1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31 
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/book3s/64/mmu-hash.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 #include <asm/pte-walk.h>
40 
41 #include "trace_hv.h"
42 
43 //#define DEBUG_RESIZE_HPT	1
44 
45 #ifdef DEBUG_RESIZE_HPT
46 #define resize_hpt_debug(resize, ...)				\
47 	do {							\
48 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
49 		printk(__VA_ARGS__);				\
50 	} while (0)
51 #else
52 #define resize_hpt_debug(resize, ...)				\
53 	do { } while (0)
54 #endif
55 
56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57 				long pte_index, unsigned long pteh,
58 				unsigned long ptel, unsigned long *pte_idx_ret);
59 
60 struct kvm_resize_hpt {
61 	/* These fields read-only after init */
62 	struct kvm *kvm;
63 	struct work_struct work;
64 	u32 order;
65 
66 	/* These fields protected by kvm->lock */
67 
68 	/* Possible values and their usage:
69 	 *  <0     an error occurred during allocation,
70 	 *  -EBUSY allocation is in the progress,
71 	 *  0      allocation made successfuly.
72 	 */
73 	int error;
74 
75 	/* Private to the work thread, until error != -EBUSY,
76 	 * then protected by kvm->lock.
77 	 */
78 	struct kvm_hpt_info hpt;
79 };
80 
81 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
82 {
83 	unsigned long hpt = 0;
84 	int cma = 0;
85 	struct page *page = NULL;
86 	struct revmap_entry *rev;
87 	unsigned long npte;
88 
89 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
90 		return -EINVAL;
91 
92 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
93 	if (page) {
94 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
95 		memset((void *)hpt, 0, (1ul << order));
96 		cma = 1;
97 	}
98 
99 	if (!hpt)
100 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
101 				       |__GFP_NOWARN, order - PAGE_SHIFT);
102 
103 	if (!hpt)
104 		return -ENOMEM;
105 
106 	/* HPTEs are 2**4 bytes long */
107 	npte = 1ul << (order - 4);
108 
109 	/* Allocate reverse map array */
110 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
111 	if (!rev) {
112 		if (cma)
113 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
114 		else
115 			free_pages(hpt, order - PAGE_SHIFT);
116 		return -ENOMEM;
117 	}
118 
119 	info->order = order;
120 	info->virt = hpt;
121 	info->cma = cma;
122 	info->rev = rev;
123 
124 	return 0;
125 }
126 
127 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
128 {
129 	atomic64_set(&kvm->arch.mmio_update, 0);
130 	kvm->arch.hpt = *info;
131 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
132 
133 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
134 		 info->virt, (long)info->order, kvm->arch.lpid);
135 }
136 
137 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
138 {
139 	long err = -EBUSY;
140 	struct kvm_hpt_info info;
141 
142 	mutex_lock(&kvm->lock);
143 	if (kvm->arch.mmu_ready) {
144 		kvm->arch.mmu_ready = 0;
145 		/* order mmu_ready vs. vcpus_running */
146 		smp_mb();
147 		if (atomic_read(&kvm->arch.vcpus_running)) {
148 			kvm->arch.mmu_ready = 1;
149 			goto out;
150 		}
151 	}
152 	if (kvm_is_radix(kvm)) {
153 		err = kvmppc_switch_mmu_to_hpt(kvm);
154 		if (err)
155 			goto out;
156 	}
157 
158 	if (kvm->arch.hpt.order == order) {
159 		/* We already have a suitable HPT */
160 
161 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
162 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
163 		/*
164 		 * Reset all the reverse-mapping chains for all memslots
165 		 */
166 		kvmppc_rmap_reset(kvm);
167 		err = 0;
168 		goto out;
169 	}
170 
171 	if (kvm->arch.hpt.virt) {
172 		kvmppc_free_hpt(&kvm->arch.hpt);
173 		kvmppc_rmap_reset(kvm);
174 	}
175 
176 	err = kvmppc_allocate_hpt(&info, order);
177 	if (err < 0)
178 		goto out;
179 	kvmppc_set_hpt(kvm, &info);
180 
181 out:
182 	if (err == 0)
183 		/* Ensure that each vcpu will flush its TLB on next entry. */
184 		cpumask_setall(&kvm->arch.need_tlb_flush);
185 
186 	mutex_unlock(&kvm->lock);
187 	return err;
188 }
189 
190 void kvmppc_free_hpt(struct kvm_hpt_info *info)
191 {
192 	vfree(info->rev);
193 	info->rev = NULL;
194 	if (info->cma)
195 		kvm_free_hpt_cma(virt_to_page(info->virt),
196 				 1 << (info->order - PAGE_SHIFT));
197 	else if (info->virt)
198 		free_pages(info->virt, info->order - PAGE_SHIFT);
199 	info->virt = 0;
200 	info->order = 0;
201 }
202 
203 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
204 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
205 {
206 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
207 }
208 
209 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
210 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
211 {
212 	return (pgsize == 0x10000) ? 0x1000 : 0;
213 }
214 
215 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
216 		     unsigned long porder)
217 {
218 	unsigned long i;
219 	unsigned long npages;
220 	unsigned long hp_v, hp_r;
221 	unsigned long addr, hash;
222 	unsigned long psize;
223 	unsigned long hp0, hp1;
224 	unsigned long idx_ret;
225 	long ret;
226 	struct kvm *kvm = vcpu->kvm;
227 
228 	psize = 1ul << porder;
229 	npages = memslot->npages >> (porder - PAGE_SHIFT);
230 
231 	/* VRMA can't be > 1TB */
232 	if (npages > 1ul << (40 - porder))
233 		npages = 1ul << (40 - porder);
234 	/* Can't use more than 1 HPTE per HPTEG */
235 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
236 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
237 
238 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
239 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
240 	hp1 = hpte1_pgsize_encoding(psize) |
241 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
242 
243 	for (i = 0; i < npages; ++i) {
244 		addr = i << porder;
245 		/* can't use hpt_hash since va > 64 bits */
246 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
247 			& kvmppc_hpt_mask(&kvm->arch.hpt);
248 		/*
249 		 * We assume that the hash table is empty and no
250 		 * vcpus are using it at this stage.  Since we create
251 		 * at most one HPTE per HPTEG, we just assume entry 7
252 		 * is available and use it.
