1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/debugfs.h> 14 15 #include <asm/kvm_ppc.h> 16 #include <asm/kvm_book3s.h> 17 #include <asm/page.h> 18 #include <asm/mmu.h> 19 #include <asm/pgtable.h> 20 #include <asm/pgalloc.h> 21 #include <asm/pte-walk.h> 22 #include <asm/ultravisor.h> 23 #include <asm/kvm_book3s_uvmem.h> 24 25 /* 26 * Supported radix tree geometry. 27 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 28 * for a page size of 64k or 4k. 29 */ 30 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 31 32 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, 33 gva_t eaddr, void *to, void *from, 34 unsigned long n) 35 { 36 int uninitialized_var(old_pid), old_lpid; 37 unsigned long quadrant, ret = n; 38 bool is_load = !!to; 39 40 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ 41 if (kvmhv_on_pseries()) 42 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, 43 __pa(to), __pa(from), n); 44 45 quadrant = 1; 46 if (!pid) 47 quadrant = 2; 48 if (is_load) 49 from = (void *) (eaddr | (quadrant << 62)); 50 else 51 to = (void *) (eaddr | (quadrant << 62)); 52 53 preempt_disable(); 54 55 /* switch the lpid first to avoid running host with unallocated pid */ 56 old_lpid = mfspr(SPRN_LPID); 57 if (old_lpid != lpid) 58 mtspr(SPRN_LPID, lpid); 59 if (quadrant == 1) { 60 old_pid = mfspr(SPRN_PID); 61 if (old_pid != pid) 62 mtspr(SPRN_PID, pid); 63 } 64 isync(); 65 66 if (is_load) 67 ret = probe_user_read(to, (const void __user *)from, n); 68 else 69 ret = probe_user_write((void __user *)to, from, n); 70 71 /* switch the pid first to avoid running host with unallocated pid */ 72 if (quadrant == 1 && pid != old_pid) 73 mtspr(SPRN_PID, old_pid); 74 if (lpid != old_lpid) 75 mtspr(SPRN_LPID, old_lpid); 76 isync(); 77 78 preempt_enable(); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); 83 84 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, 85 void *to, void *from, unsigned long n) 86 { 87 int lpid = vcpu->kvm->arch.lpid; 88 int pid = vcpu->arch.pid; 89 90 /* This would cause a data segment intr so don't allow the access */ 91 if (eaddr & (0x3FFUL << 52)) 92 return -EINVAL; 93 94 /* Should we be using the nested lpid */ 95 if (vcpu->arch.nested) 96 lpid = vcpu->arch.nested->shadow_lpid; 97 98 /* If accessing quadrant 3 then pid is expected to be 0 */ 99 if (((eaddr >> 62) & 0x3) == 0x3) 100 pid = 0; 101 102 eaddr &= ~(0xFFFUL << 52); 103 104 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); 105 } 106 107 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, 108 unsigned long n) 109 { 110 long ret; 111 112 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); 113 if (ret > 0) 114 memset(to + (n - ret), 0, ret); 115 116 return ret; 117 } 118 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); 119 120 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, 121 unsigned long n) 122 { 123 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); 124 } 125 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); 126 127 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, 128 struct kvmppc_pte *gpte, u64 root, 129 u64 *pte_ret_p) 130 { 131 struct kvm *kvm = vcpu->kvm; 132 int ret, level, ps; 133 unsigned long rts, bits, offset, index; 134 u64 pte, base, gpa; 135 __be64 rpte; 136 137 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 138 ((root & RTS2_MASK) >> RTS2_SHIFT); 139 bits = root & RPDS_MASK; 140 base = root & RPDB_MASK; 141 142 offset = rts + 31; 143 144 /* Current implementations only support 52-bit space */ 145 if (offset != 52) 146 return -EINVAL; 147 148 /* Walk each level of the radix tree */ 149 for (level = 3; level >= 0; --level) { 150 u64 addr; 151 /* Check a valid size */ 152 if (level && bits != p9_supported_radix_bits[level]) 153 return -EINVAL; 154 if (level == 0 && !(bits == 5 || bits == 9)) 155 return -EINVAL; 156 offset -= bits; 157 index = (eaddr >> offset) & ((1UL << bits) - 1); 158 /* Check that low bits of page table base are zero */ 159 if (base & ((1UL << (bits + 3)) - 1)) 160 return -EINVAL; 161 /* Read the entry from guest memory */ 162 addr = base + (index * sizeof(rpte)); 163 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); 164 if (ret) { 165 if (pte_ret_p) 166 *pte_ret_p = addr; 167 return ret; 168 } 169 pte = __be64_to_cpu(rpte); 170 if (!