1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 #include <asm/pte-walk.h> 41 42 #include "trace_hv.h" 43 44 //#define DEBUG_RESIZE_HPT 1 45 46 #ifdef DEBUG_RESIZE_HPT 47 #define resize_hpt_debug(resize, ...) \ 48 do { \ 49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 50 printk(__VA_ARGS__); \ 51 } while (0) 52 #else 53 #define resize_hpt_debug(resize, ...) \ 54 do { } while (0) 55 #endif 56 57 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 58 long pte_index, unsigned long pteh, 59 unsigned long ptel, unsigned long *pte_idx_ret); 60 61 struct kvm_resize_hpt { 62 /* These fields read-only after init */ 63 struct kvm *kvm; 64 struct work_struct work; 65 u32 order; 66 67 /* These fields protected by kvm->lock */ 68 69 /* Possible values and their usage: 70 * <0 an error occurred during allocation, 71 * -EBUSY allocation is in the progress, 72 * 0 allocation made successfuly. 73 */ 74 int error; 75 76 /* Private to the work thread, until error != -EBUSY, 77 * then protected by kvm->lock. 78 */ 79 struct kvm_hpt_info hpt; 80 }; 81 82 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 83 { 84 unsigned long hpt = 0; 85 int cma = 0; 86 struct page *page = NULL; 87 struct revmap_entry *rev; 88 unsigned long npte; 89 90 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 91 return -EINVAL; 92 93 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 94 if (page) { 95 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 96 memset((void *)hpt, 0, (1ul << order)); 97 cma = 1; 98 } 99 100 if (!hpt) 101 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 102 |__GFP_NOWARN, order - PAGE_SHIFT); 103 104 if (!hpt) 105 return -ENOMEM; 106 107 /* HPTEs are 2**4 bytes long */ 108 npte = 1ul << (order - 4); 109 110 /* Allocate reverse map array */ 111 rev = vmalloc(sizeof(struct revmap_entry) * npte); 112 if (!rev) { 113 if (cma) 114 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 115 else 116 free_pages(hpt, order - PAGE_SHIFT); 117 return -ENOMEM; 118 } 119 120 info->order = order; 121 info->virt = hpt; 122 info->cma = cma; 123 info->rev = rev; 124 125 return 0; 126 } 127 128 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 129 { 130 atomic64_set(&kvm->arch.mmio_update, 0); 131 kvm->arch.hpt = *info; 132 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 133 134 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 135 info->virt, (long)info->order, kvm->arch.lpid); 136 } 137 138 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 139 { 140 long err = -EBUSY; 141 struct kvm_hpt_info info; 142 143 mutex_lock(&kvm->lock); 144 if (kvm->arch.mmu_ready) { 145 kvm->arch.mmu_ready = 0; 146 /* order mmu_ready vs. vcpus_running */ 147 smp_mb(); 148 if (atomic_read(&kvm->arch.vcpus_running)) { 149 kvm->arch.mmu_ready = 1; 150 goto out; 151 } 152 } 153 if (kvm_is_radix(kvm)) { 154 err = kvmppc_switch_mmu_to_hpt(kvm); 155 if (err) 156 goto out; 157 } 158 159 if (kvm->arch.hpt.order == order) { 160 /* We already have a suitable HPT */ 161 162 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 163 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 164 /* 165 * Reset all the reverse-mapping chains for all memslots 166 */ 167 kvmppc_rmap_reset(kvm); 168 err = 0; 169 goto out; 170 } 171 172 if (kvm->arch.hpt.virt) { 173 kvmppc_free_hpt(&kvm->arch.hpt); 174 kvmppc_rmap_reset(kvm); 175 } 176 177 err = kvmppc_allocate_hpt(&info, order); 178 if (err < 0) 179 goto out; 180 kvmppc_set_hpt(kvm, &info); 181 182 out: 183 if (err == 0) 184 /* Ensure that each vcpu will flush its TLB on next entry. */ 185 cpumask_setall(&kvm->arch.need_tlb_flush); 186 187 mutex_unlock(&kvm->lock); 188 return err; 189 } 190 191 void kvmppc_free_hpt(struct kvm_hpt_info *info) 192 { 193 vfree(info->rev); 194 info->rev = NULL; 195 if (info->cma) 196 kvm_free_hpt_cma(virt_to_page(info->virt), 197 1 << (info->order - PAGE_SHIFT)); 198 else if (info->virt) 199 free_pages(info->virt, info->order - PAGE_SHIFT); 200 info->virt = 0; 201 info->order = 0; 202 } 203 204 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 205 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 206 { 207 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 208 } 209 210 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 211 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 212 { 213 return (pgsize == 0x10000) ? 0x1000 : 0; 214 } 215 216 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 217 unsigned long porder) 218 { 219 unsigned long i; 220 unsigned long npages; 221 unsigned long hp_v, hp_r; 222 unsigned long addr, hash; 223 unsigned long psize; 224 unsigned long hp0, hp1; 225 unsigned long idx_ret; 226 long ret; 227 struct kvm *kvm = vcpu->kvm; 228 229 psize = 1ul << porder; 230 npages = memslot->npages >> (porder - PAGE_SHIFT); 231 232 /* VRMA can't be > 1TB */ 233 if (npages > 1ul << (40 - porder)) 234 npages = 1ul << (40 - porder); 235 /* Can't use more than 1 HPTE per HPTEG */ 236 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 237 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 238 239 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 240 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 241 hp1 = hpte1_pgsize_encoding(psize) | 242 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 243 244 for (i = 0; i < npages; ++i) { 245 addr = i << porder; 246 /* can't use hpt_hash since va > 64 bits */ 247 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 248 & kvmppc_hpt_mask(&kvm->arch.hpt); 249 /* 250 * We assume that the hash table is empty and no 251 * vcpus are using it at this stage. Since we create 252 * at most one HPTE per HPTEG, we just assume entry 7 253 * is available and use it. 254 */ 255 hash = (hash << 3) + 7; 256 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 257 hp_r = hp1 | addr; 258 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 259 &idx_ret); 260 if (ret != H_SUCCESS) { 261 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 262 addr, ret); 263 break; 264 } 265 } 266 } 267 268 int kvmppc_mmu_hv_init(void) 269 { 270 unsigned long host_lpid, rsvd_lpid; 271 272 if (!cpu_has_feature(CPU_FTR_HVMODE)) 273 return -EINVAL; 274 275 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 276 host_lpid = mfspr(SPRN_LPID); 277 rsvd_lpid = LPID_RSVD; 278 279 kvmppc_init_lpid(rsvd_lpid + 1); 280 281 kvmppc_claim_lpid(host_lpid); 282 /* rsvd_lpid is reserved for use in partition switching */ 283 kvmppc_claim_lpid(rsvd_lpid); 284 285 return 0; 286 } 287 288 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 289 { 290 unsigned long msr = vcpu->arch.intr_msr; 291 292 /* If transactional, change to suspend mode on IRQ delivery */ 293 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 294 msr |= MSR_TS_S; 295 else 296 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 297 kvmppc_set_msr(vcpu, msr); 298 } 299 300 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 301 long pte_index, unsigned long pteh, 302 unsigned long ptel, unsigned long *pte_idx_ret) 303 { 304 long ret; 305 306 /* Protect linux PTE lookup from page table destruction */ 307 rcu_read_lock_sched(); /* this disables preemption too */ 308 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 309 current->mm->pgd, false, pte_idx_ret); 310 rcu_read_unlock_sched(); 311 if (ret == H_TOO_HARD) { 312 /* this can't happen */ 313 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 314 ret = H_RESOURCE; /* or something */ 315 } 