1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "trace_hv.h"
31 
32 //#define DEBUG_RESIZE_HPT	1
33 
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...)				\
36 	do {							\
37 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
38 		printk(__VA_ARGS__);				\
39 	} while (0)
40 #else
41 #define resize_hpt_debug(resize, ...)				\
42 	do { } while (0)
43 #endif
44 
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 				long pte_index, unsigned long pteh,
47 				unsigned long ptel, unsigned long *pte_idx_ret);
48 
49 struct kvm_resize_hpt {
50 	/* These fields read-only after init */
51 	struct kvm *kvm;
52 	struct work_struct work;
53 	u32 order;
54 
55 	/* These fields protected by kvm->arch.mmu_setup_lock */
56 
57 	/* Possible values and their usage:
58 	 *  <0     an error occurred during allocation,
59 	 *  -EBUSY allocation is in the progress,
60 	 *  0      allocation made successfuly.
61 	 */
62 	int error;
63 
64 	/* Private to the work thread, until error != -EBUSY,
65 	 * then protected by kvm->arch.mmu_setup_lock.
66 	 */
67 	struct kvm_hpt_info hpt;
68 };
69 
70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
71 {
72 	unsigned long hpt = 0;
73 	int cma = 0;
74 	struct page *page = NULL;
75 	struct revmap_entry *rev;
76 	unsigned long npte;
77 
78 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79 		return -EINVAL;
80 
81 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82 	if (page) {
83 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84 		memset((void *)hpt, 0, (1ul << order));
85 		cma = 1;
86 	}
87 
88 	if (!hpt)
89 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90 				       |__GFP_NOWARN, order - PAGE_SHIFT);
91 
92 	if (!hpt)
93 		return -ENOMEM;
94 
95 	/* HPTEs are 2**4 bytes long */
96 	npte = 1ul << (order - 4);
97 
98 	/* Allocate reverse map array */
99 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100 	if (!rev) {
101 		if (cma)
102 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103 		else
104 			free_pages(hpt, order - PAGE_SHIFT);
105 		return -ENOMEM;
106 	}
107 
108 	info->order = order;
109 	info->virt = hpt;
110 	info->cma = cma;
111 	info->rev = rev;
112 
113 	return 0;
114 }
115 
116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
117 {
118 	atomic64_set(&kvm->arch.mmio_update, 0);
119 	kvm->arch.hpt = *info;
120 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
121 
122 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 		 info->virt, (long)info->order, kvm->arch.lpid);
124 }
125 
126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
127 {
128 	long err = -EBUSY;
129 	struct kvm_hpt_info info;
130 
131 	mutex_lock(&kvm->arch.mmu_setup_lock);
132 	if (kvm->arch.mmu_ready) {
133 		kvm->arch.mmu_ready = 0;
134 		/* order mmu_ready vs. vcpus_running */
135 		smp_mb();
136 		if (atomic_read(&kvm->arch.vcpus_running)) {
137 			kvm->arch.mmu_ready = 1;
138 			goto out;
139 		}
140 	}
141 	if (kvm_is_radix(kvm)) {
142 		err = kvmppc_switch_mmu_to_hpt(kvm);
143 		if (err)
144 			goto out;
145 	}
146 
147 	if (kvm->arch.hpt.order == order) {
148 		/* We already have a suitable HPT */
149 
150 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
151 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
152 		/*
153 		 * Reset all the reverse-mapping chains for all memslots
154 		 */
155 		kvmppc_rmap_reset(kvm);
156 		err = 0;
157 		goto out;
158 	}
159 
160 	if (kvm->arch.hpt.virt) {
161 		kvmppc_free_hpt(&kvm->arch.hpt);
162 		kvmppc_rmap_reset(kvm);
163 	}
164 
165 	err = kvmppc_allocate_hpt(&info, order);
166 	if (err < 0)
167 		goto out;
168 	kvmppc_set_hpt(kvm, &info);
169 
170 out:
171 	if (err == 0)
172 		/* Ensure that each vcpu will flush its TLB on next entry. */
173 		cpumask_setall(&kvm->arch.need_tlb_flush);
174 
175 	mutex_unlock(&kvm->arch.mmu_setup_lock);
176 	return err;
177 }
178 
179 void kvmppc_free_hpt(struct kvm_hpt_info *info)
180 {
181 	vfree(info->rev);
182 	info->rev = NULL;
183 	if (info->cma)
184 		kvm_free_hpt_cma(virt_to_page(info->virt),
185 				 1 << (info->order - PAGE_SHIFT));
186 	else if (info->virt)
187 		free_pages(info->virt, info->order - PAGE_SHIFT);
188 	info->virt = 0;
189 	info->order = 0;
190 }
191 
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197 
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201 	return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203 
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 		     unsigned long porder)
206 {
207 	unsigned long i;
208 	unsigned long npages;
209 	unsigned long hp_v, hp_r;
210 	unsigned long addr, hash;
211 	unsigned long psize;
212 	unsigned long hp0, hp1;
213 	unsigned long idx_ret;
214 	long ret;
215 	struct kvm *kvm = vcpu->kvm;
216 
217 	psize = 1ul << porder;
218 	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 
220 	/* VRMA can't be > 1TB */
221 	if (npages > 1ul << (40 - porder))
222 		npages = 1ul << (40 - porder);
223 	/* Can't use more than 1 HPTE per HPTEG */
224 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226 
227 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 	hp1 = hpte1_pgsize_encoding(psize) |
230 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231 
232 	for (i = 0; i < npages; ++i) {
233 		addr = i << porder;
234 		/* can't use hpt_hash since va > 64 bits */
235 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 		/*
238 		 * We assume that the hash table is empty and no
239 		 * vcpus are using it at this stage.  Since we create
240 		 * at most one HPTE per HPTEG, we just assume entry 7
241 		 * is available and use it.
242 		 */
243 		hash = (hash << 3) + 7;
244 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 		hp_r = hp1 | addr;
246 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 						 &idx_ret);
248 		if (ret != H_SUCCESS) {
249 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 			       addr, ret);
251 			break;
252 		}
253 	}
254 }
255 
256 int kvmppc_mmu_hv_init(void)
257 {
258 	unsigned long host_lpid, rsvd_lpid;
259 
260 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261 		return -EINVAL;
262 
263 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264 	host_lpid = 0;
265 	if (cpu_has_feature(CPU_FTR_HVMODE))
266 		host_lpid = mfspr(SPRN_LPID);
267 	rsvd_lpid = LPID_RSVD;
268 
269 	kvmppc_init_lpid(rsvd_lpid + 1);
270 
271 	kvmppc_claim_lpid(host_lpid);
272 	/* rsvd_lpid is reserved for use in partition switching */
273 	kvmppc_claim_lpid(rsvd_lpid);
274 
275 	return 0;
276 }
277 
278 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
279 				long pte_index, unsigned long pteh,
280 				unsigned long ptel, unsigned long *pte_idx_ret)
281 {
282 	long ret;
283 
284 	preempt_disable();
285 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
286 				kvm->mm->pgd, false, pte_idx_ret);
287 	preempt_enable();
288 	if (ret == H_TOO_HARD) {
289 		/* this can't happen */
290 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
291 		ret = H_RESOURCE;	/* or something */
292 	}
293 	return ret;
294 
295 }
296 
297 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
298 							 gva_t eaddr)
299 {
300 	u64 mask;
301 	int i;
302 
303 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
304 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
305 			continue;
306 
307 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
308 			mask = ESID_MASK_1T;
309 		else
310 			mask = ESID_MASK;
311 
312 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
313 			return &vcpu->arch.slb[i];
314 	}
315 	return NULL;
316 }
317 
318 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
319 			unsigned long ea)
320 {
321 	unsigned long ra_mask;
322 
323 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
324 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
325 }
326 
327 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
328 			struct kvmppc_pte *gpte, bool data, bool iswrite)
329 {
330 	struct kvm *kvm = vcpu->kvm;
331 	struct kvmppc_slb *slbe;
332 	unsigned long slb_v;
333 	unsigned long pp, key;
334 	unsigned long v, orig_v, gr;
335 	__be64 *hptep;
336 	long int index;
337 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
338 
339 	if (kvm_is_radix(vcpu->kvm))
340 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
341 
342 	/* Get SLB entry */
343 	if (virtmode) {
344 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
345 		if (!slbe)
346 			return -EINVAL;
347 		slb_v = slbe->origv;
348 	} else {
349 		/* real mode access */
350 		slb_v = vcpu->kvm->arch.vrma_slb_v;
351 	}
352 
353 	preempt_disable();
354 	/* Find the HPTE in the hash table */
355 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
356 					 HPTE_V_VALID | HPTE_V_ABSENT);
357 	if (index < 0) {
358 		preempt_enable();
359 		return -ENOENT;
360 	}
361 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
362 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
363 	if (cpu_has_feature(CPU_FTR_ARCH_300))
364 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
365 	gr = kvm->arch.hpt.rev[index].guest_rpte;
366 
367 	unlock_hpte(hptep, orig_v);
368 	preempt_enable();
369 
370 	gpte->eaddr = eaddr;
371 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
372 
373 	/* Get PP bits and key for permission check */
374 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
375 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
376 	key &= slb_v;
377 
378 	/* Calculate permissions */
379 	gpte->may_read = hpte_read_permission(pp, key);
380 	gpte->may_write = hpte_write_permission(pp, key);
381 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
382 
383 	/* Storage key permission check for POWER7 */
384 	if (data && virtmode) {
385 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
386 		if (amrfield & 1)
387 			gpte->may_read = 0;
388 		if (amrfield & 2)
389 			gpte->may_write = 0;
390 	}
391 
392 	/* Get the guest physical address */
393 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
394 	return 0;
395 }
396 
397 /*
398  * Quick test for whether an instruction is a load or a store.