(pte & _PAGE_PRESENT)) 171 return -ENOENT; 172 /* Check if a leaf entry */ 173 if (pte & _PAGE_PTE) 174 break; 175 /* Get ready to walk the next level */ 176 base = pte & RPDB_MASK; 177 bits = pte & RPDS_MASK; 178 } 179 180 /* Need a leaf at lowest level; 512GB pages not supported */ 181 if (level < 0 || level == 3) 182 return -EINVAL; 183 184 /* We found a valid leaf PTE */ 185 /* Offset is now log base 2 of the page size */ 186 gpa = pte & 0x01fffffffffff000ul; 187 if (gpa & ((1ul << offset) - 1)) 188 return -EINVAL; 189 gpa |= eaddr & ((1ul << offset) - 1); 190 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 191 if (offset == mmu_psize_defs[ps].shift) 192 break; 193 gpte->page_size = ps; 194 gpte->page_shift = offset; 195 196 gpte->eaddr = eaddr; 197 gpte->raddr = gpa; 198 199 /* Work out permissions */ 200 gpte->may_read = !!(pte & _PAGE_READ); 201 gpte->may_write = !!(pte & _PAGE_WRITE); 202 gpte->may_execute = !!(pte & _PAGE_EXEC); 203 204 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); 205 206 if (pte_ret_p) 207 *pte_ret_p = pte; 208 209 return 0; 210 } 211 212 /* 213 * Used to walk a partition or process table radix tree in guest memory 214 * Note: We exploit the fact that a partition table and a process 215 * table have the same layout, a partition-scoped page table and a 216 * process-scoped page table have the same layout, and the 2nd 217 * doubleword of a partition table entry has the same layout as 218 * the PTCR register. 219 */ 220 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, 221 struct kvmppc_pte *gpte, u64 table, 222 int table_index, u64 *pte_ret_p) 223 { 224 struct kvm *kvm = vcpu->kvm; 225 int ret; 226 unsigned long size, ptbl, root; 227 struct prtb_entry entry; 228 229 if ((table & PRTS_MASK) > 24) 230 return -EINVAL; 231 size = 1ul << ((table & PRTS_MASK) + 12); 232 233 /* Is the table big enough to contain this entry? */ 234 if ((table_index * sizeof(entry)) >= size) 235 return -EINVAL; 236 237 /* Read the table to find the root of the radix tree */ 238 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); 239 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); 240 if (ret) 241 return ret; 242 243 /* Root is stored in the first double word */ 244 root = be64_to_cpu(entry.prtb0); 245 246 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); 247 } 248 249 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 250 struct kvmppc_pte *gpte, bool data, bool iswrite) 251 { 252 u32 pid; 253 u64 pte; 254 int ret; 255 256 /* Work out effective PID */ 257 switch (eaddr >> 62) { 258 case 0: 259 pid = vcpu->arch.pid; 260 break; 261 case 3: 262 pid = 0; 263 break; 264 default: 265 return -EINVAL; 266 } 267 268 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, 269 vcpu->kvm->arch.process_table, pid, &pte); 270 if (ret) 271 return ret; 272 273 /* Check privilege (applies only to process scoped translations) */ 274 if (kvmppc_get_msr(vcpu) & MSR_PR) { 275 if (pte & _PAGE_PRIVILEGED) { 276 gpte->may_read = 0; 277 gpte->may_write = 0; 278 gpte->may_execute = 0; 279 } 280 } else { 281 if (!(pte & _PAGE_PRIVILEGED)) { 282 /* Check AMR/IAMR to see if strict mode is in force */ 283 if (vcpu->arch.amr & (1ul << 62)) 284 gpte->may_read = 0; 285 if (vcpu->arch.amr & (1ul << 63)) 286 gpte->may_write = 0; 287 if (vcpu->arch.iamr & (1ul << 62)) 288 gpte->may_execute = 0; 289 } 290 } 291 292 return 0; 293 } 294 295 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 296 unsigned int pshift, unsigned int lpid) 297 { 298 unsigned long psize = PAGE_SIZE; 299 int psi; 300 long rc; 301 unsigned long rb; 302 303 if (pshift) 304 psize = 1UL << pshift; 305 else 306 pshift = PAGE_SHIFT; 307 308 addr &= ~(psize - 1); 309 310 if (!kvmhv_on_pseries()) { 311 radix__flush_tlb_lpid_page(lpid, addr, psize); 312 return; 313 } 314 315 psi = shift_to_mmu_psize(pshift); 316 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); 317 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), 318 lpid, rb); 319 if (rc) 320 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); 321 } 322 323 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) 324 { 325 long rc; 326 327 if (!kvmhv_on_pseries()) { 328 radix__flush_pwc_lpid(lpid); 329 return; 330 } 331 332 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), 333 lpid, TLBIEL_INVAL_SET_LPID); 334 if (rc) 335 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); 336 } 337 338 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 339 unsigned long clr, unsigned long set, 340 unsigned long addr, unsigned int shift) 341 { 342 return __radix_pte_update(ptep, clr, set); 343 } 344 345 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 346 pte_t *ptep, pte_t pte) 347 { 348 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 349 } 350 351 static struct kmem_cache *kvm_pte_cache; 352 static struct kmem_cache *kvm_pmd_cache; 353 354 static pte_t *kvmppc_pte_alloc(void) 355 { 356 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 357 } 358 359 static void kvmppc_pte_free(pte_t *ptep) 360 { 361 kmem_cache_free(kvm_pte_cache, ptep); 362 } 363 364 static pmd_t *kvmppc_pmd_alloc(void) 