1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "trace_hv.h"
31 
32 //#define DEBUG_RESIZE_HPT	1
33 
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...)				\
36 	do {							\
37 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
38 		printk(__VA_ARGS__);				\
39 	} while (0)
40 #else
41 #define resize_hpt_debug(resize, ...)				\
42 	do { } while (0)
43 #endif
44 
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 				long pte_index, unsigned long pteh,
47 				unsigned long ptel, unsigned long *pte_idx_ret);
48 
49 struct kvm_resize_hpt {
50 	/* These fields read-only after init */
51 	struct kvm *kvm;
52 	struct work_struct work;
53 	u32 order;
54 
55 	/* These fields protected by kvm->arch.mmu_setup_lock */
56 
57 	/* Possible values and their usage:
58 	 *  <0     an error occurred during allocation,
59 	 *  -EBUSY allocation is in the progress,
60 	 *  0      allocation made successfuly.
61 	 */
62 	int error;
63 
64 	/* Private to the work thread, until error != -EBUSY,
65 	 * then protected by kvm->arch.mmu_setup_lock.
66 	 */
67 	struct kvm_hpt_info hpt;
68 };
69 
70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
71 {
72 	unsigned long hpt = 0;
73 	int cma = 0;
74 	struct page *page = NULL;
75 	struct revmap_entry *rev;
76 	unsigned long npte;
77 
78 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79 		return -EINVAL;
80 
81 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82 	if (page) {
83 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84 		memset((void *)hpt, 0, (1ul << order));
85 		cma = 1;
86 	}
87 
88 	if (!hpt)
89 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90 				       |__GFP_NOWARN, order - PAGE_SHIFT);
91 
92 	if (!hpt)
93 		return -ENOMEM;
94 
95 	/* HPTEs are 2**4 bytes long */
96 	npte = 1ul << (order - 4);
97 
98 	/* Allocate reverse map array */
99 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100 	if (!rev) {
101 		if (cma)
102 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103 		else
104 			free_pages(hpt, order - PAGE_SHIFT);
105 		return -ENOMEM;
106 	}
107 
108 	info->order = order;
109 	info->virt = hpt;
110 	info->cma = cma;
111 	info->rev = rev;
112 
113 	return 0;
114 }
115 
116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
117 {
118 	atomic64_set(&kvm->arch.mmio_update, 0);
119 	kvm->arch.hpt = *info;
120 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
121 
122 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 		 info->virt, (long)info->order, kvm->arch.lpid);
124 }
125 
126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
127 {
128 	long err = -EBUSY;
129 	struct kvm_hpt_info info;
130 
131 	mutex_lock(&kvm->arch.mmu_setup_lock);
132 	if (kvm->arch.mmu_ready) {
133 		kvm->arch.mmu_ready = 0;
134 		/* order mmu_ready vs. vcpus_running */
135 		smp_mb();
136 		if (atomic_read(&kvm->arch.vcpus_running)) {
137 			kvm->arch.mmu_ready = 1;
138 			goto out;
139 		}
140 	}
141 	if (kvm_is_radix(kvm)) {
142 		err = kvmppc_switch_mmu_to_hpt(kvm);
143 		if (err)
144 			goto out;
145 	}
146 
147 	if (kvm->arch.hpt.order == order) {
148 		/* We already have a suitable HPT */
149 
150 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
151 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
152 		/*
153 		 * Reset all the reverse-mapping chains for all memslots
154 		 */
155 		kvmppc_rmap_reset(kvm);
156 		err = 0;
157 		goto out;
158 	}
159 
160 	if (kvm->arch.hpt.virt) {
161 		kvmppc_free_hpt(&kvm->arch.hpt);
162 		kvmppc_rmap_reset(kvm);
163 	}
164 
165 	err = kvmppc_allocate_hpt(&info, order);
166 	if (err < 0)
167 		goto out;
168 	kvmppc_set_hpt(kvm, &info);
169 
170 out:
171 	if (err == 0)
172 		/* Ensure that each vcpu will flush its TLB on next entry. */
173 		cpumask_setall(&kvm->arch.need_tlb_flush);
174 
175 	mutex_unlock(&kvm->arch.mmu_setup_lock);
176 	return err;
177 }
178 
179 void kvmppc_free_hpt(struct kvm_hpt_info *info)
180 {
181 	vfree(info->rev);
182 	info->rev = NULL;
183 	if (info->cma)
184 		kvm_free_hpt_cma(virt_to_page(info->virt),
185 				 1 << (info->order - PAGE_SHIFT));
186 	else if (info->virt)
187 		free_pages(info->virt, info->order - PAGE_SHIFT);
188 	info->virt = 0;
189 	info->order = 0;
190 }
191 
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197 
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201 	return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203 
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 		     unsigned long porder)
206 {
207 	unsigned long i;
208 	unsigned long npages;
209 	unsigned long hp_v, hp_r;
210 	unsigned long addr, hash;
211 	unsigned long psize;
212 	unsigned long hp0, hp1;
213 	unsigned long idx_ret;
214 	long ret;
215 	struct kvm *kvm = vcpu->kvm;
216 
217 	psize = 1ul << porder;
218 	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 
220 	/* VRMA can't be > 1TB */
221 	if (npages > 1ul << (40 - porder))
222 		npages = 1ul << (40 - porder);
223 	/* Can't use more than 1 HPTE per HPTEG */
224 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226 
227 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 	hp1 = hpte1_pgsize_encoding(psize) |
230 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231 
232 	for (i = 0; i < npages; ++i) {
233 		addr = i << porder;
234 		/* can't use hpt_hash since va > 64 bits */
235 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 		/*
238 		 * We assume that the hash table is empty and no
239 		 * vcpus are using it at this stage.  Since we create
240 		 * at most one HPTE per HPTEG, we just assume entry 7
241 		 * is available and use it.
242 		 */
243 		hash = (hash << 3) + 7;
244 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 		hp_r = hp1 | addr;
246 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 						 &idx_ret);
248 		if (ret != H_SUCCESS) {
249 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 			       addr, ret);
251 			break;
252 		}
253 	}
254 }
255 
256 int kvmppc_mmu_hv_init(void)
257 {
258 	unsigned long host_lpid, rsvd_lpid;
259 
260 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261 		return -EINVAL;
262 
263 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264 	host_lpid = 0;
265 	if (cpu_has_feature(CPU_FTR_HVMODE))
266 		host_lpid = mfspr(SPRN_LPID);
267 	rsvd_lpid = LPID_RSVD;
268 
269 	kvmppc_init_lpid(rsvd_lpid + 1);
270 
271 	kvmppc_claim_lpid(host_lpid);
272 	/* rsvd_lpid is reserved for use in partition switching */
273 	kvmppc_claim_lpid(rsvd_lpid);
274 
275 	return 0;
276 }
277 
278 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
279 				long pte_index, unsigned long pteh,
280 				unsigned long ptel, unsigned long *pte_idx_ret)
281 {
282 	long ret;
283 
284 	/* Protect linux PTE lookup from page table destruction */
285 	rcu_read_lock_sched();	/* this disables preemption too */
286 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
287 				current->mm->pgd, false, pte_idx_ret);
288 	rcu_read_unlock_sched();
289 	if (ret == H_TOO_HARD) {
290 		/* this can't happen */
291 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
292 		ret = H_RESOURCE;	/* or something */
293 	}
294 	return ret;
295 
296 }
297 
298 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
299 							 gva_t eaddr)
300 {
301 	u64 mask;
302 	int i;
303 
304 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
305 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
306 			continue;
307 
308 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
309 			mask = ESID_MASK_1T;
310 		else
311 			mask = ESID_MASK;
312 
313 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
314 			return &vcpu->arch.slb[i];
315 	}
316 	return NULL;
317 }
318 
319 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
320 			unsigned long ea)
321 {
322 	unsigned long ra_mask;
323 
324 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
325 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
326 }
327 
328 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
329 			struct kvmppc_pte *gpte, bool data, bool iswrite)
330 {
331 	struct kvm *kvm = vcpu->kvm;
332 	struct kvmppc_slb *slbe;
333 	unsigned long slb_v;
334 	unsigned long pp, key;
335 	unsigned long v, orig_v, gr;
336 	__be64 *hptep;
337 	long int index;
338 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
339 
340 	if (kvm_is_radix(vcpu->kvm))
341 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
342 
343 	/* Get SLB entry */
344 	if (virtmode) {
345 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
346 		if (!slbe)
347 			return -EINVAL;
348 		slb_v = slbe->origv;
349 	} else {
350 		/* real mode access */
351 		slb_v = vcpu->kvm->arch.vrma_slb_v;
352 	}
353 
354 	preempt_disable();
355 	/* Find the HPTE in the hash table */
356 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
357 					 HPTE_V_VALID | HPTE_V_ABSENT);
358 	if (index < 0) {
359 		preempt_enable();
360 		return -ENOENT;
361 	}
362 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
363 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
364 	if (cpu_has_feature(CPU_FTR_ARCH_300))
365 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
366 	gr = kvm->arch.hpt.rev[index].guest_rpte;
367 
368 	unlock_hpte(hptep, orig_v);
369 	preempt_enable();
370 
371 	gpte->eaddr = eaddr;
372 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
373 
374 	/* Get PP bits and key for permission check */
375 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
376 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
377 	key &= slb_v;
378 
379 	/* Calculate permissions */
380 	gpte->may_read = hpte_read_permission(pp, key);
381 	gpte->may_write = hpte_write_permission(pp, key);
382 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
383 
384 	/* Storage key permission check for POWER7 */
385 	if (data && virtmode) {
386 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
387 		if (amrfield & 1)
388 			gpte->may_read = 0;
389 		if (amrfield & 2)
390 			gpte->may_write = 0;
391 	}
392 
393 	/* Get the guest physical address */
394 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
395 	return 0;
396 }
397 
398 /*
399  * Quick test for whether an instruction is a load or a store.
