1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/debugfs.h>
16 
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/page.h>
20 #include <asm/mmu.h>
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/pte-walk.h>
24 
25 /*
26  * Supported radix tree geometry.
27  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
28  * for a page size of 64k or 4k.
29  */
30 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
31 
32 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
33 					      gva_t eaddr, void *to, void *from,
34 					      unsigned long n)
35 {
36 	int uninitialized_var(old_pid), old_lpid;
37 	unsigned long quadrant, ret = n;
38 	bool is_load = !!to;
39 
40 	/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
41 	if (kvmhv_on_pseries())
42 		return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
43 					  __pa(to), __pa(from), n);
44 
45 	quadrant = 1;
46 	if (!pid)
47 		quadrant = 2;
48 	if (is_load)
49 		from = (void *) (eaddr | (quadrant << 62));
50 	else
51 		to = (void *) (eaddr | (quadrant << 62));
52 
53 	preempt_disable();
54 
55 	/* switch the lpid first to avoid running host with unallocated pid */
56 	old_lpid = mfspr(SPRN_LPID);
57 	if (old_lpid != lpid)
58 		mtspr(SPRN_LPID, lpid);
59 	if (quadrant == 1) {
60 		old_pid = mfspr(SPRN_PID);
61 		if (old_pid != pid)
62 			mtspr(SPRN_PID, pid);
63 	}
64 	isync();
65 
66 	pagefault_disable();
67 	if (is_load)
68 		ret = raw_copy_from_user(to, from, n);
69 	else
70 		ret = raw_copy_to_user(to, from, n);
71 	pagefault_enable();
72 
73 	/* switch the pid first to avoid running host with unallocated pid */
74 	if (quadrant == 1 && pid != old_pid)
75 		mtspr(SPRN_PID, old_pid);
76 	if (lpid != old_lpid)
77 		mtspr(SPRN_LPID, old_lpid);
78 	isync();
79 
80 	preempt_enable();
81 
82 	return ret;
83 }
84 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix);
85 
86 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
87 					  void *to, void *from, unsigned long n)
88 {
89 	int lpid = vcpu->kvm->arch.lpid;
90 	int pid = vcpu->arch.pid;
91 
92 	/* This would cause a data segment intr so don't allow the access */
93 	if (eaddr & (0x3FFUL << 52))
94 		return -EINVAL;
95 
96 	/* Should we be using the nested lpid */
97 	if (vcpu->arch.nested)
98 		lpid = vcpu->arch.nested->shadow_lpid;
99 
100 	/* If accessing quadrant 3 then pid is expected to be 0 */
101 	if (((eaddr >> 62) & 0x3) == 0x3)
102 		pid = 0;
103 
104 	eaddr &= ~(0xFFFUL << 52);
105 
106 	return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
107 }
108 
109 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
110 				 unsigned long n)
111 {
112 	long ret;
113 
114 	ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
115 	if (ret > 0)
116 		memset(to + (n - ret), 0, ret);
117 
118 	return ret;
119 }
120 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix);
121 
122 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
123 			       unsigned long n)
124 {
125 	return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
126 }
127 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix);
128 
129 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
130 			       struct kvmppc_pte *gpte, u64 root,
131 			       u64 *pte_ret_p)
132 {
133 	struct kvm *kvm = vcpu->kvm;
134 	int ret, level, ps;
135 	unsigned long rts, bits, offset, index;
136 	u64 pte, base, gpa;
137 	__be64 rpte;
138 
139 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
140 		((root & RTS2_MASK) >> RTS2_SHIFT);
141 	bits = root & RPDS_MASK;
142 	base = root & RPDB_MASK;
143 
144 	offset = rts + 31;
145 
146 	/* Current implementations only support 52-bit space */
147 	if (offset != 52)
148 		return -EINVAL;
149 
150 	/* Walk each level of the radix tree */
151 	for (level = 3; level >= 0; --level) {
152 		u64 addr;
153 		/* Check a valid size */
154 		if (level && bits != p9_supported_radix_bits[level])
155 			return -EINVAL;
156 		if (level == 0 && !(bits == 5 || bits == 9))
157 			return -EINVAL;
158 		offset -= bits;
159 		index = (eaddr >> offset) & ((1UL << bits) - 1);
160 		/* Check that low bits of page table base are zero */
161 		if (base & ((1UL << (bits + 3)) - 1))
162 			return -EINVAL;
163 		/* Read the entry from guest memory */
164 		addr = base + (index * sizeof(rpte));
165 		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
166 		if (ret) {
167 			if (pte_ret_p)
168 				*pte_ret_p = addr;
169 			return ret;
170 		}
171 		pte = __be64_to_cpu(rpte);
172 		if (!(pte & _PAGE_PRESENT))
173 			return -ENOENT;
174 		/* Check if a leaf entry */
175 		if (pte & _PAGE_PTE)
176 			break;
177 		/* Get ready to walk the next level */
178 		base = pte & RPDB_MASK;
179 		bits = pte & RPDS_MASK;
180 	}
181 
182 	/* Need a leaf at lowest level; 512GB pages not supported */
183 	if (level < 0 || level == 3)
184 		return -EINVAL;
185 
186 	/* We found a valid leaf PTE */
187 	/* Offset is now log base 2 of the page size */
188 	gpa = pte & 0x01fffffffffff000ul;
189 	if (gpa & ((1ul << offset) - 1))
190 		return -EINVAL;
191 	gpa |= eaddr & ((1ul << offset) - 1);
192 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
193 		if (offset == mmu_psize_defs[ps].shift)
194 			break;
195 	gpte->page_size = ps;
196 	gpte->page_shift = offset;
197 
198 	gpte->eaddr = eaddr;
199 	gpte->raddr = gpa;
200 
201 	/* Work out permissions */
202 	gpte->may_read = !!(pte & _PAGE_READ);
203 	gpte->may_write = !!(pte & _PAGE_WRITE);
204 	gpte->may_execute = !!(pte & _PAGE_EXEC);
205 
206 	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
207 
208 	if (pte_ret_p)
209 		*pte_ret_p = pte;
210 
211 	return 0;
212 }
213 
214 /*
215  * Used to walk a partition or process table radix tree in guest memory
216  * Note: We exploit the fact that a partition table and a process
217  * table have the same layout, a partition-scoped page table and a
218  * process-scoped page table have the same layout, and the 2nd
219  * doubleword of a partition table entry has the same layout as
220  * the PTCR register.
