1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "book3s.h"
31 #include "trace_hv.h"
32 
33 //#define DEBUG_RESIZE_HPT	1
34 
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...)				\
37 	do {							\
38 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
39 		printk(__VA_ARGS__);				\
40 	} while (0)
41 #else
42 #define resize_hpt_debug(resize, ...)				\
43 	do { } while (0)
44 #endif
45 
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 				long pte_index, unsigned long pteh,
48 				unsigned long ptel, unsigned long *pte_idx_ret);
49 
50 struct kvm_resize_hpt {
51 	/* These fields read-only after init */
52 	struct kvm *kvm;
53 	struct work_struct work;
54 	u32 order;
55 
56 	/* These fields protected by kvm->arch.mmu_setup_lock */
57 
58 	/* Possible values and their usage:
59 	 *  <0     an error occurred during allocation,
60 	 *  -EBUSY allocation is in the progress,
61 	 *  0      allocation made successfully.
62 	 */
63 	int error;
64 
65 	/* Private to the work thread, until error != -EBUSY,
66 	 * then protected by kvm->arch.mmu_setup_lock.
67 	 */
68 	struct kvm_hpt_info hpt;
69 };
70 
71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 {
73 	unsigned long hpt = 0;
74 	int cma = 0;
75 	struct page *page = NULL;
76 	struct revmap_entry *rev;
77 	unsigned long npte;
78 
79 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
80 		return -EINVAL;
81 
82 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
83 	if (page) {
84 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85 		memset((void *)hpt, 0, (1ul << order));
86 		cma = 1;
87 	}
88 
89 	if (!hpt)
90 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91 				       |__GFP_NOWARN, order - PAGE_SHIFT);
92 
93 	if (!hpt)
94 		return -ENOMEM;
95 
96 	/* HPTEs are 2**4 bytes long */
97 	npte = 1ul << (order - 4);
98 
99 	/* Allocate reverse map array */
100 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
101 	if (!rev) {
102 		if (cma)
103 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
104 		else
105 			free_pages(hpt, order - PAGE_SHIFT);
106 		return -ENOMEM;
107 	}
108 
109 	info->order = order;
110 	info->virt = hpt;
111 	info->cma = cma;
112 	info->rev = rev;
113 
114 	return 0;
115 }
116 
117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 {
119 	atomic64_set(&kvm->arch.mmio_update, 0);
120 	kvm->arch.hpt = *info;
121 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122 
123 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124 		 info->virt, (long)info->order, kvm->arch.lpid);
125 }
126 
127 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 {
129 	int err = -EBUSY;
130 	struct kvm_hpt_info info;
131 
132 	mutex_lock(&kvm->arch.mmu_setup_lock);
133 	if (kvm->arch.mmu_ready) {
134 		kvm->arch.mmu_ready = 0;
135 		/* order mmu_ready vs. vcpus_running */
136 		smp_mb();
137 		if (atomic_read(&kvm->arch.vcpus_running)) {
138 			kvm->arch.mmu_ready = 1;
139 			goto out;
140 		}
141 	}
142 	if (kvm_is_radix(kvm)) {
143 		err = kvmppc_switch_mmu_to_hpt(kvm);
144 		if (err)
145 			goto out;
146 	}
147 
148 	if (kvm->arch.hpt.order == order) {
149 		/* We already have a suitable HPT */
150 
151 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
152 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153 		/*
154 		 * Reset all the reverse-mapping chains for all memslots
155 		 */
156 		kvmppc_rmap_reset(kvm);
157 		err = 0;
158 		goto out;
159 	}
160 
161 	if (kvm->arch.hpt.virt) {
162 		kvmppc_free_hpt(&kvm->arch.hpt);
163 		kvmppc_rmap_reset(kvm);
164 	}
165 
166 	err = kvmppc_allocate_hpt(&info, order);
167 	if (err < 0)
168 		goto out;
169 	kvmppc_set_hpt(kvm, &info);
170 
171 out:
172 	if (err == 0)
173 		/* Ensure that each vcpu will flush its TLB on next entry. */
174 		cpumask_setall(&kvm->arch.need_tlb_flush);
175 
176 	mutex_unlock(&kvm->arch.mmu_setup_lock);
177 	return err;
178 }
179 
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182 	vfree(info->rev);
183 	info->rev = NULL;
184 	if (info->cma)
185 		kvm_free_hpt_cma(virt_to_page(info->virt),
186 				 1 << (info->order - PAGE_SHIFT));
187 	else if (info->virt)
188 		free_pages(info->virt, info->order - PAGE_SHIFT);
189 	info->virt = 0;
190 	info->order = 0;
191 }
192 
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 {
196 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
197 }
198 
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 {
202 	return (pgsize == 0x10000) ? 0x1000 : 0;
203 }
204 
205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206 		     unsigned long porder)
207 {
208 	unsigned long i;
209 	unsigned long npages;
210 	unsigned long hp_v, hp_r;
211 	unsigned long addr, hash;
212 	unsigned long psize;
213 	unsigned long hp0, hp1;
214 	unsigned long idx_ret;
215 	long ret;
216 	struct kvm *kvm = vcpu->kvm;
217 
218 	psize = 1ul << porder;
219 	npages = memslot->npages >> (porder - PAGE_SHIFT);
220 
221 	/* VRMA can't be > 1TB */
222 	if (npages > 1ul << (40 - porder))
223 		npages = 1ul << (40 - porder);
224 	/* Can't use more than 1 HPTE per HPTEG */
225 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227 
228 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230 	hp1 = hpte1_pgsize_encoding(psize) |
231 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232 
233 	for (i = 0; i < npages; ++i) {
234 		addr = i << porder;
235 		/* can't use hpt_hash since va > 64 bits */
236 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237 			& kvmppc_hpt_mask(&kvm->arch.hpt);
238 		/*
239 		 * We assume that the hash table is empty and no
240 		 * vcpus are using it at this stage.  Since we create
241 		 * at most one HPTE per HPTEG, we just assume entry 7
242 		 * is available and use it.
243 		 */
244 		hash = (hash << 3) + 7;
245 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
246 		hp_r = hp1 | addr;
247 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
248 						 &idx_ret);
249 		if (ret != H_SUCCESS) {
250 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
251 			       addr, ret);
252 			break;
253 		}
254 	}
255 }
256 
257 int kvmppc_mmu_hv_init(void)
258 {
259 	unsigned long nr_lpids;
260 
261 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
262 		return -EINVAL;
263 
264 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
265 		if (WARN_ON(mfspr(SPRN_LPID) != 0))
266 			return -EINVAL;
267 		nr_lpids = 1UL << mmu_lpid_bits;
268 	} else {
269 		nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
270 	}
271 
272 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
273 		/* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
274 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
275 			WARN_ON(nr_lpids != 1UL << 12);
276 		else
277 			WARN_ON(nr_lpids != 1UL << 10);
278 
279 		/*
280 		 * Reserve the last implemented LPID use in partition
281 		 * switching for POWER7 and POWER8.