400  * If the instruction is a load or a store, then this will indicate
401  * which it is, at least on server processors.  (Embedded processors
402  * have some external PID instructions that don't follow the rule
403  * embodied here.)  If the instruction isn't a load or store, then
404  * this doesn't return anything useful.
405  */
406 static int instruction_is_store(unsigned int instr)
407 {
408 	unsigned int mask;
409 
410 	mask = 0x10000000;
411 	if ((instr & 0xfc000000) == 0x7c000000)
412 		mask = 0x100;		/* major opcode 31 */
413 	return (instr & mask) != 0;
414 }
415 
416 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
417 			   unsigned long gpa, gva_t ea, int is_store)
418 {
419 	u32 last_inst;
420 
421 	/*
422 	 * Fast path - check if the guest physical address corresponds to a
423 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
424 	 * instruction all together, then we can just handle it and return.
425 	 */
426 	if (is_store) {
427 		int idx, ret;
428 
429 		idx = srcu_read_lock(&vcpu->kvm->srcu);
430 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
431 				       NULL);
432 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
433 		if (!ret) {
434 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
435 			return RESUME_GUEST;
436 		}
437 	}
438 
439 	/*
440 	 * If we fail, we just return to the guest and try executing it again.
441 	 */
442 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
443 		EMULATE_DONE)
444 		return RESUME_GUEST;
445 
446 	/*
447 	 * WARNING: We do not know for sure whether the instruction we just
448 	 * read from memory is the same that caused the fault in the first
449 	 * place.  If the instruction we read is neither an load or a store,
450 	 * then it can't access memory, so we don't need to worry about
451 	 * enforcing access permissions.  So, assuming it is a load or
452 	 * store, we just check that its direction (load or store) is
453 	 * consistent with the original fault, since that's what we
454 	 * checked the access permissions against.  If there is a mismatch
455 	 * we just return and retry the instruction.
456 	 */
457 
458 	if (instruction_is_store(last_inst) != !!is_store)
459 		return RESUME_GUEST;
460 
461 	/*
462 	 * Emulated accesses are emulated by looking at the hash for
463 	 * translation once, then performing the access later. The
464 	 * translation could be invalidated in the meantime in which
465 	 * point performing the subsequent memory access on the old
466 	 * physical address could possibly be a security hole for the
467 	 * guest (but not the host).
468 	 *
469 	 * This is less of an issue for MMIO stores since they aren't
470 	 * globally visible. It could be an issue for MMIO loads to
471 	 * a certain extent but we'll ignore it for now.
472 	 */
473 
474 	vcpu->arch.paddr_accessed = gpa;
475 	vcpu->arch.vaddr_accessed = ea;
476 	return kvmppc_emulate_mmio(run, vcpu);
477 }
478 
479 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
480 				unsigned long ea, unsigned long dsisr)
481 {
482 	struct kvm *kvm = vcpu->kvm;
483 	unsigned long hpte[3], r;
484 	unsigned long hnow_v, hnow_r;
485 	__be64 *hptep;
486 	unsigned long mmu_seq, psize, pte_size;
487 	unsigned long gpa_base, gfn_base;
488 	unsigned long gpa, gfn, hva, pfn;
489 	struct kvm_memory_slot *memslot;
490 	unsigned long *rmap;
491 	struct revmap_entry *rev;
492 	struct page *page, *pages[1];
493 	long index, ret, npages;
494 	bool is_ci;
495 	unsigned int writing, write_ok;
496 	struct vm_area_struct *vma;
497 	unsigned long rcbits;
498 	long mmio_update;
499 	struct mm_struct *mm;
500 
501 	if (kvm_is_radix(kvm))
502 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
503 
504 	/*
505 	 * Real-mode code has already searched the HPT and found the
506 	 * entry we're interested in.  Lock the entry and check that
507 	 * it hasn't changed.  If it has, just return and re-execute the
508 	 * instruction.
509 	 */
510 	if (ea != vcpu->arch.pgfault_addr)
511 		return RESUME_GUEST;
512 
513 	if (vcpu->arch.pgfault_cache) {
514 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
515 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
516 			r = vcpu->arch.pgfault_cache->rpte;
517 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
518 						   r);
519 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
520 			gfn_base = gpa_base >> PAGE_SHIFT;
521 			gpa = gpa_base | (ea & (psize - 1));
522 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
523 						dsisr & DSISR_ISSTORE);
524 		}
525 	}
526 	index = vcpu->arch.pgfault_index;
527 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
528 	rev = &kvm->arch.hpt.rev[index];
529 	preempt_disable();
530 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
531 		cpu_relax();
532 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
533 	hpte[1] = be64_to_cpu(hptep[1]);
534 	hpte[2] = r = rev->guest_rpte;
535 	unlock_hpte(hptep, hpte[0]);
536 	preempt_enable();
537 
538 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
539 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
540 		hpte[1] = hpte_new_to_old_r(hpte[1]);
541 	}
542 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
543 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
544 		return RESUME_GUEST;
545 
546 	/* Translate the logical address and get the page */
547 	psize = kvmppc_actual_pgsz(hpte[0], r);
548 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
549 	gfn_base = gpa_base >> PAGE_SHIFT;
550 	gpa = gpa_base | (ea & (psize - 1));
551 	gfn = gpa >> PAGE_SHIFT;
552 	memslot = gfn_to_memslot(kvm, gfn);
553 
554 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
555 
556 	/* No memslot means it's an emulated MMIO region */
557 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
558 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
559 					      dsisr & DSISR_ISSTORE);
560 
561 	/*
562 	 * This should never happen, because of the slot_is_aligned()
563 	 * check in kvmppc_do_h_enter().
