1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "trace_hv.h" 31 32 //#define DEBUG_RESIZE_HPT 1 33 34 #ifdef DEBUG_RESIZE_HPT 35 #define resize_hpt_debug(resize, ...) \ 36 do { \ 37 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 38 printk(__VA_ARGS__); \ 39 } while (0) 40 #else 41 #define resize_hpt_debug(resize, ...) \ 42 do { } while (0) 43 #endif 44 45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 46 long pte_index, unsigned long pteh, 47 unsigned long ptel, unsigned long *pte_idx_ret); 48 49 struct kvm_resize_hpt { 50 /* These fields read-only after init */ 51 struct kvm *kvm; 52 struct work_struct work; 53 u32 order; 54 55 /* These fields protected by kvm->arch.mmu_setup_lock */ 56 57 /* Possible values and their usage: 58 * <0 an error occurred during allocation, 59 * -EBUSY allocation is in the progress, 60 * 0 allocation made successfuly. 61 */ 62 int error; 63 64 /* Private to the work thread, until error != -EBUSY, 65 * then protected by kvm->arch.mmu_setup_lock. 66 */ 67 struct kvm_hpt_info hpt; 68 }; 69 70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 71 { 72 unsigned long hpt = 0; 73 int cma = 0; 74 struct page *page = NULL; 75 struct revmap_entry *rev; 76 unsigned long npte; 77 78 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 79 return -EINVAL; 80 81 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 82 if (page) { 83 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 84 memset((void *)hpt, 0, (1ul << order)); 85 cma = 1; 86 } 87 88 if (!hpt) 89 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 90 |__GFP_NOWARN, order - PAGE_SHIFT); 91 92 if (!hpt) 93 return -ENOMEM; 94 95 /* HPTEs are 2**4 bytes long */ 96 npte = 1ul << (order - 4); 97 98 /* Allocate reverse map array */ 99 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 100 if (!rev) { 101 if (cma) 102 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 103 else 104 free_pages(hpt, order - PAGE_SHIFT); 105 return -ENOMEM; 106 } 107 108 info->order = order; 109 info->virt = hpt; 110 info->cma = cma; 111 info->rev = rev; 112 113 return 0; 114 } 115 116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 117 { 118 atomic64_set(&kvm->arch.mmio_update, 0); 119 kvm->arch.hpt = *info; 120 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 121 122 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 123 info->virt, (long)info->order, kvm->arch.lpid); 124 } 125 126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 127 { 128 long err = -EBUSY; 129 struct kvm_hpt_info info; 130 131 mutex_lock(&kvm->arch.mmu_setup_lock); 132 if (kvm->arch.mmu_ready) { 133 kvm->arch.mmu_ready = 0; 134 /* order mmu_ready vs. vcpus_running */ 135 smp_mb(); 136 if (atomic_read(&kvm->arch.vcpus_running)) { 137 kvm->arch.mmu_ready = 1; 138 goto out; 139 } 140 } 141 if (kvm_is_radix(kvm)) { 142 err = kvmppc_switch_mmu_to_hpt(kvm); 143 if (err) 144 goto out; 145 } 146 147 if (kvm->arch.hpt.order == order) { 148 /* We already have a suitable HPT */ 149 150 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 151 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 152 /* 153 * Reset all the reverse-mapping chains for all memslots 154 */ 155 kvmppc_rmap_reset(kvm); 156 err = 0; 157 goto out; 158 } 159 160 if (kvm->arch.hpt.virt) { 161 kvmppc_free_hpt(&kvm->arch.hpt); 162 kvmppc_rmap_reset(kvm); 163 } 164 165 err = kvmppc_allocate_hpt(&info, order); 166 if (err < 0) 167 goto out; 168 kvmppc_set_hpt(kvm, &info); 169 170 out: 171 if (err == 0) 172 /* Ensure that each vcpu will flush its TLB on next entry. */ 173 cpumask_setall(&kvm->arch.need_tlb_flush); 174 175 mutex_unlock(&kvm->arch.mmu_setup_lock); 176 return err; 177 } 178 179 void kvmppc_free_hpt(struct kvm_hpt_info *info) 180 { 181 vfree(info->rev); 182 info->rev = NULL; 183 if (info->cma) 184 kvm_free_hpt_cma(virt_to_page(info->virt), 185 1 << (info->order - PAGE_SHIFT)); 186 else if (info->virt) 187 free_pages(info->virt, info->order - PAGE_SHIFT); 188 info->virt = 0; 189 info->order = 0; 190 } 191 192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 194 { 195 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 196 } 197 198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 200 { 201 return (pgsize == 0x10000) ? 0x1000 : 0; 202 } 203 204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 205 unsigned long porder) 206 { 207 unsigned long i; 208 unsigned long npages; 209 unsigned long hp_v, hp_r; 210 unsigned long addr, hash; 211 unsigned long psize; 212 unsigned long hp0, hp1; 213 unsigned long idx_ret; 214 long ret; 215 struct kvm *kvm = vcpu->kvm; 216 217 psize = 1ul << porder; 218 npages = memslot->npages >> (porder - PAGE_SHIFT); 219 220 /* VRMA can't be > 1TB */ 221 if (npages > 1ul << (40 - porder)) 222 npages = 1ul << (40 - porder); 223 /* Can't use more than 1 HPTE per HPTEG */ 224 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 225 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 226 227 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 228 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 229 hp1 = hpte1_pgsize_encoding(psize) | 230 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 231 232 for (i = 0; i < npages; ++i) { 233 addr = i << porder; 234 /* can't use hpt_hash since va > 64 bits */ 235 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 236 & kvmppc_hpt_mask(&kvm->arch.hpt); 237 /* 238 * We assume that the hash table is empty and no 239 * vcpus are using it at this stage. Since we create 240 * at most one HPTE per HPTEG, we just assume entry 7 241 * is available and use it. 242 */ 243 hash = (hash << 3) + 7; 244 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 245 hp_r = hp1 | addr; 246 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 247 &idx_ret); 248 if (ret != H_SUCCESS) { 249 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 250 addr, ret); 251 break; 252 } 253 } 254 } 255 256 int kvmppc_mmu_hv_init(void) 257 { 258 unsigned long host_lpid, rsvd_lpid; 259 260 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 261 return -EINVAL; 262 263 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 264 host_lpid = 0; 265 if (cpu_has_feature(CPU_FTR_HVMODE)) 266 host_lpid = mfspr(SPRN_LPID); 267 rsvd_lpid = LPID_RSVD; 268 269 kvmppc_init_lpid(rsvd_lpid + 1); 270 271 kvmppc_claim_lpid(host_lpid); 272 /* rsvd_lpid is reserved for use in partition switching */ 273 kvmppc_claim_lpid(rsvd_lpid); 274 275 return 0; 276 } 277 278 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 279 long pte_index, unsigned long pteh, 280 unsigned long ptel, unsigned long *pte_idx_ret) 281 { 282 long ret; 283 284 /* Protect linux PTE lookup from page table destruction */ 285 rcu_read_lock_sched(); /* this disables preemption too */ 286 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 287 kvm->mm->pgd, false, pte_idx_ret); 288 rcu_read_unlock_sched(); 289 if (ret == H_TOO_HARD) { 290 /* this can't happen */ 291 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 292 ret = H_RESOURCE; /* or something */ 293 } 294 return ret; 295 296 } 297 298 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 299 gva_t eaddr) 300 { 301 u64 mask; 302 int i; 303 304 for (i = 0; i < vcpu->arch.slb_nr; i++) { 305 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 306 continue; 307 308 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 309 mask = ESID_MASK_1T; 310 else 311 mask = ESID_MASK; 312 313 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 