365 { 366 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); 367 } 368 369 static void kvmppc_pmd_free(pmd_t *pmdp) 370 { 371 kmem_cache_free(kvm_pmd_cache, pmdp); 372 } 373 374 /* Called with kvm->mmu_lock held */ 375 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, 376 unsigned int shift, 377 const struct kvm_memory_slot *memslot, 378 unsigned int lpid) 379 380 { 381 unsigned long old; 382 unsigned long gfn = gpa >> PAGE_SHIFT; 383 unsigned long page_size = PAGE_SIZE; 384 unsigned long hpa; 385 386 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); 387 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 388 389 /* The following only applies to L1 entries */ 390 if (lpid != kvm->arch.lpid) 391 return; 392 393 if (!memslot) { 394 memslot = gfn_to_memslot(kvm, gfn); 395 if (!memslot) 396 return; 397 } 398 if (shift) { /* 1GB or 2MB page */ 399 page_size = 1ul << shift; 400 if (shift == PMD_SHIFT) 401 kvm->stat.num_2M_pages--; 402 else if (shift == PUD_SHIFT) 403 kvm->stat.num_1G_pages--; 404 } 405 406 gpa &= ~(page_size - 1); 407 hpa = old & PTE_RPN_MASK; 408 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); 409 410 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) 411 kvmppc_update_dirty_map(memslot, gfn, page_size); 412 } 413 414 /* 415 * kvmppc_free_p?d are used to free existing page tables, and recursively 416 * descend and clear and free children. 417 * Callers are responsible for flushing the PWC. 418 * 419 * When page tables are being unmapped/freed as part of page fault path 420 * (full == false), ptes are not expected. There is code to unmap them 421 * and emit a warning if encountered, but there may already be data 422 * corruption due to the unexpected mappings. 423 */ 424 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, 425 unsigned int lpid) 426 { 427 if (full) { 428 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 429 } else { 430 pte_t *p = pte; 431 unsigned long it; 432 433 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { 434 if (pte_val(*p) == 0) 435 continue; 436 WARN_ON_ONCE(1); 437 kvmppc_unmap_pte(kvm, p, 438 pte_pfn(*p) << PAGE_SHIFT, 439 PAGE_SHIFT, NULL, lpid); 440 } 441 } 442 443 kvmppc_pte_free(pte); 444 } 445 446 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, 447 unsigned int lpid) 448 { 449 unsigned long im; 450 pmd_t *p = pmd; 451 452 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { 453 if (!pmd_present(*p)) 454 continue; 455 if (pmd_is_leaf(*p)) { 456 if (full) { 457 pmd_clear(p); 458 } else { 459 WARN_ON_ONCE(1); 460 kvmppc_unmap_pte(kvm, (pte_t *)p, 461 pte_pfn(*(pte_t *)p) << PAGE_SHIFT, 462 PMD_SHIFT, NULL, lpid); 463 } 464 } else { 465 pte_t *pte; 466 467 pte = pte_offset_map(p, 0); 468 kvmppc_unmap_free_pte(kvm, pte, full, lpid); 469 pmd_clear(p); 470 } 471 } 472 kvmppc_pmd_free(pmd); 473 } 474 475 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, 476 unsigned int lpid) 477 { 478 unsigned long iu; 479 pud_t *p = pud; 480 481 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { 482 if (!pud_present(*p)) 483 continue; 484 if (pud_is_leaf(*p)) { 485 pud_clear(p); 486 } else { 487 pmd_t *pmd; 488 489 pmd = pmd_offset(p, 0); 490 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); 491 pud_clear(p); 492 } 493 } 494 pud_free(kvm->mm, pud); 495 } 496 497 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) 498 { 499 unsigned long ig; 500 501 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 502 pud_t *pud; 503 504 if (!pgd_present(*pgd)) 505 continue; 506 pud = pud_offset(pgd, 0); 507 kvmppc_unmap_free_pud(kvm, pud, lpid); 508 pgd_clear(pgd); 509 } 510 } 511 512 void kvmppc_free_radix(struct kvm *kvm) 513 { 514 if (kvm->arch.pgtable) { 515 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, 516 kvm->arch.lpid); 517 pgd_free(kvm->mm, kvm->arch.pgtable); 518 kvm->arch.pgtable = NULL; 519 } 520 } 521 522 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, 523 unsigned long gpa, unsigned int lpid) 524 { 525 pte_t *pte = pte_offset_kernel(pmd, 0); 526 527 /* 528 * Clearing the pmd entry then flushing the PWC ensures that the pte 529 * page no longer be cached by the MMU, so can be freed without 530 * flushing the PWC again. 531 */ 532 pmd_clear(pmd); 533 kvmppc_radix_flush_pwc(kvm, lpid); 534 535 kvmppc_unmap_free_pte(kvm, pte, false, lpid); 536 } 537 538 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, 539 unsigned long gpa, unsigned int lpid) 540 { 541 pmd_t *pmd = pmd_offset(pud, 0); 542 543 /* 544 * Clearing the pud entry then flushing the PWC ensures that the pmd 545 * page and any children pte pages will no longer be cached by the MMU, 546 * so can be freed without flushing the PWC again. 