253 		 */
254 		hash = (hash << 3) + 7;
255 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
256 		hp_r = hp1 | addr;
257 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
258 						 &idx_ret);
259 		if (ret != H_SUCCESS) {
260 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
261 			       addr, ret);
262 			break;
263 		}
264 	}
265 }
266 
267 int kvmppc_mmu_hv_init(void)
268 {
269 	unsigned long host_lpid, rsvd_lpid;
270 
271 	if (!cpu_has_feature(CPU_FTR_HVMODE))
272 		return -EINVAL;
273 
274 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
275 		return -EINVAL;
276 
277 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
278 	host_lpid = mfspr(SPRN_LPID);
279 	rsvd_lpid = LPID_RSVD;
280 
281 	kvmppc_init_lpid(rsvd_lpid + 1);
282 
283 	kvmppc_claim_lpid(host_lpid);
284 	/* rsvd_lpid is reserved for use in partition switching */
285 	kvmppc_claim_lpid(rsvd_lpid);
286 
287 	return 0;
288 }
289 
290 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
291 {
292 	unsigned long msr = vcpu->arch.intr_msr;
293 
294 	/* If transactional, change to suspend mode on IRQ delivery */
295 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
296 		msr |= MSR_TS_S;
297 	else
298 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
299 	kvmppc_set_msr(vcpu, msr);
300 }
301 
302 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
303 				long pte_index, unsigned long pteh,
304 				unsigned long ptel, unsigned long *pte_idx_ret)
305 {
306 	long ret;
307 
308 	/* Protect linux PTE lookup from page table destruction */
309 	rcu_read_lock_sched();	/* this disables preemption too */
310 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
311 				current->mm->pgd, false, pte_idx_ret);
312 	rcu_read_unlock_sched();
313 	if (ret == H_TOO_HARD) {
314 		/* this can't happen */
315 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
316 		ret = H_RESOURCE;	/* or something */
317 	}
318 	return ret;
319 
320 }
321 
322 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
323 							 gva_t eaddr)
324 {
325 	u64 mask;
326 	int i;
327 
328 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
329 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
330 			continue;
331 
332 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
333 			mask = ESID_MASK_1T;
334 		else
335 			mask = ESID_MASK;
336 
337 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
338 			return &vcpu->arch.slb[i];
339 	}
340 	return NULL;
341 }
342 
343 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
344 			unsigned long ea)
345 {
346 	unsigned long ra_mask;
347 
348 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
349 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
350 }
351 
352 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
353 			struct kvmppc_pte *gpte, bool data, bool iswrite)
354 {
355 	struct kvm *kvm = vcpu->kvm;
356 	struct kvmppc_slb *slbe;
357 	unsigned long slb_v;
358 	unsigned long pp, key;
359 	unsigned long v, orig_v, gr;
360 	__be64 *hptep;
361 	int index;
362 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
363 
364 	if (kvm_is_radix(vcpu->kvm))
365 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
366 
367 	/* Get SLB entry */
368 	if (virtmode) {
369 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
370 		if (!slbe)
371 			return -EINVAL;
372 		slb_v = slbe->origv;
373 	} else {
374 		/* real mode access */
375 		slb_v = vcpu->kvm->arch.vrma_slb_v;
376 	}
377 
378 	preempt_disable();
379 	/* Find the HPTE in the hash table */
380 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
381 					 HPTE_V_VALID | HPTE_V_ABSENT);
382 	if (index < 0) {
383 		preempt_enable();
384 		return -ENOENT;
385 	}
386 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
387 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
388 	if (cpu_has_feature(CPU_FTR_ARCH_300))
389 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
390 	gr = kvm->arch.hpt.rev[index].guest_rpte;
391 
392 	unlock_hpte(hptep, orig_v);
393 	preempt_enable();
394 
395 	gpte->eaddr = eaddr;
396 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
397 
398 	/* Get PP bits and key for permission check */
399 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
400 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
401 	key &= slb_v;
402 
403 	/* Calculate permissions */
404 	gpte->may_read = hpte_read_permission(pp, key);
405 	gpte->may_write = hpte_write_permission(pp, key);
406 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
407 
408 	/* Storage key permission check for POWER7 */
409 	if (data && virtmode) {
410 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
411 		if (amrfield & 1)
412 			gpte->may_read = 0;
413 		if (amrfield & 2)
414 			gpte->may_write = 0;
415 	}
416 
417 	/* Get the guest physical address */
418 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
419 	return 0;
420 }
421 
422 /*
423  * Quick test for whether an instruction is a load or a store.
424  * If the instruction is a load or a store, then this will indicate
425  * which it is, at least on server processors.  (Embedded processors
426  * have some external PID instructions that don't follow the rule
427  * embodied here.)  If the instruction isn't a load or store, then
428  * this doesn't return anything useful.
429  */
430 static int instruction_is_store(unsigned int instr)
431 {
432 	unsigned int mask;
433 
434 	mask = 0x10000000;
435 	if ((instr & 0xfc000000) == 0x7c000000)
436 		mask = 0x100;		/* major opcode 31 */
437 	return (instr & mask) != 0;
438 }
439 
440 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
441 			   unsigned long gpa, gva_t ea, int is_store)
442 {
443 	u32 last_inst;
444 
445 	/*
446 	 * If we fail, we just return to the guest and try executing it again.
447 	 */
448 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
449 		EMULATE_DONE)
450 		return RESUME_GUEST;
451 
452 	/*
453 	 * WARNING: We do not know for sure whether the instruction we just
454 	 * read from memory is the same that caused the fault in the first
455 	 * place.  If the instruction we read is neither an load or a store,
456 	 * then it can't access memory, so we don't need to worry about
457 	 * enforcing access permissions.  So, assuming it is a load or
458 	 * store, we just check that its direction (load or store) is
459 	 * consistent with the original fault, since that's what we
460 	 * checked the access permissions against.  If there is a mismatch
461 	 * we just return and retry the instruction.
462 	 */
463 
464 	if (instruction_is_store(last_inst) != !!is_store)
465 		return RESUME_GUEST;
466 
467 	/*
468 	 * Emulated accesses are emulated by looking at the hash for
469 	 * translation once, then performing the access later. The
470 	 * translation could be invalidated in the meantime in which
471 	 * point performing the subsequent memory access on the old
472 	 * physical address could possibly be a security hole for the
473 	 * guest (but not the host).
474 	 *
475 	 * This is less of an issue for MMIO stores since they aren't
476 	 * globally visible. It could be an issue for MMIO loads to
477 	 * a certain extent but we'll ignore it for now.
478 	 */
479 
480 	vcpu->arch.paddr_accessed = gpa;
481 	vcpu->arch.vaddr_accessed = ea;
482 	return kvmppc_emulate_mmio(run, vcpu);
483 }
484 
485 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
486 				unsigned long ea, unsigned long dsisr)
487 {
488 	struct kvm *kvm = vcpu->kvm;
489 	unsigned long hpte[3], r;
490 	unsigned long hnow_v, hnow_r;
491 	__be64 *hptep;
492 	unsigned long mmu_seq, psize, pte_size;
493 	unsigned long gpa_base, gfn_base;
494 	unsigned long gpa, gfn, hva, pfn;
495 	struct kvm_memory_slot *memslot;
496 	unsigned long *rmap;
497 	struct revmap_entry *rev;
498 	struct page *page, *pages[1];
499 	long index, ret, npages;
500 	bool is_ci;
501 	unsigned int writing, write_ok;
502 	struct vm_area_struct *vma;
503 	unsigned long rcbits;
504 	long mmio_update;
505 
506 	if (kvm_is_radix(kvm))
507 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
508 
509 	/*
510 	 * Real-mode code has already searched the HPT and found the
511 	 * entry we're interested in.  Lock the entry and check that
512 	 * it hasn't changed.  If it has, just return and re-execute the
513 	 * instruction.
514 	 */
515 	if (ea != vcpu->arch.pgfault_addr)
516 		return RESUME_GUEST;
517 
518 	if (vcpu->arch.pgfault_cache) {
519 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
520 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
521 			r = vcpu->arch.pgfault_cache->rpte;
522 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
523 						   r);
524 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
525 			gfn_base = gpa_base >> PAGE_SHIFT;
526 			gpa = gpa_base | (ea & (psize - 1));
527 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
528 						dsisr & DSISR_ISSTORE);
529 		}
530 	}
531 	index = vcpu->arch.pgfault_index;
532 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
533 	rev = &kvm->arch.hpt.rev[index];
534 	preempt_disable();
535 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
536 		cpu_relax();
537 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
538 	hpte[1] = be64_to_cpu(hptep[1]);
539 	hpte[2] = r = rev->guest_rpte;
540 	unlock_hpte(hptep, hpte[0]);
541 	preempt_enable();
542 
543 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
544 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
545 		hpte[1] = hpte_new_to_old_r(hpte[1]);
546 	}
547 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
548 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
549 		return RESUME_GUEST;
550 
551 	/* Translate the logical address and get the page */
552 	psize = kvmppc_actual_pgsz(hpte[0], r);
553 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
554 	gfn_base = gpa_base >> PAGE_SHIFT;
555 	gpa = gpa_base | (ea & (psize - 1));
556 	gfn = gpa >> PAGE_SHIFT;
557 	memslot = gfn_to_memslot(kvm, gfn);
558 
559 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
560 
561 	/* No memslot means it's an emulated MMIO region */
562 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
563 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
564 					      dsisr & DSISR_ISSTORE);
565 
566 	/*
567 	 * This should never happen, because of the slot_is_aligned()
568 	 * check in kvmppc_do_h_enter().
