1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/debugfs.h> 14 15 #include <asm/kvm_ppc.h> 16 #include <asm/kvm_book3s.h> 17 #include <asm/page.h> 18 #include <asm/mmu.h> 19 #include <asm/pgtable.h> 20 #include <asm/pgalloc.h> 21 #include <asm/pte-walk.h> 22 23 /* 24 * Supported radix tree geometry. 25 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 26 * for a page size of 64k or 4k. 27 */ 28 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 29 30 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, 31 gva_t eaddr, void *to, void *from, 32 unsigned long n) 33 { 34 int uninitialized_var(old_pid), old_lpid; 35 unsigned long quadrant, ret = n; 36 bool is_load = !!to; 37 38 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ 39 if (kvmhv_on_pseries()) 40 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, 41 __pa(to), __pa(from), n); 42 43 quadrant = 1; 44 if (!pid) 45 quadrant = 2; 46 if (is_load) 47 from = (void *) (eaddr | (quadrant << 62)); 48 else 49 to = (void *) (eaddr | (quadrant << 62)); 50 51 preempt_disable(); 52 53 /* switch the lpid first to avoid running host with unallocated pid */ 54 old_lpid = mfspr(SPRN_LPID); 55 if (old_lpid != lpid) 56 mtspr(SPRN_LPID, lpid); 57 if (quadrant == 1) { 58 old_pid = mfspr(SPRN_PID); 59 if (old_pid != pid) 60 mtspr(SPRN_PID, pid); 61 } 62 isync(); 63 64 pagefault_disable(); 65 if (is_load) 66 ret = raw_copy_from_user(to, from, n); 67 else 68 ret = raw_copy_to_user(to, from, n); 69 pagefault_enable(); 70 71 /* switch the pid first to avoid running host with unallocated pid */ 72 if (quadrant == 1 && pid != old_pid) 73 mtspr(SPRN_PID, old_pid); 74 if (lpid != old_lpid) 75 mtspr(SPRN_LPID, old_lpid); 76 isync(); 77 78 preempt_enable(); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); 83 84 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, 85 void *to, void *from, unsigned long n) 86 { 87 int lpid = vcpu->kvm->arch.lpid; 88 int pid = vcpu->arch.pid; 89 90 /* This would cause a data segment intr so don't allow the access */ 91 if (eaddr & (0x3FFUL << 52)) 92 return -EINVAL; 93 94 /* Should we be using the nested lpid */ 95 if (vcpu->arch.nested) 96 lpid = vcpu->arch.nested->shadow_lpid; 97 98 /* If accessing quadrant 3 then pid is expected to be 0 */ 99 if (((eaddr >> 62) & 0x3) == 0x3) 100 pid = 0; 101 102 eaddr &= ~(0xFFFUL << 52); 103 104 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); 105 } 106 107 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, 108 unsigned long n) 109 { 110 long ret; 111 112 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); 113 if (ret > 0) 114 memset(to + (n - ret), 0, ret); 115 116 return ret; 117 } 118 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); 119 120 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, 121 unsigned long n) 122 { 123 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); 124 } 125 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); 126 127 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, 128 struct kvmppc_pte *gpte, u64 root, 129 u64 *pte_ret_p) 130 { 131 struct kvm *kvm = vcpu->kvm; 132 int ret, level, ps; 133 unsigned long rts, bits, offset, index; 134 u64 pte, base, gpa; 135 __be64 rpte; 136 137 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 138 ((root & RTS2_MASK) >> RTS2_SHIFT); 139 bits = root & RPDS_MASK; 140 base = root & RPDB_MASK; 141 142 offset = rts + 31; 143 144 /* Current implementations only support 52-bit space */ 145 if (offset != 52) 146 return -EINVAL; 147 148 /* Walk each level of the radix tree */ 149 for (level = 3; level >= 0; --level) { 150 u64 addr; 151 /* Check a valid size */ 152 if (level && bits != p9_supported_radix_bits[level]) 153 return -EINVAL; 154 if (level == 0 && !(bits == 5 || bits == 9)) 155 return -EINVAL; 156 offset -= bits; 157 index = (eaddr >> offset) & ((1UL << bits) - 1); 158 /* Check that low bits of page table base are zero */ 159 if (base & ((1UL << (bits + 3)) - 1)) 160 return -EINVAL; 161 /* Read the entry from guest memory */ 162 addr = base + (index * sizeof(rpte)); 163 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); 164 if (ret) { 165 if (pte_ret_p) 166 *pte_ret_p = addr; 167 return ret; 168 } 169 pte = __be64_to_cpu(rpte); 170 if (!