282 		 */
283 		nr_lpids -= 1;
284 	}
285 
286 	kvmppc_init_lpid(nr_lpids);
287 
288 	return 0;
289 }
290 
291 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
292 				long pte_index, unsigned long pteh,
293 				unsigned long ptel, unsigned long *pte_idx_ret)
294 {
295 	long ret;
296 
297 	preempt_disable();
298 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
299 				kvm->mm->pgd, false, pte_idx_ret);
300 	preempt_enable();
301 	if (ret == H_TOO_HARD) {
302 		/* this can't happen */
303 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
304 		ret = H_RESOURCE;	/* or something */
305 	}
306 	return ret;
307 
308 }
309 
310 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
311 							 gva_t eaddr)
312 {
313 	u64 mask;
314 	int i;
315 
316 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
317 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
318 			continue;
319 
320 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
321 			mask = ESID_MASK_1T;
322 		else
323 			mask = ESID_MASK;
324 
325 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
326 			return &vcpu->arch.slb[i];
327 	}
328 	return NULL;
329 }
330 
331 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
332 			unsigned long ea)
333 {
334 	unsigned long ra_mask;
335 
336 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
337 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
338 }
339 
340 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
341 			struct kvmppc_pte *gpte, bool data, bool iswrite)
342 {
343 	struct kvm *kvm = vcpu->kvm;
344 	struct kvmppc_slb *slbe;
345 	unsigned long slb_v;
346 	unsigned long pp, key;
347 	unsigned long v, orig_v, gr;
348 	__be64 *hptep;
349 	long int index;
350 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
351 
352 	if (kvm_is_radix(vcpu->kvm))
353 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
354 
355 	/* Get SLB entry */
356 	if (virtmode) {
357 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
358 		if (!slbe)
359 			return -EINVAL;
360 		slb_v = slbe->origv;
361 	} else {
362 		/* real mode access */
363 		slb_v = vcpu->kvm->arch.vrma_slb_v;
364 	}
365 
366 	preempt_disable();
367 	/* Find the HPTE in the hash table */
368 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
369 					 HPTE_V_VALID | HPTE_V_ABSENT);
370 	if (index < 0) {
371 		preempt_enable();
372 		return -ENOENT;
373 	}
374 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
375 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
376 	if (cpu_has_feature(CPU_FTR_ARCH_300))
377 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
378 	gr = kvm->arch.hpt.rev[index].guest_rpte;
379 
380 	unlock_hpte(hptep, orig_v);
381 	preempt_enable();
382 
383 	gpte->eaddr = eaddr;
384 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
385 
386 	/* Get PP bits and key for permission check */
387 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
388 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
389 	key &= slb_v;
390 
391 	/* Calculate permissions */
392 	gpte->may_read = hpte_read_permission(pp, key);
393 	gpte->may_write = hpte_write_permission(pp, key);
394 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
395 
396 	/* Storage key permission check for POWER7 */
397 	if (data && virtmode) {
398 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
399 		if (amrfield & 1)
400 			gpte->may_read = 0;
401 		if (amrfield & 2)
402 			gpte->may_write = 0;
403 	}
404 
405 	/* Get the guest physical address */
406 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
407 	return 0;
408 }
409 
410 /*
411  * Quick test for whether an instruction is a load or a store.
412  * If the instruction is a load or a store, then this will indicate
413  * which it is, at least on server processors.  (Embedded processors
414  * have some external PID instructions that don't follow the rule
415  * embodied here.)  If the instruction isn't a load or store, then
416  * this doesn't return anything useful.
417  */
418 static int instruction_is_store(ppc_inst_t instr)
419 {
420 	unsigned int mask;
421 	unsigned int suffix;
422 
423 	mask = 0x10000000;
424 	suffix = ppc_inst_val(instr);
425 	if (ppc_inst_prefixed(instr))
426 		suffix = ppc_inst_suffix(instr);
427 	else if ((suffix & 0xfc000000) == 0x7c000000)
428 		mask = 0x100;		/* major opcode 31 */
429 	return (suffix & mask) != 0;
430 }
431 
432 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
433 			   unsigned long gpa, gva_t ea, int is_store)
434 {
435 	ppc_inst_t last_inst;
436 	bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
437 
438 	/*
439 	 * Fast path - check if the guest physical address corresponds to a
440 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
441 	 * instruction all together, then we can just handle it and return.
442 	 */
443 	if (is_store) {
444 		int idx, ret;
445 
446 		idx = srcu_read_lock(&vcpu->kvm->srcu);
447 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
448 				       NULL);
449 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
450 		if (!ret) {
451 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
452 			return RESUME_GUEST;
453 		}
454 	}
455 
456 	/*
457 	 * If we fail, we just return to the guest and try executing it again.
458 	 */
459 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
460 		EMULATE_DONE)
461 		return RESUME_GUEST;
462 
463 	/*
464 	 * WARNING: We do not know for sure whether the instruction we just
465 	 * read from memory is the same that caused the fault in the first
466 	 * place.
467 	 *
468 	 * If the fault is prefixed but the instruction is not or vice
469 	 * versa, try again so that we don't advance pc the wrong amount.
470 	 */
471 	if (ppc_inst_prefixed(last_inst) != is_prefixed)
472 		return RESUME_GUEST;
473 
474 	/*
475 	 * If the instruction we read is neither an load or a store,
476 	 * then it can't access memory, so we don't need to worry about
477 	 * enforcing access permissions.  So, assuming it is a load or
478 	 * store, we just check that its direction (load or store) is
479 	 * consistent with the original fault, since that's what we
480 	 * checked the access permissions against.  If there is a mismatch
481 	 * we just return and retry the instruction.
482 	 */
483 
484 	if (instruction_is_store(last_inst) != !!is_store)
485 		return RESUME_GUEST;
486 
487 	/*
488 	 * Emulated accesses are emulated by looking at the hash for
489 	 * translation once, then performing the access later. The
490 	 * translation could be invalidated in the meantime in which
491 	 * point performing the subsequent memory access on the old
492 	 * physical address could possibly be a security hole for the
493 	 * guest (but not the host).
494 	 *
495 	 * This is less of an issue for MMIO stores since they aren't
496 	 * globally visible. It could be an issue for MMIO loads to
497 	 * a certain extent but we'll ignore it for now.
498 	 */
499 
500 	vcpu->arch.paddr_accessed = gpa;
501 	vcpu->arch.vaddr_accessed = ea;
502 	return kvmppc_emulate_mmio(vcpu);
503 }
504 
505 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
506 				unsigned long ea, unsigned long dsisr)
507 {
508 	struct kvm *kvm = vcpu->kvm;
509 	unsigned long hpte[3], r;
510 	unsigned long hnow_v, hnow_r;
511 	__be64 *hptep;
512 	unsigned long mmu_seq, psize, pte_size;
513 	unsigned long gpa_base, gfn_base;
514 	unsigned long gpa, gfn, hva, pfn, hpa;
515 	struct kvm_memory_slot *memslot;
516 	unsigned long *rmap;
517 	struct revmap_entry *rev;
518 	struct page *page;
519 	long index, ret;
520 	bool is_ci;
521 	bool writing, write_ok;
522 	unsigned int shift;
523 	unsigned long rcbits;
524 	long mmio_update;
525 	pte_t pte, *ptep;
526 
527 	if (kvm_is_radix(kvm))
528 		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
529 
530 	/*
531 	 * Real-mode code has already searched the HPT and found the
532 	 * entry we're interested in.  Lock the entry and check that
533 	 * it hasn't changed.  If it has, just return and re-execute the
534 	 * instruction.
535 	 */
536 	if (ea != vcpu->arch.pgfault_addr)
537 		return RESUME_GUEST;
538 
539 	if (vcpu->arch.pgfault_cache) {
540 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
541 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
542 			r = vcpu->arch.pgfault_cache->rpte;
543 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
544 						   r);
545 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
546 			gfn_base = gpa_base >> PAGE_SHIFT;
547 			gpa = gpa_base | (ea & (psize - 1));
548 			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
549 						dsisr & DSISR_ISSTORE);
550 		}
551 	}
552 	index = vcpu->arch.pgfault_index;
553 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
554 	rev = &kvm->arch.hpt.rev[index];
555 	preempt_disable();
556 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
557 		cpu_relax();
558 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
559 	hpte[1] = be64_to_cpu(hptep[1]);
560 	hpte[2] = r = rev->guest_rpte;
561 	unlock_hpte(hptep, hpte[0]);
562 	preempt_enable();
563 
564 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
565 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
566 		hpte[1] = hpte_new_to_old_r(hpte[1]);
567 	}
568 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
569 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
570 		return RESUME_GUEST;
571 
572 	/* Translate the logical address and get the page */
573 	psize = kvmppc_actual_pgsz(hpte[0], r);
574 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
575 	gfn_base = gpa_base >> PAGE_SHIFT;
576 	gpa = gpa_base | (ea & (psize - 1));
577 	gfn = gpa >> PAGE_SHIFT;
578 	memslot = gfn_to_memslot(kvm, gfn);
579 
580 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
581 
582 	/* No memslot means it's an emulated MMIO region */
583 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
584 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
585 					      dsisr & DSISR_ISSTORE);
586 
587 	/*
588 	 * This should never happen, because of the slot_is_aligned()
589 	 * check in kvmppc_do_h_enter().