569 	 */
570 	if (gfn_base < memslot->base_gfn)
571 		return -EFAULT;
572 
573 	/* used to check for invalidations in progress */
574 	mmu_seq = kvm->mmu_notifier_seq;
575 	smp_rmb();
576 
577 	ret = -EFAULT;
578 	is_ci = false;
579 	pfn = 0;
580 	page = NULL;
581 	pte_size = PAGE_SIZE;
582 	writing = (dsisr & DSISR_ISSTORE) != 0;
583 	/* If writing != 0, then the HPTE must allow writing, if we get here */
584 	write_ok = writing;
585 	hva = gfn_to_hva_memslot(memslot, gfn);
586 	npages = get_user_pages_fast(hva, 1, writing, pages);
587 	if (npages < 1) {
588 		/* Check if it's an I/O mapping */
589 		down_read(&current->mm->mmap_sem);
590 		vma = find_vma(current->mm, hva);
591 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
592 		    (vma->vm_flags & VM_PFNMAP)) {
593 			pfn = vma->vm_pgoff +
594 				((hva - vma->vm_start) >> PAGE_SHIFT);
595 			pte_size = psize;
596 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
597 			write_ok = vma->vm_flags & VM_WRITE;
598 		}
599 		up_read(&current->mm->mmap_sem);
600 		if (!pfn)
601 			goto out_put;
602 	} else {
603 		page = pages[0];
604 		pfn = page_to_pfn(page);
605 		if (PageHuge(page)) {
606 			page = compound_head(page);
607 			pte_size <<= compound_order(page);
608 		}
609 		/* if the guest wants write access, see if that is OK */
610 		if (!writing && hpte_is_writable(r)) {
611 			pte_t *ptep, pte;
612 			unsigned long flags;
613 			/*
614 			 * We need to protect against page table destruction
615 			 * hugepage split and collapse.
616 			 */
617 			local_irq_save(flags);
618 			ptep = find_current_mm_pte(current->mm->pgd,
619 						   hva, NULL, NULL);
620 			if (ptep) {
621 				pte = kvmppc_read_update_linux_pte(ptep, 1);
622 				if (__pte_write(pte))
623 					write_ok = 1;
624 			}
625 			local_irq_restore(flags);
626 		}
627 	}
628 
629 	if (psize > pte_size)
630 		goto out_put;
631 
632 	/* Check WIMG vs. the actual page we're accessing */
633 	if (!hpte_cache_flags_ok(r, is_ci)) {
634 		if (is_ci)
635 			goto out_put;
636 		/*
637 		 * Allow guest to map emulated device memory as
638 		 * uncacheable, but actually make it cacheable.
639 		 */
640 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
641 	}
642 
643 	/*
644 	 * Set the HPTE to point to pfn.
645 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
646 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
647 	 */
648 	if (psize < PAGE_SIZE)
649 		psize = PAGE_SIZE;
650 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
651 					((pfn << PAGE_SHIFT) & ~(psize - 1));
652 	if (hpte_is_writable(r) && !write_ok)
653 		r = hpte_make_readonly(r);
654 	ret = RESUME_GUEST;
655 	preempt_disable();
656 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
657 		cpu_relax();
658 	hnow_v = be64_to_cpu(hptep[0]);
659 	hnow_r = be64_to_cpu(hptep[1]);
660 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
661 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
662 		hnow_r = hpte_new_to_old_r(hnow_r);
663 	}
664 
665 	/*
666 	 * If the HPT is being resized, don't update the HPTE,
667 	 * instead let the guest retry after the resize operation is complete.
668 	 * The synchronization for mmu_ready test vs. set is provided
669 	 * by the HPTE lock.
670 	 */
671 	if (!kvm->arch.mmu_ready)
672 		goto out_unlock;
673 
674 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
675 	    rev->guest_rpte != hpte[2])
676 		/* HPTE has been changed under us; let the guest retry */
677 		goto out_unlock;
678 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
679 
680 	/* Always put the HPTE in the rmap chain for the page base address */
681 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
682 	lock_rmap(rmap);
683 
684 	/* Check if we might have been invalidated; let the guest retry if so */
685 	ret = RESUME_GUEST;
686 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
687 		unlock_rmap(rmap);
688 		goto out_unlock;
689 	}
690 
691 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
692 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
693 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
694 
695 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
696 		/* HPTE was previously valid, so we need to invalidate it */
697 		unlock_rmap(rmap);
698 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
699 		kvmppc_invalidate_hpte(kvm, hptep, index);
700 		/* don't lose previous R and C bits */
701 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
702 	} else {
703 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
704 	}
705 
706 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
707 		r = hpte_old_to_new_r(hpte[0], r);
708 		hpte[0] = hpte_old_to_new_v(hpte[0]);
709 	}
710 	hptep[1] = cpu_to_be64(r);
711 	eieio();
712 	__unlock_hpte(hptep, hpte[0]);
713 	asm volatile("ptesync" : : : "memory");
714 	preempt_enable();
715 	if (page && hpte_is_writable(r))
716 		SetPageDirty(page);
717 
718  out_put:
719 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
720 
721 	if (page) {
722 		/*
723 		 * We drop pages[0] here, not page because page might
724 		 * have been set to the head page of a compound, but
725 		 * we have to drop the reference on the correct tail
726 		 * page to match the get inside gup()
727 		 */
728 		put_page(pages[0]);
729 	}
730 	return ret;
731 
732  out_unlock:
733 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
734 	preempt_enable();
735 	goto out_put;
736 }
737 
738 void kvmppc_rmap_reset(struct kvm *kvm)
739 {
740 	struct kvm_memslots *slots;
741 	struct kvm_memory_slot *memslot;
742 	int srcu_idx;
743 
744 	srcu_idx = srcu_read_lock(&kvm->srcu);
745 	slots = kvm_memslots(kvm);
746 	kvm_for_each_memslot(memslot, slots) {
747 		/*
748 		 * This assumes it is acceptable to lose reference and
749 		 * change bits across a reset.
750 		 */
751 		memset(memslot->arch.rmap, 0,
752 		       memslot->npages * sizeof(*memslot->arch.rmap));
753 	}
754 	srcu_read_unlock(&kvm->srcu, srcu_idx);
755 }
756 
757 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
758 			      unsigned long gfn);
759 
760 static int kvm_handle_hva_range(struct kvm *kvm,
761 				unsigned long start,
762 				unsigned long end,
763 				hva_handler_fn handler)
764 {
765 	int ret;
766 	int retval = 0;
767 	struct kvm_memslots *slots;
768 	struct kvm_memory_slot *memslot;
769 
770 	slots = kvm_memslots(kvm);
771 	kvm_for_each_memslot(memslot, slots) {
772 		unsigned long hva_start, hva_end;
773 		gfn_t gfn, gfn_end;
774 
775 		hva_start = max(start, memslot->userspace_addr);
776 		hva_end = min(end, memslot->userspace_addr +
777 					(memslot->npages << PAGE_SHIFT));
778 		if (hva_start >= hva_end)
779 			continue;
780 		/*
781 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
782 		 * {gfn, gfn+1, ..., gfn_end-1}.
