1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 #include <asm/pte-walk.h> 41 42 #include "trace_hv.h" 43 44 //#define DEBUG_RESIZE_HPT 1 45 46 #ifdef DEBUG_RESIZE_HPT 47 #define resize_hpt_debug(resize, ...) \ 48 do { \ 49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 50 printk(__VA_ARGS__); \ 51 } while (0) 52 #else 53 #define resize_hpt_debug(resize, ...) \ 54 do { } while (0) 55 #endif 56 57 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 58 long pte_index, unsigned long pteh, 59 unsigned long ptel, unsigned long *pte_idx_ret); 60 61 struct kvm_resize_hpt { 62 /* These fields read-only after init */ 63 struct kvm *kvm; 64 struct work_struct work; 65 u32 order; 66 67 /* These fields protected by kvm->lock */ 68 69 /* Possible values and their usage: 70 * <0 an error occurred during allocation, 71 * -EBUSY allocation is in the progress, 72 * 0 allocation made successfuly. 73 */ 74 int error; 75 76 /* Private to the work thread, until error != -EBUSY, 77 * then protected by kvm->lock. 78 */ 79 struct kvm_hpt_info hpt; 80 }; 81 82 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 83 { 84 unsigned long hpt = 0; 85 int cma = 0; 86 struct page *page = NULL; 87 struct revmap_entry *rev; 88 unsigned long npte; 89 90 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 91 return -EINVAL; 92 93 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 94 if (page) { 95 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 96 memset((void *)hpt, 0, (1ul << order)); 97 cma = 1; 98 } 99 100 if (!hpt) 101 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 102 |__GFP_NOWARN, order - PAGE_SHIFT); 103 104 if (!hpt) 105 return -ENOMEM; 106 107 /* HPTEs are 2**4 bytes long */ 108 npte = 1ul << (order - 4); 109 110 /* Allocate reverse map array */ 111 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 112 if (!rev) { 113 if (cma) 114 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 115 else 116 free_pages(hpt, order - PAGE_SHIFT); 117 return -ENOMEM; 118 } 119 120 info->order = order; 121 info->virt = hpt; 122 info->cma = cma; 123 info->rev = rev; 124 125 return 0; 126 } 127 128 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 129 { 130 atomic64_set(&kvm->arch.mmio_update, 0); 131 kvm->arch.hpt = *info; 132 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 133 134 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 135 info->virt, (long)info->order, kvm->arch.lpid); 136 } 137 138 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 139 { 140 long err = -EBUSY; 141 struct kvm_hpt_info info; 142 143 mutex_lock(&kvm->lock); 144 if (kvm->arch.mmu_ready) { 145 kvm->arch.mmu_ready = 0; 146 /* order mmu_ready vs. vcpus_running */ 147 smp_mb(); 148 if (atomic_read(&kvm->arch.vcpus_running)) { 149 kvm->arch.mmu_ready = 1; 150 goto out; 151 } 152 } 153 if (kvm_is_radix(kvm)) { 154 err = kvmppc_switch_mmu_to_hpt(kvm); 155 if (err) 156 goto out; 157 } 158 159 if (kvm->arch.hpt.order == order) { 160 /* We already have a suitable HPT */ 161 162 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 163 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 164 /* 165 * Reset all the reverse-mapping chains for all memslots 166 */ 167 kvmppc_rmap_reset(kvm); 168 err = 0; 169 goto out; 170 } 171 172 if (kvm->arch.hpt.virt) { 173 kvmppc_free_hpt(&kvm->arch.hpt); 174 kvmppc_rmap_reset(kvm); 175 } 176 177 err = kvmppc_allocate_hpt(&info, order); 178 if (err < 0) 179 goto out; 180 kvmppc_set_hpt(kvm, &info); 181 182 out: 183 if (err == 0) 184 /* Ensure that each vcpu will flush its TLB on next entry. */ 185 cpumask_setall(&kvm->arch.need_tlb_flush); 186 187 mutex_unlock(&kvm->lock); 188 return err; 189 } 190 191 void kvmppc_free_hpt(struct kvm_hpt_info *info) 192 { 193 vfree(info->rev); 194 info->rev = NULL; 195 if (info->cma) 196 kvm_free_hpt_cma(virt_to_page(info->virt), 197 1 << (info->order - PAGE_SHIFT)); 198 else if (info->virt) 199 free_pages(info->virt, info->order - PAGE_SHIFT); 200 info->virt = 0; 201 info->order = 0; 202 } 203 204 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 205 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 206 { 207 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 208 } 209 210 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 211 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 212 { 213 return (pgsize == 0x10000) ? 0x1000 : 0; 214 } 215 216 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 217 unsigned long porder) 218 { 219 unsigned long i; 220 unsigned long npages; 221 unsigned long hp_v, hp_r; 222 unsigned long addr, hash; 223 unsigned long psize; 224 unsigned long hp0, hp1; 225 unsigned long idx_ret; 226 long ret; 227 struct kvm *kvm = vcpu->kvm; 228 229 psize = 1ul << porder; 230 npages = memslot->npages >> (porder - PAGE_SHIFT); 231 232 /* VRMA can't be > 1TB */ 233 if (npages > 1ul << (40 - porder)) 234 npages = 1ul << (40 - porder); 235 /* Can't use more than 1 HPTE per HPTEG */ 236 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 237 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 238 239 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 240 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 241 hp1 = hpte1_pgsize_encoding(psize) | 242 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 243 244 for (i = 0; i < npages; ++i) { 245 addr = i << porder; 246 /* can't use hpt_hash since va > 64 bits */ 247 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 248 & kvmppc_hpt_mask(&kvm->arch.hpt); 249 /* 250 * We assume that the hash table is empty and no 251 * vcpus are using it at this stage. Since we create 252 * at most one HPTE per HPTEG, we just assume entry 7 253 * is available and use it. 254 */ 255 hash = (hash << 3) + 7; 256 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 257 hp_r = hp1 | addr; 258 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 259 &idx_ret); 260 if (ret != H_SUCCESS) { 261 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 262 addr, ret); 263 break; 264 } 265 } 266 } 267 268 int kvmppc_mmu_hv_init(void) 269 { 270 unsigned long host_lpid, rsvd_lpid; 271 272 if (!cpu_has_feature(CPU_FTR_HVMODE)) 273 return -EINVAL; 274 275 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 276 return -EINVAL; 277 278 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 279 host_lpid = mfspr(SPRN_LPID); 280 rsvd_lpid = LPID_RSVD; 281 282 kvmppc_init_lpid(rsvd_lpid + 1); 283 284 kvmppc_claim_lpid(host_lpid); 285 /* rsvd_lpid is reserved for use in partition switching */ 286 kvmppc_claim_lpid(rsvd_lpid); 287 288 return 0; 289 } 290 291 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 292 { 293 unsigned long msr = vcpu->arch.intr_msr; 294 295 /* If transactional, change to suspend mode on IRQ delivery */ 296 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 297 msr |= MSR_TS_S; 298 else 299 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 300 kvmppc_set_msr(vcpu, msr); 301 } 302 303 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 304 long pte_index, unsigned long pteh, 305 unsigned long ptel, unsigned long *pte_idx_ret) 306 { 307 long ret; 308 309 /* Protect linux PTE lookup from page table destruction */ 310 rcu_read_lock_sched(); /* this disables preemption too */ 311 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 312 current->mm->pgd, false, pte_idx_ret); 313 rcu_read_unlock_sched(); 314 if (ret == H_TOO_HARD) { 315 /* this can't happen */ 316 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 317 ret = H_RESOURCE; /* or something */ 318 } 319 return ret; 320 321 } 322 323 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 324 gva_t eaddr) 325 { 326 u64 mask; 327 int i; 328 329 for (i = 0; i < vcpu->arch.slb_nr; i++) { 330 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 331 continue; 332 333 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 334 mask = ESID_MASK_1T; 335 else 336 mask = ESID_MASK; 337 338 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 339 return &vcpu->arch.slb[i]; 340 } 341 return NULL; 342 } 343 344 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 345 unsigned long ea) 346 { 347 unsigned long ra_mask; 348 349 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 350 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 351 } 352 353 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 354 struct kvmppc_pte *gpte, bool data, bool iswrite) 355 { 356 struct kvm *kvm = vcpu->kvm; 357 struct kvmppc_slb *slbe; 358 unsigned long slb_v; 359 unsigned long pp, key; 360 unsigned long v, orig_v, gr; 361 __be64 *hptep; 362 int index; 363 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 364 365 if (kvm_is_radix(vcpu->kvm)) 366 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 367 368 /* Get SLB entry */ 369 if (virtmode) { 370 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 371 if (!slbe) 372 return -EINVAL; 373 slb_v = slbe->origv; 374 } else { 375 /* real mode access */ 376 slb_v = vcpu->kvm->arch.vrma_slb_v; 377 } 378 379 preempt_disable(); 380 /* Find the HPTE in the hash table */ 381 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 382 HPTE_V_VALID | HPTE_V_ABSENT); 383 if (index < 0) { 384 preempt_enable(); 385 return -ENOENT; 386 } 387 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 388 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 389 if (cpu_has_feature(CPU_FTR_ARCH_300)) 390 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 391 gr = kvm->arch.hpt.rev[index].guest_rpte; 392 393 unlock_hpte(hptep, orig_v); 394 preempt_enable(); 395 396 gpte->eaddr = eaddr; 397 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 398 399 /* Get PP bits and key for permission check */ 400 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 401 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 402 key &= slb_v; 403 404 /* Calculate permissions */ 405 gpte->may_read = hpte_read_permission(pp, key); 406 gpte->may_write = hpte_write_permission(pp, key); 407 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 408 409 /* Storage key permission check for POWER7 */ 410 if (data && virtmode) { 411 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 412 if (amrfield & 1) 413 gpte->may_read = 0; 414 if (amrfield & 2) 415 gpte->may_write = 0; 416 } 417 418 /* Get the guest physical address */ 419 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 420 return 0; 421 } 422 423 /* 424 * Quick test for whether an instruction is a load or a store. 425 * If the instruction is a load or a store, then this will indicate 426 * which it is, at least on server processors. (Embedded processors 427 * have some external PID instructions that don't follow the rule 428 * embodied here.) If the instruction isn't a load or store, then 429 * this doesn't return anything useful. 430 */ 431 static int instruction_is_store(unsigned int instr) 432 { 433 unsigned int mask; 434 435 mask = 0x10000000; 436 if ((instr & 0xfc000000) == 0x7c000000) 437 mask = 0x100; /* major opcode 31 */ 438 return (instr & mask) != 0; 439 } 440 441 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 442 unsigned long gpa, gva_t ea, int is_store) 443 { 444 u32 last_inst; 445 446 /* 447 * If we fail, we just return to the guest and try executing it again. 448 */ 449 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 450 EMULATE_DONE) 451 return RESUME_GUEST; 452 453 /* 454 * WARNING: We do not know for sure whether the instruction we just 455 * read from memory is the same that caused the fault in the first 456 * place. If the instruction we read is neither an load or a store, 457 * then it can't access memory, so we don't need to worry about 458 * enforcing access permissions. So, assuming it is a load or 459 * store, we just check that its direction (load or store) is 460 * consistent with the original fault, since that's what we 461 * checked the access permissions against. If there is a mismatch 462 * we just return and retry the instruction. 463 */ 464 465 if (instruction_is_store(last_inst) != !!is_store) 466 return RESUME_GUEST; 467 468 /* 469 * Emulated accesses are emulated by looking at the hash for 470 * translation once, then performing the access later. The 471 * translation could be invalidated in the meantime in which 472 * point performing the subsequent memory access on the old 473 * physical address could possibly be a security hole for the 474 * guest (but not the host). 475 * 476 * This is less of an issue for MMIO stores since they aren't 477 * globally visible. It could be an issue for MMIO loads to 478 * a certain extent but we'll ignore it for now. 479 */ 480 481 vcpu->arch.paddr_accessed = gpa; 482 vcpu->arch.vaddr_accessed = ea; 483 return kvmppc_emulate_mmio(run, vcpu); 484 } 485 486 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 487 unsigned long ea, unsigned long dsisr) 488 { 489 struct kvm *kvm = vcpu->kvm; 490 unsigned long hpte[3], r; 491 unsigned long hnow_v, hnow_r; 492 __be64 *hptep; 493 unsigned long mmu_seq, psize, pte_size; 494 unsigned long gpa_base, gfn_base; 495 unsigned long gpa, gfn, hva, pfn; 496 struct kvm_memory_slot *memslot; 497 unsigned long *rmap; 498 struct revmap_entry *rev; 499 struct page *page, *pages[1]; 500 long index, ret, npages; 501 bool is_ci; 502 unsigned int writing, write_ok; 503 struct vm_area_struct *vma; 504 unsigned long rcbits; 505 long mmio_update; 506 507 if (kvm_is_radix(kvm)) 508 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 509 510 /* 511 * Real-mode code has already searched the HPT and found the 512 * entry we're interested in. Lock the entry and check that 513 * it hasn't changed. If it has, just return and re-execute the 514 * instruction. 515 */ 516 if (ea != vcpu->arch.pgfault_addr) 517 return RESUME_GUEST; 518 519 if (vcpu->arch.pgfault_cache) { 520 mmio_update = atomic64_read(&kvm->arch.mmio_update); 521 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 522 r = vcpu->arch.pgfault_cache->rpte; 523 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 524 r); 525 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 526 gfn_base = gpa_base >> PAGE_SHIFT; 527 gpa = gpa_base | (ea & (psize - 1)); 528 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 529 dsisr & DSISR_ISSTORE); 530 } 531 } 532 index = vcpu->arch.pgfault_index; 533 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 534 rev = &kvm->arch.hpt.rev[index]; 535 preempt_disable(); 536 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 537 cpu_relax(); 538 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 539 hpte[1] = be64_to_cpu(hptep[1]); 540 hpte[2] = r = rev->guest_rpte; 541 unlock_hpte(hptep, hpte[0]); 542 preempt_enable(); 543 544 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 545 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 546 hpte[1] = hpte_new_to_old_r(hpte[1]); 547 } 548 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 549 hpte[1] != vcpu->arch.pgfault_hpte[1]) 550 return RESUME_GUEST; 551 552 /* Translate the logical address and get the page */ 553 psize = kvmppc_actual_pgsz(hpte[0], r); 554 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 555 gfn_base = gpa_base >> PAGE_SHIFT; 556 gpa = gpa_base | (ea & (psize - 1)); 557 gfn = gpa >> PAGE_SHIFT; 558 memslot = gfn_to_memslot(kvm, gfn); 559 560 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 561 562 /* No memslot means it's an emulated MMIO region */ 563 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 564 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 565 dsisr & DSISR_ISSTORE); 566 567 /* 568 * This should never happen, because of the slot_is_aligned() 569 * check in kvmppc_do_h_enter(). 