399  * If the instruction is a load or a store, then this will indicate
400  * which it is, at least on server processors.  (Embedded processors
401  * have some external PID instructions that don't follow the rule
402  * embodied here.)  If the instruction isn't a load or store, then
403  * this doesn't return anything useful.
404  */
405 static int instruction_is_store(unsigned int instr)
406 {
407 	unsigned int mask;
408 
409 	mask = 0x10000000;
410 	if ((instr & 0xfc000000) == 0x7c000000)
411 		mask = 0x100;		/* major opcode 31 */
412 	return (instr & mask) != 0;
413 }
414 
415 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
416 			   unsigned long gpa, gva_t ea, int is_store)
417 {
418 	u32 last_inst;
419 
420 	/*
421 	 * Fast path - check if the guest physical address corresponds to a
422 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
423 	 * instruction all together, then we can just handle it and return.
424 	 */
425 	if (is_store) {
426 		int idx, ret;
427 
428 		idx = srcu_read_lock(&vcpu->kvm->srcu);
429 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
430 				       NULL);
431 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
432 		if (!ret) {
433 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
434 			return RESUME_GUEST;
435 		}
436 	}
437 
438 	/*
439 	 * If we fail, we just return to the guest and try executing it again.
440 	 */
441 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
442 		EMULATE_DONE)
443 		return RESUME_GUEST;
444 
445 	/*
446 	 * WARNING: We do not know for sure whether the instruction we just
447 	 * read from memory is the same that caused the fault in the first
448 	 * place.  If the instruction we read is neither an load or a store,
449 	 * then it can't access memory, so we don't need to worry about
450 	 * enforcing access permissions.  So, assuming it is a load or
451 	 * store, we just check that its direction (load or store) is
452 	 * consistent with the original fault, since that's what we
453 	 * checked the access permissions against.  If there is a mismatch
454 	 * we just return and retry the instruction.
455 	 */
456 
457 	if (instruction_is_store(last_inst) != !!is_store)
458 		return RESUME_GUEST;
459 
460 	/*
461 	 * Emulated accesses are emulated by looking at the hash for
462 	 * translation once, then performing the access later. The
463 	 * translation could be invalidated in the meantime in which
464 	 * point performing the subsequent memory access on the old
465 	 * physical address could possibly be a security hole for the
466 	 * guest (but not the host).
467 	 *
468 	 * This is less of an issue for MMIO stores since they aren't
469 	 * globally visible. It could be an issue for MMIO loads to
470 	 * a certain extent but we'll ignore it for now.
471 	 */
472 
473 	vcpu->arch.paddr_accessed = gpa;
474 	vcpu->arch.vaddr_accessed = ea;
475 	return kvmppc_emulate_mmio(vcpu);
476 }
477 
478 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
479 				unsigned long ea, unsigned long dsisr)
480 {
481 	struct kvm *kvm = vcpu->kvm;
482 	unsigned long hpte[3], r;
483 	unsigned long hnow_v, hnow_r;
484 	__be64 *hptep;
485 	unsigned long mmu_seq, psize, pte_size;
486 	unsigned long gpa_base, gfn_base;
487 	unsigned long gpa, gfn, hva, pfn, hpa;
488 	struct kvm_memory_slot *memslot;
489 	unsigned long *rmap;
490 	struct revmap_entry *rev;
491 	struct page *page;
492 	long index, ret;
493 	bool is_ci;
494 	bool writing, write_ok;
495 	unsigned int shift;
496 	unsigned long rcbits;
497 	long mmio_update;
498 	pte_t pte, *ptep;
499 
500 	if (kvm_is_radix(kvm))
501 		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
502 
503 	/*
504 	 * Real-mode code has already searched the HPT and found the
505 	 * entry we're interested in.  Lock the entry and check that
506 	 * it hasn't changed.  If it has, just return and re-execute the
507 	 * instruction.
508 	 */
509 	if (ea != vcpu->arch.pgfault_addr)
510 		return RESUME_GUEST;
511 
512 	if (vcpu->arch.pgfault_cache) {
513 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
514 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
515 			r = vcpu->arch.pgfault_cache->rpte;
516 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
517 						   r);
518 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
519 			gfn_base = gpa_base >> PAGE_SHIFT;
520 			gpa = gpa_base | (ea & (psize - 1));
521 			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
522 						dsisr & DSISR_ISSTORE);
523 		}
524 	}
525 	index = vcpu->arch.pgfault_index;
526 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
527 	rev = &kvm->arch.hpt.rev[index];
528 	preempt_disable();
529 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
530 		cpu_relax();
531 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
532 	hpte[1] = be64_to_cpu(hptep[1]);
533 	hpte[2] = r = rev->guest_rpte;
534 	unlock_hpte(hptep, hpte[0]);
535 	preempt_enable();
536 
537 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
538 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
539 		hpte[1] = hpte_new_to_old_r(hpte[1]);
540 	}
541 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
542 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
543 		return RESUME_GUEST;
544 
545 	/* Translate the logical address and get the page */
546 	psize = kvmppc_actual_pgsz(hpte[0], r);
547 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
548 	gfn_base = gpa_base >> PAGE_SHIFT;
549 	gpa = gpa_base | (ea & (psize - 1));
550 	gfn = gpa >> PAGE_SHIFT;
551 	memslot = gfn_to_memslot(kvm, gfn);
552 
553 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
554 
555 	/* No memslot means it's an emulated MMIO region */
556 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
557 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
558 					      dsisr & DSISR_ISSTORE);
559 
560 	/*
561 	 * This should never happen, because of the slot_is_aligned()
562 	 * check in kvmppc_do_h_enter().
