1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/page.h>
19 #include <asm/mmu.h>
20 #include <asm/pgalloc.h>
21 #include <asm/pte-walk.h>
22 #include <asm/ultravisor.h>
23 #include <asm/kvm_book3s_uvmem.h>
24 #include <asm/plpar_wrappers.h>
25 
26 /*
27  * Supported radix tree geometry.
28  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
29  * for a page size of 64k or 4k.
30  */
31 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
32 
33 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
34 					      gva_t eaddr, void *to, void *from,
35 					      unsigned long n)
36 {
37 	int old_pid, old_lpid;
38 	unsigned long quadrant, ret = n;
39 	bool is_load = !!to;
40 
41 	/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
42 	if (kvmhv_on_pseries())
43 		return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
44 					  (to != NULL) ? __pa(to): 0,
45 					  (from != NULL) ? __pa(from): 0, n);
46 
47 	if (eaddr & (0xFFFUL << 52))
48 		return ret;
49 
50 	quadrant = 1;
51 	if (!pid)
52 		quadrant = 2;
53 	if (is_load)
54 		from = (void *) (eaddr | (quadrant << 62));
55 	else
56 		to = (void *) (eaddr | (quadrant << 62));
57 
58 	preempt_disable();
59 
60 	/* switch the lpid first to avoid running host with unallocated pid */
61 	old_lpid = mfspr(SPRN_LPID);
62 	if (old_lpid != lpid)
63 		mtspr(SPRN_LPID, lpid);
64 	if (quadrant == 1) {
65 		old_pid = mfspr(SPRN_PID);
66 		if (old_pid != pid)
67 			mtspr(SPRN_PID, pid);
68 	}
69 	isync();
70 
71 	pagefault_disable();
72 	if (is_load)
73 		ret = __copy_from_user_inatomic(to, (const void __user *)from, n);
74 	else
75 		ret = __copy_to_user_inatomic((void __user *)to, from, n);
76 	pagefault_enable();
77 
78 	/* switch the pid first to avoid running host with unallocated pid */
79 	if (quadrant == 1 && pid != old_pid)
80 		mtspr(SPRN_PID, old_pid);
81 	if (lpid != old_lpid)
82 		mtspr(SPRN_LPID, old_lpid);
83 	isync();
84 
85 	preempt_enable();
86 
87 	return ret;
88 }
89 
90 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
91 					  void *to, void *from, unsigned long n)
92 {
93 	int lpid = vcpu->kvm->arch.lpid;
94 	int pid = vcpu->arch.pid;
95 
96 	/* This would cause a data segment intr so don't allow the access */
97 	if (eaddr & (0x3FFUL << 52))
98 		return -EINVAL;
99 
100 	/* Should we be using the nested lpid */
101 	if (vcpu->arch.nested)
102 		lpid = vcpu->arch.nested->shadow_lpid;
103 
104 	/* If accessing quadrant 3 then pid is expected to be 0 */
105 	if (((eaddr >> 62) & 0x3) == 0x3)
106 		pid = 0;
107 
108 	eaddr &= ~(0xFFFUL << 52);
109 
110 	return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
111 }
112 
113 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
114 				 unsigned long n)
115 {
116 	long ret;
117 
118 	ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
119 	if (ret > 0)
120 		memset(to + (n - ret), 0, ret);
121 
122 	return ret;
123 }
124 
125 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
126 			       unsigned long n)
127 {
128 	return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
129 }
130 
131 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
132 			       struct kvmppc_pte *gpte, u64 root,
133 			       u64 *pte_ret_p)
134 {
135 	struct kvm *kvm = vcpu->kvm;
136 	int ret, level, ps;
137 	unsigned long rts, bits, offset, index;
138 	u64 pte, base, gpa;
139 	__be64 rpte;
140 
141 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
142 		((root & RTS2_MASK) >> RTS2_SHIFT);
143 	bits = root & RPDS_MASK;
144 	base = root & RPDB_MASK;
145 
146 	offset = rts + 31;
147 
148 	/* Current implementations only support 52-bit space */
149 	if (offset != 52)
150 		return -EINVAL;
151 
152 	/* Walk each level of the radix tree */
153 	for (level = 3; level >= 0; --level) {
154 		u64 addr;
155 		/* Check a valid size */
156 		if (level && bits != p9_supported_radix_bits[level])
157 			return -EINVAL;
158 		if (level == 0 && !(bits == 5 || bits == 9))
159 			return -EINVAL;
160 		offset -= bits;
161 		index = (eaddr >> offset) & ((1UL << bits) - 1);
162 		/* Check that low bits of page table base are zero */
163 		if (base & ((1UL << (bits + 3)) - 1))
164 			return -EINVAL;
165 		/* Read the entry from guest memory */
166 		addr = base + (index * sizeof(rpte));
167 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
168 		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
169 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
170 		if (ret) {
171 			if (pte_ret_p)
172 				*pte_ret_p = addr;
173 			return ret;
174 		}
175 		pte = __be64_to_cpu(rpte);
176 		if (!(pte & _PAGE_PRESENT))
177 			return -ENOENT;
178 		/* Check if a leaf entry */
179 		if (pte & _PAGE_PTE)
180 			break;
181 		/* Get ready to walk the next level */
182 		base = pte & RPDB_MASK;
183 		bits = pte & RPDS_MASK;
184 	}
185 
186 	/* Need a leaf at lowest level; 512GB pages not supported */
187 	if (level < 0 || level == 3)
188 		return -EINVAL;
189 
190 	/* We found a valid leaf PTE */
191 	/* Offset is now log base 2 of the page size */
192 	gpa = pte & 0x01fffffffffff000ul;
193 	if (gpa & ((1ul << offset) - 1))
194 		return -EINVAL;
195 	gpa |= eaddr & ((1ul << offset) - 1);
196 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
197 		if (offset == mmu_psize_defs[ps].shift)
198 			break;
199 	gpte->page_size = ps;
200 	gpte->page_shift = offset;
201 
202 	gpte->eaddr = eaddr;
203 	gpte->raddr = gpa;
204 
205 	/* Work out permissions */
206 	gpte->may_read = !!(pte & _PAGE_READ);
207 	gpte->may_write = !!(pte & _PAGE_WRITE);
208 	gpte->may_execute = !!(pte & _PAGE_EXEC);
209 
210 	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
211 
212 	if (pte_ret_p)
213 		*pte_ret_p = pte;
214 
215 	return 0;
216 }
217 
218 /*
219  * Used to walk a partition or process table radix tree in guest memory
220  * Note: We exploit the fact that a partition table and a process
221  * table have the same layout, a partition-scoped page table and a
222  * process-scoped page table have the same layout, and the 2nd
223  * doubleword of a partition table entry has the same layout as
224  * the PTCR register.