570 */ 571 if (gfn_base < memslot->base_gfn) 572 return -EFAULT; 573 574 /* used to check for invalidations in progress */ 575 mmu_seq = kvm->mmu_notifier_seq; 576 smp_rmb(); 577 578 ret = -EFAULT; 579 is_ci = false; 580 pfn = 0; 581 page = NULL; 582 pte_size = PAGE_SIZE; 583 writing = (dsisr & DSISR_ISSTORE) != 0; 584 /* If writing != 0, then the HPTE must allow writing, if we get here */ 585 write_ok = writing; 586 hva = gfn_to_hva_memslot(memslot, gfn); 587 npages = get_user_pages_fast(hva, 1, writing, pages); 588 if (npages < 1) { 589 /* Check if it's an I/O mapping */ 590 down_read(¤t->mm->mmap_sem); 591 vma = find_vma(current->mm, hva); 592 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 593 (vma->vm_flags & VM_PFNMAP)) { 594 pfn = vma->vm_pgoff + 595 ((hva - vma->vm_start) >> PAGE_SHIFT); 596 pte_size = psize; 597 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 598 write_ok = vma->vm_flags & VM_WRITE; 599 } 600 up_read(¤t->mm->mmap_sem); 601 if (!pfn) 602 goto out_put; 603 } else { 604 page = pages[0]; 605 pfn = page_to_pfn(page); 606 if (PageHuge(page)) { 607 page = compound_head(page); 608 pte_size <<= compound_order(page); 609 } 610 /* if the guest wants write access, see if that is OK */ 611 if (!writing && hpte_is_writable(r)) { 612 pte_t *ptep, pte; 613 unsigned long flags; 614 /* 615 * We need to protect against page table destruction 616 * hugepage split and collapse. 617 */ 618 local_irq_save(flags); 619 ptep = find_current_mm_pte(current->mm->pgd, 620 hva, NULL, NULL); 621 if (ptep) { 622 pte = kvmppc_read_update_linux_pte(ptep, 1); 623 if (__pte_write(pte)) 624 write_ok = 1; 625 } 626 local_irq_restore(flags); 627 } 628 } 629 630 if (psize > pte_size) 631 goto out_put; 632 633 /* Check WIMG vs. the actual page we're accessing */ 634 if (!hpte_cache_flags_ok(r, is_ci)) { 635 if (is_ci) 636 goto out_put; 637 /* 638 * Allow guest to map emulated device memory as 639 * uncacheable, but actually make it cacheable. 640 */ 641 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 642 } 643 644 /* 645 * Set the HPTE to point to pfn. 646 * Since the pfn is at PAGE_SIZE granularity, make sure we 647 * don't mask out lower-order bits if psize < PAGE_SIZE. 648 */ 649 if (psize < PAGE_SIZE) 650 psize = PAGE_SIZE; 651 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 652 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 653 if (hpte_is_writable(r) && !write_ok) 654 r = hpte_make_readonly(r); 655 ret = RESUME_GUEST; 656 preempt_disable(); 657 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 658 cpu_relax(); 659 hnow_v = be64_to_cpu(hptep[0]); 660 hnow_r = be64_to_cpu(hptep[1]); 661 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 662 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 663 hnow_r = hpte_new_to_old_r(hnow_r); 664 } 665 666 /* 667 * If the HPT is being resized, don't update the HPTE, 668 * instead let the guest retry after the resize operation is complete. 669 * The synchronization for mmu_ready test vs. set is provided 670 * by the HPTE lock. 671 */ 672 if (!kvm->arch.mmu_ready) 673 goto out_unlock; 674 675 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 676 rev->guest_rpte != hpte[2]) 677 /* HPTE has been changed under us; let the guest retry */ 678 goto out_unlock; 679 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 680 681 /* Always put the HPTE in the rmap chain for the page base address */ 682 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 683 lock_rmap(rmap); 684 685 /* Check if we might have been invalidated; let the guest retry if so */ 686 ret = RESUME_GUEST; 687 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 688 unlock_rmap(rmap); 689 goto out_unlock; 690 } 691 692 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 693 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 694 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 695 696 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 697 /* HPTE was previously valid, so we need to invalidate it */ 698 unlock_rmap(rmap); 699 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 700 kvmppc_invalidate_hpte(kvm, hptep, index); 701 /* don't lose previous R and C bits */ 702 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 703 } else { 704 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 705 } 706 707 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 708 r = hpte_old_to_new_r(hpte[0], r); 709 hpte[0] = hpte_old_to_new_v(hpte[0]); 710 } 711 hptep[1] = cpu_to_be64(r); 712 eieio(); 713 __unlock_hpte(hptep, hpte[0]); 714 asm volatile("ptesync" : : : "memory"); 715 preempt_enable(); 716 if (page && hpte_is_writable(r)) 717 SetPageDirty(page); 718 719 out_put: 720 trace_kvm_page_fault_exit(vcpu, hpte, ret); 721 722 if (page) { 723 /* 724 * We drop pages[0] here, not page because page might 725 * have been set to the head page of a compound, but 726 * we have to drop the reference on the correct tail 727 * page to match the get inside gup() 728 */ 729 put_page(pages[0]); 730 } 731 return ret; 732 733 out_unlock: 734 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 735 preempt_enable(); 736 goto out_put; 737 } 738 739 void kvmppc_rmap_reset(struct kvm *kvm) 740 { 741 struct kvm_memslots *slots; 742 struct kvm_memory_slot *memslot; 743 int srcu_idx; 744 745 srcu_idx = srcu_read_lock(&kvm->srcu); 746 slots = kvm_memslots(kvm); 747 kvm_for_each_memslot(memslot, slots) { 748 /* 749 * This assumes it is acceptable to lose reference and 750 * change bits across a reset. 751 */ 752 memset(memslot->arch.rmap, 0, 753 memslot->npages * sizeof(*memslot->arch.rmap)); 754 } 755 srcu_read_unlock(&kvm->srcu, srcu_idx); 756 } 757 758 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 759 unsigned long gfn); 760 761 static int kvm_handle_hva_range(struct kvm *kvm, 762 unsigned long start, 763 unsigned long end, 764 hva_handler_fn handler) 765 { 766 int ret; 767 int retval = 0; 768 struct kvm_memslots *slots; 769 struct kvm_memory_slot *memslot; 770 771 slots = kvm_memslots(kvm); 772 kvm_for_each_memslot(memslot, slots) { 773 unsigned long hva_start, hva_end; 774 gfn_t gfn, gfn_end; 775 776 hva_start = max(start, memslot->userspace_addr); 777 hva_end = min(end, memslot->userspace_addr + 778 (memslot->npages << PAGE_SHIFT)); 779 if (hva_start >= hva_end) 780 continue; 781 /* 782 * {gfn(page) | page intersects with [hva_start, hva_end)} = 783 * {gfn, gfn+1, ..., gfn_end-1}. 