1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/debugfs.h>
14 
15 #include <asm/kvm_ppc.h>
16 #include <asm/kvm_book3s.h>
17 #include <asm/page.h>
18 #include <asm/mmu.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/pte-walk.h>
22 
23 /*
24  * Supported radix tree geometry.
25  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
26  * for a page size of 64k or 4k.
27  */
28 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
29 
30 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
31 					      gva_t eaddr, void *to, void *from,
32 					      unsigned long n)
33 {
34 	int uninitialized_var(old_pid), old_lpid;
35 	unsigned long quadrant, ret = n;
36 	bool is_load = !!to;
37 
38 	/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
39 	if (kvmhv_on_pseries())
40 		return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
41 					  __pa(to), __pa(from), n);
42 
43 	quadrant = 1;
44 	if (!pid)
45 		quadrant = 2;
46 	if (is_load)
47 		from = (void *) (eaddr | (quadrant << 62));
48 	else
49 		to = (void *) (eaddr | (quadrant << 62));
50 
51 	preempt_disable();
52 
53 	/* switch the lpid first to avoid running host with unallocated pid */
54 	old_lpid = mfspr(SPRN_LPID);
55 	if (old_lpid != lpid)
56 		mtspr(SPRN_LPID, lpid);
57 	if (quadrant == 1) {
58 		old_pid = mfspr(SPRN_PID);
59 		if (old_pid != pid)
60 			mtspr(SPRN_PID, pid);
61 	}
62 	isync();
63 
64 	pagefault_disable();
65 	if (is_load)
66 		ret = raw_copy_from_user(to, from, n);
67 	else
68 		ret = raw_copy_to_user(to, from, n);
69 	pagefault_enable();
70 
71 	/* switch the pid first to avoid running host with unallocated pid */
72 	if (quadrant == 1 && pid != old_pid)
73 		mtspr(SPRN_PID, old_pid);
74 	if (lpid != old_lpid)
75 		mtspr(SPRN_LPID, old_lpid);
76 	isync();
77 
78 	preempt_enable();
79 
80 	return ret;
81 }
82 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix);
83 
84 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
85 					  void *to, void *from, unsigned long n)
86 {
87 	int lpid = vcpu->kvm->arch.lpid;
88 	int pid = vcpu->arch.pid;
89 
90 	/* This would cause a data segment intr so don't allow the access */
91 	if (eaddr & (0x3FFUL << 52))
92 		return -EINVAL;
93 
94 	/* Should we be using the nested lpid */
95 	if (vcpu->arch.nested)
96 		lpid = vcpu->arch.nested->shadow_lpid;
97 
98 	/* If accessing quadrant 3 then pid is expected to be 0 */
99 	if (((eaddr >> 62) & 0x3) == 0x3)
100 		pid = 0;
101 
102 	eaddr &= ~(0xFFFUL << 52);
103 
104 	return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
105 }
106 
107 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
108 				 unsigned long n)
109 {
110 	long ret;
111 
112 	ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
113 	if (ret > 0)
114 		memset(to + (n - ret), 0, ret);
115 
116 	return ret;
117 }
118 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix);
119 
120 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
121 			       unsigned long n)
122 {
123 	return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
124 }
125 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix);
126 
127 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
128 			       struct kvmppc_pte *gpte, u64 root,
129 			       u64 *pte_ret_p)
130 {
131 	struct kvm *kvm = vcpu->kvm;
132 	int ret, level, ps;
133 	unsigned long rts, bits, offset, index;
134 	u64 pte, base, gpa;
135 	__be64 rpte;
136 
137 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
138 		((root & RTS2_MASK) >> RTS2_SHIFT);
139 	bits = root & RPDS_MASK;
140 	base = root & RPDB_MASK;
141 
142 	offset = rts + 31;
143 
144 	/* Current implementations only support 52-bit space */
145 	if (offset != 52)
146 		return -EINVAL;
147 
148 	/* Walk each level of the radix tree */
149 	for (level = 3; level >= 0; --level) {
150 		u64 addr;
151 		/* Check a valid size */
152 		if (level && bits != p9_supported_radix_bits[level])
153 			return -EINVAL;
154 		if (level == 0 && !(bits == 5 || bits == 9))
155 			return -EINVAL;
156 		offset -= bits;
157 		index = (eaddr >> offset) & ((1UL << bits) - 1);
158 		/* Check that low bits of page table base are zero */
159 		if (base & ((1UL << (bits + 3)) - 1))
160 			return -EINVAL;
161 		/* Read the entry from guest memory */
162 		addr = base + (index * sizeof(rpte));
163 		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
164 		if (ret) {
165 			if (pte_ret_p)
166 				*pte_ret_p = addr;
167 			return ret;
168 		}
169 		pte = __be64_to_cpu(rpte);
170 		if (!(pte & _PAGE_PRESENT))
171 			return -ENOENT;
172 		/* Check if a leaf entry */
173 		if (pte & _PAGE_PTE)
174 			break;
175 		/* Get ready to walk the next level */
176 		base = pte & RPDB_MASK;
177 		bits = pte & RPDS_MASK;
178 	}
179 
180 	/* Need a leaf at lowest level; 512GB pages not supported */
181 	if (level < 0 || level == 3)
182 		return -EINVAL;
183 
184 	/* We found a valid leaf PTE */
185 	/* Offset is now log base 2 of the page size */
186 	gpa = pte & 0x01fffffffffff000ul;
187 	if (gpa & ((1ul << offset) - 1))
188 		return -EINVAL;
189 	gpa |= eaddr & ((1ul << offset) - 1);
190 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
191 		if (offset == mmu_psize_defs[ps].shift)
192 			break;
193 	gpte->page_size = ps;
194 	gpte->page_shift = offset;
195 
196 	gpte->eaddr = eaddr;
197 	gpte->raddr = gpa;
198 
199 	/* Work out permissions */
200 	gpte->may_read = !!(pte & _PAGE_READ);
201 	gpte->may_write = !!(pte & _PAGE_WRITE);
202 	gpte->may_execute = !!(pte & _PAGE_EXEC);
203 
204 	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
205 
206 	if (pte_ret_p)
207 		*pte_ret_p = pte;
208 
209 	return 0;
210 }
211 
212 /*
213  * Used to walk a partition or process table radix tree in guest memory
214  * Note: We exploit the fact that a partition table and a process
215  * table have the same layout, a partition-scoped page table and a
216  * process-scoped page table have the same layout, and the 2nd
217  * doubleword of a partition table entry has the same layout as
218  * the PTCR register.
