1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31 
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/book3s/64/mmu-hash.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 #include <asm/pte-walk.h>
40 
41 #include "trace_hv.h"
42 
43 //#define DEBUG_RESIZE_HPT	1
44 
45 #ifdef DEBUG_RESIZE_HPT
46 #define resize_hpt_debug(resize, ...)				\
47 	do {							\
48 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
49 		printk(__VA_ARGS__);				\
50 	} while (0)
51 #else
52 #define resize_hpt_debug(resize, ...)				\
53 	do { } while (0)
54 #endif
55 
56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57 				long pte_index, unsigned long pteh,
58 				unsigned long ptel, unsigned long *pte_idx_ret);
59 
60 struct kvm_resize_hpt {
61 	/* These fields read-only after init */
62 	struct kvm *kvm;
63 	struct work_struct work;
64 	u32 order;
65 
66 	/* These fields protected by kvm->lock */
67 
68 	/* Possible values and their usage:
69 	 *  <0     an error occurred during allocation,
70 	 *  -EBUSY allocation is in the progress,
71 	 *  0      allocation made successfuly.
72 	 */
73 	int error;
74 
75 	/* Private to the work thread, until error != -EBUSY,
76 	 * then protected by kvm->lock.
77 	 */
78 	struct kvm_hpt_info hpt;
79 };
80 
81 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
82 {
83 	unsigned long hpt = 0;
84 	int cma = 0;
85 	struct page *page = NULL;
86 	struct revmap_entry *rev;
87 	unsigned long npte;
88 
89 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
90 		return -EINVAL;
91 
92 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
93 	if (page) {
94 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
95 		memset((void *)hpt, 0, (1ul << order));
96 		cma = 1;
97 	}
98 
99 	if (!hpt)
100 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
101 				       |__GFP_NOWARN, order - PAGE_SHIFT);
102 
103 	if (!hpt)
104 		return -ENOMEM;
105 
106 	/* HPTEs are 2**4 bytes long */
107 	npte = 1ul << (order - 4);
108 
109 	/* Allocate reverse map array */
110 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
111 	if (!rev) {
112 		if (cma)
113 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
114 		else
115 			free_pages(hpt, order - PAGE_SHIFT);
116 		return -ENOMEM;
117 	}
118 
119 	info->order = order;
120 	info->virt = hpt;
121 	info->cma = cma;
122 	info->rev = rev;
123 
124 	return 0;
125 }
126 
127 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
128 {
129 	atomic64_set(&kvm->arch.mmio_update, 0);
130 	kvm->arch.hpt = *info;
131 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
132 
133 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
134 		 info->virt, (long)info->order, kvm->arch.lpid);
135 }
136 
137 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
138 {
139 	long err = -EBUSY;
140 	struct kvm_hpt_info info;
141 
142 	mutex_lock(&kvm->lock);
143 	if (kvm->arch.mmu_ready) {
144 		kvm->arch.mmu_ready = 0;
145 		/* order mmu_ready vs. vcpus_running */
146 		smp_mb();
147 		if (atomic_read(&kvm->arch.vcpus_running)) {
148 			kvm->arch.mmu_ready = 1;
149 			goto out;
150 		}
151 	}
152 	if (kvm_is_radix(kvm)) {
153 		err = kvmppc_switch_mmu_to_hpt(kvm);
154 		if (err)
155 			goto out;
156 	}
157 
158 	if (kvm->arch.hpt.order == order) {
159 		/* We already have a suitable HPT */
160 
161 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
162 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
163 		/*
164 		 * Reset all the reverse-mapping chains for all memslots
165 		 */
166 		kvmppc_rmap_reset(kvm);
167 		err = 0;
168 		goto out;
169 	}
170 
171 	if (kvm->arch.hpt.virt) {
172 		kvmppc_free_hpt(&kvm->arch.hpt);
173 		kvmppc_rmap_reset(kvm);
174 	}
175 
176 	err = kvmppc_allocate_hpt(&info, order);
177 	if (err < 0)
178 		goto out;
179 	kvmppc_set_hpt(kvm, &info);
180 
181 out:
182 	if (err == 0)
183 		/* Ensure that each vcpu will flush its TLB on next entry. */
184 		cpumask_setall(&kvm->arch.need_tlb_flush);
185 
186 	mutex_unlock(&kvm->lock);
187 	return err;
188 }
189 
190 void kvmppc_free_hpt(struct kvm_hpt_info *info)
191 {
192 	vfree(info->rev);
193 	info->rev = NULL;
194 	if (info->cma)
195 		kvm_free_hpt_cma(virt_to_page(info->virt),