314 return &vcpu->arch.slb[i]; 315 } 316 return NULL; 317 } 318 319 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 320 unsigned long ea) 321 { 322 unsigned long ra_mask; 323 324 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 325 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 326 } 327 328 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 329 struct kvmppc_pte *gpte, bool data, bool iswrite) 330 { 331 struct kvm *kvm = vcpu->kvm; 332 struct kvmppc_slb *slbe; 333 unsigned long slb_v; 334 unsigned long pp, key; 335 unsigned long v, orig_v, gr; 336 __be64 *hptep; 337 long int index; 338 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 339 340 if (kvm_is_radix(vcpu->kvm)) 341 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 342 343 /* Get SLB entry */ 344 if (virtmode) { 345 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 346 if (!slbe) 347 return -EINVAL; 348 slb_v = slbe->origv; 349 } else { 350 /* real mode access */ 351 slb_v = vcpu->kvm->arch.vrma_slb_v; 352 } 353 354 preempt_disable(); 355 /* Find the HPTE in the hash table */ 356 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 357 HPTE_V_VALID | HPTE_V_ABSENT); 358 if (index < 0) { 359 preempt_enable(); 360 return -ENOENT; 361 } 362 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 363 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 364 if (cpu_has_feature(CPU_FTR_ARCH_300)) 365 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 366 gr = kvm->arch.hpt.rev[index].guest_rpte; 367 368 unlock_hpte(hptep, orig_v); 369 preempt_enable(); 370 371 gpte->eaddr = eaddr; 372 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 373 374 /* Get PP bits and key for permission check */ 375 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 376 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 377 key &= slb_v; 378 379 /* Calculate permissions */ 380 gpte->may_read = hpte_read_permission(pp, key); 381 gpte->may_write = hpte_write_permission(pp, key); 382 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 383 384 /* Storage key permission check for POWER7 */ 385 if (data && virtmode) { 386 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 387 if (amrfield & 1) 388 gpte->may_read = 0; 389 if (amrfield & 2) 390 gpte->may_write = 0; 391 } 392 393 /* Get the guest physical address */ 394 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 395 return 0; 396 } 397 398 /* 399 * Quick test for whether an instruction is a load or a store. 400 * If the instruction is a load or a store, then this will indicate 401 * which it is, at least on server processors. (Embedded processors 402 * have some external PID instructions that don't follow the rule 403 * embodied here.) If the instruction isn't a load or store, then 404 * this doesn't return anything useful. 405 */ 406 static int instruction_is_store(unsigned int instr) 407 { 408 unsigned int mask; 409 410 mask = 0x10000000; 411 if ((instr & 0xfc000000) == 0x7c000000) 412 mask = 0x100; /* major opcode 31 */ 413 return (instr & mask) != 0; 414 } 415 416 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 417 unsigned long gpa, gva_t ea, int is_store) 418 { 419 u32 last_inst; 420 421 /* 422 * Fast path - check if the guest physical address corresponds to a 423 * device on the FAST_MMIO_BUS, if so we can avoid loading the 424 * instruction all together, then we can just handle it and return. 425 */ 426 if (is_store) { 427 int idx, ret; 428 429 idx = srcu_read_lock(&vcpu->kvm->srcu); 430 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 431 NULL); 432 srcu_read_unlock(&vcpu->kvm->srcu, idx); 433 if (!ret) { 434 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 435 return RESUME_GUEST; 436 } 437 } 438 439 /* 440 * If we fail, we just return to the guest and try executing it again. 441 */ 442 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 443 EMULATE_DONE) 444 return RESUME_GUEST; 445 446 /* 447 * WARNING: We do not know for sure whether the instruction we just 448 * read from memory is the same that caused the fault in the first 449 * place. If the instruction we read is neither an load or a store, 450 * then it can't access memory, so we don't need to worry about 451 * enforcing access permissions. So, assuming it is a load or 452 * store, we just check that its direction (load or store) is 453 * consistent with the original fault, since that's what we 454 * checked the access permissions against. If there is a mismatch 455 * we just return and retry the instruction. 456 */ 457 458 if (instruction_is_store(last_inst) != !!is_store) 459 return RESUME_GUEST; 460 461 /* 462 * Emulated accesses are emulated by looking at the hash for 463 * translation once, then performing the access later. The 464 * translation could be invalidated in the meantime in which 465 * point performing the subsequent memory access on the old 466 * physical address could possibly be a security hole for the 467 * guest (but not the host). 468 * 469 * This is less of an issue for MMIO stores since they aren't 470 * globally visible. It could be an issue for MMIO loads to 471 * a certain extent but we'll ignore it for now. 472 */ 473 474 vcpu->arch.paddr_accessed = gpa; 475 vcpu->arch.vaddr_accessed = ea; 476 return kvmppc_emulate_mmio(run, vcpu); 477 } 478 479 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 480 unsigned long ea, unsigned long dsisr) 481 { 482 struct kvm *kvm = vcpu->kvm; 483 unsigned long hpte[3], r; 484 unsigned long hnow_v, hnow_r; 485 __be64 *hptep; 486 unsigned long mmu_seq, psize, pte_size; 487 unsigned long gpa_base, gfn_base; 488 unsigned long gpa, gfn, hva, pfn; 489 struct kvm_memory_slot *memslot; 490 unsigned long *rmap; 491 struct revmap_entry *rev; 492 struct page *page, *pages[1]; 493 long index, ret, npages; 494 bool is_ci; 495 unsigned int writing, write_ok; 496 struct vm_area_struct *vma; 497 unsigned long rcbits; 498 long mmio_update; 499 struct mm_struct *mm; 500 501 if (kvm_is_radix(kvm)) 502 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 503 504 /* 505 * Real-mode code has already searched the HPT and found the 506 * entry we're interested in. Lock the entry and check that 507 * it hasn't changed. If it has, just return and re-execute the 508 * instruction. 509 */ 510 if (ea != vcpu->arch.pgfault_addr) 511 return RESUME_GUEST; 512 513 if (vcpu->arch.pgfault_cache) { 514 mmio_update = atomic64_read(&kvm->arch.mmio_update); 515 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 516 r = vcpu->arch.pgfault_cache->rpte; 517 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 518 r); 519 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 520 gfn_base = gpa_base >> PAGE_SHIFT; 521 gpa = gpa_base | (ea & (psize - 1)); 522 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 523 dsisr & DSISR_ISSTORE); 524 } 525 } 526 index = vcpu->arch.pgfault_index; 527 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 528 rev = &kvm->arch.hpt.rev[index]; 529 preempt_disable(); 530 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 531 cpu_relax(); 532 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 533 hpte[1] = be64_to_cpu(hptep[1]); 534 hpte[2] = r = rev->guest_rpte; 535 unlock_hpte(hptep, hpte[0]); 536 preempt_enable(); 537 538 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 539 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 540 hpte[1] = hpte_new_to_old_r(hpte[1]); 541 } 542 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 543 hpte[1] != vcpu->arch.pgfault_hpte[1]) 544 return RESUME_GUEST; 545 546 /* Translate the logical address and get the page */ 547 psize = kvmppc_actual_pgsz(hpte[0], r); 548 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 549 gfn_base = gpa_base >> PAGE_SHIFT; 550 gpa = gpa_base | (ea & (psize - 1)); 551 gfn = gpa >> PAGE_SHIFT; 552 memslot = gfn_to_memslot(kvm, gfn); 553 554 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 555 556 /* No memslot means it's an emulated MMIO region */ 557 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 558 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 559 dsisr & DSISR_ISSTORE); 560 561 /* 562 * This should never happen, because of the slot_is_aligned() 563 * check in kvmppc_do_h_enter(). 