547 */ 548 pud_clear(pud); 549 kvmppc_radix_flush_pwc(kvm, lpid); 550 551 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); 552 } 553 554 /* 555 * There are a number of bits which may differ between different faults to 556 * the same partition scope entry. RC bits, in the course of cleaning and 557 * aging. And the write bit can change, either the access could have been 558 * upgraded, or a read fault could happen concurrently with a write fault 559 * that sets those bits first. 560 */ 561 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) 562 563 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 564 unsigned long gpa, unsigned int level, 565 unsigned long mmu_seq, unsigned int lpid, 566 unsigned long *rmapp, struct rmap_nested **n_rmap) 567 { 568 pgd_t *pgd; 569 pud_t *pud, *new_pud = NULL; 570 pmd_t *pmd, *new_pmd = NULL; 571 pte_t *ptep, *new_ptep = NULL; 572 int ret; 573 574 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 575 pgd = pgtable + pgd_index(gpa); 576 pud = NULL; 577 if (pgd_present(*pgd)) 578 pud = pud_offset(pgd, gpa); 579 else 580 new_pud = pud_alloc_one(kvm->mm, gpa); 581 582 pmd = NULL; 583 if (pud && pud_present(*pud) && !pud_is_leaf(*pud)) 584 pmd = pmd_offset(pud, gpa); 585 else if (level <= 1) 586 new_pmd = kvmppc_pmd_alloc(); 587 588 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 589 new_ptep = kvmppc_pte_alloc(); 590 591 /* Check if we might have been invalidated; let the guest retry if so */ 592 spin_lock(&kvm->mmu_lock); 593 ret = -EAGAIN; 594 if (mmu_notifier_retry(kvm, mmu_seq)) 595 goto out_unlock; 596 597 /* Now traverse again under the lock and change the tree */ 598 ret = -ENOMEM; 599 if (pgd_none(*pgd)) { 600 if (!new_pud) 601 goto out_unlock; 602 pgd_populate(kvm->mm, pgd, new_pud); 603 new_pud = NULL; 604 } 605 pud = pud_offset(pgd, gpa); 606 if (pud_is_leaf(*pud)) { 607 unsigned long hgpa = gpa & PUD_MASK; 608 609 /* Check if we raced and someone else has set the same thing */ 610 if (level == 2) { 611 if (pud_raw(*pud) == pte_raw(pte)) { 612 ret = 0; 613 goto out_unlock; 614 } 615 /* Valid 1GB page here already, add our extra bits */ 616 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & 617 PTE_BITS_MUST_MATCH); 618 kvmppc_radix_update_pte(kvm, (pte_t *)pud, 619 0, pte_val(pte), hgpa, PUD_SHIFT); 620 ret = 0; 621 goto out_unlock; 622 } 623 /* 624 * If we raced with another CPU which has just put 625 * a 1GB pte in after we saw a pmd page, try again. 626 */ 627 if (!new_pmd) { 628 ret = -EAGAIN; 629 goto out_unlock; 630 } 631 /* Valid 1GB page here already, remove it */ 632 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, 633 lpid); 634 } 635 if (level == 2) { 636 if (!pud_none(*pud)) { 637 /* 638 * There's a page table page here, but we wanted to 639 * install a large page, so remove and free the page 640 * table page. 641 */ 642 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); 643 } 644 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); 645 if (rmapp && n_rmap) 646 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 647 ret = 0; 648 goto out_unlock; 649 } 650 if (pud_none(*pud)) { 651 if (!new_pmd) 652 goto out_unlock; 653 pud_populate(kvm->mm, pud, new_pmd); 654 new_pmd = NULL; 655 } 656 pmd = pmd_offset(pud, gpa); 657 if (pmd_is_leaf(*pmd)) { 658 unsigned long lgpa = gpa & PMD_MASK; 659 660 /* Check if we raced and someone else has set the same thing */ 661 if (level == 1) { 662 if (pmd_raw(*pmd) == pte_raw(pte)) { 663 ret = 0; 664 goto out_unlock; 665 } 666 /* Valid 2MB page here already, add our extra bits */ 667 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & 668 PTE_BITS_MUST_MATCH); 669 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 670 0, pte_val(pte), lgpa, PMD_SHIFT); 671 ret = 0; 672 goto out_unlock; 673 } 674 675 /* 676 * If we raced with another CPU which has just put 677 * a 2MB pte in after we saw a pte page, try again. 678 */ 679 if (!new_ptep) { 680 ret = -EAGAIN; 681 goto out_unlock; 682 } 683 /* Valid 2MB page here already, remove it */ 684 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, 685 lpid); 686 } 687 if (level == 1) { 688 if (!pmd_none(*pmd)) { 689 /* 690 * There's a page table page here, but we wanted to 691 * install a large page, so remove and free the page 692 * table page. 693 */ 694 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); 695 } 696 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 697 if (rmapp && n_rmap) 698 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 699 ret = 0; 700 goto out_unlock; 701 } 702 if (pmd_none(*pmd)) { 703 if (!new_ptep) 704 goto out_unlock; 705 pmd_populate(kvm->mm, pmd, new_ptep); 706 new_ptep = NULL; 707 } 708 ptep = pte_offset_kernel(pmd, gpa); 709 if (pte_present(*ptep)) { 710 /* Check if someone else set the same thing */ 711 if (pte_raw(*ptep) == pte_raw(pte)) { 712 ret = 0; 713 goto out_unlock; 714 } 715 /* Valid page here already, add our extra bits */ 716 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & 717 PTE_BITS_MUST_MATCH); 718 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); 719 ret = 0; 720 goto out_unlock; 721 } 722 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 723 if (rmapp && n_rmap) 724 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 725 ret = 0; 726 727 out_unlock: 728 spin_unlock(&kvm->mmu_lock); 729 if (new_pud) 730 pud_free(kvm->mm, new_pud); 731 if (new_pmd) 732 kvmppc_pmd_free(new_pmd); 733 if (new_ptep) 734 kvmppc_pte_free(new_ptep); 735 return ret; 736 } 737 738 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing, 739 unsigned long gpa, unsigned int lpid) 740 { 741 unsigned long pgflags; 742 unsigned int shift; 743 pte_t *ptep; 744 745 /* 746 * Need to set an R or C bit in the 2nd-level tables; 747 * since we are just helping out the hardware here, 748 * it is sufficient to do what the hardware does. 749 */ 750 pgflags = _PAGE_ACCESSED; 751 if (writing) 752 pgflags |= _PAGE_DIRTY; 753 /* 754 * We are walking the secondary (partition-scoped) page table here. 755 * We can do this without disabling irq because the Linux MM 756 * subsystem doesn't do THP splits and collapses on this tree. 757 */ 758 ptep = __find_linux_pte(pgtable, gpa, NULL, &shift); 759 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { 760 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); 761 return true; 762 } 763 return false; 764 } 765 766 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, 767 unsigned long gpa, 768 struct kvm_memory_slot *memslot, 769 bool writing, bool kvm_ro, 770 pte_t *inserted_pte, unsigned int *levelp) 771 { 772 struct kvm *kvm = vcpu->kvm; 773 struct page *page = NULL; 774 unsigned long mmu_seq; 775 unsigned long hva, gfn = gpa >> PAGE_SHIFT; 776 bool upgrade_write = false; 777 bool *upgrade_p = &upgrade_write; 778 pte_t pte, *ptep; 779 unsigned int shift, level; 780 int ret; 781 bool large_enable; 782 783 /* used to check for invalidations in progress */ 784 mmu_seq = kvm->mmu_notifier_seq; 785 smp_rmb(); 786 787 /* 788 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 789 * do it with !atomic && !async, which is how we call it. 790 * We always ask for write permission since the common case 791 * is that the page is writable. 792 */ 793 hva = gfn_to_hva_memslot(memslot, gfn); 794 if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) { 795 upgrade_write = true; 796 } else { 797 unsigned long pfn; 798 799 /* Call KVM generic code to do the slow-path check */ 800 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 801 writing, upgrade_p); 802 if (is_error_noslot_pfn(pfn)) 803 return -EFAULT; 804 page = NULL; 805 if (pfn_valid(pfn)) { 806 page = pfn_to_page(pfn); 807 if (PageReserved(page)) 808 page = NULL; 809 } 810 } 811 812 /* 813 * Read the PTE from the process' radix tree and use that 814 * so we get the shift and attribute bits. 815 */ 816 local_irq_disable(); 817 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); 818 /* 819 * If the PTE disappeared temporarily due to a THP 820 * collapse, just return and let the guest try again. 821 */ 822 if (!ptep) { 823 local_irq_enable(); 824 if (page) 825 put_page(page); 826 return RESUME_GUEST; 827 } 828 pte = *ptep; 829 local_irq_enable(); 830 831 /* If we're logging dirty pages, always map single pages */ 832 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); 833 834 /* Get pte level from shift/size */ 835 if (large_enable && shift == PUD_SHIFT && 836 (gpa & (PUD_SIZE - PAGE_SIZE)) == 837 (hva & (PUD_SIZE - PAGE_SIZE))) { 838 level = 2; 839 } else if (large_enable && shift == PMD_SHIFT && 840 (gpa & (PMD_SIZE - PAGE_SIZE)) == 841 (hva & (PMD_SIZE - PAGE_SIZE))) { 842 level = 1; 843 } else { 844 level = 0; 845 if (shift > PAGE_SHIFT) { 846 /* 847 * If the pte maps more than one page, bring over 848 * bits from the virtual address to get the real 849 * address of the specific single page we want. 850 */ 851 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; 852 pte = __pte(pte_val(pte) | (hva & rpnmask)); 853 } 854 } 855 856 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); 857 if (writing || upgrade_write) { 858 if (pte_val(pte) & _PAGE_WRITE) 859 pte = __pte(pte_val(pte) | _PAGE_DIRTY); 860 } else { 861 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); 862 } 863 864 /* Allocate space in the tree and write the PTE */ 865 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, 866 mmu_seq, kvm->arch.lpid, NULL, NULL); 867 if (inserted_pte) 868 *inserted_pte = pte; 869 if (levelp) 870 *levelp = level; 871 872 if (page) { 873 if (!ret && (pte_val(pte) & _PAGE_WRITE)) 874 set_page_dirty_lock(page); 875 put_page(page); 876 } 877 878 /* Increment number of large pages if we (successfully) inserted one */ 879 if (!ret) { 880 if (level == 1) 881 kvm->stat.num_2M_pages++; 882 else if (level == 2) 883 kvm->stat.num_1G_pages++; 884 } 885 886 return ret; 887 } 888 889 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 890 unsigned long ea, unsigned long dsisr) 891 { 892 struct kvm *kvm = vcpu->kvm; 893 unsigned long gpa, gfn; 894 struct kvm_memory_slot *memslot; 895 long ret; 896 bool writing = !!