225  */
226 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
227 				     struct kvmppc_pte *gpte, u64 table,
228 				     int table_index, u64 *pte_ret_p)
229 {
230 	struct kvm *kvm = vcpu->kvm;
231 	int ret;
232 	unsigned long size, ptbl, root;
233 	struct prtb_entry entry;
234 
235 	if ((table & PRTS_MASK) > 24)
236 		return -EINVAL;
237 	size = 1ul << ((table & PRTS_MASK) + 12);
238 
239 	/* Is the table big enough to contain this entry? */
240 	if ((table_index * sizeof(entry)) >= size)
241 		return -EINVAL;
242 
243 	/* Read the table to find the root of the radix tree */
244 	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
245 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
246 	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
247 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
248 	if (ret)
249 		return ret;
250 
251 	/* Root is stored in the first double word */
252 	root = be64_to_cpu(entry.prtb0);
253 
254 	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
255 }
256 
257 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
258 			   struct kvmppc_pte *gpte, bool data, bool iswrite)
259 {
260 	u32 pid;
261 	u64 pte;
262 	int ret;
263 
264 	/* Work out effective PID */
265 	switch (eaddr >> 62) {
266 	case 0:
267 		pid = vcpu->arch.pid;
268 		break;
269 	case 3:
270 		pid = 0;
271 		break;
272 	default:
273 		return -EINVAL;
274 	}
275 
276 	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
277 				vcpu->kvm->arch.process_table, pid, &pte);
278 	if (ret)
279 		return ret;
280 
281 	/* Check privilege (applies only to process scoped translations) */
282 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
283 		if (pte & _PAGE_PRIVILEGED) {
284 			gpte->may_read = 0;
285 			gpte->may_write = 0;
286 			gpte->may_execute = 0;
287 		}
288 	} else {
289 		if (!(pte & _PAGE_PRIVILEGED)) {
290 			/* Check AMR/IAMR to see if strict mode is in force */
291 			if (vcpu->arch.amr & (1ul << 62))
292 				gpte->may_read = 0;
293 			if (vcpu->arch.amr & (1ul << 63))
294 				gpte->may_write = 0;
295 			if (vcpu->arch.iamr & (1ul << 62))
296 				gpte->may_execute = 0;
297 		}
298 	}
299 
300 	return 0;
301 }
302 
303 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
304 			     unsigned int pshift, unsigned int lpid)
305 {
306 	unsigned long psize = PAGE_SIZE;
307 	int psi;
308 	long rc;
309 	unsigned long rb;
310 
311 	if (pshift)
312 		psize = 1UL << pshift;
313 	else
314 		pshift = PAGE_SHIFT;
315 
316 	addr &= ~(psize - 1);
317 
318 	if (!kvmhv_on_pseries()) {
319 		radix__flush_tlb_lpid_page(lpid, addr, psize);
320 		return;
321 	}
322 
323 	psi = shift_to_mmu_psize(pshift);
324 
325 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) {
326 		rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
327 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
328 					lpid, rb);
329 	} else {
330 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
331 					    H_RPTI_TYPE_NESTED |
332 					    H_RPTI_TYPE_TLB,
333 					    psize_to_rpti_pgsize(psi),
334 					    addr, addr + psize);
335 	}
336 
337 	if (rc)
338 		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
339 }
340 
341 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
342 {
343 	long rc;
344 
345 	if (!kvmhv_on_pseries()) {
346 		radix__flush_pwc_lpid(lpid);
347 		return;
348 	}
349 
350 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
351 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
352 					lpid, TLBIEL_INVAL_SET_LPID);
353 	else
354 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
355 					    H_RPTI_TYPE_NESTED |
356 					    H_RPTI_TYPE_PWC, H_RPTI_PAGE_ALL,
357 					    0, -1UL);
358 	if (rc)
359 		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
360 }
361 
362 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
363 				      unsigned long clr, unsigned long set,
364 				      unsigned long addr, unsigned int shift)
365 {
366 	return __radix_pte_update(ptep, clr, set);
367 }
368 
369 static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
370 			     pte_t *ptep, pte_t pte)
371 {
372 	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
373 }
374 
375 static struct kmem_cache *kvm_pte_cache;
376 static struct kmem_cache *kvm_pmd_cache;
377 
378 static pte_t *kvmppc_pte_alloc(void)
379 {
380 	pte_t *pte;
381 
382 	pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
383 	/* pmd_populate() will only reference _pa(pte). */
384 	kmemleak_ignore(pte);
385 
386 	return pte;
387 }
388 
389 static void kvmppc_pte_free(pte_t *ptep)
390 {
391 	kmem_cache_free(kvm_pte_cache, ptep);
392 }
393 
394 static pmd_t *kvmppc_pmd_alloc(void)
395 {
396 	pmd_t *pmd;
397 
398 	pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
399 	/* pud_populate() will only reference _pa(pmd). */
400 	kmemleak_ignore(pmd);
401 
402 	return pmd;
403 }
404 
405 static void kvmppc_pmd_free(pmd_t *pmdp)
406 {
407 	kmem_cache_free(kvm_pmd_cache, pmdp);
408 }
409 
410 /* Called with kvm->mmu_lock held */
411 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