219  */
220 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
221 				     struct kvmppc_pte *gpte, u64 table,
222 				     int table_index, u64 *pte_ret_p)
223 {
224 	struct kvm *kvm = vcpu->kvm;
225 	int ret;
226 	unsigned long size, ptbl, root;
227 	struct prtb_entry entry;
228 
229 	if ((table & PRTS_MASK) > 24)
230 		return -EINVAL;
231 	size = 1ul << ((table & PRTS_MASK) + 12);
232 
233 	/* Is the table big enough to contain this entry? */
234 	if ((table_index * sizeof(entry)) >= size)
235 		return -EINVAL;
236 
237 	/* Read the table to find the root of the radix tree */
238 	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
239 	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
240 	if (ret)
241 		return ret;
242 
243 	/* Root is stored in the first double word */
244 	root = be64_to_cpu(entry.prtb0);
245 
246 	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
247 }
248 
249 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
250 			   struct kvmppc_pte *gpte, bool data, bool iswrite)
251 {
252 	u32 pid;
253 	u64 pte;
254 	int ret;
255 
256 	/* Work out effective PID */
257 	switch (eaddr >> 62) {
258 	case 0:
259 		pid = vcpu->arch.pid;
260 		break;
261 	case 3:
262 		pid = 0;
263 		break;
264 	default:
265 		return -EINVAL;
266 	}
267 
268 	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
269 				vcpu->kvm->arch.process_table, pid, &pte);
270 	if (ret)
271 		return ret;
272 
273 	/* Check privilege (applies only to process scoped translations) */
274 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
275 		if (pte & _PAGE_PRIVILEGED) {
276 			gpte->may_read = 0;
277 			gpte->may_write = 0;
278 			gpte->may_execute = 0;
279 		}
280 	} else {
281 		if (!(pte & _PAGE_PRIVILEGED)) {
282 			/* Check AMR/IAMR to see if strict mode is in force */
283 			if (vcpu->arch.amr & (1ul << 62))
284 				gpte->may_read = 0;
285 			if (vcpu->arch.amr & (1ul << 63))
286 				gpte->may_write = 0;
287 			if (vcpu->arch.iamr & (1ul << 62))
288 				gpte->may_execute = 0;
289 		}
290 	}
291 
292 	return 0;
293 }
294 
295 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
296 			     unsigned int pshift, unsigned int lpid)
297 {
298 	unsigned long psize = PAGE_SIZE;
299 	int psi;
300 	long rc;
301 	unsigned long rb;
302 
303 	if (pshift)
304 		psize = 1UL << pshift;
305 	else
306 		pshift = PAGE_SHIFT;
307 
308 	addr &= ~(psize - 1);
309 
310 	if (!kvmhv_on_pseries()) {
311 		radix__flush_tlb_lpid_page(lpid, addr, psize);
312 		return;
313 	}
314 
315 	psi = shift_to_mmu_psize(pshift);
316 	rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
317 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
318 				lpid, rb);
319 	if (rc)
320 		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
321 }
322 
323 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
324 {
325 	long rc;
326 
327 	if (!kvmhv_on_pseries()) {
328 		radix__flush_pwc_lpid(lpid);
329 		return;
330 	}
331 
332 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
333 				lpid, TLBIEL_INVAL_SET_LPID);
334 	if (rc)
335 		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
336 }
337 
338 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
339 				      unsigned long clr, unsigned long set,
340 				      unsigned long addr, unsigned int shift)
341 {
342 	return __radix_pte_update(ptep, clr, set);
343 }
344 
345 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
346 			     pte_t *ptep, pte_t pte)
347 {
348 	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
349 }
350 
351 static struct kmem_cache *kvm_pte_cache;
352 static struct kmem_cache *kvm_pmd_cache;
353 
354 static pte_t *kvmppc_pte_alloc(void)
355 {
356 	return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
357 }
358 
359 static void kvmppc_pte_free(pte_t *ptep)
360 {
361 	kmem_cache_free(kvm_pte_cache, ptep);
362 }
363 
364 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
365 static inline int pmd_is_leaf(pmd_t pmd)
366 {
367 	return !!(pmd_val(pmd) & _PAGE_PTE);
368 }
369 
370 static pmd_t *kvmppc_pmd_alloc(void)
371 {
372 	return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
373 }
374 
375 static void kvmppc_pmd_free(pmd_t *pmdp)
376 {
377 	kmem_cache_free(kvm_pmd_cache, pmdp);
378 }
379 
380 /* Called with kvm->mmu_lock held */
381 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
382 		      unsigned int shift,
383 		      const struct kvm_memory_slot *memslot,
384 		      unsigned int lpid)
385 
386 {
387 	unsigned long old;
388 	unsigned long gfn = gpa >> PAGE_SHIFT;
389 	unsigned long page_size = PAGE_SIZE;
390 	unsigned long hpa;
391 
392 	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
393 	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
394 
395 	/* The following only applies to L1 entries */
396 	if (lpid != kvm->arch.lpid)
397 		return;
398 
399 	if (!memslot) {
400 		memslot = gfn_to_memslot(kvm, gfn);
401 		if (!memslot)
402 			return;
403 	}
404 	if (shift) { /* 1GB or 2MB page */
405 		page_size = 1ul << shift;
406 		if (shift == PMD_SHIFT)
407 			kvm->stat.num_2M_pages--;
408 		else if (shift == PUD_SHIFT)
409 			kvm->stat.num_1G_pages--;
410 	}
411 
412 	gpa &= ~(page_size - 1);
413 	hpa = old & PTE_RPN_MASK;
414 	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
415 
416 	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
417 		kvmppc_update_dirty_map(memslot, gfn, page_size);
418 }
419 
420 /*
421  * kvmppc_free_p?d are used to free existing page tables, and recursively
422  * descend and clear and free children.