564 	 */
565 	if (gfn_base < memslot->base_gfn)
566 		return -EFAULT;
567 
568 	/* used to check for invalidations in progress */
569 	mmu_seq = kvm->mmu_notifier_seq;
570 	smp_rmb();
571 
572 	ret = -EFAULT;
573 	is_ci = false;
574 	pfn = 0;
575 	page = NULL;
576 	mm = current->mm;
577 	pte_size = PAGE_SIZE;
578 	writing = (dsisr & DSISR_ISSTORE) != 0;
579 	/* If writing != 0, then the HPTE must allow writing, if we get here */
580 	write_ok = writing;
581 	hva = gfn_to_hva_memslot(memslot, gfn);
582 	npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages);
583 	if (npages < 1) {
584 		/* Check if it's an I/O mapping */
585 		down_read(&mm->mmap_sem);
586 		vma = find_vma(mm, hva);
587 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
588 		    (vma->vm_flags & VM_PFNMAP)) {
589 			pfn = vma->vm_pgoff +
590 				((hva - vma->vm_start) >> PAGE_SHIFT);
591 			pte_size = psize;
592 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
593 			write_ok = vma->vm_flags & VM_WRITE;
594 		}
595 		up_read(&mm->mmap_sem);
596 		if (!pfn)
597 			goto out_put;
598 	} else {
599 		page = pages[0];
600 		pfn = page_to_pfn(page);
601 		if (PageHuge(page)) {
602 			page = compound_head(page);
603 			pte_size <<= compound_order(page);
604 		}
605 		/* if the guest wants write access, see if that is OK */
606 		if (!writing && hpte_is_writable(r)) {
607 			pte_t *ptep, pte;
608 			unsigned long flags;
609 			/*
610 			 * We need to protect against page table destruction
611 			 * hugepage split and collapse.
612 			 */
613 			local_irq_save(flags);
614 			ptep = find_current_mm_pte(mm->pgd, hva, NULL, NULL);
615 			if (ptep) {
616 				pte = kvmppc_read_update_linux_pte(ptep, 1);
617 				if (__pte_write(pte))
618 					write_ok = 1;
619 			}
620 			local_irq_restore(flags);
621 		}
622 	}
623 
624 	if (psize > pte_size)
625 		goto out_put;
626 
627 	/* Check WIMG vs. the actual page we're accessing */
628 	if (!hpte_cache_flags_ok(r, is_ci)) {
629 		if (is_ci)
630 			goto out_put;
631 		/*
632 		 * Allow guest to map emulated device memory as
633 		 * uncacheable, but actually make it cacheable.
634 		 */
635 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
636 	}
637 
638 	/*
639 	 * Set the HPTE to point to pfn.
640 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
641 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
642 	 */
643 	if (psize < PAGE_SIZE)
644 		psize = PAGE_SIZE;
645 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
646 					((pfn << PAGE_SHIFT) & ~(psize - 1));
647 	if (hpte_is_writable(r) && !write_ok)
648 		r = hpte_make_readonly(r);
649 	ret = RESUME_GUEST;
650 	preempt_disable();
651 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
652 		cpu_relax();
653 	hnow_v = be64_to_cpu(hptep[0]);
654 	hnow_r = be64_to_cpu(hptep[1]);
655 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
656 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
657 		hnow_r = hpte_new_to_old_r(hnow_r);
658 	}
659 
660 	/*
661 	 * If the HPT is being resized, don't update the HPTE,
662 	 * instead let the guest retry after the resize operation is complete.
663 	 * The synchronization for mmu_ready test vs. set is provided
664 	 * by the HPTE lock.
665 	 */
666 	if (!kvm->arch.mmu_ready)
667 		goto out_unlock;
668 
669 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
670 	    rev->guest_rpte != hpte[2])
671 		/* HPTE has been changed under us; let the guest retry */
672 		goto out_unlock;
673 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
674 
675 	/* Always put the HPTE in the rmap chain for the page base address */
676 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
677 	lock_rmap(rmap);
678 
679 	/* Check if we might have been invalidated; let the guest retry if so */
680 	ret = RESUME_GUEST;
681 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
682 		unlock_rmap(rmap);
683 		goto out_unlock;
684 	}
685 
686 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
687 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
688 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
689 
690 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
691 		/* HPTE was previously valid, so we need to invalidate it */
692 		unlock_rmap(rmap);
693 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
694 		kvmppc_invalidate_hpte(kvm, hptep, index);
695 		/* don't lose previous R and C bits */
696 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
697 	} else {
698 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
699 	}
700 
701 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
702 		r = hpte_old_to_new_r(hpte[0], r);
703 		hpte[0] = hpte_old_to_new_v(hpte[0]);
704 	}
705 	hptep[1] = cpu_to_be64(r);
706 	eieio();
707 	__unlock_hpte(hptep, hpte[0]);
708 	asm volatile("ptesync" : : : "memory");
709 	preempt_enable();
710 	if (page && hpte_is_writable(r))
711 		SetPageDirty(page);
712 
713  out_put:
714 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
715 
716 	if (page) {
717 		/*
718 		 * We drop pages[0] here, not page because page might
719 		 * have been set to the head page of a compound, but
720 		 * we have to drop the reference on the correct tail
721 		 * page to match the get inside gup()
722 		 */
723 		put_page(pages[0]);
724 	}
725 	return ret;
726 
727  out_unlock:
728 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
729 	preempt_enable();
730 	goto out_put;
731 }
732 
733 void kvmppc_rmap_reset(struct kvm *kvm)
734 {
735 	struct kvm_memslots *slots;
736 	struct kvm_memory_slot *memslot;
737 	int srcu_idx;
738 
739 	srcu_idx = srcu_read_lock(&kvm->srcu);
740 	slots = kvm_memslots(kvm);
741 	kvm_for_each_memslot(memslot, slots) {
742 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
743 		spin_lock(&kvm->mmu_lock);
744 		/*
745 		 * This assumes it is acceptable to lose reference and
746 		 * change bits across a reset.
747 		 */
748 		memset(memslot->arch.rmap, 0,
749 		       memslot->npages * sizeof(*memslot->arch.rmap));
750 		spin_unlock(&kvm->mmu_lock);
751 	}
752 	srcu_read_unlock(&kvm->srcu, srcu_idx);
753 }
754 
755 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
756 			      unsigned long gfn);
757 
758 static int kvm_handle_hva_range(struct kvm *kvm,
759 				unsigned long start,
760 				unsigned long end,
761 				hva_handler_fn handler)
762 {
763 	int ret;
764 	int retval = 0;
765 	struct kvm_memslots *slots;
766 	struct kvm_memory_slot *memslot;
767 
768 	slots = kvm_memslots(kvm);
769 	kvm_for_each_memslot(memslot, slots) {
770 		unsigned long hva_start, hva_end;
771 		gfn_t gfn, gfn_end;
772 
773 		hva_start = max(start, memslot->userspace_addr);
774 		hva_end = min(end, memslot->userspace_addr +
775 					(memslot->npages << PAGE_SHIFT));
776 		if (hva_start >= hva_end)
777 			continue;
778 		/*
779 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
780 		 * {gfn, gfn+1, ..., gfn_end-1}.
