1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/kvm_ppc.h> 15 #include <asm/kvm_book3s.h> 16 #include <asm/page.h> 17 #include <asm/mmu.h> 18 #include <asm/pgtable.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 22 /* 23 * Supported radix tree geometry. 24 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 25 * for a page size of 64k or 4k. 26 */ 27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 28 29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 30 struct kvmppc_pte *gpte, bool data, bool iswrite) 31 { 32 struct kvm *kvm = vcpu->kvm; 33 u32 pid; 34 int ret, level, ps; 35 __be64 prte, rpte; 36 unsigned long ptbl; 37 unsigned long root, pte, index; 38 unsigned long rts, bits, offset; 39 unsigned long gpa; 40 unsigned long proc_tbl_size; 41 42 /* Work out effective PID */ 43 switch (eaddr >> 62) { 44 case 0: 45 pid = vcpu->arch.pid; 46 break; 47 case 3: 48 pid = 0; 49 break; 50 default: 51 return -EINVAL; 52 } 53 proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12); 54 if (pid * 16 >= proc_tbl_size) 55 return -EINVAL; 56 57 /* Read partition table to find root of tree for effective PID */ 58 ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16); 59 ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte)); 60 if (ret) 61 return ret; 62 63 root = be64_to_cpu(prte); 64 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 65 ((root & RTS2_MASK) >> RTS2_SHIFT); 66 bits = root & RPDS_MASK; 67 root = root & RPDB_MASK; 68 69 /* P9 DD1 interprets RTS (radix tree size) differently */ 70 offset = rts + 31; 71 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 72 offset -= 3; 73 74 /* current implementations only support 52-bit space */ 75 if (offset != 52) 76 return -EINVAL; 77 78 for (level = 3; level >= 0; --level) { 79 if (level && bits != p9_supported_radix_bits[level]) 80 return -EINVAL; 81 if (level == 0 && !(bits == 5 || bits == 9)) 82 return -EINVAL; 83 offset -= bits; 84 index = (eaddr >> offset) & ((1UL << bits) - 1); 85 /* check that low bits of page table base are zero */ 86 if (root & ((1UL << (bits + 3)) - 1)) 87 return -EINVAL; 88 ret = kvm_read_guest(kvm, root + index * 8, 89 &rpte, sizeof(rpte)); 90 if (ret) 91 return ret; 92 pte = __be64_to_cpu(rpte); 93 if (!(pte & _PAGE_PRESENT)) 94 return -ENOENT; 95 if (pte & _PAGE_PTE) 96 break; 97 bits = pte & 0x1f; 98 root = pte & 0x0fffffffffffff00ul; 99 } 100 /* need a leaf at lowest level; 512GB pages not supported */ 101 if (level < 0 || level == 3) 102 return -EINVAL; 103 104 /* offset is now log base 2 of the page size */ 105 gpa = pte & 0x01fffffffffff000ul; 106 if (gpa & ((1ul << offset) - 1)) 107 return -EINVAL; 108 gpa += eaddr & ((1ul << offset) - 1); 109 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 110 if (offset == mmu_psize_defs[ps].shift) 111 break; 112 gpte->page_size = ps; 113 114 gpte->eaddr = eaddr; 115 gpte->raddr = gpa; 116 117 /* Work out permissions */ 118 gpte->may_read = !!(pte & _PAGE_READ); 119 gpte->may_write = !!(pte & _PAGE_WRITE); 120 gpte->may_execute = !!(pte & _PAGE_EXEC); 121 if (kvmppc_get_msr(vcpu) & MSR_PR) { 122 if (pte & _PAGE_PRIVILEGED) { 123 gpte->may_read = 0; 124 gpte->may_write = 0; 125 gpte->may_execute = 0; 126 } 127 } else { 128 if (!