(pte & _PAGE_PRESENT)) 171 return -ENOENT; 172 /* Check if a leaf entry */ 173 if (pte & _PAGE_PTE) 174 break; 175 /* Get ready to walk the next level */ 176 base = pte & RPDB_MASK; 177 bits = pte & RPDS_MASK; 178 } 179 180 /* Need a leaf at lowest level; 512GB pages not supported */ 181 if (level < 0 || level == 3) 182 return -EINVAL; 183 184 /* We found a valid leaf PTE */ 185 /* Offset is now log base 2 of the page size */ 186 gpa = pte & 0x01fffffffffff000ul; 187 if (gpa & ((1ul << offset) - 1)) 188 return -EINVAL; 189 gpa |= eaddr & ((1ul << offset) - 1); 190 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 191 if (offset == mmu_psize_defs[ps].shift) 192 break; 193 gpte->page_size = ps; 194 gpte->page_shift = offset; 195 196 gpte->eaddr = eaddr; 197 gpte->raddr = gpa; 198 199 /* Work out permissions */ 200 gpte->may_read = !!(pte & _PAGE_READ); 201 gpte->may_write = !!(pte & _PAGE_WRITE); 202 gpte->may_execute = !!(pte & _PAGE_EXEC); 203 204 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); 205 206 if (pte_ret_p) 207 *pte_ret_p = pte; 208 209 return 0; 210 } 211 212 /* 213 * Used to walk a partition or process table radix tree in guest memory 214 * Note: We exploit the fact that a partition table and a process 215 * table have the same layout, a partition-scoped page table and a 216 * process-scoped page table have the same layout, and the 2nd 217 * doubleword of a partition table entry has the same layout as 218 * the PTCR register. 219 */ 220 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, 221 struct kvmppc_pte *gpte, u64 table, 222 int table_index, u64 *pte_ret_p) 223 { 224 struct kvm *kvm = vcpu->kvm; 225 int ret; 226 unsigned long size, ptbl, root; 227 struct prtb_entry entry; 228 229 if ((table & PRTS_MASK) > 24) 230 return -EINVAL; 231 size = 1ul << ((table & PRTS_MASK) + 12); 232 233 /* Is the table big enough to contain this entry? */ 234 if ((table_index * sizeof(entry)) >= size) 235 return -EINVAL; 236 237 /* Read the table to find the root of the radix tree */ 238 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); 239 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); 240 if (ret) 241 return ret; 242 243 /* Root is stored in the first double word */ 244 root = be64_to_cpu(entry.prtb0); 245 246 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); 247 } 248 249 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 250 struct kvmppc_pte *gpte, bool data, bool iswrite) 251 { 252 u32 pid; 253 u64 pte; 254 int ret; 255 256 /* Work out effective PID */ 257 switch (eaddr >> 62) { 258 case 0: 259 pid = vcpu->arch.pid; 260 break; 261 case 3: 262 pid = 0; 263 break; 264 default: 265 return -EINVAL; 266 } 267 268 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, 269 vcpu->kvm->arch.process_table, pid, &pte); 270 if (ret) 271 return ret; 272 273 /* Check privilege (applies only to process scoped translations) */ 274 if (kvmppc_get_msr(vcpu) & MSR_PR) { 275 if (pte & _PAGE_PRIVILEGED) { 276 gpte->may_read = 0; 277 gpte->may_write = 0; 278 gpte->may_execute = 0; 279 } 280 } else { 281 if (!(pte & _PAGE_PRIVILEGED)) { 282 /* Check AMR/IAMR to see if strict mode is in force */ 283 if (vcpu->arch.amr & (1ul << 62)) 284 gpte->may_read = 0; 285 if (vcpu->arch.amr & (1ul << 63)) 286 gpte->may_write = 0; 287 if (vcpu->arch.iamr & (1ul << 62)) 288 gpte->may_execute = 0; 289 } 290 } 291 292 return 0; 293 } 294 295 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 296 unsigned int pshift, unsigned int lpid) 297 { 298 unsigned long psize = PAGE_SIZE; 299 int psi; 300 long rc; 301 unsigned long rb; 302 303 if (pshift) 304 psize = 1UL << pshift; 305 else 306 pshift = PAGE_SHIFT; 307 308 addr &= ~(psize - 1); 309 310 if (!kvmhv_on_pseries()) { 311 radix__flush_tlb_lpid_page(lpid, addr, psize); 312 return; 313 } 314 315 psi = shift_to_mmu_psize(pshift); 316 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); 317 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), 318 lpid, rb); 319 if (rc) 320 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); 321 } 322 323 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) 324 { 325 long rc; 326 327 if (!kvmhv_on_pseries()) { 328 radix__flush_pwc_lpid(lpid); 329 return; 330 } 331 332 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), 333 lpid, TLBIEL_INVAL_SET_LPID); 334 if (rc) 335 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); 336 } 337 338 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 339 unsigned long clr, unsigned long set, 340 unsigned long addr, unsigned int shift) 341 { 342 return __radix_pte_update(ptep, clr, set); 343 } 344 345 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 346 pte_t *ptep, pte_t pte) 347 { 348 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 349 } 350 351 static struct kmem_cache *kvm_pte_cache; 352 static struct kmem_cache *kvm_pmd_cache; 353 354 static pte_t *kvmppc_pte_alloc(void) 355 { 356 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 357 } 358 359 static void kvmppc_pte_free(pte_t *ptep) 360 { 361 kmem_cache_free(kvm_pte_cache, ptep); 362 } 363 364 /* Like pmd_huge() and pmd_large(), but works regardless of config options */ 365 static inline int pmd_is_leaf(pmd_t pmd) 366 { 367 return !!