221  */
222 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
223 				     struct kvmppc_pte *gpte, u64 table,
224 				     int table_index, u64 *pte_ret_p)
225 {
226 	struct kvm *kvm = vcpu->kvm;
227 	int ret;
228 	unsigned long size, ptbl, root;
229 	struct prtb_entry entry;
230 
231 	if ((table & PRTS_MASK) > 24)
232 		return -EINVAL;
233 	size = 1ul << ((table & PRTS_MASK) + 12);
234 
235 	/* Is the table big enough to contain this entry? */
236 	if ((table_index * sizeof(entry)) >= size)
237 		return -EINVAL;
238 
239 	/* Read the table to find the root of the radix tree */
240 	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
241 	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
242 	if (ret)
243 		return ret;
244 
245 	/* Root is stored in the first double word */
246 	root = be64_to_cpu(entry.prtb0);
247 
248 	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
249 }
250 
251 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
252 			   struct kvmppc_pte *gpte, bool data, bool iswrite)
253 {
254 	u32 pid;
255 	u64 pte;
256 	int ret;
257 
258 	/* Work out effective PID */
259 	switch (eaddr >> 62) {
260 	case 0:
261 		pid = vcpu->arch.pid;
262 		break;
263 	case 3:
264 		pid = 0;
265 		break;
266 	default:
267 		return -EINVAL;
268 	}
269 
270 	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
271 				vcpu->kvm->arch.process_table, pid, &pte);
272 	if (ret)
273 		return ret;
274 
275 	/* Check privilege (applies only to process scoped translations) */
276 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
277 		if (pte & _PAGE_PRIVILEGED) {
278 			gpte->may_read = 0;
279 			gpte->may_write = 0;
280 			gpte->may_execute = 0;
281 		}
282 	} else {
283 		if (!(pte & _PAGE_PRIVILEGED)) {
284 			/* Check AMR/IAMR to see if strict mode is in force */
285 			if (vcpu->arch.amr & (1ul << 62))
286 				gpte->may_read = 0;
287 			if (vcpu->arch.amr & (1ul << 63))
288 				gpte->may_write = 0;
289 			if (vcpu->arch.iamr & (1ul << 62))
290 				gpte->may_execute = 0;
291 		}
292 	}
293 
294 	return 0;
295 }
296 
297 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
298 			     unsigned int pshift, unsigned int lpid)
299 {
300 	unsigned long psize = PAGE_SIZE;
301 	int psi;
302 	long rc;
303 	unsigned long rb;
304 
305 	if (pshift)
306 		psize = 1UL << pshift;
307 	else
308 		pshift = PAGE_SHIFT;
309 
310 	addr &= ~(psize - 1);
311 
312 	if (!kvmhv_on_pseries()) {
313 		radix__flush_tlb_lpid_page(lpid, addr, psize);
314 		return;
315 	}
316 
317 	psi = shift_to_mmu_psize(pshift);
318 	rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
319 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
320 				lpid, rb);
321 	if (rc)
322 		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
323 }
324 
325 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
326 {
327 	long rc;
328 
329 	if (!kvmhv_on_pseries()) {
330 		radix__flush_pwc_lpid(lpid);
331 		return;
332 	}
333 
334 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
335 				lpid, TLBIEL_INVAL_SET_LPID);
336 	if (rc)
337 		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
338 }
339 
340 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
341 				      unsigned long clr, unsigned long set,
342 				      unsigned long addr, unsigned int shift)
343 {
344 	return __radix_pte_update(ptep, clr, set);
345 }
346 
347 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
348 			     pte_t *ptep, pte_t pte)
349 {
350 	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
351 }
352 
353 static struct kmem_cache *kvm_pte_cache;
354 static struct kmem_cache *kvm_pmd_cache;
355 
356 static pte_t *kvmppc_pte_alloc(void)
357 {
358 	return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
359 }
360 
361 static void kvmppc_pte_free(pte_t *ptep)
362 {
363 	kmem_cache_free(kvm_pte_cache, ptep);
364 }
365 
366 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
367 static inline int pmd_is_leaf(pmd_t pmd)
368 {
369 	return !!(pmd_val(pmd) & _PAGE_PTE);
370 }
371 
372 static pmd_t *kvmppc_pmd_alloc(void)
373 {
374 	return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
375 }
376 
377 static void kvmppc_pmd_free(pmd_t *pmdp)
378 {
379 	kmem_cache_free(kvm_pmd_cache, pmdp);
380 }
381 
382 /* Called with kvm->mmu_lock held */
383 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
384 		      unsigned int shift,
385 		      const struct kvm_memory_slot *memslot,
386 		      unsigned int lpid)
387 
388 {
389 	unsigned long old;
390 	unsigned long gfn = gpa >> PAGE_SHIFT;
391 	unsigned long page_size = PAGE_SIZE;
392 	unsigned long hpa;
393 
394 	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
395 	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
396 
397 	/* The following only applies to L1 entries */
398 	if (lpid != kvm->arch.lpid)
399 		return;
400 
401 	if (!memslot) {
402 		memslot = gfn_to_memslot(kvm, gfn);
403 		if (!memslot)
404 			return;
405 	}
406 	if (shift) { /* 1GB or 2MB page */
407 		page_size = 1ul << shift;
408 		if (shift == PMD_SHIFT)
409 			kvm->stat.num_2M_pages--;
410 		else if (shift == PUD_SHIFT)
411 			kvm->stat.num_1G_pages--;
412 	}
413 
414 	gpa &= ~(page_size - 1);
415 	hpa = old & PTE_RPN_MASK;
416 	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
417 
418 	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
419 		kvmppc_update_dirty_map(memslot, gfn, page_size);
420 }
421 
422 /*
423  * kvmppc_free_p?d are used to free existing page tables, and recursively
424  * descend and clear and free children.