423  * Callers are responsible for flushing the PWC.
424  *
425  * When page tables are being unmapped/freed as part of page fault path
426  * (full == false), ptes are not expected. There is code to unmap them
427  * and emit a warning if encountered, but there may already be data
428  * corruption due to the unexpected mappings.
429  */
430 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
431 				  unsigned int lpid)
432 {
433 	if (full) {
434 		memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
435 	} else {
436 		pte_t *p = pte;
437 		unsigned long it;
438 
439 		for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
440 			if (pte_val(*p) == 0)
441 				continue;
442 			WARN_ON_ONCE(1);
443 			kvmppc_unmap_pte(kvm, p,
444 					 pte_pfn(*p) << PAGE_SHIFT,
445 					 PAGE_SHIFT, NULL, lpid);
446 		}
447 	}
448 
449 	kvmppc_pte_free(pte);
450 }
451 
452 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
453 				  unsigned int lpid)
454 {
455 	unsigned long im;
456 	pmd_t *p = pmd;
457 
458 	for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
459 		if (!pmd_present(*p))
460 			continue;
461 		if (pmd_is_leaf(*p)) {
462 			if (full) {
463 				pmd_clear(p);
464 			} else {
465 				WARN_ON_ONCE(1);
466 				kvmppc_unmap_pte(kvm, (pte_t *)p,
467 					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
468 					 PMD_SHIFT, NULL, lpid);
469 			}
470 		} else {
471 			pte_t *pte;
472 
473 			pte = pte_offset_map(p, 0);
474 			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
475 			pmd_clear(p);
476 		}
477 	}
478 	kvmppc_pmd_free(pmd);
479 }
480 
481 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
482 				  unsigned int lpid)
483 {
484 	unsigned long iu;
485 	pud_t *p = pud;
486 
487 	for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
488 		if (!pud_present(*p))
489 			continue;
490 		if (pud_huge(*p)) {
491 			pud_clear(p);
492 		} else {
493 			pmd_t *pmd;
494 
495 			pmd = pmd_offset(p, 0);
496 			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
497 			pud_clear(p);
498 		}
499 	}
500 	pud_free(kvm->mm, pud);
501 }
502 
503 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
504 {
505 	unsigned long ig;
506 
507 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
508 		pud_t *pud;
509 
510 		if (!pgd_present(*pgd))
511 			continue;
512 		pud = pud_offset(pgd, 0);
513 		kvmppc_unmap_free_pud(kvm, pud, lpid);
514 		pgd_clear(pgd);
515 	}
516 }
517 
518 void kvmppc_free_radix(struct kvm *kvm)
519 {
520 	if (kvm->arch.pgtable) {
521 		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
522 					  kvm->arch.lpid);
523 		pgd_free(kvm->mm, kvm->arch.pgtable);
524 		kvm->arch.pgtable = NULL;
525 	}
526 }
527 
528 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
529 					unsigned long gpa, unsigned int lpid)
530 {
531 	pte_t *pte = pte_offset_kernel(pmd, 0);
532 
533 	/*
534 	 * Clearing the pmd entry then flushing the PWC ensures that the pte
535 	 * page no longer be cached by the MMU, so can be freed without
536 	 * flushing the PWC again.
537 	 */
538 	pmd_clear(pmd);
539 	kvmppc_radix_flush_pwc(kvm, lpid);
540 
541 	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
542 }
543 
544 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
545 					unsigned long gpa, unsigned int lpid)
546 {
547 	pmd_t *pmd = pmd_offset(pud, 0);
548 
549 	/*
550 	 * Clearing the pud entry then flushing the PWC ensures that the pmd
551 	 * page and any children pte pages will no longer be cached by the MMU,
552 	 * so can be freed without flushing the PWC again.