(pmd_val(pmd) & _PAGE_PTE); 368 } 369 370 static pmd_t *kvmppc_pmd_alloc(void) 371 { 372 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); 373 } 374 375 static void kvmppc_pmd_free(pmd_t *pmdp) 376 { 377 kmem_cache_free(kvm_pmd_cache, pmdp); 378 } 379 380 /* Called with kvm->mmu_lock held */ 381 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, 382 unsigned int shift, 383 const struct kvm_memory_slot *memslot, 384 unsigned int lpid) 385 386 { 387 unsigned long old; 388 unsigned long gfn = gpa >> PAGE_SHIFT; 389 unsigned long page_size = PAGE_SIZE; 390 unsigned long hpa; 391 392 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); 393 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 394 395 /* The following only applies to L1 entries */ 396 if (lpid != kvm->arch.lpid) 397 return; 398 399 if (!memslot) { 400 memslot = gfn_to_memslot(kvm, gfn); 401 if (!memslot) 402 return; 403 } 404 if (shift) { /* 1GB or 2MB page */ 405 page_size = 1ul << shift; 406 if (shift == PMD_SHIFT) 407 kvm->stat.num_2M_pages--; 408 else if (shift == PUD_SHIFT) 409 kvm->stat.num_1G_pages--; 410 } 411 412 gpa &= ~(page_size - 1); 413 hpa = old & PTE_RPN_MASK; 414 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); 415 416 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) 417 kvmppc_update_dirty_map(memslot, gfn, page_size); 418 } 419 420 /* 421 * kvmppc_free_p?d are used to free existing page tables, and recursively 422 * descend and clear and free children. 423 * Callers are responsible for flushing the PWC. 424 * 425 * When page tables are being unmapped/freed as part of page fault path 426 * (full == false), ptes are not expected. There is code to unmap them 427 * and emit a warning if encountered, but there may already be data 428 * corruption due to the unexpected mappings. 429 */ 430 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, 431 unsigned int lpid) 432 { 433 if (full) { 434 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 435 } else { 436 pte_t *p = pte; 437 unsigned long it; 438 439 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { 440 if (pte_val(*p) == 0) 441 continue; 442 WARN_ON_ONCE(1); 443 kvmppc_unmap_pte(kvm, p, 444 pte_pfn(*p) << PAGE_SHIFT, 445 PAGE_SHIFT, NULL, lpid); 446 } 447 } 448 449 kvmppc_pte_free(pte); 450 } 451 452 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, 453 unsigned int lpid) 454 { 455 unsigned long im; 456 pmd_t *p = pmd; 457 458 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { 459 if (!pmd_present(*p)) 460 continue; 461 if (pmd_is_leaf(*p)) { 462 if (full) { 463 pmd_clear(p); 464 } else { 465 WARN_ON_ONCE(1); 466 kvmppc_unmap_pte(kvm, (pte_t *)p, 467 pte_pfn(*(pte_t *)p) << PAGE_SHIFT, 468 PMD_SHIFT, NULL, lpid); 469 } 470 } else { 471 pte_t *pte; 472 473 pte = pte_offset_map(p, 0); 474 kvmppc_unmap_free_pte(kvm, pte, full, lpid); 475 pmd_clear(p); 476 } 477 } 478 kvmppc_pmd_free(pmd); 479 } 480 481 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, 482 unsigned int lpid) 483 { 484 unsigned long iu; 485 pud_t *p = pud; 486 487 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { 488 if (!pud_present(*p)) 489 continue; 490 if (pud_huge(*p)) { 491 pud_clear(p); 492 } else { 493 pmd_t *pmd; 494 495 pmd = pmd_offset(p, 0); 496 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); 497 pud_clear(p); 498 } 499 } 500 pud_free(kvm->mm, pud); 501 } 502 503 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) 504 { 505 unsigned long ig; 506 507 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 508 pud_t *pud; 509 510 if (!pgd_present(*pgd)) 511 continue; 512 pud = pud_offset(pgd, 0); 513 kvmppc_unmap_free_pud(kvm, pud, lpid); 514 pgd_clear(pgd); 515 } 516 } 517 518 void kvmppc_free_radix(struct kvm *kvm) 519 { 520 if (kvm->arch.pgtable) { 521 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, 522 kvm->arch.lpid); 523 pgd_free(kvm->mm, kvm->arch.pgtable); 524 kvm->arch.pgtable = NULL; 525 } 526 } 527 528 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, 529 unsigned long gpa, unsigned int lpid) 530 { 531 pte_t *pte = pte_offset_kernel(pmd, 0); 532 533 /* 534 * Clearing the pmd entry then flushing the PWC ensures that the pte 535 * page no longer be cached by the MMU, so can be freed without 536 * flushing the PWC again. 