590 	 */
591 	if (gfn_base < memslot->base_gfn)
592 		return -EFAULT;
593 
594 	/* used to check for invalidations in progress */
595 	mmu_seq = kvm->mmu_invalidate_seq;
596 	smp_rmb();
597 
598 	ret = -EFAULT;
599 	page = NULL;
600 	writing = (dsisr & DSISR_ISSTORE) != 0;
601 	/* If writing != 0, then the HPTE must allow writing, if we get here */
602 	write_ok = writing;
603 	hva = gfn_to_hva_memslot(memslot, gfn);
604 
605 	/*
606 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
607 	 * do it with !atomic && !async, which is how we call it.
608 	 * We always ask for write permission since the common case
609 	 * is that the page is writable.
610 	 */
611 	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
612 		write_ok = true;
613 	} else {
614 		/* Call KVM generic code to do the slow-path check */
615 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
616 					   writing, &write_ok, NULL);
617 		if (is_error_noslot_pfn(pfn))
618 			return -EFAULT;
619 		page = NULL;
620 		if (pfn_valid(pfn)) {
621 			page = pfn_to_page(pfn);
622 			if (PageReserved(page))
623 				page = NULL;
624 		}
625 	}
626 
627 	/*
628 	 * Read the PTE from the process' radix tree and use that
629 	 * so we get the shift and attribute bits.
630 	 */
631 	spin_lock(&kvm->mmu_lock);
632 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
633 	pte = __pte(0);
634 	if (ptep)
635 		pte = READ_ONCE(*ptep);
636 	spin_unlock(&kvm->mmu_lock);
637 	/*
638 	 * If the PTE disappeared temporarily due to a THP
639 	 * collapse, just return and let the guest try again.
640 	 */
641 	if (!pte_present(pte)) {
642 		if (page)
643 			put_page(page);
644 		return RESUME_GUEST;
645 	}
646 	hpa = pte_pfn(pte) << PAGE_SHIFT;
647 	pte_size = PAGE_SIZE;
648 	if (shift)
649 		pte_size = 1ul << shift;
650 	is_ci = pte_ci(pte);
651 
652 	if (psize > pte_size)
653 		goto out_put;
654 	if (pte_size > psize)
655 		hpa |= hva & (pte_size - psize);
656 
657 	/* Check WIMG vs. the actual page we're accessing */
658 	if (!hpte_cache_flags_ok(r, is_ci)) {
659 		if (is_ci)
660 			goto out_put;
661 		/*
662 		 * Allow guest to map emulated device memory as
663 		 * uncacheable, but actually make it cacheable.
664 		 */
665 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
666 	}
667 
668 	/*
669 	 * Set the HPTE to point to hpa.
670 	 * Since the hpa is at PAGE_SIZE granularity, make sure we
671 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
672 	 */
673 	if (psize < PAGE_SIZE)
674 		psize = PAGE_SIZE;
675 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
676 	if (hpte_is_writable(r) && !write_ok)
677 		r = hpte_make_readonly(r);
678 	ret = RESUME_GUEST;
679 	preempt_disable();
680 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
681 		cpu_relax();
682 	hnow_v = be64_to_cpu(hptep[0]);
683 	hnow_r = be64_to_cpu(hptep[1]);
684 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
685 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
686 		hnow_r = hpte_new_to_old_r(hnow_r);
687 	}
688 
689 	/*
690 	 * If the HPT is being resized, don't update the HPTE,
691 	 * instead let the guest retry after the resize operation is complete.
692 	 * The synchronization for mmu_ready test vs. set is provided
693 	 * by the HPTE lock.
694 	 */
695 	if (!kvm->arch.mmu_ready)
696 		goto out_unlock;
697 
698 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
699 	    rev->guest_rpte != hpte[2])
700 		/* HPTE has been changed under us; let the guest retry */
701 		goto out_unlock;
702 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
703 
704 	/* Always put the HPTE in the rmap chain for the page base address */
705 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
706 	lock_rmap(rmap);
707 
708 	/* Check if we might have been invalidated; let the guest retry if so */
709 	ret = RESUME_GUEST;
710 	if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
711 		unlock_rmap(rmap);
712 		goto out_unlock;
713 	}
714 
715 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
716 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
717 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
718 
719 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
720 		/* HPTE was previously valid, so we need to invalidate it */
721 		unlock_rmap(rmap);
722 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
723 		kvmppc_invalidate_hpte(kvm, hptep, index);
724 		/* don't lose previous R and C bits */
725 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
726 	} else {
727 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
728 	}
729 
730 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
731 		r = hpte_old_to_new_r(hpte[0], r);
732 		hpte[0] = hpte_old_to_new_v(hpte[0]);
733 	}
734 	hptep[1] = cpu_to_be64(r);
735 	eieio();
736 	__unlock_hpte(hptep, hpte[0]);
737 	asm volatile("ptesync" : : : "memory");
738 	preempt_enable();
739 	if (page && hpte_is_writable(r))
740 		set_page_dirty_lock(page);
741 
742  out_put:
743 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
744 
745 	if (page)
746 		put_page(page);
747 	return ret;
748 
749  out_unlock:
750 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
751 	preempt_enable();
752 	goto out_put;
753 }
754 
755 void kvmppc_rmap_reset(struct kvm *kvm)
756 {
757 	struct kvm_memslots *slots;
758 	struct kvm_memory_slot *memslot;
759 	int srcu_idx, bkt;
760 
761 	srcu_idx = srcu_read_lock(&kvm->srcu);
762 	slots = kvm_memslots(kvm);
763 	kvm_for_each_memslot(memslot, bkt, slots) {
764 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
765 		spin_lock(&kvm->mmu_lock);
766 		/*
767 		 * This assumes it is acceptable to lose reference and
768 		 * change bits across a reset.
769 		 */
770 		memset(memslot->arch.rmap, 0,
771 		       memslot->npages * sizeof(*memslot->arch.rmap));
772 		spin_unlock(&kvm->mmu_lock);
773 	}
774 	srcu_read_unlock(&kvm->srcu, srcu_idx);
775 }
776 
777 /* Must be called with both HPTE and rmap locked */
778 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
779 			      struct kvm_memory_slot *memslot,
780 			      unsigned long *rmapp, unsigned long gfn)
781 {
782 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
783 	struct revmap_entry *rev = kvm->arch.hpt.rev;
784 	unsigned long j, h;
785 	unsigned long ptel, psize, rcbits;
786 
787 	j = rev[i].forw;
788 	if (j == i) {
789 		/* chain is now empty */
790 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
791 	} else {
792 		/* remove i from chain */
793 		h = rev[i].back;
794 		rev[h].forw = j;
795 		rev[j].back = h;
796 		rev[i].forw = rev[i].back = i;
797 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
798 	}
799 
800 	/* Now check and modify the HPTE */
801 	ptel = rev[i].guest_rpte;
802 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
803 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
804 	    hpte_rpn(ptel, psize) == gfn) {
805 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
806 		kvmppc_invalidate_hpte(kvm, hptep, i);
807 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
808 		/* Harvest R and C */
809 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
810 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
811 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
812 			kvmppc_update_dirty_map(memslot, gfn, psize);
813 		if (rcbits & ~rev[i].guest_rpte) {
814 			rev[i].guest_rpte = ptel | rcbits;
815 			note_hpte_modification(kvm, &rev[i]);
816 		}
817 	}
818 }
819 
820 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
821 			    unsigned long gfn)
822 {
823 	unsigned long i;
824 	__be64 *hptep;
825 	unsigned long *rmapp;
826 
827 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
828 	for (;;) {
829 		lock_rmap(rmapp);
830 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
831 			unlock_rmap(rmapp);
832 			break;
833 		}
834 
835 		/*
836 		 * To avoid an ABBA deadlock with the HPTE lock bit,
837 		 * we can't spin on the HPTE lock while holding the
838 		 * rmap chain lock.
