmd_large(), but works regardless of config options */ 367 static inline int pmd_is_leaf(pmd_t pmd) 368 { 369 return !!(pmd_val(pmd) & _PAGE_PTE); 370 } 371 372 static pmd_t *kvmppc_pmd_alloc(void) 373 { 374 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); 375 } 376 377 static void kvmppc_pmd_free(pmd_t *pmdp) 378 { 379 kmem_cache_free(kvm_pmd_cache, pmdp); 380 } 381 382 /* Called with kvm->mmu_lock held */ 383 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, 384 unsigned int shift, 385 const struct kvm_memory_slot *memslot, 386 unsigned int lpid) 387 388 { 389 unsigned long old; 390 unsigned long gfn = gpa >> PAGE_SHIFT; 391 unsigned long page_size = PAGE_SIZE; 392 unsigned long hpa; 393 394 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); 395 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 396 397 /* The following only applies to L1 entries */ 398 if (lpid != kvm->arch.lpid) 399 return; 400 401 if (!memslot) { 402 memslot = gfn_to_memslot(kvm, gfn); 403 if (!memslot) 404 return; 405 } 406 if (shift) 407 page_size = 1ul << shift; 408 409 gpa &= ~(page_size - 1); 410 hpa = old & PTE_RPN_MASK; 411 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); 412 413 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) 414 kvmppc_update_dirty_map(memslot, gfn, page_size); 415 } 416 417 /* 418 * kvmppc_free_p?d are used to free existing page tables, and recursively 419 * descend and clear and free children. 420 * Callers are responsible for flushing the PWC. 421 * 422 * When page tables are being unmapped/freed as part of page fault path 423 * (full == false), ptes are not expected. There is code to unmap them 424 * and emit a warning if encountered, but there may already be data 425 * corruption due to the unexpected mappings. 426 */ 427 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, 428 unsigned int lpid) 429 { 430 if (full) { 431 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 432 } else { 433 pte_t *p = pte; 434 unsigned long it; 435 436 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { 437 if (pte_val(*p) == 0) 438 continue; 439 WARN_ON_ONCE(1); 440 kvmppc_unmap_pte(kvm, p, 441 pte_pfn(*p) << PAGE_SHIFT, 442 PAGE_SHIFT, NULL, lpid); 443 } 444 } 445 446 kvmppc_pte_free(pte); 447 } 448 449 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, 450 unsigned int lpid) 451 { 452 unsigned long im; 453 pmd_t *p = pmd; 454 455 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { 456 if (!pmd_present(*p)) 457 continue; 458 if (pmd_is_leaf(*p)) { 459 if (full) { 460 pmd_clear(p); 461 } else { 462 WARN_ON_ONCE(1); 463 kvmppc_unmap_pte(kvm, (pte_t *)p, 464 pte_pfn(*(pte_t *)p) << PAGE_SHIFT, 465 PMD_SHIFT, NULL, lpid); 466 } 467 } else { 468 pte_t *pte; 469 470 pte = pte_offset_map(p, 0); 471 kvmppc_unmap_free_pte(kvm, pte, full, lpid); 472 pmd_clear(p); 473 } 474 } 475 kvmppc_pmd_free(pmd); 476 } 477 478 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, 479 unsigned int lpid) 480 { 481 unsigned long iu; 482 pud_t *p = pud; 483 484 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { 485 if (!pud_present(*p)) 486 continue; 487 if (pud_huge(*p)) { 488 pud_clear(p); 489 } else { 490 pmd_t *pmd; 491 492 pmd = pmd_offset(p, 0); 493 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); 494 pud_clear(p); 495 } 496 } 497 pud_free(kvm->mm, pud); 498 } 499 500 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) 501 { 502 unsigned