784 */ 785 gfn = hva_to_gfn_memslot(hva_start, memslot); 786 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 787 788 for (; gfn < gfn_end; ++gfn) { 789 ret = handler(kvm, memslot, gfn); 790 retval |= ret; 791 } 792 } 793 794 return retval; 795 } 796 797 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 798 hva_handler_fn handler) 799 { 800 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 801 } 802 803 /* Must be called with both HPTE and rmap locked */ 804 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 805 struct kvm_memory_slot *memslot, 806 unsigned long *rmapp, unsigned long gfn) 807 { 808 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 809 struct revmap_entry *rev = kvm->arch.hpt.rev; 810 unsigned long j, h; 811 unsigned long ptel, psize, rcbits; 812 813 j = rev[i].forw; 814 if (j == i) { 815 /* chain is now empty */ 816 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 817 } else { 818 /* remove i from chain */ 819 h = rev[i].back; 820 rev[h].forw = j; 821 rev[j].back = h; 822 rev[i].forw = rev[i].back = i; 823 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 824 } 825 826 /* Now check and modify the HPTE */ 827 ptel = rev[i].guest_rpte; 828 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 829 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 830 hpte_rpn(ptel, psize) == gfn) { 831 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 832 kvmppc_invalidate_hpte(kvm, hptep, i); 833 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 834 /* Harvest R and C */ 835 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 836 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 837 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 838 kvmppc_update_dirty_map(memslot, gfn, psize); 839 if (rcbits & ~rev[i].guest_rpte) { 840 rev[i].guest_rpte = ptel | rcbits; 841 note_hpte_modification(kvm, &rev[i]); 842 } 843 } 844 } 845 846 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 847 unsigned long gfn) 848 { 849 unsigned long i; 850 __be64 *hptep; 851 unsigned long *rmapp; 852 853 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 854 for (;;) { 855 lock_rmap(rmapp); 856 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 857 unlock_rmap(rmapp); 858 break; 859 } 860 861 /* 862 * To avoid an ABBA deadlock with the HPTE lock bit, 863 * we can't spin on the HPTE lock while holding the 864 * rmap chain lock. 865 */ 866 i = *rmapp & KVMPPC_RMAP_INDEX; 867 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 868 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 869 /* unlock rmap before spinning on the HPTE lock */ 870 unlock_rmap(rmapp); 871 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 872 cpu_relax(); 873 continue; 874 } 875 876 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 877 unlock_rmap(rmapp); 878 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 879 } 880 return 0; 881 } 882 883 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 884 { 885 hva_handler_fn handler; 886 887 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 888 kvm_handle_hva_range(kvm, start, end, handler); 889 return 0; 890 } 891 892 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 893 struct kvm_memory_slot *memslot) 894 { 895 unsigned long gfn; 896 unsigned long n; 897 unsigned long *rmapp; 898 899 gfn = memslot->base_gfn; 900 rmapp = memslot->arch.rmap; 901 for (n = memslot->npages; n; --n, ++gfn) { 902 if (kvm_is_radix(kvm)) { 903 kvm_unmap_radix(kvm, memslot, gfn); 904 continue; 905 } 906 /* 907 * Testing the present bit without locking is OK because 908 * the memslot has been marked invalid already, and hence 909 * no new HPTEs referencing this page can be created, 910 * thus the present bit can't go from 0 to 1. 911 */ 912 if (*rmapp & KVMPPC_RMAP_PRESENT) 913 kvm_unmap_rmapp(kvm, memslot, gfn); 914 ++rmapp; 915 } 916 } 917 918 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 919 unsigned long gfn) 920 { 921 struct revmap_entry *rev = kvm->arch.hpt.rev; 922 unsigned long head, i, j; 923 __be64 *hptep; 924 int ret = 0; 925 unsigned long *rmapp; 926 927 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 928 retry: 929 lock_rmap(rmapp); 930 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 931 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 932 ret = 1; 933 } 934 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 935 unlock_rmap(rmapp); 936 return ret; 937 } 938 939 i = head = *rmapp & KVMPPC_RMAP_INDEX; 940 do { 941 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 942 j = rev[i].forw; 943 944 /* If this HPTE isn't referenced, ignore it */ 945 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 946 continue; 947 948 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 949 /* unlock rmap before spinning on the HPTE lock */ 950 unlock_rmap(rmapp); 951 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 952 cpu_relax(); 953 goto retry; 954 } 955 956 /* Now check and modify the HPTE */ 957 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 958 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 959 kvmppc_clear_ref_hpte(kvm, hptep, i); 960 if (!(rev[i].guest_rpte & HPTE_R_R)) { 961 rev[i].guest_rpte |= HPTE_R_R; 962 note_hpte_modification(kvm, &rev[i]); 963 } 964 ret = 1; 965 } 966 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 967 } while ((i = j) != head); 968 969 unlock_rmap(rmapp); 970 return ret; 971 } 972 973 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 974 { 975 hva_handler_fn handler; 976 977 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 978 return kvm_handle_hva_range(kvm, start, end, handler); 979 } 980 981 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 982 unsigned long gfn) 983 { 984 struct revmap_entry *rev = kvm->arch.hpt.rev; 985 unsigned long head, i, j; 986 unsigned long *hp; 987 int ret = 1; 988 unsigned long *rmapp; 989 990 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 991 if (*rmapp & KVMPPC_RMAP_REFERENCED) 992 return 1; 993 994 lock_rmap(rmapp); 995 if (*rmapp & KVMPPC_RMAP_REFERENCED) 996 goto out; 997 998 if (*rmapp & KVMPPC_RMAP_PRESENT) { 999 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1000 do { 1001 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1002 j = rev[i].forw; 1003 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1004 goto out; 1005 } while ((i = j) != head); 1006 } 1007 ret = 0; 1008 1009 out: 1010 unlock_rmap(rmapp); 1011 return ret; 1012 } 1013 1014 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1015 { 1016 hva_handler_fn handler; 1017 1018 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1019 return kvm_handle_hva(kvm, hva, handler); 1020 } 1021 1022 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1023 { 1024 hva_handler_fn handler; 1025 1026 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1027 kvm_handle_hva(kvm, hva, handler); 1028 } 1029 1030 static int vcpus_running(struct kvm *kvm) 1031 { 1032 return atomic_read(&kvm->arch.vcpus_running) != 0; 1033 } 1034 1035 /* 1036 * Returns the number of system pages that are dirty. 