553 	 */
554 	pud_clear(pud);
555 	kvmppc_radix_flush_pwc(kvm, lpid);
556 
557 	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
558 }
559 
560 /*
561  * There are a number of bits which may differ between different faults to
562  * the same partition scope entry. RC bits, in the course of cleaning and
563  * aging. And the write bit can change, either the access could have been
564  * upgraded, or a read fault could happen concurrently with a write fault
565  * that sets those bits first.
566  */
567 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
568 
569 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
570 		      unsigned long gpa, unsigned int level,
571 		      unsigned long mmu_seq, unsigned int lpid,
572 		      unsigned long *rmapp, struct rmap_nested **n_rmap)
573 {
574 	pgd_t *pgd;
575 	pud_t *pud, *new_pud = NULL;
576 	pmd_t *pmd, *new_pmd = NULL;
577 	pte_t *ptep, *new_ptep = NULL;
578 	int ret;
579 
580 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
581 	pgd = pgtable + pgd_index(gpa);
582 	pud = NULL;
583 	if (pgd_present(*pgd))
584 		pud = pud_offset(pgd, gpa);
585 	else
586 		new_pud = pud_alloc_one(kvm->mm, gpa);
587 
588 	pmd = NULL;
589 	if (pud && pud_present(*pud) && !pud_huge(*pud))
590 		pmd = pmd_offset(pud, gpa);
591 	else if (level <= 1)
592 		new_pmd = kvmppc_pmd_alloc();
593 
594 	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
595 		new_ptep = kvmppc_pte_alloc();
596 
597 	/* Check if we might have been invalidated; let the guest retry if so */
598 	spin_lock(&kvm->mmu_lock);
599 	ret = -EAGAIN;
600 	if (mmu_notifier_retry(kvm, mmu_seq))
601 		goto out_unlock;
602 
603 	/* Now traverse again under the lock and change the tree */
604 	ret = -ENOMEM;
605 	if (pgd_none(*pgd)) {
606 		if (!new_pud)
607 			goto out_unlock;
608 		pgd_populate(kvm->mm, pgd, new_pud);
609 		new_pud = NULL;
610 	}
611 	pud = pud_offset(pgd, gpa);
612 	if (pud_huge(*pud)) {
613 		unsigned long hgpa = gpa & PUD_MASK;
614 
615 		/* Check if we raced and someone else has set the same thing */
616 		if (level == 2) {
617 			if (pud_raw(*pud) == pte_raw(pte)) {
618 				ret = 0;
619 				goto out_unlock;
620 			}
621 			/* Valid 1GB page here already, add our extra bits */
622 			WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
623 							PTE_BITS_MUST_MATCH);
624 			kvmppc_radix_update_pte(kvm, (pte_t *)pud,
625 					      0, pte_val(pte), hgpa, PUD_SHIFT);
626 			ret = 0;
627 			goto out_unlock;
628 		}
629 		/*
630 		 * If we raced with another CPU which has just put
631 		 * a 1GB pte in after we saw a pmd page, try again.
632 		 */
633 		if (!new_pmd) {
634 			ret = -EAGAIN;
635 			goto out_unlock;
636 		}
637 		/* Valid 1GB page here already, remove it */
638 		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
639 				 lpid);
640 	}
641 	if (level == 2) {
642 		if (!pud_none(*pud)) {
643 			/*
644 			 * There's a page table page here, but we wanted to
645 			 * install a large page, so remove and free the page
646 			 * table page.
647 			 */
648 			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
649 		}
650 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
651 		if (rmapp && n_rmap)
652 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
653 		ret = 0;
654 		goto out_unlock;
655 	}
656 	if (pud_none(*pud)) {
657 		if (!new_pmd)
658 			goto out_unlock;
659 		pud_populate(kvm->mm, pud, new_pmd);
660 		new_pmd = NULL;
661 	}
662 	pmd = pmd_offset(pud, gpa);
663 	if (pmd_is_leaf(*pmd)) {
664 		unsigned long lgpa = gpa & PMD_MASK;
665 
666 		/* Check if we raced and someone else has set the same thing */
667 		if (level == 1) {
668 			if (pmd_raw(*pmd) == pte_raw(pte)) {
669 				ret = 0;
670 				goto out_unlock;
671 			}
672 			/* Valid 2MB page here already, add our extra bits */
673 			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
674 							PTE_BITS_MUST_MATCH);
675 			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
676 					0, pte_val(pte), lgpa, PMD_SHIFT);
677 			ret = 0;
678 			goto out_unlock;
679 		}
680 
681 		/*
682 		 * If we raced with another CPU which has just put
683 		 * a 2MB pte in after we saw a pte page, try again.
684 		 */
685 		if (!new_ptep) {
686 			ret = -EAGAIN;
687 			goto out_unlock;
688 		}
689 		/* Valid 2MB page here already, remove it */
690 		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
691 				 lpid);
692 	}
693 	if (level == 1) {
694 		if (!pmd_none(*pmd)) {
695 			/*
696 			 * There's a page table page here, but we wanted to
697 			 * install a large page, so remove and free the page
698 			 * table page.