316 return ret; 317 318 } 319 320 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 321 gva_t eaddr) 322 { 323 u64 mask; 324 int i; 325 326 for (i = 0; i < vcpu->arch.slb_nr; i++) { 327 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 328 continue; 329 330 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 331 mask = ESID_MASK_1T; 332 else 333 mask = ESID_MASK; 334 335 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 336 return &vcpu->arch.slb[i]; 337 } 338 return NULL; 339 } 340 341 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 342 unsigned long ea) 343 { 344 unsigned long ra_mask; 345 346 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 347 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 348 } 349 350 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 351 struct kvmppc_pte *gpte, bool data, bool iswrite) 352 { 353 struct kvm *kvm = vcpu->kvm; 354 struct kvmppc_slb *slbe; 355 unsigned long slb_v; 356 unsigned long pp, key; 357 unsigned long v, orig_v, gr; 358 __be64 *hptep; 359 int index; 360 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 361 362 if (kvm_is_radix(vcpu->kvm)) 363 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 364 365 /* Get SLB entry */ 366 if (virtmode) { 367 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 368 if (!slbe) 369 return -EINVAL; 370 slb_v = slbe->origv; 371 } else { 372 /* real mode access */ 373 slb_v = vcpu->kvm->arch.vrma_slb_v; 374 } 375 376 preempt_disable(); 377 /* Find the HPTE in the hash table */ 378 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 379 HPTE_V_VALID | HPTE_V_ABSENT); 380 if (index < 0) { 381 preempt_enable(); 382 return -ENOENT; 383 } 384 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 385 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 386 if (cpu_has_feature(CPU_FTR_ARCH_300)) 387 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 388 gr = kvm->arch.hpt.rev[index].guest_rpte; 389 390 unlock_hpte(hptep, orig_v); 391 preempt_enable(); 392 393 gpte->eaddr = eaddr; 394 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 395 396 /* Get PP bits and key for permission check */ 397 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 398 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 399 key &= slb_v; 400 401 /* Calculate permissions */ 402 gpte->may_read = hpte_read_permission(pp, key); 403 gpte->may_write = hpte_write_permission(pp, key); 404 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 405 406 /* Storage key permission check for POWER7 */ 407 if (data && virtmode) { 408 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 409 if (amrfield & 1) 410 gpte->may_read = 0; 411 if (amrfield & 2) 412 gpte->may_write = 0; 413 } 414 415 /* Get the guest physical address */ 416 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 417 return 0; 418 } 419 420 /* 421 * Quick test for whether an instruction is a load or a store. 422 * If the instruction is a load or a store, then this will indicate 423 * which it is, at least on server processors. (Embedded processors 424 * have some external PID instructions that don't follow the rule 425 * embodied here.) If the instruction isn't a load or store, then 426 * this doesn't return anything useful. 427 */ 428 static int instruction_is_store(unsigned int instr) 429 { 430 unsigned int mask; 431 432 mask = 0x10000000; 433 if ((instr & 0xfc000000) == 0x7c000000) 434 mask = 0x100; /* major opcode 31 */ 435 return (instr & mask) != 0; 436 } 437 438 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 439 unsigned long gpa, gva_t ea, int is_store) 440 { 441 u32 last_inst; 442 443 /* 444 * If we fail, we just return to the guest and try executing it again. 445 */ 446 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 447 EMULATE_DONE) 448 return RESUME_GUEST; 449 450 /* 451 * WARNING: We do not know for sure whether the instruction we just 452 * read from memory is the same that caused the fault in the first 453 * place. If the instruction we read is neither an load or a store, 454 * then it can't access memory, so we don't need to worry about 455 * enforcing access permissions. So, assuming it is a load or 456 * store, we just check that its direction (load or store) is 457 * consistent with the original fault, since that's what we 458 * checked the access permissions against. If there is a mismatch 459 * we just return and retry the instruction. 460 */ 461 462 if (instruction_is_store(last_inst) != !!is_store) 463 return RESUME_GUEST; 464 465 /* 466 * Emulated accesses are emulated by looking at the hash for 467 * translation once, then performing the access later. The 468 * translation could be invalidated in the meantime in which 469 * point performing the subsequent memory access on the old 470 * physical address could possibly be a security hole for the 471 * guest (but not the host). 472 * 473 * This is less of an issue for MMIO stores since they aren't 474 * globally visible. It could be an issue for MMIO loads to 475 * a certain extent but we'll ignore it for now. 476 */ 477 478 vcpu->arch.paddr_accessed = gpa; 479 vcpu->arch.vaddr_accessed = ea; 480 return kvmppc_emulate_mmio(run, vcpu); 481 } 482 483 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 484 unsigned long ea, unsigned long dsisr) 485 { 486 struct kvm *kvm = vcpu->kvm; 487 unsigned long hpte[3], r; 488 unsigned long hnow_v, hnow_r; 489 __be64 *hptep; 490 unsigned long mmu_seq, psize, pte_size; 491 unsigned long gpa_base, gfn_base; 492 unsigned long gpa, gfn, hva, pfn; 493 struct kvm_memory_slot *memslot; 494 unsigned long *rmap; 495 struct revmap_entry *rev; 496 struct page *page, *pages[1]; 497 long index, ret, npages; 498 bool is_ci; 499 unsigned int writing, write_ok; 500 struct vm_area_struct *vma; 501 unsigned long rcbits; 502 long mmio_update; 503 504 if (kvm_is_radix(kvm)) 505 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 506 507 /* 508 * Real-mode code has already searched the HPT and found the 509 * entry we're interested in. Lock the entry and check that 510 * it hasn't changed. If it has, just return and re-execute the 511 * instruction. 512 */ 513 if (ea != vcpu->arch.pgfault_addr) 514 return RESUME_GUEST; 515 516 if (vcpu->arch.pgfault_cache) { 517 mmio_update = atomic64_read(&kvm->arch.mmio_update); 518 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 519 r = vcpu->arch.pgfault_cache->rpte; 520 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 521 r); 522 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 523 gfn_base = gpa_base >> PAGE_SHIFT; 524 gpa = gpa_base | (ea & (psize - 1)); 525 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 526 dsisr & DSISR_ISSTORE); 527 } 528 } 529 index = vcpu->arch.pgfault_index; 530 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 531 rev = &kvm->arch.hpt.rev[index]; 532 preempt_disable(); 533 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 534 cpu_relax(); 535 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 536 hpte[1] = be64_to_cpu(hptep[1]); 537 hpte[2] = r = rev->guest_rpte; 538 unlock_hpte(hptep, hpte[0]); 539 preempt_enable(); 540 541 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 542 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 543 hpte[1] = hpte_new_to_old_r(hpte[1]); 544 } 545 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 546 hpte[1] != vcpu->arch.pgfault_hpte[1]) 547 return RESUME_GUEST; 548 549 /* Translate the logical address and get the page */ 550 psize = kvmppc_actual_pgsz(hpte[0], r); 551 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 552 gfn_base = gpa_base >> PAGE_SHIFT; 553 gpa = gpa_base | (ea & (psize - 1)); 554 gfn = gpa >> PAGE_SHIFT; 555 memslot = gfn_to_memslot(kvm, gfn); 556 557 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 558 559 /* No memslot means it's an emulated MMIO region */ 560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 561 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 562 dsisr & DSISR_ISSTORE); 563 564 /* 565 * This should never happen, because of the slot_is_aligned() 566 * check in kvmppc_do_h_enter(). 