839 		 */
840 		i = *rmapp & KVMPPC_RMAP_INDEX;
841 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
842 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843 			/* unlock rmap before spinning on the HPTE lock */
844 			unlock_rmap(rmapp);
845 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
846 				cpu_relax();
847 			continue;
848 		}
849 
850 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
851 		unlock_rmap(rmapp);
852 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
853 	}
854 }
855 
856 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
857 {
858 	gfn_t gfn;
859 
860 	if (kvm_is_radix(kvm)) {
861 		for (gfn = range->start; gfn < range->end; gfn++)
862 			kvm_unmap_radix(kvm, range->slot, gfn);
863 	} else {
864 		for (gfn = range->start; gfn < range->end; gfn++)
865 			kvm_unmap_rmapp(kvm, range->slot, gfn);
866 	}
867 
868 	return false;
869 }
870 
871 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
872 				  struct kvm_memory_slot *memslot)
873 {
874 	unsigned long gfn;
875 	unsigned long n;
876 	unsigned long *rmapp;
877 
878 	gfn = memslot->base_gfn;
879 	rmapp = memslot->arch.rmap;
880 	if (kvm_is_radix(kvm)) {
881 		kvmppc_radix_flush_memslot(kvm, memslot);
882 		return;
883 	}
884 
885 	for (n = memslot->npages; n; --n, ++gfn) {
886 		/*
887 		 * Testing the present bit without locking is OK because
888 		 * the memslot has been marked invalid already, and hence
889 		 * no new HPTEs referencing this page can be created,
890 		 * thus the present bit can't go from 0 to 1.
891 		 */
892 		if (*rmapp & KVMPPC_RMAP_PRESENT)
893 			kvm_unmap_rmapp(kvm, memslot, gfn);
894 		++rmapp;
895 	}
896 }
897 
898 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
899 			  unsigned long gfn)
900 {
901 	struct revmap_entry *rev = kvm->arch.hpt.rev;
902 	unsigned long head, i, j;
903 	__be64 *hptep;
904 	bool ret = false;
905 	unsigned long *rmapp;
906 
907 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
908  retry:
909 	lock_rmap(rmapp);
910 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
911 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
912 		ret = true;
913 	}
914 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
915 		unlock_rmap(rmapp);
916 		return ret;
917 	}
918 
919 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
920 	do {
921 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
922 		j = rev[i].forw;
923 
924 		/* If this HPTE isn't referenced, ignore it */
925 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
926 			continue;
927 
928 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
929 			/* unlock rmap before spinning on the HPTE lock */
930 			unlock_rmap(rmapp);
931 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
932 				cpu_relax();
933 			goto retry;
934 		}
935 
936 		/* Now check and modify the HPTE */
937 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
938 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
939 			kvmppc_clear_ref_hpte(kvm, hptep, i);
940 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
941 				rev[i].guest_rpte |= HPTE_R_R;
942 				note_hpte_modification(kvm, &rev[i]);
943 			}
944 			ret = true;
945 		}
946 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
947 	} while ((i = j) != head);
948 
949 	unlock_rmap(rmapp);
950 	return ret;
951 }
952 
953 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
954 {
955 	gfn_t gfn;
956 	bool ret = false;
957 
958 	if (kvm_is_radix(kvm)) {
959 		for (gfn = range->start; gfn < range->end; gfn++)
960 			ret |= kvm_age_radix(kvm, range->slot, gfn);
961 	} else {
962 		for (gfn = range->start; gfn < range->end; gfn++)
963 			ret |= kvm_age_rmapp(kvm, range->slot, gfn);
964 	}
965 
966 	return ret;
967 }
968 
969 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
970 			       unsigned long gfn)
971 {
972 	struct revmap_entry *rev = kvm->arch.hpt.rev;
973 	unsigned long head, i, j;
974 	unsigned long *hp;
975 	bool ret = true;
976 	unsigned long *rmapp;
977 
978 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
979 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
980 		return true;
981 
982 	lock_rmap(rmapp);
983 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
984 		goto out;
985 
986 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
987 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
988 		do {
989 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
990 			j = rev[i].forw;
991 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
992 				goto out;
993 		} while ((i = j) != head);
994 	}
995 	ret = false;
996 
997  out:
998 	unlock_rmap(rmapp);
999 	return ret;
1000 }
1001 
1002 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1003 {
1004 	WARN_ON(range->start + 1 != range->end);
1005 
1006 	if (kvm_is_radix(kvm))
1007 		return kvm_test_age_radix(kvm, range->slot, range->start);
1008 	else
1009 		return kvm_test_age_rmapp(kvm, range->slot, range->start);
1010 }
1011 
1012 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1013 {
1014 	WARN_ON(range->start + 1 != range->end);
1015 
1016 	if (kvm_is_radix(kvm))
1017 		kvm_unmap_radix(kvm, range->slot, range->start);
1018 	else
1019 		kvm_unmap_rmapp(kvm, range->slot, range->start);
1020 
1021 	return false;
1022 }
1023 
1024 static int vcpus_running(struct kvm *kvm)
1025 {
1026 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1027 }
1028 
1029 /*
1030  * Returns the number of system pages that are dirty.
1031  * This can be more than 1 if we find a huge-page HPTE.
1032  */
1033 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1034 {
1035 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1036 	unsigned long head, i, j;
1037 	unsigned long n;
1038 	unsigned long v, r;
1039 	__be64 *hptep;
1040 	int npages_dirty = 0;
1041 
1042  retry:
1043 	lock_rmap(rmapp);
1044 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1045 		unlock_rmap(rmapp);
1046 		return npages_dirty;
1047 	}
1048 
1049 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1050 	do {
1051 		unsigned long hptep1;
1052 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1053 		j = rev[i].forw;
1054 
1055 		/*
1056 		 * Checking the C (changed) bit here is racy since there
1057 		 * is no guarantee about when the hardware writes it back.
1058 		 * If the HPTE is not writable then it is stable since the
1059 		 * page can't be written to, and we would have done a tlbie
1060 		 * (which forces the hardware to complete any writeback)
1061 		 * when making the HPTE read-only.
1062 		 * If vcpus are running then this call is racy anyway
1063 		 * since the page could get dirtied subsequently, so we
1064 		 * expect there to be a further call which would pick up
1065 		 * any delayed C bit writeback.
1066 		 * Otherwise we need to do the tlbie even if C==0 in
1067 		 * order to pick up any delayed writeback of C.
