1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970	63
42 
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER	18
45 
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 				long pte_index, unsigned long pteh,
48 				unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50 
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53 	unsigned long hpt = 0;
54 	struct revmap_entry *rev;
55 	struct page *page = NULL;
56 	long order = KVM_DEFAULT_HPT_ORDER;
57 
58 	if (htab_orderp) {
59 		order = *htab_orderp;
60 		if (order < PPC_MIN_HPT_ORDER)
61 			order = PPC_MIN_HPT_ORDER;
62 	}
63 
64 	kvm->arch.hpt_cma_alloc = 0;
65 	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 	if (page) {
67 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68 		memset((void *)hpt, 0, (1ul << order));
69 		kvm->arch.hpt_cma_alloc = 1;
70 	}
71 
72 	/* Lastly try successively smaller sizes from the page allocator */
73 	while (!hpt && order > PPC_MIN_HPT_ORDER) {
74 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
75 				       __GFP_NOWARN, order - PAGE_SHIFT);
76 		if (!hpt)
77 			--order;
78 	}
79 
80 	if (!hpt)
81 		return -ENOMEM;
82 
83 	kvm->arch.hpt_virt = hpt;
84 	kvm->arch.hpt_order = order;
85 	/* HPTEs are 2**4 bytes long */
86 	kvm->arch.hpt_npte = 1ul << (order - 4);
87 	/* 128 (2**7) bytes in each HPTEG */
88 	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
89 
90 	/* Allocate reverse map array */
91 	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92 	if (!rev) {
93 		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
94 		goto out_freehpt;
95 	}
96 	kvm->arch.revmap = rev;
97 	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
98 
99 	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
100 		hpt, order, kvm->arch.lpid);
101 
102 	if (htab_orderp)
103 		*htab_orderp = order;
104 	return 0;
105 
106  out_freehpt:
107 	if (kvm->arch.hpt_cma_alloc)
108 		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109 	else
110 		free_pages(hpt, order - PAGE_SHIFT);
111 	return -ENOMEM;
112 }
113 
114 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
115 {
116 	long err = -EBUSY;
117 	long order;
118 
119 	mutex_lock(&kvm->lock);
120 	if (kvm->arch.rma_setup_done) {
121 		kvm->arch.rma_setup_done = 0;
122 		/* order rma_setup_done vs. vcpus_running */
123 		smp_mb();
124 		if (atomic_read(&kvm->arch.vcpus_running)) {
125 			kvm->arch.rma_setup_done = 1;
126 			goto out;
127 		}
128 	}
129 	if (kvm->arch.hpt_virt) {
130 		order = kvm->arch.hpt_order;
131 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
132 		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
133 		/*
134 		 * Reset all the reverse-mapping chains for all memslots
135 		 */
136 		kvmppc_rmap_reset(kvm);
137 		/* Ensure that each vcpu will flush its TLB on next entry. */
138 		cpumask_setall(&kvm->arch.need_tlb_flush);
139 		*htab_orderp = order;
140 		err = 0;
141 	} else {
142 		err = kvmppc_alloc_hpt(kvm, htab_orderp);
143 		order = *htab_orderp;
144 	}
145  out:
146 	mutex_unlock(&kvm->lock);
147 	return err;
148 }
149 
150 void kvmppc_free_hpt(struct kvm *kvm)
151 {
152 	kvmppc_free_lpid(kvm->arch.lpid);
153 	vfree(kvm->arch.revmap);
154 	if (kvm->arch.hpt_cma_alloc)
155 		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
156 				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
157 	else
158 		free_pages(kvm->arch.hpt_virt,
159 			   kvm->arch.hpt_order - PAGE_SHIFT);
160 }
161 
162 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
163 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
164 {
165 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
166 }
167 
168 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
169 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
170 {
171 	return (pgsize == 0x10000) ? 0x1000 : 0;
172 }
173 
174 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
175 		     unsigned long porder)
176 {
177 	unsigned long i;
178 	unsigned long npages;
179 	unsigned long hp_v, hp_r;
180 	unsigned long addr, hash;
181 	unsigned long psize;
182 	unsigned long hp0, hp1;
183 	unsigned long idx_ret;
184 	long ret;
185 	struct kvm *kvm = vcpu->kvm;
186 
187 	psize = 1ul << porder;
188 	npages = memslot->npages >> (porder - PAGE_SHIFT);
189 
190 	/* VRMA can't be > 1TB */
191 	if (npages > 1ul << (40 - porder))
192 		npages = 1ul << (40 - porder);
193 	/* Can't use more than 1 HPTE per HPTEG */
194 	if (npages > kvm->arch.hpt_mask + 1)
195 		npages = kvm->arch.hpt_mask + 1;
196 
197 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
198 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
199 	hp1 = hpte1_pgsize_encoding(psize) |
200 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
201 
202 	for (i = 0; i < npages; ++i) {
203 		addr = i << porder;
204 		/* can't use hpt_hash since va > 64 bits */
205 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
206 		/*
207 		 * We assume that the hash table is empty and no
208 		 * vcpus are using it at this stage.  Since we create
209 		 * at most one HPTE per HPTEG, we just assume entry 7
210 		 * is available and use it.
211 		 */
212 		hash = (hash << 3) + 7;
213 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
214 		hp_r = hp1 | addr;
215 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
216 						 &idx_ret);
217 		if (ret != H_SUCCESS) {
218 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
219 			       addr, ret);
220 			break;
221 		}
222 	}
223 }
224 
225 int kvmppc_mmu_hv_init(void)
226 {
227 	unsigned long host_lpid, rsvd_lpid;
228 
229 	if (!cpu_has_feature(CPU_FTR_HVMODE))
230 		return -EINVAL;
231 
232 	/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
233 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
234 		host_lpid = mfspr(SPRN_LPID);	/* POWER7 */
235 		rsvd_lpid = LPID_RSVD;
236 	} else {
237 		host_lpid = 0;			/* PPC970 */
238 		rsvd_lpid = MAX_LPID_970;
239 	}
240 
241 	kvmppc_init_lpid(rsvd_lpid + 1);
242 
243 	kvmppc_claim_lpid(host_lpid);
244 	/* rsvd_lpid is reserved for use in partition switching */
245 	kvmppc_claim_lpid(rsvd_lpid);
246 
247 	return 0;
248 }
249 
250 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
251 {
252 	unsigned long msr = vcpu->arch.intr_msr;
253 
254 	/* If transactional, change to suspend mode on IRQ delivery */
255 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
256 		msr |= MSR_TS_S;
257 	else
258 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
259 	kvmppc_set_msr(vcpu, msr);
260 }
261 
262 /*
263  * This is called to get a reference to a guest page if there isn't
264  * one already in the memslot->arch.slot_phys[] array.