564 */ 565 if (gfn_base < memslot->base_gfn) 566 return -EFAULT; 567 568 /* used to check for invalidations in progress */ 569 mmu_seq = kvm->mmu_notifier_seq; 570 smp_rmb(); 571 572 ret = -EFAULT; 573 is_ci = false; 574 pfn = 0; 575 page = NULL; 576 mm = kvm->mm; 577 pte_size = PAGE_SIZE; 578 writing = (dsisr & DSISR_ISSTORE) != 0; 579 /* If writing != 0, then the HPTE must allow writing, if we get here */ 580 write_ok = writing; 581 hva = gfn_to_hva_memslot(memslot, gfn); 582 npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages); 583 if (npages < 1) { 584 /* Check if it's an I/O mapping */ 585 down_read(&mm->mmap_sem); 586 vma = find_vma(mm, hva); 587 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 588 (vma->vm_flags & VM_PFNMAP)) { 589 pfn = vma->vm_pgoff + 590 ((hva - vma->vm_start) >> PAGE_SHIFT); 591 pte_size = psize; 592 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 593 write_ok = vma->vm_flags & VM_WRITE; 594 } 595 up_read(&mm->mmap_sem); 596 if (!pfn) 597 goto out_put; 598 } else { 599 page = pages[0]; 600 pfn = page_to_pfn(page); 601 if (PageHuge(page)) { 602 page = compound_head(page); 603 pte_size <<= compound_order(page); 604 } 605 /* if the guest wants write access, see if that is OK */ 606 if (!writing && hpte_is_writable(r)) { 607 pte_t *ptep, pte; 608 unsigned long flags; 609 /* 610 * We need to protect against page table destruction 611 * hugepage split and collapse. 612 */ 613 local_irq_save(flags); 614 ptep = find_current_mm_pte(mm->pgd, hva, NULL, NULL); 615 if (ptep) { 616 pte = kvmppc_read_update_linux_pte(ptep, 1); 617 if (__pte_write(pte)) 618 write_ok = 1; 619 } 620 local_irq_restore(flags); 621 } 622 } 623 624 if (psize > pte_size) 625 goto out_put; 626 627 /* Check WIMG vs. the actual page we're accessing */ 628 if (!hpte_cache_flags_ok(r, is_ci)) { 629 if (is_ci) 630 goto out_put; 631 /* 632 * Allow guest to map emulated device memory as 633 * uncacheable, but actually make it cacheable. 634 */ 635 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 636 } 637 638 /* 639 * Set the HPTE to point to pfn. 640 * Since the pfn is at PAGE_SIZE granularity, make sure we 641 * don't mask out lower-order bits if psize < PAGE_SIZE. 642 */ 643 if (psize < PAGE_SIZE) 644 psize = PAGE_SIZE; 645 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 646 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 647 if (hpte_is_writable(r) && !write_ok) 648 r = hpte_make_readonly(r); 649 ret = RESUME_GUEST; 650 preempt_disable(); 651 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 652 cpu_relax(); 653 hnow_v = be64_to_cpu(hptep[0]); 654 hnow_r = be64_to_cpu(hptep[1]); 655 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 656 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 657 hnow_r = hpte_new_to_old_r(hnow_r); 658 } 659 660 /* 661 * If the HPT is being resized, don't update the HPTE, 662 * instead let the guest retry after the resize operation is complete. 663 * The synchronization for mmu_ready test vs. set is provided 664 * by the HPTE lock. 665 */ 666 if (!kvm->arch.mmu_ready) 667 goto out_unlock; 668 669 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 670 rev->guest_rpte != hpte[2]) 671 /* HPTE has been changed under us; let the guest retry */ 672 goto out_unlock; 673 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 674 675 /* Always put the HPTE in the rmap chain for the page base address */ 676 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 677 lock_rmap(rmap); 678 679 /* Check if we might have been invalidated; let the guest retry if so */ 680 ret = RESUME_GUEST; 681 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 682 unlock_rmap(rmap); 683 goto out_unlock; 684 } 685 686 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 687 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 688 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 689 690 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 691 /* HPTE was previously valid, so we need to invalidate it */ 692 unlock_rmap(rmap); 693 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 694 kvmppc_invalidate_hpte(kvm, hptep, index); 695 /* don't lose previous R and C bits */ 696 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 697 } else { 698 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 699 } 700 701 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 702 r = hpte_old_to_new_r(hpte[0], r); 703 hpte[0] = hpte_old_to_new_v(hpte[0]); 704 } 705 hptep[1] = cpu_to_be64(r); 706 eieio(); 707 __unlock_hpte(hptep, hpte[0]); 708 asm volatile("ptesync" : : : "memory"); 709 preempt_enable(); 710 if (page && hpte_is_writable(r)) 711 SetPageDirty(page); 712 713 out_put: 714 trace_kvm_page_fault_exit(vcpu, hpte, ret); 715 716 if (page) { 717 /* 718 * We drop pages[0] here, not page because page might 719 * have been set to the head page of a compound, but 720 * we have to drop the reference on the correct tail 721 * page to match the get inside gup() 722 */ 723 put_page(pages[0]); 724 } 725 return ret; 726 727 out_unlock: 728 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 729 preempt_enable(); 730 goto out_put; 731 } 732 733 void kvmppc_rmap_reset(struct kvm *kvm) 734 { 735 struct kvm_memslots *slots; 736 struct kvm_memory_slot *memslot; 737 int srcu_idx; 738 739 srcu_idx = srcu_read_lock(&kvm->srcu); 740 slots = kvm_memslots(kvm); 741 kvm_for_each_memslot(memslot, slots) { 742 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 743 spin_lock(&kvm->mmu_lock); 744 /* 745 * This assumes it is acceptable to lose reference and 746 * change bits across a reset. 747 */ 748 memset(memslot->arch.rmap, 0, 749 memslot->npages * sizeof(*memslot->arch.rmap)); 750 spin_unlock(&kvm->mmu_lock); 751 } 752 srcu_read_unlock(&kvm->srcu, srcu_idx); 753 } 754 755 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 756 unsigned long gfn); 757 758 static int kvm_handle_hva_range(struct kvm *kvm, 759 unsigned long start, 760 unsigned long end, 761 hva_handler_fn handler) 762 { 763 int ret; 764 int retval = 0; 765 struct kvm_memslots *slots; 766 struct kvm_memory_slot *memslot; 767 768 slots = kvm_memslots(kvm); 769 kvm_for_each_memslot(memslot, slots) { 770 unsigned long hva_start, hva_end; 771 gfn_t gfn, gfn_end; 772 773 hva_start = max(start, memslot->userspace_addr); 774 hva_end = min(end, memslot->userspace_addr + 775 (memslot->npages << PAGE_SHIFT)); 776 if (hva_start >= hva_end) 777 continue; 778 /* 779 * {gfn(page) | page intersects with [hva_start, hva_end)} = 780 * {gfn, gfn+1, ..., gfn_end-1}. 