1068 		 */
1069 		hptep1 = be64_to_cpu(hptep[1]);
1070 		if (!(hptep1 & HPTE_R_C) &&
1071 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1072 			continue;
1073 
1074 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1075 			/* unlock rmap before spinning on the HPTE lock */
1076 			unlock_rmap(rmapp);
1077 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1078 				cpu_relax();
1079 			goto retry;
1080 		}
1081 
1082 		/* Now check and modify the HPTE */
1083 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1084 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1085 			continue;
1086 		}
1087 
1088 		/* need to make it temporarily absent so C is stable */
1089 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1090 		kvmppc_invalidate_hpte(kvm, hptep, i);
1091 		v = be64_to_cpu(hptep[0]);
1092 		r = be64_to_cpu(hptep[1]);
1093 		if (r & HPTE_R_C) {
1094 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1095 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1096 				rev[i].guest_rpte |= HPTE_R_C;
1097 				note_hpte_modification(kvm, &rev[i]);
1098 			}
1099 			n = kvmppc_actual_pgsz(v, r);
1100 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101 			if (n > npages_dirty)
1102 				npages_dirty = n;
1103 			eieio();
1104 		}
1105 		v &= ~HPTE_V_ABSENT;
1106 		v |= HPTE_V_VALID;
1107 		__unlock_hpte(hptep, v);
1108 	} while ((i = j) != head);
1109 
1110 	unlock_rmap(rmapp);
1111 	return npages_dirty;
1112 }
1113 
1114 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1115 			      struct kvm_memory_slot *memslot,
1116 			      unsigned long *map)
1117 {
1118 	unsigned long gfn;
1119 
1120 	if (!vpa->dirty || !vpa->pinned_addr)
1121 		return;
1122 	gfn = vpa->gpa >> PAGE_SHIFT;
1123 	if (gfn < memslot->base_gfn ||
1124 	    gfn >= memslot->base_gfn + memslot->npages)
1125 		return;
1126 
1127 	vpa->dirty = false;
1128 	if (map)
1129 		__set_bit_le(gfn - memslot->base_gfn, map);
1130 }
1131 
1132 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1133 			struct kvm_memory_slot *memslot, unsigned long *map)
1134 {
1135 	unsigned long i;
1136 	unsigned long *rmapp;
1137 
1138 	preempt_disable();
1139 	rmapp = memslot->arch.rmap;
1140 	for (i = 0; i < memslot->npages; ++i) {
1141 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1142 		/*
1143 		 * Note that if npages > 0 then i must be a multiple of npages,
1144 		 * since we always put huge-page HPTEs in the rmap chain
1145 		 * corresponding to their page base address.
1146 		 */
1147 		if (npages)
1148 			set_dirty_bits(map, i, npages);
1149 		++rmapp;
1150 	}
1151 	preempt_enable();
1152 	return 0;
1153 }
1154 
1155 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1156 			    unsigned long *nb_ret)
1157 {
1158 	struct kvm_memory_slot *memslot;
1159 	unsigned long gfn = gpa >> PAGE_SHIFT;
1160 	struct page *page, *pages[1];
1161 	int npages;
1162 	unsigned long hva, offset;
1163 	int srcu_idx;
1164 
1165 	srcu_idx = srcu_read_lock(&kvm->srcu);
1166 	memslot = gfn_to_memslot(kvm, gfn);
1167 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1168 		goto err;
1169 	hva = gfn_to_hva_memslot(memslot, gfn);
1170 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1171 	if (npages < 1)
1172 		goto err;
1173 	page = pages[0];
1174 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1175 
1176 	offset = gpa & (PAGE_SIZE - 1);
1177 	if (nb_ret)
1178 		*nb_ret = PAGE_SIZE - offset;
1179 	return page_address(page) + offset;
1180 
1181  err:
1182 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1183 	return NULL;
1184 }
1185 
1186 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1187 			     bool dirty)
1188 {
1189 	struct page *page = virt_to_page(va);
1190 	struct kvm_memory_slot *memslot;
1191 	unsigned long gfn;
1192 	int srcu_idx;
1193 
1194 	put_page(page);
1195 
1196 	if (!dirty)
1197 		return;
1198 
1199 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1200 	gfn = gpa >> PAGE_SHIFT;
1201 	srcu_idx = srcu_read_lock(&kvm->srcu);
1202 	memslot = gfn_to_memslot(kvm, gfn);
1203 	if (memslot && memslot->dirty_bitmap)
1204 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1205 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1206 }
1207 
1208 /*
1209  * HPT resizing
1210  */
1211 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1212 {
1213 	int rc;
1214 
1215 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1216 	if (rc < 0)
1217 		return rc;
1218 
1219 	resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1220 			 resize->hpt.virt);
1221 
1222 	return 0;
1223 }
1224 
1225 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1226 					    unsigned long idx)
1227 {
1228 	struct kvm *kvm = resize->kvm;
1229 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1230 	struct kvm_hpt_info *new = &resize->hpt;
1231 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1232 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1233 	__be64 *hptep, *new_hptep;
1234 	unsigned long vpte, rpte, guest_rpte;
1235 	int ret;
1236 	struct revmap_entry *rev;
1237 	unsigned long apsize, avpn, pteg, hash;
1238 	unsigned long new_idx, new_pteg, replace_vpte;
1239 	int pshift;
1240 
1241 	hptep = (__be64 *)(old->virt + (idx << 4));
1242 
1243 	/* Guest is stopped, so new HPTEs can't be added or faulted
1244 	 * in, only unmapped or altered by host actions.  So, it's
1245 	 * safe to check this before we take the HPTE lock */
1246 	vpte = be64_to_cpu(hptep[0]);
1247 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1248 		return 0; /* nothing to do */
1249 
1250 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1251 		cpu_relax();
1252 
1253 	vpte = be64_to_cpu(hptep[0]);
1254 
1255 	ret = 0;
1256 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1257 		/* Nothing to do */
1258 		goto out;
1259 
1260 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1261 		rpte = be64_to_cpu(hptep[1]);
1262 		vpte = hpte_new_to_old_v(vpte, rpte);
1263 	}
1264 
1265 	/* Unmap */
1266 	rev = &old->rev[idx];
1267 	guest_rpte = rev->guest_rpte;
1268 
1269 	ret = -EIO;
1270 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1271 	if (!apsize)
1272 		goto out;
1273 
1274 	if (vpte & HPTE_V_VALID) {
1275 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1276 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1277 		struct kvm_memory_slot *memslot =
1278 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1279 
1280 		if (memslot) {
1281 			unsigned long *rmapp;
1282 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1283 
1284 			lock_rmap(rmapp);
1285 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1286 			unlock_rmap(rmapp);
1287 		}
1288 
1289 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1290 	}
1291 
1292 	/* Reload PTE after unmap */
1293 	vpte = be64_to_cpu(hptep[0]);
1294 	BUG_ON(vpte & HPTE_V_VALID);
1295 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1296 
1297 	ret = 0;
1298 	if (!(vpte & HPTE_V_BOLTED))
1299 		goto out;
1300 
1301 	rpte = be64_to_cpu(hptep[1]);
1302 
1303 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1304 		vpte = hpte_new_to_old_v(vpte, rpte);
1305 		rpte = hpte_new_to_old_r(rpte);
1306 	}
1307 
1308 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1309 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1310 	pteg = idx / HPTES_PER_GROUP;
1311 	if (vpte & HPTE_V_SECONDARY)
1312 		pteg = ~pteg;
1313 
1314 	if (!(vpte & HPTE_V_1TB_SEG)) {
1315 		unsigned long offset, vsid;
1316 
1317 		/* We only have 28 - 23 bits of offset in avpn */
1318 		offset = (avpn & 0x1f) << 23;
1319 		vsid = avpn >> 5;
1320 		/* We can find more bits from the pteg value */
1321 		if (pshift < 23)
1322 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1323 
1324 		hash = vsid ^ (offset >> pshift);
1325 	} else {
1326 		unsigned long offset, vsid;
1327 
1328 		/* We only have 40 - 23 bits of seg_off in avpn */
1329 		offset = (avpn & 0x1ffff) << 23;