long ig; 503 504 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 505 pud_t *pud; 506 507 if (!pgd_present(*pgd)) 508 continue; 509 pud = pud_offset(pgd, 0); 510 kvmppc_unmap_free_pud(kvm, pud, lpid); 511 pgd_clear(pgd); 512 } 513 } 514 515 void kvmppc_free_radix(struct kvm *kvm) 516 { 517 if (kvm->arch.pgtable) { 518 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, 519 kvm->arch.lpid); 520 pgd_free(kvm->mm, kvm->arch.pgtable); 521 kvm->arch.pgtable = NULL; 522 } 523 } 524 525 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, 526 unsigned long gpa, unsigned int lpid) 527 { 528 pte_t *pte = pte_offset_kernel(pmd, 0); 529 530 /* 531 * Clearing the pmd entry then flushing the PWC ensures that the pte 532 * page no longer be cached by the MMU, so can be freed without 533 * flushing the PWC again. 534 */ 535 pmd_clear(pmd); 536 kvmppc_radix_flush_pwc(kvm, lpid); 537 538 kvmppc_unmap_free_pte(kvm, pte, false, lpid); 539 } 540 541 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, 542 unsigned long gpa, unsigned int lpid) 543 { 544 pmd_t *pmd = pmd_offset(pud, 0); 545 546 /* 547 * Clearing the pud entry then flushing the PWC ensures that the pmd 548 * page and any children pte pages will no longer be cached by the MMU, 549 * so can be freed without flushing the PWC again. 550 */ 551 pud_clear(pud); 552 kvmppc_radix_flush_pwc(kvm, lpid); 553 554 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); 555 } 556 557 /* 558 * There are a number of bits which may differ between different faults to 559 * the same partition scope entry. RC bits, in the course of cleaning and 560 * aging. And the write bit can change, either the access could have been 561 * upgraded, or a read fault could happen concurrently with a write fault 562 * that sets those bits first. 563 */ 564 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) 565 566 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 567 unsigned long gpa, unsigned int level, 568 unsigned long mmu_seq, unsigned int lpid, 569 unsigned long *rmapp, struct rmap_nested **n_rmap) 570 { 571 pgd_t *pgd; 572 pud_t *pud, *new_pud = NULL; 573 pmd_t *pmd, *new_pmd = NULL; 574 pte_t *ptep, *new_ptep = NULL; 575 int ret; 576 577 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 578 pgd = pgtable + pgd_index(gpa); 579 pud = NULL; 580 if (pgd_present(*pgd)) 581 pud = pud_offset(pgd, gpa); 582 else 583 new_pud = pud_alloc_one(kvm->mm, gpa); 584 585 pmd = NULL; 586 if (pud && pud_present(*pud) && !pud_huge(*pud)) 587 pmd = pmd_offset(pud, gpa); 588 else if (level <= 1) 589 new_pmd = kvmppc_pmd_alloc(); 590 591 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 592 new_ptep = kvmppc_pte_alloc(); 593 594 /* Check if we might have been invalidated; let the guest retry if so */ 595 spin_lock(&kvm->mmu_lock); 596 ret = -EAGAIN; 597 if (mmu_notifier_retry(kvm, mmu_seq)) 598 goto out_unlock; 599 600 /* Now traverse again under the lock and change the tree */ 601 ret = -ENOMEM; 602 if (pgd_none(*pgd)) { 603 if (!new_pud) 604 goto out_unlock; 605 pgd_populate(kvm->mm, pgd, new_pud); 606 new_pud = NULL; 607 } 608 pud = pud_offset(pgd, gpa); 609 if (pud_huge(*pud)) { 610 unsigned long hgpa = gpa & PUD_MASK; 611 612 /* Check if we raced and someone else has set the same thing */ 613 if (level == 2) { 614 if (pud_raw(*pud) == pte_raw(pte)) { 615 ret = 0; 616 goto out_unlock; 617 } 618 /* Valid 1GB page here already, add our extra bits */ 619 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & 620 PTE_BITS_MUST_MATCH); 621 kvmppc_radix_update_pte(kvm, (pte_t *)pud, 622 0, pte_val(pte), hgpa, PUD_SHIFT); 623 ret = 0; 624 goto out_unlock; 625 } 626 /* 627 * If we raced with another CPU which has just put 628 * a 1GB pte in after we saw a pmd page, try again. 