781 */ 782 gfn = hva_to_gfn_memslot(hva_start, memslot); 783 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 784 785 for (; gfn < gfn_end; ++gfn) { 786 ret = handler(kvm, memslot, gfn); 787 retval |= ret; 788 } 789 } 790 791 return retval; 792 } 793 794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 795 hva_handler_fn handler) 796 { 797 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 798 } 799 800 /* Must be called with both HPTE and rmap locked */ 801 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 802 struct kvm_memory_slot *memslot, 803 unsigned long *rmapp, unsigned long gfn) 804 { 805 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 806 struct revmap_entry *rev = kvm->arch.hpt.rev; 807 unsigned long j, h; 808 unsigned long ptel, psize, rcbits; 809 810 j = rev[i].forw; 811 if (j == i) { 812 /* chain is now empty */ 813 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 814 } else { 815 /* remove i from chain */ 816 h = rev[i].back; 817 rev[h].forw = j; 818 rev[j].back = h; 819 rev[i].forw = rev[i].back = i; 820 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 821 } 822 823 /* Now check and modify the HPTE */ 824 ptel = rev[i].guest_rpte; 825 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 826 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 827 hpte_rpn(ptel, psize) == gfn) { 828 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 829 kvmppc_invalidate_hpte(kvm, hptep, i); 830 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 831 /* Harvest R and C */ 832 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 833 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 834 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 835 kvmppc_update_dirty_map(memslot, gfn, psize); 836 if (rcbits & ~rev[i].guest_rpte) { 837 rev[i].guest_rpte = ptel | rcbits; 838 note_hpte_modification(kvm, &rev[i]); 839 } 840 } 841 } 842 843 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 844 unsigned long gfn) 845 { 846 unsigned long i; 847 __be64 *hptep; 848 unsigned long *rmapp; 849 850 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 851 for (;;) { 852 lock_rmap(rmapp); 853 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 854 unlock_rmap(rmapp); 855 break; 856 } 857 858 /* 859 * To avoid an ABBA deadlock with the HPTE lock bit, 860 * we can't spin on the HPTE lock while holding the 861 * rmap chain lock. 862 */ 863 i = *rmapp & KVMPPC_RMAP_INDEX; 864 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 865 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 866 /* unlock rmap before spinning on the HPTE lock */ 867 unlock_rmap(rmapp); 868 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 869 cpu_relax(); 870 continue; 871 } 872 873 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 874 unlock_rmap(rmapp); 875 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 876 } 877 return 0; 878 } 879 880 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 881 { 882 hva_handler_fn handler; 883 884 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 885 kvm_handle_hva_range(kvm, start, end, handler); 886 return 0; 887 } 888 889 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 890 struct kvm_memory_slot *memslot) 891 { 892 unsigned long gfn; 893 unsigned long n; 894 unsigned long *rmapp; 895 896 gfn = memslot->base_gfn; 897 rmapp = memslot->arch.rmap; 898 if (kvm_is_radix(kvm)) { 899 kvmppc_radix_flush_memslot(kvm, memslot); 900 return; 901 } 902 903 for (n = memslot->npages; n; --n, ++gfn) { 904 /* 905 * Testing the present bit without locking is OK because 906 * the memslot has been marked invalid already, and hence 907 * no new HPTEs referencing this page can be created, 908 * thus the present bit can't go from 0 to 1. 909 */ 910 if (*rmapp & KVMPPC_RMAP_PRESENT) 911 kvm_unmap_rmapp(kvm, memslot, gfn); 912 ++rmapp; 913 } 914 } 915 916 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 917 unsigned long gfn) 918 { 919 struct revmap_entry *rev = kvm->arch.hpt.rev; 920 unsigned long head, i, j; 921 __be64 *hptep; 922 int ret = 0; 923 unsigned long *rmapp; 924 925 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 926 retry: 927 lock_rmap(rmapp); 928 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 929 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 930 ret = 1; 931 } 932 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 933 unlock_rmap(rmapp); 934 return ret; 935 } 936 937 i = head = *rmapp & KVMPPC_RMAP_INDEX; 938 do { 939 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 940 j = rev[i].forw; 941 942 /* If this HPTE isn't referenced, ignore it */ 943 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 944 continue; 945 946 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 947 /* unlock rmap before spinning on the HPTE lock */ 948 unlock_rmap(rmapp); 949 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 950 cpu_relax(); 951 goto retry; 952 } 953 954 /* Now check and modify the HPTE */ 955 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 956 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 957 kvmppc_clear_ref_hpte(kvm, hptep, i); 958 if (!(rev[i].guest_rpte & HPTE_R_R)) { 959 rev[i].guest_rpte |= HPTE_R_R; 960 note_hpte_modification(kvm, &rev[i]); 961 } 962 ret = 1; 963 } 964 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 965 } while ((i = j) != head); 966 967 unlock_rmap(rmapp); 968 return ret; 969 } 970 971 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 972 { 973 hva_handler_fn handler; 974 975 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 976 return kvm_handle_hva_range(kvm, start, end, handler); 977 } 978 979 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 980 unsigned long gfn) 981 { 982 struct revmap_entry *rev = kvm->arch.hpt.rev; 983 unsigned long head, i, j; 984 unsigned long *hp; 985 int ret = 1; 986 unsigned long *rmapp; 987 988 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 989 if (*rmapp & KVMPPC_RMAP_REFERENCED) 990 return 1; 991 992 lock_rmap(rmapp); 993 if (*rmapp & KVMPPC_RMAP_REFERENCED) 994 goto out; 995 996 if (*rmapp & KVMPPC_RMAP_PRESENT) { 997 i = head = *rmapp & KVMPPC_RMAP_INDEX; 998 do { 999 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1000 j = rev[i].forw; 1001 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1002 goto out; 1003 } while ((i = j) != head); 1004 } 1005 ret = 0; 1006 1007 out: 1008 unlock_rmap(rmapp); 1009 return ret; 1010 } 1011 1012 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1013 { 1014 hva_handler_fn handler; 1015 1016 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1017 return kvm_handle_hva(kvm, hva, handler); 1018 } 1019 1020 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1021 { 1022 hva_handler_fn handler; 1023 1024 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1025 kvm_handle_hva(kvm, hva, handler); 1026 } 1027 1028 static int vcpus_running(struct kvm *kvm) 1029 { 1030 return atomic_read(&kvm->arch.vcpus_running) != 0; 1031 } 1032 1033 /* 1034 * Returns the number of system pages that are dirty. 