196 				 1 << (info->order - PAGE_SHIFT));
197 	else if (info->virt)
198 		free_pages(info->virt, info->order - PAGE_SHIFT);
199 	info->virt = 0;
200 	info->order = 0;
201 }
202 
203 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
204 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
205 {
206 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
207 }
208 
209 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
210 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
211 {
212 	return (pgsize == 0x10000) ? 0x1000 : 0;
213 }
214 
215 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
216 		     unsigned long porder)
217 {
218 	unsigned long i;
219 	unsigned long npages;
220 	unsigned long hp_v, hp_r;
221 	unsigned long addr, hash;
222 	unsigned long psize;
223 	unsigned long hp0, hp1;
224 	unsigned long idx_ret;
225 	long ret;
226 	struct kvm *kvm = vcpu->kvm;
227 
228 	psize = 1ul << porder;
229 	npages = memslot->npages >> (porder - PAGE_SHIFT);
230 
231 	/* VRMA can't be > 1TB */
232 	if (npages > 1ul << (40 - porder))
233 		npages = 1ul << (40 - porder);
234 	/* Can't use more than 1 HPTE per HPTEG */
235 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
236 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
237 
238 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
239 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
240 	hp1 = hpte1_pgsize_encoding(psize) |
241 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
242 
243 	for (i = 0; i < npages; ++i) {
244 		addr = i << porder;
245 		/* can't use hpt_hash since va > 64 bits */
246 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
247 			& kvmppc_hpt_mask(&kvm->arch.hpt);
248 		/*
249 		 * We assume that the hash table is empty and no
250 		 * vcpus are using it at this stage.  Since we create
251 		 * at most one HPTE per HPTEG, we just assume entry 7
252 		 * is available and use it.
253 		 */
254 		hash = (hash << 3) + 7;
255 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
256 		hp_r = hp1 | addr;
257 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
258 						 &idx_ret);
259 		if (ret != H_SUCCESS) {
260 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
261 			       addr, ret);
262 			break;
263 		}
264 	}
265 }
266 
267 int kvmppc_mmu_hv_init(void)
268 {
269 	unsigned long host_lpid, rsvd_lpid;
270 
271 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
272 		return -EINVAL;
273 
274 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
275 	host_lpid = 0;
276 	if (cpu_has_feature(CPU_FTR_HVMODE))
277 		host_lpid = mfspr(SPRN_LPID);
278 	rsvd_lpid = LPID_RSVD;
279 
280 	kvmppc_init_lpid(rsvd_lpid + 1);
281 
282 	kvmppc_claim_lpid(host_lpid);
283 	/* rsvd_lpid is reserved for use in partition switching */
284 	kvmppc_claim_lpid(rsvd_lpid);
285 
286 	return 0;
287 }
288 
289 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
290 {
291 	unsigned long msr = vcpu->arch.intr_msr;
292 
293 	/* If transactional, change to suspend mode on IRQ delivery */
294 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
295 		msr |= MSR_TS_S;
296 	else
297 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
298 	kvmppc_set_msr(vcpu, msr);
299 }
300 
301 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
302 				long pte_index, unsigned long pteh,
303 				unsigned long ptel, unsigned long *pte_idx_ret)
304 {
305 	long ret;
306 
307 	/* Protect linux PTE lookup from page table destruction */
308 	rcu_read_lock_sched();	/* this disables preemption too */
309 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
310 				current->mm->pgd, false, pte_idx_ret);
311 	rcu_read_unlock_sched();
312 	if (ret == H_TOO_HARD) {
313 		/* this can't happen */
314 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
315 		ret = H_RESOURCE;	/* or something */
316 	}
317 	return ret;
318 
319 }
320 
321 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
322 							 gva_t eaddr)
323 {
324 	u64 mask;
325 	int i;
326 
327 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
328 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
329 			continue;
330 
331 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
332 			mask = ESID_MASK_1T;
333 		else