699 			 */
700 			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
701 		}
702 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
703 		if (rmapp && n_rmap)
704 			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
705 		ret = 0;
706 		goto out_unlock;
707 	}
708 	if (pmd_none(*pmd)) {
709 		if (!new_ptep)
710 			goto out_unlock;
711 		pmd_populate(kvm->mm, pmd, new_ptep);
712 		new_ptep = NULL;
713 	}
714 	ptep = pte_offset_kernel(pmd, gpa);
715 	if (pte_present(*ptep)) {
716 		/* Check if someone else set the same thing */
717 		if (pte_raw(*ptep) == pte_raw(pte)) {
718 			ret = 0;
719 			goto out_unlock;
720 		}
721 		/* Valid page here already, add our extra bits */
722 		WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
723 							PTE_BITS_MUST_MATCH);
724 		kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
725 		ret = 0;
726 		goto out_unlock;
727 	}
728 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
729 	if (rmapp && n_rmap)
730 		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
731 	ret = 0;
732 
733  out_unlock:
734 	spin_unlock(&kvm->mmu_lock);
735 	if (new_pud)
736 		pud_free(kvm->mm, new_pud);
737 	if (new_pmd)
738 		kvmppc_pmd_free(new_pmd);
739 	if (new_ptep)
740 		kvmppc_pte_free(new_ptep);
741 	return ret;
742 }
743 
744 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
745 			     unsigned long gpa, unsigned int lpid)
746 {
747 	unsigned long pgflags;
748 	unsigned int shift;
749 	pte_t *ptep;
750 
751 	/*
752 	 * Need to set an R or C bit in the 2nd-level tables;
753 	 * since we are just helping out the hardware here,
754 	 * it is sufficient to do what the hardware does.
755 	 */
756 	pgflags = _PAGE_ACCESSED;
757 	if (writing)
758 		pgflags |= _PAGE_DIRTY;
759 	/*
760 	 * We are walking the secondary (partition-scoped) page table here.
761 	 * We can do this without disabling irq because the Linux MM
762 	 * subsystem doesn't do THP splits and collapses on this tree.
763 	 */
764 	ptep = __find_linux_pte(pgtable, gpa, NULL, &shift);
765 	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
766 		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
767 		return true;
768 	}
769 	return false;
770 }
771 
772 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
773 				   unsigned long gpa,
774 				   struct kvm_memory_slot *memslot,
775 				   bool writing, bool kvm_ro,
776 				   pte_t *inserted_pte, unsigned int *levelp)
777 {
778 	struct kvm *kvm = vcpu->kvm;
779 	struct page *page = NULL;
780 	unsigned long mmu_seq;
781 	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
782 	bool upgrade_write = false;
783 	bool *upgrade_p = &upgrade_write;
784 	pte_t pte, *ptep;
785 	unsigned int shift, level;
786 	int ret;
787 	bool large_enable;
788 
789 	/* used to check for invalidations in progress */
790 	mmu_seq = kvm->mmu_notifier_seq;
791 	smp_rmb();
792 
793 	/*
794 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
795 	 * do it with !atomic && !async, which is how we call it.
796 	 * We always ask for write permission since the common case
797 	 * is that the page is writable.
798 	 */
799 	hva = gfn_to_hva_memslot(memslot, gfn);
800 	if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
801 		upgrade_write = true;
802 	} else {
803 		unsigned long pfn;
804 
805 		/* Call KVM generic code to do the slow-path check */
806 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
807 					   writing, upgrade_p);
808 		if (is_error_noslot_pfn(pfn))
809 			return -EFAULT;
810 		page = NULL;
811 		if (pfn_valid(pfn)) {
812 			page = pfn_to_page(pfn);
813 			if (PageReserved(page))
814 				page = NULL;
815 		}
816 	}
817 
818 	/*
819 	 * Read the PTE from the process' radix tree and use that
820 	 * so we get the shift and attribute bits.
821 	 */
822 	local_irq_disable();
823 	ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
824 	/*
825 	 * If the PTE disappeared temporarily due to a THP
826 	 * collapse, just return and let the guest try again.
827 	 */
828 	if (!ptep) {
829 		local_irq_enable();
830 		if (page)
831 			put_page(page);
832 		return RESUME_GUEST;
833 	}
834 	pte = *ptep;
835 	local_irq_enable();
836 
837 	/* If we're logging dirty pages, always map single pages */
838 	large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
839 
840 	/* Get pte level from shift/size */
841 	if (large_enable && shift == PUD_SHIFT &&
842 	    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
843 	    (hva & (PUD_SIZE - PAGE_SIZE))) {
844 		level = 2;
845 	} else if (large_enable && shift == PMD_SHIFT &&
846 		   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
847 		   (hva & (PMD_SIZE - PAGE_SIZE))) {
848 		level = 1;
849 	} else {
850 		level = 0;
851 		if (shift > PAGE_SHIFT) {
852 			/*
853 			 * If the pte maps more than one page, bring over
854 			 * bits from the virtual address to get the real
855 			 * address of the specific single page we want.