425  * Callers are responsible for flushing the PWC.
426  *
427  * When page tables are being unmapped/freed as part of page fault path
428  * (full == false), ptes are not expected. There is code to unmap them
429  * and emit a warning if encountered, but there may already be data
430  * corruption due to the unexpected mappings.
431  */
432 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
433 				  unsigned int lpid)
434 {
435 	if (full) {
436 		memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
437 	} else {
438 		pte_t *p = pte;
439 		unsigned long it;
440 
441 		for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
442 			if (pte_val(*p) == 0)
443 				continue;
444 			WARN_ON_ONCE(1);
445 			kvmppc_unmap_pte(kvm, p,
446 					 pte_pfn(*p) << PAGE_SHIFT,
447 					 PAGE_SHIFT, NULL, lpid);
448 		}
449 	}
450 
451 	kvmppc_pte_free(pte);
452 }
453 
454 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
455 				  unsigned int lpid)
456 {
457 	unsigned long im;
458 	pmd_t *p = pmd;
459 
460 	for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
461 		if (!pmd_present(*p))
462 			continue;
463 		if (pmd_is_leaf(*p)) {
464 			if (full) {
465 				pmd_clear(p);
466 			} else {
467 				WARN_ON_ONCE(1);
468 				kvmppc_unmap_pte(kvm, (pte_t *)p,
469 					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
470 					 PMD_SHIFT, NULL, lpid);
471 			}
472 		} else {
473 			pte_t *pte;
474 
475 			pte = pte_offset_map(p, 0);
476 			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
477 			pmd_clear(p);
478 		}
479 	}
480 	kvmppc_pmd_free(pmd);
481 }
482 
483 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
484 				  unsigned int lpid)
485 {
486 	unsigned long iu;
487 	pud_t *p = pud;
488 
489 	for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
490 		if (!pud_present(*p))
491 			continue;
492 		if (pud_huge(*p)) {
493 			pud_clear(p);
494 		} else {
495 			pmd_t *pmd;
496 
497 			pmd = pmd_offset(p, 0);
498 			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
499 			pud_clear(p);
500 		}
501 	}
502 	pud_free(kvm->mm, pud);
503 }
504 
505 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
506 {
507 	unsigned long ig;
508 
509 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
510 		pud_t *pud;
511 
512 		if (!pgd_present(*pgd))
513 			continue;
514 		pud = pud_offset(pgd, 0);
515 		kvmppc_unmap_free_pud(kvm, pud, lpid);
516 		pgd_clear(pgd);
517 	}
518 }
519 
520 void kvmppc_free_radix(struct kvm *kvm)
521 {
522 	if (kvm->arch.pgtable) {
523 		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
524 					  kvm->arch.lpid);
525 		pgd_free(kvm->mm, kvm->arch.pgtable);
526 		kvm->arch.pgtable = NULL;
527 	}
528 }
529 
530 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
531 					unsigned long gpa, unsigned int lpid)
532 {
533 	pte_t *pte = pte_offset_kernel(pmd, 0);
534 
535 	/*
536 	 * Clearing the pmd entry then flushing the PWC ensures that the pte
537 	 * page no longer be cached by the MMU, so can be freed without
538 	 * flushing the PWC again.
539 	 */
540 	pmd_clear(pmd);
541 	kvmppc_radix_flush_pwc(kvm, lpid);
542 
543 	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
544 }
545 
546 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
547 					unsigned long gpa, unsigned int lpid)
548 {
549 	pmd_t *pmd = pmd_offset(pud, 0);
550 
551 	/*
552 	 * Clearing the pud entry then flushing the PWC ensures that the pmd
553 	 * page and any children pte pages will no longer be cached by the MMU,
554 	 * so can be freed without flushing the PWC again.