629 */ 630 if (!new_pmd) { 631 ret = -EAGAIN; 632 goto out_unlock; 633 } 634 /* Valid 1GB page here already, remove it */ 635 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, 636 lpid); 637 } 638 if (level == 2) { 639 if (!pud_none(*pud)) { 640 /* 641 * There's a page table page here, but we wanted to 642 * install a large page, so remove and free the page 643 * table page. 644 */ 645 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); 646 } 647 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); 648 if (rmapp && n_rmap) 649 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 650 ret = 0; 651 goto out_unlock; 652 } 653 if (pud_none(*pud)) { 654 if (!new_pmd) 655 goto out_unlock; 656 pud_populate(kvm->mm, pud, new_pmd); 657 new_pmd = NULL; 658 } 659 pmd = pmd_offset(pud, gpa); 660 if (pmd_is_leaf(*pmd)) { 661 unsigned long lgpa = gpa & PMD_MASK; 662 663 /* Check if we raced and someone else has set the same thing */ 664 if (level == 1) { 665 if (pmd_raw(*pmd) == pte_raw(pte)) { 666 ret = 0; 667 goto out_unlock; 668 } 669 /* Valid 2MB page here already, add our extra bits */ 670 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & 671 PTE_BITS_MUST_MATCH); 672 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 673 0, pte_val(pte), lgpa, PMD_SHIFT); 674 ret = 0; 675 goto out_unlock; 676 } 677 678 /* 679 * If we raced with another CPU which has just put 680 * a 2MB pte in after we saw a pte page, try again. 681 */ 682 if (!new_ptep) { 683 ret = -EAGAIN; 684 goto out_unlock; 685 } 686 /* Valid 2MB page here already, remove it */ 687 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, 688 lpid); 689 } 690 if (level == 1) { 691 if (!pmd_none(*pmd)) { 692 /* 693 * There's a page table page here, but we wanted to 694 * install a large page, so remove and free the page 695 * table page. 696 */ 697 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); 698 } 699 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 700 if (rmapp && n_rmap) 701 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 702 ret = 0; 703 goto out_unlock; 704 } 705 if (pmd_none(*pmd)) { 706 if (!new_ptep) 707 goto out_unlock; 708 pmd_populate(kvm->mm, pmd, new_ptep); 709 new_ptep = NULL; 710 } 711 ptep = pte_offset_kernel(pmd, gpa); 712 if (pte_present(*ptep)) { 713 /* Check if someone else set the same thing */ 714 if (pte_raw(*ptep) == pte_raw(pte)) { 715 ret = 0; 716 goto out_unlock; 717 } 718 /* Valid page here already, add our extra bits */ 719 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & 720 PTE_BITS_MUST_MATCH); 721 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); 722 ret = 0; 723 goto out_unlock; 724 } 725 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 726 if (rmapp && n_rmap) 727 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 728 ret = 0; 729 730 out_unlock: 731 spin_unlock(&kvm->mmu_lock); 732 if (new_pud) 733 pud_free(kvm->mm, new_pud); 734 if (new_pmd) 735 kvmppc_pmd_free(new_pmd); 736 if (new_ptep) 737 kvmppc_pte_free(new_ptep); 738 return ret; 739 } 740 741 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing, 