537 */ 538 pmd_clear(pmd); 539 kvmppc_radix_flush_pwc(kvm, lpid); 540 541 kvmppc_unmap_free_pte(kvm, pte, false, lpid); 542 } 543 544 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, 545 unsigned long gpa, unsigned int lpid) 546 { 547 pmd_t *pmd = pmd_offset(pud, 0); 548 549 /* 550 * Clearing the pud entry then flushing the PWC ensures that the pmd 551 * page and any children pte pages will no longer be cached by the MMU, 552 * so can be freed without flushing the PWC again. 553 */ 554 pud_clear(pud); 555 kvmppc_radix_flush_pwc(kvm, lpid); 556 557 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); 558 } 559 560 /* 561 * There are a number of bits which may differ between different faults to 562 * the same partition scope entry. RC bits, in the course of cleaning and 563 * aging. And the write bit can change, either the access could have been 564 * upgraded, or a read fault could happen concurrently with a write fault 565 * that sets those bits first. 566 */ 567 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) 568 569 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 570 unsigned long gpa, unsigned int level, 571 unsigned long mmu_seq, unsigned int lpid, 572 unsigned long *rmapp, struct rmap_nested **n_rmap) 573 { 574 pgd_t *pgd; 575 pud_t *pud, *new_pud = NULL; 576 pmd_t *pmd, *new_pmd = NULL; 577 pte_t *ptep, *new_ptep = NULL; 578 int ret; 579 580 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 581 pgd = pgtable + pgd_index(gpa); 582 pud = NULL; 583 if (pgd_present(*pgd)) 584 pud = pud_offset(pgd, gpa); 585 else 586 new_pud = pud_alloc_one(kvm->mm, gpa); 587 588 pmd = NULL; 589 if (pud && pud_present(*pud) && !pud_huge(*pud)) 590 pmd = pmd_offset(pud, gpa); 591 else if (level <= 1) 592 new_pmd = kvmppc_pmd_alloc(); 593 594 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 595 new_ptep = kvmppc_pte_alloc(); 596 597 /* Check if we might have been invalidated; let the guest retry if so */ 598 spin_lock(&kvm->mmu_lock); 599 ret = -EAGAIN; 600 if (mmu_notifier_retry(kvm, mmu_seq)) 601 goto out_unlock; 602 603 /* Now traverse again under the lock and change the tree */ 604 ret = -ENOMEM; 605 if (pgd_none(*pgd)) { 606 if (!new_pud) 607 goto out_unlock; 608 pgd_populate(kvm->mm, pgd, new_pud); 609 new_pud = NULL; 610 } 611 pud = pud_offset(pgd, gpa); 612 if (pud_huge(*pud)) { 613 unsigned long hgpa = gpa & PUD_MASK; 614 615 /* Check if we raced and someone else has set the same thing */ 616 if (level == 2) { 617 if (pud_raw(*pud) == pte_raw(pte)) { 618 ret = 0; 619 goto out_unlock; 620 } 621 /* Valid 1GB page here already, add our extra bits */ 622 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & 623 PTE_BITS_MUST_MATCH); 624 kvmppc_radix_update_pte(kvm, (pte_t *)pud, 625 0, pte_val(pte), hgpa, PUD_SHIFT); 626 ret = 0; 627 goto out_unlock; 628 } 629 /* 630 * If we raced with another CPU which has just put 631 * a 1GB pte in after we saw a pmd page, try again. 632 */ 633 if (!new_pmd) { 634 ret = -EAGAIN; 635 goto out_unlock; 636 } 637 /* Valid 1GB page here already, remove it */ 638 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, 639 lpid); 640 } 641 if (level == 2) { 642 if (!pud_none(*pud)) { 643 /* 644 * There's a page table page here, but we wanted to 645 * install a large page, so remove and free the page 646 * table page. 647 */ 648 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); 649 } 650 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); 651 if (rmapp && n_rmap) 652 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 653 ret = 0; 654 goto out_unlock; 655 } 656 if (pud_none(*pud)) { 657 if (!new_pmd) 658 goto out_unlock; 659 pud_populate(kvm->mm, pud, new_pmd); 660 new_pmd = NULL; 661 } 662 pmd = pmd_offset(pud, gpa); 663 if (pmd_is_leaf(*pmd)) { 664 unsigned long lgpa = gpa & PMD_MASK; 665 666 /* Check if we raced and someone else has set the same thing */ 667 if (level == 1) { 668 if (pmd_raw(*pmd) == pte_raw(pte)) { 669 ret = 0; 670 goto out_unlock; 671 } 672 /* Valid 2MB page here already, add our extra bits */ 673 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & 674 PTE_BITS_MUST_MATCH); 675 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 676 0, pte_val(pte), lgpa, PMD_SHIFT); 677 ret = 0; 678 goto out_unlock; 679 } 680 681 /* 682 * If we raced with another CPU which has just put 683 * a 2MB pte in after we saw a pte page, try again. 