1035 * This can be more than 1 if we find a huge-page HPTE. 1036 */ 1037 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1038 { 1039 struct revmap_entry *rev = kvm->arch.hpt.rev; 1040 unsigned long head, i, j; 1041 unsigned long n; 1042 unsigned long v, r; 1043 __be64 *hptep; 1044 int npages_dirty = 0; 1045 1046 retry: 1047 lock_rmap(rmapp); 1048 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1049 unlock_rmap(rmapp); 1050 return npages_dirty; 1051 } 1052 1053 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1054 do { 1055 unsigned long hptep1; 1056 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1057 j = rev[i].forw; 1058 1059 /* 1060 * Checking the C (changed) bit here is racy since there 1061 * is no guarantee about when the hardware writes it back. 1062 * If the HPTE is not writable then it is stable since the 1063 * page can't be written to, and we would have done a tlbie 1064 * (which forces the hardware to complete any writeback) 1065 * when making the HPTE read-only. 1066 * If vcpus are running then this call is racy anyway 1067 * since the page could get dirtied subsequently, so we 1068 * expect there to be a further call which would pick up 1069 * any delayed C bit writeback. 1070 * Otherwise we need to do the tlbie even if C==0 in 1071 * order to pick up any delayed writeback of C. 1072 */ 1073 hptep1 = be64_to_cpu(hptep[1]); 1074 if (!(hptep1 & HPTE_R_C) && 1075 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1076 continue; 1077 1078 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1079 /* unlock rmap before spinning on the HPTE lock */ 1080 unlock_rmap(rmapp); 1081 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1082 cpu_relax(); 1083 goto retry; 1084 } 1085 1086 /* Now check and modify the HPTE */ 1087 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1088 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1089 continue; 1090 } 1091 1092 /* need to make it temporarily absent so C is stable */ 1093 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1094 kvmppc_invalidate_hpte(kvm, hptep, i); 1095 v = be64_to_cpu(hptep[0]); 1096 r = be64_to_cpu(hptep[1]); 1097 if (r & HPTE_R_C) { 1098 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1099 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1100 rev[i].guest_rpte |= HPTE_R_C; 1101 note_hpte_modification(kvm, &rev[i]); 1102 } 1103 n = kvmppc_actual_pgsz(v, r); 1104 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1105 if (n > npages_dirty) 1106 npages_dirty = n; 1107 eieio(); 1108 } 1109 v &= ~HPTE_V_ABSENT; 1110 v |= HPTE_V_VALID; 1111 __unlock_hpte(hptep, v); 1112 } while ((i = j) != head); 1113 1114 unlock_rmap(rmapp); 1115 return npages_dirty; 1116 } 1117 1118 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1119 struct kvm_memory_slot *memslot, 1120 unsigned long *map) 1121 { 1122 unsigned long gfn; 1123 1124 if (!vpa->dirty || !vpa->pinned_addr) 1125 return; 1126 gfn = vpa->gpa >> PAGE_SHIFT; 1127 if (gfn < memslot->base_gfn || 1128 gfn >= memslot->base_gfn + memslot->npages) 1129 return; 1130 1131 vpa->dirty = false; 1132 if (map) 1133 __set_bit_le(gfn - memslot->base_gfn, map); 1134 } 1135 1136 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1137 struct kvm_memory_slot *memslot, unsigned long *map) 1138 { 1139 unsigned long i; 1140 unsigned long *rmapp; 1141 1142 preempt_disable(); 1143 rmapp = memslot->arch.rmap; 1144 for (i = 0; i < memslot->npages; ++i) { 1145 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1146 /* 1147 * Note that if npages > 0 then i must be a multiple of npages, 1148 * since we always put huge-page HPTEs in the rmap chain 1149 * corresponding to their page base address. 1150 */ 1151 if (npages) 1152 set_dirty_bits(map, i, npages); 1153 ++rmapp; 1154 } 1155 preempt_enable(); 1156 return 0; 1157 } 1158 1159 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1160 unsigned long *nb_ret) 1161 { 1162 struct kvm_memory_slot *memslot; 1163 unsigned long gfn = gpa >> PAGE_SHIFT; 1164 struct page *page, *pages[1]; 1165 int npages; 1166 unsigned long hva, offset; 1167 int srcu_idx; 1168 1169 srcu_idx = srcu_read_lock(&kvm->srcu); 1170 memslot = gfn_to_memslot(kvm, gfn); 1171 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1172 goto err; 1173 hva = gfn_to_hva_memslot(memslot, gfn); 1174 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1175 if (npages < 1) 1176 goto err; 1177 page = pages[0]; 1178 srcu_read_unlock(&kvm->srcu, srcu_idx); 1179 1180 offset = gpa & (PAGE_SIZE - 1); 1181 if (nb_ret) 1182 *nb_ret = PAGE_SIZE - offset; 1183 return page_address(page) + offset; 1184 1185 err: 1186 srcu_read_unlock(&kvm->srcu, srcu_idx); 1187 return NULL; 1188 } 1189 1190 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1191 bool dirty) 1192 { 1193 struct page *page = virt_to_page(va); 1194 struct kvm_memory_slot *memslot; 1195 unsigned long gfn; 1196 int srcu_idx; 1197 1198 put_page(page); 1199 1200 if (!dirty) 1201 return; 1202 1203 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1204 gfn = gpa >> PAGE_SHIFT; 1205 srcu_idx = srcu_read_lock(&kvm->srcu); 1206 memslot = gfn_to_memslot(kvm, gfn); 1207 if (memslot && memslot->dirty_bitmap) 1208 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1209 srcu_read_unlock(&kvm->srcu, srcu_idx); 1210 } 1211 1212 /* 1213 * HPT resizing 1214 */ 1215 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1216 { 1217 int rc; 1218 1219 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1220 if (rc < 0) 1221 return rc; 1222 1223 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1224 resize->hpt.virt); 1225 1226 return 0; 1227 } 1228 1229 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1230 unsigned long idx) 1231 { 1232 struct kvm *kvm = resize->kvm; 1233 struct kvm_hpt_info *old = &kvm->arch.hpt; 1234 struct kvm_hpt_info *new = &resize->hpt; 1235 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1236 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1237 __be64 *hptep, *new_hptep; 1238 unsigned long vpte, rpte, guest_rpte; 1239 int ret; 1240 struct revmap_entry *rev; 1241 unsigned long apsize, avpn, pteg, hash; 1242 unsigned long new_idx, new_pteg, replace_vpte; 1243 int pshift; 1244 1245 hptep = (__be64 *)(old->virt + (idx << 4)); 1246 1247 /* Guest is stopped, so new HPTEs can't be added or faulted 1248 * in, only unmapped or altered by host actions. So, it's 1249 * safe to check this before we take the HPTE lock */ 1250 vpte = be64_to_cpu(hptep[0]); 1251 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1252 return 0; /* nothing to do */ 1253 1254 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1255 cpu_relax(); 1256 1257 vpte = be64_to_cpu(hptep[0]); 1258 1259 ret = 0; 1260 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1261 /* Nothing to do */ 1262 goto out; 1263 1264 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1265 rpte = be64_to_cpu(hptep[1]); 1266 vpte = hpte_new_to_old_v(vpte, rpte); 1267 } 1268 1269 /* Unmap */ 1270 rev = &old->rev[idx]; 1271 guest_rpte = rev->guest_rpte; 1272 1273 ret = -EIO; 1274 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1275 if (!apsize) 1276 goto out; 1277 1278 if (vpte & HPTE_V_VALID) { 1279 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1280 int srcu_idx = srcu_read_lock(&kvm->srcu); 1281 struct kvm_memory_slot *memslot = 1282 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1283 1284 if (memslot) { 1285 unsigned long *rmapp; 1286 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1287 1288 lock_rmap(rmapp); 1289 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1290 unlock_rmap(rmapp); 1291 } 1292 1293 srcu_read_unlock(&kvm->srcu, srcu_idx); 1294 } 1295 1296 /* Reload PTE after unmap */ 1297 vpte = be64_to_cpu(hptep[0]); 1298 BUG_ON(vpte & HPTE_V_VALID); 1299 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1300 1301 ret = 0; 1302 if (!