(dsisr & DSISR_ISSTORE); 897 bool kvm_ro = false; 898 899 /* Check for unusual errors */ 900 if (dsisr & DSISR_UNSUPP_MMU) { 901 pr_err("KVM: Got unsupported MMU fault\n"); 902 return -EFAULT; 903 } 904 if (dsisr & DSISR_BADACCESS) { 905 /* Reflect to the guest as DSI */ 906 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 907 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 908 return RESUME_GUEST; 909 } 910 911 /* Translate the logical address */ 912 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 913 gpa &= ~0xF000000000000000ul; 914 gfn = gpa >> PAGE_SHIFT; 915 if (!(dsisr & DSISR_PRTABLE_FAULT)) 916 gpa |= ea & 0xfff; 917 918 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 919 return kvmppc_send_page_to_uv(kvm, gfn); 920 921 /* Get the corresponding memslot */ 922 memslot = gfn_to_memslot(kvm, gfn); 923 924 /* No memslot means it's an emulated MMIO region */ 925 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 926 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 927 DSISR_SET_RC)) { 928 /* 929 * Bad address in guest page table tree, or other 930 * unusual error - reflect it to the guest as DSI. 931 */ 932 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 933 return RESUME_GUEST; 934 } 935 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing); 936 } 937 938 if (memslot->flags & KVM_MEM_READONLY) { 939 if (writing) { 940 /* give the guest a DSI */ 941 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | 942 DSISR_PROTFAULT); 943 return RESUME_GUEST; 944 } 945 kvm_ro = true; 946 } 947 948 /* Failed to set the reference/change bits */ 949 if (dsisr & DSISR_SET_RC) { 950 spin_lock(&kvm->mmu_lock); 951 if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, 952 writing, gpa, kvm->arch.lpid)) 953 dsisr &= ~DSISR_SET_RC; 954 spin_unlock(&kvm->mmu_lock); 955 956 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 957 DSISR_PROTFAULT | DSISR_SET_RC))) 958 return RESUME_GUEST; 959 } 960 961 /* Try to insert a pte */ 962 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, 963 kvm_ro, NULL, NULL); 964 965 if (ret == 0 || ret == -EAGAIN) 966 ret = RESUME_GUEST; 967 return ret; 968 } 969 970 /* Called with kvm->mmu_lock held */ 971 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 972 unsigned long gfn) 973 { 974 pte_t *ptep; 975 unsigned long gpa = gfn << PAGE_SHIFT; 976 unsigned int shift; 977 978 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) { 979 uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT); 980 return 0; 981 } 982 983 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 984 if (ptep && pte_present(*ptep)) 985 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 986 kvm->arch.lpid); 987 return 0; 988 } 989 990 /* Called with kvm->mmu_lock held */ 991 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 992 unsigned long gfn) 993 { 994 pte_t *ptep; 995 unsigned long gpa = gfn << PAGE_SHIFT; 996 unsigned int shift; 997 int ref = 0; 998 unsigned long old, *rmapp; 999 1000 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1001 return ref; 1002 1003 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1004 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 1005 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 1006 gpa, shift); 1007 /* XXX need to flush tlb here? */ 1008 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1009 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1010 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, 1011 old & PTE_RPN_MASK, 1012 1UL << shift); 1013 ref = 1; 1014 } 1015 return ref; 1016 } 1017 1018 /* Called with kvm->mmu_lock held */ 1019 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 1020 unsigned long gfn) 1021 { 1022 pte_t *ptep; 1023 unsigned long gpa = gfn << PAGE_SHIFT; 1024 unsigned int shift; 1025 int ref = 0; 1026 1027 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1028 return ref; 1029 1030 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1031 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 1032 ref = 1; 1033 return ref; 1034 } 1035 