742 unsigned long gpa, unsigned int lpid) 743 { 744 unsigned long pgflags; 745 unsigned int shift; 746 pte_t *ptep; 747 748 /* 749 * Need to set an R or C bit in the 2nd-level tables; 750 * since we are just helping out the hardware here, 751 * it is sufficient to do what the hardware does. 752 */ 753 pgflags = _PAGE_ACCESSED; 754 if (writing) 755 pgflags |= _PAGE_DIRTY; 756 /* 757 * We are walking the secondary (partition-scoped) page table here. 758 * We can do this without disabling irq because the Linux MM 759 * subsystem doesn't do THP splits and collapses on this tree. 760 */ 761 ptep = __find_linux_pte(pgtable, gpa, NULL, &shift); 762 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { 763 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); 764 return true; 765 } 766 return false; 767 } 768 769 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, 770 unsigned long gpa, 771 struct kvm_memory_slot *memslot, 772 bool writing, bool kvm_ro, 773 pte_t *inserted_pte, unsigned int *levelp) 774 { 775 struct kvm *kvm = vcpu->kvm; 776 struct page *page = NULL; 777 unsigned long mmu_seq; 778 unsigned long hva, gfn = gpa >> PAGE_SHIFT; 779 bool upgrade_write = false; 780 bool *upgrade_p = &upgrade_write; 781 pte_t pte, *ptep; 782 unsigned int shift, level; 783 int ret; 784 bool large_enable; 785 786 /* used to check for invalidations in progress */ 787 mmu_seq = kvm->mmu_notifier_seq; 788 smp_rmb(); 789 790 /* 791 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 792 * do it with !atomic && !async, which is how we call it. 793 * We always ask for write permission since the common case 794 * is that the page is writable. 795 */ 796 hva = gfn_to_hva_memslot(memslot, gfn); 797 if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) { 798 upgrade_write = true; 799 } else { 800 unsigned long pfn; 801 802 /* Call KVM generic code to do the slow-path check */ 803 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 804 writing, upgrade_p); 805 if (is_error_noslot_pfn(pfn)) 806 return -EFAULT; 807 page = NULL; 808 if (pfn_valid(pfn)) { 809 page = pfn_to_page(pfn); 810 if (PageReserved(page)) 811 page = NULL; 812 } 813 } 814 815 /* 816 * Read the PTE from the process' radix tree and use that 817 * so we get the shift and attribute bits. 818 */ 819 local_irq_disable(); 820 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); 821 /* 822 * If the PTE disappeared temporarily due to a THP 823 * collapse, just return and let the guest try again. 824 */ 825 if (!ptep) { 826 local_irq_enable(); 827 if (page) 828 put_page(page); 829 return RESUME_GUEST; 830 } 831 pte = *ptep; 832 local_irq_enable(); 833 834 /* If we're logging dirty pages, always map single pages */ 835 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); 836 837 /* Get pte level from shift/size */ 838 if (large_enable && shift == PUD_SHIFT && 839 (gpa & (PUD_SIZE - PAGE_SIZE)) == 840 (hva & (PUD_SIZE - PAGE_SIZE))) { 841 level = 2; 842 } else if (large_enable && shift == PMD_SHIFT && 843 (gpa & (PMD_SIZE - PAGE_SIZE)) == 844 (hva & (PMD_SIZE - PAGE_SIZE))) { 845 level = 1; 846 } else { 847 level = 0; 848 if (shift > PAGE_SHIFT) { 849 /* 850 * If the pte maps more than one page, bring over 851 * bits from the virtual address to get the real 852 * address of the specific single page we want. 853 */ 854 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; 855 pte = __pte(pte_val(pte) | (hva & rpnmask)); 856 } 857 } 858 859 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); 860 if (writing || upgrade_write) { 861 if (pte_val(pte) & _PAGE_WRITE) 862 pte = __pte(pte_val(pte) | _PAGE_DIRTY); 863 } else { 864 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); 865 } 866 867 /* Allocate space in the tree and write the PTE */ 868 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, 869 mmu_seq, kvm->arch.lpid, NULL, NULL); 870 if (inserted_pte) 871 *inserted_pte = pte; 872 if (levelp) 873 *levelp = level; 874 875 if (page) { 876 if (!ret && (pte_val(pte) & _PAGE_WRITE)) 877 set_page_dirty_lock(page); 878 put_page(page); 879 } 880 881 return ret; 882 } 883 884 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 885 unsigned long ea, unsigned long dsisr) 886 { 887 struct kvm *kvm = vcpu->kvm; 888 unsigned long gpa, gfn; 889 struct kvm_memory_slot *memslot; 890 long ret; 891 bool writing = !!(dsisr & DSISR_ISSTORE); 892 bool kvm_ro = false; 893 894 /* Check for unusual errors */ 895 if (dsisr & DSISR_UNSUPP_MMU) { 896 pr_err("KVM: Got unsupported MMU fault\n"); 897 return -EFAULT; 898 } 899 if (dsisr & DSISR_BADACCESS) { 900 /* Reflect to the guest as DSI */ 901 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 902 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 903 return RESUME_GUEST; 904 } 905 906 /* Translate the logical address */ 907 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 908 gpa &= ~0xF000000000000000ul; 909 gfn = gpa >> PAGE_SHIFT; 910 if (!(dsisr & DSISR_PRTABLE_FAULT)) 911 gpa |= ea & 0xfff; 912 913 /* Get the corresponding memslot */ 914 memslot = gfn_to_memslot(kvm, gfn); 915 916 /* No memslot means it's an emulated MMIO region */ 917 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 918 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 919 DSISR_SET_RC)) { 920 /* 921 * Bad address in guest page table tree, or other 922 * unusual error - reflect it to the guest as DSI. 923 */ 924 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 925 return RESUME_GUEST; 926 } 927 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing); 928 } 929 930 if (memslot->flags & KVM_MEM_READONLY) { 931 if (writing) { 932 /* give the guest a DSI */ 933 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | 934 DSISR_PROTFAULT); 935 return RESUME_GUEST; 936 } 937 kvm_ro = true; 938 } 939 940 /* Failed to set the reference/change bits */ 941 if (dsisr & DSISR_SET_RC) { 942 spin_lock(&kvm->mmu_lock); 943 if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, 944 writing, gpa, kvm->arch.lpid)) 945 dsisr &= ~DSISR_SET_RC; 946 spin_unlock(&kvm->mmu_lock); 947 948 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 949 DSISR_PROTFAULT | DSISR_SET_RC))) 950 return RESUME_GUEST; 951 } 952 953 /* Try to insert a pte */ 954 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, 955 kvm_ro, NULL, NULL); 956 957 if (ret == 0 || ret == -EAGAIN) 958 ret = RESUME_GUEST; 959 return ret; 960 } 961 962 /* Called with kvm->mmu_lock held */ 963 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 964 unsigned long gfn) 965 { 966 pte_t *ptep; 967 unsigned long gpa = gfn << PAGE_SHIFT; 968 unsigned int shift; 969 970 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 971 if (ptep && pte_present(*ptep)) 972 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 973 kvm->arch.lpid); 974 return 0; 975 } 976 977 /* Called with kvm->mmu_lock held */ 978 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 979 unsigned long gfn) 980 { 981 pte_t *ptep; 982 unsigned long gpa = gfn << PAGE_SHIFT; 983 unsigned int shift; 984 int ref = 0; 985 unsigned long old, *rmapp; 986 987 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 988 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 989 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 990 gpa, shift); 991 /* XXX need to flush tlb here? */ 992 /* Also clear bit in ptes in shadow pgtable for nested guests */ 993 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 994 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, 995 old & PTE_RPN_MASK, 996 1UL << shift); 997 ref = 1; 998 } 999 return ref; 1000 } 1001 1002 /* Called with kvm->mmu_lock held */ 1003 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 1004 unsigned long gfn) 1005 { 1006 pte_t *ptep; 1007 unsigned long gpa = gfn << PAGE_SHIFT; 1008 unsigned int shift; 1009 int ref = 0; 1010 1011 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1012 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 1013 ref = 1; 1014 return ref; 1015 } 1016 1017 /* Returns the number of PAGE_SIZE pages that are dirty */ 1018 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 1019 struct kvm_memory_slot *memslot, int pagenum) 1020 { 1021 unsigned long gfn = memslot->base_gfn + pagenum; 1022 unsigned long gpa = gfn << PAGE_SHIFT; 1023 pte_t *ptep; 1024 unsigned int shift; 1025 int ret = 0; 1026 unsigned long old, *rmapp; 1027 1028 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1029 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 1030 ret = 1; 1031 if (shift) 1032 ret = 1 << (shift - PAGE_SHIFT); 1033 spin_lock(&kvm->mmu_lock); 1034 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 1035 gpa, shift); 1036 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); 1037 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1038 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1039 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, 1040 old & PTE_RPN_MASK, 1041 1UL << shift); 1042 spin_unlock(&kvm->mmu_lock); 1043 } 1044 return ret; 1045 } 1046 1047 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 1048 struct kvm_memory_slot *memslot, unsigned long *map) 1049 { 1050 unsigned long i, j; 1051 int npages; 1052 1053 for (i = 0; i < memslot->npages; i = j) { 1054 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 1055 1056 /* 1057 * Note that if npages > 0 then i must be a multiple of npages, 1058 * since huge pages are only used to back the guest at guest 1059 * real addresses that are a multiple of their size. 1060 * Since we have at most one PTE covering any given guest 1061 * real address, if npages > 1 we can skip to i + npages. 1062 */ 1063 j = i + 1; 1064 if (npages) { 1065 set_dirty_bits(map, i, npages); 1066 j = i + npages; 1067 } 1068 } 1069 return 0; 1070 } 1071 1072 void kvmppc_radix_flush_memslot(struct kvm *kvm, 1073 const struct kvm_memory_slot *memslot) 1074 { 1075 unsigned long n; 1076 pte_t *ptep; 1077 unsigned long gpa; 1078 unsigned int shift; 1079 1080 gpa = memslot->base_gfn << PAGE_SHIFT; 1081 spin_lock(&kvm->mmu_lock); 1082 for (n = memslot->npages; n; --n) { 1083 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1084 if (ptep && pte_present(*ptep)) 1085 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 1086 kvm->arch.lpid); 1087 gpa += PAGE_SIZE; 1088 } 1089 