781 		 */
782 		gfn = hva_to_gfn_memslot(hva_start, memslot);
783 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
784 
785 		for (; gfn < gfn_end; ++gfn) {
786 			ret = handler(kvm, memslot, gfn);
787 			retval |= ret;
788 		}
789 	}
790 
791 	return retval;
792 }
793 
794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
795 			  hva_handler_fn handler)
796 {
797 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
798 }
799 
800 /* Must be called with both HPTE and rmap locked */
801 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
802 			      struct kvm_memory_slot *memslot,
803 			      unsigned long *rmapp, unsigned long gfn)
804 {
805 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
806 	struct revmap_entry *rev = kvm->arch.hpt.rev;
807 	unsigned long j, h;
808 	unsigned long ptel, psize, rcbits;
809 
810 	j = rev[i].forw;
811 	if (j == i) {
812 		/* chain is now empty */
813 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
814 	} else {
815 		/* remove i from chain */
816 		h = rev[i].back;
817 		rev[h].forw = j;
818 		rev[j].back = h;
819 		rev[i].forw = rev[i].back = i;
820 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
821 	}
822 
823 	/* Now check and modify the HPTE */
824 	ptel = rev[i].guest_rpte;
825 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
826 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
827 	    hpte_rpn(ptel, psize) == gfn) {
828 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
829 		kvmppc_invalidate_hpte(kvm, hptep, i);
830 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
831 		/* Harvest R and C */
832 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
833 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
834 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
835 			kvmppc_update_dirty_map(memslot, gfn, psize);
836 		if (rcbits & ~rev[i].guest_rpte) {
837 			rev[i].guest_rpte = ptel | rcbits;
838 			note_hpte_modification(kvm, &rev[i]);
839 		}
840 	}
841 }
842 
843 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
844 			   unsigned long gfn)
845 {
846 	unsigned long i;
847 	__be64 *hptep;
848 	unsigned long *rmapp;
849 
850 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
851 	for (;;) {
852 		lock_rmap(rmapp);
853 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
854 			unlock_rmap(rmapp);
855 			break;
856 		}
857 
858 		/*
859 		 * To avoid an ABBA deadlock with the HPTE lock bit,
860 		 * we can't spin on the HPTE lock while holding the
861 		 * rmap chain lock.
862 		 */
863 		i = *rmapp & KVMPPC_RMAP_INDEX;
864 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
865 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
866 			/* unlock rmap before spinning on the HPTE lock */
867 			unlock_rmap(rmapp);
868 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
869 				cpu_relax();
870 			continue;
871 		}
872 
873 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
874 		unlock_rmap(rmapp);
875 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
876 	}
877 	return 0;
878 }
879 
880 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
881 {
882 	hva_handler_fn handler;
883 
884 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
885 	kvm_handle_hva_range(kvm, start, end, handler);
886 	return 0;
887 }
888 
889 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
890 				  struct kvm_memory_slot *memslot)
891 {
892 	unsigned long gfn;
893 	unsigned long n;
894 	unsigned long *rmapp;
895 
896 	gfn = memslot->base_gfn;
897 	rmapp = memslot->arch.rmap;
898 	if (kvm_is_radix(kvm)) {
899 		kvmppc_radix_flush_memslot(kvm, memslot);
900 		return;
901 	}
902 
903 	for (n = memslot->npages; n; --n, ++gfn) {
904 		/*
905 		 * Testing the present bit without locking is OK because
906 		 * the memslot has been marked invalid already, and hence
907 		 * no new HPTEs referencing this page can be created,
908 		 * thus the present bit can't go from 0 to 1.
909 		 */
910 		if (*rmapp & KVMPPC_RMAP_PRESENT)
911 			kvm_unmap_rmapp(kvm, memslot, gfn);
912 		++rmapp;
913 	}
914 }
915 
916 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
917 			 unsigned long gfn)
918 {
919 	struct revmap_entry *rev = kvm->arch.hpt.rev;
920 	unsigned long head, i, j;
921 	__be64 *hptep;
922 	int ret = 0;
923 	unsigned long *rmapp;
924 
925 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
926  retry:
927 	lock_rmap(rmapp);
928 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
929 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
930 		ret = 1;
931 	}
932 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
933 		unlock_rmap(rmapp);
934 		return ret;
935 	}
936 
937 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
938 	do {
939 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
940 		j = rev[i].forw;
941 
942 		/* If this HPTE isn't referenced, ignore it */
943 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
944 			continue;
945 
946 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
947 			/* unlock rmap before spinning on the HPTE lock */
948 			unlock_rmap(rmapp);
949 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
950 				cpu_relax();
951 			goto retry;
952 		}
953 
954 		/* Now check and modify the HPTE */
955 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
956 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
957 			kvmppc_clear_ref_hpte(kvm, hptep, i);
958 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
959 				rev[i].guest_rpte |= HPTE_R_R;
960 				note_hpte_modification(kvm, &rev[i]);
961 			}
962 			ret = 1;
963 		}
964 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
965 	} while ((i = j) != head);
966 
967 	unlock_rmap(rmapp);
968 	return ret;
969 }
970 
971 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
972 {
973 	hva_handler_fn handler;
974 
975 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
976 	return kvm_handle_hva_range(kvm, start, end, handler);
977 }
978 
979 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
980 			      unsigned long gfn)
981 {
982 	struct revmap_entry *rev = kvm->arch.hpt.rev;
983 	unsigned long head, i, j;
984 	unsigned long *hp;
985 	int ret = 1;
986 	unsigned long *rmapp;
987 
988 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
989 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
990 		return 1;
991 
992 	lock_rmap(rmapp);
993 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
994 		goto out;
995 
996 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
997 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
998 		do {
999 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1000 			j = rev[i].forw;
1001 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1002 				goto out;
1003 		} while ((i = j) != head);
1004 	}
1005 	ret = 0;
1006 
1007  out:
1008 	unlock_rmap(rmapp);
1009 	return ret;
1010 }
1011 
1012 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1013 {
1014 	hva_handler_fn handler;
1015 
1016 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1017 	return kvm_handle_hva(kvm, hva, handler);
1018 }
1019 
1020 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1021 {
1022 	hva_handler_fn handler;
1023 
1024 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1025 	kvm_handle_hva(kvm, hva, handler);
1026 }
1027 
1028 static int vcpus_running(struct kvm *kvm)
1029 {
1030 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1031 }
1032 
1033 /*
1034  * Returns the number of system pages that are dirty.
1035  * This can be more than 1 if we find a huge-page HPTE.
1036  */
1037 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1038 {
1039 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1040 	unsigned long head, i, j;
1041 	unsigned long n;
1042 	unsigned long v, r;
1043 	__be64 *hptep;
1044 	int npages_dirty = 0;
1045 
1046  retry:
1047 	lock_rmap(rmapp);
1048 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1049 		unlock_rmap(rmapp);
1050 		return npages_dirty;
1051 	}
1052 
1053 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1054 	do {
1055 		unsigned long hptep1;
1056 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1057 		j = rev[i].forw;
1058 
1059 		/*
1060 		 * Checking the C (changed) bit here is racy since there
1061 		 * is no guarantee about when the hardware writes it back.
1062 		 * If the HPTE is not writable then it is stable since the
1063 		 * page can't be written to, and we would have done a tlbie
1064 		 * (which forces the hardware to complete any writeback)
1065 		 * when making the HPTE read-only.
1066 		 * If vcpus are running then this call is racy anyway
1067 		 * since the page could get dirtied subsequently, so we
1068 		 * expect there to be a further call which would pick up
1069 		 * any delayed C bit writeback.
1070 		 * Otherwise we need to do the tlbie even if C==0 in
1071 		 * order to pick up any delayed writeback of C.