1330 		vsid = avpn >> 17;
1331 		if (pshift < 23)
1332 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1333 
1334 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1335 	}
1336 
1337 	new_pteg = hash & new_hash_mask;
1338 	if (vpte & HPTE_V_SECONDARY)
1339 		new_pteg = ~hash & new_hash_mask;
1340 
1341 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1342 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1343 
1344 	replace_vpte = be64_to_cpu(new_hptep[0]);
1345 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1346 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1347 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1348 	}
1349 
1350 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1351 		BUG_ON(new->order >= old->order);
1352 
1353 		if (replace_vpte & HPTE_V_BOLTED) {
1354 			if (vpte & HPTE_V_BOLTED)
1355 				/* Bolted collision, nothing we can do */
1356 				ret = -ENOSPC;
1357 			/* Discard the new HPTE */
1358 			goto out;
1359 		}
1360 
1361 		/* Discard the previous HPTE */
1362 	}
1363 
1364 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1365 		rpte = hpte_old_to_new_r(vpte, rpte);
1366 		vpte = hpte_old_to_new_v(vpte);
1367 	}
1368 
1369 	new_hptep[1] = cpu_to_be64(rpte);
1370 	new->rev[new_idx].guest_rpte = guest_rpte;
1371 	/* No need for a barrier, since new HPT isn't active */
1372 	new_hptep[0] = cpu_to_be64(vpte);
1373 	unlock_hpte(new_hptep, vpte);
1374 
1375 out:
1376 	unlock_hpte(hptep, vpte);
1377 	return ret;
1378 }
1379 
1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1381 {
1382 	struct kvm *kvm = resize->kvm;
1383 	unsigned  long i;
1384 	int rc;
1385 
1386 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1387 		rc = resize_hpt_rehash_hpte(resize, i);
1388 		if (rc != 0)
1389 			return rc;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1396 {
1397 	struct kvm *kvm = resize->kvm;
1398 	struct kvm_hpt_info hpt_tmp;
1399 
1400 	/* Exchange the pending tables in the resize structure with
1401 	 * the active tables */
1402 
1403 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1404 
1405 	spin_lock(&kvm->mmu_lock);
1406 	asm volatile("ptesync" : : : "memory");
1407 
1408 	hpt_tmp = kvm->arch.hpt;
1409 	kvmppc_set_hpt(kvm, &resize->hpt);
1410 	resize->hpt = hpt_tmp;
1411 
1412 	spin_unlock(&kvm->mmu_lock);
1413 
1414 	synchronize_srcu_expedited(&kvm->srcu);
1415 
1416 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1417 		kvmppc_setup_partition_table(kvm);
1418 
1419 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1420 }
1421 
1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1423 {
1424 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1425 		return;
1426 
1427 	if (!resize)
1428 		return;
1429 
1430 	if (resize->error != -EBUSY) {
1431 		if (resize->hpt.virt)
1432 			kvmppc_free_hpt(&resize->hpt);
1433 		kfree(resize);
1434 	}
1435 
1436 	if (kvm->arch.resize_hpt == resize)
1437 		kvm->arch.resize_hpt = NULL;
1438 }
1439 
1440 static void resize_hpt_prepare_work(struct work_struct *work)
1441 {
1442 	struct kvm_resize_hpt *resize = container_of(work,
1443 						     struct kvm_resize_hpt,
1444 						     work);
1445 	struct kvm *kvm = resize->kvm;
1446 	int err = 0;
1447 
1448 	if (WARN_ON(resize->error != -EBUSY))
1449 		return;
1450 
1451 	mutex_lock(&kvm->arch.mmu_setup_lock);
1452 
1453 	/* Request is still current? */
1454 	if (kvm->arch.resize_hpt == resize) {
1455 		/* We may request large allocations here:
1456 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1457 		 */
1458 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1459 
1460 		resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1461 				 resize->order);
1462 
1463 		err = resize_hpt_allocate(resize);
1464 
1465 		/* We have strict assumption about -EBUSY
1466 		 * when preparing for HPT resize.
1467 		 */
1468 		if (WARN_ON(err == -EBUSY))
1469 			err = -EINPROGRESS;
1470 
1471 		mutex_lock(&kvm->arch.mmu_setup_lock);
1472 		/* It is possible that kvm->arch.resize_hpt != resize
1473 		 * after we grab kvm->arch.mmu_setup_lock again.
1474 		 */
1475 	}
1476 
1477 	resize->error = err;
1478 
1479 	if (kvm->arch.resize_hpt != resize)
1480 		resize_hpt_release(kvm, resize);
1481 
1482 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1483 }
1484 
1485 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1486 				    struct kvm_ppc_resize_hpt *rhpt)
1487 {
1488 	unsigned long flags = rhpt->flags;
1489 	unsigned long shift = rhpt->shift;
1490 	struct kvm_resize_hpt *resize;
1491 	int ret;
1492 
1493 	if (flags != 0 || kvm_is_radix(kvm))
1494 		return -EINVAL;
1495 
1496 	if (shift && ((shift < 18) || (shift > 46)))
1497 		return -EINVAL;
1498 
1499 	mutex_lock(&kvm->arch.mmu_setup_lock);
1500 
1501 	resize = kvm->arch.resize_hpt;
1502 
1503 	if (resize) {
1504 		if (resize->order == shift) {
1505 			/* Suitable resize in progress? */
1506 			ret = resize->error;
1507 			if (ret == -EBUSY)
1508 				ret = 100; /* estimated time in ms */
1509 			else if (ret)
1510 				resize_hpt_release(kvm, resize);
1511 
1512 			goto out;
1513 		}
1514 
1515 		/* not suitable, cancel it */
1516 		resize_hpt_release(kvm, resize);
1517 	}
1518 
1519 	ret = 0;
1520 	if (!shift)
1521 		goto out; /* nothing to do */
1522 
1523 	/* start new resize */
1524 
1525 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1526 	if (!resize) {
1527 		ret = -ENOMEM;
1528 		goto out;
1529 	}
1530 
1531 	resize->error = -EBUSY;
1532 	resize->order = shift;
1533 	resize->kvm = kvm;
1534 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1535 	kvm->arch.resize_hpt = resize;
1536 
1537 	schedule_work(&resize->work);
1538 
1539 	ret = 100; /* estimated time in ms */
1540 
1541 out:
1542 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1543 	return ret;
1544 }
1545 
1546 static void resize_hpt_boot_vcpu(void *opaque)
1547 {
1548 	/* Nothing to do, just force a KVM exit */
1549 }
1550 
1551 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1552 				   struct kvm_ppc_resize_hpt *rhpt)
1553 {
1554 	unsigned long flags = rhpt->flags;
1555 	unsigned long shift = rhpt->shift;
1556 	struct kvm_resize_hpt *resize;
1557 	int ret;
1558 
1559 	if (flags != 0 || kvm_is_radix(kvm))
1560 		return -EINVAL;
1561 
1562 	if (shift && ((shift < 18) || (shift > 46)))
1563 		return -EINVAL;
1564 
1565 	mutex_lock(&kvm->arch.mmu_setup_lock);
1566 
1567 	resize = kvm->arch.resize_hpt;
1568 
1569 	/* This shouldn't be possible */
1570 	ret = -EIO;
1571 	if (WARN_ON(!kvm->arch.mmu_ready))
1572 		goto out_no_hpt;
1573 
1574 	/* Stop VCPUs from running while we mess with the HPT */
1575 	kvm->arch.mmu_ready = 0;
1576 	smp_mb();
1577 
1578 	/* Boot all CPUs out of the guest so they re-read
1579 	 * mmu_ready */
1580 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1581 
1582 	ret = -ENXIO;
1583 	if (!resize || (resize->order != shift))
1584 		goto out;
1585 
1586 	ret = resize->error;
1587 	if (ret)
1588 		goto out;
1589 
1590 	ret = resize_hpt_rehash(resize);
1591 	if (ret)
1592 		goto out;
1593 
1594 	resize_hpt_pivot(resize);
1595 
1596 out:
1597 	/* Let VCPUs run again */
1598 	kvm->arch.mmu_ready = 1;
1599 	smp_mb();
1600 out_no_hpt:
1601 	resize_hpt_release(kvm, resize);
1602 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * Functions for reading and writing the hash table via reads and
1608  * writes on a file descriptor.
1609  *
1610  * Reads return the guest view of the hash table, which has to be
1611  * pieced together from the real hash table and the guest_rpte
1612  * values in the revmap array.
1613  *
1614  * On writes, each HPTE written is considered in turn, and if it
1615  * is valid, it is written to the HPT as if an H_ENTER with the
1616  * exact flag set was done.  When the invalid count is non-zero
1617  * in the header written to the stream, the kernel will make
1618  * sure that that many HPTEs are invalid, and invalidate them
1619  * if not.