684 */ 685 if (!new_ptep) { 686 ret = -EAGAIN; 687 goto out_unlock; 688 } 689 /* Valid 2MB page here already, remove it */ 690 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, 691 lpid); 692 } 693 if (level == 1) { 694 if (!pmd_none(*pmd)) { 695 /* 696 * There's a page table page here, but we wanted to 697 * install a large page, so remove and free the page 698 * table page. 699 */ 700 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); 701 } 702 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 703 if (rmapp && n_rmap) 704 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 705 ret = 0; 706 goto out_unlock; 707 } 708 if (pmd_none(*pmd)) { 709 if (!new_ptep) 710 goto out_unlock; 711 pmd_populate(kvm->mm, pmd, new_ptep); 712 new_ptep = NULL; 713 } 714 ptep = pte_offset_kernel(pmd, gpa); 715 if (pte_present(*ptep)) { 716 /* Check if someone else set the same thing */ 717 if (pte_raw(*ptep) == pte_raw(pte)) { 718 ret = 0; 719 goto out_unlock; 720 } 721 /* Valid page here already, add our extra bits */ 722 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & 723 PTE_BITS_MUST_MATCH); 724 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); 725 ret = 0; 726 goto out_unlock; 727 } 728 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 729 if (rmapp && n_rmap) 730 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 731 ret = 0; 732 733 out_unlock: 734 spin_unlock(&kvm->mmu_lock); 735 if (new_pud) 736 pud_free(kvm->mm, new_pud); 737 if (new_pmd) 738 kvmppc_pmd_free(new_pmd); 739 if (new_ptep) 740 kvmppc_pte_free(new_ptep); 741 return ret; 742 } 743 744 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing, 745 unsigned long gpa, unsigned int lpid) 746 { 747 unsigned long pgflags; 748 unsigned int shift; 749 pte_t *ptep; 750 751 /* 752 * Need to set an R or C bit in the 2nd-level tables; 753 * since we are just helping out the hardware here, 754 * it is sufficient to do what the hardware does. 755 */ 756 pgflags = _PAGE_ACCESSED; 757 if (writing) 758 pgflags |= _PAGE_DIRTY; 759 /* 760 * We are walking the secondary (partition-scoped) page table here. 761 * We can do this without disabling irq because the Linux MM 762 * subsystem doesn't do THP splits and collapses on this tree. 763 */ 764 ptep = __find_linux_pte(pgtable, gpa, NULL, &shift); 765 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { 766 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); 767 return true; 768 } 769 return false; 770 } 771 772 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, 773 unsigned long gpa, 774 struct kvm_memory_slot *memslot, 775 bool writing, bool kvm_ro, 776 pte_t *inserted_pte, unsigned int *levelp) 777 { 778 struct kvm *kvm = vcpu->kvm; 779 struct page *page = NULL; 780 unsigned long mmu_seq; 781 unsigned long hva, gfn = gpa >> PAGE_SHIFT; 782 bool upgrade_write = false; 783 bool *upgrade_p = &upgrade_write; 784 pte_t pte, *ptep; 785 unsigned int shift, level; 786 int ret; 787 bool large_enable; 788 789 /* used to check for invalidations in progress */ 790 mmu_seq = kvm->mmu_notifier_seq; 791 smp_rmb(); 792 793 /* 794 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 795 * do it with !atomic && !async, which is how we call it. 796 * We always ask for write permission since the common case 797 * is that the page is writable. 798 */ 799 hva = gfn_to_hva_memslot(memslot, gfn); 800 if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) { 801 upgrade_write = true; 802 } else { 803 unsigned long pfn; 804 805 /* Call KVM generic code to do the slow-path check */ 806 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 807 writing, upgrade_p); 808 if (is_error_noslot_pfn(pfn)) 809 return -EFAULT; 810 page = NULL; 811 if (pfn_valid(pfn)) { 812 page = pfn_to_page(pfn); 813 if (PageReserved(page)) 814 page = NULL; 815 } 816 } 817 818 /* 819 * Read the PTE from the process' radix tree and use that 820 * so we get the shift and attribute bits. 821 */ 822 local_irq_disable(); 823 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); 824 /* 825 * If the PTE disappeared temporarily due to a THP 826 * collapse, just return and let the guest try again. 827 */ 828 if (!ptep) { 829 local_irq_enable(); 830 if (page) 831 put_page(page); 832 return RESUME_GUEST; 833 } 834 pte = *ptep; 835 local_irq_enable(); 836 837 /* If we're logging dirty pages, always map single pages */ 838 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); 839 840 /* Get pte level from shift/size */ 841 if (large_enable && shift == PUD_SHIFT && 842 (gpa & (PUD_SIZE - PAGE_SIZE)) == 843 (hva & (PUD_SIZE - PAGE_SIZE))) { 844 level = 2; 845 } else if (large_enable && shift == PMD_SHIFT && 846 (gpa & (PMD_SIZE - PAGE_SIZE)) == 847 (hva & (PMD_SIZE - PAGE_SIZE))) { 848 level = 1; 849 } else { 850 level = 0; 851 if (shift > PAGE_SHIFT) { 852 /* 853 * If the pte maps more than one page, bring over 854 * bits from the virtual address to get the real 855 * address of the specific single page we want. 856 */ 857 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; 858 pte = __pte(pte_val(pte) | (hva & rpnmask)); 859 } 860 } 861 862 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); 863 if (writing || upgrade_write) { 864 if (pte_val(pte) & _PAGE_WRITE) 865 pte = __pte(pte_val(pte) | _PAGE_DIRTY); 866 } else { 867 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); 868 } 869 870 /* Allocate space in the tree and write the PTE */ 871 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, 872 mmu_seq, kvm->arch.lpid, NULL, NULL); 873 if (inserted_pte) 874 *inserted_pte = pte; 875 if (levelp) 876 *levelp = level; 877 878 if (page) { 879 if (!ret && (pte_val(pte) & _PAGE_WRITE)) 880 set_page_dirty_lock(page); 881 put_page(page); 882 } 883 884 /* Increment number of large pages if we (successfully) inserted one */ 885 if (!ret) { 886 if (level == 1) 887 kvm->stat.num_2M_pages++; 888 else if (level == 2) 889 kvm->stat.num_1G_pages++; 890 } 891 892 return ret; 893 } 894 895 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 896 unsigned long ea, unsigned long dsisr) 897 { 898 struct kvm *kvm = vcpu->kvm; 899 unsigned long gpa, gfn; 900 struct kvm_memory_slot *memslot; 901 long ret; 902 bool writing = !!(dsisr & DSISR_ISSTORE); 903 bool kvm_ro = false; 904 905 /* Check for unusual errors */ 906 if (dsisr & DSISR_UNSUPP_MMU) { 907 pr_err("KVM: Got unsupported MMU fault\n"); 908 return -EFAULT; 909 } 910 if (dsisr & DSISR_BADACCESS) { 911 /* Reflect to the guest as DSI */ 912 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 913 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 914 return RESUME_GUEST; 915 } 916 917 /* Translate the logical address */ 918 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 919 gpa &= ~0xF000000000000000ul; 920 gfn = gpa >> PAGE_SHIFT; 921 if (!(dsisr & DSISR_PRTABLE_FAULT)) 922 gpa |= ea & 0xfff; 923 924 /* Get the corresponding memslot */ 925 memslot = gfn_to_memslot(kvm, gfn); 926 927 /* No memslot means it's an emulated MMIO region */ 928 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 929 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 930 DSISR_SET_RC)) { 931 /* 932 * Bad address in guest page table tree, or other 933 * unusual error - reflect it to the guest as DSI. 934 */ 935 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 936 return RESUME_GUEST; 937 } 938 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing); 939 } 940 941 if (memslot->flags & KVM_MEM_READONLY) { 942 if (writing) { 943 /* give the guest a DSI */ 944 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | 945 DSISR_PROTFAULT); 946 return RESUME_GUEST; 947 } 948 kvm_ro = true; 949 } 950 951 /* Failed to set the reference/change bits */ 952 if (dsisr & DSISR_SET_RC) { 953 spin_lock(&kvm->mmu_lock); 954 if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, 955 writing, gpa, kvm->arch.lpid)) 956 dsisr &= ~DSISR_SET_RC; 957 spin_unlock(&kvm->mmu_lock); 958 959 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 960 DSISR_PROTFAULT | DSISR_SET_RC))) 961 return RESUME_GUEST; 962 } 963 964 /* Try to insert a pte */ 965 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, 966 kvm_ro, NULL, NULL); 967 968 if (ret == 0 || ret == -EAGAIN) 969 ret = RESUME_GUEST; 970 return ret; 971 } 972 973 /* Called with kvm->mmu_lock held */ 974 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 975 unsigned long gfn) 976 { 977 pte_t *ptep; 978 unsigned long gpa = gfn << PAGE_SHIFT; 979 unsigned int shift; 980 981 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 982 if (ptep && pte_present(*ptep)) 983 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 984 kvm->arch.lpid); 985 return 0; 986 } 987 988 /* Called with kvm->mmu_lock held */ 989 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 990 unsigned long gfn) 991 { 992 pte_t *ptep; 993 unsigned long gpa = gfn << PAGE_SHIFT; 994 unsigned int shift; 995 int ref = 0; 996 unsigned long old, *rmapp; 997 998 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 999 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 1000 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 1001 gpa, shift); 1002 /* XXX need to flush tlb here? */ 1003 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1004 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1005 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, 1006 old & PTE_RPN_MASK, 1007 1UL << shift); 1008 ref = 1; 1009 } 1010 return ref; 1011 } 1012 1013 /* Called with kvm->mmu_lock held */ 1014 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 1015 unsigned long gfn) 1016 { 1017 pte_t *ptep; 1018 unsigned long gpa = gfn << PAGE_SHIFT; 1019 unsigned int shift; 1020 int ref = 0; 1021 1022 