(pte & _PAGE_PRIVILEGED)) { 129 /* Check AMR/IAMR to see if strict mode is in force */ 130 if (vcpu->arch.amr & (1ul << 62)) 131 gpte->may_read = 0; 132 if (vcpu->arch.amr & (1ul << 63)) 133 gpte->may_write = 0; 134 if (vcpu->arch.iamr & (1ul << 62)) 135 gpte->may_execute = 0; 136 } 137 } 138 139 return 0; 140 } 141 142 #ifdef CONFIG_PPC_64K_PAGES 143 #define MMU_BASE_PSIZE MMU_PAGE_64K 144 #else 145 #define MMU_BASE_PSIZE MMU_PAGE_4K 146 #endif 147 148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 149 unsigned int pshift) 150 { 151 int psize = MMU_BASE_PSIZE; 152 153 if (pshift >= PMD_SHIFT) 154 psize = MMU_PAGE_2M; 155 addr &= ~0xfffUL; 156 addr |= mmu_psize_defs[psize].ap << 5; 157 asm volatile("ptesync": : :"memory"); 158 asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1) 159 : : "r" (addr), "r" (kvm->arch.lpid) : "memory"); 160 asm volatile("ptesync": : :"memory"); 161 } 162 163 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 164 unsigned long clr, unsigned long set, 165 unsigned long addr, unsigned int shift) 166 { 167 unsigned long old = 0; 168 169 if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) && 170 pte_present(*ptep)) { 171 /* have to invalidate it first */ 172 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0); 173 kvmppc_radix_tlbie_page(kvm, addr, shift); 174 set |= _PAGE_PRESENT; 175 old &= _PAGE_PRESENT; 176 } 177 return __radix_pte_update(ptep, clr, set) | old; 178 } 179 180 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 181 pte_t *ptep, pte_t pte) 182 { 183 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 184 } 185 186 static struct kmem_cache *kvm_pte_cache; 187 188 static pte_t *kvmppc_pte_alloc(void) 189 { 190 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 191 } 192 193 static void kvmppc_pte_free(pte_t *ptep) 194 { 195 kmem_cache_free(kvm_pte_cache, ptep); 196 } 197 198 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa, 199 unsigned int level, unsigned long mmu_seq) 200 { 201 pgd_t *pgd; 202 pud_t *pud, *new_pud = NULL; 203 pmd_t *pmd, *new_pmd = NULL; 204 pte_t *ptep, *new_ptep = NULL; 205 unsigned long old; 206 int ret; 207 208 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 209 pgd = kvm->arch.pgtable + pgd_index(gpa); 210 pud = NULL; 211 if (pgd_present(*pgd)) 212 pud = pud_offset(pgd, gpa); 213 else 214 new_pud = pud_alloc_one(kvm->mm, gpa); 215 216 pmd = NULL; 217 if (pud && pud_present(*pud)) 218 pmd = pmd_offset(pud, gpa); 219 else 220 new_pmd = pmd_alloc_one(kvm->mm, gpa); 221 222 if (level == 0 && !(pmd && pmd_present(*pmd))) 223 new_ptep = kvmppc_pte_alloc(); 224 225 /* Check if we might have been invalidated; let the guest retry if so */ 226 spin_lock(&kvm->mmu_lock); 227 ret = -EAGAIN; 228 if (mmu_notifier_retry(kvm, mmu_seq)) 229 goto out_unlock; 230 231 /* Now traverse again under the lock and change the tree */ 232 ret = -ENOMEM; 233 if (pgd_none(*pgd)) { 234 if (!new_pud) 235 goto out_unlock; 236 pgd_populate(kvm->mm, pgd, new_pud); 237 new_pud = NULL; 238 } 239 pud = pud_offset(pgd, gpa); 240 if (pud_none(*pud)) { 241 if (!new_pmd) 242 goto out_unlock; 243 pud_populate(kvm->mm, pud, new_pmd); 244 new_pmd = NULL; 245 } 246 pmd = pmd_offset(pud, gpa); 247 if (pmd_large(*pmd)) { 248 /* Someone else has instantiated a large page here; retry */ 249 ret = -EAGAIN; 250 goto out_unlock; 251 } 252 if (level == 1 && !pmd_none(*pmd)) { 253 /* 254 * There's a page table page here, but we wanted 255 * to install a large page. Tell the caller and let 256 * it try installing a normal page if it wants. 257 */ 258 ret = -EBUSY; 259 goto out_unlock; 260 } 261 if (level == 0) { 262 if (pmd_none(*pmd)) { 263 if (!new_ptep) 264 goto out_unlock; 265 pmd_populate(kvm->mm, pmd, new_ptep); 266 new_ptep = NULL; 267 } 268 ptep = pte_offset_kernel(pmd, gpa); 269 if (pte_present(*ptep)) { 270 /* PTE was previously valid, so invalidate it */ 271 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 272 0, gpa, 0); 273 kvmppc_radix_tlbie_page(kvm, gpa, 0); 274 if (old & _PAGE_DIRTY) 275 mark_page_dirty(kvm, gpa >> PAGE_SHIFT); 276 } 277 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 278 } else { 279 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 280 } 281 ret = 0; 282 283 out_unlock: 284 