1620  */
1621 
1622 struct kvm_htab_ctx {
1623 	unsigned long	index;
1624 	unsigned long	flags;
1625 	struct kvm	*kvm;
1626 	int		first_pass;
1627 };
1628 
1629 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1630 
1631 /*
1632  * Returns 1 if this HPT entry has been modified or has pending
1633  * R/C bit changes.
1634  */
1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1636 {
1637 	unsigned long rcbits_unset;
1638 
1639 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1640 		return 1;
1641 
1642 	/* Also need to consider changes in reference and changed bits */
1643 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1644 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1645 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1646 		return 1;
1647 
1648 	return 0;
1649 }
1650 
1651 static long record_hpte(unsigned long flags, __be64 *hptp,
1652 			unsigned long *hpte, struct revmap_entry *revp,
1653 			int want_valid, int first_pass)
1654 {
1655 	unsigned long v, r, hr;
1656 	unsigned long rcbits_unset;
1657 	int ok = 1;
1658 	int valid, dirty;
1659 
1660 	/* Unmodified entries are uninteresting except on the first pass */
1661 	dirty = hpte_dirty(revp, hptp);
1662 	if (!first_pass && !dirty)
1663 		return 0;
1664 
1665 	valid = 0;
1666 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1667 		valid = 1;
1668 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1669 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1670 			valid = 0;
1671 	}
1672 	if (valid != want_valid)
1673 		return 0;
1674 
1675 	v = r = 0;
1676 	if (valid || dirty) {
1677 		/* lock the HPTE so it's stable and read it */
1678 		preempt_disable();
1679 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1680 			cpu_relax();
1681 		v = be64_to_cpu(hptp[0]);
1682 		hr = be64_to_cpu(hptp[1]);
1683 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1684 			v = hpte_new_to_old_v(v, hr);
1685 			hr = hpte_new_to_old_r(hr);
1686 		}
1687 
1688 		/* re-evaluate valid and dirty from synchronized HPTE value */
1689 		valid = !!(v & HPTE_V_VALID);
1690 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1691 
1692 		/* Harvest R and C into guest view if necessary */
1693 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1694 		if (valid && (rcbits_unset & hr)) {
1695 			revp->guest_rpte |= (hr &
1696 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1697 			dirty = 1;
1698 		}
1699 
1700 		if (v & HPTE_V_ABSENT) {
1701 			v &= ~HPTE_V_ABSENT;
1702 			v |= HPTE_V_VALID;
1703 			valid = 1;
1704 		}
1705 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1706 			valid = 0;
1707 
1708 		r = revp->guest_rpte;
1709 		/* only clear modified if this is the right sort of entry */
1710 		if (valid == want_valid && dirty) {
1711 			r &= ~HPTE_GR_MODIFIED;
1712 			revp->guest_rpte = r;
1713 		}
1714 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1715 		preempt_enable();
1716 		if (!(valid == want_valid && (first_pass || dirty)))
1717 			ok = 0;
1718 	}
1719 	hpte[0] = cpu_to_be64(v);
1720 	hpte[1] = cpu_to_be64(r);
1721 	return ok;
1722 }
1723 
1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1725 			     size_t count, loff_t *ppos)
1726 {
1727 	struct kvm_htab_ctx *ctx = file->private_data;
1728 	struct kvm *kvm = ctx->kvm;
1729 	struct kvm_get_htab_header hdr;
1730 	__be64 *hptp;
1731 	struct revmap_entry *revp;
1732 	unsigned long i, nb, nw;
1733 	unsigned long __user *lbuf;
1734 	struct kvm_get_htab_header __user *hptr;
1735 	unsigned long flags;
1736 	int first_pass;
1737 	unsigned long hpte[2];
1738 
1739 	if (!access_ok(buf, count))
1740 		return -EFAULT;
1741 	if (kvm_is_radix(kvm))
1742 		return 0;
1743 
1744 	first_pass = ctx->first_pass;
1745 	flags = ctx->flags;
1746 
1747 	i = ctx->index;
1748 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1749 	revp = kvm->arch.hpt.rev + i;
1750 	lbuf = (unsigned long __user *)buf;
1751 
1752 	nb = 0;
1753 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1754 		/* Initialize header */
1755 		hptr = (struct kvm_get_htab_header __user *)buf;
1756 		hdr.n_valid = 0;
1757 		hdr.n_invalid = 0;
1758 		nw = nb;
1759 		nb += sizeof(hdr);
1760 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1761 
1762 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1763 		if (!first_pass) {
1764 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1765 			       !hpte_dirty(revp, hptp)) {
1766 				++i;
1767 				hptp += 2;
1768 				++revp;
1769 			}
1770 		}
1771 		hdr.index = i;
1772 
1773 		/* Grab a series of valid entries */
1774 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1775 		       hdr.n_valid < 0xffff &&
1776 		       nb + HPTE_SIZE < count &&
1777 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1778 			/* valid entry, write it out */
1779 			++hdr.n_valid;
1780 			if (__put_user(hpte[0], lbuf) ||
1781 			    __put_user(hpte[1], lbuf + 1))
1782 				return -EFAULT;
1783 			nb += HPTE_SIZE;
1784 			lbuf += 2;
1785 			++i;
1786 			hptp += 2;
1787 			++revp;
1788 		}
1789 		/* Now skip invalid entries while we can */
1790 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1791 		       hdr.n_invalid < 0xffff &&
1792 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1793 			/* found an invalid entry */
1794 			++hdr.n_invalid;
1795 			++i;
1796 			hptp += 2;
1797 			++revp;
1798 		}
1799 
1800 		if (hdr.n_valid || hdr.n_invalid) {
1801 			/* write back the header */
1802 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1803 				return -EFAULT;
1804 			nw = nb;
1805 			buf = (char __user *)lbuf;
1806 		} else {
1807 			nb = nw;
1808 		}
1809 
1810 		/* Check if we've wrapped around the hash table */
1811 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1812 			i = 0;
1813 			ctx->first_pass = 0;
1814 			break;
1815 		}
1816 	}
1817 
1818 	ctx->index = i;
1819 
1820 	return nb;
1821 }
1822 
1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1824 			      size_t count, loff_t *ppos)
1825 {
1826 	struct kvm_htab_ctx *ctx = file->private_data;
1827 	struct kvm *kvm = ctx->kvm;
1828 	struct kvm_get_htab_header hdr;
1829 	unsigned long i, j;
1830 	unsigned long v, r;
1831 	unsigned long __user *lbuf;
1832 	__be64 *hptp;
1833 	unsigned long tmp[2];
1834 	ssize_t nb;
1835 	long int err, ret;
1836 	int mmu_ready;
1837 	int pshift;
1838 
1839 	if (!access_ok(buf, count))
1840 		return -EFAULT;
1841 	if (kvm_is_radix(kvm))
1842 		return -EINVAL;
1843 
1844 	/* lock out vcpus from running while we're doing this */
1845 	mutex_lock(&kvm->arch.mmu_setup_lock);
1846 	mmu_ready = kvm->arch.mmu_ready;
1847 	if (mmu_ready) {
1848 		kvm->arch.mmu_ready = 0;	/* temporarily */
1849 		/* order mmu_ready vs. vcpus_running */
1850 		smp_mb();
1851 		if (atomic_read(&kvm->arch.vcpus_running)) {
1852 			kvm->arch.mmu_ready = 1;
1853 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1854 			return -EBUSY;
1855 		}
1856 	}
1857 
1858 	err = 0;
1859 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1860 		err = -EFAULT;
1861 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1862 			break;
1863 
1864 		err = 0;
1865 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1866 			break;
1867 
1868 		nb += sizeof(hdr);
1869 		buf += sizeof(hdr);
1870 
1871 		err = -EINVAL;
1872 		i = hdr.index;
1873 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1874 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1875 			break;
1876 