783 		 */
784 		gfn = hva_to_gfn_memslot(hva_start, memslot);
785 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
786 
787 		for (; gfn < gfn_end; ++gfn) {
788 			ret = handler(kvm, memslot, gfn);
789 			retval |= ret;
790 		}
791 	}
792 
793 	return retval;
794 }
795 
796 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
797 			  hva_handler_fn handler)
798 {
799 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
800 }
801 
802 /* Must be called with both HPTE and rmap locked */
803 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
804 			      struct kvm_memory_slot *memslot,
805 			      unsigned long *rmapp, unsigned long gfn)
806 {
807 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
808 	struct revmap_entry *rev = kvm->arch.hpt.rev;
809 	unsigned long j, h;
810 	unsigned long ptel, psize, rcbits;
811 
812 	j = rev[i].forw;
813 	if (j == i) {
814 		/* chain is now empty */
815 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
816 	} else {
817 		/* remove i from chain */
818 		h = rev[i].back;
819 		rev[h].forw = j;
820 		rev[j].back = h;
821 		rev[i].forw = rev[i].back = i;
822 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
823 	}
824 
825 	/* Now check and modify the HPTE */
826 	ptel = rev[i].guest_rpte;
827 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
828 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
829 	    hpte_rpn(ptel, psize) == gfn) {
830 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
831 		kvmppc_invalidate_hpte(kvm, hptep, i);
832 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
833 		/* Harvest R and C */
834 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
835 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
836 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
837 			kvmppc_update_dirty_map(memslot, gfn, psize);
838 		if (rcbits & ~rev[i].guest_rpte) {
839 			rev[i].guest_rpte = ptel | rcbits;
840 			note_hpte_modification(kvm, &rev[i]);
841 		}
842 	}
843 }
844 
845 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
846 			   unsigned long gfn)
847 {
848 	unsigned long i;
849 	__be64 *hptep;
850 	unsigned long *rmapp;
851 
852 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
853 	for (;;) {
854 		lock_rmap(rmapp);
855 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
856 			unlock_rmap(rmapp);
857 			break;
858 		}
859 
860 		/*
861 		 * To avoid an ABBA deadlock with the HPTE lock bit,
862 		 * we can't spin on the HPTE lock while holding the
863 		 * rmap chain lock.
864 		 */
865 		i = *rmapp & KVMPPC_RMAP_INDEX;
866 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
867 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
868 			/* unlock rmap before spinning on the HPTE lock */
869 			unlock_rmap(rmapp);
870 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
871 				cpu_relax();
872 			continue;
873 		}
874 
875 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
876 		unlock_rmap(rmapp);
877 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
878 	}
879 	return 0;
880 }
881 
882 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
883 {
884 	hva_handler_fn handler;
885 
886 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
887 	kvm_handle_hva_range(kvm, start, end, handler);
888 	return 0;
889 }
890 
891 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
892 				  struct kvm_memory_slot *memslot)
893 {
894 	unsigned long gfn;
895 	unsigned long n;
896 	unsigned long *rmapp;
897 
898 	gfn = memslot->base_gfn;
899 	rmapp = memslot->arch.rmap;
900 	for (n = memslot->npages; n; --n, ++gfn) {
901 		if (kvm_is_radix(kvm)) {
902 			kvm_unmap_radix(kvm, memslot, gfn);
903 			continue;
904 		}
905 		/*
906 		 * Testing the present bit without locking is OK because
907 		 * the memslot has been marked invalid already, and hence
908 		 * no new HPTEs referencing this page can be created,
909 		 * thus the present bit can't go from 0 to 1.
910 		 */
911 		if (*rmapp & KVMPPC_RMAP_PRESENT)
912 			kvm_unmap_rmapp(kvm, memslot, gfn);
913 		++rmapp;
914 	}
915 }
916 
917 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
918 			 unsigned long gfn)
919 {
920 	struct revmap_entry *rev = kvm->arch.hpt.rev;
921 	unsigned long head, i, j;
922 	__be64 *hptep;
923 	int ret = 0;
924 	unsigned long *rmapp;
925 
926 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
927  retry:
928 	lock_rmap(rmapp);
929 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
930 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
931 		ret = 1;
932 	}
933 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
934 		unlock_rmap(rmapp);
935 		return ret;
936 	}
937 
938 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
939 	do {
940 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
941 		j = rev[i].forw;
942 
943 		/* If this HPTE isn't referenced, ignore it */
944 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
945 			continue;
946 
947 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
948 			/* unlock rmap before spinning on the HPTE lock */
949 			unlock_rmap(rmapp);
950 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
951 				cpu_relax();
952 			goto retry;
953 		}
954 
955 		/* Now check and modify the HPTE */
956 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
957 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
958 			kvmppc_clear_ref_hpte(kvm, hptep, i);
959 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
960 				rev[i].guest_rpte |= HPTE_R_R;
961 				note_hpte_modification(kvm, &rev[i]);
962 			}
963 			ret = 1;
964 		}
965 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
966 	} while ((i = j) != head);
967 
968 	unlock_rmap(rmapp);
969 	return ret;
970 }
971 
972 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
973 {
974 	hva_handler_fn handler;
975 
976 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
977 	return kvm_handle_hva_range(kvm, start, end, handler);
978 }
979 
980 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
981 			      unsigned long gfn)
982 {
983 	struct revmap_entry *rev = kvm->arch.hpt.rev;
984 	unsigned long head, i, j;
985 	unsigned long *hp;
986 	int ret = 1;
987 	unsigned long *rmapp;
988 
989 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
990 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
991 		return 1;
992 
993 	lock_rmap(rmapp);
994 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
995 		goto out;
996 
997 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
998 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
999 		do {
1000 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1001 			j = rev[i].forw;
1002 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1003 				goto out;
1004 		} while ((i = j) != head);
1005 	}
1006 	ret = 0;
1007 
1008  out:
1009 	unlock_rmap(rmapp);
1010 	return ret;
1011 }
1012 
1013 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1014 {
1015 	hva_handler_fn handler;
1016 
1017 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1018 	return kvm_handle_hva(kvm, hva, handler);
1019 }
1020 
1021 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1022 {
1023 	hva_handler_fn handler;
1024 
1025 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1026 	kvm_handle_hva(kvm, hva, handler);
1027 }
1028 
1029 static int vcpus_running(struct kvm *kvm)
1030 {
1031 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1032 }
1033 
1034 /*
1035  * Returns the number of system pages that are dirty.
1036  * This can be more than 1 if we find a huge-page HPTE.
1037  */
1038 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1039 {
1040 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1041 	unsigned long head, i, j;
1042 	unsigned long n;
1043 	unsigned long v, r;
1044 	__be64 *hptep;
1045 	int npages_dirty = 0;
1046 
1047  retry:
1048 	lock_rmap(rmapp);
1049 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1050 		unlock_rmap(rmapp);
1051 		return npages_dirty;
1052 	}
1053 
1054 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1055 	do {
1056 		unsigned long hptep1;
1057 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1058 		j = rev[i].forw;
1059 
1060 		/*
1061 		 * Checking the C (changed) bit here is racy since there
1062 		 * is no guarantee about when the hardware writes it back.
1063 		 * If the HPTE is not writable then it is stable since the
1064 		 * page can't be written to, and we would have done a tlbie
1065 		 * (which forces the hardware to complete any writeback)
1066 		 * when making the HPTE read-only.
1067 		 * If vcpus are running then this call is racy anyway
1068 		 * since the page could get dirtied subsequently, so we
1069 		 * expect there to be a further call which would pick up
1070 		 * any delayed C bit writeback.
1071 		 * Otherwise we need to do the tlbie even if C==0 in
1072 		 * order to pick up any delayed writeback of C.