(vpte & HPTE_V_BOLTED)) 1303 goto out; 1304 1305 rpte = be64_to_cpu(hptep[1]); 1306 1307 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1308 vpte = hpte_new_to_old_v(vpte, rpte); 1309 rpte = hpte_new_to_old_r(rpte); 1310 } 1311 1312 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1313 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1314 pteg = idx / HPTES_PER_GROUP; 1315 if (vpte & HPTE_V_SECONDARY) 1316 pteg = ~pteg; 1317 1318 if (!(vpte & HPTE_V_1TB_SEG)) { 1319 unsigned long offset, vsid; 1320 1321 /* We only have 28 - 23 bits of offset in avpn */ 1322 offset = (avpn & 0x1f) << 23; 1323 vsid = avpn >> 5; 1324 /* We can find more bits from the pteg value */ 1325 if (pshift < 23) 1326 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1327 1328 hash = vsid ^ (offset >> pshift); 1329 } else { 1330 unsigned long offset, vsid; 1331 1332 /* We only have 40 - 23 bits of seg_off in avpn */ 1333 offset = (avpn & 0x1ffff) << 23; 1334 vsid = avpn >> 17; 1335 if (pshift < 23) 1336 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1337 1338 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1339 } 1340 1341 new_pteg = hash & new_hash_mask; 1342 if (vpte & HPTE_V_SECONDARY) 1343 new_pteg = ~hash & new_hash_mask; 1344 1345 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1346 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1347 1348 replace_vpte = be64_to_cpu(new_hptep[0]); 1349 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1350 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1351 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1352 } 1353 1354 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1355 BUG_ON(new->order >= old->order); 1356 1357 if (replace_vpte & HPTE_V_BOLTED) { 1358 if (vpte & HPTE_V_BOLTED) 1359 /* Bolted collision, nothing we can do */ 1360 ret = -ENOSPC; 1361 /* Discard the new HPTE */ 1362 goto out; 1363 } 1364 1365 /* Discard the previous HPTE */ 1366 } 1367 1368 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1369 rpte = hpte_old_to_new_r(vpte, rpte); 1370 vpte = hpte_old_to_new_v(vpte); 1371 } 1372 1373 new_hptep[1] = cpu_to_be64(rpte); 1374 new->rev[new_idx].guest_rpte = guest_rpte; 1375 /* No need for a barrier, since new HPT isn't active */ 1376 new_hptep[0] = cpu_to_be64(vpte); 1377 unlock_hpte(new_hptep, vpte); 1378 1379 out: 1380 unlock_hpte(hptep, vpte); 1381 return ret; 1382 } 1383 1384 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1385 { 1386 struct kvm *kvm = resize->kvm; 1387 unsigned long i; 1388 int rc; 1389 1390 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1391 rc = resize_hpt_rehash_hpte(resize, i); 1392 if (rc != 0) 1393 return rc; 1394 } 1395 1396 return 0; 1397 } 1398 1399 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1400 { 1401 struct kvm *kvm = resize->kvm; 1402 struct kvm_hpt_info hpt_tmp; 1403 1404 /* Exchange the pending tables in the resize structure with 1405 * the active tables */ 1406 1407 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1408 1409 spin_lock(&kvm->mmu_lock); 1410 asm volatile("ptesync" : : : "memory"); 1411 1412 hpt_tmp = kvm->arch.hpt; 1413 kvmppc_set_hpt(kvm, &resize->hpt); 1414 resize->hpt = hpt_tmp; 1415 1416 spin_unlock(&kvm->mmu_lock); 1417 1418 synchronize_srcu_expedited(&kvm->srcu); 1419 1420 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1421 kvmppc_setup_partition_table(kvm); 1422 1423 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1424 } 1425 1426 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1427 { 1428 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1429 return; 1430 1431 if (!resize) 1432 return; 1433 1434 if (resize->error != -EBUSY) { 1435 if (resize->hpt.virt) 1436 kvmppc_free_hpt(&resize->hpt); 1437 kfree(resize); 1438 } 1439 1440 if (kvm->arch.resize_hpt == resize) 1441 kvm->arch.resize_hpt = NULL; 1442 } 1443 1444 static void resize_hpt_prepare_work(struct work_struct *work) 1445 { 1446 struct kvm_resize_hpt *resize = container_of(work, 1447 struct kvm_resize_hpt, 1448 work); 1449 struct kvm *kvm = resize->kvm; 1450 int err = 0; 1451 1452 if (WARN_ON(resize->error != -EBUSY)) 1453 return; 1454 1455 mutex_lock(&kvm->arch.mmu_setup_lock); 1456 1457 /* Request is still current? */ 1458 if (kvm->arch.resize_hpt == resize) { 1459 /* We may request large allocations here: 1460 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1461 */ 1462 mutex_unlock(&kvm->arch.mmu_setup_lock); 1463 1464 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1465 resize->order); 1466 1467 err = resize_hpt_allocate(resize); 1468 1469 /* We have strict assumption about -EBUSY 1470 * when preparing for HPT resize. 1471 */ 1472 if (WARN_ON(err == -EBUSY)) 1473 err = -EINPROGRESS; 1474 1475 mutex_lock(&kvm->arch.mmu_setup_lock); 1476 /* It is possible that kvm->arch.resize_hpt != resize 1477 * after we grab kvm->arch.mmu_setup_lock again. 1478 */ 1479 } 1480 1481 resize->error = err; 1482 1483 if (kvm->arch.resize_hpt != resize) 1484 resize_hpt_release(kvm, resize); 1485 1486 mutex_unlock(&kvm->arch.mmu_setup_lock); 1487 } 1488 1489 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1490 struct kvm_ppc_resize_hpt *rhpt) 1491 { 1492 unsigned long flags = rhpt->flags; 1493 unsigned long shift = rhpt->shift; 1494 struct kvm_resize_hpt *resize; 1495 int ret; 1496 1497 if (flags != 0 || kvm_is_radix(kvm)) 1498 return -EINVAL; 1499 1500 if (shift && ((shift < 18) || (shift > 46))) 1501 return -EINVAL; 1502 1503 mutex_lock(&kvm->arch.mmu_setup_lock); 1504 1505 resize = kvm->arch.resize_hpt; 1506 1507 if (resize) { 1508 if (resize->order == shift) { 1509 /* Suitable resize in progress? */ 1510 ret = resize->error; 1511 if (ret == -EBUSY) 1512 ret = 100; /* estimated time in ms */ 1513 else if (ret) 1514 resize_hpt_release(kvm, resize); 1515 1516 goto out; 1517 } 1518 1519 /* not suitable, cancel it */ 1520 resize_hpt_release(kvm, resize); 1521 } 1522 1523 ret = 0; 1524 if (!shift) 1525 goto out; /* nothing to do */ 1526 1527 /* start new resize */ 1528 1529 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1530 if (!resize) { 1531 ret = -ENOMEM; 1532 goto out; 1533 } 1534 1535 resize->error = -EBUSY; 1536 resize->order = shift; 1537 resize->kvm = kvm; 1538 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1539 kvm->arch.resize_hpt = resize; 1540 1541 schedule_work(&resize->work); 1542 1543 ret = 100; /* estimated time in ms */ 1544 1545 out: 1546 mutex_unlock(&kvm->arch.mmu_setup_lock); 1547 return ret; 1548 } 1549 1550 static void resize_hpt_boot_vcpu(void *opaque) 1551 { 1552 /* Nothing to do, just force a KVM exit */ 1553 } 1554 1555 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1556 struct kvm_ppc_resize_hpt *rhpt) 1557 { 1558 unsigned long flags = rhpt->flags; 1559 unsigned long shift = rhpt->shift; 1560 struct kvm_resize_hpt *resize; 1561 long ret; 1562 1563 if (flags != 0 || kvm_is_radix(kvm)) 1564 return -EINVAL; 1565 1566 if (shift && ((shift < 18) || (shift > 46))) 1567 return -EINVAL; 1568 1569 mutex_lock(&kvm->arch.mmu_setup_lock); 1570 1571 resize = kvm->arch.resize_hpt; 1572 1573 /* This shouldn't be possible */ 1574 ret = -EIO; 1575 if (WARN_ON(!kvm->arch.mmu_ready)) 1576 goto out_no_hpt; 1577 1578 /* Stop VCPUs from running while we mess with the HPT */ 1579 kvm->arch.mmu_ready = 0; 1580 smp_mb(); 1581 1582 /* Boot all CPUs out of the guest so they re-read 1583 * mmu_ready */ 1584 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1585 1586 ret = -ENXIO; 1587 if (!resize || (resize->order != shift)) 1588 goto out; 1589 1590 ret = resize->error; 1591 if (ret) 1592 goto out; 1593 1594 ret = resize_hpt_rehash(resize); 1595 if (ret) 1596 goto out; 1597 1598 resize_hpt_pivot(resize); 1599 1600 out: 1601 /* Let VCPUs run again */ 1602 kvm->arch.mmu_ready = 1; 1603 smp_mb(); 1604 out_no_hpt: 1605 resize_hpt_release(kvm, resize); 1606 mutex_unlock(&kvm->arch.mmu_setup_lock); 1607 return ret; 1608 } 1609 1610 /* 1611 * Functions for reading and writing the hash table via reads and 1612 * writes on a file descriptor. 