1037 * This can be more than 1 if we find a huge-page HPTE. 1038 */ 1039 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1040 { 1041 struct revmap_entry *rev = kvm->arch.hpt.rev; 1042 unsigned long head, i, j; 1043 unsigned long n; 1044 unsigned long v, r; 1045 __be64 *hptep; 1046 int npages_dirty = 0; 1047 1048 retry: 1049 lock_rmap(rmapp); 1050 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1051 unlock_rmap(rmapp); 1052 return npages_dirty; 1053 } 1054 1055 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1056 do { 1057 unsigned long hptep1; 1058 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1059 j = rev[i].forw; 1060 1061 /* 1062 * Checking the C (changed) bit here is racy since there 1063 * is no guarantee about when the hardware writes it back. 1064 * If the HPTE is not writable then it is stable since the 1065 * page can't be written to, and we would have done a tlbie 1066 * (which forces the hardware to complete any writeback) 1067 * when making the HPTE read-only. 1068 * If vcpus are running then this call is racy anyway 1069 * since the page could get dirtied subsequently, so we 1070 * expect there to be a further call which would pick up 1071 * any delayed C bit writeback. 1072 * Otherwise we need to do the tlbie even if C==0 in 1073 * order to pick up any delayed writeback of C. 1074 */ 1075 hptep1 = be64_to_cpu(hptep[1]); 1076 if (!(hptep1 & HPTE_R_C) && 1077 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1078 continue; 1079 1080 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1081 /* unlock rmap before spinning on the HPTE lock */ 1082 unlock_rmap(rmapp); 1083 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1084 cpu_relax(); 1085 goto retry; 1086 } 1087 1088 /* Now check and modify the HPTE */ 1089 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1090 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1091 continue; 1092 } 1093 1094 /* need to make it temporarily absent so C is stable */ 1095 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1096 kvmppc_invalidate_hpte(kvm, hptep, i); 1097 v = be64_to_cpu(hptep[0]); 1098 r = be64_to_cpu(hptep[1]); 1099 if (r & HPTE_R_C) { 1100 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1101 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1102 rev[i].guest_rpte |= HPTE_R_C; 1103 note_hpte_modification(kvm, &rev[i]); 1104 } 1105 n = kvmppc_actual_pgsz(v, r); 1106 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1107 if (n > npages_dirty) 1108 npages_dirty = n; 1109 eieio(); 1110 } 1111 v &= ~HPTE_V_ABSENT; 1112 v |= HPTE_V_VALID; 1113 __unlock_hpte(hptep, v); 1114 } while ((i = j) != head); 1115 1116 unlock_rmap(rmapp); 1117 return npages_dirty; 1118 } 1119 1120 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1121 struct kvm_memory_slot *memslot, 1122 unsigned long *map) 1123 { 1124 unsigned long gfn; 1125 1126 if (!vpa->dirty || !vpa->pinned_addr) 1127 return; 1128 gfn = vpa->gpa >> PAGE_SHIFT; 1129 if (gfn < memslot->base_gfn || 1130 gfn >= memslot->base_gfn + memslot->npages) 1131 return; 1132 1133 vpa->dirty = false; 1134 if (map) 1135 __set_bit_le(gfn - memslot->base_gfn, map); 1136 } 1137 1138 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1139 struct kvm_memory_slot *memslot, unsigned long *map) 1140 { 1141 unsigned long i; 1142 unsigned long *rmapp; 1143 1144 preempt_disable(); 1145 rmapp = memslot->arch.rmap; 1146 for (i = 0; i < memslot->npages; ++i) { 1147 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1148 /* 1149 * Note that if npages > 0 then i must be a multiple of npages, 1150 * since we always put huge-page HPTEs in the rmap chain 1151 * corresponding to their page base address. 1152 */ 1153 if (npages) 1154 set_dirty_bits(map, i, npages); 1155 ++rmapp; 1156 } 1157 preempt_enable(); 1158 return 0; 1159 } 1160 1161 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1162 unsigned long *nb_ret) 1163 { 1164 struct kvm_memory_slot *memslot; 1165 unsigned long gfn = gpa >> PAGE_SHIFT; 1166 struct page *page, *pages[1]; 1167 int npages; 1168 unsigned long hva, offset; 1169 int srcu_idx; 1170 1171 srcu_idx = srcu_read_lock(&kvm->srcu); 1172 memslot = gfn_to_memslot(kvm, gfn); 1173 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1174 goto err; 1175 hva = gfn_to_hva_memslot(memslot, gfn); 1176 npages = get_user_pages_fast(hva, 1, 1, pages); 1177 if (npages < 1) 1178 goto err; 1179 page = pages[0]; 1180 srcu_read_unlock(&kvm->srcu, srcu_idx); 1181 1182 offset = gpa & (PAGE_SIZE - 1); 1183 if (nb_ret) 1184 *nb_ret = PAGE_SIZE - offset; 1185 return page_address(page) + offset; 1186 1187 err: 1188 srcu_read_unlock(&kvm->srcu, srcu_idx); 1189 return NULL; 1190 } 1191 1192 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1193 bool dirty) 1194 { 1195 struct page *page = virt_to_page(va); 1196 struct kvm_memory_slot *memslot; 1197 unsigned long gfn; 1198 int srcu_idx; 1199 1200 put_page(page); 1201 1202 if (!dirty) 1203 return; 1204 1205 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1206 gfn = gpa >> PAGE_SHIFT; 1207 srcu_idx = srcu_read_lock(&kvm->srcu); 1208 memslot = gfn_to_memslot(kvm, gfn); 1209 if (memslot && memslot->dirty_bitmap) 1210 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1211 srcu_read_unlock(&kvm->srcu, srcu_idx); 1212 } 1213 1214 /* 1215 * HPT resizing 1216 */ 1217 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1218 { 1219 int rc; 1220 1221 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1222 if (rc < 0) 1223 return rc; 1224 1225 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1226 resize->hpt.virt); 1227 1228 return 0; 1229 } 1230 1231 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1232 unsigned long idx) 1233 { 1234 struct kvm *kvm = resize->kvm; 1235 struct kvm_hpt_info *old = &kvm->arch.hpt; 1236 struct kvm_hpt_info *new = &resize->hpt; 1237 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1238 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1239 __be64 *hptep, *new_hptep; 1240 unsigned long vpte, rpte, guest_rpte; 1241 int ret; 1242 struct revmap_entry *rev; 1243 unsigned long apsize, avpn, pteg, hash; 1244 unsigned long new_idx, new_pteg, replace_vpte; 1245 int pshift; 1246 1247 hptep = (__be64 *)(old->virt + (idx << 4)); 1248 1249 /* Guest is stopped, so new HPTEs can't be added or faulted 1250 * in, only unmapped or altered by host actions. So, it's 1251 * safe to check this before we take the HPTE lock */ 1252 vpte = be64_to_cpu(hptep[0]); 1253 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1254 return 0; /* nothing to do */ 1255 1256 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1257 cpu_relax(); 1258 1259 vpte = be64_to_cpu(hptep[0]); 1260 1261 ret = 0; 1262 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1263 /* Nothing to do */ 1264 goto out; 1265 1266 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1267 rpte = be64_to_cpu(hptep[1]); 1268 vpte = hpte_new_to_old_v(vpte, rpte); 1269 } 1270 1271 /* Unmap */ 1272 rev = &old->rev[idx]; 1273 guest_rpte = rev->guest_rpte; 1274 1275 ret = -EIO; 1276 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1277 if (!apsize) 1278 goto out; 1279 1280 if (vpte & HPTE_V_VALID) { 1281 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1282 int srcu_idx = srcu_read_lock(&kvm->srcu); 1283 struct kvm_memory_slot *memslot = 1284 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1285 1286 if (memslot) { 1287 unsigned long *rmapp; 1288 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1289 1290 lock_rmap(rmapp); 1291 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1292 unlock_rmap(rmapp); 1293 } 1294 1295 srcu_read_unlock(&kvm->srcu, srcu_idx); 1296 } 1297 1298 /* Reload PTE after unmap */ 1299 vpte = be64_to_cpu(hptep[0]); 1300 BUG_ON(vpte & HPTE_V_VALID); 1301 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1302 1303 ret = 0; 1304 if (!