567 */ 568 if (gfn_base < memslot->base_gfn) 569 return -EFAULT; 570 571 /* used to check for invalidations in progress */ 572 mmu_seq = kvm->mmu_notifier_seq; 573 smp_rmb(); 574 575 ret = -EFAULT; 576 is_ci = false; 577 pfn = 0; 578 page = NULL; 579 pte_size = PAGE_SIZE; 580 writing = (dsisr & DSISR_ISSTORE) != 0; 581 /* If writing != 0, then the HPTE must allow writing, if we get here */ 582 write_ok = writing; 583 hva = gfn_to_hva_memslot(memslot, gfn); 584 npages = get_user_pages_fast(hva, 1, writing, pages); 585 if (npages < 1) { 586 /* Check if it's an I/O mapping */ 587 down_read(¤t->mm->mmap_sem); 588 vma = find_vma(current->mm, hva); 589 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 590 (vma->vm_flags & VM_PFNMAP)) { 591 pfn = vma->vm_pgoff + 592 ((hva - vma->vm_start) >> PAGE_SHIFT); 593 pte_size = psize; 594 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 595 write_ok = vma->vm_flags & VM_WRITE; 596 } 597 up_read(¤t->mm->mmap_sem); 598 if (!pfn) 599 goto out_put; 600 } else { 601 page = pages[0]; 602 pfn = page_to_pfn(page); 603 if (PageHuge(page)) { 604 page = compound_head(page); 605 pte_size <<= compound_order(page); 606 } 607 /* if the guest wants write access, see if that is OK */ 608 if (!writing && hpte_is_writable(r)) { 609 pte_t *ptep, pte; 610 unsigned long flags; 611 /* 612 * We need to protect against page table destruction 613 * hugepage split and collapse. 614 */ 615 local_irq_save(flags); 616 ptep = find_current_mm_pte(current->mm->pgd, 617 hva, NULL, NULL); 618 if (ptep) { 619 pte = kvmppc_read_update_linux_pte(ptep, 1); 620 if (__pte_write(pte)) 621 write_ok = 1; 622 } 623 local_irq_restore(flags); 624 } 625 } 626 627 if (psize > pte_size) 628 goto out_put; 629 630 /* Check WIMG vs. the actual page we're accessing */ 631 if (!hpte_cache_flags_ok(r, is_ci)) { 632 if (is_ci) 633 goto out_put; 634 /* 635 * Allow guest to map emulated device memory as 636 * uncacheable, but actually make it cacheable. 637 */ 638 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 639 } 640 641 /* 642 * Set the HPTE to point to pfn. 643 * Since the pfn is at PAGE_SIZE granularity, make sure we 644 * don't mask out lower-order bits if psize < PAGE_SIZE. 645 */ 646 if (psize < PAGE_SIZE) 647 psize = PAGE_SIZE; 648 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 649 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 650 if (hpte_is_writable(r) && !write_ok) 651 r = hpte_make_readonly(r); 652 ret = RESUME_GUEST; 653 preempt_disable(); 654 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 655 cpu_relax(); 656 hnow_v = be64_to_cpu(hptep[0]); 657 hnow_r = be64_to_cpu(hptep[1]); 658 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 659 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 660 hnow_r = hpte_new_to_old_r(hnow_r); 661 } 662 663 /* 664 * If the HPT is being resized, don't update the HPTE, 665 * instead let the guest retry after the resize operation is complete. 666 * The synchronization for mmu_ready test vs. set is provided 667 * by the HPTE lock. 668 */ 669 if (!kvm->arch.mmu_ready) 670 goto out_unlock; 671 672 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 673 rev->guest_rpte != hpte[2]) 674 /* HPTE has been changed under us; let the guest retry */ 675 goto out_unlock; 676 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 677 678 /* Always put the HPTE in the rmap chain for the page base address */ 679 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 680 lock_rmap(rmap); 681 682 /* Check if we might have been invalidated; let the guest retry if so */ 683 ret = RESUME_GUEST; 684 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 685 unlock_rmap(rmap); 686 goto out_unlock; 687 } 688 689 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 690 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 691 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 692 693 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 694 /* HPTE was previously valid, so we need to invalidate it */ 695 unlock_rmap(rmap); 696 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 697 kvmppc_invalidate_hpte(kvm, hptep, index); 698 /* don't lose previous R and C bits */ 699 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 700 } else { 701 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 702 } 703 704 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 705 r = hpte_old_to_new_r(hpte[0], r); 706 hpte[0] = hpte_old_to_new_v(hpte[0]); 707 } 708 hptep[1] = cpu_to_be64(r); 709 eieio(); 710 __unlock_hpte(hptep, hpte[0]); 711 asm volatile("ptesync" : : : "memory"); 712 preempt_enable(); 713 if (page && hpte_is_writable(r)) 714 SetPageDirty(page); 715 716 out_put: 717 trace_kvm_page_fault_exit(vcpu, hpte, ret); 718 719 if (page) { 720 /* 721 * We drop pages[0] here, not page because page might 722 * have been set to the head page of a compound, but 723 * we have to drop the reference on the correct tail 724 * page to match the get inside gup() 725 */ 726 put_page(pages[0]); 727 } 728 return ret; 729 730 out_unlock: 731 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 732 preempt_enable(); 733 goto out_put; 734 } 735 736 void kvmppc_rmap_reset(struct kvm *kvm) 737 { 738 struct kvm_memslots *slots; 739 struct kvm_memory_slot *memslot; 740 int srcu_idx; 741 742 srcu_idx = srcu_read_lock(&kvm->srcu); 743 slots = kvm_memslots(kvm); 744 kvm_for_each_memslot(memslot, slots) { 745 /* 746 * This assumes it is acceptable to lose reference and 747 * change bits across a reset. 748 */ 749 memset(memslot->arch.rmap, 0, 750 memslot->npages * sizeof(*memslot->arch.rmap)); 751 } 752 srcu_read_unlock(&kvm->srcu, srcu_idx); 753 } 754 755 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 756 unsigned long gfn); 757 758 static int kvm_handle_hva_range(struct kvm *kvm, 759 unsigned long start, 760 unsigned long end, 761 hva_handler_fn handler) 762 { 763 int ret; 764 int retval = 0; 765 struct kvm_memslots *slots; 766 struct kvm_memory_slot *memslot; 767 768 slots = kvm_memslots(kvm); 769 kvm_for_each_memslot(memslot, slots) { 770 unsigned long hva_start, hva_end; 771 gfn_t gfn, gfn_end; 772 773 hva_start = max(start, memslot->userspace_addr); 774 hva_end = min(end, memslot->userspace_addr + 775 (memslot->npages << PAGE_SHIFT)); 776 if (hva_start >= hva_end) 777 continue; 778 /* 779 * {gfn(page) | page intersects with [hva_start, hva_end)} = 780 * {gfn, gfn+1, ..., gfn_end-1}. 