1613 * 1614 * Reads return the guest view of the hash table, which has to be 1615 * pieced together from the real hash table and the guest_rpte 1616 * values in the revmap array. 1617 * 1618 * On writes, each HPTE written is considered in turn, and if it 1619 * is valid, it is written to the HPT as if an H_ENTER with the 1620 * exact flag set was done. When the invalid count is non-zero 1621 * in the header written to the stream, the kernel will make 1622 * sure that that many HPTEs are invalid, and invalidate them 1623 * if not. 1624 */ 1625 1626 struct kvm_htab_ctx { 1627 unsigned long index; 1628 unsigned long flags; 1629 struct kvm *kvm; 1630 int first_pass; 1631 }; 1632 1633 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1634 1635 /* 1636 * Returns 1 if this HPT entry has been modified or has pending 1637 * R/C bit changes. 1638 */ 1639 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1640 { 1641 unsigned long rcbits_unset; 1642 1643 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1644 return 1; 1645 1646 /* Also need to consider changes in reference and changed bits */ 1647 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1648 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1649 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 static long record_hpte(unsigned long flags, __be64 *hptp, 1656 unsigned long *hpte, struct revmap_entry *revp, 1657 int want_valid, int first_pass) 1658 { 1659 unsigned long v, r, hr; 1660 unsigned long rcbits_unset; 1661 int ok = 1; 1662 int valid, dirty; 1663 1664 /* Unmodified entries are uninteresting except on the first pass */ 1665 dirty = hpte_dirty(revp, hptp); 1666 if (!first_pass && !dirty) 1667 return 0; 1668 1669 valid = 0; 1670 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1671 valid = 1; 1672 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1673 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1674 valid = 0; 1675 } 1676 if (valid != want_valid) 1677 return 0; 1678 1679 v = r = 0; 1680 if (valid || dirty) { 1681 /* lock the HPTE so it's stable and read it */ 1682 preempt_disable(); 1683 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1684 cpu_relax(); 1685 v = be64_to_cpu(hptp[0]); 1686 hr = be64_to_cpu(hptp[1]); 1687 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1688 v = hpte_new_to_old_v(v, hr); 1689 hr = hpte_new_to_old_r(hr); 1690 } 1691 1692 /* re-evaluate valid and dirty from synchronized HPTE value */ 1693 valid = !!(v & HPTE_V_VALID); 1694 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1695 1696 /* Harvest R and C into guest view if necessary */ 1697 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1698 if (valid && (rcbits_unset & hr)) { 1699 revp->guest_rpte |= (hr & 1700 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1701 dirty = 1; 1702 } 1703 1704 if (v & HPTE_V_ABSENT) { 1705 v &= ~HPTE_V_ABSENT; 1706 v |= HPTE_V_VALID; 1707 valid = 1; 1708 } 1709 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1710 valid = 0; 1711 1712 r = revp->guest_rpte; 1713 /* only clear modified if this is the right sort of entry */ 1714 if (valid == want_valid && dirty) { 1715 r &= ~HPTE_GR_MODIFIED; 1716 revp->guest_rpte = r; 1717 } 1718 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1719 preempt_enable(); 1720 if (!(valid == want_valid && (first_pass || dirty))) 1721 ok = 0; 1722 } 1723 hpte[0] = cpu_to_be64(v); 1724 hpte[1] = cpu_to_be64(r); 1725 return ok; 1726 } 1727 1728 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1729 size_t count, loff_t *ppos) 1730 { 1731 struct kvm_htab_ctx *ctx = file->private_data; 1732 struct kvm *kvm = ctx->kvm; 1733 struct kvm_get_htab_header hdr; 1734 __be64 *hptp; 1735 struct revmap_entry *revp; 1736 unsigned long i, nb, nw; 1737 unsigned long __user *lbuf; 1738 struct kvm_get_htab_header __user *hptr; 1739 unsigned long flags; 1740 int first_pass; 1741 unsigned long hpte[2]; 1742 1743 if (!access_ok(buf, count)) 1744 return -EFAULT; 1745 if (kvm_is_radix(kvm)) 1746 return 0; 1747 1748 first_pass = ctx->first_pass; 1749 flags = ctx->flags; 1750 1751 i = ctx->index; 1752 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1753 revp = kvm->arch.hpt.rev + i; 1754 lbuf = (unsigned long __user *)buf; 1755 1756 nb = 0; 1757 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1758 /* Initialize header */ 1759 hptr = (struct kvm_get_htab_header __user *)buf; 1760 hdr.n_valid = 0; 1761 hdr.n_invalid = 0; 1762 nw = nb; 1763 nb += sizeof(hdr); 1764 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1765 1766 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1767 if (!first_pass) { 1768 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1769 !hpte_dirty(revp, hptp)) { 1770 ++i; 1771 hptp += 2; 1772 ++revp; 1773 } 1774 } 1775 hdr.index = i; 1776 1777 /* Grab a series of valid entries */ 1778 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1779 hdr.n_valid < 0xffff && 1780 nb + HPTE_SIZE < count && 1781 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1782 /* valid entry, write it out */ 1783 ++hdr.n_valid; 1784 if (__put_user(hpte[0], lbuf) || 1785 __put_user(hpte[1], lbuf + 1)) 1786 return -EFAULT; 1787 nb += HPTE_SIZE; 1788 lbuf += 2; 1789 ++i; 1790 hptp += 2; 1791 ++revp; 1792 } 1793 /* Now skip invalid entries while we can */ 1794 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1795 hdr.n_invalid < 0xffff && 1796 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1797 /* found an invalid entry */ 1798 ++hdr.n_invalid; 1799 ++i; 1800 hptp += 2; 1801 ++revp; 1802 } 1803 1804 if (hdr.n_valid || hdr.n_invalid) { 1805 /* write back the header */ 1806 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1807 return -EFAULT; 1808 nw = nb; 1809 buf = (char __user *)lbuf; 1810 } else { 1811 nb = nw; 1812 } 1813 1814 /* Check if we've wrapped around the hash table */ 1815 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1816 i = 0; 1817 ctx->first_pass = 0; 1818 break; 1819 } 1820 } 1821 1822 ctx->index = i; 1823 1824 return nb; 1825 } 1826 1827 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1828 size_t count, loff_t *ppos) 1829 { 1830 struct kvm_htab_ctx *ctx = file->private_data; 1831 struct kvm *kvm = ctx->kvm; 1832 struct kvm_get_htab_header hdr; 1833 unsigned long i, j; 1834 unsigned long v, r; 1835 unsigned long __user *lbuf; 1836 __be64 *hptp; 1837 unsigned long tmp[2]; 1838 ssize_t nb; 1839 long int err, ret; 1840 int mmu_ready; 1841 int pshift; 1842 1843 if (!access_ok(buf, count)) 1844 return -EFAULT; 1845 if (kvm_is_radix(kvm)) 1846 return -EINVAL; 1847 1848 /* lock out vcpus from running while we're doing this */ 1849 mutex_lock(&kvm->arch.mmu_setup_lock); 1850 mmu_ready = kvm->arch.mmu_ready; 1851 if (mmu_ready) { 1852 kvm->arch.mmu_ready = 0; /* temporarily */ 1853 /* order mmu_ready vs. vcpus_running */ 1854 smp_mb(); 1855 if (atomic_read(&kvm->arch.vcpus_running)) { 1856 kvm->arch.mmu_ready = 1; 1857 mutex_unlock(&kvm->arch.mmu_setup_lock); 1858 return -EBUSY; 1859 } 1860 } 1861 1862 err = 0; 1863 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1864 err = -EFAULT; 1865 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1866 break; 1867 1868 err = 0; 1869 if (nb + hdr.n_valid * HPTE_SIZE > count) 1870 break; 1871 1872 nb += sizeof(hdr); 1873 buf += sizeof(hdr); 1874 1875 err = -EINVAL; 1876 i = hdr.index; 1877 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1878 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1879 break; 1880 1881 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1882 lbuf = (unsigned long __user *)buf; 1883 for (j = 0; j < hdr.n_valid; ++j) { 1884 __be64 hpte_v; 1885 __be64 hpte_r; 1886 1887 err = -EFAULT; 1888 if (__get_user(hpte_v, lbuf) || 1889 __get_user(hpte_r, lbuf + 1)) 1890 goto out; 1891 v = be64_to_cpu(hpte_v); 1892 r = be64_to_cpu(hpte_r); 1893 err = -EINVAL; 1894 if (!