265  */
266 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
267 				  struct kvm_memory_slot *memslot,
268 				  unsigned long psize)
269 {
270 	unsigned long start;
271 	long np, err;
272 	struct page *page, *hpage, *pages[1];
273 	unsigned long s, pgsize;
274 	unsigned long *physp;
275 	unsigned int is_io, got, pgorder;
276 	struct vm_area_struct *vma;
277 	unsigned long pfn, i, npages;
278 
279 	physp = memslot->arch.slot_phys;
280 	if (!physp)
281 		return -EINVAL;
282 	if (physp[gfn - memslot->base_gfn])
283 		return 0;
284 
285 	is_io = 0;
286 	got = 0;
287 	page = NULL;
288 	pgsize = psize;
289 	err = -EINVAL;
290 	start = gfn_to_hva_memslot(memslot, gfn);
291 
292 	/* Instantiate and get the page we want access to */
293 	np = get_user_pages_fast(start, 1, 1, pages);
294 	if (np != 1) {
295 		/* Look up the vma for the page */
296 		down_read(&current->mm->mmap_sem);
297 		vma = find_vma(current->mm, start);
298 		if (!vma || vma->vm_start > start ||
299 		    start + psize > vma->vm_end ||
300 		    !(vma->vm_flags & VM_PFNMAP))
301 			goto up_err;
302 		is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
303 		pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
304 		/* check alignment of pfn vs. requested page size */
305 		if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
306 			goto up_err;
307 		up_read(&current->mm->mmap_sem);
308 
309 	} else {
310 		page = pages[0];
311 		got = KVMPPC_GOT_PAGE;
312 
313 		/* See if this is a large page */
314 		s = PAGE_SIZE;
315 		if (PageHuge(page)) {
316 			hpage = compound_head(page);
317 			s <<= compound_order(hpage);
318 			/* Get the whole large page if slot alignment is ok */
319 			if (s > psize && slot_is_aligned(memslot, s) &&
320 			    !(memslot->userspace_addr & (s - 1))) {
321 				start &= ~(s - 1);
322 				pgsize = s;
323 				get_page(hpage);
324 				put_page(page);
325 				page = hpage;
326 			}
327 		}
328 		if (s < psize)
329 			goto out;
330 		pfn = page_to_pfn(page);
331 	}
332 
333 	npages = pgsize >> PAGE_SHIFT;
334 	pgorder = __ilog2(npages);
335 	physp += (gfn - memslot->base_gfn) & ~(npages - 1);
336 	spin_lock(&kvm->arch.slot_phys_lock);
337 	for (i = 0; i < npages; ++i) {
338 		if (!physp[i]) {
339 			physp[i] = ((pfn + i) << PAGE_SHIFT) +
340 				got + is_io + pgorder;
341 			got = 0;
342 		}
343 	}
344 	spin_unlock(&kvm->arch.slot_phys_lock);
345 	err = 0;
346 
347  out:
348 	if (got)
349 		put_page(page);
350 	return err;
351 
352  up_err:
353 	up_read(&current->mm->mmap_sem);
354 	return err;
355 }
356 
357 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
358 				long pte_index, unsigned long pteh,
359 				unsigned long ptel, unsigned long *pte_idx_ret)
360 {
361 	unsigned long psize, gpa, gfn;
362 	struct kvm_memory_slot *memslot;
363 	long ret;
364 
365 	if (kvm->arch.using_mmu_notifiers)
366 		goto do_insert;
367 
368 	psize = hpte_page_size(pteh, ptel);
369 	if (!psize)
370 		return H_PARAMETER;
371 
372 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
373 
374 	/* Find the memslot (if any) for this address */
375 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
376 	gfn = gpa >> PAGE_SHIFT;
377 	memslot = gfn_to_memslot(kvm, gfn);
378 	if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
379 		if (!slot_is_aligned(memslot, psize))
380 			return H_PARAMETER;
381 		if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
382 			return H_PARAMETER;
383 	}
384 
385  do_insert:
386 	/* Protect linux PTE lookup from page table destruction */
387 	rcu_read_lock_sched();	/* this disables preemption too */
388 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
389 				current->mm->pgd, false, pte_idx_ret);
390 	rcu_read_unlock_sched();
391 	if (ret == H_TOO_HARD) {
392 		/* this can't happen */
393 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
394 		ret = H_RESOURCE;	/* or something */
395 	}
396 	return ret;
397 
398 }
399 
400 /*
401  * We come here on a H_ENTER call from the guest when we are not
402  * using mmu notifiers and we don't have the requested page pinned
403  * already.
404  */
405 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
406 			     long pte_index, unsigned long pteh,
407 			     unsigned long ptel)
408 {
409 	return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
410 					  pteh, ptel, &vcpu->arch.gpr[4]);
411 }
412 
413 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
414 							 gva_t eaddr)
415 {
416 	u64 mask;
417 	int i;
418 
419 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
420 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
421 			continue;
422 
423 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
424 			mask = ESID_MASK_1T;
425 		else
426 			mask = ESID_MASK;
427 
428 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
429 			return &vcpu->arch.slb[i];
430 	}
431 	return NULL;
432 }
433 
434 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
435 			unsigned long ea)
436 {
437 	unsigned long ra_mask;
438 
439 	ra_mask = hpte_page_size(v, r) - 1;
440 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
441 }
442 
443 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
444 			struct kvmppc_pte *gpte, bool data, bool iswrite)
445 {
446 	struct kvm *kvm = vcpu->kvm;
447 	struct kvmppc_slb *slbe;
448 	unsigned long slb_v;
449 	unsigned long pp, key;
450 	unsigned long v, gr;
451 	__be64 *hptep;
452 	int index;
453 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
454 
455 	/* Get SLB entry */
456 	if (virtmode) {
457 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
458 		if (!slbe)
459 			return -EINVAL;
460 		slb_v = slbe->origv;
461 	} else {
462 		/* real mode access */
463 		slb_v = vcpu->kvm->arch.vrma_slb_v;
464 	}
465 
466 	preempt_disable();
467 	/* Find the HPTE in the hash table */
468 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
469 					 HPTE_V_VALID | HPTE_V_ABSENT);
470 	if (index < 0) {
471 		preempt_enable();
472 		return -ENOENT;
473 	}
474 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
475 	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
476 	gr = kvm->arch.revmap[index].guest_rpte;
477 
478 	/* Unlock the HPTE */
479 	asm volatile("lwsync" : : : "memory");
480 	hptep[0] = cpu_to_be64(v);
481 	preempt_enable();
482 
483 	gpte->eaddr = eaddr;
484 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
485 
486 	/* Get PP bits and key for permission check */
487 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
488 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
489 	key &= slb_v;
490 
491 	/* Calculate permissions */
492 	gpte->may_read = hpte_read_permission(pp, key);
493 	gpte->may_write = hpte_write_permission(pp, key);
494 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
495 
496 	/* Storage key permission check for POWER7 */
497 	if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
498 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
499 		if (amrfield & 1)
500 			gpte->may_read = 0;
501 		if (amrfield & 2)
502 			gpte->may_write = 0;
503 	}
504 
505 	/* Get the guest physical address */
506 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
507 	return 0;
508 }
509 
510 /*
511  * Quick test for whether an instruction is a load or a store.