spin_unlock(&kvm->mmu_lock); 285 if (new_pud) 286 pud_free(kvm->mm, new_pud); 287 if (new_pmd) 288 pmd_free(kvm->mm, new_pmd); 289 if (new_ptep) 290 kvmppc_pte_free(new_ptep); 291 return ret; 292 } 293 294 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 295 unsigned long ea, unsigned long dsisr) 296 { 297 struct kvm *kvm = vcpu->kvm; 298 unsigned long mmu_seq, pte_size; 299 unsigned long gpa, gfn, hva, pfn; 300 struct kvm_memory_slot *memslot; 301 struct page *page = NULL, *pages[1]; 302 long ret, npages, ok; 303 unsigned int writing; 304 struct vm_area_struct *vma; 305 unsigned long flags; 306 pte_t pte, *ptep; 307 unsigned long pgflags; 308 unsigned int shift, level; 309 310 /* Check for unusual errors */ 311 if (dsisr & DSISR_UNSUPP_MMU) { 312 pr_err("KVM: Got unsupported MMU fault\n"); 313 return -EFAULT; 314 } 315 if (dsisr & DSISR_BADACCESS) { 316 /* Reflect to the guest as DSI */ 317 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 318 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 319 return RESUME_GUEST; 320 } 321 322 /* Translate the logical address and get the page */ 323 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 324 gpa &= ~0xF000000000000000ul; 325 gfn = gpa >> PAGE_SHIFT; 326 if (!(dsisr & DSISR_PRTABLE_FAULT)) 327 gpa |= ea & 0xfff; 328 memslot = gfn_to_memslot(kvm, gfn); 329 330 /* No memslot means it's an emulated MMIO region */ 331 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 332 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 333 DSISR_SET_RC)) { 334 /* 335 * Bad address in guest page table tree, or other 336 * unusual error - reflect it to the guest as DSI. 337 */ 338 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 339 return RESUME_GUEST; 340 } 341 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 342 dsisr & DSISR_ISSTORE); 343 } 344 345 /* used to check for invalidations in progress */ 346 mmu_seq = kvm->mmu_notifier_seq; 347 smp_rmb(); 348 349 writing = (dsisr & DSISR_ISSTORE) != 0; 350 hva = gfn_to_hva_memslot(memslot, gfn); 351 if (dsisr & DSISR_SET_RC) { 352 /* 353 * Need to set an R or C bit in the 2nd-level tables; 354 * if the relevant bits aren't already set in the linux 355 * page tables, fall through to do the gup_fast to 356 * set them in the linux page tables too. 357 */ 358 ok = 0; 359 pgflags = _PAGE_ACCESSED; 360 if (writing) 361 pgflags |= _PAGE_DIRTY; 362 local_irq_save(flags); 363 ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL); 364 if (ptep) { 365 pte = READ_ONCE(*ptep); 366 if (pte_present(pte) && 367 (pte_val(pte) & pgflags) == pgflags) 368 ok = 1; 369 } 370 local_irq_restore(flags); 371 if (ok) { 372 spin_lock(&kvm->mmu_lock); 373 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 374 spin_unlock(&kvm->mmu_lock); 375 return RESUME_GUEST; 376 } 377 /* 378 * We are walking the secondary page table here. We can do this 379 * without disabling irq. 380 */ 381 ptep = __find_linux_pte(kvm->arch.pgtable, 382 gpa, NULL, &shift); 383 if (ptep && pte_present(*ptep)) { 384 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, 385 gpa, shift); 386 spin_unlock(&kvm->mmu_lock); 387 return RESUME_GUEST; 388 } 389 spin_unlock(&kvm->mmu_lock); 390 } 391 } 392 393 ret = -EFAULT; 394 pfn = 0; 395 pte_size = PAGE_SIZE; 396 pgflags = _PAGE_READ | _PAGE_EXEC; 397 level = 0; 398 npages = get_user_pages_fast(hva, 1, writing, pages); 399 if (npages < 1) { 400 /* Check if it's an I/O mapping */ 401 down_read(¤t->mm->mmap_sem); 402 vma = find_vma(current->mm, hva); 403 if (vma && vma->vm_start <= hva && hva < vma->vm_end && 404 (vma->vm_flags & VM_PFNMAP)) { 405 pfn = vma->vm_pgoff + 406 ((hva - vma->vm_start) >> PAGE_SHIFT); 407 pgflags = pgprot_val(vma->vm_page_prot); 408 } 409 up_read(¤t->mm->mmap_sem); 