856 			 */
857 			unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
858 			pte = __pte(pte_val(pte) | (hva & rpnmask));
859 		}
860 	}
861 
862 	pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
863 	if (writing || upgrade_write) {
864 		if (pte_val(pte) & _PAGE_WRITE)
865 			pte = __pte(pte_val(pte) | _PAGE_DIRTY);
866 	} else {
867 		pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
868 	}
869 
870 	/* Allocate space in the tree and write the PTE */
871 	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
872 				mmu_seq, kvm->arch.lpid, NULL, NULL);
873 	if (inserted_pte)
874 		*inserted_pte = pte;
875 	if (levelp)
876 		*levelp = level;
877 
878 	if (page) {
879 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
880 			set_page_dirty_lock(page);
881 		put_page(page);
882 	}
883 
884 	/* Increment number of large pages if we (successfully) inserted one */
885 	if (!ret) {
886 		if (level == 1)
887 			kvm->stat.num_2M_pages++;
888 		else if (level == 2)
889 			kvm->stat.num_1G_pages++;
890 	}
891 
892 	return ret;
893 }
894 
895 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
896 				   unsigned long ea, unsigned long dsisr)
897 {
898 	struct kvm *kvm = vcpu->kvm;
899 	unsigned long gpa, gfn;
900 	struct kvm_memory_slot *memslot;
901 	long ret;
902 	bool writing = !!(dsisr & DSISR_ISSTORE);
903 	bool kvm_ro = false;
904 
905 	/* Check for unusual errors */
906 	if (dsisr & DSISR_UNSUPP_MMU) {
907 		pr_err("KVM: Got unsupported MMU fault\n");
908 		return -EFAULT;
909 	}
910 	if (dsisr & DSISR_BADACCESS) {
911 		/* Reflect to the guest as DSI */
912 		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
913 		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
914 		return RESUME_GUEST;
915 	}
916 
917 	/* Translate the logical address */
918 	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
919 	gpa &= ~0xF000000000000000ul;
920 	gfn = gpa >> PAGE_SHIFT;
921 	if (!(dsisr & DSISR_PRTABLE_FAULT))
922 		gpa |= ea & 0xfff;
923 
924 	/* Get the corresponding memslot */
925 	memslot = gfn_to_memslot(kvm, gfn);
926 
927 	/* No memslot means it's an emulated MMIO region */
928 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
929 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
930 			     DSISR_SET_RC)) {
931 			/*
932 			 * Bad address in guest page table tree, or other
933 			 * unusual error - reflect it to the guest as DSI.
934 			 */
935 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
936 			return RESUME_GUEST;
937 		}
938 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing);
939 	}
940 
941 	if (memslot->flags & KVM_MEM_READONLY) {
942 		if (writing) {
943 			/* give the guest a DSI */
944 			kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
945 						       DSISR_PROTFAULT);
946 			return RESUME_GUEST;
947 		}
948 		kvm_ro = true;
949 	}
950 
951 	/* Failed to set the reference/change bits */
952 	if (dsisr & DSISR_SET_RC) {
953 		spin_lock(&kvm->mmu_lock);
954 		if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
955 					    writing, gpa, kvm->arch.lpid))
956 			dsisr &= ~DSISR_SET_RC;
957 		spin_unlock(&kvm->mmu_lock);
958 
959 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
960 			       DSISR_PROTFAULT | DSISR_SET_RC)))
961 			return RESUME_GUEST;
962 	}
963 
964 	/* Try to insert a pte */
965 	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
966 					     kvm_ro, NULL, NULL);
967 
968 	if (ret == 0 || ret == -EAGAIN)
969 		ret = RESUME_GUEST;
970 	return ret;
971 }
972 
973 /* Called with kvm->mmu_lock held */
974 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
975 		    unsigned long gfn)
976 {
977 	pte_t *ptep;
978 	unsigned long gpa = gfn << PAGE_SHIFT;
979 	unsigned int shift;
980 
981 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
982 	if (ptep && pte_present(*ptep))
983 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
984 				 kvm->arch.lpid);
985 	return 0;
986 }
987 
988 /* Called with kvm->mmu_lock held */
989 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
990 		  unsigned long gfn)
991 {
992 	pte_t *ptep;
993 	unsigned long gpa = gfn << PAGE_SHIFT;
994 	unsigned int shift;
995 	int ref = 0;
996 	unsigned long old, *rmapp;
997 
998 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
999 	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1000 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1001 					      gpa, shift);
1002 		/* XXX need to flush tlb here? */
1003 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1004 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1005 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1006 					       old & PTE_RPN_MASK,
1007 					       1UL << shift);
1008 		ref = 1;
1009 	}
1010 	return ref;
1011 }
1012 
1013 /* Called with kvm->mmu_lock held */
1014 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1015 		       unsigned long gfn)
1016 {
1017 	pte_t *ptep;
1018 	unsigned long gpa = gfn << PAGE_SHIFT;
1019 	unsigned int shift;
1020 	int ref = 0;
1021 
1022 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1023 	if (ptep && pte_present(*ptep) && pte_young(*ptep))
1024 		ref = 1;
1025 	return ref;
1026 }
1027 
1028 /* Returns the number of PAGE_SIZE pages that are dirty */
1029 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1030 				struct kvm_memory_slot *memslot, int pagenum)
1031 {
1032 	unsigned long gfn = memslot->base_gfn + pagenum;
1033 	unsigned long gpa = gfn << PAGE_SHIFT;
1034 	pte_t *ptep;
1035 	unsigned int shift;
1036 	int ret = 0;
1037 	unsigned long old, *rmapp;
1038 
1039 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1040 	if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
1041 		ret = 1;
1042 		if (shift)
1043 			ret = 1 << (shift - PAGE_SHIFT);
1044 		spin_lock(&kvm->mmu_lock);
1045 		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1046 					      gpa, shift);
1047 		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1048 		/* Also clear bit in ptes in shadow pgtable for nested guests */
1049 		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1050 		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1051 					       old & PTE_RPN_MASK,
1052 					       1UL << shift);
1053 		spin_unlock(&kvm->mmu_lock);
1054 	}
1055 	return ret;
1056 }
1057 
1058 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1059 			struct kvm_memory_slot *memslot, unsigned long *map)
1060 {
1061 	unsigned long i, j;
1062 	int npages;
1063 
1064 	for (i = 0; i < memslot->npages; i = j) {
1065 		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1066 
1067 		/*
1068 		 * Note that if npages > 0 then i must be a multiple of npages,
1069 		 * since huge pages are only used to back the guest at guest
1070 		 * real addresses that are a multiple of their size.