1073 		 */
1074 		hptep1 = be64_to_cpu(hptep[1]);
1075 		if (!(hptep1 & HPTE_R_C) &&
1076 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1077 			continue;
1078 
1079 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1080 			/* unlock rmap before spinning on the HPTE lock */
1081 			unlock_rmap(rmapp);
1082 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1083 				cpu_relax();
1084 			goto retry;
1085 		}
1086 
1087 		/* Now check and modify the HPTE */
1088 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1089 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1090 			continue;
1091 		}
1092 
1093 		/* need to make it temporarily absent so C is stable */
1094 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1095 		kvmppc_invalidate_hpte(kvm, hptep, i);
1096 		v = be64_to_cpu(hptep[0]);
1097 		r = be64_to_cpu(hptep[1]);
1098 		if (r & HPTE_R_C) {
1099 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1100 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1101 				rev[i].guest_rpte |= HPTE_R_C;
1102 				note_hpte_modification(kvm, &rev[i]);
1103 			}
1104 			n = kvmppc_actual_pgsz(v, r);
1105 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1106 			if (n > npages_dirty)
1107 				npages_dirty = n;
1108 			eieio();
1109 		}
1110 		v &= ~HPTE_V_ABSENT;
1111 		v |= HPTE_V_VALID;
1112 		__unlock_hpte(hptep, v);
1113 	} while ((i = j) != head);
1114 
1115 	unlock_rmap(rmapp);
1116 	return npages_dirty;
1117 }
1118 
1119 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1120 			      struct kvm_memory_slot *memslot,
1121 			      unsigned long *map)
1122 {
1123 	unsigned long gfn;
1124 
1125 	if (!vpa->dirty || !vpa->pinned_addr)
1126 		return;
1127 	gfn = vpa->gpa >> PAGE_SHIFT;
1128 	if (gfn < memslot->base_gfn ||
1129 	    gfn >= memslot->base_gfn + memslot->npages)
1130 		return;
1131 
1132 	vpa->dirty = false;
1133 	if (map)
1134 		__set_bit_le(gfn - memslot->base_gfn, map);
1135 }
1136 
1137 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1138 			struct kvm_memory_slot *memslot, unsigned long *map)
1139 {
1140 	unsigned long i;
1141 	unsigned long *rmapp;
1142 
1143 	preempt_disable();
1144 	rmapp = memslot->arch.rmap;
1145 	for (i = 0; i < memslot->npages; ++i) {
1146 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1147 		/*
1148 		 * Note that if npages > 0 then i must be a multiple of npages,
1149 		 * since we always put huge-page HPTEs in the rmap chain
1150 		 * corresponding to their page base address.
1151 		 */
1152 		if (npages)
1153 			set_dirty_bits(map, i, npages);
1154 		++rmapp;
1155 	}
1156 	preempt_enable();
1157 	return 0;
1158 }
1159 
1160 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1161 			    unsigned long *nb_ret)
1162 {
1163 	struct kvm_memory_slot *memslot;
1164 	unsigned long gfn = gpa >> PAGE_SHIFT;
1165 	struct page *page, *pages[1];
1166 	int npages;
1167 	unsigned long hva, offset;
1168 	int srcu_idx;
1169 
1170 	srcu_idx = srcu_read_lock(&kvm->srcu);
1171 	memslot = gfn_to_memslot(kvm, gfn);
1172 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1173 		goto err;
1174 	hva = gfn_to_hva_memslot(memslot, gfn);
1175 	npages = get_user_pages_fast(hva, 1, 1, pages);
1176 	if (npages < 1)
1177 		goto err;
1178 	page = pages[0];
1179 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1180 
1181 	offset = gpa & (PAGE_SIZE - 1);
1182 	if (nb_ret)
1183 		*nb_ret = PAGE_SIZE - offset;
1184 	return page_address(page) + offset;
1185 
1186  err:
1187 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1188 	return NULL;
1189 }
1190 
1191 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1192 			     bool dirty)
1193 {
1194 	struct page *page = virt_to_page(va);
1195 	struct kvm_memory_slot *memslot;
1196 	unsigned long gfn;
1197 	int srcu_idx;
1198 
1199 	put_page(page);
1200 
1201 	if (!dirty)
1202 		return;
1203 
1204 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1205 	gfn = gpa >> PAGE_SHIFT;
1206 	srcu_idx = srcu_read_lock(&kvm->srcu);
1207 	memslot = gfn_to_memslot(kvm, gfn);
1208 	if (memslot && memslot->dirty_bitmap)
1209 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1210 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1211 }
1212 
1213 /*
1214  * HPT resizing
1215  */
1216 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1217 {
1218 	int rc;
1219 
1220 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1221 	if (rc < 0)
1222 		return rc;
1223 
1224 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1225 			 resize->hpt.virt);
1226 
1227 	return 0;
1228 }
1229 
1230 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1231 					    unsigned long idx)
1232 {
1233 	struct kvm *kvm = resize->kvm;
1234 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1235 	struct kvm_hpt_info *new = &resize->hpt;
1236 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1237 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1238 	__be64 *hptep, *new_hptep;
1239 	unsigned long vpte, rpte, guest_rpte;
1240 	int ret;
1241 	struct revmap_entry *rev;
1242 	unsigned long apsize, avpn, pteg, hash;
1243 	unsigned long new_idx, new_pteg, replace_vpte;
1244 	int pshift;
1245 
1246 	hptep = (__be64 *)(old->virt + (idx << 4));
1247 
1248 	/* Guest is stopped, so new HPTEs can't be added or faulted
1249 	 * in, only unmapped or altered by host actions.  So, it's
1250 	 * safe to check this before we take the HPTE lock */
1251 	vpte = be64_to_cpu(hptep[0]);
1252 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1253 		return 0; /* nothing to do */
1254 
1255 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1256 		cpu_relax();
1257 
1258 	vpte = be64_to_cpu(hptep[0]);
1259 
1260 	ret = 0;
1261 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1262 		/* Nothing to do */
1263 		goto out;
1264 
1265 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1266 		rpte = be64_to_cpu(hptep[1]);
1267 		vpte = hpte_new_to_old_v(vpte, rpte);
1268 	}
1269 
1270 	/* Unmap */
1271 	rev = &old->rev[idx];
1272 	guest_rpte = rev->guest_rpte;
1273 
1274 	ret = -EIO;
1275 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1276 	if (!apsize)
1277 		goto out;
1278 
1279 	if (vpte & HPTE_V_VALID) {
1280 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1281 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1282 		struct kvm_memory_slot *memslot =
1283 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1284 
1285 		if (memslot) {
1286 			unsigned long *rmapp;
1287 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1288 
1289 			lock_rmap(rmapp);
1290 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1291 			unlock_rmap(rmapp);
1292 		}
1293 
1294 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1295 	}
1296 
1297 	/* Reload PTE after unmap */
1298 	vpte = be64_to_cpu(hptep[0]);
1299 	BUG_ON(vpte & HPTE_V_VALID);
1300 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1301 
1302 	ret = 0;
1303 	if (!(vpte & HPTE_V_BOLTED))
1304 		goto out;
1305 
1306 	rpte = be64_to_cpu(hptep[1]);
1307 
1308 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1309 		vpte = hpte_new_to_old_v(vpte, rpte);
1310 		rpte = hpte_new_to_old_r(rpte);
1311 	}
1312 
1313 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1314 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1315 	pteg = idx / HPTES_PER_GROUP;
1316 	if (vpte & HPTE_V_SECONDARY)
1317 		pteg = ~pteg;
1318 
1319 	if (!(vpte & HPTE_V_1TB_SEG)) {
1320 		unsigned long offset, vsid;
1321 
1322 		/* We only have 28 - 23 bits of offset in avpn */
1323 		offset = (avpn & 0x1f) << 23;
1324 		vsid = avpn >> 5;
1325 		/* We can find more bits from the pteg value */
1326 		if (pshift < 23)
1327 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1328 
1329 		hash = vsid ^ (offset >> pshift);
1330 	} else {
1331 		unsigned long offset, vsid;
1332 
1333 		/* We only have 40 - 23 bits of seg_off in avpn */