1036 /* Returns the number of PAGE_SIZE pages that are dirty */ 1037 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 1038 struct kvm_memory_slot *memslot, int pagenum) 1039 { 1040 unsigned long gfn = memslot->base_gfn + pagenum; 1041 unsigned long gpa = gfn << PAGE_SHIFT; 1042 pte_t *ptep; 1043 unsigned int shift; 1044 int ret = 0; 1045 unsigned long old, *rmapp; 1046 1047 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1048 return ret; 1049 1050 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1051 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 1052 ret = 1; 1053 if (shift) 1054 ret = 1 << (shift - PAGE_SHIFT); 1055 spin_lock(&kvm->mmu_lock); 1056 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 1057 gpa, shift); 1058 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); 1059 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1060 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1061 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, 1062 old & PTE_RPN_MASK, 1063 1UL << shift); 1064 spin_unlock(&kvm->mmu_lock); 1065 } 1066 return ret; 1067 } 1068 1069 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 1070 struct kvm_memory_slot *memslot, unsigned long *map) 1071 { 1072 unsigned long i, j; 1073 int npages; 1074 1075 for (i = 0; i < memslot->npages; i = j) { 1076 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 1077 1078 /* 1079 * Note that if npages > 0 then i must be a multiple of npages, 1080 * since huge pages are only used to back the guest at guest 1081 * real addresses that are a multiple of their size. 1082 * Since we have at most one PTE covering any given guest 1083 * real address, if npages > 1 we can skip to i + npages. 1084 */ 1085 j = i + 1; 1086 if (npages) { 1087 set_dirty_bits(map, i, npages); 1088 j = i + npages; 1089 } 1090 } 1091 return 0; 1092 } 1093 1094 void kvmppc_radix_flush_memslot(struct kvm *kvm, 1095 const struct kvm_memory_slot *memslot) 1096 { 1097 unsigned long n; 1098 pte_t *ptep; 1099 unsigned long gpa; 1100 unsigned int shift; 1101 1102 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START) 1103 kvmppc_uvmem_drop_pages(memslot, kvm, true); 1104 1105 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1106 return; 1107 1108 gpa = memslot->base_gfn << PAGE_SHIFT; 1109 spin_lock(&kvm->mmu_lock); 1110 for (n = memslot->npages; n; --n) { 1111 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 1112 if (ptep && pte_present(*ptep)) 1113 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 1114 kvm->arch.lpid); 1115 gpa += PAGE_SIZE; 1116 } 1117 spin_unlock(&kvm->mmu_lock); 1118 } 1119 1120 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 1121 int psize, int *indexp) 1122 { 1123 if (!mmu_psize_defs[psize].shift) 1124 return; 1125 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 1126 (mmu_psize_defs[psize].ap << 29); 1127 ++(*indexp); 1128 } 1129 1130 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 1131 { 1132 int i; 1133 1134 if (!radix_enabled()) 1135 return -EINVAL; 1136 memset(info, 0, sizeof(*info)); 1137 1138 /* 4k page size */ 1139 info->geometries[0].page_shift = 12; 1140 info->geometries[0].level_bits[0] = 9; 1141 for (i = 1; i < 4; ++i) 1142 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 1143 /* 64k page size */ 1144 info->geometries[1].page_shift = 16; 1145 for (i = 0; i < 4; ++i) 1146 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 1147 1148 i = 0; 1149 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 1150 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 1151 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 1152 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 1153 1154 return 0; 1155 } 1156 1157 int kvmppc_init_vm_radix(struct kvm *kvm) 1158 { 1159 kvm->arch.pgtable = pgd_alloc(kvm->mm); 1160 if (!kvm->arch.pgtable) 1161 return -ENOMEM; 1162 return 0; 1163 } 1164 1165 static void pte_ctor(void *addr) 1166 { 1167 memset(addr, 0, RADIX_PTE_TABLE_SIZE); 1168 } 1169 1170 static void pmd_ctor(void *addr) 1171 { 1172 memset(addr, 0, RADIX_PMD_TABLE_SIZE); 1173 } 1174 1175 struct debugfs_radix_state { 1176 struct kvm *kvm; 1177 struct mutex mutex; 1178 unsigned long gpa; 1179 int lpid; 1180 int chars_left; 1181 int buf_index; 1182 char buf[128]; 1183 u8 hdr; 1184 }; 1185 1186 static int debugfs_radix_open(struct inode *inode, struct file *file) 1187 { 1188 struct kvm *kvm = inode->i_private; 1189 struct debugfs_radix_state *p; 1190 1191 p = kzalloc(sizeof(*p), GFP_KERNEL); 1192 if (!p) 1193 return -ENOMEM; 1194 1195 kvm_get_kvm(kvm); 1196 p->kvm = kvm; 1197 mutex_init(&p->mutex); 1198 file->private_data = p; 1199 1200 return nonseekable_open(inode, file); 1201 } 1202 1203 static int