1071 		 * Since we have at most one PTE covering any given guest
1072 		 * real address, if npages > 1 we can skip to i + npages.
1073 		 */
1074 		j = i + 1;
1075 		if (npages) {
1076 			set_dirty_bits(map, i, npages);
1077 			j = i + npages;
1078 		}
1079 	}
1080 	return 0;
1081 }
1082 
1083 void kvmppc_radix_flush_memslot(struct kvm *kvm,
1084 				const struct kvm_memory_slot *memslot)
1085 {
1086 	unsigned long n;
1087 	pte_t *ptep;
1088 	unsigned long gpa;
1089 	unsigned int shift;
1090 
1091 	gpa = memslot->base_gfn << PAGE_SHIFT;
1092 	spin_lock(&kvm->mmu_lock);
1093 	for (n = memslot->npages; n; --n) {
1094 		ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1095 		if (ptep && pte_present(*ptep))
1096 			kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1097 					 kvm->arch.lpid);
1098 		gpa += PAGE_SIZE;
1099 	}
1100 	spin_unlock(&kvm->mmu_lock);
1101 }
1102 
1103 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1104 				 int psize, int *indexp)
1105 {
1106 	if (!mmu_psize_defs[psize].shift)
1107 		return;
1108 	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1109 		(mmu_psize_defs[psize].ap << 29);
1110 	++(*indexp);
1111 }
1112 
1113 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1114 {
1115 	int i;
1116 
1117 	if (!radix_enabled())
1118 		return -EINVAL;
1119 	memset(info, 0, sizeof(*info));
1120 
1121 	/* 4k page size */
1122 	info->geometries[0].page_shift = 12;
1123 	info->geometries[0].level_bits[0] = 9;
1124 	for (i = 1; i < 4; ++i)
1125 		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1126 	/* 64k page size */
1127 	info->geometries[1].page_shift = 16;
1128 	for (i = 0; i < 4; ++i)
1129 		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1130 
1131 	i = 0;
1132 	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1133 	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1134 	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1135 	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1136 
1137 	return 0;
1138 }
1139 
1140 int kvmppc_init_vm_radix(struct kvm *kvm)
1141 {
1142 	kvm->arch.pgtable = pgd_alloc(kvm->mm);
1143 	if (!kvm->arch.pgtable)
1144 		return -ENOMEM;
1145 	return 0;
1146 }
1147 
1148 static void pte_ctor(void *addr)
1149 {
1150 	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1151 }
1152 
1153 static void pmd_ctor(void *addr)
1154 {
1155 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1156 }
1157 
1158 struct debugfs_radix_state {
1159 	struct kvm	*kvm;
1160 	struct mutex	mutex;
1161 	unsigned long	gpa;
1162 	int		lpid;
1163 	int		chars_left;
1164 	int		buf_index;
1165 	char		buf[128];
1166 	u8		hdr;
1167 };
1168 
1169 static int debugfs_radix_open(struct inode *inode, struct file *file)
1170 {
1171 	struct kvm *kvm = inode->i_private;
1172 	struct debugfs_radix_state *p;
1173 
1174 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1175 	if (!p)
1176 		return -ENOMEM;
1177 
1178 	kvm_get_kvm(kvm);
1179 	p->kvm = kvm;
1180 	mutex_init(&p->mutex);
1181 	file->private_data = p;
1182 
1183 	return nonseekable_open(inode, file);
1184 }
1185 
1186 static int debugfs_radix_release(struct inode *inode, struct file *file)
1187 {
1188 	struct debugfs_radix_state *p = file->private_data;
1189 
1190 	kvm_put_kvm(p->kvm);
1191 	kfree(p);
1192 	return 0;
1193 }
1194 
1195 static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1196 				 size_t len, loff_t *ppos)
1197 {
1198 	struct debugfs_radix_state *p = file->private_data;
1199 	ssize_t ret, r;
1200 	unsigned long n;
1201 	struct kvm *kvm;
1202 	unsigned long gpa;
1203 	pgd_t *pgt;
1204 	struct kvm_nested_guest *nested;
1205 	pgd_t pgd, *pgdp;
1206 	pud_t pud, *pudp;
1207 	pmd_t pmd, *pmdp;
1208 	pte_t *ptep;
1209 	int shift;
1210 	unsigned long pte;
1211 
1212 	kvm = p->kvm;
1213 	if (!kvm_is_radix(kvm))
1214 		return 0;
1215 
1216 	ret = mutex_lock_interruptible(&p->mutex);
1217 	if (ret)
1218 		return ret;
1219 
1220 	if (p->chars_left) {
1221 		n = p->chars_left;
1222 		if (n > len)
1223 			n = len;
1224 		r = copy_to_user(buf, p->buf + p->buf_index, n);
1225 		n -= r;
1226 		p->chars_left -= n;