1334 		offset = (avpn & 0x1ffff) << 23;
1335 		vsid = avpn >> 17;
1336 		if (pshift < 23)
1337 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1338 
1339 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1340 	}
1341 
1342 	new_pteg = hash & new_hash_mask;
1343 	if (vpte & HPTE_V_SECONDARY)
1344 		new_pteg = ~hash & new_hash_mask;
1345 
1346 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1347 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1348 
1349 	replace_vpte = be64_to_cpu(new_hptep[0]);
1350 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1351 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1352 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1353 	}
1354 
1355 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1356 		BUG_ON(new->order >= old->order);
1357 
1358 		if (replace_vpte & HPTE_V_BOLTED) {
1359 			if (vpte & HPTE_V_BOLTED)
1360 				/* Bolted collision, nothing we can do */
1361 				ret = -ENOSPC;
1362 			/* Discard the new HPTE */
1363 			goto out;
1364 		}
1365 
1366 		/* Discard the previous HPTE */
1367 	}
1368 
1369 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1370 		rpte = hpte_old_to_new_r(vpte, rpte);
1371 		vpte = hpte_old_to_new_v(vpte);
1372 	}
1373 
1374 	new_hptep[1] = cpu_to_be64(rpte);
1375 	new->rev[new_idx].guest_rpte = guest_rpte;
1376 	/* No need for a barrier, since new HPT isn't active */
1377 	new_hptep[0] = cpu_to_be64(vpte);
1378 	unlock_hpte(new_hptep, vpte);
1379 
1380 out:
1381 	unlock_hpte(hptep, vpte);
1382 	return ret;
1383 }
1384 
1385 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1386 {
1387 	struct kvm *kvm = resize->kvm;
1388 	unsigned  long i;
1389 	int rc;
1390 
1391 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1392 		rc = resize_hpt_rehash_hpte(resize, i);
1393 		if (rc != 0)
1394 			return rc;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1401 {
1402 	struct kvm *kvm = resize->kvm;
1403 	struct kvm_hpt_info hpt_tmp;
1404 
1405 	/* Exchange the pending tables in the resize structure with
1406 	 * the active tables */
1407 
1408 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1409 
1410 	spin_lock(&kvm->mmu_lock);
1411 	asm volatile("ptesync" : : : "memory");
1412 
1413 	hpt_tmp = kvm->arch.hpt;
1414 	kvmppc_set_hpt(kvm, &resize->hpt);
1415 	resize->hpt = hpt_tmp;
1416 
1417 	spin_unlock(&kvm->mmu_lock);
1418 
1419 	synchronize_srcu_expedited(&kvm->srcu);
1420 
1421 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1422 		kvmppc_setup_partition_table(kvm);
1423 
1424 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1425 }
1426 
1427 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1428 {
1429 	if (WARN_ON(!mutex_is_locked(&kvm->lock)))
1430 		return;
1431 
1432 	if (!resize)
1433 		return;
1434 
1435 	if (resize->error != -EBUSY) {
1436 		if (resize->hpt.virt)
1437 			kvmppc_free_hpt(&resize->hpt);
1438 		kfree(resize);
1439 	}
1440 
1441 	if (kvm->arch.resize_hpt == resize)
1442 		kvm->arch.resize_hpt = NULL;
1443 }
1444 
1445 static void resize_hpt_prepare_work(struct work_struct *work)
1446 {
1447 	struct kvm_resize_hpt *resize = container_of(work,
1448 						     struct kvm_resize_hpt,
1449 						     work);
1450 	struct kvm *kvm = resize->kvm;
1451 	int err = 0;
1452 
1453 	if (WARN_ON(resize->error != -EBUSY))
1454 		return;
1455 
1456 	mutex_lock(&kvm->lock);
1457 
1458 	/* Request is still current? */
1459 	if (kvm->arch.resize_hpt == resize) {
1460 		/* We may request large allocations here:
1461 		 * do not sleep with kvm->lock held for a while.
1462 		 */
1463 		mutex_unlock(&kvm->lock);
1464 
1465 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1466 				 resize->order);
1467 
1468 		err = resize_hpt_allocate(resize);
1469 
1470 		/* We have strict assumption about -EBUSY
1471 		 * when preparing for HPT resize.
1472 		 */
1473 		if (WARN_ON(err == -EBUSY))
1474 			err = -EINPROGRESS;
1475 
1476 		mutex_lock(&kvm->lock);
1477 		/* It is possible that kvm->arch.resize_hpt != resize
1478 		 * after we grab kvm->lock again.
1479 		 */
1480 	}
1481 
1482 	resize->error = err;
1483 
1484 	if (kvm->arch.resize_hpt != resize)
1485 		resize_hpt_release(kvm, resize);
1486 
1487 	mutex_unlock(&kvm->lock);
1488 }
1489 
1490 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1491 				     struct kvm_ppc_resize_hpt *rhpt)
1492 {
1493 	unsigned long flags = rhpt->flags;
1494 	unsigned long shift = rhpt->shift;
1495 	struct kvm_resize_hpt *resize;
1496 	int ret;
1497 
1498 	if (flags != 0 || kvm_is_radix(kvm))
1499 		return -EINVAL;
1500 
1501 	if (shift && ((shift < 18) || (shift > 46)))
1502 		return -EINVAL;
1503 
1504 	mutex_lock(&kvm->lock);
1505 
1506 	resize = kvm->arch.resize_hpt;
1507 
1508 	if (resize) {
1509 		if (resize->order == shift) {
1510 			/* Suitable resize in progress? */
1511 			ret = resize->error;
1512 			if (ret == -EBUSY)
1513 				ret = 100; /* estimated time in ms */
1514 			else if (ret)
1515 				resize_hpt_release(kvm, resize);
1516 
1517 			goto out;
1518 		}
1519 
1520 		/* not suitable, cancel it */
1521 		resize_hpt_release(kvm, resize);
1522 	}
1523 
1524 	ret = 0;
1525 	if (!shift)
1526 		goto out; /* nothing to do */
1527 
1528 	/* start new resize */
1529 
1530 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1531 	if (!resize) {
1532 		ret = -ENOMEM;
1533 		goto out;
1534 	}
1535 
1536 	resize->error = -EBUSY;
1537 	resize->order = shift;
1538 	resize->kvm = kvm;
1539 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1540 	kvm->arch.resize_hpt = resize;
1541 
1542 	schedule_work(&resize->work);
1543 
1544 	ret = 100; /* estimated time in ms */
1545 
1546 out:
1547 	mutex_unlock(&kvm->lock);
1548 	return ret;
1549 }
1550 
1551 static void resize_hpt_boot_vcpu(void *opaque)
1552 {
1553 	/* Nothing to do, just force a KVM exit */
1554 }
1555 
1556 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1557 				    struct kvm_ppc_resize_hpt *rhpt)
1558 {
1559 	unsigned long flags = rhpt->flags;
1560 	unsigned long shift = rhpt->shift;
1561 	struct kvm_resize_hpt *resize;
1562 	long ret;
1563 
1564 	if (flags != 0 || kvm_is_radix(kvm))
1565 		return -EINVAL;
1566 
1567 	if (shift && ((shift < 18) || (shift > 46)))
1568 		return -EINVAL;
1569 
1570 	mutex_lock(&kvm->lock);
1571 
1572 	resize = kvm->arch.resize_hpt;
1573 
1574 	/* This shouldn't be possible */
1575 	ret = -EIO;
1576 	if (WARN_ON(!kvm->arch.mmu_ready))
1577 		goto out_no_hpt;
1578 
1579 	/* Stop VCPUs from running while we mess with the HPT */
1580 	kvm->arch.mmu_ready = 0;
1581 	smp_mb();
1582 
1583 	/* Boot all CPUs out of the guest so they re-read
1584 	 * mmu_ready */
1585 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1586 
1587 	ret = -ENXIO;
1588 	if (!resize || (resize->order != shift))
1589 		goto out;
1590 
1591 	ret = resize->error;
1592 	if (ret)
1593 		goto out;
1594 
1595 	ret = resize_hpt_rehash(resize);
1596 	if (ret)
1597 		goto out;
1598 
1599 	resize_hpt_pivot(resize);
1600 
1601 out:
1602 	/* Let VCPUs run again */
1603 	kvm->arch.mmu_ready = 1;
1604 	smp_mb();
1605 out_no_hpt:
1606 	resize_hpt_release(kvm, resize);
1607 	mutex_unlock(&kvm->lock);
1608 	return ret;
1609 }
1610 
1611 /*
1612  * Functions for reading and writing the hash table via reads and
1613  * writes on a file descriptor.
1614  *
1615  * Reads return the guest view of the hash table, which has to be
1616  * pieced together from the real hash table and the guest_rpte
1617  * values in the revmap array.
1618  *
1619  * On writes, each HPTE written is considered in turn, and if it
1620  * is valid, it is written to the HPT as if an H_ENTER with the
1621  * exact flag set was done.  When the invalid count is non-zero
1622  * in the header written to the stream, the kernel will make
1623  * sure that that many HPTEs are invalid, and invalidate them
1624  * if not.