1072 		 */
1073 		hptep1 = be64_to_cpu(hptep[1]);
1074 		if (!(hptep1 & HPTE_R_C) &&
1075 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1076 			continue;
1077 
1078 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1079 			/* unlock rmap before spinning on the HPTE lock */
1080 			unlock_rmap(rmapp);
1081 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1082 				cpu_relax();
1083 			goto retry;
1084 		}
1085 
1086 		/* Now check and modify the HPTE */
1087 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1088 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1089 			continue;
1090 		}
1091 
1092 		/* need to make it temporarily absent so C is stable */
1093 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1094 		kvmppc_invalidate_hpte(kvm, hptep, i);
1095 		v = be64_to_cpu(hptep[0]);
1096 		r = be64_to_cpu(hptep[1]);
1097 		if (r & HPTE_R_C) {
1098 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1099 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1100 				rev[i].guest_rpte |= HPTE_R_C;
1101 				note_hpte_modification(kvm, &rev[i]);
1102 			}
1103 			n = kvmppc_actual_pgsz(v, r);
1104 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1105 			if (n > npages_dirty)
1106 				npages_dirty = n;
1107 			eieio();
1108 		}
1109 		v &= ~HPTE_V_ABSENT;
1110 		v |= HPTE_V_VALID;
1111 		__unlock_hpte(hptep, v);
1112 	} while ((i = j) != head);
1113 
1114 	unlock_rmap(rmapp);
1115 	return npages_dirty;
1116 }
1117 
1118 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1119 			      struct kvm_memory_slot *memslot,
1120 			      unsigned long *map)
1121 {
1122 	unsigned long gfn;
1123 
1124 	if (!vpa->dirty || !vpa->pinned_addr)
1125 		return;
1126 	gfn = vpa->gpa >> PAGE_SHIFT;
1127 	if (gfn < memslot->base_gfn ||
1128 	    gfn >= memslot->base_gfn + memslot->npages)
1129 		return;
1130 
1131 	vpa->dirty = false;
1132 	if (map)
1133 		__set_bit_le(gfn - memslot->base_gfn, map);
1134 }
1135 
1136 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1137 			struct kvm_memory_slot *memslot, unsigned long *map)
1138 {
1139 	unsigned long i;
1140 	unsigned long *rmapp;
1141 
1142 	preempt_disable();
1143 	rmapp = memslot->arch.rmap;
1144 	for (i = 0; i < memslot->npages; ++i) {
1145 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1146 		/*
1147 		 * Note that if npages > 0 then i must be a multiple of npages,
1148 		 * since we always put huge-page HPTEs in the rmap chain
1149 		 * corresponding to their page base address.
1150 		 */
1151 		if (npages)
1152 			set_dirty_bits(map, i, npages);
1153 		++rmapp;
1154 	}
1155 	preempt_enable();
1156 	return 0;
1157 }
1158 
1159 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1160 			    unsigned long *nb_ret)
1161 {
1162 	struct kvm_memory_slot *memslot;
1163 	unsigned long gfn = gpa >> PAGE_SHIFT;
1164 	struct page *page, *pages[1];
1165 	int npages;
1166 	unsigned long hva, offset;
1167 	int srcu_idx;
1168 
1169 	srcu_idx = srcu_read_lock(&kvm->srcu);
1170 	memslot = gfn_to_memslot(kvm, gfn);
1171 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1172 		goto err;
1173 	hva = gfn_to_hva_memslot(memslot, gfn);
1174 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1175 	if (npages < 1)
1176 		goto err;
1177 	page = pages[0];
1178 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1179 
1180 	offset = gpa & (PAGE_SIZE - 1);
1181 	if (nb_ret)
1182 		*nb_ret = PAGE_SIZE - offset;
1183 	return page_address(page) + offset;
1184 
1185  err:
1186 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1187 	return NULL;
1188 }
1189 
1190 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1191 			     bool dirty)
1192 {
1193 	struct page *page = virt_to_page(va);
1194 	struct kvm_memory_slot *memslot;
1195 	unsigned long gfn;
1196 	int srcu_idx;
1197 
1198 	put_page(page);
1199 
1200 	if (!dirty)
1201 		return;
1202 
1203 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1204 	gfn = gpa >> PAGE_SHIFT;
1205 	srcu_idx = srcu_read_lock(&kvm->srcu);
1206 	memslot = gfn_to_memslot(kvm, gfn);
1207 	if (memslot && memslot->dirty_bitmap)
1208 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1209 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1210 }
1211 
1212 /*
1213  * HPT resizing
1214  */
1215 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1216 {
1217 	int rc;
1218 
1219 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1220 	if (rc < 0)
1221 		return rc;
1222 
1223 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1224 			 resize->hpt.virt);
1225 
1226 	return 0;
1227 }
1228 
1229 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1230 					    unsigned long idx)
1231 {
1232 	struct kvm *kvm = resize->kvm;
1233 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1234 	struct kvm_hpt_info *new = &resize->hpt;
1235 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1236 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1237 	__be64 *hptep, *new_hptep;
1238 	unsigned long vpte, rpte, guest_rpte;
1239 	int ret;
1240 	struct revmap_entry *rev;
1241 	unsigned long apsize, avpn, pteg, hash;
1242 	unsigned long new_idx, new_pteg, replace_vpte;
1243 	int pshift;
1244 
1245 	hptep = (__be64 *)(old->virt + (idx << 4));
1246 
1247 	/* Guest is stopped, so new HPTEs can't be added or faulted
1248 	 * in, only unmapped or altered by host actions.  So, it's
1249 	 * safe to check this before we take the HPTE lock */
1250 	vpte = be64_to_cpu(hptep[0]);
1251 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1252 		return 0; /* nothing to do */
1253 
1254 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1255 		cpu_relax();
1256 
1257 	vpte = be64_to_cpu(hptep[0]);
1258 
1259 	ret = 0;
1260 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1261 		/* Nothing to do */
1262 		goto out;
1263 
1264 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1265 		rpte = be64_to_cpu(hptep[1]);
1266 		vpte = hpte_new_to_old_v(vpte, rpte);
1267 	}
1268 
1269 	/* Unmap */
1270 	rev = &old->rev[idx];
1271 	guest_rpte = rev->guest_rpte;
1272 
1273 	ret = -EIO;
1274 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1275 	if (!apsize)
1276 		goto out;
1277 
1278 	if (vpte & HPTE_V_VALID) {
1279 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1280 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1281 		struct kvm_memory_slot *memslot =
1282 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1283 
1284 		if (memslot) {
1285 			unsigned long *rmapp;
1286 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1287 
1288 			lock_rmap(rmapp);
1289 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1290 			unlock_rmap(rmapp);
1291 		}
1292 
1293 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1294 	}
1295 
1296 	/* Reload PTE after unmap */
1297 	vpte = be64_to_cpu(hptep[0]);
1298 	BUG_ON(vpte & HPTE_V_VALID);
1299 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1300 
1301 	ret = 0;
1302 	if (!(vpte & HPTE_V_BOLTED))
1303 		goto out;
1304 
1305 	rpte = be64_to_cpu(hptep[1]);
1306 
1307 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1308 		vpte = hpte_new_to_old_v(vpte, rpte);
1309 		rpte = hpte_new_to_old_r(rpte);
1310 	}
1311 
1312 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1313 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1314 	pteg = idx / HPTES_PER_GROUP;
1315 	if (vpte & HPTE_V_SECONDARY)
1316 		pteg = ~pteg;
1317 
1318 	if (!(vpte & HPTE_V_1TB_SEG)) {
1319 		unsigned long offset, vsid;
1320 
1321 		/* We only have 28 - 23 bits of offset in avpn */
1322 		offset = (avpn & 0x1f) << 23;
1323 		vsid = avpn >> 5;
1324 		/* We can find more bits from the pteg value */
1325 		if (pshift < 23)
1326 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1327 
1328 		hash = vsid ^ (offset >> pshift);
1329 	} else {
1330 		unsigned long offset, vsid;
1331 
1332 		/* We only have 40 - 23 bits of seg_off in avpn */
1333 		offset = (avpn & 0x1ffff) << 23;
1334 		vsid = avpn >> 17;