410 if (!pfn) 411 return -EFAULT; 412 } else { 413 page = pages[0]; 414 pfn = page_to_pfn(page); 415 if (PageHuge(page)) { 416 page = compound_head(page); 417 pte_size <<= compound_order(page); 418 /* See if we can insert a 2MB large-page PTE here */ 419 if (pte_size >= PMD_SIZE && 420 (gpa & PMD_MASK & PAGE_MASK) == 421 (hva & PMD_MASK & PAGE_MASK)) { 422 level = 1; 423 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1); 424 } 425 } 426 /* See if we can provide write access */ 427 if (writing) { 428 /* 429 * We assume gup_fast has set dirty on the host PTE. 430 */ 431 pgflags |= _PAGE_WRITE; 432 } else { 433 local_irq_save(flags); 434 ptep = find_current_mm_pte(current->mm->pgd, 435 hva, NULL, NULL); 436 if (ptep && pte_write(*ptep) && pte_dirty(*ptep)) 437 pgflags |= _PAGE_WRITE; 438 local_irq_restore(flags); 439 } 440 } 441 442 /* 443 * Compute the PTE value that we need to insert. 444 */ 445 pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED; 446 if (pgflags & _PAGE_WRITE) 447 pgflags |= _PAGE_DIRTY; 448 pte = pfn_pte(pfn, __pgprot(pgflags)); 449 450 /* Allocate space in the tree and write the PTE */ 451 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); 452 if (ret == -EBUSY) { 453 /* 454 * There's already a PMD where wanted to install a large page; 455 * for now, fall back to installing a small page. 456 */ 457 level = 0; 458 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1); 459 pte = pfn_pte(pfn, __pgprot(pgflags)); 460 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); 461 } 462 if (ret == 0 || ret == -EAGAIN) 463 ret = RESUME_GUEST; 464 465 if (page) { 466 /* 467 * We drop pages[0] here, not page because page might 468 * have been set to the head page of a compound, but 469 * we have to drop the reference on the correct tail 470 * page to match the get inside gup() 471 */ 472 put_page(pages[0]); 473 } 474 return ret; 475 } 476 477 /* Called with kvm->lock held */ 478 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 479 unsigned long gfn) 480 { 481 pte_t *ptep; 482 unsigned long gpa = gfn << PAGE_SHIFT; 483 unsigned int shift; 484 unsigned long old; 485 486 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 487 if (ptep && pte_present(*ptep)) { 488 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0, 489 gpa, shift); 490 kvmppc_radix_tlbie_page(kvm, gpa, shift); 491 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) { 492 unsigned long npages = 1; 493 if (shift) 494 npages = 1ul << (shift - PAGE_SHIFT); 495 kvmppc_update_dirty_map(memslot, gfn, npages); 496 } 497 } 498 return 0; 499 } 500 501 /* Called with kvm->lock held */ 502 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 503 unsigned long gfn) 504 { 505 pte_t *ptep; 506 unsigned long gpa = gfn << PAGE_SHIFT; 507 unsigned int shift; 508 int ref = 0; 509 510 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 511 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 512 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 513 gpa, shift); 514 /* XXX need to flush tlb here? */ 515 ref = 1; 516 } 517 return ref; 518 } 519 520 /* Called with kvm->lock held */ 521 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 522 unsigned long gfn) 523 { 524 pte_t *ptep; 525 unsigned long gpa = gfn << PAGE_SHIFT; 526 unsigned int shift; 527 int ref = 0; 528 529 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 530 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 531 ref = 1; 532 return ref; 533 } 534 535 /* Returns the number of PAGE_SIZE pages that are dirty */ 536 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 537 struct kvm_memory_slot *memslot, int pagenum) 538 { 539 unsigned long gfn = memslot->base_gfn + pagenum; 540 unsigned long gpa = gfn << PAGE_SHIFT; 541 