334 			mask = ESID_MASK;
335 
336 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
337 			return &vcpu->arch.slb[i];
338 	}
339 	return NULL;
340 }
341 
342 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
343 			unsigned long ea)
344 {
345 	unsigned long ra_mask;
346 
347 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
348 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
349 }
350 
351 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
352 			struct kvmppc_pte *gpte, bool data, bool iswrite)
353 {
354 	struct kvm *kvm = vcpu->kvm;
355 	struct kvmppc_slb *slbe;
356 	unsigned long slb_v;
357 	unsigned long pp, key;
358 	unsigned long v, orig_v, gr;
359 	__be64 *hptep;
360 	long int index;
361 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
362 
363 	if (kvm_is_radix(vcpu->kvm))
364 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
365 
366 	/* Get SLB entry */
367 	if (virtmode) {
368 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
369 		if (!slbe)
370 			return -EINVAL;
371 		slb_v = slbe->origv;
372 	} else {
373 		/* real mode access */
374 		slb_v = vcpu->kvm->arch.vrma_slb_v;
375 	}
376 
377 	preempt_disable();
378 	/* Find the HPTE in the hash table */
379 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
380 					 HPTE_V_VALID | HPTE_V_ABSENT);
381 	if (index < 0) {
382 		preempt_enable();
383 		return -ENOENT;
384 	}
385 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
386 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
387 	if (cpu_has_feature(CPU_FTR_ARCH_300))
388 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
389 	gr = kvm->arch.hpt.rev[index].guest_rpte;
390 
391 	unlock_hpte(hptep, orig_v);
392 	preempt_enable();
393 
394 	gpte->eaddr = eaddr;
395 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
396 
397 	/* Get PP bits and key for permission check */
398 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
399 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
400 	key &= slb_v;
401 
402 	/* Calculate permissions */
403 	gpte->may_read = hpte_read_permission(pp, key);
404 	gpte->may_write = hpte_write_permission(pp, key);
405 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
406 
407 	/* Storage key permission check for POWER7 */
408 	if (data && virtmode) {
409 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
410 		if (amrfield & 1)
411 			gpte->may_read = 0;
412 		if (amrfield & 2)
413 			gpte->may_write = 0;
414 	}
415 
416 	/* Get the guest physical address */
417 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
418 	return 0;
419 }
420 
421 /*
422  * Quick test for whether an instruction is a load or a store.
423  * If the instruction is a load or a store, then this will indicate
424  * which it is, at least on server processors.  (Embedded processors
425  * have some external PID instructions that don't follow the rule
426  * embodied here.)  If the instruction isn't a load or store, then
427  * this doesn't return anything useful.
428  */
429 static int instruction_is_store(unsigned int instr)
430 {
431 	unsigned int mask;
432 
433 	mask = 0x10000000;
434 	if ((instr & 0xfc000000) == 0x7c000000)
435 		mask = 0x100;		/* major opcode 31 */
436 	return (instr & mask) != 0;
437 }
438 
439 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
440 			   unsigned long gpa, gva_t ea, int is_store)
441 {
442 	u32 last_inst;
443 
444 	/*
445 	 * If we fail, we just return to the guest and try executing it again.
446 	 */
447 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
448 		EMULATE_DONE)
449 		return RESUME_GUEST;
450 
451 	/*
452 	 * WARNING: We do not know for sure whether the instruction we just
453 	 * read from memory is the same that caused the fault in the first
454 	 * place.  If the instruction we read is neither an load or a store,
455 	 * then it can't access memory, so we don't need to worry about
456 	 * enforcing access permissions.  So, assuming it is a load or
457 	 * store, we just check that its direction (load or store) is
458 	 * consistent with the original fault, since that's what we
459 	 * checked the access permissions against.  If there is a mismatch
460 	 * we just return and retry the instruction.