412 		      unsigned int shift,
413 		      const struct kvm_memory_slot *memslot,
414 		      unsigned int lpid)
415 
416 {
417 	unsigned long old;
418 	unsigned long gfn = gpa >> PAGE_SHIFT;
419 	unsigned long page_size = PAGE_SIZE;
420 	unsigned long hpa;
421 
422 	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
423 	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
424 
425 	/* The following only applies to L1 entries */
426 	if (lpid != kvm->arch.lpid)
427 		return;
428 
429 	if (!memslot) {
430 		memslot = gfn_to_memslot(kvm, gfn);
431 		if (!memslot)
432 			return;
433 	}
434 	if (shift) { /* 1GB or 2MB page */
435 		page_size = 1ul << shift;
436 		if (shift == PMD_SHIFT)
437 			kvm->stat.num_2M_pages--;
438 		else if (shift == PUD_SHIFT)
439 			kvm->stat.num_1G_pages--;
440 	}
441 
442 	gpa &= ~(page_size - 1);
443 	hpa = old & PTE_RPN_MASK;
444 	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
445 
446 	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
447 		kvmppc_update_dirty_map(memslot, gfn, page_size);
448 }
449 
450 /*
451  * kvmppc_free_p?d are used to free existing page tables, and recursively
452  * descend and clear and free children.
453  * Callers are responsible for flushing the PWC.
454  *
455  * When page tables are being unmapped/freed as part of page fault path
456  * (full == false), valid ptes are generally not expected; however, there
457  * is one situation where they arise, which is when dirty page logging is
458  * turned off for a memslot while the VM is running.  The new memslot
459  * becomes visible to page faults before the memslot commit function
460  * gets to flush the memslot, which can lead to a 2MB page mapping being
461  * installed for a guest physical address where there are already 64kB
462  * (or 4kB) mappings (of sub-pages of the same 2MB page).
463  */
464 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
465 				  unsigned int lpid)
466 {
467 	if (full) {
468 		memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
469 	} else {
470 		pte_t *p = pte;
471 		unsigned long it;
472 
473 		for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
474 			if (pte_val(*p) == 0)
475 				continue;
476 			kvmppc_unmap_pte(kvm, p,
477 					 pte_pfn(*p) << PAGE_SHIFT,
478 					 PAGE_SHIFT, NULL, lpid);
479 		}
480 	}
481 
482 	kvmppc_pte_free(pte);
483 }
484 
485 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
486 				  unsigned int lpid)
487 {
488 	unsigned long im;
489 	pmd_t *p = pmd;
490 
491 	for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
492 		if (!pmd_present(*p))
493 			continue;
494 		if (pmd_is_leaf(*p)) {
495 			if (full) {
496 				pmd_clear(p);
497 			} else {
498 				WARN_ON_ONCE(1);
499 				kvmppc_unmap_pte(kvm, (pte_t *)p,
500 					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
501 					 PMD_SHIFT, NULL, lpid);
502 			}
503 		} else {
504 			pte_t *pte;
505 
506 			pte = pte_offset_map(p, 0);
507 			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
508 			pmd_clear(p);
509 		}
510 	}
511 	kvmppc_pmd_free(pmd);
512 }
513 
514 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
515 				  unsigned int lpid)
516 {
517 	unsigned long iu;
518 	pud_t *p = pud;
519 
520 	for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
521 		if (!pud_present(*p))
522 			continue;
523 		if (pud_is_leaf(*p)) {
524 			pud_clear(p);
525 		} else {
526 			pmd_t *pmd;
527 
528 			pmd = pmd_offset(p, 0);
529 			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
530 			pud_clear(p);
531 		}
532 	}
533 	pud_free(kvm->mm, pud);
534 }
535 
536 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
537 {
538 	unsigned long ig;
539 
540 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
541 		p4d_t *p4d = p4d_offset(pgd, 0);
542 		pud_t *pud;
543 
544 		if (!p4d_present(*p4d))
545 			continue;
546 		pud = pud_offset(p4d, 0);
547 		kvmppc_unmap_free_pud(kvm, pud, lpid);
548 		p4d_clear(p4d);
549 	}
550 }
551 
552 void kvmppc_free_radix(struct kvm *kvm)
553 {
554 	if (kvm->arch.pgtable) {
555 		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
556 					  kvm->arch.lpid);
557 		pgd_free(kvm->mm, kvm->arch.pgtable);
558 		kvm->arch.pgtable = NULL;
559 	}
560 }
561 
562 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
563 					unsigned long gpa, unsigned int lpid)
564 {
565 	pte_t *pte = pte_offset_kernel(pmd, 0);
566 
567 	/*
568 	 * Clearing the pmd entry then flushing the PWC ensures that the pte
569 	 * page no longer be cached by the MMU, so can be freed without
570 	 * flushing the PWC again.
571 	 */
572 	pmd_clear(pmd);
573 	kvmppc_radix_flush_pwc(kvm, lpid);
574 
575 	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
576 }
577 
578 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
579 					unsigned long gpa, unsigned int lpid)
580 {
581 	pmd_t *pmd = pmd_offset(pud, 0);
582 
583 	/*
584 	 * Clearing the pud entry then flushing the PWC ensures that the pmd
585 	 * page and any children pte pages will no longer be cached by the MMU,
586 	 * so can be freed without flushing the PWC again.