563 	 */
564 	if (gfn_base < memslot->base_gfn)
565 		return -EFAULT;
566 
567 	/* used to check for invalidations in progress */
568 	mmu_seq = kvm->mmu_notifier_seq;
569 	smp_rmb();
570 
571 	ret = -EFAULT;
572 	page = NULL;
573 	writing = (dsisr & DSISR_ISSTORE) != 0;
574 	/* If writing != 0, then the HPTE must allow writing, if we get here */
575 	write_ok = writing;
576 	hva = gfn_to_hva_memslot(memslot, gfn);
577 
578 	/*
579 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
580 	 * do it with !atomic && !async, which is how we call it.
581 	 * We always ask for write permission since the common case
582 	 * is that the page is writable.
583 	 */
584 	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
585 		write_ok = true;
586 	} else {
587 		/* Call KVM generic code to do the slow-path check */
588 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
589 					   writing, &write_ok);
590 		if (is_error_noslot_pfn(pfn))
591 			return -EFAULT;
592 		page = NULL;
593 		if (pfn_valid(pfn)) {
594 			page = pfn_to_page(pfn);
595 			if (PageReserved(page))
596 				page = NULL;
597 		}
598 	}
599 
600 	/*
601 	 * Read the PTE from the process' radix tree and use that
602 	 * so we get the shift and attribute bits.
603 	 */
604 	spin_lock(&kvm->mmu_lock);
605 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
606 	pte = __pte(0);
607 	if (ptep)
608 		pte = READ_ONCE(*ptep);
609 	spin_unlock(&kvm->mmu_lock);
610 	/*
611 	 * If the PTE disappeared temporarily due to a THP
612 	 * collapse, just return and let the guest try again.
613 	 */
614 	if (!pte_present(pte)) {
615 		if (page)
616 			put_page(page);
617 		return RESUME_GUEST;
618 	}
619 	hpa = pte_pfn(pte) << PAGE_SHIFT;
620 	pte_size = PAGE_SIZE;
621 	if (shift)
622 		pte_size = 1ul << shift;
623 	is_ci = pte_ci(pte);
624 
625 	if (psize > pte_size)
626 		goto out_put;
627 	if (pte_size > psize)
628 		hpa |= hva & (pte_size - psize);
629 
630 	/* Check WIMG vs. the actual page we're accessing */
631 	if (!hpte_cache_flags_ok(r, is_ci)) {
632 		if (is_ci)
633 			goto out_put;
634 		/*
635 		 * Allow guest to map emulated device memory as
636 		 * uncacheable, but actually make it cacheable.
637 		 */
638 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
639 	}
640 
641 	/*
642 	 * Set the HPTE to point to hpa.
643 	 * Since the hpa is at PAGE_SIZE granularity, make sure we
644 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
645 	 */
646 	if (psize < PAGE_SIZE)
647 		psize = PAGE_SIZE;
648 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
649 	if (hpte_is_writable(r) && !write_ok)
650 		r = hpte_make_readonly(r);
651 	ret = RESUME_GUEST;
652 	preempt_disable();
653 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
654 		cpu_relax();
655 	hnow_v = be64_to_cpu(hptep[0]);
656 	hnow_r = be64_to_cpu(hptep[1]);
657 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
658 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
659 		hnow_r = hpte_new_to_old_r(hnow_r);
660 	}
661 
662 	/*
663 	 * If the HPT is being resized, don't update the HPTE,
664 	 * instead let the guest retry after the resize operation is complete.
665 	 * The synchronization for mmu_ready test vs. set is provided
666 	 * by the HPTE lock.
667 	 */
668 	if (!kvm->arch.mmu_ready)
669 		goto out_unlock;
670 
671 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
672 	    rev->guest_rpte != hpte[2])
673 		/* HPTE has been changed under us; let the guest retry */
674 		goto out_unlock;
675 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
676 
677 	/* Always put the HPTE in the rmap chain for the page base address */
678 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
679 	lock_rmap(rmap);
680 
681 	/* Check if we might have been invalidated; let the guest retry if so */
682 	ret = RESUME_GUEST;
683 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
684 		unlock_rmap(rmap);
685 		goto out_unlock;
686 	}
687 
688 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
689 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
690 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
691 
692 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
693 		/* HPTE was previously valid, so we need to invalidate it */
694 		unlock_rmap(rmap);
695 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
696 		kvmppc_invalidate_hpte(kvm, hptep, index);
697 		/* don't lose previous R and C bits */
698 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
699 	} else {
700 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
701 	}
702 
703 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
704 		r = hpte_old_to_new_r(hpte[0], r);
705 		hpte[0] = hpte_old_to_new_v(hpte[0]);
706 	}
707 	hptep[1] = cpu_to_be64(r);
708 	eieio();
709 	__unlock_hpte(hptep, hpte[0]);
710 	asm volatile("ptesync" : : : "memory");
711 	preempt_enable();
712 	if (page && hpte_is_writable(r))
713 		set_page_dirty_lock(page);
714 
715  out_put:
716 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
717 
718 	if (page)
719 		put_page(page);
720 	return ret;
721 
722  out_unlock:
723 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
724 	preempt_enable();
725 	goto out_put;
726 }
727 
728 void kvmppc_rmap_reset(struct kvm *kvm)
729 {
730 	struct kvm_memslots *slots;
731 	struct kvm_memory_slot *memslot;
732 	int srcu_idx;
733 
734 	srcu_idx = srcu_read_lock(&kvm->srcu);
735 	slots = kvm_memslots(kvm);
736 	kvm_for_each_memslot(memslot, slots) {
737 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
738 		spin_lock(&kvm->mmu_lock);
739 		/*
740 		 * This assumes it is acceptable to lose reference and
741 		 * change bits across a reset.
742 		 */
743 		memset(memslot->arch.rmap, 0,
744 		       memslot->npages * sizeof(*memslot->arch.rmap));
745 		spin_unlock(&kvm->mmu_lock);
746 	}
747 	srcu_read_unlock(&kvm->srcu, srcu_idx);
748 }
749 
750 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
751 			      unsigned long gfn);
752 
753 static int kvm_handle_hva_range(struct kvm *kvm,
754 				unsigned long start,
755 				unsigned long end,
756 				hva_handler_fn handler)
757 {
758 	int ret;
759 	int retval = 0;
760 	struct kvm_memslots *slots;
761 	struct kvm_memory_slot *memslot;
762 
763 	slots = kvm_memslots(kvm);
764 	kvm_for_each_memslot(memslot, slots) {
765 		unsigned long hva_start, hva_end;
766 		gfn_t gfn, gfn_end;
767 
768 		hva_start = max(start, memslot->userspace_addr);
769 		hva_end = min(end, memslot->userspace_addr +
770 					(memslot->npages << PAGE_SHIFT));
771 		if (hva_start >= hva_end)
772 			continue;
773 		/*
774 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
775 		 * {gfn, gfn+1, ..., gfn_end-1}.
776 		 */
777 		gfn = hva_to_gfn_memslot(hva_start, memslot);
778 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
779 
780 		for (; gfn < gfn_end; ++gfn) {
781 			ret = handler(kvm, memslot, gfn);
782 			retval |= ret;
783 		}
784 	}
785 
786 	return retval;
787 }
788 
789 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
790 			  hva_handler_fn handler)
791 {
792 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
793 }
794 
795 /* Must be called with both HPTE and rmap locked */
796 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
797 			      struct kvm_memory_slot *memslot,
798 			      unsigned long *rmapp, unsigned long gfn)
799 {
800 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
801 	struct revmap_entry *rev = kvm->arch.hpt.rev;
802 	unsigned long j, h;
803 	unsigned long ptel, psize, rcbits;
804 
805 	j = rev[i].forw;
806 	if (j == i) {
807 		/* chain is now empty */
808 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
809 	} else {
810 		/* remove i from chain */
811 		h = rev[i].back;
812 		rev[h].forw = j;
813 		rev[j].back = h;
814 		rev[i].forw = rev[i].back = i;
815 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
816 	}
817 
818 	/* Now check and modify the HPTE */
819 	ptel = rev[i].guest_rpte;
820 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
821 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
822 	    hpte_rpn(ptel, psize) == gfn) {
823 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
824 		kvmppc_invalidate_hpte(kvm, hptep, i);
825 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
826 		/* Harvest R and C */
827 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
828 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
829 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
830 			kvmppc_update_dirty_map(memslot, gfn, psize);
831 		if (rcbits & ~rev[i].guest_rpte) {
832 			rev[i].guest_rpte = ptel | rcbits;
833 			note_hpte_modification(kvm, &rev[i]);
834 		}
835 	}
836 }
837 
838 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
839 			   unsigned long gfn)
840 {
841 	unsigned long i;
842 	__be64 *hptep;
843 	unsigned long *rmapp;
844 
845 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
846 	for (;;) {
847 		lock_rmap(rmapp);
848 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
849 			unlock_rmap(rmapp);
850 			break;
851 		}
852 
853 		/*
854 		 * To avoid an ABBA deadlock with the HPTE lock bit,
855 		 * we can't spin on the HPTE lock while holding the
856 		 * rmap chain lock.