461 	 */
462 
463 	if (instruction_is_store(last_inst) != !!is_store)
464 		return RESUME_GUEST;
465 
466 	/*
467 	 * Emulated accesses are emulated by looking at the hash for
468 	 * translation once, then performing the access later. The
469 	 * translation could be invalidated in the meantime in which
470 	 * point performing the subsequent memory access on the old
471 	 * physical address could possibly be a security hole for the
472 	 * guest (but not the host).
473 	 *
474 	 * This is less of an issue for MMIO stores since they aren't
475 	 * globally visible. It could be an issue for MMIO loads to
476 	 * a certain extent but we'll ignore it for now.
477 	 */
478 
479 	vcpu->arch.paddr_accessed = gpa;
480 	vcpu->arch.vaddr_accessed = ea;
481 	return kvmppc_emulate_mmio(run, vcpu);
482 }
483 
484 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
485 				unsigned long ea, unsigned long dsisr)
486 {
487 	struct kvm *kvm = vcpu->kvm;
488 	unsigned long hpte[3], r;
489 	unsigned long hnow_v, hnow_r;
490 	__be64 *hptep;
491 	unsigned long mmu_seq, psize, pte_size;
492 	unsigned long gpa_base, gfn_base;
493 	unsigned long gpa, gfn, hva, pfn;
494 	struct kvm_memory_slot *memslot;
495 	unsigned long *rmap;
496 	struct revmap_entry *rev;
497 	struct page *page, *pages[1];
498 	long index, ret, npages;
499 	bool is_ci;
500 	unsigned int writing, write_ok;
501 	struct vm_area_struct *vma;
502 	unsigned long rcbits;
503 	long mmio_update;
504 
505 	if (kvm_is_radix(kvm))
506 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
507 
508 	/*
509 	 * Real-mode code has already searched the HPT and found the
510 	 * entry we're interested in.  Lock the entry and check that
511 	 * it hasn't changed.  If it has, just return and re-execute the
512 	 * instruction.
513 	 */
514 	if (ea != vcpu->arch.pgfault_addr)
515 		return RESUME_GUEST;
516 
517 	if (vcpu->arch.pgfault_cache) {
518 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
519 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
520 			r = vcpu->arch.pgfault_cache->rpte;
521 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
522 						   r);
523 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
524 			gfn_base = gpa_base >> PAGE_SHIFT;
525 			gpa = gpa_base | (ea & (psize - 1));
526 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
527 						dsisr & DSISR_ISSTORE);
528 		}
529 	}
530 	index = vcpu->arch.pgfault_index;
531 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
532 	rev = &kvm->arch.hpt.rev[index];
533 	preempt_disable();
534 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
535 		cpu_relax();
536 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
537 	hpte[1] = be64_to_cpu(hptep[1]);
538 	hpte[2] = r = rev->guest_rpte;
539 	unlock_hpte(hptep, hpte[0]);
540 	preempt_enable();
541 
542 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
543 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
544 		hpte[1] = hpte_new_to_old_r(hpte[1]);
545 	}
546 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
547 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
548 		return RESUME_GUEST;
549 
550 	/* Translate the logical address and get the page */
551 	psize = kvmppc_actual_pgsz(hpte[0], r);
552 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
553 	gfn_base = gpa_base >> PAGE_SHIFT;
554 	gpa = gpa_base | (ea & (psize - 1));
555 	gfn = gpa >> PAGE_SHIFT;
556 	memslot = gfn_to_memslot(kvm, gfn);
557 
558 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
559 
560 	/* No memslot means it's an emulated MMIO region */
561 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
562 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
563 					      dsisr & DSISR_ISSTORE);
564 
565 	/*
566 	 * This should never happen, because of the slot_is_aligned()
567 	 * check in kvmppc_do_h_enter().