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1023 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 1024 ref = 1; 1025 return ref; 1026 } 1027 1028 /* Returns the number of PAGE_SIZE pages that are dirty */ 1029 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 1030 struct kvm_memory_slot *memslot, int pagenum) 1031 { 1032 unsigned long gfn = memslot->base_gfn + pagenum; 1033 unsigned long gpa = gfn << PAGE_SHIFT; 1034 pte_t *ptep; 1035 unsigned int shift; 1036 int ret = 0; 1037 unsigned long old, *rmapp; 1038 1039 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1040 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 1041 ret = 1; 1042 if (shift) 1043 ret = 1 << (shift - PAGE_SHIFT); 1044 spin_lock(&kvm->mmu_lock); 1045 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 1046 gpa, shift); 1047 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); 1048 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1049 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1050 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, 1051 old & PTE_RPN_MASK, 1052 1UL << shift); 1053 spin_unlock(&kvm->mmu_lock); 1054 } 1055 return ret; 1056 } 1057 1058 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 1059 struct kvm_memory_slot *memslot, unsigned long *map) 1060 { 1061 unsigned long i, j; 1062 int npages; 1063 1064 for (i = 0; i < memslot->npages; i = j) { 1065 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 1066 1067 /* 1068 * Note that if npages > 0 then i must be a multiple of npages, 1069 * since huge pages are only used to back the guest at guest 1070 * real addresses that are a multiple of their size. 1071 * Since we have at most one PTE covering any given guest 1072 * real address, if npages > 1 we can skip to i + npages. 1073 */ 1074 j = i + 1; 1075 if (npages) { 1076 set_dirty_bits(map, i, npages); 1077 j = i + npages; 1078 } 1079 } 1080 return 0; 1081 } 1082 1083 void kvmppc_radix_flush_memslot(struct kvm *kvm, 1084 const struct kvm_memory_slot *memslot) 1085 { 1086 unsigned long n; 1087 pte_t *ptep; 1088 unsigned long gpa; 1089 unsigned int shift; 1090 1091 gpa = memslot->base_gfn << PAGE_SHIFT; 1092 spin_lock(&kvm->mmu_lock); 1093 for (n = memslot->npages; n; --n) { 1094 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1095 if (ptep && pte_present(*ptep)) 1096 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 1097 kvm->arch.lpid); 1098 gpa += PAGE_SIZE; 1099 } 1100 spin_unlock(&kvm->mmu_lock); 1101 } 1102 1103 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 1104 int psize, int *indexp) 1105 { 1106 if (!mmu_psize_defs[psize].shift) 1107 return; 1108 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 1109 (mmu_psize_defs[psize].ap << 29); 1110 ++(*indexp); 1111 } 1112 1113 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 1114 { 1115 int i; 1116 1117 if (!radix_enabled()) 1118 return -EINVAL; 1119 memset(info, 0, sizeof(*info)); 1120 1121 /* 4k page size */ 1122 info->geometries[0].page_shift = 12; 1123 info->geometries[0].level_bits[0] = 9; 1124 for (i = 1; i < 4; ++i) 1125 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 1126 /* 64k page size */ 1127 info->geometries[1].page_shift = 16; 1128 for (i = 0; i < 4; ++i) 1129 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 1130 1131 i = 0; 1132 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 1133 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 1134 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 1135 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 1136 1137 return 0; 1138 } 1139 1140 int kvmppc_init_vm_radix(struct kvm *kvm) 1141 { 1142 kvm->arch.pgtable = pgd_alloc(kvm->mm); 1143 if (!kvm->arch.pgtable) 1144 return -ENOMEM; 1145 return 0; 1146 } 1147 1148 static void pte_ctor(void *addr) 1149 { 1150 memset(addr, 0, RADIX_PTE_TABLE_SIZE); 1151 } 1152 1153 static void pmd_ctor(void *addr) 1154 { 1155 memset(addr, 0, RADIX_PMD_TABLE_SIZE); 1156 } 1157 1158 struct debugfs_radix_state { 1159 struct kvm *kvm; 1160 struct mutex mutex; 1161 unsigned long gpa; 1162 int lpid; 1163 int chars_left; 1164 int buf_index; 1165 char buf[128]; 1166 u8 hdr; 1167 }; 1168 1169 static int debugfs_radix_open(struct inode *inode, struct file *file) 1170 { 1171 struct kvm *kvm = inode->i_private; 1172 struct debugfs_radix_state *p; 1173 1174 p = kzalloc(sizeof(*p), GFP_KERNEL); 1175 if (!p) 1176 return -ENOMEM; 1177 1178 kvm_get_kvm(kvm); 1179 p->kvm = kvm; 1180 mutex_init(&p->mutex); 1181 file->private_data = p; 1182 1183 return nonseekable_open(inode, file); 1184 } 1185 1186 static int debugfs_radix_release(struct inode *inode, struct file *file) 1187 { 1188 struct