587 	 */
588 	pud_clear(pud);
589 	kvmppc_radix_flush_pwc(kvm, lpid);
590 
591 	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
592 }
593 
594 /*
595  * There are a number of bits which may differ between different faults to
596  * the same partition scope entry. RC bits, in the course of cleaning and
597  * aging. And the write bit can change, either the access could have been
598  * upgraded, or a read fault could happen concurrently with a write fault
599  * that sets those bits first.
600  */
601 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
602 
603 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
604 		      unsigned long gpa, unsigned int level,
605 		      unsigned long mmu_seq, unsigned int lpid,
606 		      unsigned long *rmapp, struct rmap_nested **n_rmap)
607 {
608 	pgd_t *pgd;
609 	p4d_t *p4d;
610 	pud_t *pud, *new_pud = NULL;
611 	pmd_t *pmd, *new_pmd = NULL;
612 	pte_t *ptep, *new_ptep = NULL;
613 	int ret;
614 
615 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
616 	pgd = pgtable + pgd_index(gpa);
617 	p4d = p4d_offset(pgd, gpa);
618 
619 	pud = NULL;
620 	if (p4d_present(*p4d))
621 		pud = pud_offset(p4d, gpa);
622 	else
623 		new_pud = pud_alloc_one(kvm->mm, gpa);
624 
625 	pmd = NULL;
626 	if (pud && pud_present(*pud) && !pud_is_leaf(*pud))
627 		pmd = pmd_offset(pud, gpa);
628 	else if (level <= 1)
629 		new_pmd = kvmppc_pmd_alloc();
630 
631 	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
632 		new_ptep = kvmppc_pte_alloc();
633 
634 	/* Check if we might have been invalidated; let the guest retry if so */
635 	spin_lock(&kvm->mmu_lock);
636 	ret = -EAGAIN;
637 	if (mmu_notifier_retry(kvm, mmu_seq))
638 		goto out_unlock;
639 
640 	/* Now traverse again under the lock and change the tree */
641 	ret = -ENOMEM;
642 	if (p4d_none(*p4d)) {
643 		if (!new_pud)
644 			goto out_unlock;
645 		p4d_populate(kvm->mm, p4d, new_pud);
646 		new_pud = NULL;
647 	}
648 	pud = pud_offset(p4d, gpa);
649 	if (pud_is_leaf(*pud)) {
650 		unsigned long hgpa = gpa & PUD_MASK;
651 
652 		/* Check if we raced and someone else has set the same thing */
653 		if (level == 2) {
654 			if (pud_raw(*pud) == pte_raw(pte)) {
655 				ret = 0;
656 				goto out_unlock;
657 			}
658 			/* Valid 1GB page here already, add our extra bits */
659 			WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
660 							PTE_BITS_MUST_MATCH);
661 			kvmppc_radix_update_pte(kvm, (pte_t *)pud,
662 					      0, pte_val(pte), hgpa, PUD_SHIFT);
663 			ret = 0;
664 			goto out_unlock;
665 		}
666 		/*
667 		 * If we raced with another CPU which has just put
668 		 * a 1GB pte in after we saw a pmd page, try again.
669 		 */
670 		if (!new_pmd) {
671 			ret = -EAGAIN;
672 			goto out_unlock;
673 		}
674 		/* Valid 1GB page here already, remove it */
675 		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
676 				 lpid);
677 	}
678 	if (level == 2) {
679 		if (!pud_none(*pud)) {
680 			/*
681 			 * There's a page table page here, but we wanted to
682 			 * install a large page, so remove and free the page
683 			 * table page.
684 			 */
685 			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
686 		}
687 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
688 		if (rmapp && n_rmap)
689 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
690 		ret = 0;
691 		goto out_unlock;
692 	}
693 	if (pud_none(*pud)) {
694 		if (!new_pmd)
695 			goto out_unlock;
696 		pud_populate(kvm->mm, pud, new_pmd);
697 		new_pmd = NULL;
698 	}
699 	pmd = pmd_offset(pud, gpa);
700 	if (pmd_is_leaf(*pmd)) {
701 		unsigned long lgpa = gpa & PMD_MASK;
702 
703 		/* Check if we raced and someone else has set the same thing */
704 		if (level == 1) {
705 			if (pmd_raw(*pmd) == pte_raw(pte)) {
706 				ret = 0;
707 				goto out_unlock;
708 			}
709 			/* Valid 2MB page here already, add our extra bits */
710 			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
711 							PTE_BITS_MUST_MATCH);
712 			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
713 					0, pte_val(pte), lgpa, PMD_SHIFT);
714 			ret = 0;
715 			goto out_unlock;
716 		}
717 
718 		/*
719 		 * If we raced with another CPU which has just put
720 		 * a 2MB pte in after we saw a pte page, try again.
721 		 */
722 		if (!new_ptep) {
723 			ret = -EAGAIN;
724 			goto out_unlock;
725 		}
726 		/* Valid 2MB page here already, remove it */
727 		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
728 				 lpid);
729 	}
730 	if (level == 1) {
731 		if (!pmd_none(*pmd)) {
732 			/*
733 			 * There's a page table page here, but we wanted to
734 			 * install a large page, so remove and free the page
735 			 * table page.