(vpte & HPTE_V_BOLTED)) 1305 goto out; 1306 1307 rpte = be64_to_cpu(hptep[1]); 1308 1309 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1310 vpte = hpte_new_to_old_v(vpte, rpte); 1311 rpte = hpte_new_to_old_r(rpte); 1312 } 1313 1314 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1315 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1316 pteg = idx / HPTES_PER_GROUP; 1317 if (vpte & HPTE_V_SECONDARY) 1318 pteg = ~pteg; 1319 1320 if (!(vpte & HPTE_V_1TB_SEG)) { 1321 unsigned long offset, vsid; 1322 1323 /* We only have 28 - 23 bits of offset in avpn */ 1324 offset = (avpn & 0x1f) << 23; 1325 vsid = avpn >> 5; 1326 /* We can find more bits from the pteg value */ 1327 if (pshift < 23) 1328 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1329 1330 hash = vsid ^ (offset >> pshift); 1331 } else { 1332 unsigned long offset, vsid; 1333 1334 /* We only have 40 - 23 bits of seg_off in avpn */ 1335 offset = (avpn & 0x1ffff) << 23; 1336 vsid = avpn >> 17; 1337 if (pshift < 23) 1338 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1339 1340 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1341 } 1342 1343 new_pteg = hash & new_hash_mask; 1344 if (vpte & HPTE_V_SECONDARY) 1345 new_pteg = ~hash & new_hash_mask; 1346 1347 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1348 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1349 1350 replace_vpte = be64_to_cpu(new_hptep[0]); 1351 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1352 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1353 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1354 } 1355 1356 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1357 BUG_ON(new->order >= old->order); 1358 1359 if (replace_vpte & HPTE_V_BOLTED) { 1360 if (vpte & HPTE_V_BOLTED) 1361 /* Bolted collision, nothing we can do */ 1362 ret = -ENOSPC; 1363 /* Discard the new HPTE */ 1364 goto out; 1365 } 1366 1367 /* Discard the previous HPTE */ 1368 } 1369 1370 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1371 rpte = hpte_old_to_new_r(vpte, rpte); 1372 vpte = hpte_old_to_new_v(vpte); 1373 } 1374 1375 new_hptep[1] = cpu_to_be64(rpte); 1376 new->rev[new_idx].guest_rpte = guest_rpte; 1377 /* No need for a barrier, since new HPT isn't active */ 1378 new_hptep[0] = cpu_to_be64(vpte); 1379 unlock_hpte(new_hptep, vpte); 1380 1381 out: 1382 unlock_hpte(hptep, vpte); 1383 return ret; 1384 } 1385 1386 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1387 { 1388 struct kvm *kvm = resize->kvm; 1389 unsigned long i; 1390 int rc; 1391 1392 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1393 rc = resize_hpt_rehash_hpte(resize, i); 1394 if (rc != 0) 1395 return rc; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1402 { 1403 struct kvm *kvm = resize->kvm; 1404 struct kvm_hpt_info hpt_tmp; 1405 1406 /* Exchange the pending tables in the resize structure with 1407 * the active tables */ 1408 1409 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1410 1411 spin_lock(&kvm->mmu_lock); 1412 asm volatile("ptesync" : : : "memory"); 1413 1414 hpt_tmp = kvm->arch.hpt; 1415 kvmppc_set_hpt(kvm, &resize->hpt); 1416 resize->hpt = hpt_tmp; 1417 1418 spin_unlock(&kvm->mmu_lock); 1419 1420 synchronize_srcu_expedited(&kvm->srcu); 1421 1422 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1423 kvmppc_setup_partition_table(kvm); 1424 1425 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1426 } 1427 1428 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1429 { 1430 if (WARN_ON(!mutex_is_locked(&kvm->lock))) 1431 return; 1432 1433 if (!resize) 1434 return; 1435 1436 if (resize->error != -EBUSY) { 1437 if (resize->hpt.virt) 1438 kvmppc_free_hpt(&resize->hpt); 1439 kfree(resize); 1440 } 1441 1442 if (kvm->arch.resize_hpt == resize) 1443 kvm->arch.resize_hpt = NULL; 1444 } 1445 1446 static void resize_hpt_prepare_work(struct work_struct *work) 1447 { 1448 struct kvm_resize_hpt *resize = container_of(work, 1449 struct kvm_resize_hpt, 1450 work); 1451 struct kvm *kvm = resize->kvm; 1452 int err = 0; 1453 1454 if (WARN_ON(resize->error != -EBUSY)) 1455 return; 1456 1457 mutex_lock(&kvm->lock); 1458 1459 /* Request is still current? */ 1460 if (kvm->arch.resize_hpt == resize) { 1461 /* We may request large allocations here: 1462 * do not sleep with kvm->lock held for a while. 1463 */ 1464 mutex_unlock(&kvm->lock); 1465 1466 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1467 resize->order); 1468 1469 err = resize_hpt_allocate(resize); 1470 1471 /* We have strict assumption about -EBUSY 1472 * when preparing for HPT resize. 1473 */ 1474 if (WARN_ON(err == -EBUSY)) 1475 err = -EINPROGRESS; 1476 1477 mutex_lock(&kvm->lock); 1478 /* It is possible that kvm->arch.resize_hpt != resize 1479 * after we grab kvm->lock again. 1480 */ 1481 } 1482 1483 resize->error = err; 1484 1485 if (kvm->arch.resize_hpt != resize) 1486 resize_hpt_release(kvm, resize); 1487 1488 mutex_unlock(&kvm->lock); 1489 } 1490 1491 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1492 struct kvm_ppc_resize_hpt *rhpt) 1493 { 1494 unsigned long flags = rhpt->flags; 1495 unsigned long shift = rhpt->shift; 1496 struct kvm_resize_hpt *resize; 1497 int ret; 1498 1499 if (flags != 0 || kvm_is_radix(kvm)) 1500 return -EINVAL; 1501 1502 if (shift && ((shift < 18) || (shift > 46))) 1503 return -EINVAL; 1504 1505 mutex_lock(&kvm->lock); 1506 1507 resize = kvm->arch.resize_hpt; 1508 1509 if (resize) { 1510 if (resize->order == shift) { 1511 /* Suitable resize in progress? */ 1512 ret = resize->error; 1513 if (ret == -EBUSY) 1514 ret = 100; /* estimated time in ms */ 1515 else if (ret) 1516 resize_hpt_release(kvm, resize); 1517 1518 goto out; 1519 } 1520 1521 /* not suitable, cancel it */ 1522 resize_hpt_release(kvm, resize); 1523 } 1524 1525 ret = 0; 1526 if (!shift) 1527 goto out; /* nothing to do */ 1528 1529 /* start new resize */ 1530 1531 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1532 if (!resize) { 1533 ret = -ENOMEM; 1534 goto out; 1535 } 1536 1537 resize->error = -EBUSY; 1538 resize->order = shift; 1539 resize->kvm = kvm; 1540 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1541 kvm->arch.resize_hpt = resize; 1542 1543 schedule_work(&resize->work); 1544 1545 ret = 100; /* estimated time in ms */ 1546 1547 out: 1548 mutex_unlock(&kvm->lock); 1549 return ret; 1550 } 1551 1552 static void resize_hpt_boot_vcpu(void *opaque) 1553 { 1554 /* Nothing to do, just force a KVM exit */ 1555 } 1556 1557 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1558 struct kvm_ppc_resize_hpt *rhpt) 1559 { 1560 unsigned long flags = rhpt->flags; 1561 unsigned long shift = rhpt->shift; 1562 struct kvm_resize_hpt *resize; 1563 long ret; 1564 1565 if (flags != 0 || kvm_is_radix(kvm)) 1566 return -EINVAL; 1567 1568 if (shift && ((shift < 18) || (shift > 46))) 1569 return -EINVAL; 1570 1571 mutex_lock(&kvm->lock); 1572 1573 resize = kvm->arch.resize_hpt; 1574 1575 /* This shouldn't be possible */ 1576 ret = -EIO; 1577 if (WARN_ON(!kvm->arch.mmu_ready)) 1578 goto out_no_hpt; 1579 1580 /* Stop VCPUs from running while we mess with the HPT */ 1581 kvm->arch.mmu_ready = 0; 1582 smp_mb(); 1583 1584 /* Boot all CPUs out of the guest so they re-read 1585 * mmu_ready */ 1586 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1587 1588 ret = -ENXIO; 1589 if (!resize || (resize->order != shift)) 1590 goto out; 1591 1592 ret = resize->error; 1593 if (ret) 1594 goto out; 1595 1596 ret = resize_hpt_rehash(resize); 1597 if (ret) 1598 goto out; 1599 1600 resize_hpt_pivot(resize); 1601 1602 out: 1603 /* Let VCPUs run again */ 1604 kvm->arch.mmu_ready = 1; 1605 smp_mb(); 1606 out_no_hpt: 1607 resize_hpt_release(kvm, resize); 1608 mutex_unlock(&kvm->lock); 1609 return ret; 1610 } 1611 1612 /* 1613 * Functions for reading and writing the hash table via reads and 1614 * writes on a file descriptor. 