1877 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1878 		lbuf = (unsigned long __user *)buf;
1879 		for (j = 0; j < hdr.n_valid; ++j) {
1880 			__be64 hpte_v;
1881 			__be64 hpte_r;
1882 
1883 			err = -EFAULT;
1884 			if (__get_user(hpte_v, lbuf) ||
1885 			    __get_user(hpte_r, lbuf + 1))
1886 				goto out;
1887 			v = be64_to_cpu(hpte_v);
1888 			r = be64_to_cpu(hpte_r);
1889 			err = -EINVAL;
1890 			if (!(v & HPTE_V_VALID))
1891 				goto out;
1892 			pshift = kvmppc_hpte_base_page_shift(v, r);
1893 			if (pshift <= 0)
1894 				goto out;
1895 			lbuf += 2;
1896 			nb += HPTE_SIZE;
1897 
1898 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1899 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1900 			err = -EIO;
1901 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1902 							 tmp);
1903 			if (ret != H_SUCCESS) {
1904 				pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1905 				goto out;
1906 			}
1907 			if (!mmu_ready && is_vrma_hpte(v)) {
1908 				unsigned long senc, lpcr;
1909 
1910 				senc = slb_pgsize_encoding(1ul << pshift);
1911 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1912 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1913 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1914 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1915 					kvmppc_update_lpcr(kvm, lpcr,
1916 							   LPCR_VRMASD);
1917 				} else {
1918 					kvmppc_setup_partition_table(kvm);
1919 				}
1920 				mmu_ready = 1;
1921 			}
1922 			++i;
1923 			hptp += 2;
1924 		}
1925 
1926 		for (j = 0; j < hdr.n_invalid; ++j) {
1927 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1928 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1929 			++i;
1930 			hptp += 2;
1931 		}
1932 		err = 0;
1933 	}
1934 
1935  out:
1936 	/* Order HPTE updates vs. mmu_ready */
1937 	smp_wmb();
1938 	kvm->arch.mmu_ready = mmu_ready;
1939 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1940 
1941 	if (err)
1942 		return err;
1943 	return nb;
1944 }
1945 
1946 static int kvm_htab_release(struct inode *inode, struct file *filp)
1947 {
1948 	struct kvm_htab_ctx *ctx = filp->private_data;
1949 
1950 	filp->private_data = NULL;
1951 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1952 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1953 	kvm_put_kvm(ctx->kvm);
1954 	kfree(ctx);
1955 	return 0;
1956 }
1957 
1958 static const struct file_operations kvm_htab_fops = {
1959 	.read		= kvm_htab_read,
1960 	.write		= kvm_htab_write,
1961 	.llseek		= default_llseek,
1962 	.release	= kvm_htab_release,
1963 };
1964 
1965 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1966 {
1967 	int ret;
1968 	struct kvm_htab_ctx *ctx;
1969 	int rwflag;
1970 
1971 	/* reject flags we don't recognize */
1972 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1973 		return -EINVAL;
1974 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1975 	if (!ctx)
1976 		return -ENOMEM;
1977 	kvm_get_kvm(kvm);
1978 	ctx->kvm = kvm;
1979 	ctx->index = ghf->start_index;
1980 	ctx->flags = ghf->flags;
1981 	ctx->first_pass = 1;
1982 
1983 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1984 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1985 	if (ret < 0) {
1986 		kfree(ctx);
1987 		kvm_put_kvm_no_destroy(kvm);
1988 		return ret;
1989 	}
1990 
1991 	if (rwflag == O_RDONLY) {
1992 		mutex_lock(&kvm->slots_lock);
1993 		atomic_inc(&kvm->arch.hpte_mod_interest);
1994 		/* make sure kvmppc_do_h_enter etc. see the increment */
1995 		synchronize_srcu_expedited(&kvm->srcu);
1996 		mutex_unlock(&kvm->slots_lock);
1997 	}
1998 
1999 	return ret;
2000 }
2001 
2002 struct debugfs_htab_state {
2003 	struct kvm	*kvm;
2004 	struct mutex	mutex;
2005 	unsigned long	hpt_index;
2006 	int		chars_left;
2007 	int		buf_index;
2008 	char		buf[64];
2009 };
2010 
2011 static int debugfs_htab_open(struct inode *inode, struct file *file)
2012 {
2013 	struct kvm *kvm = inode->i_private;
2014 	struct debugfs_htab_state *p;
2015 
2016 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2017 	if (!p)
2018 		return -ENOMEM;
2019 
2020 	kvm_get_kvm(kvm);
2021 	p->kvm = kvm;
2022 	mutex_init(&p->mutex);
2023 	file->private_data = p;
2024 
2025 	return nonseekable_open(inode, file);
2026 }
2027 
2028 static int debugfs_htab_release(struct inode *inode, struct file *file)
2029 {
2030 	struct debugfs_htab_state *p = file->private_data;
2031 
2032 	kvm_put_kvm(p->kvm);
2033 	kfree(p);
2034 	return 0;
2035 }
2036 
2037 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2038 				 size_t len, loff_t *ppos)
2039 {
2040 	struct debugfs_htab_state *p = file->private_data;
2041 	ssize_t ret, r;
2042 	unsigned long i, n;
2043 	unsigned long v, hr, gr;
2044 	struct kvm *kvm;
2045 	__be64 *hptp;
2046 
2047 	kvm = p->kvm;
2048 	if (kvm_is_radix(kvm))
2049 		return 0;
2050 
2051 	ret = mutex_lock_interruptible(&p->mutex);
2052 	if (ret)
2053 		return ret;
2054 
2055 	if (p->chars_left) {
2056 		n = p->chars_left;
2057 		if (n > len)
2058 			n = len;
2059 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2060 		n -= r;
2061 		p->chars_left -= n;
2062 		p->buf_index += n;
2063 		buf += n;
2064 		len -= n;
2065 		ret = n;
2066 		if (r) {
2067 			if (!n)
2068 				ret = -EFAULT;
2069 			goto out;
2070 		}
2071 	}
2072 
2073 	i = p->hpt_index;
2074 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2075 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2076 	     ++i, hptp += 2) {
2077 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2078 			continue;
2079 
2080 		/* lock the HPTE so it's stable and read it */
2081 		preempt_disable();
2082 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2083 			cpu_relax();
2084 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2085 		hr = be64_to_cpu(hptp[1]);
2086 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2087 		unlock_hpte(hptp, v);
2088 		preempt_enable();
2089 
2090 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2091 			continue;
2092 
2093 		n = scnprintf(p->buf, sizeof(p->buf),
2094 			      "%6lx %.16lx %.16lx %.16lx\n",
2095 			      i, v, hr, gr);
2096 		p->chars_left = n;
2097 		if (n > len)
2098 			n = len;
2099 		r = copy_to_user(buf, p->buf, n);
2100 		n -= r;
2101 		p->chars_left -= n;
2102 		p->buf_index = n;
2103 		buf += n;
2104 		len -= n;
2105 		ret += n;
2106 		if (r) {
2107 			if (!ret)
2108 				ret = -EFAULT;
2109 			goto out;
2110 		}
2111 	}
2112 	p->hpt_index = i;
2113 
2114  out:
2115 	mutex_unlock(&p->mutex);
2116 	return ret;
2117 }
2118 
2119 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2120 			   size_t len, loff_t *ppos)
2121 {
2122 	return -EACCES;
2123 }
2124 
2125 static const struct file_operations debugfs_htab_fops = {
2126 	.owner	 = THIS_MODULE,
2127 	.open	 = debugfs_htab_open,
2128 	.release = debugfs_htab_release,
2129 	.read	 = debugfs_htab_read,
2130 	.write	 = debugfs_htab_write,
2131 	.llseek	 = generic_file_llseek,
2132 };
2133 
2134 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2135 {
2136 	debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2137 			    &debugfs_htab_fops);
2138 }
2139 
2140 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2141 {
2142 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2143 
2144 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2145 
2146 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2147 
2148 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2149 }
2150