pte_t *ptep; 542 unsigned int shift; 543 int ret = 0; 544 545 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 546 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 547 ret = 1; 548 if (shift) 549 ret = 1 << (shift - PAGE_SHIFT); 550 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 551 gpa, shift); 552 kvmppc_radix_tlbie_page(kvm, gpa, shift); 553 } 554 return ret; 555 } 556 557 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 558 struct kvm_memory_slot *memslot, unsigned long *map) 559 { 560 unsigned long i, j; 561 int npages; 562 563 for (i = 0; i < memslot->npages; i = j) { 564 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 565 566 /* 567 * Note that if npages > 0 then i must be a multiple of npages, 568 * since huge pages are only used to back the guest at guest 569 * real addresses that are a multiple of their size. 570 * Since we have at most one PTE covering any given guest 571 * real address, if npages > 1 we can skip to i + npages. 572 */ 573 j = i + 1; 574 if (npages) { 575 set_dirty_bits(map, i, npages); 576 j = i + npages; 577 } 578 } 579 return 0; 580 } 581 582 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 583 int psize, int *indexp) 584 { 585 if (!mmu_psize_defs[psize].shift) 586 return; 587 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 588 (mmu_psize_defs[psize].ap << 29); 589 ++(*indexp); 590 } 591 592 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 593 { 594 int i; 595 596 if (!radix_enabled()) 597 return -EINVAL; 598 memset(info, 0, sizeof(*info)); 599 600 /* 4k page size */ 601 info->geometries[0].page_shift = 12; 602 info->geometries[0].level_bits[0] = 9; 603 for (i = 1; i < 4; ++i) 604 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 605 /* 64k page size */ 606 info->geometries[1].page_shift = 16; 607 for (i = 0; i < 4; ++i) 608 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 609 610 i = 0; 611 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 612 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 613 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 614 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 615 616 return 0; 617 } 618 619 int kvmppc_init_vm_radix(struct kvm *kvm) 620 { 621 kvm->arch.pgtable = pgd_alloc(kvm->mm); 622 if (!kvm->arch.pgtable) 623 return -ENOMEM; 624 return 0; 625 } 626 627 void kvmppc_free_radix(struct kvm *kvm) 628 { 629 unsigned long ig, iu, im; 630 pte_t *pte; 631 pmd_t *pmd; 632 pud_t *pud; 633 pgd_t *pgd; 634 635 if (!kvm->arch.pgtable) 636 return; 637 pgd = kvm->arch.pgtable; 638 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 639 if (!pgd_present(*pgd)) 640 continue; 641 pud = pud_offset(pgd, 0); 642 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) { 643 if (!pud_present(*pud)) 644 continue; 645 pmd = pmd_offset(pud, 0); 646 for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) { 647 if (pmd_huge(*pmd)) { 648 pmd_clear(pmd); 649 continue; 650 } 651 if (!pmd_present(*pmd)) 652 continue; 653 pte = pte_offset_map(pmd, 0); 654 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 655 kvmppc_pte_free(pte); 656 pmd_clear(pmd); 657 } 658 pmd_free(kvm->mm, pmd_offset(pud, 0)); 659 pud_clear(pud); 660 } 661 pud_free(kvm->mm, pud_offset(pgd, 0)); 662 pgd_clear(pgd); 663 } 664 pgd_free(kvm->mm, kvm->arch.pgtable); 665 kvm->arch.pgtable = NULL; 666 } 667 668 static void pte_ctor(void *addr) 669 { 670 memset(addr, 0, PTE_TABLE_SIZE); 671 } 672 673 int kvmppc_radix_init(void) 674 { 675 unsigned long size = sizeof(void *) << PTE_INDEX_SIZE; 676 677 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 678 if (!kvm_pte_cache) 679 return -ENOMEM; 680 return 0; 681 } 682 683 void kvmppc_radix_exit(void) 684 { 685 kmem_cache_destroy(kvm_pte_cache); 686 } 687