555 	 */
556 	pud_clear(pud);
557 	kvmppc_radix_flush_pwc(kvm, lpid);
558 
559 	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
560 }
561 
562 /*
563  * There are a number of bits which may differ between different faults to
564  * the same partition scope entry. RC bits, in the course of cleaning and
565  * aging. And the write bit can change, either the access could have been
566  * upgraded, or a read fault could happen concurrently with a write fault
567  * that sets those bits first.
568  */
569 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
570 
571 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
572 		      unsigned long gpa, unsigned int level,
573 		      unsigned long mmu_seq, unsigned int lpid,
574 		      unsigned long *rmapp, struct rmap_nested **n_rmap)
575 {
576 	pgd_t *pgd;
577 	pud_t *pud, *new_pud = NULL;
578 	pmd_t *pmd, *new_pmd = NULL;
579 	pte_t *ptep, *new_ptep = NULL;
580 	int ret;
581 
582 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
583 	pgd = pgtable + pgd_index(gpa);
584 	pud = NULL;
585 	if (pgd_present(*pgd))
586 		pud = pud_offset(pgd, gpa);
587 	else
588 		new_pud = pud_alloc_one(kvm->mm, gpa);
589 
590 	pmd = NULL;
591 	if (pud && pud_present(*pud) && !pud_huge(*pud))
592 		pmd = pmd_offset(pud, gpa);
593 	else if (level <= 1)
594 		new_pmd = kvmppc_pmd_alloc();
595 
596 	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
597 		new_ptep = kvmppc_pte_alloc();
598 
599 	/* Check if we might have been invalidated; let the guest retry if so */
600 	spin_lock(&kvm->mmu_lock);
601 	ret = -EAGAIN;
602 	if (mmu_notifier_retry(kvm, mmu_seq))
603 		goto out_unlock;
604 
605 	/* Now traverse again under the lock and change the tree */
606 	ret = -ENOMEM;
607 	if (pgd_none(*pgd)) {
608 		if (!new_pud)
609 			goto out_unlock;
610 		pgd_populate(kvm->mm, pgd, new_pud);
611 		new_pud = NULL;
612 	}
613 	pud = pud_offset(pgd, gpa);
614 	if (pud_huge(*pud)) {
615 		unsigned long hgpa = gpa & PUD_MASK;
616 
617 		/* Check if we raced and someone else has set the same thing */
618 		if (level == 2) {
619 			if (pud_raw(*pud) == pte_raw(pte)) {
620 				ret = 0;
621 				goto out_unlock;
622 			}
623 			/* Valid 1GB page here already, add our extra bits */
624 			WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
625 							PTE_BITS_MUST_MATCH);
626 			kvmppc_radix_update_pte(kvm, (pte_t *)pud,
627 					      0, pte_val(pte), hgpa, PUD_SHIFT);
628 			ret = 0;
629 			goto out_unlock;
630 		}
631 		/*
632 		 * If we raced with another CPU which has just put
633 		 * a 1GB pte in after we saw a pmd page, try again.
634 		 */
635 		if (!new_pmd) {
636 			ret = -EAGAIN;
637 			goto out_unlock;
638 		}
639 		/* Valid 1GB page here already, remove it */
640 		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
641 				 lpid);
642 	}
643 	if (level == 2) {
644 		if (!pud_none(*pud)) {
645 			/*
646 			 * There's a page table page here, but we wanted to
647 			 * install a large page, so remove and free the page
648 			 * table page.
649 			 */
650 			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
651 		}
652 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
653 		if (rmapp && n_rmap)
654 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
655 		ret = 0;
656 		goto out_unlock;
657 	}
658 	if (pud_none(*pud)) {
659 		if (!new_pmd)
660 			goto out_unlock;
661 		pud_populate(kvm->mm, pud, new_pmd);
662 		new_pmd = NULL;
663 	}
664 	pmd = pmd_offset(pud, gpa);
665 	if (pmd_is_leaf(*pmd)) {
666 		unsigned long lgpa = gpa & PMD_MASK;
667 
668 		/* Check if we raced and someone else has set the same thing */
669 		if (level == 1) {
670 			if (pmd_raw(*pmd) == pte_raw(pte)) {
671 				ret = 0;
672 				goto out_unlock;
673 			}
674 			/* Valid 2MB page here already, add our extra bits */
675 			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
676 							PTE_BITS_MUST_MATCH);
677 			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
678 					0, pte_val(pte), lgpa, PMD_SHIFT);
679 			ret = 0;
680 			goto out_unlock;
681 		}
682 
683 		/*
684 		 * If we raced with another CPU which has just put
685 		 * a 2MB pte in after we saw a pte page, try again.
686 		 */
687 		if (!new_ptep) {
688 			ret = -EAGAIN;
689 			goto out_unlock;
690 		}
691 		/* Valid 2MB page here already, remove it */
692 		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
693 				 lpid);
694 	}
695 	if (level == 1) {
696 		if (!pmd_none(*pmd)) {
697 			/*
698 			 * There's a page table page here, but we wanted to
699 			 * install a large page, so remove and free the page
700 			 * table page.