512  * If the instruction is a load or a store, then this will indicate
513  * which it is, at least on server processors.  (Embedded processors
514  * have some external PID instructions that don't follow the rule
515  * embodied here.)  If the instruction isn't a load or store, then
516  * this doesn't return anything useful.
517  */
518 static int instruction_is_store(unsigned int instr)
519 {
520 	unsigned int mask;
521 
522 	mask = 0x10000000;
523 	if ((instr & 0xfc000000) == 0x7c000000)
524 		mask = 0x100;		/* major opcode 31 */
525 	return (instr & mask) != 0;
526 }
527 
528 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
529 				  unsigned long gpa, gva_t ea, int is_store)
530 {
531 	u32 last_inst;
532 
533 	/*
534 	 * If we fail, we just return to the guest and try executing it again.
535 	 */
536 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
537 		EMULATE_DONE)
538 		return RESUME_GUEST;
539 
540 	/*
541 	 * WARNING: We do not know for sure whether the instruction we just
542 	 * read from memory is the same that caused the fault in the first
543 	 * place.  If the instruction we read is neither an load or a store,
544 	 * then it can't access memory, so we don't need to worry about
545 	 * enforcing access permissions.  So, assuming it is a load or
546 	 * store, we just check that its direction (load or store) is
547 	 * consistent with the original fault, since that's what we
548 	 * checked the access permissions against.  If there is a mismatch
549 	 * we just return and retry the instruction.
550 	 */
551 
552 	if (instruction_is_store(last_inst) != !!is_store)
553 		return RESUME_GUEST;
554 
555 	/*
556 	 * Emulated accesses are emulated by looking at the hash for
557 	 * translation once, then performing the access later. The
558 	 * translation could be invalidated in the meantime in which
559 	 * point performing the subsequent memory access on the old
560 	 * physical address could possibly be a security hole for the
561 	 * guest (but not the host).
562 	 *
563 	 * This is less of an issue for MMIO stores since they aren't
564 	 * globally visible. It could be an issue for MMIO loads to
565 	 * a certain extent but we'll ignore it for now.
566 	 */
567 
568 	vcpu->arch.paddr_accessed = gpa;
569 	vcpu->arch.vaddr_accessed = ea;
570 	return kvmppc_emulate_mmio(run, vcpu);
571 }
572 
573 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
574 				unsigned long ea, unsigned long dsisr)
575 {
576 	struct kvm *kvm = vcpu->kvm;
577 	unsigned long hpte[3], r;
578 	__be64 *hptep;
579 	unsigned long mmu_seq, psize, pte_size;
580 	unsigned long gpa_base, gfn_base;
581 	unsigned long gpa, gfn, hva, pfn;
582 	struct kvm_memory_slot *memslot;
583 	unsigned long *rmap;
584 	struct revmap_entry *rev;
585 	struct page *page, *pages[1];
586 	long index, ret, npages;
587 	unsigned long is_io;
588 	unsigned int writing, write_ok;
589 	struct vm_area_struct *vma;
590 	unsigned long rcbits;
591 
592 	/*
593 	 * Real-mode code has already searched the HPT and found the
594 	 * entry we're interested in.  Lock the entry and check that
595 	 * it hasn't changed.  If it has, just return and re-execute the
596 	 * instruction.
597 	 */
598 	if (ea != vcpu->arch.pgfault_addr)
599 		return RESUME_GUEST;
600 	index = vcpu->arch.pgfault_index;
601 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
602 	rev = &kvm->arch.revmap[index];
603 	preempt_disable();
604 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
605 		cpu_relax();
606 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
607 	hpte[1] = be64_to_cpu(hptep[1]);
608 	hpte[2] = r = rev->guest_rpte;
609 	asm volatile("lwsync" : : : "memory");
610 	hptep[0] = cpu_to_be64(hpte[0]);
611 	preempt_enable();
612 
613 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
614 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
615 		return RESUME_GUEST;
616 
617 	/* Translate the logical address and get the page */
618 	psize = hpte_page_size(hpte[0], r);
619 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
620 	gfn_base = gpa_base >> PAGE_SHIFT;
621 	gpa = gpa_base | (ea & (psize - 1));
622 	gfn = gpa >> PAGE_SHIFT;
623 	memslot = gfn_to_memslot(kvm, gfn);
624 
625 	/* No memslot means it's an emulated MMIO region */
626 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
627 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
628 					      dsisr & DSISR_ISSTORE);
629 
630 	if (!kvm->arch.using_mmu_notifiers)
631 		return -EFAULT;		/* should never get here */
632 
633 	/*
634 	 * This should never happen, because of the slot_is_aligned()
635 	 * check in kvmppc_do_h_enter().