(v & HPTE_V_VALID)) 1895 goto out; 1896 pshift = kvmppc_hpte_base_page_shift(v, r); 1897 if (pshift <= 0) 1898 goto out; 1899 lbuf += 2; 1900 nb += HPTE_SIZE; 1901 1902 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1903 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1904 err = -EIO; 1905 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1906 tmp); 1907 if (ret != H_SUCCESS) { 1908 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1909 "r=%lx\n", ret, i, v, r); 1910 goto out; 1911 } 1912 if (!mmu_ready && is_vrma_hpte(v)) { 1913 unsigned long senc, lpcr; 1914 1915 senc = slb_pgsize_encoding(1ul << pshift); 1916 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1917 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1918 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1919 lpcr = senc << (LPCR_VRMASD_SH - 4); 1920 kvmppc_update_lpcr(kvm, lpcr, 1921 LPCR_VRMASD); 1922 } else { 1923 kvmppc_setup_partition_table(kvm); 1924 } 1925 mmu_ready = 1; 1926 } 1927 ++i; 1928 hptp += 2; 1929 } 1930 1931 for (j = 0; j < hdr.n_invalid; ++j) { 1932 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1933 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1934 ++i; 1935 hptp += 2; 1936 } 1937 err = 0; 1938 } 1939 1940 out: 1941 /* Order HPTE updates vs. mmu_ready */ 1942 smp_wmb(); 1943 kvm->arch.mmu_ready = mmu_ready; 1944 mutex_unlock(&kvm->arch.mmu_setup_lock); 1945 1946 if (err) 1947 return err; 1948 return nb; 1949 } 1950 1951 static int kvm_htab_release(struct inode *inode, struct file *filp) 1952 { 1953 struct kvm_htab_ctx *ctx = filp->private_data; 1954 1955 filp->private_data = NULL; 1956 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1957 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1958 kvm_put_kvm(ctx->kvm); 1959 kfree(ctx); 1960 return 0; 1961 } 1962 1963 static const struct file_operations kvm_htab_fops = { 1964 .read = kvm_htab_read, 1965 .write = kvm_htab_write, 1966 .llseek = default_llseek, 1967 .release = kvm_htab_release, 1968 }; 1969 1970 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1971 { 1972 int ret; 1973 struct kvm_htab_ctx *ctx; 1974 int rwflag; 1975 1976 /* reject flags we don't recognize */ 1977 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1978 return -EINVAL; 1979 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1980 if (!ctx) 1981 return -ENOMEM; 1982 kvm_get_kvm(kvm); 1983 ctx->kvm = kvm; 1984 ctx->index = ghf->start_index; 1985 ctx->flags = ghf->flags; 1986 ctx->first_pass = 1; 1987 1988 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1989 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1990 if (ret < 0) { 1991 kfree(ctx); 1992 kvm_put_kvm_no_destroy(kvm); 1993 return ret; 1994 } 1995 1996 if (rwflag == O_RDONLY) { 1997 mutex_lock(&kvm->slots_lock); 1998 atomic_inc(&kvm->arch.hpte_mod_interest); 1999 /* make sure kvmppc_do_h_enter etc. see the increment */ 2000 synchronize_srcu_expedited(&kvm->srcu); 2001 mutex_unlock(&kvm->slots_lock); 2002 } 2003 2004 return ret; 2005 } 2006 2007 struct debugfs_htab_state { 2008 struct kvm *kvm; 2009 struct mutex mutex; 2010 unsigned long hpt_index; 2011 int chars_left; 2012 int buf_index; 2013 char buf[64]; 2014 }; 2015 2016 static int debugfs_htab_open(struct inode *inode, struct file *file) 2017 { 2018 struct kvm *kvm = inode->i_private; 2019 struct debugfs_htab_state *p; 2020 2021 p = kzalloc(sizeof(*p), GFP_KERNEL); 2022 if (!p) 2023 return -ENOMEM; 2024 2025 kvm_get_kvm(kvm); 2026 p->kvm = kvm; 2027 mutex_init(&p->mutex); 2028 file->private_data = p; 2029 2030 return nonseekable_open(inode, file); 2031 } 2032 2033 static int debugfs_htab_release(struct inode *inode, struct file *file) 2034 { 2035 struct debugfs_htab_state *p = file->private_data; 2036 2037 kvm_put_kvm(p->kvm); 2038 kfree(p); 2039 return 0; 2040 } 2041 2042 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2043 size_t len, loff_t *ppos) 2044 { 2045 struct debugfs_htab_state *p = file->private_data; 2046 ssize_t ret, r; 2047 unsigned long i, n; 2048 unsigned long v, hr, gr; 2049 struct kvm *kvm; 2050 __be64 *hptp; 2051 2052 kvm = p->kvm; 2053 if (kvm_is_radix(kvm)) 2054 return 0; 2055 2056 ret = mutex_lock_interruptible(&p->mutex); 2057 if (ret) 2058 return ret; 2059 2060 if (p->chars_left) { 2061 n = p->chars_left; 2062 if (n > len) 2063 n = len; 2064 r = copy_to_user(buf, p->buf + p->buf_index, n); 2065 n -= r; 2066 p->chars_left -= n; 2067 p->buf_index += n; 2068 buf += n; 2069 len -= n; 2070 ret = n; 2071 if (r) { 2072 if (!n) 2073 ret = -EFAULT; 2074 goto out; 2075 } 2076 } 2077 2078 i = p->hpt_index; 2079 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2080 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2081 ++i, hptp += 2) { 2082 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2083 continue; 2084 2085 /* lock the HPTE so it's stable and read it */ 2086 preempt_disable(); 2087 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2088 cpu_relax(); 2089 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2090 hr = be64_to_cpu(hptp[1]); 2091 gr = kvm->arch.hpt.rev[i].guest_rpte; 2092 unlock_hpte(hptp, v); 2093 preempt_enable(); 2094 2095 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2096 continue; 2097 2098 n = scnprintf(p->buf, sizeof(p->buf), 2099 "%6lx %.16lx %.16lx %.16lx\n", 2100 i, v, hr, gr); 2101 p->chars_left = n; 2102 if (n > len) 2103 n = len; 2104 r = copy_to_user(buf, p->buf, n); 2105 n -= r; 2106 p->chars_left -= n; 2107 p->buf_index = n; 2108 buf += n; 2109 len -= n; 2110 ret += n; 2111 if (r) { 2112 if (!ret) 2113 ret = -EFAULT; 2114 goto out; 2115 } 2116 } 2117 p->hpt_index = i; 2118 2119 out: 2120 mutex_unlock(&p->mutex); 2121 return ret; 2122 } 2123 2124 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2125 size_t len, loff_t *ppos) 2126 { 2127 return -EACCES; 2128 } 2129 2130 static const struct file_operations debugfs_htab_fops = { 2131 .owner = THIS_MODULE, 2132 .open = debugfs_htab_open, 2133 .release = debugfs_htab_release, 2134 .read = debugfs_htab_read, 2135 .write = debugfs_htab_write, 2136 .llseek = generic_file_llseek, 2137 }; 2138 2139 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2140 { 2141 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2142 kvm->arch.debugfs_dir, kvm, 2143 &debugfs_htab_fops); 2144 } 2145 2146 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2147 { 2148 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2149 2150 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2151 2152 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2153 2154 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2155 } 2156