701 			 */
702 			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
703 		}
704 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
705 		if (rmapp && n_rmap)
706 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
707 		ret = 0;
708 		goto out_unlock;
709 	}
710 	if (pmd_none(*pmd)) {
711 		if (!new_ptep)
712 			goto out_unlock;
713 		pmd_populate(kvm->mm, pmd, new_ptep);
714 		new_ptep = NULL;
715 	}
716 	ptep = pte_offset_kernel(pmd, gpa);
717 	if (pte_present(*ptep)) {
718 		/* Check if someone else set the same thing */
719 		if (pte_raw(*ptep) == pte_raw(pte)) {
720 			ret = 0;
721 			goto out_unlock;
722 		}
723 		/* Valid page here already, add our extra bits */
724 		WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
725 							PTE_BITS_MUST_MATCH);
726 		kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
727 		ret = 0;
728 		goto out_unlock;
729 	}
730 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
731 	if (rmapp && n_rmap)
732 		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
733 	ret = 0;
734 
735  out_unlock:
736 	spin_unlock(&kvm->mmu_lock);
737 	if (new_pud)
738 		pud_free(kvm->mm, new_pud);
739 	if (new_pmd)
740 		kvmppc_pmd_free(new_pmd);
741 	if (new_ptep)
742 		kvmppc_pte_free(new_ptep);
743 	return ret;
744 }
745 
746 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
747 			     unsigned long gpa, unsigned int lpid)
748 {
749 	unsigned long pgflags;
750 	unsigned int shift;
751 	pte_t *ptep;
752 
753 	/*
754 	 * Need to set an R or C bit in the 2nd-level tables;
755 	 * since we are just helping out the hardware here,
756 	 * it is sufficient to do what the hardware does.
757 	 */
758 	pgflags = _PAGE_ACCESSED;
759 	if (writing)
760 		pgflags |= _PAGE_DIRTY;
761 	/*
762 	 * We are walking the secondary (partition-scoped) page table here.
763 	 * We can do this without disabling irq because the Linux MM
764 	 * subsystem doesn't do THP splits and collapses on this tree.
765 	 */
766 	ptep = __find_linux_pte(pgtable, gpa, NULL, &shift);
767 	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
768 		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
769 		return true;
770 	}
771 	return false;
772 }
773 
774 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
775 				   unsigned long gpa,
776 				   struct kvm_memory_slot *memslot,
777 				   bool writing, bool kvm_ro,
778 				   pte_t *inserted_pte, unsigned int *levelp)
779 {
780 	struct kvm *kvm = vcpu->kvm;
781 	struct page *page = NULL;
782 	unsigned long mmu_seq;
783 	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
784 	bool upgrade_write = false;
785 	bool *upgrade_p = &upgrade_write;
786 	pte_t pte, *ptep;
787 	unsigned int shift, level;
788 	int ret;
789 	bool large_enable;
790 
791 	/* used to check for invalidations in progress */
792 	mmu_seq = kvm->mmu_notifier_seq;
793 	smp_rmb();
794 
795 	/*
796 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
797 	 * do it with !atomic && !async, which is how we call it.
798 	 * We always ask for write permission since the common case
799 	 * is that the page is writable.
800 	 */
801 	hva = gfn_to_hva_memslot(memslot, gfn);
802 	if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
803 		upgrade_write = true;
804 	} else {
805 		unsigned long pfn;
806 
807 		/* Call KVM generic code to do the slow-path check */
808 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
809 					   writing, upgrade_p);
810 		if (is_error_noslot_pfn(pfn))
811 			return -EFAULT;
812 		page = NULL;
813 		if (pfn_valid(pfn)) {
814 			page = pfn_to_page(pfn);
815 			if (PageReserved(page))
816 				page = NULL;
817 		}
818 	}
819 
820 	/*
821 	 * Read the PTE from the process' radix tree and use that
822 	 * so we get the shift and attribute bits.
823 	 */
824 	local_irq_disable();
825 	ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
826 	/*
827 	 * If the PTE disappeared temporarily due to a THP
828 	 * collapse, just return and let the guest try again.
829 	 */
830 	if (!ptep) {
831 		local_irq_enable();
832 		if (page)
833 			put_page(page);
834 		return RESUME_GUEST;
835 	}
836 	pte = *ptep;
837 	local_irq_enable();
838 
839 	/* If we're logging dirty pages, always map single pages */
840 	large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
841 
842 	/* Get pte level from shift/size */
843 	if (large_enable && shift == PUD_SHIFT &&
844 	    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
845 	    (hva & (PUD_SIZE - PAGE_SIZE))) {
846 		level = 2;
847 	} else if (large_enable && shift == PMD_SHIFT &&
848 		   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
849 		   (hva & (PMD_SIZE - PAGE_SIZE))) {
850 		level = 1;
851 	} else {
852 		level = 0;
853 		if (shift > PAGE_SHIFT) {
854 			/*
855 			 * If the pte maps more than one page, bring over
856 			 * bits from the virtual address to get the real
857 			 * address of the specific single page we want.