1335 		if (pshift < 23)
1336 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1337 
1338 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1339 	}
1340 
1341 	new_pteg = hash & new_hash_mask;
1342 	if (vpte & HPTE_V_SECONDARY)
1343 		new_pteg = ~hash & new_hash_mask;
1344 
1345 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1346 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1347 
1348 	replace_vpte = be64_to_cpu(new_hptep[0]);
1349 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1350 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1351 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1352 	}
1353 
1354 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1355 		BUG_ON(new->order >= old->order);
1356 
1357 		if (replace_vpte & HPTE_V_BOLTED) {
1358 			if (vpte & HPTE_V_BOLTED)
1359 				/* Bolted collision, nothing we can do */
1360 				ret = -ENOSPC;
1361 			/* Discard the new HPTE */
1362 			goto out;
1363 		}
1364 
1365 		/* Discard the previous HPTE */
1366 	}
1367 
1368 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1369 		rpte = hpte_old_to_new_r(vpte, rpte);
1370 		vpte = hpte_old_to_new_v(vpte);
1371 	}
1372 
1373 	new_hptep[1] = cpu_to_be64(rpte);
1374 	new->rev[new_idx].guest_rpte = guest_rpte;
1375 	/* No need for a barrier, since new HPT isn't active */
1376 	new_hptep[0] = cpu_to_be64(vpte);
1377 	unlock_hpte(new_hptep, vpte);
1378 
1379 out:
1380 	unlock_hpte(hptep, vpte);
1381 	return ret;
1382 }
1383 
1384 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1385 {
1386 	struct kvm *kvm = resize->kvm;
1387 	unsigned  long i;
1388 	int rc;
1389 
1390 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1391 		rc = resize_hpt_rehash_hpte(resize, i);
1392 		if (rc != 0)
1393 			return rc;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1400 {
1401 	struct kvm *kvm = resize->kvm;
1402 	struct kvm_hpt_info hpt_tmp;
1403 
1404 	/* Exchange the pending tables in the resize structure with
1405 	 * the active tables */
1406 
1407 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1408 
1409 	spin_lock(&kvm->mmu_lock);
1410 	asm volatile("ptesync" : : : "memory");
1411 
1412 	hpt_tmp = kvm->arch.hpt;
1413 	kvmppc_set_hpt(kvm, &resize->hpt);
1414 	resize->hpt = hpt_tmp;
1415 
1416 	spin_unlock(&kvm->mmu_lock);
1417 
1418 	synchronize_srcu_expedited(&kvm->srcu);
1419 
1420 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1421 		kvmppc_setup_partition_table(kvm);
1422 
1423 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1424 }
1425 
1426 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1427 {
1428 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1429 		return;
1430 
1431 	if (!resize)
1432 		return;
1433 
1434 	if (resize->error != -EBUSY) {
1435 		if (resize->hpt.virt)
1436 			kvmppc_free_hpt(&resize->hpt);
1437 		kfree(resize);
1438 	}
1439 
1440 	if (kvm->arch.resize_hpt == resize)
1441 		kvm->arch.resize_hpt = NULL;
1442 }
1443 
1444 static void resize_hpt_prepare_work(struct work_struct *work)
1445 {
1446 	struct kvm_resize_hpt *resize = container_of(work,
1447 						     struct kvm_resize_hpt,
1448 						     work);
1449 	struct kvm *kvm = resize->kvm;
1450 	int err = 0;
1451 
1452 	if (WARN_ON(resize->error != -EBUSY))
1453 		return;
1454 
1455 	mutex_lock(&kvm->arch.mmu_setup_lock);
1456 
1457 	/* Request is still current? */
1458 	if (kvm->arch.resize_hpt == resize) {
1459 		/* We may request large allocations here:
1460 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1461 		 */
1462 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1463 
1464 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1465 				 resize->order);
1466 
1467 		err = resize_hpt_allocate(resize);
1468 
1469 		/* We have strict assumption about -EBUSY
1470 		 * when preparing for HPT resize.
1471 		 */
1472 		if (WARN_ON(err == -EBUSY))
1473 			err = -EINPROGRESS;
1474 
1475 		mutex_lock(&kvm->arch.mmu_setup_lock);
1476 		/* It is possible that kvm->arch.resize_hpt != resize
1477 		 * after we grab kvm->arch.mmu_setup_lock again.
1478 		 */
1479 	}
1480 
1481 	resize->error = err;
1482 
1483 	if (kvm->arch.resize_hpt != resize)
1484 		resize_hpt_release(kvm, resize);
1485 
1486 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1487 }
1488 
1489 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1490 				     struct kvm_ppc_resize_hpt *rhpt)
1491 {
1492 	unsigned long flags = rhpt->flags;
1493 	unsigned long shift = rhpt->shift;
1494 	struct kvm_resize_hpt *resize;
1495 	int ret;
1496 
1497 	if (flags != 0 || kvm_is_radix(kvm))
1498 		return -EINVAL;
1499 
1500 	if (shift && ((shift < 18) || (shift > 46)))
1501 		return -EINVAL;
1502 
1503 	mutex_lock(&kvm->arch.mmu_setup_lock);
1504 
1505 	resize = kvm->arch.resize_hpt;
1506 
1507 	if (resize) {
1508 		if (resize->order == shift) {
1509 			/* Suitable resize in progress? */
1510 			ret = resize->error;
1511 			if (ret == -EBUSY)
1512 				ret = 100; /* estimated time in ms */
1513 			else if (ret)
1514 				resize_hpt_release(kvm, resize);
1515 
1516 			goto out;
1517 		}
1518 
1519 		/* not suitable, cancel it */
1520 		resize_hpt_release(kvm, resize);
1521 	}
1522 
1523 	ret = 0;
1524 	if (!shift)
1525 		goto out; /* nothing to do */
1526 
1527 	/* start new resize */
1528 
1529 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1530 	if (!resize) {
1531 		ret = -ENOMEM;
1532 		goto out;
1533 	}
1534 
1535 	resize->error = -EBUSY;
1536 	resize->order = shift;
1537 	resize->kvm = kvm;
1538 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1539 	kvm->arch.resize_hpt = resize;
1540 
1541 	schedule_work(&resize->work);
1542 
1543 	ret = 100; /* estimated time in ms */
1544 
1545 out:
1546 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1547 	return ret;
1548 }
1549 
1550 static void resize_hpt_boot_vcpu(void *opaque)
1551 {
1552 	/* Nothing to do, just force a KVM exit */
1553 }
1554 
1555 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1556 				    struct kvm_ppc_resize_hpt *rhpt)
1557 {
1558 	unsigned long flags = rhpt->flags;
1559 	unsigned long shift = rhpt->shift;
1560 	struct kvm_resize_hpt *resize;
1561 	long ret;
1562 
1563 	if (flags != 0 || kvm_is_radix(kvm))
1564 		return -EINVAL;
1565 
1566 	if (shift && ((shift < 18) || (shift > 46)))
1567 		return -EINVAL;
1568 
1569 	mutex_lock(&kvm->arch.mmu_setup_lock);
1570 
1571 	resize = kvm->arch.resize_hpt;
1572 
1573 	/* This shouldn't be possible */
1574 	ret = -EIO;
1575 	if (WARN_ON(!kvm->arch.mmu_ready))
1576 		goto out_no_hpt;
1577 
1578 	/* Stop VCPUs from running while we mess with the HPT */
1579 	kvm->arch.mmu_ready = 0;
1580 	smp_mb();
1581 
1582 	/* Boot all CPUs out of the guest so they re-read
1583 	 * mmu_ready */
1584 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1585 
1586 	ret = -ENXIO;
1587 	if (!resize || (resize->order != shift))
1588 		goto out;
1589 
1590 	ret = resize->error;
1591 	if (ret)
1592 		goto out;
1593 
1594 	ret = resize_hpt_rehash(resize);
1595 	if (ret)
1596 		goto out;
1597 
1598 	resize_hpt_pivot(resize);
1599 
1600 out:
1601 	/* Let VCPUs run again */
1602 	kvm->arch.mmu_ready = 1;
1603 	smp_mb();
1604 out_no_hpt:
1605 	resize_hpt_release(kvm, resize);
1606 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * Functions for reading and writing the hash table via reads and
1612  * writes on a file descriptor.
1613  *
1614  * Reads return the guest view of the hash table, which has to be
1615  * pieced together from the real hash table and the guest_rpte
1616  * values in the revmap array.
1617  *
1618  * On writes, each HPTE written is considered in turn, and if it
1619  * is valid, it is written to the HPT as if an H_ENTER with the
1620  * exact flag set was done.  When the invalid count is non-zero
1621  * in the header written to the stream, the kernel will make
1622  * sure that that many HPTEs are invalid, and invalidate them
1623  * if not.