857 		 */
858 		i = *rmapp & KVMPPC_RMAP_INDEX;
859 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
860 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
861 			/* unlock rmap before spinning on the HPTE lock */
862 			unlock_rmap(rmapp);
863 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
864 				cpu_relax();
865 			continue;
866 		}
867 
868 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
869 		unlock_rmap(rmapp);
870 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
871 	}
872 	return 0;
873 }
874 
875 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
876 {
877 	hva_handler_fn handler;
878 
879 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
880 	kvm_handle_hva_range(kvm, start, end, handler);
881 	return 0;
882 }
883 
884 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
885 				  struct kvm_memory_slot *memslot)
886 {
887 	unsigned long gfn;
888 	unsigned long n;
889 	unsigned long *rmapp;
890 
891 	gfn = memslot->base_gfn;
892 	rmapp = memslot->arch.rmap;
893 	if (kvm_is_radix(kvm)) {
894 		kvmppc_radix_flush_memslot(kvm, memslot);
895 		return;
896 	}
897 
898 	for (n = memslot->npages; n; --n, ++gfn) {
899 		/*
900 		 * Testing the present bit without locking is OK because
901 		 * the memslot has been marked invalid already, and hence
902 		 * no new HPTEs referencing this page can be created,
903 		 * thus the present bit can't go from 0 to 1.
904 		 */
905 		if (*rmapp & KVMPPC_RMAP_PRESENT)
906 			kvm_unmap_rmapp(kvm, memslot, gfn);
907 		++rmapp;
908 	}
909 }
910 
911 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
912 			 unsigned long gfn)
913 {
914 	struct revmap_entry *rev = kvm->arch.hpt.rev;
915 	unsigned long head, i, j;
916 	__be64 *hptep;
917 	int ret = 0;
918 	unsigned long *rmapp;
919 
920 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
921  retry:
922 	lock_rmap(rmapp);
923 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
924 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
925 		ret = 1;
926 	}
927 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
928 		unlock_rmap(rmapp);
929 		return ret;
930 	}
931 
932 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
933 	do {
934 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
935 		j = rev[i].forw;
936 
937 		/* If this HPTE isn't referenced, ignore it */
938 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
939 			continue;
940 
941 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
942 			/* unlock rmap before spinning on the HPTE lock */
943 			unlock_rmap(rmapp);
944 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
945 				cpu_relax();
946 			goto retry;
947 		}
948 
949 		/* Now check and modify the HPTE */
950 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
951 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
952 			kvmppc_clear_ref_hpte(kvm, hptep, i);
953 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
954 				rev[i].guest_rpte |= HPTE_R_R;
955 				note_hpte_modification(kvm, &rev[i]);
956 			}
957 			ret = 1;
958 		}
959 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
960 	} while ((i = j) != head);
961 
962 	unlock_rmap(rmapp);
963 	return ret;
964 }
965 
966 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
967 {
968 	hva_handler_fn handler;
969 
970 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
971 	return kvm_handle_hva_range(kvm, start, end, handler);
972 }
973 
974 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
975 			      unsigned long gfn)
976 {
977 	struct revmap_entry *rev = kvm->arch.hpt.rev;
978 	unsigned long head, i, j;
979 	unsigned long *hp;
980 	int ret = 1;
981 	unsigned long *rmapp;
982 
983 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
984 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
985 		return 1;
986 
987 	lock_rmap(rmapp);
988 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
989 		goto out;
990 
991 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
992 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
993 		do {
994 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
995 			j = rev[i].forw;
996 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
997 				goto out;
998 		} while ((i = j) != head);
999 	}
1000 	ret = 0;
1001 
1002  out:
1003 	unlock_rmap(rmapp);
1004 	return ret;
1005 }
1006 
1007 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1008 {
1009 	hva_handler_fn handler;
1010 
1011 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1012 	return kvm_handle_hva(kvm, hva, handler);
1013 }
1014 
1015 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1016 {
1017 	hva_handler_fn handler;
1018 
1019 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1020 	kvm_handle_hva(kvm, hva, handler);
1021 }
1022 
1023 static int vcpus_running(struct kvm *kvm)
1024 {
1025 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1026 }
1027 
1028 /*
1029  * Returns the number of system pages that are dirty.
1030  * This can be more than 1 if we find a huge-page HPTE.
1031  */
1032 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1033 {
1034 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1035 	unsigned long head, i, j;
1036 	unsigned long n;
1037 	unsigned long v, r;
1038 	__be64 *hptep;
1039 	int npages_dirty = 0;
1040 
1041  retry:
1042 	lock_rmap(rmapp);
1043 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1044 		unlock_rmap(rmapp);
1045 		return npages_dirty;
1046 	}
1047 
1048 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1049 	do {
1050 		unsigned long hptep1;
1051 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1052 		j = rev[i].forw;
1053 
1054 		/*
1055 		 * Checking the C (changed) bit here is racy since there
1056 		 * is no guarantee about when the hardware writes it back.
1057 		 * If the HPTE is not writable then it is stable since the
1058 		 * page can't be written to, and we would have done a tlbie
1059 		 * (which forces the hardware to complete any writeback)
1060 		 * when making the HPTE read-only.
1061 		 * If vcpus are running then this call is racy anyway
1062 		 * since the page could get dirtied subsequently, so we
1063 		 * expect there to be a further call which would pick up
1064 		 * any delayed C bit writeback.
1065 		 * Otherwise we need to do the tlbie even if C==0 in
1066 		 * order to pick up any delayed writeback of C.
1067 		 */
1068 		hptep1 = be64_to_cpu(hptep[1]);
1069 		if (!(hptep1 & HPTE_R_C) &&
1070 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1071 			continue;
1072 
1073 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1074 			/* unlock rmap before spinning on the HPTE lock */
1075 			unlock_rmap(rmapp);
1076 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1077 				cpu_relax();
1078 			goto retry;
1079 		}
1080 
1081 		/* Now check and modify the HPTE */
1082 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1083 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1084 			continue;
1085 		}
1086 
1087 		/* need to make it temporarily absent so C is stable */
1088 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1089 		kvmppc_invalidate_hpte(kvm, hptep, i);
1090 		v = be64_to_cpu(hptep[0]);
1091 		r = be64_to_cpu(hptep[1]);
1092 		if (r & HPTE_R_C) {
1093 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1094 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1095 				rev[i].guest_rpte |= HPTE_R_C;
1096 				note_hpte_modification(kvm, &rev[i]);
1097 			}
1098 			n = kvmppc_actual_pgsz(v, r);
1099 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1100 			if (n > npages_dirty)
1101 				npages_dirty = n;
1102 			eieio();
1103 		}
1104 		v &= ~HPTE_V_ABSENT;
1105 		v |= HPTE_V_VALID;
1106 		__unlock_hpte(hptep, v);
1107 	} while ((i = j) != head);
1108 
1109 	unlock_rmap(rmapp);
1110 	return npages_dirty;
1111 }
1112 
1113 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1114 			      struct kvm_memory_slot *memslot,
1115 			      unsigned long *map)
1116 {
1117 	unsigned long gfn;
1118 
1119 	if (!vpa->dirty || !vpa->pinned_addr)
1120 		return;
1121 	gfn = vpa->gpa >> PAGE_SHIFT;
1122 	if (gfn < memslot->base_gfn ||
1123 	    gfn >= memslot->base_gfn + memslot->npages)
1124 		return;
1125 
1126 	vpa->dirty = false;
1127 	if (map)
1128 		__set_bit_le(gfn - memslot->base_gfn, map);
1129 }
1130 
1131 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1132 			struct kvm_memory_slot *memslot, unsigned long *map)
1133 {
1134 	unsigned long i;
1135 	unsigned long *rmapp;
1136 
1137 	preempt_disable();
1138 	rmapp = memslot->arch.rmap;
1139 	for (i = 0; i < memslot->npages; ++i) {
1140 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1141 		/*
1142 		 * Note that if npages > 0 then i must be a multiple of npages,
1143 		 * since we always put huge-page HPTEs in the rmap chain
1144 		 * corresponding to their page base address.