debugfs_radix_release(struct inode *inode, struct file *file) 1204 { 1205 struct debugfs_radix_state *p = file->private_data; 1206 1207 kvm_put_kvm(p->kvm); 1208 kfree(p); 1209 return 0; 1210 } 1211 1212 static ssize_t debugfs_radix_read(struct file *file, char __user *buf, 1213 size_t len, loff_t *ppos) 1214 { 1215 struct debugfs_radix_state *p = file->private_data; 1216 ssize_t ret, r; 1217 unsigned long n; 1218 struct kvm *kvm; 1219 unsigned long gpa; 1220 pgd_t *pgt; 1221 struct kvm_nested_guest *nested; 1222 pgd_t pgd, *pgdp; 1223 pud_t pud, *pudp; 1224 pmd_t pmd, *pmdp; 1225 pte_t *ptep; 1226 int shift; 1227 unsigned long pte; 1228 1229 kvm = p->kvm; 1230 if (!kvm_is_radix(kvm)) 1231 return 0; 1232 1233 ret = mutex_lock_interruptible(&p->mutex); 1234 if (ret) 1235 return ret; 1236 1237 if (p->chars_left) { 1238 n = p->chars_left; 1239 if (n > len) 1240 n = len; 1241 r = copy_to_user(buf, p->buf + p->buf_index, n); 1242 n -= r; 1243 p->chars_left -= n; 1244 p->buf_index += n; 1245 buf += n; 1246 len -= n; 1247 ret = n; 1248 if (r) { 1249 if (!n) 1250 ret = -EFAULT; 1251 goto out; 1252 } 1253 } 1254 1255 gpa = p->gpa; 1256 nested = NULL; 1257 pgt = NULL; 1258 while (len != 0 && p->lpid >= 0) { 1259 if (gpa >= RADIX_PGTABLE_RANGE) { 1260 gpa = 0; 1261 pgt = NULL; 1262 if (nested) { 1263 kvmhv_put_nested(nested); 1264 nested = NULL; 1265 } 1266 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); 1267 p->hdr = 0; 1268 if (p->lpid < 0) 1269 break; 1270 } 1271 if (!pgt) { 1272 if (p->lpid == 0) { 1273 pgt = kvm->arch.pgtable; 1274 } else { 1275 nested = kvmhv_get_nested(kvm, p->lpid, false); 1276 if (!nested) { 1277 gpa = RADIX_PGTABLE_RANGE; 1278 continue; 1279 } 1280 pgt = nested->shadow_pgtable; 1281 } 1282 } 1283 n = 0; 1284 if (!p->hdr) { 1285 if (p->lpid > 0) 1286 n = scnprintf(p->buf, sizeof(p->buf), 1287 "\nNested LPID %d: ", p->lpid); 1288 n += scnprintf(p->buf + n, sizeof(p->buf) - n, 1289 "pgdir: %lx\n", (unsigned long)pgt); 1290 p->hdr = 1; 1291 goto copy; 1292 } 1293 1294 pgdp = pgt + pgd_index(gpa); 1295 pgd = READ_ONCE(*pgdp); 1296 if (!(pgd_val(pgd) & _PAGE_PRESENT)) { 1297 gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE; 1298 continue; 1299 } 1300 1301 pudp = pud_offset(&pgd, gpa); 1302 pud = READ_ONCE(*pudp); 1303 if (!(pud_val(pud) & _PAGE_PRESENT)) { 1304 gpa = (gpa & PUD_MASK) + PUD_SIZE; 1305 continue; 1306 } 1307 if (pud_val(pud) & _PAGE_PTE) { 1308 pte = pud_val(pud); 1309 shift = PUD_SHIFT; 1310 goto leaf; 1311 } 1312 1313 pmdp = pmd_offset(&pud, gpa); 1314 pmd = READ_ONCE(*pmdp); 1315 if (!(pmd_val(pmd) & _PAGE_PRESENT)) { 1316 gpa = (gpa & PMD_MASK) + PMD_SIZE; 1317 continue; 1318 } 1319 if (pmd_val(pmd) & _PAGE_PTE) { 1320 pte = pmd_val(pmd); 1321 shift = PMD_SHIFT; 1322 goto leaf; 1323 } 1324 1325 ptep = pte_offset_kernel(&pmd, gpa); 1326 pte = pte_val(READ_ONCE(*ptep)); 1327 if (!(pte & _PAGE_PRESENT)) { 1328 gpa += PAGE_SIZE; 1329 continue; 1330 } 1331 shift = PAGE_SHIFT; 1332 leaf: 1333 n = scnprintf(p->buf, sizeof(p->buf), 1334 " %lx: %lx %d\n", gpa, pte, shift); 1335 gpa += 1ul << shift; 1336 copy: 1337 p->chars_left = n; 1338 if (n > len) 1339 n = len; 1340 r = copy_to_user(buf, p->buf, n); 1341 n -= r; 1342 p->chars_left -= n; 1343 p->buf_index = n; 1344 buf += n; 1345 len -= n; 1346 ret += n; 1347 if (r) { 1348 if (!ret) 1349 ret = -EFAULT; 1350 break; 1351 } 1352 } 1353 p->gpa = gpa; 1354 if (nested) 1355 kvmhv_put_nested(nested); 1356 1357 out: 1358 mutex_unlock(&p->mutex); 1359 return ret; 1360 } 1361 1362 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, 1363 size_t len, loff_t *ppos) 1364 { 1365 return -EACCES; 1366 } 1367 1368 static const struct file_operations debugfs_radix_fops = { 1369 .owner = THIS_MODULE, 1370 .open = debugfs_radix_open, 1371 .release = debugfs_radix_release, 1372 .read = debugfs_radix_read, 1373 .write = debugfs_radix_write, 1374 .llseek = generic_file_llseek, 1375 }; 1376 1377 void kvmhv_radix_debugfs_init(struct kvm *kvm) 1378 { 1379 kvm->arch.radix_dentry = debugfs_create_file("radix", 0400, 1380 kvm->arch.debugfs_dir, kvm, 1381 &debugfs_radix_fops); 1382 } 1383 1384 int kvmppc_radix_init(void) 1385 { 1386 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; 1387 1388 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 1389 if (!kvm_pte_cache) 1390 return -ENOMEM; 1391 1392 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; 1393 1394 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); 1395 if (!kvm_pmd_cache) { 1396 kmem_cache_destroy(kvm_pte_cache); 1397 return -ENOMEM; 1398 } 1399 1400 return 0; 1401 } 1402 1403 void kvmppc_radix_exit(void) 1404 { 1405 kmem_cache_destroy(kvm_pte_cache); 1406 kmem_cache_destroy(kvm_pmd_cache); 1407 } 1408