1625  */
1626 
1627 struct kvm_htab_ctx {
1628 	unsigned long	index;
1629 	unsigned long	flags;
1630 	struct kvm	*kvm;
1631 	int		first_pass;
1632 };
1633 
1634 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1635 
1636 /*
1637  * Returns 1 if this HPT entry has been modified or has pending
1638  * R/C bit changes.
1639  */
1640 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1641 {
1642 	unsigned long rcbits_unset;
1643 
1644 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1645 		return 1;
1646 
1647 	/* Also need to consider changes in reference and changed bits */
1648 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1649 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1650 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1651 		return 1;
1652 
1653 	return 0;
1654 }
1655 
1656 static long record_hpte(unsigned long flags, __be64 *hptp,
1657 			unsigned long *hpte, struct revmap_entry *revp,
1658 			int want_valid, int first_pass)
1659 {
1660 	unsigned long v, r, hr;
1661 	unsigned long rcbits_unset;
1662 	int ok = 1;
1663 	int valid, dirty;
1664 
1665 	/* Unmodified entries are uninteresting except on the first pass */
1666 	dirty = hpte_dirty(revp, hptp);
1667 	if (!first_pass && !dirty)
1668 		return 0;
1669 
1670 	valid = 0;
1671 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1672 		valid = 1;
1673 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1674 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1675 			valid = 0;
1676 	}
1677 	if (valid != want_valid)
1678 		return 0;
1679 
1680 	v = r = 0;
1681 	if (valid || dirty) {
1682 		/* lock the HPTE so it's stable and read it */
1683 		preempt_disable();
1684 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1685 			cpu_relax();
1686 		v = be64_to_cpu(hptp[0]);
1687 		hr = be64_to_cpu(hptp[1]);
1688 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1689 			v = hpte_new_to_old_v(v, hr);
1690 			hr = hpte_new_to_old_r(hr);
1691 		}
1692 
1693 		/* re-evaluate valid and dirty from synchronized HPTE value */
1694 		valid = !!(v & HPTE_V_VALID);
1695 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1696 
1697 		/* Harvest R and C into guest view if necessary */
1698 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1699 		if (valid && (rcbits_unset & hr)) {
1700 			revp->guest_rpte |= (hr &
1701 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1702 			dirty = 1;
1703 		}
1704 
1705 		if (v & HPTE_V_ABSENT) {
1706 			v &= ~HPTE_V_ABSENT;
1707 			v |= HPTE_V_VALID;
1708 			valid = 1;
1709 		}
1710 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1711 			valid = 0;
1712 
1713 		r = revp->guest_rpte;
1714 		/* only clear modified if this is the right sort of entry */
1715 		if (valid == want_valid && dirty) {
1716 			r &= ~HPTE_GR_MODIFIED;
1717 			revp->guest_rpte = r;
1718 		}
1719 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1720 		preempt_enable();
1721 		if (!(valid == want_valid && (first_pass || dirty)))
1722 			ok = 0;
1723 	}
1724 	hpte[0] = cpu_to_be64(v);
1725 	hpte[1] = cpu_to_be64(r);
1726 	return ok;
1727 }
1728 
1729 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1730 			     size_t count, loff_t *ppos)
1731 {
1732 	struct kvm_htab_ctx *ctx = file->private_data;
1733 	struct kvm *kvm = ctx->kvm;
1734 	struct kvm_get_htab_header hdr;
1735 	__be64 *hptp;
1736 	struct revmap_entry *revp;
1737 	unsigned long i, nb, nw;
1738 	unsigned long __user *lbuf;
1739 	struct kvm_get_htab_header __user *hptr;
1740 	unsigned long flags;
1741 	int first_pass;
1742 	unsigned long hpte[2];
1743 
1744 	if (!access_ok(VERIFY_WRITE, buf, count))
1745 		return -EFAULT;
1746 	if (kvm_is_radix(kvm))
1747 		return 0;
1748 
1749 	first_pass = ctx->first_pass;
1750 	flags = ctx->flags;
1751 
1752 	i = ctx->index;
1753 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1754 	revp = kvm->arch.hpt.rev + i;
1755 	lbuf = (unsigned long __user *)buf;
1756 
1757 	nb = 0;
1758 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1759 		/* Initialize header */
1760 		hptr = (struct kvm_get_htab_header __user *)buf;
1761 		hdr.n_valid = 0;
1762 		hdr.n_invalid = 0;
1763 		nw = nb;
1764 		nb += sizeof(hdr);
1765 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1766 
1767 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1768 		if (!first_pass) {
1769 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1770 			       !hpte_dirty(revp, hptp)) {
1771 				++i;
1772 				hptp += 2;
1773 				++revp;
1774 			}
1775 		}
1776 		hdr.index = i;
1777 
1778 		/* Grab a series of valid entries */
1779 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1780 		       hdr.n_valid < 0xffff &&
1781 		       nb + HPTE_SIZE < count &&
1782 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1783 			/* valid entry, write it out */
1784 			++hdr.n_valid;
1785 			if (__put_user(hpte[0], lbuf) ||
1786 			    __put_user(hpte[1], lbuf + 1))
1787 				return -EFAULT;
1788 			nb += HPTE_SIZE;
1789 			lbuf += 2;
1790 			++i;
1791 			hptp += 2;
1792 			++revp;
1793 		}
1794 		/* Now skip invalid entries while we can */
1795 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1796 		       hdr.n_invalid < 0xffff &&
1797 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1798 			/* found an invalid entry */
1799 			++hdr.n_invalid;
1800 			++i;
1801 			hptp += 2;
1802 			++revp;
1803 		}
1804 
1805 		if (hdr.n_valid || hdr.n_invalid) {
1806 			/* write back the header */
1807 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1808 				return -EFAULT;
1809 			nw = nb;
1810 			buf = (char __user *)lbuf;
1811 		} else {
1812 			nb = nw;
1813 		}
1814 
1815 		/* Check if we've wrapped around the hash table */
1816 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1817 			i = 0;
1818 			ctx->first_pass = 0;
1819 			break;
1820 		}
1821 	}
1822 
1823 	ctx->index = i;
1824 
1825 	return nb;
1826 }
1827 
1828 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1829 			      size_t count, loff_t *ppos)
1830 {
1831 	struct kvm_htab_ctx *ctx = file->private_data;
1832 	struct kvm *kvm = ctx->kvm;
1833 	struct kvm_get_htab_header hdr;
1834 	unsigned long i, j;
1835 	unsigned long v, r;
1836 	unsigned long __user *lbuf;
1837 	__be64 *hptp;
1838 	unsigned long tmp[2];
1839 	ssize_t nb;
1840 	long int err, ret;
1841 	int mmu_ready;
1842 	int pshift;
1843 
1844 	if (!access_ok(VERIFY_READ, buf, count))
1845 		return -EFAULT;
1846 	if (kvm_is_radix(kvm))
1847 		return -EINVAL;
1848 
1849 	/* lock out vcpus from running while we're doing this */
1850 	mutex_lock(&kvm->lock);
1851 	mmu_ready = kvm->arch.mmu_ready;
1852 	if (mmu_ready) {
1853 		kvm->arch.mmu_ready = 0;	/* temporarily */
1854 		/* order mmu_ready vs. vcpus_running */
1855 		smp_mb();
1856 		if (atomic_read(&kvm->arch.vcpus_running)) {
1857 			kvm->arch.mmu_ready = 1;
1858 			mutex_unlock(&kvm->lock);
1859 			return -EBUSY;
1860 		}
1861 	}
1862 
1863 	err = 0;
1864 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1865 		err = -EFAULT;
1866 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1867 			break;
1868 
1869 		err = 0;
1870 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1871 			break;
1872 
1873 		nb += sizeof(hdr);
1874 		buf += sizeof(hdr);
1875 
1876 		err = -EINVAL;
1877 		i = hdr.index;
1878 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1879 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1880 			break;
1881 
1882 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1883 		lbuf = (unsigned long __user *)buf;