1145 		 */
1146 		if (npages)
1147 			set_dirty_bits(map, i, npages);
1148 		++rmapp;
1149 	}
1150 	preempt_enable();
1151 	return 0;
1152 }
1153 
1154 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1155 			    unsigned long *nb_ret)
1156 {
1157 	struct kvm_memory_slot *memslot;
1158 	unsigned long gfn = gpa >> PAGE_SHIFT;
1159 	struct page *page, *pages[1];
1160 	int npages;
1161 	unsigned long hva, offset;
1162 	int srcu_idx;
1163 
1164 	srcu_idx = srcu_read_lock(&kvm->srcu);
1165 	memslot = gfn_to_memslot(kvm, gfn);
1166 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1167 		goto err;
1168 	hva = gfn_to_hva_memslot(memslot, gfn);
1169 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1170 	if (npages < 1)
1171 		goto err;
1172 	page = pages[0];
1173 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1174 
1175 	offset = gpa & (PAGE_SIZE - 1);
1176 	if (nb_ret)
1177 		*nb_ret = PAGE_SIZE - offset;
1178 	return page_address(page) + offset;
1179 
1180  err:
1181 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1182 	return NULL;
1183 }
1184 
1185 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1186 			     bool dirty)
1187 {
1188 	struct page *page = virt_to_page(va);
1189 	struct kvm_memory_slot *memslot;
1190 	unsigned long gfn;
1191 	int srcu_idx;
1192 
1193 	put_page(page);
1194 
1195 	if (!dirty)
1196 		return;
1197 
1198 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1199 	gfn = gpa >> PAGE_SHIFT;
1200 	srcu_idx = srcu_read_lock(&kvm->srcu);
1201 	memslot = gfn_to_memslot(kvm, gfn);
1202 	if (memslot && memslot->dirty_bitmap)
1203 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1204 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1205 }
1206 
1207 /*
1208  * HPT resizing
1209  */
1210 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1211 {
1212 	int rc;
1213 
1214 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1215 	if (rc < 0)
1216 		return rc;
1217 
1218 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1219 			 resize->hpt.virt);
1220 
1221 	return 0;
1222 }
1223 
1224 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1225 					    unsigned long idx)
1226 {
1227 	struct kvm *kvm = resize->kvm;
1228 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1229 	struct kvm_hpt_info *new = &resize->hpt;
1230 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1231 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1232 	__be64 *hptep, *new_hptep;
1233 	unsigned long vpte, rpte, guest_rpte;
1234 	int ret;
1235 	struct revmap_entry *rev;
1236 	unsigned long apsize, avpn, pteg, hash;
1237 	unsigned long new_idx, new_pteg, replace_vpte;
1238 	int pshift;
1239 
1240 	hptep = (__be64 *)(old->virt + (idx << 4));
1241 
1242 	/* Guest is stopped, so new HPTEs can't be added or faulted
1243 	 * in, only unmapped or altered by host actions.  So, it's
1244 	 * safe to check this before we take the HPTE lock */
1245 	vpte = be64_to_cpu(hptep[0]);
1246 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1247 		return 0; /* nothing to do */
1248 
1249 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1250 		cpu_relax();
1251 
1252 	vpte = be64_to_cpu(hptep[0]);
1253 
1254 	ret = 0;
1255 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1256 		/* Nothing to do */
1257 		goto out;
1258 
1259 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1260 		rpte = be64_to_cpu(hptep[1]);
1261 		vpte = hpte_new_to_old_v(vpte, rpte);
1262 	}
1263 
1264 	/* Unmap */
1265 	rev = &old->rev[idx];
1266 	guest_rpte = rev->guest_rpte;
1267 
1268 	ret = -EIO;
1269 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1270 	if (!apsize)
1271 		goto out;
1272 
1273 	if (vpte & HPTE_V_VALID) {
1274 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1275 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1276 		struct kvm_memory_slot *memslot =
1277 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1278 
1279 		if (memslot) {
1280 			unsigned long *rmapp;
1281 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1282 
1283 			lock_rmap(rmapp);
1284 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1285 			unlock_rmap(rmapp);
1286 		}
1287 
1288 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1289 	}
1290 
1291 	/* Reload PTE after unmap */
1292 	vpte = be64_to_cpu(hptep[0]);
1293 	BUG_ON(vpte & HPTE_V_VALID);
1294 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1295 
1296 	ret = 0;
1297 	if (!(vpte & HPTE_V_BOLTED))
1298 		goto out;
1299 
1300 	rpte = be64_to_cpu(hptep[1]);
1301 
1302 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1303 		vpte = hpte_new_to_old_v(vpte, rpte);
1304 		rpte = hpte_new_to_old_r(rpte);
1305 	}
1306 
1307 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1308 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1309 	pteg = idx / HPTES_PER_GROUP;
1310 	if (vpte & HPTE_V_SECONDARY)
1311 		pteg = ~pteg;
1312 
1313 	if (!(vpte & HPTE_V_1TB_SEG)) {
1314 		unsigned long offset, vsid;
1315 
1316 		/* We only have 28 - 23 bits of offset in avpn */
1317 		offset = (avpn & 0x1f) << 23;
1318 		vsid = avpn >> 5;
1319 		/* We can find more bits from the pteg value */
1320 		if (pshift < 23)
1321 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1322 
1323 		hash = vsid ^ (offset >> pshift);
1324 	} else {
1325 		unsigned long offset, vsid;
1326 
1327 		/* We only have 40 - 23 bits of seg_off in avpn */
1328 		offset = (avpn & 0x1ffff) << 23;
1329 		vsid = avpn >> 17;
1330 		if (pshift < 23)
1331 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1332 
1333 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1334 	}
1335 
1336 	new_pteg = hash & new_hash_mask;
1337 	if (vpte & HPTE_V_SECONDARY)
1338 		new_pteg = ~hash & new_hash_mask;
1339 
1340 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1341 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1342 
1343 	replace_vpte = be64_to_cpu(new_hptep[0]);
1344 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1345 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1346 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1347 	}
1348 
1349 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1350 		BUG_ON(new->order >= old->order);
1351 
1352 		if (replace_vpte & HPTE_V_BOLTED) {
1353 			if (vpte & HPTE_V_BOLTED)
1354 				/* Bolted collision, nothing we can do */
1355 				ret = -ENOSPC;
1356 			/* Discard the new HPTE */
1357 			goto out;
1358 		}
1359 
1360 		/* Discard the previous HPTE */
1361 	}
1362 
1363 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1364 		rpte = hpte_old_to_new_r(vpte, rpte);
1365 		vpte = hpte_old_to_new_v(vpte);
1366 	}
1367 
1368 	new_hptep[1] = cpu_to_be64(rpte);
1369 	new->rev[new_idx].guest_rpte = guest_rpte;