1615 * 1616 * Reads return the guest view of the hash table, which has to be 1617 * pieced together from the real hash table and the guest_rpte 1618 * values in the revmap array. 1619 * 1620 * On writes, each HPTE written is considered in turn, and if it 1621 * is valid, it is written to the HPT as if an H_ENTER with the 1622 * exact flag set was done. When the invalid count is non-zero 1623 * in the header written to the stream, the kernel will make 1624 * sure that that many HPTEs are invalid, and invalidate them 1625 * if not. 1626 */ 1627 1628 struct kvm_htab_ctx { 1629 unsigned long index; 1630 unsigned long flags; 1631 struct kvm *kvm; 1632 int first_pass; 1633 }; 1634 1635 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1636 1637 /* 1638 * Returns 1 if this HPT entry has been modified or has pending 1639 * R/C bit changes. 1640 */ 1641 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1642 { 1643 unsigned long rcbits_unset; 1644 1645 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1646 return 1; 1647 1648 /* Also need to consider changes in reference and changed bits */ 1649 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1650 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1651 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1652 return 1; 1653 1654 return 0; 1655 } 1656 1657 static long record_hpte(unsigned long flags, __be64 *hptp, 1658 unsigned long *hpte, struct revmap_entry *revp, 1659 int want_valid, int first_pass) 1660 { 1661 unsigned long v, r, hr; 1662 unsigned long rcbits_unset; 1663 int ok = 1; 1664 int valid, dirty; 1665 1666 /* Unmodified entries are uninteresting except on the first pass */ 1667 dirty = hpte_dirty(revp, hptp); 1668 if (!first_pass && !dirty) 1669 return 0; 1670 1671 valid = 0; 1672 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1673 valid = 1; 1674 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1675 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1676 valid = 0; 1677 } 1678 if (valid != want_valid) 1679 return 0; 1680 1681 v = r = 0; 1682 if (valid || dirty) { 1683 /* lock the HPTE so it's stable and read it */ 1684 preempt_disable(); 1685 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1686 cpu_relax(); 1687 v = be64_to_cpu(hptp[0]); 1688 hr = be64_to_cpu(hptp[1]); 1689 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1690 v = hpte_new_to_old_v(v, hr); 1691 hr = hpte_new_to_old_r(hr); 1692 } 1693 1694 /* re-evaluate valid and dirty from synchronized HPTE value */ 1695 valid = !!(v & HPTE_V_VALID); 1696 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1697 1698 /* Harvest R and C into guest view if necessary */ 1699 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1700 if (valid && (rcbits_unset & hr)) { 1701 revp->guest_rpte |= (hr & 1702 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1703 dirty = 1; 1704 } 1705 1706 if (v & HPTE_V_ABSENT) { 1707 v &= ~HPTE_V_ABSENT; 1708 v |= HPTE_V_VALID; 1709 valid = 1; 1710 } 1711 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1712 valid = 0; 1713 1714 r = revp->guest_rpte; 1715 /* only clear modified if this is the right sort of entry */ 1716 if (valid == want_valid && dirty) { 1717 r &= ~HPTE_GR_MODIFIED; 1718 revp->guest_rpte = r; 1719 } 1720 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1721 preempt_enable(); 1722 if (!(valid == want_valid && (first_pass || dirty))) 1723 ok = 0; 1724 } 1725 hpte[0] = cpu_to_be64(v); 1726 hpte[1] = cpu_to_be64(r); 1727 return ok; 1728 } 1729 1730 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1731 size_t count, loff_t *ppos) 1732 { 1733 struct kvm_htab_ctx *ctx = file->private_data; 1734 struct kvm *kvm = ctx->kvm; 1735 struct kvm_get_htab_header hdr; 1736 __be64 *hptp; 1737 struct revmap_entry *revp; 1738 unsigned long i, nb, nw; 1739 unsigned long __user *lbuf; 1740 struct kvm_get_htab_header __user *hptr; 1741 unsigned long flags; 1742 int first_pass; 1743 unsigned long hpte[2]; 1744 1745 if (!access_ok(VERIFY_WRITE, buf, count)) 1746 return -EFAULT; 1747 if (kvm_is_radix(kvm)) 1748 return 0; 1749 1750 first_pass = ctx->first_pass; 1751 flags = ctx->flags; 1752 1753 i = ctx->index; 1754 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1755 revp = kvm->arch.hpt.rev + i; 1756 lbuf = (unsigned long __user *)buf; 1757 1758 nb = 0; 1759 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1760 /* Initialize header */ 1761 hptr = (struct kvm_get_htab_header __user *)buf; 1762 hdr.n_valid = 0; 1763 hdr.n_invalid = 0; 1764 nw = nb; 1765 nb += sizeof(hdr); 1766 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1767 1768 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1769 if (!first_pass) { 1770 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1771 !hpte_dirty(revp, hptp)) { 1772 ++i; 1773 hptp += 2; 1774 ++revp; 1775 } 1776 } 1777 hdr.index = i; 1778 1779 /* Grab a series of valid entries */ 1780 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1781 hdr.n_valid < 0xffff && 1782 nb + HPTE_SIZE < count && 1783 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1784 /* valid entry, write it out */ 1785 ++hdr.n_valid; 1786 if (__put_user(hpte[0], lbuf) || 1787 __put_user(hpte[1], lbuf + 1)) 1788 return -EFAULT; 1789 nb += HPTE_SIZE; 1790 lbuf += 2; 1791 ++i; 1792 hptp += 2; 1793 ++revp; 1794 } 1795 /* Now skip invalid entries while we can */ 1796 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1797 hdr.n_invalid < 0xffff && 1798 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1799 /* found an invalid entry */ 1800 ++hdr.n_invalid; 1801 ++i; 1802 hptp += 2; 1803 ++revp; 1804 } 1805 1806 if (hdr.n_valid || hdr.n_invalid) { 1807 /* write back the header */ 1808 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1809 return -EFAULT; 1810 nw = nb; 1811 buf = (char __user *)lbuf; 1812 } else { 1813 nb = nw; 1814 } 1815 1816 /* Check if we've wrapped around the hash table */ 1817 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1818 i = 0; 1819 ctx->first_pass = 0; 1820 break; 1821 } 1822 } 1823 1824 ctx->index = i; 1825 1826 return nb; 1827 } 1828 1829 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1830 size_t count, loff_t *ppos) 1831 { 1832 struct kvm_htab_ctx *ctx = file->private_data; 1833 struct kvm *kvm = ctx->kvm; 1834 struct kvm_get_htab_header hdr; 1835 unsigned long i, j; 1836 unsigned long v, r; 1837 unsigned long __user *lbuf; 1838 __be64 *hptp; 1839 unsigned long tmp[2]; 1840 ssize_t nb; 1841 long int err, ret; 1842 int mmu_ready; 1843 int pshift; 1844 1845 if (!access_ok(VERIFY_READ, buf, count)) 1846 return -EFAULT; 1847 if (kvm_is_radix(kvm)) 1848 return -EINVAL; 1849 1850 /* lock out vcpus from running while we're doing this */ 1851 mutex_lock(&kvm->lock); 1852 mmu_ready = kvm->arch.mmu_ready; 1853 if (mmu_ready) { 1854 kvm->arch.mmu_ready = 0; /* temporarily */ 1855 /* order mmu_ready vs. vcpus_running */ 1856 smp_mb(); 1857 if (atomic_read(&kvm->arch.vcpus_running)) { 1858 kvm->arch.mmu_ready = 1; 1859 mutex_unlock(&kvm->lock); 1860 return -EBUSY; 1861 } 1862 } 1863 1864 err = 0; 1865 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1866 err = -EFAULT; 1867 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1868 break; 1869 1870 err = 0; 1871 if (nb + hdr.n_valid * HPTE_SIZE > count) 1872 break; 1873 1874 nb += sizeof(hdr); 1875 buf += sizeof(hdr); 1876 1877 err = -EINVAL; 1878 i = hdr.index; 1879 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1880 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1881 break; 1882 1883 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1884 lbuf = (unsigned long __user *)buf; 1885 for (j = 0; j < hdr.n_valid; ++j) { 1886 __be64 hpte_v; 1887 __be64 hpte_r; 1888 1889 err = -EFAULT; 1890 if (__get_user(hpte_v, lbuf) || 1891 __get_user(hpte_r, lbuf + 1)) 1892 goto out; 1893 v = be64_to_cpu(hpte_v); 1894 r = be64_to_cpu(hpte_r); 1895 err = -EINVAL; 1896 if (!