636 	 */
637 	if (gfn_base < memslot->base_gfn)
638 		return -EFAULT;
639 
640 	/* used to check for invalidations in progress */
641 	mmu_seq = kvm->mmu_notifier_seq;
642 	smp_rmb();
643 
644 	is_io = 0;
645 	pfn = 0;
646 	page = NULL;
647 	pte_size = PAGE_SIZE;
648 	writing = (dsisr & DSISR_ISSTORE) != 0;
649 	/* If writing != 0, then the HPTE must allow writing, if we get here */
650 	write_ok = writing;
651 	hva = gfn_to_hva_memslot(memslot, gfn);
652 	npages = get_user_pages_fast(hva, 1, writing, pages);
653 	if (npages < 1) {
654 		/* Check if it's an I/O mapping */
655 		down_read(&current->mm->mmap_sem);
656 		vma = find_vma(current->mm, hva);
657 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
658 		    (vma->vm_flags & VM_PFNMAP)) {
659 			pfn = vma->vm_pgoff +
660 				((hva - vma->vm_start) >> PAGE_SHIFT);
661 			pte_size = psize;
662 			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
663 			write_ok = vma->vm_flags & VM_WRITE;
664 		}
665 		up_read(&current->mm->mmap_sem);
666 		if (!pfn)
667 			return -EFAULT;
668 	} else {
669 		page = pages[0];
670 		pfn = page_to_pfn(page);
671 		if (PageHuge(page)) {
672 			page = compound_head(page);
673 			pte_size <<= compound_order(page);
674 		}
675 		/* if the guest wants write access, see if that is OK */
676 		if (!writing && hpte_is_writable(r)) {
677 			unsigned int hugepage_shift;
678 			pte_t *ptep, pte;
679 
680 			/*
681 			 * We need to protect against page table destruction
682 			 * while looking up and updating the pte.
683 			 */
684 			rcu_read_lock_sched();
685 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
686 							 hva, &hugepage_shift);
687 			if (ptep) {
688 				pte = kvmppc_read_update_linux_pte(ptep, 1,
689 							   hugepage_shift);
690 				if (pte_write(pte))
691 					write_ok = 1;
692 			}
693 			rcu_read_unlock_sched();
694 		}
695 	}
696 
697 	ret = -EFAULT;
698 	if (psize > pte_size)
699 		goto out_put;
700 
701 	/* Check WIMG vs. the actual page we're accessing */
702 	if (!hpte_cache_flags_ok(r, is_io)) {
703 		if (is_io)
704 			return -EFAULT;
705 		/*
706 		 * Allow guest to map emulated device memory as
707 		 * uncacheable, but actually make it cacheable.
708 		 */
709 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
710 	}
711 
712 	/*
713 	 * Set the HPTE to point to pfn.
714 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
715 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
716 	 */
717 	if (psize < PAGE_SIZE)
718 		psize = PAGE_SIZE;
719 	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
720 	if (hpte_is_writable(r) && !write_ok)
721 		r = hpte_make_readonly(r);
722 	ret = RESUME_GUEST;
723 	preempt_disable();
724 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
725 		cpu_relax();
726 	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
727 		be64_to_cpu(hptep[1]) != hpte[1] ||
728 		rev->guest_rpte != hpte[2])
729 		/* HPTE has been changed under us; let the guest retry */
730 		goto out_unlock;
731 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
732 
733 	/* Always put the HPTE in the rmap chain for the page base address */
734 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
735 	lock_rmap(rmap);
736 
737 	/* Check if we might have been invalidated; let the guest retry if so */
738 	ret = RESUME_GUEST;
739 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
740 		unlock_rmap(rmap);
741 		goto out_unlock;
742 	}
743 
744 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
745 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
746 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
747 
748 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
749 		/* HPTE was previously valid, so we need to invalidate it */
750 		unlock_rmap(rmap);
751 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
752 		kvmppc_invalidate_hpte(kvm, hptep, index);
753 		/* don't lose previous R and C bits */
754 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
755 	} else {
756 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
757 	}
758 
759 	hptep[1] = cpu_to_be64(r);
760 	eieio();
761 	hptep[0] = cpu_to_be64(hpte[0]);
762 	asm volatile("ptesync" : : : "memory");
763 	preempt_enable();
764 	if (page && hpte_is_writable(r))
765 		SetPageDirty(page);
766 
767  out_put:
768 	if (page) {
769 		/*
770 		 * We drop pages[0] here, not page because page might
771 		 * have been set to the head page of a compound, but
772 		 * we have to drop the reference on the correct tail
773 		 * page to match the get inside gup()
774 		 */
775 		put_page(pages[0]);
776 	}
777 	return ret;
778 
779  out_unlock:
780 	hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
781 	preempt_enable();
782 	goto out_put;
783 }
784 
785 static void kvmppc_rmap_reset(struct kvm *kvm)
786 {
787 	struct kvm_memslots *slots;
788 	struct kvm_memory_slot *memslot;
789 	int srcu_idx;
790 
791 	srcu_idx = srcu_read_lock(&kvm->srcu);
792 	slots = kvm->memslots;
793 	kvm_for_each_memslot(memslot, slots) {
794 		/*
795 		 * This assumes it is acceptable to lose reference and
796 		 * change bits across a reset.
797 		 */
798 		memset(memslot->arch.rmap, 0,
799 		       memslot->npages * sizeof(*memslot->arch.rmap));
800 	}
801 	srcu_read_unlock(&kvm->srcu, srcu_idx);
802 }
803 
804 static int kvm_handle_hva_range(struct kvm *kvm,
805 				unsigned long start,
806 				unsigned long end,
807 				int (*handler)(struct kvm *kvm,
808 					       unsigned long *rmapp,
809 					       unsigned long gfn))
810 {
811 	int ret;
812 	int retval = 0;
813 	struct kvm_memslots *slots;
814 	struct kvm_memory_slot *memslot;
815 
816 	slots = kvm_memslots(kvm);
817 	kvm_for_each_memslot(memslot, slots) {
818 		unsigned long hva_start, hva_end;
819 		gfn_t gfn, gfn_end;
820 
821 		hva_start = max(start, memslot->userspace_addr);
822 		hva_end = min(end, memslot->userspace_addr +
823 					(memslot->npages << PAGE_SHIFT));
824 		if (hva_start >= hva_end)
825 			continue;
826 		/*
827 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
828 		 * {gfn, gfn+1, ..., gfn_end-1}.