781 */ 782 gfn = hva_to_gfn_memslot(hva_start, memslot); 783 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 784 785 for (; gfn < gfn_end; ++gfn) { 786 ret = handler(kvm, memslot, gfn); 787 retval |= ret; 788 } 789 } 790 791 return retval; 792 } 793 794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 795 hva_handler_fn handler) 796 { 797 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 798 } 799 800 /* Must be called with both HPTE and rmap locked */ 801 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 802 struct kvm_memory_slot *memslot, 803 unsigned long *rmapp, unsigned long gfn) 804 { 805 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 806 struct revmap_entry *rev = kvm->arch.hpt.rev; 807 unsigned long j, h; 808 unsigned long ptel, psize, rcbits; 809 810 j = rev[i].forw; 811 if (j == i) { 812 /* chain is now empty */ 813 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 814 } else { 815 /* remove i from chain */ 816 h = rev[i].back; 817 rev[h].forw = j; 818 rev[j].back = h; 819 rev[i].forw = rev[i].back = i; 820 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 821 } 822 823 /* Now check and modify the HPTE */ 824 ptel = rev[i].guest_rpte; 825 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 826 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 827 hpte_rpn(ptel, psize) == gfn) { 828 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 829 kvmppc_invalidate_hpte(kvm, hptep, i); 830 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 831 /* Harvest R and C */ 832 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 833 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 834 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 835 kvmppc_update_dirty_map(memslot, gfn, psize); 836 if (rcbits & ~rev[i].guest_rpte) { 837 rev[i].guest_rpte = ptel | rcbits; 838 note_hpte_modification(kvm, &rev[i]); 839 } 840 } 841 } 842 843 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 844 unsigned long gfn) 845 { 846 unsigned long i; 847 __be64 *hptep; 848 unsigned long *rmapp; 849 850 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 851 for (;;) { 852 lock_rmap(rmapp); 853 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 854 unlock_rmap(rmapp); 855 break; 856 } 857 858 /* 859 * To avoid an ABBA deadlock with the HPTE lock bit, 860 * we can't spin on the HPTE lock while holding the 861 * rmap chain lock. 862 */ 863 i = *rmapp & KVMPPC_RMAP_INDEX; 864 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 865 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 866 /* unlock rmap before spinning on the HPTE lock */ 867 unlock_rmap(rmapp); 868 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 869 cpu_relax(); 870 continue; 871 } 872 873 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 874 unlock_rmap(rmapp); 875 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 876 } 877 return 0; 878 } 879 880 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva) 881 { 882 hva_handler_fn handler; 883 884 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 885 kvm_handle_hva(kvm, hva, handler); 886 return 0; 887 } 888 889 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 890 { 891 hva_handler_fn handler; 892 893 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 894 kvm_handle_hva_range(kvm, start, end, handler); 895 return 0; 896 } 897 898 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 899 struct kvm_memory_slot *memslot) 900 { 901 unsigned long gfn; 902 unsigned long n; 903 unsigned long *rmapp; 904 905 gfn = memslot->base_gfn; 906 rmapp = memslot->arch.rmap; 907 for (n = memslot->npages; n; --n, ++gfn) { 908 if (kvm_is_radix(kvm)) { 909 kvm_unmap_radix(kvm, memslot, gfn); 910 continue; 911 } 912 /* 913 * Testing the present bit without locking is OK because 914 * the memslot has been marked invalid already, and hence 915 * no new HPTEs referencing this page can be created, 916 * thus the present bit can't go from 0 to 1. 917 */ 918 if (*rmapp & KVMPPC_RMAP_PRESENT) 919 kvm_unmap_rmapp(kvm, memslot, gfn); 920 ++rmapp; 921 } 922 } 923 924 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 925 unsigned long gfn) 926 { 927 struct revmap_entry *rev = kvm->arch.hpt.rev; 928 unsigned long head, i, j; 929 __be64 *hptep; 930 int ret = 0; 931 unsigned long *rmapp; 932 933 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 934 retry: 935 lock_rmap(rmapp); 936 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 937 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 938 ret = 1; 939 } 940 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 941 unlock_rmap(rmapp); 942 return ret; 943 } 944 945 i = head = *rmapp & KVMPPC_RMAP_INDEX; 946 do { 947 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 948 j = rev[i].forw; 949 950 /* If this HPTE isn't referenced, ignore it */ 951 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 952 continue; 953 954 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 955 /* unlock rmap before spinning on the HPTE lock */ 956 unlock_rmap(rmapp); 957 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 958 cpu_relax(); 959 goto retry; 960 } 961 962 /* Now check and modify the HPTE */ 963 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 964 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 965 kvmppc_clear_ref_hpte(kvm, hptep, i); 966 if (!(rev[i].guest_rpte & HPTE_R_R)) { 967 rev[i].guest_rpte |= HPTE_R_R; 968 note_hpte_modification(kvm, &rev[i]); 969 } 970 ret = 1; 971 } 972 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 973 } while ((i = j) != head); 974 975 unlock_rmap(rmapp); 976 return ret; 977 } 978 979 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 980 { 981 hva_handler_fn handler; 982 983 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 984 return kvm_handle_hva_range(kvm, start, end, handler); 985 } 986 987 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 988 unsigned long gfn) 989 { 990 struct revmap_entry *rev = kvm->arch.hpt.rev; 991 unsigned long head, i, j; 992 unsigned long *hp; 993 int ret = 1; 994 unsigned long *rmapp; 995 996 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 997 if (*rmapp & KVMPPC_RMAP_REFERENCED) 998 return 1; 999 1000 lock_rmap(rmapp); 1001 if (*rmapp & KVMPPC_RMAP_REFERENCED) 1002 goto out; 1003 1004 if (*rmapp & KVMPPC_RMAP_PRESENT) { 1005 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1006 do { 1007 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1008 j = rev[i].forw; 1009 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1010 goto out; 1011 } while ((i = j) != head); 1012 } 1013 ret = 0; 1014 1015 out: 1016 unlock_rmap(rmapp); 1017 return ret; 1018 } 1019 1020 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1021 { 1022 hva_handler_fn handler; 1023 1024 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1025 return kvm_handle_hva(kvm, hva, handler); 1026 } 1027 1028 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1029 { 1030 hva_handler_fn handler; 1031 1032 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1033 kvm_handle_hva(kvm, hva, handler); 1034 } 1035 1036 static int vcpus_running(struct kvm *kvm) 1037 { 1038 return atomic_read(&kvm->arch.vcpus_running) != 0; 1039 } 1040 1041 /* 1042 * Returns the number of system pages that are dirty. 