1370 	/* No need for a barrier, since new HPT isn't active */
1371 	new_hptep[0] = cpu_to_be64(vpte);
1372 	unlock_hpte(new_hptep, vpte);
1373 
1374 out:
1375 	unlock_hpte(hptep, vpte);
1376 	return ret;
1377 }
1378 
1379 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1380 {
1381 	struct kvm *kvm = resize->kvm;
1382 	unsigned  long i;
1383 	int rc;
1384 
1385 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1386 		rc = resize_hpt_rehash_hpte(resize, i);
1387 		if (rc != 0)
1388 			return rc;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1395 {
1396 	struct kvm *kvm = resize->kvm;
1397 	struct kvm_hpt_info hpt_tmp;
1398 
1399 	/* Exchange the pending tables in the resize structure with
1400 	 * the active tables */
1401 
1402 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1403 
1404 	spin_lock(&kvm->mmu_lock);
1405 	asm volatile("ptesync" : : : "memory");
1406 
1407 	hpt_tmp = kvm->arch.hpt;
1408 	kvmppc_set_hpt(kvm, &resize->hpt);
1409 	resize->hpt = hpt_tmp;
1410 
1411 	spin_unlock(&kvm->mmu_lock);
1412 
1413 	synchronize_srcu_expedited(&kvm->srcu);
1414 
1415 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1416 		kvmppc_setup_partition_table(kvm);
1417 
1418 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1419 }
1420 
1421 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1422 {
1423 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1424 		return;
1425 
1426 	if (!resize)
1427 		return;
1428 
1429 	if (resize->error != -EBUSY) {
1430 		if (resize->hpt.virt)
1431 			kvmppc_free_hpt(&resize->hpt);
1432 		kfree(resize);
1433 	}
1434 
1435 	if (kvm->arch.resize_hpt == resize)
1436 		kvm->arch.resize_hpt = NULL;
1437 }
1438 
1439 static void resize_hpt_prepare_work(struct work_struct *work)
1440 {
1441 	struct kvm_resize_hpt *resize = container_of(work,
1442 						     struct kvm_resize_hpt,
1443 						     work);
1444 	struct kvm *kvm = resize->kvm;
1445 	int err = 0;
1446 
1447 	if (WARN_ON(resize->error != -EBUSY))
1448 		return;
1449 
1450 	mutex_lock(&kvm->arch.mmu_setup_lock);
1451 
1452 	/* Request is still current? */
1453 	if (kvm->arch.resize_hpt == resize) {
1454 		/* We may request large allocations here:
1455 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1456 		 */
1457 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1458 
1459 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1460 				 resize->order);
1461 
1462 		err = resize_hpt_allocate(resize);
1463 
1464 		/* We have strict assumption about -EBUSY
1465 		 * when preparing for HPT resize.
1466 		 */
1467 		if (WARN_ON(err == -EBUSY))
1468 			err = -EINPROGRESS;
1469 
1470 		mutex_lock(&kvm->arch.mmu_setup_lock);
1471 		/* It is possible that kvm->arch.resize_hpt != resize
1472 		 * after we grab kvm->arch.mmu_setup_lock again.
1473 		 */
1474 	}
1475 
1476 	resize->error = err;
1477 
1478 	if (kvm->arch.resize_hpt != resize)
1479 		resize_hpt_release(kvm, resize);
1480 
1481 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1482 }
1483 
1484 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1485 				     struct kvm_ppc_resize_hpt *rhpt)
1486 {
1487 	unsigned long flags = rhpt->flags;
1488 	unsigned long shift = rhpt->shift;
1489 	struct kvm_resize_hpt *resize;
1490 	int ret;
1491 
1492 	if (flags != 0 || kvm_is_radix(kvm))
1493 		return -EINVAL;
1494 
1495 	if (shift && ((shift < 18) || (shift > 46)))
1496 		return -EINVAL;
1497 
1498 	mutex_lock(&kvm->arch.mmu_setup_lock);
1499 
1500 	resize = kvm->arch.resize_hpt;
1501 
1502 	if (resize) {
1503 		if (resize->order == shift) {
1504 			/* Suitable resize in progress? */
1505 			ret = resize->error;
1506 			if (ret == -EBUSY)
1507 				ret = 100; /* estimated time in ms */
1508 			else if (ret)
1509 				resize_hpt_release(kvm, resize);
1510 
1511 			goto out;
1512 		}
1513 
1514 		/* not suitable, cancel it */
1515 		resize_hpt_release(kvm, resize);
1516 	}
1517 
1518 	ret = 0;
1519 	if (!shift)
1520 		goto out; /* nothing to do */
1521 
1522 	/* start new resize */
1523 
1524 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1525 	if (!resize) {
1526 		ret = -ENOMEM;
1527 		goto out;
1528 	}
1529 
1530 	resize->error = -EBUSY;
1531 	resize->order = shift;
1532 	resize->kvm = kvm;
1533 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1534 	kvm->arch.resize_hpt = resize;
1535 
1536 	schedule_work(&resize->work);
1537 
1538 	ret = 100; /* estimated time in ms */
1539 
1540 out:
1541 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1542 	return ret;
1543 }
1544 
1545 static void resize_hpt_boot_vcpu(void *opaque)
1546 {
1547 	/* Nothing to do, just force a KVM exit */
1548 }
1549 
1550 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1551 				    struct kvm_ppc_resize_hpt *rhpt)
1552 {
1553 	unsigned long flags = rhpt->flags;
1554 	unsigned long shift = rhpt->shift;
1555 	struct kvm_resize_hpt *resize;
1556 	long ret;
1557 
1558 	if (flags != 0 || kvm_is_radix(kvm))
1559 		return -EINVAL;
1560 
1561 	if (shift && ((shift < 18) || (shift > 46)))
1562 		return -EINVAL;
1563 
1564 	mutex_lock(&kvm->arch.mmu_setup_lock);
1565 
1566 	resize = kvm->arch.resize_hpt;
1567 
1568 	/* This shouldn't be possible */
1569 	ret = -EIO;
1570 	if (WARN_ON(!kvm->arch.mmu_ready))
1571 		goto out_no_hpt;
1572 
1573 	/* Stop VCPUs from running while we mess with the HPT */
1574 	kvm->arch.mmu_ready = 0;
1575 	smp_mb();
1576 
1577 	/* Boot all CPUs out of the guest so they re-read
1578 	 * mmu_ready */
1579 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1580 
1581 	ret = -ENXIO;
1582 	if (!resize || (resize->order != shift))
1583 		goto out;
1584 
1585 	ret = resize->error;
1586 	if (ret)
1587 		goto out;
1588 
1589 	ret = resize_hpt_rehash(resize);
1590 	if (ret)
1591 		goto out;
1592 
1593 	resize_hpt_pivot(resize);
1594 
1595 out:
1596 	/* Let VCPUs run again */
1597 	kvm->arch.mmu_ready = 1;
1598 	smp_mb();
1599 out_no_hpt:
1600 	resize_hpt_release(kvm, resize);
1601 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1602 	return ret;
1603 }
1604 
1605 /*
1606  * Functions for reading and writing the hash table via reads and
1607  * writes on a file descriptor.
1608  *
1609  * Reads return the guest view of the hash table, which has to be
1610  * pieced together from the real hash table and the guest_rpte
1611  * values in the revmap array.
1612  *
1613  * On writes, each HPTE written is considered in turn, and if it
1614  * is valid, it is written to the HPT as if an H_ENTER with the
1615  * exact flag set was done.  When the invalid count is non-zero
1616  * in the header written to the stream, the kernel will make
1617  * sure that that many HPTEs are invalid, and invalidate them
1618  * if not.