spin_unlock(&kvm->mmu_lock); 1090 } 1091 1092 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 1093 int psize, int *indexp) 1094 { 1095 if (!mmu_psize_defs[psize].shift) 1096 return; 1097 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 1098 (mmu_psize_defs[psize].ap << 29); 1099 ++(*indexp); 1100 } 1101 1102 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 1103 { 1104 int i; 1105 1106 if (!radix_enabled()) 1107 return -EINVAL; 1108 memset(info, 0, sizeof(*info)); 1109 1110 /* 4k page size */ 1111 info->geometries[0].page_shift = 12; 1112 info->geometries[0].level_bits[0] = 9; 1113 for (i = 1; i < 4; ++i) 1114 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 1115 /* 64k page size */ 1116 info->geometries[1].page_shift = 16; 1117 for (i = 0; i < 4; ++i) 1118 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 1119 1120 i = 0; 1121 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 1122 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 1123 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 1124 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 1125 1126 return 0; 1127 } 1128 1129 int kvmppc_init_vm_radix(struct kvm *kvm) 1130 { 1131 kvm->arch.pgtable = pgd_alloc(kvm->mm); 1132 if (!kvm->arch.pgtable) 1133 return -ENOMEM; 1134 return 0; 1135 } 1136 1137 static void pte_ctor(void *addr) 1138 { 1139 memset(addr, 0, RADIX_PTE_TABLE_SIZE); 1140 } 1141 1142 static void pmd_ctor(void *addr) 1143 { 1144 memset(addr, 0, RADIX_PMD_TABLE_SIZE); 1145 } 1146 1147 struct debugfs_radix_state { 1148 struct kvm *kvm; 1149 struct mutex mutex; 1150 unsigned long gpa; 1151 int lpid; 1152 int chars_left; 1153 int buf_index; 1154 char buf[128]; 1155 u8 hdr; 1156 }; 1157 1158 static int debugfs_radix_open(struct inode *inode, struct file *file) 1159 { 1160 struct kvm *kvm = inode->i_private; 1161 struct debugfs_radix_state *p; 1162 1163 p = kzalloc(sizeof(*p), GFP_KERNEL); 1164 if (!p) 1165 return -ENOMEM; 1166 1167 kvm_get_kvm(kvm); 1168 p->kvm = kvm; 1169 mutex_init(&p->mutex); 1170 file->private_data = p; 1171 1172 return nonseekable_open(inode, file); 1173 } 1174 1175 static int debugfs_radix_release(struct inode *inode, struct file *file) 1176 { 1177 struct debugfs_radix_state *p = file->private_data; 1178 1179 kvm_put_kvm(p->kvm); 1180 kfree(p); 1181 return 0; 1182 } 1183 1184 static ssize_t debugfs_radix_read(struct file *file, char __user *buf, 1185 size_t len, loff_t *ppos) 1186 { 1187 struct debugfs_radix_state *p = file->private_data; 1188 ssize_t ret, r; 1189 unsigned long n; 1190 struct kvm *kvm; 1191 unsigned long gpa; 1192 pgd_t *pgt; 1193 struct kvm_nested_guest *nested; 1194 pgd_t pgd, *pgdp; 1195 pud_t pud, *pudp; 1196 pmd_t pmd, *pmdp; 1197 pte_t *ptep; 1198 int shift; 1199 unsigned long pte; 1200 1201 kvm = p->kvm; 1202 if (!kvm_is_radix(kvm)) 1203 return 0; 1204 1205 ret = mutex_lock_interruptible(&p->mutex); 1206 if (ret) 1207 return ret; 1208 1209 if (p->chars_left) { 1210 n = p->chars_left; 1211 if (n > len) 1212 n = len; 1213 r = copy_to_user(buf, p->buf + p->buf_index, n); 1214 n -= r; 1215 p->chars_left -= n; 1216 p->buf_index += n; 1217 buf += n; 1218 len -= n; 1219 ret = n; 1220 if (r) { 1221 if (!n) 1222 ret = -EFAULT; 1223 goto out; 1224 } 1225 } 1226 1227 gpa = p->gpa; 1228 nested = NULL; 1229 pgt = NULL; 1230 while (len != 0 && p->lpid >= 0) { 1231 if (gpa >= RADIX_PGTABLE_RANGE) { 1232 gpa = 0; 1233 pgt = NULL; 1234 if (nested) { 1235 kvmhv_put_nested(nested); 1236 nested = NULL; 1237 } 1238 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); 1239 p->hdr = 0; 1240 if (p->lpid < 0) 1241 break; 1242 } 1243 if (!pgt) { 1244 if (p->lpid == 0) { 1245 pgt = kvm->arch.pgtable; 1246 } else { 1247 nested = kvmhv_get_nested(kvm, p->lpid, false); 1248 if (!nested) { 1249 gpa = RADIX_PGTABLE_RANGE; 1250 continue; 1251 } 1252 pgt = nested->shadow_pgtable; 1253 } 1254 } 1255 n = 0; 1256 if (!p->hdr) { 1257 if (p->lpid > 0) 1258 n = scnprintf(p->buf, sizeof(p->buf), 1259 "\nNested LPID %d: ", p->lpid); 1260 n += scnprintf(p->buf + n, sizeof(p->buf) - n, 1261 "pgdir: %lx\n", (unsigned long)pgt); 1262 p->hdr = 1; 1263 goto copy; 1264 } 1265 1266 pgdp = pgt + pgd_index(gpa); 1267 pgd = READ_ONCE(*pgdp); 1268 if (!(pgd_val(pgd) & _PAGE_PRESENT)) { 1269 gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE; 1270 continue; 1271 } 1272 1273 pudp = pud_offset(&pgd, gpa); 1274 pud = READ_ONCE(*pudp); 1275 if (!(pud_val(pud) & _PAGE_PRESENT)) { 1276 gpa = (gpa & PUD_MASK) + PUD_SIZE; 1277 continue; 1278 } 1279 if (pud_val(pud) & _PAGE_PTE) { 1280 pte = pud_val(pud); 1281 shift = PUD_SHIFT; 1282 goto leaf; 1283 } 1284 1285 pmdp = pmd_offset(&pud, gpa); 1286 pmd = READ_ONCE(*pmdp); 1287 if (!(pmd_val(pmd) & _PAGE_PRESENT)) { 1288 gpa = (gpa & PMD_MASK) + PMD_SIZE; 1289 continue; 1290 } 1291 if (pmd_val(pmd) & _PAGE_PTE) { 1292 pte = pmd_val(pmd); 1293 shift = PMD_SHIFT; 1294 goto leaf; 1295 } 1296 1297 ptep = pte_offset_kernel(&pmd, gpa); 1298 pte = pte_val(READ_ONCE(*ptep)); 1299 if (!(pte & _PAGE_PRESENT)) { 1300 gpa += PAGE_SIZE; 1301 continue; 1302 } 1303 shift = PAGE_SHIFT; 1304 leaf: 1305 n = scnprintf(p->buf, sizeof(p->buf), 1306 " %lx: %lx %d\n", gpa, pte, shift); 1307 gpa += 1ul << shift; 1308 copy: 1309 p->chars_left = n; 1310 if (n > len) 1311 n = len; 1312 r = copy_to_user(buf, p->buf, n); 1313 n -= r; 1314 p->chars_left -= n; 1315 p->buf_index = n; 1316 buf += n; 1317 len -= n; 1318 ret += n; 1319 if (r) { 1320 if (!ret) 1321 ret = -EFAULT; 1322 break; 1323 } 1324 } 1325 p->gpa = gpa; 1326 if (nested) 1327 kvmhv_put_nested(nested); 1328 1329 out: 1330 mutex_unlock(&p->mutex); 1331 return ret; 1332 } 1333 1334 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, 1335 size_t len, loff_t *ppos) 1336 { 1337 return -EACCES; 1338 } 1339 1340 static const struct file_operations debugfs_radix_fops = { 1341 .owner = THIS_MODULE, 1342 .open = debugfs_radix_open, 1343 .release = debugfs_radix_release, 1344 .read = debugfs_radix_read, 1345 .write = debugfs_radix_write, 1346 .llseek = generic_file_llseek, 1347 }; 1348 1349 void kvmhv_radix_debugfs_init(struct kvm *kvm) 1350 { 1351 kvm->arch.radix_dentry = debugfs_create_file("radix", 0400, 1352 kvm->arch.debugfs_dir, kvm, 1353 &debugfs_radix_fops); 1354 } 1355 1356 int kvmppc_radix_init(void) 1357 { 1358 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; 1359 1360 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 1361 if (!kvm_pte_cache) 1362 return -ENOMEM; 1363 1364 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; 1365 1366 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); 1367 if (!kvm_pmd_cache) { 1368 kmem_cache_destroy(kvm_pte_cache); 1369 return -ENOMEM; 1370 } 1371 1372 return 0; 1373 } 1374 1375 void kvmppc_radix_exit(void) 1376 { 1377 kmem_cache_destroy(kvm_pte_cache); 1378 kmem_cache_destroy(kvm_pmd_cache); 1379 } 1380