736 			 */
737 			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
738 		}
739 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
740 		if (rmapp && n_rmap)
741 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
742 		ret = 0;
743 		goto out_unlock;
744 	}
745 	if (pmd_none(*pmd)) {
746 		if (!new_ptep)
747 			goto out_unlock;
748 		pmd_populate(kvm->mm, pmd, new_ptep);
749 		new_ptep = NULL;
750 	}
751 	ptep = pte_offset_kernel(pmd, gpa);
752 	if (pte_present(*ptep)) {
753 		/* Check if someone else set the same thing */
754 		if (pte_raw(*ptep) == pte_raw(pte)) {
755 			ret = 0;
756 			goto out_unlock;
757 		}
758 		/* Valid page here already, add our extra bits */
759 		WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
760 							PTE_BITS_MUST_MATCH);
761 		kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
762 		ret = 0;
763 		goto out_unlock;
764 	}
765 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
766 	if (rmapp && n_rmap)
767 		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
768 	ret = 0;
769 
770  out_unlock:
771 	spin_unlock(&kvm->mmu_lock);
772 	if (new_pud)
773 		pud_free(kvm->mm, new_pud);
774 	if (new_pmd)
775 		kvmppc_pmd_free(new_pmd);
776 	if (new_ptep)
777 		kvmppc_pte_free(new_ptep);
778 	return ret;
779 }
780 
781 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing,
782 			     unsigned long gpa, unsigned int lpid)
783 {
784 	unsigned long pgflags;
785 	unsigned int shift;
786 	pte_t *ptep;
787 
788 	/*
789 	 * Need to set an R or C bit in the 2nd-level tables;
790 	 * since we are just helping out the hardware here,
791 	 * it is sufficient to do what the hardware does.
792 	 */
793 	pgflags = _PAGE_ACCESSED;
794 	if (writing)
795 		pgflags |= _PAGE_DIRTY;
796 
797 	if (nested)
798 		ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
799 	else
800 		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
801 
802 	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
803 		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
804 		return true;
805 	}
806 	return false;
807 }
808 
809 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
810 				   unsigned long gpa,
811 				   struct kvm_memory_slot *memslot,
812 				   bool writing, bool kvm_ro,
813 				   pte_t *inserted_pte, unsigned int *levelp)
814 {
815 	struct kvm *kvm = vcpu->kvm;
816 	struct page *page = NULL;
817 	unsigned long mmu_seq;
818 	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
819 	bool upgrade_write = false;
820 	bool *upgrade_p = &upgrade_write;
821 	pte_t pte, *ptep;
822 	unsigned int shift, level;
823 	int ret;
824 	bool large_enable;
825 
826 	/* used to check for invalidations in progress */
827 	mmu_seq = kvm->mmu_notifier_seq;
828 	smp_rmb();
829 
830 	/*
831 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
832 	 * do it with !atomic && !async, which is how we call it.
833 	 * We always ask for write permission since the common case
834 	 * is that the page is writable.
835 	 */
836 	hva = gfn_to_hva_memslot(memslot, gfn);
837 	if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
838 		upgrade_write = true;
839 	} else {
840 		unsigned long pfn;
841 
842 		/* Call KVM generic code to do the slow-path check */
843 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
844 					   writing, upgrade_p, NULL);
845 		if (is_error_noslot_pfn(pfn))
846 			return -EFAULT;
847 		page = NULL;
848 		if (pfn_valid(pfn)) {
849 			page = pfn_to_page(pfn);
850 			if (PageReserved(page))
851 				page = NULL;
852 		}
853 	}
854 
855 	/*
856 	 * Read the PTE from the process' radix tree and use that
857 	 * so we get the shift and attribute bits.
858 	 */
859 	spin_lock(&kvm->mmu_lock);
860 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
861 	pte = __pte(0);
862 	if (ptep)
863 		pte = READ_ONCE(*ptep);
864 	spin_unlock(&kvm->mmu_lock);
865 	/*
866 	 * If the PTE disappeared temporarily due to a THP
867 	 * collapse, just return and let the guest try again.
868 	 */
869 	if (!pte_present(pte)) {
870 		if (page)
871 			put_page(page);
872 		return RESUME_GUEST;
873 	}
874 
875 	/* If we're logging dirty pages, always map single pages */
876 	large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
877 
878 	/* Get pte level from shift/size */
879 	if (large_enable && shift == PUD_SHIFT &&
880 	    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
881 	    (hva & (PUD_SIZE - PAGE_SIZE))) {
882 		level = 2;
883 	} else if (large_enable && shift == PMD_SHIFT &&
884 		   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
885 		   (hva & (PMD_SIZE - PAGE_SIZE))) {
886 		level = 1;
887 	} else {
888 		level = 0;
889 		if (shift > PAGE_SHIFT) {
890 			/*
891 			 * If the pte maps more than one page, bring over
892 			 * bits from the virtual address to get the real
893 			 * address of the specific single page we want.