debugfs_radix_state *p = file->private_data; 1189 1190 kvm_put_kvm(p->kvm); 1191 kfree(p); 1192 return 0; 1193 } 1194 1195 static ssize_t debugfs_radix_read(struct file *file, char __user *buf, 1196 size_t len, loff_t *ppos) 1197 { 1198 struct debugfs_radix_state *p = file->private_data; 1199 ssize_t ret, r; 1200 unsigned long n; 1201 struct kvm *kvm; 1202 unsigned long gpa; 1203 pgd_t *pgt; 1204 struct kvm_nested_guest *nested; 1205 pgd_t pgd, *pgdp; 1206 pud_t pud, *pudp; 1207 pmd_t pmd, *pmdp; 1208 pte_t *ptep; 1209 int shift; 1210 unsigned long pte; 1211 1212 kvm = p->kvm; 1213 if (!kvm_is_radix(kvm)) 1214 return 0; 1215 1216 ret = mutex_lock_interruptible(&p->mutex); 1217 if (ret) 1218 return ret; 1219 1220 if (p->chars_left) { 1221 n = p->chars_left; 1222 if (n > len) 1223 n = len; 1224 r = copy_to_user(buf, p->buf + p->buf_index, n); 1225 n -= r; 1226 p->chars_left -= n; 1227 p->buf_index += n; 1228 buf += n; 1229 len -= n; 1230 ret = n; 1231 if (r) { 1232 if (!n) 1233 ret = -EFAULT; 1234 goto out; 1235 } 1236 } 1237 1238 gpa = p->gpa; 1239 nested = NULL; 1240 pgt = NULL; 1241 while (len != 0 && p->lpid >= 0) { 1242 if (gpa >= RADIX_PGTABLE_RANGE) { 1243 gpa = 0; 1244 pgt = NULL; 1245 if (nested) { 1246 kvmhv_put_nested(nested); 1247 nested = NULL; 1248 } 1249 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); 1250 p->hdr = 0; 1251 if (p->lpid < 0) 1252 break; 1253 } 1254 if (!pgt) { 1255 if (p->lpid == 0) { 1256 pgt = kvm->arch.pgtable; 1257 } else { 1258 nested = kvmhv_get_nested(kvm, p->lpid, false); 1259 if (!nested) { 1260 gpa = RADIX_PGTABLE_RANGE; 1261 continue; 1262 } 1263 pgt = nested->shadow_pgtable; 1264 } 1265 } 1266 n = 0; 1267 if (!p->hdr) { 1268 if (p->lpid > 0) 1269 n = scnprintf(p->buf, sizeof(p->buf), 1270 "\nNested LPID %d: ", p->lpid); 1271 n += scnprintf(p->buf + n, sizeof(p->buf) - n, 1272 "pgdir: %lx\n", (unsigned long)pgt); 1273 p->hdr = 1; 1274 goto copy; 1275 } 1276 1277 pgdp = pgt + pgd_index(gpa); 1278 pgd = READ_ONCE(*pgdp); 1279 if (!(pgd_val(pgd) & _PAGE_PRESENT)) { 1280 gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE; 1281 continue; 1282 } 1283 1284 pudp = pud_offset(&pgd, gpa); 1285 pud = READ_ONCE(*pudp); 1286 if (!(pud_val(pud) & _PAGE_PRESENT)) { 1287 gpa = (gpa & PUD_MASK) + PUD_SIZE; 1288 continue; 1289 } 1290 if (pud_val(pud) & _PAGE_PTE) { 1291 pte = pud_val(pud); 1292 shift = PUD_SHIFT; 1293 goto leaf; 1294 } 1295 1296 pmdp = pmd_offset(&pud, gpa); 1297 pmd = READ_ONCE(*pmdp); 1298 if (!(pmd_val(pmd) & _PAGE_PRESENT)) { 1299 gpa = (gpa & PMD_MASK) + PMD_SIZE; 1300 continue; 1301 } 1302 if (pmd_val(pmd) & _PAGE_PTE) { 1303 pte = pmd_val(pmd); 1304 shift = PMD_SHIFT; 1305 goto leaf; 1306 } 1307 1308 ptep = pte_offset_kernel(&pmd, gpa); 1309 pte = pte_val(READ_ONCE(*ptep)); 1310 if (!(pte & _PAGE_PRESENT)) { 1311 gpa += PAGE_SIZE; 1312 continue; 1313 } 1314 shift = PAGE_SHIFT; 1315 leaf: 1316 n = scnprintf(p->buf, sizeof(p->buf), 1317 " %lx: %lx %d\n", gpa, pte, shift); 1318 gpa += 1ul << shift; 1319 copy: 1320 p->chars_left = n; 1321 if (n > len) 1322 n = len; 1323 r = copy_to_user(buf, p->buf, n); 1324 n -= r; 1325 p->chars_left -= n; 1326 p->buf_index = n; 1327 buf += n; 1328 len -= n; 1329 ret += n; 1330 if (r) { 1331 if (!ret) 1332 ret = -EFAULT; 1333 break; 1334 } 1335 } 1336 p->gpa = gpa; 1337 if (nested) 1338 kvmhv_put_nested(nested); 1339 1340 out: 1341 mutex_unlock(&p->mutex); 1342 return ret; 1343 } 1344 1345 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, 1346 size_t len, loff_t *ppos) 1347 { 1348 return -EACCES; 1349 } 1350 1351 static const struct file_operations debugfs_radix_fops = { 1352 .owner = THIS_MODULE, 1353 .open = debugfs_radix_open, 1354 .release = debugfs_radix_release, 1355 .read = debugfs_radix_read, 1356 .write = debugfs_radix_write, 1357 .llseek = generic_file_llseek, 1358 }; 1359 1360 void kvmhv_radix_debugfs_init(struct kvm *kvm) 1361 { 1362 kvm->arch.radix_dentry = debugfs_create_file("radix", 0400, 1363 kvm->arch.debugfs_dir, kvm, 1364 &debugfs_radix_fops); 1365 } 1366 1367 int kvmppc_radix_init(void) 1368 { 1369 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; 1370 1371 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 1372 if (!kvm_pte_cache) 1373 return -ENOMEM; 1374 1375 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; 1376 1377 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); 1378 if (!kvm_pmd_cache) { 1379 kmem_cache_destroy(kvm_pte_cache); 1380 return -ENOMEM; 1381 } 1382 1383 return 0; 1384 } 1385 1386 void kvmppc_radix_exit(void) 1387 { 1388 kmem_cache_destroy(kvm_pte_cache); 1389 kmem_cache_destroy(kvm_pmd_cache); 1390 } 1391