829 		 */
830 		gfn = hva_to_gfn_memslot(hva_start, memslot);
831 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
832 
833 		for (; gfn < gfn_end; ++gfn) {
834 			gfn_t gfn_offset = gfn - memslot->base_gfn;
835 
836 			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
837 			retval |= ret;
838 		}
839 	}
840 
841 	return retval;
842 }
843 
844 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
845 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
846 					 unsigned long gfn))
847 {
848 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
849 }
850 
851 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
852 			   unsigned long gfn)
853 {
854 	struct revmap_entry *rev = kvm->arch.revmap;
855 	unsigned long h, i, j;
856 	__be64 *hptep;
857 	unsigned long ptel, psize, rcbits;
858 
859 	for (;;) {
860 		lock_rmap(rmapp);
861 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
862 			unlock_rmap(rmapp);
863 			break;
864 		}
865 
866 		/*
867 		 * To avoid an ABBA deadlock with the HPTE lock bit,
868 		 * we can't spin on the HPTE lock while holding the
869 		 * rmap chain lock.
870 		 */
871 		i = *rmapp & KVMPPC_RMAP_INDEX;
872 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
873 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
874 			/* unlock rmap before spinning on the HPTE lock */
875 			unlock_rmap(rmapp);
876 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
877 				cpu_relax();
878 			continue;
879 		}
880 		j = rev[i].forw;
881 		if (j == i) {
882 			/* chain is now empty */
883 			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
884 		} else {
885 			/* remove i from chain */
886 			h = rev[i].back;
887 			rev[h].forw = j;
888 			rev[j].back = h;
889 			rev[i].forw = rev[i].back = i;
890 			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
891 		}
892 
893 		/* Now check and modify the HPTE */
894 		ptel = rev[i].guest_rpte;
895 		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
896 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
897 		    hpte_rpn(ptel, psize) == gfn) {
898 			if (kvm->arch.using_mmu_notifiers)
899 				hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
900 			kvmppc_invalidate_hpte(kvm, hptep, i);
901 			/* Harvest R and C */
902 			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
903 			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
904 			if (rcbits & ~rev[i].guest_rpte) {
905 				rev[i].guest_rpte = ptel | rcbits;
906 				note_hpte_modification(kvm, &rev[i]);
907 			}
908 		}
909 		unlock_rmap(rmapp);
910 		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
911 	}
912 	return 0;
913 }
914 
915 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
916 {
917 	if (kvm->arch.using_mmu_notifiers)
918 		kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
919 	return 0;
920 }
921 
922 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
923 {
924 	if (kvm->arch.using_mmu_notifiers)
925 		kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
926 	return 0;
927 }
928 
929 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
930 				  struct kvm_memory_slot *memslot)
931 {
932 	unsigned long *rmapp;
933 	unsigned long gfn;
934 	unsigned long n;
935 
936 	rmapp = memslot->arch.rmap;
937 	gfn = memslot->base_gfn;
938 	for (n = memslot->npages; n; --n) {
939 		/*
940 		 * Testing the present bit without locking is OK because
941 		 * the memslot has been marked invalid already, and hence
942 		 * no new HPTEs referencing this page can be created,
943 		 * thus the present bit can't go from 0 to 1.
944 		 */
945 		if (*rmapp & KVMPPC_RMAP_PRESENT)
946 			kvm_unmap_rmapp(kvm, rmapp, gfn);
947 		++rmapp;
948 		++gfn;
949 	}
950 }
951 
952 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
953 			 unsigned long gfn)
954 {
955 	struct revmap_entry *rev = kvm->arch.revmap;
956 	unsigned long head, i, j;
957 	__be64 *hptep;
958 	int ret = 0;
959 
960  retry:
961 	lock_rmap(rmapp);
962 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
963 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
964 		ret = 1;
965 	}
966 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
967 		unlock_rmap(rmapp);
968 		return ret;
969 	}
970 
971 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
972 	do {
973 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
974 		j = rev[i].forw;
975 
976 		/* If this HPTE isn't referenced, ignore it */
977 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
978 			continue;
979 
980 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
981 			/* unlock rmap before spinning on the HPTE lock */
982 			unlock_rmap(rmapp);
983 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
984 				cpu_relax();
985 			goto retry;
986 		}
987 
988 		/* Now check and modify the HPTE */
989 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
990 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
991 			kvmppc_clear_ref_hpte(kvm, hptep, i);
992 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
993 				rev[i].guest_rpte |= HPTE_R_R;
994 				note_hpte_modification(kvm, &rev[i]);
995 			}
996 			ret = 1;
997 		}
998 		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
999 	} while ((i = j) != head);
1000 
1001 	unlock_rmap(rmapp);
1002 	return ret;
1003 }
1004 
1005 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
1006 {
1007 	if (!kvm->arch.using_mmu_notifiers)
1008 		return 0;
1009 	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
1010 }
1011 
1012 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1013 			      unsigned long gfn)
1014 {
1015 	struct revmap_entry *rev = kvm->arch.revmap;
1016 	unsigned long head, i, j;
1017 	unsigned long *hp;
1018 	int ret = 1;
1019 
1020 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1021 		return 1;
1022 
1023 	lock_rmap(rmapp);
1024 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1025 		goto out;
1026 
1027 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
1028 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
1029 		do {
1030 			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1031 			j = rev[i].forw;
1032 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1033 				goto out;
1034 		} while ((i = j) != head);
1035 	}
1036 	ret = 0;
1037 
1038  out:
1039 	unlock_rmap(rmapp);
1040 	return ret;
1041 }
1042 
1043 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1044 {
1045 	if (!kvm->arch.using_mmu_notifiers)
1046 		return 0;
1047 	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1048 }
1049 
1050 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1051 {
1052 	if (!kvm->arch.using_mmu_notifiers)
1053 		return;
1054 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1055 }
1056 
1057 static int vcpus_running(struct kvm *kvm)
1058 {
1059 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1060 }
1061 
1062 /*
1063  * Returns the number of system pages that are dirty.
1064  * This can be more than 1 if we find a huge-page HPTE.
1065  */
1066 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1067 {
1068 	struct revmap_entry *rev = kvm->arch.revmap;
1069 	unsigned long head, i, j;
1070 	unsigned long n;
1071 	unsigned long v, r;
1072 	__be64 *hptep;
1073 	int npages_dirty = 0;
1074 
1075  retry:
1076 	lock_rmap(rmapp);
1077 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
1078 		*rmapp &= ~KVMPPC_RMAP_CHANGED;
1079 		npages_dirty = 1;
1080 	}
1081 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1082 		unlock_rmap(rmapp);
1083 		return npages_dirty;
1084 	}
1085 
1086 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1087 	do {
1088 		unsigned long hptep1;
1089 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1090 		j = rev[i].forw;
1091 
1092 		/*
1093 		 * Checking the C (changed) bit here is racy since there
1094 		 * is no guarantee about when the hardware writes it back.