894 			 */
895 			unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
896 			pte = __pte(pte_val(pte) | (hva & rpnmask));
897 		}
898 	}
899 
900 	pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
901 	if (writing || upgrade_write) {
902 		if (pte_val(pte) & _PAGE_WRITE)
903 			pte = __pte(pte_val(pte) | _PAGE_DIRTY);
904 	} else {
905 		pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
906 	}
907 
908 	/* Allocate space in the tree and write the PTE */
909 	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
910 				mmu_seq, kvm->arch.lpid, NULL, NULL);
911 	if (inserted_pte)
912 		*inserted_pte = pte;
913 	if (levelp)
914 		*levelp = level;
915 
916 	if (page) {
917 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
918 			set_page_dirty_lock(page);
919 		put_page(page);
920 	}
921 
922 	/* Increment number of large pages if we (successfully) inserted one */
923 	if (!ret) {
924 		if (level == 1)
925 			kvm->stat.num_2M_pages++;
926 		else if (level == 2)
927 			kvm->stat.num_1G_pages++;
928 	}
929 
930 	return ret;
931 }
932 
933 int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu,
934 				   unsigned long ea, unsigned long dsisr)
935 {
936 	struct kvm *kvm = vcpu->kvm;
937 	unsigned long gpa, gfn;
938 	struct kvm_memory_slot *memslot;
939 	long ret;
940 	bool writing = !!(dsisr & DSISR_ISSTORE);
941 	bool kvm_ro = false;
942 
943 	/* Check for unusual errors */
944 	if (dsisr & DSISR_UNSUPP_MMU) {
945 		pr_err("KVM: Got unsupported MMU fault\n");
946 		return -EFAULT;
947 	}
948 	if (dsisr & DSISR_BADACCESS) {
949 		/* Reflect to the guest as DSI */
950 		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
951 		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
952 		return RESUME_GUEST;
953 	}
954 
955 	/* Translate the logical address */
956 	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
957 	gpa &= ~0xF000000000000000ul;
958 	gfn = gpa >> PAGE_SHIFT;
959 	if (!(dsisr & DSISR_PRTABLE_FAULT))
960 		gpa |= ea & 0xfff;
961 
962 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
963 		return kvmppc_send_page_to_uv(kvm, gfn);
964 
965 	/* Get the corresponding memslot */
966 	memslot = gfn_to_memslot(kvm, gfn);
967 
968 	/* No memslot means it's an emulated MMIO region */
969 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
970 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
971 			     DSISR_SET_RC)) {
972 			/*
973 			 * Bad address in guest page table tree, or other
974 			 * unusual error - reflect it to the guest as DSI.
975 			 */
976 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
977 			return RESUME_GUEST;
978 		}
979 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
980 	}
981 
982 	if (memslot->flags & KVM_MEM_READONLY) {
983 		if (writing) {
984 			/* give the guest a DSI */
985 			kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
986 						       DSISR_PROTFAULT);
987 			return RESUME_GUEST;
988 		}
989 		kvm_ro = true;
990 	}
991 
992 	/* Failed to set the reference/change bits */
993 	if (dsisr & DSISR_SET_RC) {
994 		spin_lock(&kvm->mmu_lock);
995 		if (kvmppc_hv_handle_set_rc(kvm, false, writing,
996 					    gpa, kvm->arch.lpid))
997 			dsisr &= ~DSISR_SET_RC;
998 		spin_unlock(&kvm->mmu_lock);
999 
1000 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1001 			       DSISR_PROTFAULT | DSISR_SET_RC)))
1002 			return RESUME_GUEST;
1003 	}
1004 
1005 	/* Try to insert a pte */
1006 	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
1007 					     kvm_ro, NULL, NULL);
1008 
1009 	if (ret == 0 || ret == -EAGAIN)
1010 		ret = RESUME_GUEST;
1011 	return ret;
1012 }
1013 
1014 /* Called with kvm->mmu_lock held */
1015 void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1016 		     unsigned long gfn)
1017 {
1018 	pte_t *ptep;
1019 	unsigned long gpa = gfn << PAGE_SHIFT;
1020 	unsigned int shift;
1021 
1022 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
1023 		uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
1024 		return;
1025 	}
1026 
1027 	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1028 	if (ptep && pte_present(*ptep))
1029 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1030 				 kvm->arch.lpid);
1031 }
1032 
1033 /* Called with kvm->mmu_lock held */
1034 bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1035 		   unsigned long gfn)
1036 {
1037 	pte_t *ptep;
1038 	unsigned long gpa = gfn << PAGE_SHIFT;
1039 	unsigned int shift;
1040 	bool ref = false;
1041 	unsigned long old, *rmapp;
1042 
1043 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1044 		return ref;
1045 
1046 	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1047 	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1048 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1049 					      gpa, shift);
1050 		/* XXX need to flush tlb here? */
1051 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1052 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1053 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1054 					       old & PTE_RPN_MASK,
1055 					       1UL << shift);
1056 		ref = true;
1057 	}
1058 	return ref;
1059 }
1060 
1061 /* Called with kvm->mmu_lock held */
1062 bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1063 			unsigned long gfn)
1064 
1065 {
1066 	pte_t *ptep;
1067 	unsigned long gpa = gfn << PAGE_SHIFT;
1068 	unsigned int shift;
1069 	bool ref = false;
1070 
1071 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1072 		return ref;
1073 
1074 	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1075 	if (ptep && pte_present(*ptep) && pte_young(*ptep))
1076 		ref = true;
1077 	return ref;
1078 }
1079 
1080 /* Returns the number of PAGE_SIZE pages that are dirty */
1081 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1082 				struct kvm_memory_slot *memslot, int pagenum)
1083 {
1084 	unsigned long gfn = memslot->base_gfn + pagenum;
1085 	unsigned long gpa = gfn << PAGE_SHIFT;
1086 	pte_t *ptep, pte;
1087 	unsigned int shift;
1088 	int ret = 0;
1089 	unsigned long old, *rmapp;
1090 
1091 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1092 		return ret;
1093 
1094 	/*
1095 	 * For performance reasons we don't hold kvm->mmu_lock while walking the
1096 	 * partition scoped table.
1097 	 */
1098 	ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift);
1099 	if (!ptep)
1100 		return 0;
1101 
1102 	pte = READ_ONCE(*ptep);
1103 	if (pte_present(pte) && pte_dirty(pte)) {
1104 		spin_lock(&kvm->mmu_lock);
1105 		/*
1106 		 * Recheck the pte again
1107 		 */
1108 		if (pte_val(pte) != pte_val(*ptep)) {
1109 			/*
1110 			 * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can
1111 			 * only find PAGE_SIZE pte entries here. We can continue
1112 			 * to use the pte addr returned by above page table
1113 			 * walk.