1227 		p->buf_index += n;
1228 		buf += n;
1229 		len -= n;
1230 		ret = n;
1231 		if (r) {
1232 			if (!n)
1233 				ret = -EFAULT;
1234 			goto out;
1235 		}
1236 	}
1237 
1238 	gpa = p->gpa;
1239 	nested = NULL;
1240 	pgt = NULL;
1241 	while (len != 0 && p->lpid >= 0) {
1242 		if (gpa >= RADIX_PGTABLE_RANGE) {
1243 			gpa = 0;
1244 			pgt = NULL;
1245 			if (nested) {
1246 				kvmhv_put_nested(nested);
1247 				nested = NULL;
1248 			}
1249 			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1250 			p->hdr = 0;
1251 			if (p->lpid < 0)
1252 				break;
1253 		}
1254 		if (!pgt) {
1255 			if (p->lpid == 0) {
1256 				pgt = kvm->arch.pgtable;
1257 			} else {
1258 				nested = kvmhv_get_nested(kvm, p->lpid, false);
1259 				if (!nested) {
1260 					gpa = RADIX_PGTABLE_RANGE;
1261 					continue;
1262 				}
1263 				pgt = nested->shadow_pgtable;
1264 			}
1265 		}
1266 		n = 0;
1267 		if (!p->hdr) {
1268 			if (p->lpid > 0)
1269 				n = scnprintf(p->buf, sizeof(p->buf),
1270 					      "\nNested LPID %d: ", p->lpid);
1271 			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1272 				      "pgdir: %lx\n", (unsigned long)pgt);
1273 			p->hdr = 1;
1274 			goto copy;
1275 		}
1276 
1277 		pgdp = pgt + pgd_index(gpa);
1278 		pgd = READ_ONCE(*pgdp);
1279 		if (!(pgd_val(pgd) & _PAGE_PRESENT)) {
1280 			gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE;
1281 			continue;
1282 		}
1283 
1284 		pudp = pud_offset(&pgd, gpa);
1285 		pud = READ_ONCE(*pudp);
1286 		if (!(pud_val(pud) & _PAGE_PRESENT)) {
1287 			gpa = (gpa & PUD_MASK) + PUD_SIZE;
1288 			continue;
1289 		}
1290 		if (pud_val(pud) & _PAGE_PTE) {
1291 			pte = pud_val(pud);
1292 			shift = PUD_SHIFT;
1293 			goto leaf;
1294 		}
1295 
1296 		pmdp = pmd_offset(&pud, gpa);
1297 		pmd = READ_ONCE(*pmdp);
1298 		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1299 			gpa = (gpa & PMD_MASK) + PMD_SIZE;
1300 			continue;
1301 		}
1302 		if (pmd_val(pmd) & _PAGE_PTE) {
1303 			pte = pmd_val(pmd);
1304 			shift = PMD_SHIFT;
1305 			goto leaf;
1306 		}
1307 
1308 		ptep = pte_offset_kernel(&pmd, gpa);
1309 		pte = pte_val(READ_ONCE(*ptep));
1310 		if (!(pte & _PAGE_PRESENT)) {
1311 			gpa += PAGE_SIZE;
1312 			continue;
1313 		}
1314 		shift = PAGE_SHIFT;
1315 	leaf:
1316 		n = scnprintf(p->buf, sizeof(p->buf),
1317 			      " %lx: %lx %d\n", gpa, pte, shift);
1318 		gpa += 1ul << shift;
1319 	copy:
1320 		p->chars_left = n;
1321 		if (n > len)
1322 			n = len;
1323 		r = copy_to_user(buf, p->buf, n);
1324 		n -= r;
1325 		p->chars_left -= n;
1326 		p->buf_index = n;
1327 		buf += n;
1328 		len -= n;
1329 		ret += n;
1330 		if (r) {
1331 			if (!ret)
1332 				ret = -EFAULT;
1333 			break;
1334 		}
1335 	}
1336 	p->gpa = gpa;
1337 	if (nested)
1338 		kvmhv_put_nested(nested);
1339 
1340  out:
1341 	mutex_unlock(&p->mutex);
1342 	return ret;
1343 }
1344 
1345 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1346 			   size_t len, loff_t *ppos)
1347 {
1348 	return -EACCES;
1349 }
1350 
1351 static const struct file_operations debugfs_radix_fops = {
1352 	.owner	 = THIS_MODULE,
1353 	.open	 = debugfs_radix_open,
1354 	.release = debugfs_radix_release,
1355 	.read	 = debugfs_radix_read,
1356 	.write	 = debugfs_radix_write,
1357 	.llseek	 = generic_file_llseek,
1358 };
1359 
1360 void kvmhv_radix_debugfs_init(struct kvm *kvm)
1361 {
1362 	kvm->arch.radix_dentry = debugfs_create_file("radix", 0400,
1363 						     kvm->arch.debugfs_dir, kvm,
1364 						     &debugfs_radix_fops);
1365 }
1366 
1367 int kvmppc_radix_init(void)
1368 {
1369 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1370 
1371 	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1372 	if (!kvm_pte_cache)
1373 		return -ENOMEM;
1374 
1375 	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1376 
1377 	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1378 	if (!kvm_pmd_cache) {
1379 		kmem_cache_destroy(kvm_pte_cache);
1380 		return -ENOMEM;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 void kvmppc_radix_exit(void)
1387 {
1388 	kmem_cache_destroy(kvm_pte_cache);
1389 	kmem_cache_destroy(kvm_pmd_cache);
1390 }
1391