858 			 */
859 			unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
860 			pte = __pte(pte_val(pte) | (hva & rpnmask));
861 		}
862 	}
863 
864 	pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
865 	if (writing || upgrade_write) {
866 		if (pte_val(pte) & _PAGE_WRITE)
867 			pte = __pte(pte_val(pte) | _PAGE_DIRTY);
868 	} else {
869 		pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
870 	}
871 
872 	/* Allocate space in the tree and write the PTE */
873 	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
874 				mmu_seq, kvm->arch.lpid, NULL, NULL);
875 	if (inserted_pte)
876 		*inserted_pte = pte;
877 	if (levelp)
878 		*levelp = level;
879 
880 	if (page) {
881 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
882 			set_page_dirty_lock(page);
883 		put_page(page);
884 	}
885 
886 	/* Increment number of large pages if we (successfully) inserted one */
887 	if (!ret) {
888 		if (level == 1)
889 			kvm->stat.num_2M_pages++;
890 		else if (level == 2)
891 			kvm->stat.num_1G_pages++;
892 	}
893 
894 	return ret;
895 }
896 
897 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
898 				   unsigned long ea, unsigned long dsisr)
899 {
900 	struct kvm *kvm = vcpu->kvm;
901 	unsigned long gpa, gfn;
902 	struct kvm_memory_slot *memslot;
903 	long ret;
904 	bool writing = !!(dsisr & DSISR_ISSTORE);
905 	bool kvm_ro = false;
906 
907 	/* Check for unusual errors */
908 	if (dsisr & DSISR_UNSUPP_MMU) {
909 		pr_err("KVM: Got unsupported MMU fault\n");
910 		return -EFAULT;
911 	}
912 	if (dsisr & DSISR_BADACCESS) {
913 		/* Reflect to the guest as DSI */
914 		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
915 		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
916 		return RESUME_GUEST;
917 	}
918 
919 	/* Translate the logical address */
920 	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
921 	gpa &= ~0xF000000000000000ul;
922 	gfn = gpa >> PAGE_SHIFT;
923 	if (!(dsisr & DSISR_PRTABLE_FAULT))
924 		gpa |= ea & 0xfff;
925 
926 	/* Get the corresponding memslot */
927 	memslot = gfn_to_memslot(kvm, gfn);
928 
929 	/* No memslot means it's an emulated MMIO region */
930 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
931 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
932 			     DSISR_SET_RC)) {
933 			/*
934 			 * Bad address in guest page table tree, or other
935 			 * unusual error - reflect it to the guest as DSI.
936 			 */
937 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
938 			return RESUME_GUEST;
939 		}
940 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing);
941 	}
942 
943 	if (memslot->flags & KVM_MEM_READONLY) {
944 		if (writing) {
945 			/* give the guest a DSI */
946 			kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
947 						       DSISR_PROTFAULT);
948 			return RESUME_GUEST;
949 		}
950 		kvm_ro = true;
951 	}
952 
953 	/* Failed to set the reference/change bits */
954 	if (dsisr & DSISR_SET_RC) {
955 		spin_lock(&kvm->mmu_lock);
956 		if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
957 					    writing, gpa, kvm->arch.lpid))
958 			dsisr &= ~DSISR_SET_RC;
959 		spin_unlock(&kvm->mmu_lock);
960 
961 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
962 			       DSISR_PROTFAULT | DSISR_SET_RC)))
963 			return RESUME_GUEST;
964 	}
965 
966 	/* Try to insert a pte */
967 	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
968 					     kvm_ro, NULL, NULL);
969 
970 	if (ret == 0 || ret == -EAGAIN)
971 		ret = RESUME_GUEST;
972 	return ret;
973 }
974 
975 /* Called with kvm->mmu_lock held */
976 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
977 		    unsigned long gfn)
978 {
979 	pte_t *ptep;
980 	unsigned long gpa = gfn << PAGE_SHIFT;
981 	unsigned int shift;
982 
983 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
984 	if (ptep && pte_present(*ptep))
985 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
986 				 kvm->arch.lpid);
987 	return 0;
988 }
989 
990 /* Called with kvm->mmu_lock held */
991 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
992 		  unsigned long gfn)
993 {
994 	pte_t *ptep;
995 	unsigned long gpa = gfn << PAGE_SHIFT;
996 	unsigned int shift;
997 	int ref = 0;
998 	unsigned long old, *rmapp;
999 
1000 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1001 	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1002 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1003 					      gpa, shift);
1004 		/* XXX need to flush tlb here? */
1005 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1006 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1007 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1008 					       old & PTE_RPN_MASK,
1009 					       1UL << shift);
1010 		ref = 1;
1011 	}
1012 	return ref;
1013 }
1014 
1015 /* Called with kvm->mmu_lock held */
1016 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1017 		       unsigned long gfn)
1018 {
1019 	pte_t *ptep;
1020 	unsigned long gpa = gfn << PAGE_SHIFT;
1021 	unsigned int shift;
1022 	int ref = 0;
1023 
1024 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1025 	if (ptep && pte_present(*ptep) && pte_young(*ptep))
1026 		ref = 1;
1027 	return ref;
1028 }
1029 
1030 /* Returns the number of PAGE_SIZE pages that are dirty */
1031 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1032 				struct kvm_memory_slot *memslot, int pagenum)
1033 {
1034 	unsigned long gfn = memslot->base_gfn + pagenum;
1035 	unsigned long gpa = gfn << PAGE_SHIFT;
1036 	pte_t *ptep;
1037 	unsigned int shift;
1038 	int ret = 0;
1039 	unsigned long old, *rmapp;
1040 
1041 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1042 	if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
1043 		ret = 1;
1044 		if (shift)
1045 			ret = 1 << (shift - PAGE_SHIFT);
1046 		spin_lock(&kvm->mmu_lock);
1047 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1048 					      gpa, shift);
1049 		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1050 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1051 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1052 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1053 					       old & PTE_RPN_MASK,
1054 					       1UL << shift);
1055 		spin_unlock(&kvm->mmu_lock);
1056 	}
1057 	return ret;
1058 }
1059 
1060 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1061 			struct kvm_memory_slot *memslot, unsigned long *map)
1062 {
1063 	unsigned long i, j;
1064 	int npages;
1065 
1066 	for (i = 0; i < memslot->npages; i = j) {
1067 		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1068 
1069 		/*
1070 		 * Note that if npages > 0 then i must be a multiple of npages,
1071 		 * since huge pages are only used to back the guest at guest
1072 		 * real addresses that are a multiple of their size.