1114 			 */
1115 			if (!pte_present(*ptep) || !pte_dirty(*ptep)) {
1116 				spin_unlock(&kvm->mmu_lock);
1117 				return 0;
1118 			}
1119 		}
1120 
1121 		ret = 1;
1122 		VM_BUG_ON(shift);
1123 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1124 					      gpa, shift);
1125 		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1126 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1127 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1128 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1129 					       old & PTE_RPN_MASK,
1130 					       1UL << shift);
1131 		spin_unlock(&kvm->mmu_lock);
1132 	}
1133 	return ret;
1134 }
1135 
1136 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1137 			struct kvm_memory_slot *memslot, unsigned long *map)
1138 {
1139 	unsigned long i, j;
1140 	int npages;
1141 
1142 	for (i = 0; i < memslot->npages; i = j) {
1143 		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1144 
1145 		/*
1146 		 * Note that if npages > 0 then i must be a multiple of npages,
1147 		 * since huge pages are only used to back the guest at guest
1148 		 * real addresses that are a multiple of their size.
1149 		 * Since we have at most one PTE covering any given guest
1150 		 * real address, if npages > 1 we can skip to i + npages.
1151 		 */
1152 		j = i + 1;
1153 		if (npages) {
1154 			set_dirty_bits(map, i, npages);
1155 			j = i + npages;
1156 		}
1157 	}
1158 	return 0;
1159 }
1160 
1161 void kvmppc_radix_flush_memslot(struct kvm *kvm,
1162 				const struct kvm_memory_slot *memslot)
1163 {
1164 	unsigned long n;
1165 	pte_t *ptep;
1166 	unsigned long gpa;
1167 	unsigned int shift;
1168 
1169 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
1170 		kvmppc_uvmem_drop_pages(memslot, kvm, true);
1171 
1172 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1173 		return;
1174 
1175 	gpa = memslot->base_gfn << PAGE_SHIFT;
1176 	spin_lock(&kvm->mmu_lock);
1177 	for (n = memslot->npages; n; --n) {
1178 		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1179 		if (ptep && pte_present(*ptep))
1180 			kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1181 					 kvm->arch.lpid);
1182 		gpa += PAGE_SIZE;
1183 	}
1184 	/*
1185 	 * Increase the mmu notifier sequence number to prevent any page
1186 	 * fault that read the memslot earlier from writing a PTE.
1187 	 */
1188 	kvm->mmu_notifier_seq++;
1189 	spin_unlock(&kvm->mmu_lock);
1190 }
1191 
1192 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1193 				 int psize, int *indexp)
1194 {
1195 	if (!mmu_psize_defs[psize].shift)
1196 		return;
1197 	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1198 		(mmu_psize_defs[psize].ap << 29);
1199 	++(*indexp);
1200 }
1201 
1202 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1203 {
1204 	int i;
1205 
1206 	if (!radix_enabled())
1207 		return -EINVAL;
1208 	memset(info, 0, sizeof(*info));
1209 
1210 	/* 4k page size */
1211 	info->geometries[0].page_shift = 12;
1212 	info->geometries[0].level_bits[0] = 9;
1213 	for (i = 1; i < 4; ++i)
1214 		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1215 	/* 64k page size */
1216 	info->geometries[1].page_shift = 16;
1217 	for (i = 0; i < 4; ++i)
1218 		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1219 
1220 	i = 0;
1221 	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1222 	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1223 	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1224 	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1225 
1226 	return 0;
1227 }
1228 
1229 int kvmppc_init_vm_radix(struct kvm *kvm)
1230 {
1231 	kvm->arch.pgtable = pgd_alloc(kvm->mm);
1232 	if (!kvm->arch.pgtable)
1233 		return -ENOMEM;
1234 	return 0;
1235 }
1236 
1237 static void pte_ctor(void *addr)
1238 {
1239 	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1240 }
1241 
1242 static void pmd_ctor(void *addr)
1243 {
1244 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1245 }
1246 
1247 struct debugfs_radix_state {
1248 	struct kvm	*kvm;
1249 	struct mutex	mutex;
1250 	unsigned long	gpa;
1251 	int		lpid;
1252 	int		chars_left;
1253 	int		buf_index;
1254 	char		buf[128];
1255 	u8		hdr;
1256 };
1257 
1258 static int debugfs_radix_open(struct inode *inode, struct file *file)
1259 {
1260 	struct kvm *kvm = inode->i_private;
1261 	struct debugfs_radix_state *p;
1262 
1263 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1264 	if (!p)
1265 		return -ENOMEM;
1266 
1267 	kvm_get_kvm(kvm);
1268 	p->kvm = kvm;
1269 	mutex_init(&p->mutex);
1270 	file->private_data = p;
1271 
1272 	return nonseekable_open(inode, file);
1273 }
1274 
1275 static int debugfs_radix_release(struct inode *inode, struct file *file)
1276 {
1277 	struct debugfs_radix_state *p = file->private_data;
1278 
1279 	kvm_put_kvm(p->kvm);
1280 	kfree(p);
1281 	return 0;
1282 }
1283 