1095 		 * If the HPTE is not writable then it is stable since the
1096 		 * page can't be written to, and we would have done a tlbie
1097 		 * (which forces the hardware to complete any writeback)
1098 		 * when making the HPTE read-only.
1099 		 * If vcpus are running then this call is racy anyway
1100 		 * since the page could get dirtied subsequently, so we
1101 		 * expect there to be a further call which would pick up
1102 		 * any delayed C bit writeback.
1103 		 * Otherwise we need to do the tlbie even if C==0 in
1104 		 * order to pick up any delayed writeback of C.
1105 		 */
1106 		hptep1 = be64_to_cpu(hptep[1]);
1107 		if (!(hptep1 & HPTE_R_C) &&
1108 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1109 			continue;
1110 
1111 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1112 			/* unlock rmap before spinning on the HPTE lock */
1113 			unlock_rmap(rmapp);
1114 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1115 				cpu_relax();
1116 			goto retry;
1117 		}
1118 
1119 		/* Now check and modify the HPTE */
1120 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID)))
1121 			continue;
1122 
1123 		/* need to make it temporarily absent so C is stable */
1124 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1125 		kvmppc_invalidate_hpte(kvm, hptep, i);
1126 		v = be64_to_cpu(hptep[0]);
1127 		r = be64_to_cpu(hptep[1]);
1128 		if (r & HPTE_R_C) {
1129 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1130 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1131 				rev[i].guest_rpte |= HPTE_R_C;
1132 				note_hpte_modification(kvm, &rev[i]);
1133 			}
1134 			n = hpte_page_size(v, r);
1135 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1136 			if (n > npages_dirty)
1137 				npages_dirty = n;
1138 			eieio();
1139 		}
1140 		v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1141 		v |= HPTE_V_VALID;
1142 		hptep[0] = cpu_to_be64(v);
1143 	} while ((i = j) != head);
1144 
1145 	unlock_rmap(rmapp);
1146 	return npages_dirty;
1147 }
1148 
1149 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1150 			      struct kvm_memory_slot *memslot,
1151 			      unsigned long *map)
1152 {
1153 	unsigned long gfn;
1154 
1155 	if (!vpa->dirty || !vpa->pinned_addr)
1156 		return;
1157 	gfn = vpa->gpa >> PAGE_SHIFT;
1158 	if (gfn < memslot->base_gfn ||
1159 	    gfn >= memslot->base_gfn + memslot->npages)
1160 		return;
1161 
1162 	vpa->dirty = false;
1163 	if (map)
1164 		__set_bit_le(gfn - memslot->base_gfn, map);
1165 }
1166 
1167 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1168 			     unsigned long *map)
1169 {
1170 	unsigned long i, j;
1171 	unsigned long *rmapp;
1172 	struct kvm_vcpu *vcpu;
1173 
1174 	preempt_disable();
1175 	rmapp = memslot->arch.rmap;
1176 	for (i = 0; i < memslot->npages; ++i) {
1177 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1178 		/*
1179 		 * Note that if npages > 0 then i must be a multiple of npages,
1180 		 * since we always put huge-page HPTEs in the rmap chain
1181 		 * corresponding to their page base address.
1182 		 */
1183 		if (npages && map)
1184 			for (j = i; npages; ++j, --npages)
1185 				__set_bit_le(j, map);
1186 		++rmapp;
1187 	}
1188 
1189 	/* Harvest dirty bits from VPA and DTL updates */
1190 	/* Note: we never modify the SLB shadow buffer areas */
1191 	kvm_for_each_vcpu(i, vcpu, kvm) {
1192 		spin_lock(&vcpu->arch.vpa_update_lock);
1193 		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1194 		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1195 		spin_unlock(&vcpu->arch.vpa_update_lock);
1196 	}
1197 	preempt_enable();
1198 	return 0;
1199 }
1200 
1201 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1202 			    unsigned long *nb_ret)
1203 {
1204 	struct kvm_memory_slot *memslot;
1205 	unsigned long gfn = gpa >> PAGE_SHIFT;
1206 	struct page *page, *pages[1];
1207 	int npages;
1208 	unsigned long hva, offset;
1209 	unsigned long pa;
1210 	unsigned long *physp;
1211 	int srcu_idx;
1212 
1213 	srcu_idx = srcu_read_lock(&kvm->srcu);
1214 	memslot = gfn_to_memslot(kvm, gfn);
1215 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1216 		goto err;
1217 	if (!kvm->arch.using_mmu_notifiers) {
1218 		physp = memslot->arch.slot_phys;
1219 		if (!physp)
1220 			goto err;
1221 		physp += gfn - memslot->base_gfn;
1222 		pa = *physp;
1223 		if (!pa) {
1224 			if (kvmppc_get_guest_page(kvm, gfn, memslot,
1225 						  PAGE_SIZE) < 0)
1226 				goto err;
1227 			pa = *physp;
1228 		}
1229 		page = pfn_to_page(pa >> PAGE_SHIFT);
1230 		get_page(page);
1231 	} else {
1232 		hva = gfn_to_hva_memslot(memslot, gfn);
1233 		npages = get_user_pages_fast(hva, 1, 1, pages);
1234 		if (npages < 1)
1235 			goto err;
1236 		page = pages[0];
1237 	}
1238 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1239 
1240 	offset = gpa & (PAGE_SIZE - 1);
1241 	if (nb_ret)
1242 		*nb_ret = PAGE_SIZE - offset;
1243 	return page_address(page) + offset;
1244 
1245  err:
1246 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1247 	return NULL;
1248 }
1249 
1250 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1251 			     bool dirty)
1252 {
1253 	struct page *page = virt_to_page(va);
1254 	struct kvm_memory_slot *memslot;
1255 	unsigned long gfn;
1256 	unsigned long *rmap;
1257 	int srcu_idx;
1258 
1259 	put_page(page);
1260 
1261 	if (!dirty || !kvm->arch.using_mmu_notifiers)
1262 		return;
1263 
1264 	/* We need to mark this page dirty in the rmap chain */
1265 	gfn = gpa >> PAGE_SHIFT;
1266 	srcu_idx = srcu_read_lock(&kvm->srcu);
1267 	memslot = gfn_to_memslot(kvm, gfn);
1268 	if (memslot) {
1269 		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1270 		lock_rmap(rmap);
1271 		*rmap |= KVMPPC_RMAP_CHANGED;
1272 		unlock_rmap(rmap);
1273 	}
1274 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1275 }
1276 
1277 /*
1278  * Functions for reading and writing the hash table via reads and
1279  * writes on a file descriptor.