1619  */
1620 
1621 struct kvm_htab_ctx {
1622 	unsigned long	index;
1623 	unsigned long	flags;
1624 	struct kvm	*kvm;
1625 	int		first_pass;
1626 };
1627 
1628 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1629 
1630 /*
1631  * Returns 1 if this HPT entry has been modified or has pending
1632  * R/C bit changes.
1633  */
1634 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1635 {
1636 	unsigned long rcbits_unset;
1637 
1638 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1639 		return 1;
1640 
1641 	/* Also need to consider changes in reference and changed bits */
1642 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1643 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1644 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1645 		return 1;
1646 
1647 	return 0;
1648 }
1649 
1650 static long record_hpte(unsigned long flags, __be64 *hptp,
1651 			unsigned long *hpte, struct revmap_entry *revp,
1652 			int want_valid, int first_pass)
1653 {
1654 	unsigned long v, r, hr;
1655 	unsigned long rcbits_unset;
1656 	int ok = 1;
1657 	int valid, dirty;
1658 
1659 	/* Unmodified entries are uninteresting except on the first pass */
1660 	dirty = hpte_dirty(revp, hptp);
1661 	if (!first_pass && !dirty)
1662 		return 0;
1663 
1664 	valid = 0;
1665 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1666 		valid = 1;
1667 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1668 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1669 			valid = 0;
1670 	}
1671 	if (valid != want_valid)
1672 		return 0;
1673 
1674 	v = r = 0;
1675 	if (valid || dirty) {
1676 		/* lock the HPTE so it's stable and read it */
1677 		preempt_disable();
1678 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1679 			cpu_relax();
1680 		v = be64_to_cpu(hptp[0]);
1681 		hr = be64_to_cpu(hptp[1]);
1682 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1683 			v = hpte_new_to_old_v(v, hr);
1684 			hr = hpte_new_to_old_r(hr);
1685 		}
1686 
1687 		/* re-evaluate valid and dirty from synchronized HPTE value */
1688 		valid = !!(v & HPTE_V_VALID);
1689 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1690 
1691 		/* Harvest R and C into guest view if necessary */
1692 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1693 		if (valid && (rcbits_unset & hr)) {
1694 			revp->guest_rpte |= (hr &
1695 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1696 			dirty = 1;
1697 		}
1698 
1699 		if (v & HPTE_V_ABSENT) {
1700 			v &= ~HPTE_V_ABSENT;
1701 			v |= HPTE_V_VALID;
1702 			valid = 1;
1703 		}
1704 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1705 			valid = 0;
1706 
1707 		r = revp->guest_rpte;
1708 		/* only clear modified if this is the right sort of entry */
1709 		if (valid == want_valid && dirty) {
1710 			r &= ~HPTE_GR_MODIFIED;
1711 			revp->guest_rpte = r;
1712 		}
1713 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1714 		preempt_enable();
1715 		if (!(valid == want_valid && (first_pass || dirty)))
1716 			ok = 0;
1717 	}
1718 	hpte[0] = cpu_to_be64(v);
1719 	hpte[1] = cpu_to_be64(r);
1720 	return ok;
1721 }
1722 
1723 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1724 			     size_t count, loff_t *ppos)
1725 {
1726 	struct kvm_htab_ctx *ctx = file->private_data;
1727 	struct kvm *kvm = ctx->kvm;
1728 	struct kvm_get_htab_header hdr;
1729 	__be64 *hptp;
1730 	struct revmap_entry *revp;
1731 	unsigned long i, nb, nw;
1732 	unsigned long __user *lbuf;
1733 	struct kvm_get_htab_header __user *hptr;
1734 	unsigned long flags;
1735 	int first_pass;
1736 	unsigned long hpte[2];
1737 
1738 	if (!access_ok(buf, count))
1739 		return -EFAULT;
1740 	if (kvm_is_radix(kvm))
1741 		return 0;
1742 
1743 	first_pass = ctx->first_pass;
1744 	flags = ctx->flags;
1745 
1746 	i = ctx->index;
1747 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1748 	revp = kvm->arch.hpt.rev + i;
1749 	lbuf = (unsigned long __user *)buf;
1750 
1751 	nb = 0;
1752 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1753 		/* Initialize header */
1754 		hptr = (struct kvm_get_htab_header __user *)buf;
1755 		hdr.n_valid = 0;
1756 		hdr.n_invalid = 0;
1757 		nw = nb;
1758 		nb += sizeof(hdr);
1759 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1760 
1761 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1762 		if (!first_pass) {
1763 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1764 			       !hpte_dirty(revp, hptp)) {
1765 				++i;
1766 				hptp += 2;
1767 				++revp;
1768 			}
1769 		}
1770 		hdr.index = i;
1771 
1772 		/* Grab a series of valid entries */
1773 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1774 		       hdr.n_valid < 0xffff &&
1775 		       nb + HPTE_SIZE < count &&
1776 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1777 			/* valid entry, write it out */
1778 			++hdr.n_valid;
1779 			if (__put_user(hpte[0], lbuf) ||
1780 			    __put_user(hpte[1], lbuf + 1))
1781 				return -EFAULT;
1782 			nb += HPTE_SIZE;
1783 			lbuf += 2;
1784 			++i;
1785 			hptp += 2;
1786 			++revp;
1787 		}
1788 		/* Now skip invalid entries while we can */
1789 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1790 		       hdr.n_invalid < 0xffff &&
1791 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1792 			/* found an invalid entry */
1793 			++hdr.n_invalid;
1794 			++i;
1795 			hptp += 2;
1796 			++revp;
1797 		}
1798 
1799 		if (hdr.n_valid || hdr.n_invalid) {
1800 			/* write back the header */
1801 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1802 				return -EFAULT;
1803 			nw = nb;
1804 			buf = (char __user *)lbuf;
1805 		} else {
1806 			nb = nw;
1807 		}
1808 
1809 		/* Check if we've wrapped around the hash table */
1810 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1811 			i = 0;
1812 			ctx->first_pass = 0;
1813 			break;
1814 		}
1815 	}
1816 
1817 	ctx->index = i;
1818 
1819 	return nb;
1820 }
1821 
1822 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1823 			      size_t count, loff_t *ppos)
1824 {
1825 	struct kvm_htab_ctx *ctx = file->private_data;
1826 	struct kvm *kvm = ctx->kvm;
1827 	struct kvm_get_htab_header hdr;
1828 	unsigned long i, j;
1829 	unsigned long v, r;
1830 	unsigned long __user *lbuf;
1831 	__be64 *hptp;
1832 	unsigned long tmp[2];
1833 	ssize_t nb;
1834 	long int err, ret;
1835 	int mmu_ready;
1836 	int pshift;
1837 
1838 	if (!access_ok(buf, count))
1839 		return -EFAULT;
1840 	if (kvm_is_radix(kvm))
1841 		return -EINVAL;
1842 
1843 	/* lock out vcpus from running while we're doing this */
1844 	mutex_lock(&kvm->arch.mmu_setup_lock);
1845 	mmu_ready = kvm->arch.mmu_ready;
1846 	if (mmu_ready) {
1847 		kvm->arch.mmu_ready = 0;	/* temporarily */
1848 		/* order mmu_ready vs. vcpus_running */
1849 		smp_mb();
1850 		if (atomic_read(&kvm->arch.vcpus_running)) {
1851 			kvm->arch.mmu_ready = 1;
1852 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1853 			return -EBUSY;
1854 		}
1855 	}
1856 
1857 	err = 0;
1858 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1859 		err = -EFAULT;
1860 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1861 			break;
1862 
1863 		err = 0;
1864 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1865 			break;
1866 
1867 		nb += sizeof(hdr);
1868 		buf += sizeof(hdr);
1869 
1870 		err = -EINVAL;
1871 		i = hdr.index;
1872 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1873 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1874 			break;
1875 