1043 * This can be more than 1 if we find a huge-page HPTE. 1044 */ 1045 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1046 { 1047 struct revmap_entry *rev = kvm->arch.hpt.rev; 1048 unsigned long head, i, j; 1049 unsigned long n; 1050 unsigned long v, r; 1051 __be64 *hptep; 1052 int npages_dirty = 0; 1053 1054 retry: 1055 lock_rmap(rmapp); 1056 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1057 unlock_rmap(rmapp); 1058 return npages_dirty; 1059 } 1060 1061 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1062 do { 1063 unsigned long hptep1; 1064 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1065 j = rev[i].forw; 1066 1067 /* 1068 * Checking the C (changed) bit here is racy since there 1069 * is no guarantee about when the hardware writes it back. 1070 * If the HPTE is not writable then it is stable since the 1071 * page can't be written to, and we would have done a tlbie 1072 * (which forces the hardware to complete any writeback) 1073 * when making the HPTE read-only. 1074 * If vcpus are running then this call is racy anyway 1075 * since the page could get dirtied subsequently, so we 1076 * expect there to be a further call which would pick up 1077 * any delayed C bit writeback. 1078 * Otherwise we need to do the tlbie even if C==0 in 1079 * order to pick up any delayed writeback of C. 1080 */ 1081 hptep1 = be64_to_cpu(hptep[1]); 1082 if (!(hptep1 & HPTE_R_C) && 1083 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1084 continue; 1085 1086 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1087 /* unlock rmap before spinning on the HPTE lock */ 1088 unlock_rmap(rmapp); 1089 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1090 cpu_relax(); 1091 goto retry; 1092 } 1093 1094 /* Now check and modify the HPTE */ 1095 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1096 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1097 continue; 1098 } 1099 1100 /* need to make it temporarily absent so C is stable */ 1101 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1102 kvmppc_invalidate_hpte(kvm, hptep, i); 1103 v = be64_to_cpu(hptep[0]); 1104 r = be64_to_cpu(hptep[1]); 1105 if (r & HPTE_R_C) { 1106 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1107 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1108 rev[i].guest_rpte |= HPTE_R_C; 1109 note_hpte_modification(kvm, &rev[i]); 1110 } 1111 n = kvmppc_actual_pgsz(v, r); 1112 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1113 if (n > npages_dirty) 1114 npages_dirty = n; 1115 eieio(); 1116 } 1117 v &= ~HPTE_V_ABSENT; 1118 v |= HPTE_V_VALID; 1119 __unlock_hpte(hptep, v); 1120 } while ((i = j) != head); 1121 1122 unlock_rmap(rmapp); 1123 return npages_dirty; 1124 } 1125 1126 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1127 struct kvm_memory_slot *memslot, 1128 unsigned long *map) 1129 { 1130 unsigned long gfn; 1131 1132 if (!vpa->dirty || !vpa->pinned_addr) 1133 return; 1134 gfn = vpa->gpa >> PAGE_SHIFT; 1135 if (gfn < memslot->base_gfn || 1136 gfn >= memslot->base_gfn + memslot->npages) 1137 return; 1138 1139 vpa->dirty = false; 1140 if (map) 1141 __set_bit_le(gfn - memslot->base_gfn, map); 1142 } 1143 1144 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1145 struct kvm_memory_slot *memslot, unsigned long *map) 1146 { 1147 unsigned long i; 1148 unsigned long *rmapp; 1149 1150 preempt_disable(); 1151 rmapp = memslot->arch.rmap; 1152 for (i = 0; i < memslot->npages; ++i) { 1153 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1154 /* 1155 * Note that if npages > 0 then i must be a multiple of npages, 1156 * since we always put huge-page HPTEs in the rmap chain 1157 * corresponding to their page base address. 1158 */ 1159 if (npages) 1160 set_dirty_bits(map, i, npages); 1161 ++rmapp; 1162 } 1163 preempt_enable(); 1164 return 0; 1165 } 1166 1167 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1168 unsigned long *nb_ret) 1169 { 1170 struct kvm_memory_slot *memslot; 1171 unsigned long gfn = gpa >> PAGE_SHIFT; 1172 struct page *page, *pages[1]; 1173 int npages; 1174 unsigned long hva, offset; 1175 int srcu_idx; 1176 1177 srcu_idx = srcu_read_lock(&kvm->srcu); 1178 memslot = gfn_to_memslot(kvm, gfn); 1179 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1180 goto err; 1181 hva = gfn_to_hva_memslot(memslot, gfn); 1182 npages = get_user_pages_fast(hva, 1, 1, pages); 1183 if (npages < 1) 1184 goto err; 1185 page = pages[0]; 1186 srcu_read_unlock(&kvm->srcu, srcu_idx); 1187 1188 offset = gpa & (PAGE_SIZE - 1); 1189 if (nb_ret) 1190 *nb_ret = PAGE_SIZE - offset; 1191 return page_address(page) + offset; 1192 1193 err: 1194 srcu_read_unlock(&kvm->srcu, srcu_idx); 1195 return NULL; 1196 } 1197 1198 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1199 bool dirty) 1200 { 1201 struct page *page = virt_to_page(va); 1202 struct kvm_memory_slot *memslot; 1203 unsigned long gfn; 1204 int srcu_idx; 1205 1206 put_page(page); 1207 1208 if (!dirty) 1209 return; 1210 1211 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1212 gfn = gpa >> PAGE_SHIFT; 1213 srcu_idx = srcu_read_lock(&kvm->srcu); 1214 memslot = gfn_to_memslot(kvm, gfn); 1215 if (memslot && memslot->dirty_bitmap) 1216 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1217 srcu_read_unlock(&kvm->srcu, srcu_idx); 1218 } 1219 1220 /* 1221 * HPT resizing 1222 */ 1223 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1224 { 1225 int rc; 1226 1227 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1228 if (rc < 0) 1229 return rc; 1230 1231 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1232 resize->hpt.virt); 1233 1234 return 0; 1235 } 1236 1237 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1238 unsigned long idx) 1239 { 1240 struct kvm *kvm = resize->kvm; 1241 struct kvm_hpt_info *old = &kvm->arch.hpt; 1242 struct kvm_hpt_info *new = &resize->hpt; 1243 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1244 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1245 __be64 *hptep, *new_hptep; 1246 unsigned long vpte, rpte, guest_rpte; 1247 int ret; 1248 struct revmap_entry *rev; 1249 unsigned long apsize, avpn, pteg, hash; 1250 unsigned long new_idx, new_pteg, replace_vpte; 1251 int pshift; 1252 1253 hptep = (__be64 *)(old->virt + (idx << 4)); 1254 1255 /* Guest is stopped, so new HPTEs can't be added or faulted 1256 * in, only unmapped or altered by host actions. So, it's 1257 * safe to check this before we take the HPTE lock */ 1258 vpte = be64_to_cpu(hptep[0]); 1259 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1260 return 0; /* nothing to do */ 1261 1262 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1263 cpu_relax(); 1264 1265 vpte = be64_to_cpu(hptep[0]); 1266 1267 ret = 0; 1268 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1269 /* Nothing to do */ 1270 goto out; 1271 1272 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1273 rpte = be64_to_cpu(hptep[1]); 1274 vpte = hpte_new_to_old_v(vpte, rpte); 1275 } 1276 1277 /* Unmap */ 1278 rev = &old->rev[idx]; 1279 guest_rpte = rev->guest_rpte; 1280 1281 ret = -EIO; 1282 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1283 if (!apsize) 1284 goto out; 1285 1286 if (vpte & HPTE_V_VALID) { 1287 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1288 int srcu_idx = srcu_read_lock(&kvm->srcu); 1289 struct kvm_memory_slot *memslot = 1290 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1291 1292 if (memslot) { 1293 unsigned long *rmapp; 1294 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1295 1296 lock_rmap(rmapp); 1297 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1298 unlock_rmap(rmapp); 1299 } 1300 1301 srcu_read_unlock(&kvm->srcu, srcu_idx); 1302 } 1303 1304 /* Reload PTE after unmap */ 1305 vpte = be64_to_cpu(hptep[0]); 1306 BUG_ON(vpte & HPTE_V_VALID); 1307 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1308 1309 ret = 0; 1310 if (!