(v & HPTE_V_VALID)) 1897 goto out; 1898 pshift = kvmppc_hpte_base_page_shift(v, r); 1899 if (pshift <= 0) 1900 goto out; 1901 lbuf += 2; 1902 nb += HPTE_SIZE; 1903 1904 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1905 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1906 err = -EIO; 1907 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1908 tmp); 1909 if (ret != H_SUCCESS) { 1910 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1911 "r=%lx\n", ret, i, v, r); 1912 goto out; 1913 } 1914 if (!mmu_ready && is_vrma_hpte(v)) { 1915 unsigned long senc, lpcr; 1916 1917 senc = slb_pgsize_encoding(1ul << pshift); 1918 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1919 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1920 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1921 lpcr = senc << (LPCR_VRMASD_SH - 4); 1922 kvmppc_update_lpcr(kvm, lpcr, 1923 LPCR_VRMASD); 1924 } else { 1925 kvmppc_setup_partition_table(kvm); 1926 } 1927 mmu_ready = 1; 1928 } 1929 ++i; 1930 hptp += 2; 1931 } 1932 1933 for (j = 0; j < hdr.n_invalid; ++j) { 1934 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1935 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1936 ++i; 1937 hptp += 2; 1938 } 1939 err = 0; 1940 } 1941 1942 out: 1943 /* Order HPTE updates vs. mmu_ready */ 1944 smp_wmb(); 1945 kvm->arch.mmu_ready = mmu_ready; 1946 mutex_unlock(&kvm->lock); 1947 1948 if (err) 1949 return err; 1950 return nb; 1951 } 1952 1953 static int kvm_htab_release(struct inode *inode, struct file *filp) 1954 { 1955 struct kvm_htab_ctx *ctx = filp->private_data; 1956 1957 filp->private_data = NULL; 1958 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1959 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1960 kvm_put_kvm(ctx->kvm); 1961 kfree(ctx); 1962 return 0; 1963 } 1964 1965 static const struct file_operations kvm_htab_fops = { 1966 .read = kvm_htab_read, 1967 .write = kvm_htab_write, 1968 .llseek = default_llseek, 1969 .release = kvm_htab_release, 1970 }; 1971 1972 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1973 { 1974 int ret; 1975 struct kvm_htab_ctx *ctx; 1976 int rwflag; 1977 1978 /* reject flags we don't recognize */ 1979 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1980 return -EINVAL; 1981 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1982 if (!ctx) 1983 return -ENOMEM; 1984 kvm_get_kvm(kvm); 1985 ctx->kvm = kvm; 1986 ctx->index = ghf->start_index; 1987 ctx->flags = ghf->flags; 1988 ctx->first_pass = 1; 1989 1990 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1991 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1992 if (ret < 0) { 1993 kfree(ctx); 1994 kvm_put_kvm(kvm); 1995 return ret; 1996 } 1997 1998 if (rwflag == O_RDONLY) { 1999 mutex_lock(&kvm->slots_lock); 2000 atomic_inc(&kvm->arch.hpte_mod_interest); 2001 /* make sure kvmppc_do_h_enter etc. see the increment */ 2002 synchronize_srcu_expedited(&kvm->srcu); 2003 mutex_unlock(&kvm->slots_lock); 2004 } 2005 2006 return ret; 2007 } 2008 2009 struct debugfs_htab_state { 2010 struct kvm *kvm; 2011 struct mutex mutex; 2012 unsigned long hpt_index; 2013 int chars_left; 2014 int buf_index; 2015 char buf[64]; 2016 }; 2017 2018 static int debugfs_htab_open(struct inode *inode, struct file *file) 2019 { 2020 struct kvm *kvm = inode->i_private; 2021 struct debugfs_htab_state *p; 2022 2023 p = kzalloc(sizeof(*p), GFP_KERNEL); 2024 if (!p) 2025 return -ENOMEM; 2026 2027 kvm_get_kvm(kvm); 2028 p->kvm = kvm; 2029 mutex_init(&p->mutex); 2030 file->private_data = p; 2031 2032 return nonseekable_open(inode, file); 2033 } 2034 2035 static int debugfs_htab_release(struct inode *inode, struct file *file) 2036 { 2037 struct debugfs_htab_state *p = file->private_data; 2038 2039 kvm_put_kvm(p->kvm); 2040 kfree(p); 2041 return 0; 2042 } 2043 2044 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2045 size_t len, loff_t *ppos) 2046 { 2047 struct debugfs_htab_state *p = file->private_data; 2048 ssize_t ret, r; 2049 unsigned long i, n; 2050 unsigned long v, hr, gr; 2051 struct kvm *kvm; 2052 __be64 *hptp; 2053 2054 kvm = p->kvm; 2055 if (kvm_is_radix(kvm)) 2056 return 0; 2057 2058 ret = mutex_lock_interruptible(&p->mutex); 2059 if (ret) 2060 return ret; 2061 2062 if (p->chars_left) { 2063 n = p->chars_left; 2064 if (n > len) 2065 n = len; 2066 r = copy_to_user(buf, p->buf + p->buf_index, n); 2067 n -= r; 2068 p->chars_left -= n; 2069 p->buf_index += n; 2070 buf += n; 2071 len -= n; 2072 ret = n; 2073 if (r) { 2074 if (!n) 2075 ret = -EFAULT; 2076 goto out; 2077 } 2078 } 2079 2080 i = p->hpt_index; 2081 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2082 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2083 ++i, hptp += 2) { 2084 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2085 continue; 2086 2087 /* lock the HPTE so it's stable and read it */ 2088 preempt_disable(); 2089 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2090 cpu_relax(); 2091 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2092 hr = be64_to_cpu(hptp[1]); 2093 gr = kvm->arch.hpt.rev[i].guest_rpte; 2094 unlock_hpte(hptp, v); 2095 preempt_enable(); 2096 2097 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2098 continue; 2099 2100 n = scnprintf(p->buf, sizeof(p->buf), 2101 "%6lx %.16lx %.16lx %.16lx\n", 2102 i, v, hr, gr); 2103 p->chars_left = n; 2104 if (n > len) 2105 n = len; 2106 r = copy_to_user(buf, p->buf, n); 2107 n -= r; 2108 p->chars_left -= n; 2109 p->buf_index = n; 2110 buf += n; 2111 len -= n; 2112 ret += n; 2113 if (r) { 2114 if (!ret) 2115 ret = -EFAULT; 2116 goto out; 2117 } 2118 } 2119 p->hpt_index = i; 2120 2121 out: 2122 mutex_unlock(&p->mutex); 2123 return ret; 2124 } 2125 2126 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2127 size_t len, loff_t *ppos) 2128 { 2129 return -EACCES; 2130 } 2131 2132 static const struct file_operations debugfs_htab_fops = { 2133 .owner = THIS_MODULE, 2134 .open = debugfs_htab_open, 2135 .release = debugfs_htab_release, 2136 .read = debugfs_htab_read, 2137 .write = debugfs_htab_write, 2138 .llseek = generic_file_llseek, 2139 }; 2140 2141 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2142 { 2143 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2144 kvm->arch.debugfs_dir, kvm, 2145 &debugfs_htab_fops); 2146 } 2147 2148 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2149 { 2150 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2151 2152 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2153 2154 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2155 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2156 2157 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2158 } 2159