1624  */
1625 
1626 struct kvm_htab_ctx {
1627 	unsigned long	index;
1628 	unsigned long	flags;
1629 	struct kvm	*kvm;
1630 	int		first_pass;
1631 };
1632 
1633 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1634 
1635 /*
1636  * Returns 1 if this HPT entry has been modified or has pending
1637  * R/C bit changes.
1638  */
1639 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1640 {
1641 	unsigned long rcbits_unset;
1642 
1643 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1644 		return 1;
1645 
1646 	/* Also need to consider changes in reference and changed bits */
1647 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1648 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1649 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1650 		return 1;
1651 
1652 	return 0;
1653 }
1654 
1655 static long record_hpte(unsigned long flags, __be64 *hptp,
1656 			unsigned long *hpte, struct revmap_entry *revp,
1657 			int want_valid, int first_pass)
1658 {
1659 	unsigned long v, r, hr;
1660 	unsigned long rcbits_unset;
1661 	int ok = 1;
1662 	int valid, dirty;
1663 
1664 	/* Unmodified entries are uninteresting except on the first pass */
1665 	dirty = hpte_dirty(revp, hptp);
1666 	if (!first_pass && !dirty)
1667 		return 0;
1668 
1669 	valid = 0;
1670 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1671 		valid = 1;
1672 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1673 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1674 			valid = 0;
1675 	}
1676 	if (valid != want_valid)
1677 		return 0;
1678 
1679 	v = r = 0;
1680 	if (valid || dirty) {
1681 		/* lock the HPTE so it's stable and read it */
1682 		preempt_disable();
1683 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1684 			cpu_relax();
1685 		v = be64_to_cpu(hptp[0]);
1686 		hr = be64_to_cpu(hptp[1]);
1687 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1688 			v = hpte_new_to_old_v(v, hr);
1689 			hr = hpte_new_to_old_r(hr);
1690 		}
1691 
1692 		/* re-evaluate valid and dirty from synchronized HPTE value */
1693 		valid = !!(v & HPTE_V_VALID);
1694 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1695 
1696 		/* Harvest R and C into guest view if necessary */
1697 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1698 		if (valid && (rcbits_unset & hr)) {
1699 			revp->guest_rpte |= (hr &
1700 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1701 			dirty = 1;
1702 		}
1703 
1704 		if (v & HPTE_V_ABSENT) {
1705 			v &= ~HPTE_V_ABSENT;
1706 			v |= HPTE_V_VALID;
1707 			valid = 1;
1708 		}
1709 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1710 			valid = 0;
1711 
1712 		r = revp->guest_rpte;
1713 		/* only clear modified if this is the right sort of entry */
1714 		if (valid == want_valid && dirty) {
1715 			r &= ~HPTE_GR_MODIFIED;
1716 			revp->guest_rpte = r;
1717 		}
1718 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1719 		preempt_enable();
1720 		if (!(valid == want_valid && (first_pass || dirty)))
1721 			ok = 0;
1722 	}
1723 	hpte[0] = cpu_to_be64(v);
1724 	hpte[1] = cpu_to_be64(r);
1725 	return ok;
1726 }
1727 
1728 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1729 			     size_t count, loff_t *ppos)
1730 {
1731 	struct kvm_htab_ctx *ctx = file->private_data;
1732 	struct kvm *kvm = ctx->kvm;
1733 	struct kvm_get_htab_header hdr;
1734 	__be64 *hptp;
1735 	struct revmap_entry *revp;
1736 	unsigned long i, nb, nw;
1737 	unsigned long __user *lbuf;
1738 	struct kvm_get_htab_header __user *hptr;
1739 	unsigned long flags;
1740 	int first_pass;
1741 	unsigned long hpte[2];
1742 
1743 	if (!access_ok(buf, count))
1744 		return -EFAULT;
1745 	if (kvm_is_radix(kvm))
1746 		return 0;
1747 
1748 	first_pass = ctx->first_pass;
1749 	flags = ctx->flags;
1750 
1751 	i = ctx->index;
1752 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1753 	revp = kvm->arch.hpt.rev + i;
1754 	lbuf = (unsigned long __user *)buf;
1755 
1756 	nb = 0;
1757 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1758 		/* Initialize header */
1759 		hptr = (struct kvm_get_htab_header __user *)buf;
1760 		hdr.n_valid = 0;
1761 		hdr.n_invalid = 0;
1762 		nw = nb;
1763 		nb += sizeof(hdr);
1764 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1765 
1766 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1767 		if (!first_pass) {
1768 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1769 			       !hpte_dirty(revp, hptp)) {
1770 				++i;
1771 				hptp += 2;
1772 				++revp;
1773 			}
1774 		}
1775 		hdr.index = i;
1776 
1777 		/* Grab a series of valid entries */
1778 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1779 		       hdr.n_valid < 0xffff &&
1780 		       nb + HPTE_SIZE < count &&
1781 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1782 			/* valid entry, write it out */
1783 			++hdr.n_valid;
1784 			if (__put_user(hpte[0], lbuf) ||
1785 			    __put_user(hpte[1], lbuf + 1))
1786 				return -EFAULT;
1787 			nb += HPTE_SIZE;
1788 			lbuf += 2;
1789 			++i;
1790 			hptp += 2;
1791 			++revp;
1792 		}
1793 		/* Now skip invalid entries while we can */
1794 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1795 		       hdr.n_invalid < 0xffff &&
1796 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1797 			/* found an invalid entry */
1798 			++hdr.n_invalid;
1799 			++i;
1800 			hptp += 2;
1801 			++revp;
1802 		}
1803 
1804 		if (hdr.n_valid || hdr.n_invalid) {
1805 			/* write back the header */
1806 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1807 				return -EFAULT;
1808 			nw = nb;
1809 			buf = (char __user *)lbuf;
1810 		} else {
1811 			nb = nw;
1812 		}
1813 
1814 		/* Check if we've wrapped around the hash table */
1815 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1816 			i = 0;
1817 			ctx->first_pass = 0;
1818 			break;
1819 		}
1820 	}
1821 
1822 	ctx->index = i;
1823 
1824 	return nb;
1825 }
1826 
1827 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1828 			      size_t count, loff_t *ppos)
1829 {
1830 	struct kvm_htab_ctx *ctx = file->private_data;
1831 	struct kvm *kvm = ctx->kvm;
1832 	struct kvm_get_htab_header hdr;
1833 	unsigned long i, j;
1834 	unsigned long v, r;
1835 	unsigned long __user *lbuf;
1836 	__be64 *hptp;
1837 	unsigned long tmp[2];
1838 	ssize_t nb;
1839 	long int err, ret;
1840 	int mmu_ready;
1841 	int pshift;
1842 
1843 	if (!access_ok(buf, count))
1844 		return -EFAULT;
1845 	if (kvm_is_radix(kvm))
1846 		return -EINVAL;
1847 
1848 	/* lock out vcpus from running while we're doing this */
1849 	mutex_lock(&kvm->arch.mmu_setup_lock);
1850 	mmu_ready = kvm->arch.mmu_ready;
1851 	if (mmu_ready) {
1852 		kvm->arch.mmu_ready = 0;	/* temporarily */
1853 		/* order mmu_ready vs. vcpus_running */
1854 		smp_mb();
1855 		if (atomic_read(&kvm->arch.vcpus_running)) {
1856 			kvm->arch.mmu_ready = 1;
1857 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1858 			return -EBUSY;
1859 		}
1860 	}
1861 
1862 	err = 0;
1863 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1864 		err = -EFAULT;
1865 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1866 			break;
1867 
1868 		err = 0;
1869 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1870 			break;
1871 
1872 		nb += sizeof(hdr);
1873 		buf += sizeof(hdr);
1874 
1875 		err = -EINVAL;
1876 		i = hdr.index;
1877 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1878 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1879 			break;
1880 