(vpte & HPTE_V_BOLTED)) 1311 goto out; 1312 1313 rpte = be64_to_cpu(hptep[1]); 1314 1315 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1316 vpte = hpte_new_to_old_v(vpte, rpte); 1317 rpte = hpte_new_to_old_r(rpte); 1318 } 1319 1320 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1321 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1322 pteg = idx / HPTES_PER_GROUP; 1323 if (vpte & HPTE_V_SECONDARY) 1324 pteg = ~pteg; 1325 1326 if (!(vpte & HPTE_V_1TB_SEG)) { 1327 unsigned long offset, vsid; 1328 1329 /* We only have 28 - 23 bits of offset in avpn */ 1330 offset = (avpn & 0x1f) << 23; 1331 vsid = avpn >> 5; 1332 /* We can find more bits from the pteg value */ 1333 if (pshift < 23) 1334 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1335 1336 hash = vsid ^ (offset >> pshift); 1337 } else { 1338 unsigned long offset, vsid; 1339 1340 /* We only have 40 - 23 bits of seg_off in avpn */ 1341 offset = (avpn & 0x1ffff) << 23; 1342 vsid = avpn >> 17; 1343 if (pshift < 23) 1344 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1345 1346 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1347 } 1348 1349 new_pteg = hash & new_hash_mask; 1350 if (vpte & HPTE_V_SECONDARY) 1351 new_pteg = ~hash & new_hash_mask; 1352 1353 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1354 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1355 1356 replace_vpte = be64_to_cpu(new_hptep[0]); 1357 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1358 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1359 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1360 } 1361 1362 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1363 BUG_ON(new->order >= old->order); 1364 1365 if (replace_vpte & HPTE_V_BOLTED) { 1366 if (vpte & HPTE_V_BOLTED) 1367 /* Bolted collision, nothing we can do */ 1368 ret = -ENOSPC; 1369 /* Discard the new HPTE */ 1370 goto out; 1371 } 1372 1373 /* Discard the previous HPTE */ 1374 } 1375 1376 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1377 rpte = hpte_old_to_new_r(vpte, rpte); 1378 vpte = hpte_old_to_new_v(vpte); 1379 } 1380 1381 new_hptep[1] = cpu_to_be64(rpte); 1382 new->rev[new_idx].guest_rpte = guest_rpte; 1383 /* No need for a barrier, since new HPT isn't active */ 1384 new_hptep[0] = cpu_to_be64(vpte); 1385 unlock_hpte(new_hptep, vpte); 1386 1387 out: 1388 unlock_hpte(hptep, vpte); 1389 return ret; 1390 } 1391 1392 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1393 { 1394 struct kvm *kvm = resize->kvm; 1395 unsigned long i; 1396 int rc; 1397 1398 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1399 rc = resize_hpt_rehash_hpte(resize, i); 1400 if (rc != 0) 1401 return rc; 1402 } 1403 1404 return 0; 1405 } 1406 1407 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1408 { 1409 struct kvm *kvm = resize->kvm; 1410 struct kvm_hpt_info hpt_tmp; 1411 1412 /* Exchange the pending tables in the resize structure with 1413 * the active tables */ 1414 1415 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1416 1417 spin_lock(&kvm->mmu_lock); 1418 asm volatile("ptesync" : : : "memory"); 1419 1420 hpt_tmp = kvm->arch.hpt; 1421 kvmppc_set_hpt(kvm, &resize->hpt); 1422 resize->hpt = hpt_tmp; 1423 1424 spin_unlock(&kvm->mmu_lock); 1425 1426 synchronize_srcu_expedited(&kvm->srcu); 1427 1428 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1429 kvmppc_setup_partition_table(kvm); 1430 1431 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1432 } 1433 1434 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1435 { 1436 if (WARN_ON(!mutex_is_locked(&kvm->lock))) 1437 return; 1438 1439 if (!resize) 1440 return; 1441 1442 if (resize->error != -EBUSY) { 1443 if (resize->hpt.virt) 1444 kvmppc_free_hpt(&resize->hpt); 1445 kfree(resize); 1446 } 1447 1448 if (kvm->arch.resize_hpt == resize) 1449 kvm->arch.resize_hpt = NULL; 1450 } 1451 1452 static void resize_hpt_prepare_work(struct work_struct *work) 1453 { 1454 struct kvm_resize_hpt *resize = container_of(work, 1455 struct kvm_resize_hpt, 1456 work); 1457 struct kvm *kvm = resize->kvm; 1458 int err = 0; 1459 1460 if (WARN_ON(resize->error != -EBUSY)) 1461 return; 1462 1463 mutex_lock(&kvm->lock); 1464 1465 /* Request is still current? */ 1466 if (kvm->arch.resize_hpt == resize) { 1467 /* We may request large allocations here: 1468 * do not sleep with kvm->lock held for a while. 1469 */ 1470 mutex_unlock(&kvm->lock); 1471 1472 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1473 resize->order); 1474 1475 err = resize_hpt_allocate(resize); 1476 1477 /* We have strict assumption about -EBUSY 1478 * when preparing for HPT resize. 1479 */ 1480 if (WARN_ON(err == -EBUSY)) 1481 err = -EINPROGRESS; 1482 1483 mutex_lock(&kvm->lock); 1484 /* It is possible that kvm->arch.resize_hpt != resize 1485 * after we grab kvm->lock again. 1486 */ 1487 } 1488 1489 resize->error = err; 1490 1491 if (kvm->arch.resize_hpt != resize) 1492 resize_hpt_release(kvm, resize); 1493 1494 mutex_unlock(&kvm->lock); 1495 } 1496 1497 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1498 struct kvm_ppc_resize_hpt *rhpt) 1499 { 1500 unsigned long flags = rhpt->flags; 1501 unsigned long shift = rhpt->shift; 1502 struct kvm_resize_hpt *resize; 1503 int ret; 1504 1505 if (flags != 0 || kvm_is_radix(kvm)) 1506 return -EINVAL; 1507 1508 if (shift && ((shift < 18) || (shift > 46))) 1509 return -EINVAL; 1510 1511 mutex_lock(&kvm->lock); 1512 1513 resize = kvm->arch.resize_hpt; 1514 1515 if (resize) { 1516 if (resize->order == shift) { 1517 /* Suitable resize in progress? */ 1518 ret = resize->error; 1519 if (ret == -EBUSY) 1520 ret = 100; /* estimated time in ms */ 1521 else if (ret) 1522 resize_hpt_release(kvm, resize); 1523 1524 goto out; 1525 } 1526 1527 /* not suitable, cancel it */ 1528 resize_hpt_release(kvm, resize); 1529 } 1530 1531 ret = 0; 1532 if (!shift) 1533 goto out; /* nothing to do */ 1534 1535 /* start new resize */ 1536 1537 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1538 if (!resize) { 1539 ret = -ENOMEM; 1540 goto out; 1541 } 1542 1543 resize->error = -EBUSY; 1544 resize->order = shift; 1545 resize->kvm = kvm; 1546 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1547 kvm->arch.resize_hpt = resize; 1548 1549 schedule_work(&resize->work); 1550 1551 ret = 100; /* estimated time in ms */ 1552 1553 out: 1554 mutex_unlock(&kvm->lock); 1555 return ret; 1556 } 1557 1558 static void resize_hpt_boot_vcpu(void *opaque) 1559 { 1560 /* Nothing to do, just force a KVM exit */ 1561 } 1562 1563 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1564 struct kvm_ppc_resize_hpt *rhpt) 1565 { 1566 unsigned long flags = rhpt->flags; 1567 unsigned long shift = rhpt->shift; 1568 struct kvm_resize_hpt *resize; 1569 long ret; 1570 1571 if (flags != 0 || kvm_is_radix(kvm)) 1572 return -EINVAL; 1573 1574 if (shift && ((shift < 18) || (shift > 46))) 1575 return -EINVAL; 1576 1577 mutex_lock(&kvm->lock); 1578 1579 resize = kvm->arch.resize_hpt; 1580 1581 /* This shouldn't be possible */ 1582 ret = -EIO; 1583 if (WARN_ON(!kvm->arch.mmu_ready)) 1584 goto out_no_hpt; 1585 1586 /* Stop VCPUs from running while we mess with the HPT */ 1587 kvm->arch.mmu_ready = 0; 1588 smp_mb(); 1589 1590 /* Boot all CPUs out of the guest so they re-read 1591 * mmu_ready */ 1592 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1593 1594 ret = -ENXIO; 1595 if (!resize || (resize->order != shift)) 1596 goto out; 1597 1598 ret = resize->error; 1599 if (ret) 1600 goto out; 1601 1602 ret = resize_hpt_rehash(resize); 1603 if (ret) 1604 goto out; 1605 1606 resize_hpt_pivot(resize); 1607 1608 out: 1609 /* Let VCPUs run again */ 1610 kvm->arch.mmu_ready = 1; 1611 smp_mb(); 1612 out_no_hpt: 1613 resize_hpt_release(kvm, resize); 1614 mutex_unlock(&kvm->lock); 1615 return ret; 1616 } 1617 1618 /* 1619 * Functions for reading and writing the hash table via reads and 1620 * writes on a file descriptor. 