1280  *
1281  * Reads return the guest view of the hash table, which has to be
1282  * pieced together from the real hash table and the guest_rpte
1283  * values in the revmap array.
1284  *
1285  * On writes, each HPTE written is considered in turn, and if it
1286  * is valid, it is written to the HPT as if an H_ENTER with the
1287  * exact flag set was done.  When the invalid count is non-zero
1288  * in the header written to the stream, the kernel will make
1289  * sure that that many HPTEs are invalid, and invalidate them
1290  * if not.
1291  */
1292 
1293 struct kvm_htab_ctx {
1294 	unsigned long	index;
1295 	unsigned long	flags;
1296 	struct kvm	*kvm;
1297 	int		first_pass;
1298 };
1299 
1300 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1301 
1302 /*
1303  * Returns 1 if this HPT entry has been modified or has pending
1304  * R/C bit changes.
1305  */
1306 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1307 {
1308 	unsigned long rcbits_unset;
1309 
1310 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1311 		return 1;
1312 
1313 	/* Also need to consider changes in reference and changed bits */
1314 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1315 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1316 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1317 		return 1;
1318 
1319 	return 0;
1320 }
1321 
1322 static long record_hpte(unsigned long flags, __be64 *hptp,
1323 			unsigned long *hpte, struct revmap_entry *revp,
1324 			int want_valid, int first_pass)
1325 {
1326 	unsigned long v, r;
1327 	unsigned long rcbits_unset;
1328 	int ok = 1;
1329 	int valid, dirty;
1330 
1331 	/* Unmodified entries are uninteresting except on the first pass */
1332 	dirty = hpte_dirty(revp, hptp);
1333 	if (!first_pass && !dirty)
1334 		return 0;
1335 
1336 	valid = 0;
1337 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1338 		valid = 1;
1339 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1340 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1341 			valid = 0;
1342 	}
1343 	if (valid != want_valid)
1344 		return 0;
1345 
1346 	v = r = 0;
1347 	if (valid || dirty) {
1348 		/* lock the HPTE so it's stable and read it */
1349 		preempt_disable();
1350 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1351 			cpu_relax();
1352 		v = be64_to_cpu(hptp[0]);
1353 
1354 		/* re-evaluate valid and dirty from synchronized HPTE value */
1355 		valid = !!(v & HPTE_V_VALID);
1356 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1357 
1358 		/* Harvest R and C into guest view if necessary */
1359 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1360 		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1361 			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1362 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1363 			dirty = 1;
1364 		}
1365 
1366 		if (v & HPTE_V_ABSENT) {
1367 			v &= ~HPTE_V_ABSENT;
1368 			v |= HPTE_V_VALID;
1369 			valid = 1;
1370 		}
1371 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1372 			valid = 0;
1373 
1374 		r = revp->guest_rpte;
1375 		/* only clear modified if this is the right sort of entry */
1376 		if (valid == want_valid && dirty) {
1377 			r &= ~HPTE_GR_MODIFIED;
1378 			revp->guest_rpte = r;
1379 		}
1380 		asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1381 		hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1382 		preempt_enable();
1383 		if (!(valid == want_valid && (first_pass || dirty)))
1384 			ok = 0;
1385 	}
1386 	hpte[0] = cpu_to_be64(v);
1387 	hpte[1] = cpu_to_be64(r);
1388 	return ok;
1389 }
1390 
1391 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1392 			     size_t count, loff_t *ppos)
1393 {
1394 	struct kvm_htab_ctx *ctx = file->private_data;
1395 	struct kvm *kvm = ctx->kvm;
1396 	struct kvm_get_htab_header hdr;
1397 	__be64 *hptp;
1398 	struct revmap_entry *revp;
1399 	unsigned long i, nb, nw;
1400 	unsigned long __user *lbuf;
1401 	struct kvm_get_htab_header __user *hptr;
1402 	unsigned long flags;
1403 	int first_pass;
1404 	unsigned long hpte[2];
1405 
1406 	if (!access_ok(VERIFY_WRITE, buf, count))
1407 		return -EFAULT;
1408 
1409 	first_pass = ctx->first_pass;
1410 	flags = ctx->flags;
1411 
1412 	i = ctx->index;
1413 	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1414 	revp = kvm->arch.revmap + i;
1415 	lbuf = (unsigned long __user *)buf;
1416 
1417 	nb = 0;
1418 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1419 		/* Initialize header */
1420 		hptr = (struct kvm_get_htab_header __user *)buf;
1421 		hdr.n_valid = 0;
1422 		hdr.n_invalid = 0;
1423 		nw = nb;
1424 		nb += sizeof(hdr);
1425 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1426 
1427 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1428 		if (!first_pass) {
1429 			while (i < kvm->arch.hpt_npte &&
1430 			       !hpte_dirty(revp, hptp)) {
1431 				++i;
1432 				hptp += 2;
1433 				++revp;
1434 			}
1435 		}
1436 		hdr.index = i;
1437 
1438 		/* Grab a series of valid entries */
1439 		while (i < kvm->arch.hpt_npte &&
1440 		       hdr.n_valid < 0xffff &&
1441 		       nb + HPTE_SIZE < count &&
1442 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1443 			/* valid entry, write it out */
1444 			++hdr.n_valid;
1445 			if (__put_user(hpte[0], lbuf) ||
1446 			    __put_user(hpte[1], lbuf + 1))
1447 				return -EFAULT;
1448 			nb += HPTE_SIZE;
1449 			lbuf += 2;
1450 			++i;
1451 			hptp += 2;
1452 			++revp;
1453 		}
1454 		/* Now skip invalid entries while we can */
1455 		while (i < kvm->arch.hpt_npte &&
1456 		       hdr.n_invalid < 0xffff &&
1457 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1458 			/* found an invalid entry */
1459 			++hdr.n_invalid;
1460 			++i;
1461 			hptp += 2;