1881 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1882 		lbuf = (unsigned long __user *)buf;
1883 		for (j = 0; j < hdr.n_valid; ++j) {
1884 			__be64 hpte_v;
1885 			__be64 hpte_r;
1886 
1887 			err = -EFAULT;
1888 			if (__get_user(hpte_v, lbuf) ||
1889 			    __get_user(hpte_r, lbuf + 1))
1890 				goto out;
1891 			v = be64_to_cpu(hpte_v);
1892 			r = be64_to_cpu(hpte_r);
1893 			err = -EINVAL;
1894 			if (!(v & HPTE_V_VALID))
1895 				goto out;
1896 			pshift = kvmppc_hpte_base_page_shift(v, r);
1897 			if (pshift <= 0)
1898 				goto out;
1899 			lbuf += 2;
1900 			nb += HPTE_SIZE;
1901 
1902 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1903 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1904 			err = -EIO;
1905 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1906 							 tmp);
1907 			if (ret != H_SUCCESS) {
1908 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1909 				       "r=%lx\n", ret, i, v, r);
1910 				goto out;
1911 			}
1912 			if (!mmu_ready && is_vrma_hpte(v)) {
1913 				unsigned long senc, lpcr;
1914 
1915 				senc = slb_pgsize_encoding(1ul << pshift);
1916 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1917 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1918 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1919 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1920 					kvmppc_update_lpcr(kvm, lpcr,
1921 							   LPCR_VRMASD);
1922 				} else {
1923 					kvmppc_setup_partition_table(kvm);
1924 				}
1925 				mmu_ready = 1;
1926 			}
1927 			++i;
1928 			hptp += 2;
1929 		}
1930 
1931 		for (j = 0; j < hdr.n_invalid; ++j) {
1932 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1933 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1934 			++i;
1935 			hptp += 2;
1936 		}
1937 		err = 0;
1938 	}
1939 
1940  out:
1941 	/* Order HPTE updates vs. mmu_ready */
1942 	smp_wmb();
1943 	kvm->arch.mmu_ready = mmu_ready;
1944 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1945 
1946 	if (err)
1947 		return err;
1948 	return nb;
1949 }
1950 
1951 static int kvm_htab_release(struct inode *inode, struct file *filp)
1952 {
1953 	struct kvm_htab_ctx *ctx = filp->private_data;
1954 
1955 	filp->private_data = NULL;
1956 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1957 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1958 	kvm_put_kvm(ctx->kvm);
1959 	kfree(ctx);
1960 	return 0;
1961 }
1962 
1963 static const struct file_operations kvm_htab_fops = {
1964 	.read		= kvm_htab_read,
1965 	.write		= kvm_htab_write,
1966 	.llseek		= default_llseek,
1967 	.release	= kvm_htab_release,
1968 };
1969 
1970 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1971 {
1972 	int ret;
1973 	struct kvm_htab_ctx *ctx;
1974 	int rwflag;
1975 
1976 	/* reject flags we don't recognize */
1977 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1978 		return -EINVAL;
1979 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1980 	if (!ctx)
1981 		return -ENOMEM;
1982 	kvm_get_kvm(kvm);
1983 	ctx->kvm = kvm;
1984 	ctx->index = ghf->start_index;
1985 	ctx->flags = ghf->flags;
1986 	ctx->first_pass = 1;
1987 
1988 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1989 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1990 	if (ret < 0) {
1991 		kfree(ctx);
1992 		kvm_put_kvm_no_destroy(kvm);
1993 		return ret;
1994 	}
1995 
1996 	if (rwflag == O_RDONLY) {
1997 		mutex_lock(&kvm->slots_lock);
1998 		atomic_inc(&kvm->arch.hpte_mod_interest);
1999 		/* make sure kvmppc_do_h_enter etc. see the increment */
2000 		synchronize_srcu_expedited(&kvm->srcu);
2001 		mutex_unlock(&kvm->slots_lock);
2002 	}
2003 
2004 	return ret;
2005 }
2006 
2007 struct debugfs_htab_state {
2008 	struct kvm	*kvm;
2009 	struct mutex	mutex;
2010 	unsigned long	hpt_index;
2011 	int		chars_left;
2012 	int		buf_index;
2013 	char		buf[64];
2014 };
2015 
2016 static int debugfs_htab_open(struct inode *inode, struct file *file)
2017 {
2018 	struct kvm *kvm = inode->i_private;
2019 	struct debugfs_htab_state *p;
2020 
2021 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2022 	if (!p)
2023 		return -ENOMEM;
2024 
2025 	kvm_get_kvm(kvm);
2026 	p->kvm = kvm;
2027 	mutex_init(&p->mutex);
2028 	file->private_data = p;
2029 
2030 	return nonseekable_open(inode, file);
2031 }
2032 
2033 static int debugfs_htab_release(struct inode *inode, struct file *file)
2034 {
2035 	struct debugfs_htab_state *p = file->private_data;
2036 
2037 	kvm_put_kvm(p->kvm);
2038 	kfree(p);
2039 	return 0;
2040 }
2041 
2042 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2043 				 size_t len, loff_t *ppos)
2044 {
2045 	struct debugfs_htab_state *p = file->private_data;
2046 	ssize_t ret, r;
2047 	unsigned long i, n;
2048 	unsigned long v, hr, gr;
2049 	struct kvm *kvm;
2050 	__be64 *hptp;
2051 
2052 	kvm = p->kvm;
2053 	if (kvm_is_radix(kvm))
2054 		return 0;
2055 
2056 	ret = mutex_lock_interruptible(&p->mutex);
2057 	if (ret)
2058 		return ret;
2059 
2060 	if (p->chars_left) {
2061 		n = p->chars_left;
2062 		if (n > len)
2063 			n = len;
2064 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2065 		n -= r;
2066 		p->chars_left -= n;
2067 		p->buf_index += n;
2068 		buf += n;
2069 		len -= n;
2070 		ret = n;
2071 		if (r) {
2072 			if (!n)
2073 				ret = -EFAULT;
2074 			goto out;
2075 		}
2076 	}
2077 
2078 	i = p->hpt_index;
2079 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2080 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2081 	     ++i, hptp += 2) {
2082 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2083 			continue;
2084 
2085 		/* lock the HPTE so it's stable and read it */
2086 		preempt_disable();
2087 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2088 			cpu_relax();
2089 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2090 		hr = be64_to_cpu(hptp[1]);
2091 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2092 		unlock_hpte(hptp, v);
2093 		preempt_enable();
2094 
2095 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2096 			continue;
2097 
2098 		n = scnprintf(p->buf, sizeof(p->buf),
2099 			      "%6lx %.16lx %.16lx %.16lx\n",
2100 			      i, v, hr, gr);
2101 		p->chars_left = n;
2102 		if (n > len)
2103 			n = len;
2104 		r = copy_to_user(buf, p->buf, n);
2105 		n -= r;
2106 		p->chars_left -= n;
2107 		p->buf_index = n;
2108 		buf += n;
2109 		len -= n;
2110 		ret += n;
2111 		if (r) {
2112 			if (!ret)
2113 				ret = -EFAULT;
2114 			goto out;
2115 		}
2116 	}
2117 	p->hpt_index = i;
2118 
2119  out:
2120 	mutex_unlock(&p->mutex);
2121 	return ret;
2122 }
2123 
2124 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2125 			   size_t len, loff_t *ppos)
2126 {
2127 	return -EACCES;
2128 }
2129 
2130 static const struct file_operations debugfs_htab_fops = {
2131 	.owner	 = THIS_MODULE,
2132 	.open	 = debugfs_htab_open,
2133 	.release = debugfs_htab_release,
2134 	.read	 = debugfs_htab_read,
2135 	.write	 = debugfs_htab_write,
2136 	.llseek	 = generic_file_llseek,
2137 };
2138 
2139 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2140 {
2141 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2142 						    kvm->arch.debugfs_dir, kvm,
2143 						    &debugfs_htab_fops);
2144 }
2145 
2146 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2147 {
2148 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2149 
2150 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2151 
2152 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2153 
2154 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2155 }
2156