1621 * 1622 * Reads return the guest view of the hash table, which has to be 1623 * pieced together from the real hash table and the guest_rpte 1624 * values in the revmap array. 1625 * 1626 * On writes, each HPTE written is considered in turn, and if it 1627 * is valid, it is written to the HPT as if an H_ENTER with the 1628 * exact flag set was done. When the invalid count is non-zero 1629 * in the header written to the stream, the kernel will make 1630 * sure that that many HPTEs are invalid, and invalidate them 1631 * if not. 1632 */ 1633 1634 struct kvm_htab_ctx { 1635 unsigned long index; 1636 unsigned long flags; 1637 struct kvm *kvm; 1638 int first_pass; 1639 }; 1640 1641 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1642 1643 /* 1644 * Returns 1 if this HPT entry has been modified or has pending 1645 * R/C bit changes. 1646 */ 1647 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1648 { 1649 unsigned long rcbits_unset; 1650 1651 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1652 return 1; 1653 1654 /* Also need to consider changes in reference and changed bits */ 1655 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1656 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1657 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1658 return 1; 1659 1660 return 0; 1661 } 1662 1663 static long record_hpte(unsigned long flags, __be64 *hptp, 1664 unsigned long *hpte, struct revmap_entry *revp, 1665 int want_valid, int first_pass) 1666 { 1667 unsigned long v, r, hr; 1668 unsigned long rcbits_unset; 1669 int ok = 1; 1670 int valid, dirty; 1671 1672 /* Unmodified entries are uninteresting except on the first pass */ 1673 dirty = hpte_dirty(revp, hptp); 1674 if (!first_pass && !dirty) 1675 return 0; 1676 1677 valid = 0; 1678 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1679 valid = 1; 1680 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1681 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1682 valid = 0; 1683 } 1684 if (valid != want_valid) 1685 return 0; 1686 1687 v = r = 0; 1688 if (valid || dirty) { 1689 /* lock the HPTE so it's stable and read it */ 1690 preempt_disable(); 1691 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1692 cpu_relax(); 1693 v = be64_to_cpu(hptp[0]); 1694 hr = be64_to_cpu(hptp[1]); 1695 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1696 v = hpte_new_to_old_v(v, hr); 1697 hr = hpte_new_to_old_r(hr); 1698 } 1699 1700 /* re-evaluate valid and dirty from synchronized HPTE value */ 1701 valid = !!(v & HPTE_V_VALID); 1702 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1703 1704 /* Harvest R and C into guest view if necessary */ 1705 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1706 if (valid && (rcbits_unset & hr)) { 1707 revp->guest_rpte |= (hr & 1708 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1709 dirty = 1; 1710 } 1711 1712 if (v & HPTE_V_ABSENT) { 1713 v &= ~HPTE_V_ABSENT; 1714 v |= HPTE_V_VALID; 1715 valid = 1; 1716 } 1717 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1718 valid = 0; 1719 1720 r = revp->guest_rpte; 1721 /* only clear modified if this is the right sort of entry */ 1722 if (valid == want_valid && dirty) { 1723 r &= ~HPTE_GR_MODIFIED; 1724 revp->guest_rpte = r; 1725 } 1726 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1727 preempt_enable(); 1728 if (!(valid == want_valid && (first_pass || dirty))) 1729 ok = 0; 1730 } 1731 hpte[0] = cpu_to_be64(v); 1732 hpte[1] = cpu_to_be64(r); 1733 return ok; 1734 } 1735 1736 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1737 size_t count, loff_t *ppos) 1738 { 1739 struct kvm_htab_ctx *ctx = file->private_data; 1740 struct kvm *kvm = ctx->kvm; 1741 struct kvm_get_htab_header hdr; 1742 __be64 *hptp; 1743 struct revmap_entry *revp; 1744 unsigned long i, nb, nw; 1745 unsigned long __user *lbuf; 1746 struct kvm_get_htab_header __user *hptr; 1747 unsigned long flags; 1748 int first_pass; 1749 unsigned long hpte[2]; 1750 1751 if (!access_ok(VERIFY_WRITE, buf, count)) 1752 return -EFAULT; 1753 if (kvm_is_radix(kvm)) 1754 return 0; 1755 1756 first_pass = ctx->first_pass; 1757 flags = ctx->flags; 1758 1759 i = ctx->index; 1760 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1761 revp = kvm->arch.hpt.rev + i; 1762 lbuf = (unsigned long __user *)buf; 1763 1764 nb = 0; 1765 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1766 /* Initialize header */ 1767 hptr = (struct kvm_get_htab_header __user *)buf; 1768 hdr.n_valid = 0; 1769 hdr.n_invalid = 0; 1770 nw = nb; 1771 nb += sizeof(hdr); 1772 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1773 1774 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1775 if (!first_pass) { 1776 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1777 !hpte_dirty(revp, hptp)) { 1778 ++i; 1779 hptp += 2; 1780 ++revp; 1781 } 1782 } 1783 hdr.index = i; 1784 1785 /* Grab a series of valid entries */ 1786 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1787 hdr.n_valid < 0xffff && 1788 nb + HPTE_SIZE < count && 1789 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1790 /* valid entry, write it out */ 1791 ++hdr.n_valid; 1792 if (__put_user(hpte[0], lbuf) || 1793 __put_user(hpte[1], lbuf + 1)) 1794 return -EFAULT; 1795 nb += HPTE_SIZE; 1796 lbuf += 2; 1797 ++i; 1798 hptp += 2; 1799 ++revp; 1800 } 1801 /* Now skip invalid entries while we can */ 1802 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1803 hdr.n_invalid < 0xffff && 1804 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1805 /* found an invalid entry */ 1806 ++hdr.n_invalid; 1807 ++i; 1808 hptp += 2; 1809 ++revp; 1810 } 1811 1812 if (hdr.n_valid || hdr.n_invalid) { 1813 /* write back the header */ 1814 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1815 return -EFAULT; 1816 nw = nb; 1817 buf = (char __user *)lbuf; 1818 } else { 1819 nb = nw; 1820 } 1821 1822 /* Check if we've wrapped around the hash table */ 1823 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1824 i = 0; 1825 ctx->first_pass = 0; 1826 break; 1827 } 1828 } 1829 1830 ctx->index = i; 1831 1832 return nb; 1833 } 1834 1835 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1836 size_t count, loff_t *ppos) 1837 { 1838 struct kvm_htab_ctx *ctx = file->private_data; 1839 struct kvm *kvm = ctx->kvm; 1840 struct kvm_get_htab_header hdr; 1841 unsigned long i, j; 1842 unsigned long v, r; 1843 unsigned long __user *lbuf; 1844 __be64 *hptp; 1845 unsigned long tmp[2]; 1846 ssize_t nb; 1847 long int err, ret; 1848 int mmu_ready; 1849 int pshift; 1850 1851 if (!access_ok(VERIFY_READ, buf, count)) 1852 return -EFAULT; 1853 if (kvm_is_radix(kvm)) 1854 return -EINVAL; 1855 1856 /* lock out vcpus from running while we're doing this */ 1857 mutex_lock(&kvm->lock); 1858 mmu_ready = kvm->arch.mmu_ready; 1859 if (mmu_ready) { 1860 kvm->arch.mmu_ready = 0; /* temporarily */ 1861 /* order mmu_ready vs. vcpus_running */ 1862 smp_mb(); 1863 if (atomic_read(&kvm->arch.vcpus_running)) { 1864 kvm->arch.mmu_ready = 1; 1865 mutex_unlock(&kvm->lock); 1866 return -EBUSY; 1867 } 1868 } 1869 1870 err = 0; 1871 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1872 err = -EFAULT; 1873 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1874 break; 1875 1876 err = 0; 1877 if (nb + hdr.n_valid * HPTE_SIZE > count) 1878 break; 1879 1880 nb += sizeof(hdr); 1881 buf += sizeof(hdr); 1882 1883 err = -EINVAL; 1884 i = hdr.index; 1885 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1886 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1887 break; 1888 1889 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1890 lbuf = (unsigned long __user *)buf; 1891 for (j = 0; j < hdr.n_valid; ++j) { 1892 __be64 hpte_v; 1893 __be64 hpte_r; 1894 1895 err = -EFAULT; 1896 if (__get_user(hpte_v, lbuf) || 1897 __get_user(hpte_r, lbuf + 1)) 1898 goto out; 1899 v = be64_to_cpu(hpte_v); 1900 r = be64_to_cpu(hpte_r); 1901 err = -EINVAL; 1902 if (!