1884 		for (j = 0; j < hdr.n_valid; ++j) {
1885 			__be64 hpte_v;
1886 			__be64 hpte_r;
1887 
1888 			err = -EFAULT;
1889 			if (__get_user(hpte_v, lbuf) ||
1890 			    __get_user(hpte_r, lbuf + 1))
1891 				goto out;
1892 			v = be64_to_cpu(hpte_v);
1893 			r = be64_to_cpu(hpte_r);
1894 			err = -EINVAL;
1895 			if (!(v & HPTE_V_VALID))
1896 				goto out;
1897 			pshift = kvmppc_hpte_base_page_shift(v, r);
1898 			if (pshift <= 0)
1899 				goto out;
1900 			lbuf += 2;
1901 			nb += HPTE_SIZE;
1902 
1903 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1904 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1905 			err = -EIO;
1906 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1907 							 tmp);
1908 			if (ret != H_SUCCESS) {
1909 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1910 				       "r=%lx\n", ret, i, v, r);
1911 				goto out;
1912 			}
1913 			if (!mmu_ready && is_vrma_hpte(v)) {
1914 				unsigned long senc, lpcr;
1915 
1916 				senc = slb_pgsize_encoding(1ul << pshift);
1917 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1918 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1919 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1920 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1921 					kvmppc_update_lpcr(kvm, lpcr,
1922 							   LPCR_VRMASD);
1923 				} else {
1924 					kvmppc_setup_partition_table(kvm);
1925 				}
1926 				mmu_ready = 1;
1927 			}
1928 			++i;
1929 			hptp += 2;
1930 		}
1931 
1932 		for (j = 0; j < hdr.n_invalid; ++j) {
1933 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1934 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1935 			++i;
1936 			hptp += 2;
1937 		}
1938 		err = 0;
1939 	}
1940 
1941  out:
1942 	/* Order HPTE updates vs. mmu_ready */
1943 	smp_wmb();
1944 	kvm->arch.mmu_ready = mmu_ready;
1945 	mutex_unlock(&kvm->lock);
1946 
1947 	if (err)
1948 		return err;
1949 	return nb;
1950 }
1951 
1952 static int kvm_htab_release(struct inode *inode, struct file *filp)
1953 {
1954 	struct kvm_htab_ctx *ctx = filp->private_data;
1955 
1956 	filp->private_data = NULL;
1957 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1958 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1959 	kvm_put_kvm(ctx->kvm);
1960 	kfree(ctx);
1961 	return 0;
1962 }
1963 
1964 static const struct file_operations kvm_htab_fops = {
1965 	.read		= kvm_htab_read,
1966 	.write		= kvm_htab_write,
1967 	.llseek		= default_llseek,
1968 	.release	= kvm_htab_release,
1969 };
1970 
1971 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1972 {
1973 	int ret;
1974 	struct kvm_htab_ctx *ctx;
1975 	int rwflag;
1976 
1977 	/* reject flags we don't recognize */
1978 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1979 		return -EINVAL;
1980 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1981 	if (!ctx)
1982 		return -ENOMEM;
1983 	kvm_get_kvm(kvm);
1984 	ctx->kvm = kvm;
1985 	ctx->index = ghf->start_index;
1986 	ctx->flags = ghf->flags;
1987 	ctx->first_pass = 1;
1988 
1989 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1990 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1991 	if (ret < 0) {
1992 		kfree(ctx);
1993 		kvm_put_kvm(kvm);
1994 		return ret;
1995 	}
1996 
1997 	if (rwflag == O_RDONLY) {
1998 		mutex_lock(&kvm->slots_lock);
1999 		atomic_inc(&kvm->arch.hpte_mod_interest);
2000 		/* make sure kvmppc_do_h_enter etc. see the increment */
2001 		synchronize_srcu_expedited(&kvm->srcu);
2002 		mutex_unlock(&kvm->slots_lock);
2003 	}
2004 
2005 	return ret;
2006 }
2007 
2008 struct debugfs_htab_state {
2009 	struct kvm	*kvm;
2010 	struct mutex	mutex;
2011 	unsigned long	hpt_index;
2012 	int		chars_left;
2013 	int		buf_index;
2014 	char		buf[64];
2015 };
2016 
2017 static int debugfs_htab_open(struct inode *inode, struct file *file)
2018 {
2019 	struct kvm *kvm = inode->i_private;
2020 	struct debugfs_htab_state *p;
2021 
2022 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2023 	if (!p)
2024 		return -ENOMEM;
2025 
2026 	kvm_get_kvm(kvm);
2027 	p->kvm = kvm;
2028 	mutex_init(&p->mutex);
2029 	file->private_data = p;
2030 
2031 	return nonseekable_open(inode, file);
2032 }
2033 
2034 static int debugfs_htab_release(struct inode *inode, struct file *file)
2035 {
2036 	struct debugfs_htab_state *p = file->private_data;
2037 
2038 	kvm_put_kvm(p->kvm);
2039 	kfree(p);
2040 	return 0;
2041 }
2042 
2043 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2044 				 size_t len, loff_t *ppos)
2045 {
2046 	struct debugfs_htab_state *p = file->private_data;
2047 	ssize_t ret, r;
2048 	unsigned long i, n;
2049 	unsigned long v, hr, gr;
2050 	struct kvm *kvm;
2051 	__be64 *hptp;
2052 
2053 	kvm = p->kvm;
2054 	if (kvm_is_radix(kvm))
2055 		return 0;
2056 
2057 	ret = mutex_lock_interruptible(&p->mutex);
2058 	if (ret)
2059 		return ret;
2060 
2061 	if (p->chars_left) {
2062 		n = p->chars_left;
2063 		if (n > len)
2064 			n = len;
2065 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2066 		n -= r;
2067 		p->chars_left -= n;
2068 		p->buf_index += n;
2069 		buf += n;
2070 		len -= n;
2071 		ret = n;
2072 		if (r) {
2073 			if (!n)
2074 				ret = -EFAULT;
2075 			goto out;
2076 		}
2077 	}
2078 
2079 	i = p->hpt_index;
2080 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2081 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2082 	     ++i, hptp += 2) {
2083 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2084 			continue;
2085 
2086 		/* lock the HPTE so it's stable and read it */
2087 		preempt_disable();
2088 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2089 			cpu_relax();
2090 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2091 		hr = be64_to_cpu(hptp[1]);
2092 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2093 		unlock_hpte(hptp, v);
2094 		preempt_enable();
2095 
2096 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2097 			continue;
2098 
2099 		n = scnprintf(p->buf, sizeof(p->buf),
2100 			      "%6lx %.16lx %.16lx %.16lx\n",
2101 			      i, v, hr, gr);
2102 		p->chars_left = n;
2103 		if (n > len)
2104 			n = len;
2105 		r = copy_to_user(buf, p->buf, n);
2106 		n -= r;
2107 		p->chars_left -= n;
2108 		p->buf_index = n;
2109 		buf += n;
2110 		len -= n;
2111 		ret += n;
2112 		if (r) {
2113 			if (!ret)
2114 				ret = -EFAULT;
2115 			goto out;
2116 		}
2117 	}
2118 	p->hpt_index = i;
2119 
2120  out:
2121 	mutex_unlock(&p->mutex);
2122 	return ret;
2123 }
2124 
2125 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2126 			   size_t len, loff_t *ppos)
2127 {
2128 	return -EACCES;
2129 }
2130 
2131 static const struct file_operations debugfs_htab_fops = {
2132 	.owner	 = THIS_MODULE,
2133 	.open	 = debugfs_htab_open,
2134 	.release = debugfs_htab_release,
2135 	.read	 = debugfs_htab_read,
2136 	.write	 = debugfs_htab_write,
2137 	.llseek	 = generic_file_llseek,
2138 };
2139 
2140 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2141 {
2142 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2143 						    kvm->arch.debugfs_dir, kvm,
2144 						    &debugfs_htab_fops);
2145 }
2146 
2147 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2148 {
2149 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2150 
2151 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2152 
2153 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2154 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2155 
2156 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2157 }
2158