1462 			++revp;
1463 		}
1464 
1465 		if (hdr.n_valid || hdr.n_invalid) {
1466 			/* write back the header */
1467 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1468 				return -EFAULT;
1469 			nw = nb;
1470 			buf = (char __user *)lbuf;
1471 		} else {
1472 			nb = nw;
1473 		}
1474 
1475 		/* Check if we've wrapped around the hash table */
1476 		if (i >= kvm->arch.hpt_npte) {
1477 			i = 0;
1478 			ctx->first_pass = 0;
1479 			break;
1480 		}
1481 	}
1482 
1483 	ctx->index = i;
1484 
1485 	return nb;
1486 }
1487 
1488 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1489 			      size_t count, loff_t *ppos)
1490 {
1491 	struct kvm_htab_ctx *ctx = file->private_data;
1492 	struct kvm *kvm = ctx->kvm;
1493 	struct kvm_get_htab_header hdr;
1494 	unsigned long i, j;
1495 	unsigned long v, r;
1496 	unsigned long __user *lbuf;
1497 	__be64 *hptp;
1498 	unsigned long tmp[2];
1499 	ssize_t nb;
1500 	long int err, ret;
1501 	int rma_setup;
1502 
1503 	if (!access_ok(VERIFY_READ, buf, count))
1504 		return -EFAULT;
1505 
1506 	/* lock out vcpus from running while we're doing this */
1507 	mutex_lock(&kvm->lock);
1508 	rma_setup = kvm->arch.rma_setup_done;
1509 	if (rma_setup) {
1510 		kvm->arch.rma_setup_done = 0;	/* temporarily */
1511 		/* order rma_setup_done vs. vcpus_running */
1512 		smp_mb();
1513 		if (atomic_read(&kvm->arch.vcpus_running)) {
1514 			kvm->arch.rma_setup_done = 1;
1515 			mutex_unlock(&kvm->lock);
1516 			return -EBUSY;
1517 		}
1518 	}
1519 
1520 	err = 0;
1521 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1522 		err = -EFAULT;
1523 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1524 			break;
1525 
1526 		err = 0;
1527 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1528 			break;
1529 
1530 		nb += sizeof(hdr);
1531 		buf += sizeof(hdr);
1532 
1533 		err = -EINVAL;
1534 		i = hdr.index;
1535 		if (i >= kvm->arch.hpt_npte ||
1536 		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1537 			break;
1538 
1539 		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1540 		lbuf = (unsigned long __user *)buf;
1541 		for (j = 0; j < hdr.n_valid; ++j) {
1542 			err = -EFAULT;
1543 			if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1544 				goto out;
1545 			err = -EINVAL;
1546 			if (!(v & HPTE_V_VALID))
1547 				goto out;
1548 			lbuf += 2;
1549 			nb += HPTE_SIZE;
1550 
1551 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1552 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1553 			err = -EIO;
1554 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1555 							 tmp);
1556 			if (ret != H_SUCCESS) {
1557 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1558 				       "r=%lx\n", ret, i, v, r);
1559 				goto out;
1560 			}
1561 			if (!rma_setup && is_vrma_hpte(v)) {
1562 				unsigned long psize = hpte_base_page_size(v, r);
1563 				unsigned long senc = slb_pgsize_encoding(psize);
1564 				unsigned long lpcr;
1565 
1566 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1567 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1568 				lpcr = senc << (LPCR_VRMASD_SH - 4);
1569 				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1570 				rma_setup = 1;
1571 			}
1572 			++i;
1573 			hptp += 2;
1574 		}
1575 
1576 		for (j = 0; j < hdr.n_invalid; ++j) {
1577 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1578 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1579 			++i;
1580 			hptp += 2;
1581 		}
1582 		err = 0;
1583 	}
1584 
1585  out:
1586 	/* Order HPTE updates vs. rma_setup_done */
1587 	smp_wmb();
1588 	kvm->arch.rma_setup_done = rma_setup;
1589 	mutex_unlock(&kvm->lock);
1590 
1591 	if (err)
1592 		return err;
1593 	return nb;
1594 }
1595 
1596 static int kvm_htab_release(struct inode *inode, struct file *filp)
1597 {
1598 	struct kvm_htab_ctx *ctx = filp->private_data;
1599 
1600 	filp->private_data = NULL;
1601 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1602 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1603 	kvm_put_kvm(ctx->kvm);
1604 	kfree(ctx);
1605 	return 0;
1606 }
1607 
1608 static const struct file_operations kvm_htab_fops = {
1609 	.read		= kvm_htab_read,
1610 	.write		= kvm_htab_write,
1611 	.llseek		= default_llseek,
1612 	.release	= kvm_htab_release,
1613 };
1614 
1615 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1616 {
1617 	int ret;
1618 	struct kvm_htab_ctx *ctx;
1619 	int rwflag;
1620 
1621 	/* reject flags we don't recognize */
1622 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1623 		return -EINVAL;
1624 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1625 	if (!ctx)
1626 		return -ENOMEM;
1627 	kvm_get_kvm(kvm);
1628 	ctx->kvm = kvm;
1629 	ctx->index = ghf->start_index;
1630 	ctx->flags = ghf->flags;
1631 	ctx->first_pass = 1;
1632 
1633 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1634 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1635 	if (ret < 0) {
1636 		kvm_put_kvm(kvm);
1637 		return ret;
1638 	}
1639 
1640 	if (rwflag == O_RDONLY) {
1641 		mutex_lock(&kvm->slots_lock);
1642 		atomic_inc(&kvm->arch.hpte_mod_interest);
1643 		/* make sure kvmppc_do_h_enter etc. see the increment */
1644 		synchronize_srcu_expedited(&kvm->srcu);
1645 		mutex_unlock(&kvm->slots_lock);
1646 	}
1647 
1648 	return ret;
1649 }
1650 
1651 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1652 {
1653 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1654 
1655 	if (cpu_has_feature(CPU_FTR_ARCH_206))
1656 		vcpu->arch.slb_nr = 32;		/* POWER7 */
1657 	else
1658 		vcpu->arch.slb_nr = 64;
1659 
1660 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1661 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1662 
1663 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1664 }
1665