(v & HPTE_V_VALID)) 1903 goto out; 1904 pshift = kvmppc_hpte_base_page_shift(v, r); 1905 if (pshift <= 0) 1906 goto out; 1907 lbuf += 2; 1908 nb += HPTE_SIZE; 1909 1910 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1911 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1912 err = -EIO; 1913 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1914 tmp); 1915 if (ret != H_SUCCESS) { 1916 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1917 "r=%lx\n", ret, i, v, r); 1918 goto out; 1919 } 1920 if (!mmu_ready && is_vrma_hpte(v)) { 1921 unsigned long senc, lpcr; 1922 1923 senc = slb_pgsize_encoding(1ul << pshift); 1924 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1925 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1926 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1927 lpcr = senc << (LPCR_VRMASD_SH - 4); 1928 kvmppc_update_lpcr(kvm, lpcr, 1929 LPCR_VRMASD); 1930 } else { 1931 kvmppc_setup_partition_table(kvm); 1932 } 1933 mmu_ready = 1; 1934 } 1935 ++i; 1936 hptp += 2; 1937 } 1938 1939 for (j = 0; j < hdr.n_invalid; ++j) { 1940 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1941 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1942 ++i; 1943 hptp += 2; 1944 } 1945 err = 0; 1946 } 1947 1948 out: 1949 /* Order HPTE updates vs. mmu_ready */ 1950 smp_wmb(); 1951 kvm->arch.mmu_ready = mmu_ready; 1952 mutex_unlock(&kvm->lock); 1953 1954 if (err) 1955 return err; 1956 return nb; 1957 } 1958 1959 static int kvm_htab_release(struct inode *inode, struct file *filp) 1960 { 1961 struct kvm_htab_ctx *ctx = filp->private_data; 1962 1963 filp->private_data = NULL; 1964 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1965 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1966 kvm_put_kvm(ctx->kvm); 1967 kfree(ctx); 1968 return 0; 1969 } 1970 1971 static const struct file_operations kvm_htab_fops = { 1972 .read = kvm_htab_read, 1973 .write = kvm_htab_write, 1974 .llseek = default_llseek, 1975 .release = kvm_htab_release, 1976 }; 1977 1978 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1979 { 1980 int ret; 1981 struct kvm_htab_ctx *ctx; 1982 int rwflag; 1983 1984 /* reject flags we don't recognize */ 1985 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1986 return -EINVAL; 1987 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1988 if (!ctx) 1989 return -ENOMEM; 1990 kvm_get_kvm(kvm); 1991 ctx->kvm = kvm; 1992 ctx->index = ghf->start_index; 1993 ctx->flags = ghf->flags; 1994 ctx->first_pass = 1; 1995 1996 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1997 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1998 if (ret < 0) { 1999 kfree(ctx); 2000 kvm_put_kvm(kvm); 2001 return ret; 2002 } 2003 2004 if (rwflag == O_RDONLY) { 2005 mutex_lock(&kvm->slots_lock); 2006 atomic_inc(&kvm->arch.hpte_mod_interest); 2007 /* make sure kvmppc_do_h_enter etc. see the increment */ 2008 synchronize_srcu_expedited(&kvm->srcu); 2009 mutex_unlock(&kvm->slots_lock); 2010 } 2011 2012 return ret; 2013 } 2014 2015 struct debugfs_htab_state { 2016 struct kvm *kvm; 2017 struct mutex mutex; 2018 unsigned long hpt_index; 2019 int chars_left; 2020 int buf_index; 2021 char buf[64]; 2022 }; 2023 2024 static int debugfs_htab_open(struct inode *inode, struct file *file) 2025 { 2026 struct kvm *kvm = inode->i_private; 2027 struct debugfs_htab_state *p; 2028 2029 p = kzalloc(sizeof(*p), GFP_KERNEL); 2030 if (!p) 2031 return -ENOMEM; 2032 2033 kvm_get_kvm(kvm); 2034 p->kvm = kvm; 2035 mutex_init(&p->mutex); 2036 file->private_data = p; 2037 2038 return nonseekable_open(inode, file); 2039 } 2040 2041 static int debugfs_htab_release(struct inode *inode, struct file *file) 2042 { 2043 struct debugfs_htab_state *p = file->private_data; 2044 2045 kvm_put_kvm(p->kvm); 2046 kfree(p); 2047 return 0; 2048 } 2049 2050 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2051 size_t len, loff_t *ppos) 2052 { 2053 struct debugfs_htab_state *p = file->private_data; 2054 ssize_t ret, r; 2055 unsigned long i, n; 2056 unsigned long v, hr, gr; 2057 struct kvm *kvm; 2058 __be64 *hptp; 2059 2060 kvm = p->kvm; 2061 if (kvm_is_radix(kvm)) 2062 return 0; 2063 2064 ret = mutex_lock_interruptible(&p->mutex); 2065 if (ret) 2066 return ret; 2067 2068 if (p->chars_left) { 2069 n = p->chars_left; 2070 if (n > len) 2071 n = len; 2072 r = copy_to_user(buf, p->buf + p->buf_index, n); 2073 n -= r; 2074 p->chars_left -= n; 2075 p->buf_index += n; 2076 buf += n; 2077 len -= n; 2078 ret = n; 2079 if (r) { 2080 if (!n) 2081 ret = -EFAULT; 2082 goto out; 2083 } 2084 } 2085 2086 i = p->hpt_index; 2087 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2088 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2089 ++i, hptp += 2) { 2090 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2091 continue; 2092 2093 /* lock the HPTE so it's stable and read it */ 2094 preempt_disable(); 2095 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2096 cpu_relax(); 2097 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2098 hr = be64_to_cpu(hptp[1]); 2099 gr = kvm->arch.hpt.rev[i].guest_rpte; 2100 unlock_hpte(hptp, v); 2101 preempt_enable(); 2102 2103 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2104 continue; 2105 2106 n = scnprintf(p->buf, sizeof(p->buf), 2107 "%6lx %.16lx %.16lx %.16lx\n", 2108 i, v, hr, gr); 2109 p->chars_left = n; 2110 if (n > len) 2111 n = len; 2112 r = copy_to_user(buf, p->buf, n); 2113 n -= r; 2114 p->chars_left -= n; 2115 p->buf_index = n; 2116 buf += n; 2117 len -= n; 2118 ret += n; 2119 if (r) { 2120 if (!ret) 2121 ret = -EFAULT; 2122 goto out; 2123 } 2124 } 2125 p->hpt_index = i; 2126 2127 out: 2128 mutex_unlock(&p->mutex); 2129 return ret; 2130 } 2131 2132 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2133 size_t len, loff_t *ppos) 2134 { 2135 return -EACCES; 2136 } 2137 2138 static const struct file_operations debugfs_htab_fops = { 2139 .owner = THIS_MODULE, 2140 .open = debugfs_htab_open, 2141 .release = debugfs_htab_release, 2142 .read = debugfs_htab_read, 2143 .write = debugfs_htab_write, 2144 .llseek = generic_file_llseek, 2145 }; 2146 2147 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2148 { 2149 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2150 kvm->arch.debugfs_dir, kvm, 2151 &debugfs_htab_fops); 2152 } 2153 2154 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2155 { 2156 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2157 2158 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2159 2160 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2161 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2162 2163 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2164 } 2165