1876 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1877 		lbuf = (unsigned long __user *)buf;
1878 		for (j = 0; j < hdr.n_valid; ++j) {
1879 			__be64 hpte_v;
1880 			__be64 hpte_r;
1881 
1882 			err = -EFAULT;
1883 			if (__get_user(hpte_v, lbuf) ||
1884 			    __get_user(hpte_r, lbuf + 1))
1885 				goto out;
1886 			v = be64_to_cpu(hpte_v);
1887 			r = be64_to_cpu(hpte_r);
1888 			err = -EINVAL;
1889 			if (!(v & HPTE_V_VALID))
1890 				goto out;
1891 			pshift = kvmppc_hpte_base_page_shift(v, r);
1892 			if (pshift <= 0)
1893 				goto out;
1894 			lbuf += 2;
1895 			nb += HPTE_SIZE;
1896 
1897 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1898 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1899 			err = -EIO;
1900 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1901 							 tmp);
1902 			if (ret != H_SUCCESS) {
1903 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1904 				       "r=%lx\n", ret, i, v, r);
1905 				goto out;
1906 			}
1907 			if (!mmu_ready && is_vrma_hpte(v)) {
1908 				unsigned long senc, lpcr;
1909 
1910 				senc = slb_pgsize_encoding(1ul << pshift);
1911 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1912 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1913 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1914 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1915 					kvmppc_update_lpcr(kvm, lpcr,
1916 							   LPCR_VRMASD);
1917 				} else {
1918 					kvmppc_setup_partition_table(kvm);
1919 				}
1920 				mmu_ready = 1;
1921 			}
1922 			++i;
1923 			hptp += 2;
1924 		}
1925 
1926 		for (j = 0; j < hdr.n_invalid; ++j) {
1927 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1928 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1929 			++i;
1930 			hptp += 2;
1931 		}
1932 		err = 0;
1933 	}
1934 
1935  out:
1936 	/* Order HPTE updates vs. mmu_ready */
1937 	smp_wmb();
1938 	kvm->arch.mmu_ready = mmu_ready;
1939 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1940 
1941 	if (err)
1942 		return err;
1943 	return nb;
1944 }
1945 
1946 static int kvm_htab_release(struct inode *inode, struct file *filp)
1947 {
1948 	struct kvm_htab_ctx *ctx = filp->private_data;
1949 
1950 	filp->private_data = NULL;
1951 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1952 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1953 	kvm_put_kvm(ctx->kvm);
1954 	kfree(ctx);
1955 	return 0;
1956 }
1957 
1958 static const struct file_operations kvm_htab_fops = {
1959 	.read		= kvm_htab_read,
1960 	.write		= kvm_htab_write,
1961 	.llseek		= default_llseek,
1962 	.release	= kvm_htab_release,
1963 };
1964 
1965 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1966 {
1967 	int ret;
1968 	struct kvm_htab_ctx *ctx;
1969 	int rwflag;
1970 
1971 	/* reject flags we don't recognize */
1972 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1973 		return -EINVAL;
1974 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1975 	if (!ctx)
1976 		return -ENOMEM;
1977 	kvm_get_kvm(kvm);
1978 	ctx->kvm = kvm;
1979 	ctx->index = ghf->start_index;
1980 	ctx->flags = ghf->flags;
1981 	ctx->first_pass = 1;
1982 
1983 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1984 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1985 	if (ret < 0) {
1986 		kfree(ctx);
1987 		kvm_put_kvm_no_destroy(kvm);
1988 		return ret;
1989 	}
1990 
1991 	if (rwflag == O_RDONLY) {
1992 		mutex_lock(&kvm->slots_lock);
1993 		atomic_inc(&kvm->arch.hpte_mod_interest);
1994 		/* make sure kvmppc_do_h_enter etc. see the increment */
1995 		synchronize_srcu_expedited(&kvm->srcu);
1996 		mutex_unlock(&kvm->slots_lock);
1997 	}
1998 
1999 	return ret;
2000 }
2001 
2002 struct debugfs_htab_state {
2003 	struct kvm	*kvm;
2004 	struct mutex	mutex;
2005 	unsigned long	hpt_index;
2006 	int		chars_left;
2007 	int		buf_index;
2008 	char		buf[64];
2009 };
2010 
2011 static int debugfs_htab_open(struct inode *inode, struct file *file)
2012 {
2013 	struct kvm *kvm = inode->i_private;
2014 	struct debugfs_htab_state *p;
2015 
2016 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2017 	if (!p)
2018 		return -ENOMEM;
2019 
2020 	kvm_get_kvm(kvm);
2021 	p->kvm = kvm;
2022 	mutex_init(&p->mutex);
2023 	file->private_data = p;
2024 
2025 	return nonseekable_open(inode, file);
2026 }
2027 
2028 static int debugfs_htab_release(struct inode *inode, struct file *file)
2029 {
2030 	struct debugfs_htab_state *p = file->private_data;
2031 
2032 	kvm_put_kvm(p->kvm);
2033 	kfree(p);
2034 	return 0;
2035 }
2036 
2037 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2038 				 size_t len, loff_t *ppos)
2039 {
2040 	struct debugfs_htab_state *p = file->private_data;
2041 	ssize_t ret, r;
2042 	unsigned long i, n;
2043 	unsigned long v, hr, gr;
2044 	struct kvm *kvm;
2045 	__be64 *hptp;
2046 
2047 	kvm = p->kvm;
2048 	if (kvm_is_radix(kvm))
2049 		return 0;
2050 
2051 	ret = mutex_lock_interruptible(&p->mutex);
2052 	if (ret)
2053 		return ret;
2054 
2055 	if (p->chars_left) {
2056 		n = p->chars_left;
2057 		if (n > len)
2058 			n = len;
2059 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2060 		n -= r;
2061 		p->chars_left -= n;
2062 		p->buf_index += n;
2063 		buf += n;
2064 		len -= n;
2065 		ret = n;
2066 		if (r) {
2067 			if (!n)
2068 				ret = -EFAULT;
2069 			goto out;
2070 		}
2071 	}
2072 
2073 	i = p->hpt_index;
2074 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2075 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2076 	     ++i, hptp += 2) {
2077 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2078 			continue;
2079 
2080 		/* lock the HPTE so it's stable and read it */
2081 		preempt_disable();
2082 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2083 			cpu_relax();
2084 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2085 		hr = be64_to_cpu(hptp[1]);
2086 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2087 		unlock_hpte(hptp, v);
2088 		preempt_enable();
2089 
2090 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2091 			continue;
2092 
2093 		n = scnprintf(p->buf, sizeof(p->buf),
2094 			      "%6lx %.16lx %.16lx %.16lx\n",
2095 			      i, v, hr, gr);
2096 		p->chars_left = n;
2097 		if (n > len)
2098 			n = len;
2099 		r = copy_to_user(buf, p->buf, n);
2100 		n -= r;
2101 		p->chars_left -= n;
2102 		p->buf_index = n;
2103 		buf += n;
2104 		len -= n;
2105 		ret += n;
2106 		if (r) {
2107 			if (!ret)
2108 				ret = -EFAULT;
2109 			goto out;
2110 		}
2111 	}
2112 	p->hpt_index = i;
2113 
2114  out:
2115 	mutex_unlock(&p->mutex);
2116 	return ret;
2117 }
2118 
2119 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2120 			   size_t len, loff_t *ppos)
2121 {
2122 	return -EACCES;
2123 }
2124 
2125 static const struct file_operations debugfs_htab_fops = {
2126 	.owner	 = THIS_MODULE,
2127 	.open	 = debugfs_htab_open,
2128 	.release = debugfs_htab_release,
2129 	.read	 = debugfs_htab_read,
2130 	.write	 = debugfs_htab_write,
2131 	.llseek	 = generic_file_llseek,
2132 };
2133 
2134 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2135 {
2136 	debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2137 			    &debugfs_htab_fops);
2138 }
2139 
2140 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2141 {
2142 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2143 
2144 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2145 
2146 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2147 
2148 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2149 }
2150