1284 static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1285 				 size_t len, loff_t *ppos)
1286 {
1287 	struct debugfs_radix_state *p = file->private_data;
1288 	ssize_t ret, r;
1289 	unsigned long n;
1290 	struct kvm *kvm;
1291 	unsigned long gpa;
1292 	pgd_t *pgt;
1293 	struct kvm_nested_guest *nested;
1294 	pgd_t *pgdp;
1295 	p4d_t p4d, *p4dp;
1296 	pud_t pud, *pudp;
1297 	pmd_t pmd, *pmdp;
1298 	pte_t *ptep;
1299 	int shift;
1300 	unsigned long pte;
1301 
1302 	kvm = p->kvm;
1303 	if (!kvm_is_radix(kvm))
1304 		return 0;
1305 
1306 	ret = mutex_lock_interruptible(&p->mutex);
1307 	if (ret)
1308 		return ret;
1309 
1310 	if (p->chars_left) {
1311 		n = p->chars_left;
1312 		if (n > len)
1313 			n = len;
1314 		r = copy_to_user(buf, p->buf + p->buf_index, n);
1315 		n -= r;
1316 		p->chars_left -= n;
1317 		p->buf_index += n;
1318 		buf += n;
1319 		len -= n;
1320 		ret = n;
1321 		if (r) {
1322 			if (!n)
1323 				ret = -EFAULT;
1324 			goto out;
1325 		}
1326 	}
1327 
1328 	gpa = p->gpa;
1329 	nested = NULL;
1330 	pgt = NULL;
1331 	while (len != 0 && p->lpid >= 0) {
1332 		if (gpa >= RADIX_PGTABLE_RANGE) {
1333 			gpa = 0;
1334 			pgt = NULL;
1335 			if (nested) {
1336 				kvmhv_put_nested(nested);
1337 				nested = NULL;
1338 			}
1339 			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1340 			p->hdr = 0;
1341 			if (p->lpid < 0)
1342 				break;
1343 		}
1344 		if (!pgt) {
1345 			if (p->lpid == 0) {
1346 				pgt = kvm->arch.pgtable;
1347 			} else {
1348 				nested = kvmhv_get_nested(kvm, p->lpid, false);
1349 				if (!nested) {
1350 					gpa = RADIX_PGTABLE_RANGE;
1351 					continue;
1352 				}
1353 				pgt = nested->shadow_pgtable;
1354 			}
1355 		}
1356 		n = 0;
1357 		if (!p->hdr) {
1358 			if (p->lpid > 0)
1359 				n = scnprintf(p->buf, sizeof(p->buf),
1360 					      "\nNested LPID %d: ", p->lpid);
1361 			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1362 				      "pgdir: %lx\n", (unsigned long)pgt);
1363 			p->hdr = 1;
1364 			goto copy;
1365 		}
1366 
1367 		pgdp = pgt + pgd_index(gpa);
1368 		p4dp = p4d_offset(pgdp, gpa);
1369 		p4d = READ_ONCE(*p4dp);
1370 		if (!(p4d_val(p4d) & _PAGE_PRESENT)) {
1371 			gpa = (gpa & P4D_MASK) + P4D_SIZE;
1372 			continue;
1373 		}
1374 
1375 		pudp = pud_offset(&p4d, gpa);
1376 		pud = READ_ONCE(*pudp);
1377 		if (!(pud_val(pud) & _PAGE_PRESENT)) {
1378 			gpa = (gpa & PUD_MASK) + PUD_SIZE;
1379 			continue;
1380 		}
1381 		if (pud_val(pud) & _PAGE_PTE) {
1382 			pte = pud_val(pud);
1383 			shift = PUD_SHIFT;
1384 			goto leaf;
1385 		}
1386 
1387 		pmdp = pmd_offset(&pud, gpa);
1388 		pmd = READ_ONCE(*pmdp);
1389 		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1390 			gpa = (gpa & PMD_MASK) + PMD_SIZE;
1391 			continue;
1392 		}
1393 		if (pmd_val(pmd) & _PAGE_PTE) {
1394 			pte = pmd_val(pmd);
1395 			shift = PMD_SHIFT;
1396 			goto leaf;
1397 		}
1398 
1399 		ptep = pte_offset_kernel(&pmd, gpa);
1400 		pte = pte_val(READ_ONCE(*ptep));
1401 		if (!(pte & _PAGE_PRESENT)) {
1402 			gpa += PAGE_SIZE;
1403 			continue;
1404 		}
1405 		shift = PAGE_SHIFT;
1406 	leaf:
1407 		n = scnprintf(p->buf, sizeof(p->buf),
1408 			      " %lx: %lx %d\n", gpa, pte, shift);
1409 		gpa += 1ul << shift;
1410 	copy:
1411 		p->chars_left = n;
1412 		if (n > len)
1413 			n = len;
1414 		r = copy_to_user(buf, p->buf, n);
1415 		n -= r;
1416 		p->chars_left -= n;
1417 		p->buf_index = n;
1418 		buf += n;
1419 		len -= n;
1420 		ret += n;
1421 		if (r) {
1422 			if (!ret)
1423 				ret = -EFAULT;
1424 			break;
1425 		}
1426 	}
1427 	p->gpa = gpa;
1428 	if (nested)
1429 		kvmhv_put_nested(nested);
1430 
1431  out:
1432 	mutex_unlock(&p->mutex);
1433 	return ret;
1434 }
1435 
1436 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1437 			   size_t len, loff_t *ppos)
1438 {
1439 	return -EACCES;
1440 }
1441 
1442 static const struct file_operations debugfs_radix_fops = {
1443 	.owner	 = THIS_MODULE,
1444 	.open	 = debugfs_radix_open,
1445 	.release = debugfs_radix_release,
1446 	.read	 = debugfs_radix_read,
1447 	.write	 = debugfs_radix_write,
1448 	.llseek	 = generic_file_llseek,
1449 };
1450 
1451 void kvmhv_radix_debugfs_init(struct kvm *kvm)
1452 {
1453 	debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm,
1454 			    &debugfs_radix_fops);
1455 }
1456 
1457 int kvmppc_radix_init(void)
1458 {
1459 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1460 
1461 	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1462 	if (!kvm_pte_cache)
1463 		return -ENOMEM;
1464 
1465 	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1466 
1467 	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1468 	if (!kvm_pmd_cache) {
1469 		kmem_cache_destroy(kvm_pte_cache);
1470 		return -ENOMEM;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 void kvmppc_radix_exit(void)
1477 {
1478 	kmem_cache_destroy(kvm_pte_cache);
1479 	kmem_cache_destroy(kvm_pmd_cache);
1480 }
1481