1073 		 * Since we have at most one PTE covering any given guest
1074 		 * real address, if npages > 1 we can skip to i + npages.
1075 		 */
1076 		j = i + 1;
1077 		if (npages) {
1078 			set_dirty_bits(map, i, npages);
1079 			j = i + npages;
1080 		}
1081 	}
1082 	return 0;
1083 }
1084 
1085 void kvmppc_radix_flush_memslot(struct kvm *kvm,
1086 				const struct kvm_memory_slot *memslot)
1087 {
1088 	unsigned long n;
1089 	pte_t *ptep;
1090 	unsigned long gpa;
1091 	unsigned int shift;
1092 
1093 	gpa = memslot->base_gfn << PAGE_SHIFT;
1094 	spin_lock(&kvm->mmu_lock);
1095 	for (n = memslot->npages; n; --n) {
1096 		ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1097 		if (ptep && pte_present(*ptep))
1098 			kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1099 					 kvm->arch.lpid);
1100 		gpa += PAGE_SIZE;
1101 	}
1102 	spin_unlock(&kvm->mmu_lock);
1103 }
1104 
1105 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1106 				 int psize, int *indexp)
1107 {
1108 	if (!mmu_psize_defs[psize].shift)
1109 		return;
1110 	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1111 		(mmu_psize_defs[psize].ap << 29);
1112 	++(*indexp);
1113 }
1114 
1115 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1116 {
1117 	int i;
1118 
1119 	if (!radix_enabled())
1120 		return -EINVAL;
1121 	memset(info, 0, sizeof(*info));
1122 
1123 	/* 4k page size */
1124 	info->geometries[0].page_shift = 12;
1125 	info->geometries[0].level_bits[0] = 9;
1126 	for (i = 1; i < 4; ++i)
1127 		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1128 	/* 64k page size */
1129 	info->geometries[1].page_shift = 16;
1130 	for (i = 0; i < 4; ++i)
1131 		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1132 
1133 	i = 0;
1134 	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1135 	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1136 	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1137 	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1138 
1139 	return 0;
1140 }
1141 
1142 int kvmppc_init_vm_radix(struct kvm *kvm)
1143 {
1144 	kvm->arch.pgtable = pgd_alloc(kvm->mm);
1145 	if (!kvm->arch.pgtable)
1146 		return -ENOMEM;
1147 	return 0;
1148 }
1149 
1150 static void pte_ctor(void *addr)
1151 {
1152 	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1153 }
1154 
1155 static void pmd_ctor(void *addr)
1156 {
1157 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1158 }
1159 
1160 struct debugfs_radix_state {
1161 	struct kvm	*kvm;
1162 	struct mutex	mutex;
1163 	unsigned long	gpa;
1164 	int		lpid;
1165 	int		chars_left;
1166 	int		buf_index;
1167 	char		buf[128];
1168 	u8		hdr;
1169 };
1170 
1171 static int debugfs_radix_open(struct inode *inode, struct file *file)
1172 {
1173 	struct kvm *kvm = inode->i_private;
1174 	struct debugfs_radix_state *p;
1175 
1176 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1177 	if (!p)
1178 		return -ENOMEM;
1179 
1180 	kvm_get_kvm(kvm);
1181 	p->kvm = kvm;
1182 	mutex_init(&p->mutex);
1183 	file->private_data = p;
1184 
1185 	return nonseekable_open(inode, file);
1186 }
1187 
1188 static int debugfs_radix_release(struct inode *inode, struct file *file)
1189 {
1190 	struct debugfs_radix_state *p = file->private_data;
1191 
1192 	kvm_put_kvm(p->kvm);
1193 	kfree(p);
1194 	return 0;
1195 }
1196 
1197 static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1198 				 size_t len, loff_t *ppos)
1199 {
1200 	struct debugfs_radix_state *p = file->private_data;
1201 	ssize_t ret, r;
1202 	unsigned long n;
1203 	struct kvm *kvm;
1204 	unsigned long gpa;
1205 	pgd_t *pgt;
1206 	struct kvm_nested_guest *nested;
1207 	pgd_t pgd, *pgdp;
1208 	pud_t pud, *pudp;
1209 	pmd_t pmd, *pmdp;
1210 	pte_t *ptep;
1211 	int shift;
1212 	unsigned long pte;
1213 
1214 	kvm = p->kvm;
1215 	if (!kvm_is_radix(kvm))
1216 		return 0;
1217 
1218 	ret = mutex_lock_interruptible(&p->mutex);
1219 	if (ret)
1220 		return ret;
1221 
1222 	if (p->chars_left) {
1223 		n = p->chars_left;
1224 		if (n > len)
1225 			n = len;
1226 		r = copy_to_user(buf, p->buf + p->buf_index, n);
1227 		n -= r;
1228 		p->chars_left -= n;
1229 		p->buf_index += n;
1230 		buf += n;
1231 		len -= n;
1232 		ret = n;
1233 		if (r) {
1234 			if (!n)
1235 				ret = -EFAULT;
1236 			goto out;
1237 		}
1238 	}
1239 
1240 	gpa = p->gpa;
1241 	nested = NULL;
1242 	pgt = NULL;
1243 	while (len != 0 && p->lpid >= 0) {
1244 		if (gpa >= RADIX_PGTABLE_RANGE) {
1245 			gpa = 0;
1246 			pgt = NULL;
1247 			if (nested) {
1248 				kvmhv_put_nested(nested);
1249 				nested = NULL;
1250 			}
1251 			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1252 			p->hdr = 0;
1253 			if (p->lpid < 0)
1254 				break;
1255 		}
1256 		if (!pgt) {
1257 			if (p->lpid == 0) {
1258 				pgt = kvm->arch.pgtable;
1259 			} else {
1260 				nested = kvmhv_get_nested(kvm, p->lpid, false);
1261 				if (!nested) {
1262 					gpa = RADIX_PGTABLE_RANGE;
1263 					continue;
1264 				}
1265 				pgt = nested->shadow_pgtable;
1266 			}
1267 		}
1268 		n = 0;
1269 		if (!p->hdr) {
1270 			if (p->lpid > 0)
1271 				n = scnprintf(p->buf, sizeof(p->buf),
1272 					      "\nNested LPID %d: ", p->lpid);
1273 			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1274 				      "pgdir: %lx\n", (unsigned long)pgt);
1275 			p->hdr = 1;
1276 			goto copy;
1277 		}
1278 
1279 		pgdp = pgt + pgd_index(gpa);
1280 		pgd = READ_ONCE(*pgdp);
1281 		if (!(pgd_val(pgd) & _PAGE_PRESENT)) {
1282 			gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE;
1283 			continue;
1284 		}
1285 
1286 		pudp = pud_offset(&pgd, gpa);
1287 		pud = READ_ONCE(*pudp);
1288 		if (!(pud_val(pud) & _PAGE_PRESENT)) {
1289 			gpa = (gpa & PUD_MASK) + PUD_SIZE;
1290 			continue;
1291 		}
1292 		if (pud_val(pud) & _PAGE_PTE) {
1293 			pte = pud_val(pud);
1294 			shift = PUD_SHIFT;
1295 			goto leaf;
1296 		}
1297 
1298 		pmdp = pmd_offset(&pud, gpa);
1299 		pmd = READ_ONCE(*pmdp);
1300 		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1301 			gpa = (gpa & PMD_MASK) + PMD_SIZE;
1302 			continue;
1303 		}
1304 		if (pmd_val(pmd) & _PAGE_PTE) {
1305 			pte = pmd_val(pmd);
1306 			shift = PMD_SHIFT;
1307 			goto leaf;
1308 		}
1309 
1310 		ptep = pte_offset_kernel(&pmd, gpa);
1311 		pte = pte_val(READ_ONCE(*ptep));
1312 		if (!(pte & _PAGE_PRESENT)) {
1313 			gpa += PAGE_SIZE;
1314 			continue;
1315 		}
1316 		shift = PAGE_SHIFT;
1317 	leaf:
1318 		n = scnprintf(p->buf, sizeof(p->buf),
1319 			      " %lx: %lx %d\n", gpa, pte, shift);
1320 		gpa += 1ul << shift;
1321 	copy:
1322 		p->chars_left = n;
1323 		if (n > len)
1324 			n = len;
1325 		r = copy_to_user(buf, p->buf, n);
1326 		n -= r;
1327 		p->chars_left -= n;
1328 		p->buf_index = n;
1329 		buf += n;
1330 		len -= n;
1331 		ret += n;
1332 		if (r) {
1333 			if (!ret)
1334 				ret = -EFAULT;
1335 			break;
1336 		}
1337 	}
1338 	p->gpa = gpa;
1339 	if (nested)
1340 		kvmhv_put_nested(nested);
1341 
1342  out:
1343 	mutex_unlock(&p->mutex);
1344 	return ret;
1345 }
1346 
1347 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1348 			   size_t len, loff_t *ppos)
1349 {
1350 	return -EACCES;
1351 }
1352 
1353 static const struct file_operations debugfs_radix_fops = {
1354 	.owner	 = THIS_MODULE,
1355 	.open	 = debugfs_radix_open,
1356 	.release = debugfs_radix_release,
1357 	.read	 = debugfs_radix_read,
1358 	.write	 = debugfs_radix_write,
1359 	.llseek	 = generic_file_llseek,
1360 };
1361 
1362 void kvmhv_radix_debugfs_init(struct kvm *kvm)
1363 {
1364 	kvm->arch.radix_dentry = debugfs_create_file("radix", 0400,
1365 						     kvm->arch.debugfs_dir, kvm,
1366 						     &debugfs_radix_fops);
1367 }
1368 
1369 int kvmppc_radix_init(void)
1370 {
1371 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1372 
1373 	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1374 	if (!kvm_pte_cache)
1375 		return -ENOMEM;
1376 
1377 	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1378 
1379 	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1380 	if (!kvm_pmd_cache) {
1381 		kmem_cache_destroy(kvm_pte_cache);
1382 		return -ENOMEM;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 void kvmppc_radix_exit(void)
1389 {
1390 	kmem_cache_destroy(kvm_pte_cache);
1391 	kmem_cache_destroy(kvm_pmd_cache);
1392 }
1393