568 	 */
569 	if (gfn_base < memslot->base_gfn)
570 		return -EFAULT;
571 
572 	/* used to check for invalidations in progress */
573 	mmu_seq = kvm->mmu_notifier_seq;
574 	smp_rmb();
575 
576 	ret = -EFAULT;
577 	is_ci = false;
578 	pfn = 0;
579 	page = NULL;
580 	pte_size = PAGE_SIZE;
581 	writing = (dsisr & DSISR_ISSTORE) != 0;
582 	/* If writing != 0, then the HPTE must allow writing, if we get here */
583 	write_ok = writing;
584 	hva = gfn_to_hva_memslot(memslot, gfn);
585 	npages = get_user_pages_fast(hva, 1, writing, pages);
586 	if (npages < 1) {
587 		/* Check if it's an I/O mapping */
588 		down_read(&current->mm->mmap_sem);
589 		vma = find_vma(current->mm, hva);
590 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
591 		    (vma->vm_flags & VM_PFNMAP)) {
592 			pfn = vma->vm_pgoff +
593 				((hva - vma->vm_start) >> PAGE_SHIFT);
594 			pte_size = psize;
595 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
596 			write_ok = vma->vm_flags & VM_WRITE;
597 		}
598 		up_read(&current->mm->mmap_sem);
599 		if (!pfn)
600 			goto out_put;
601 	} else {
602 		page = pages[0];
603 		pfn = page_to_pfn(page);
604 		if (PageHuge(page)) {
605 			page = compound_head(page);
606 			pte_size <<= compound_order(page);
607 		}
608 		/* if the guest wants write access, see if that is OK */
609 		if (!writing && hpte_is_writable(r)) {
610 			pte_t *ptep, pte;
611 			unsigned long flags;
612 			/*
613 			 * We need to protect against page table destruction
614 			 * hugepage split and collapse.
615 			 */
616 			local_irq_save(flags);
617 			ptep = find_current_mm_pte(current->mm->pgd,
618 						   hva, NULL, NULL);
619 			if (ptep) {
620 				pte = kvmppc_read_update_linux_pte(ptep, 1);
621 				if (__pte_write(pte))
622 					write_ok = 1;
623 			}
624 			local_irq_restore(flags);
625 		}
626 	}
627 
628 	if (psize > pte_size)
629 		goto out_put;
630 
631 	/* Check WIMG vs. the actual page we're accessing */
632 	if (!hpte_cache_flags_ok(r, is_ci)) {
633 		if (is_ci)
634 			goto out_put;
635 		/*
636 		 * Allow guest to map emulated device memory as
637 		 * uncacheable, but actually make it cacheable.
638 		 */
639 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
640 	}
641 
642 	/*
643 	 * Set the HPTE to point to pfn.
644 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
645 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
646 	 */
647 	if (psize < PAGE_SIZE)
648 		psize = PAGE_SIZE;
649 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
650 					((pfn << PAGE_SHIFT) & ~(psize - 1));
651 	if (hpte_is_writable(r) && !write_ok)
652 		r = hpte_make_readonly(r);
653 	ret = RESUME_GUEST;
654 	preempt_disable();
655 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
656 		cpu_relax();
657 	hnow_v = be64_to_cpu(hptep[0]);
658 	hnow_r = be64_to_cpu(hptep[1]);
659 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
660 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
661 		hnow_r = hpte_new_to_old_r(hnow_r);
662 	}
663 
664 	/*
665 	 * If the HPT is being resized, don't update the HPTE,
666 	 * instead let the guest retry after the resize operation is complete.
667 	 * The synchronization for mmu_ready test vs. set is provided
668 	 * by the HPTE lock.
669 	 */
670 	if (!kvm->arch.mmu_ready)
671 		goto out_unlock;
672 
673 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
674 	    rev->guest_rpte != hpte[2])
675 		/* HPTE has been changed under us; let the guest retry */
676 		goto out_unlock;
677 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
678 
679 	/* Always put the HPTE in the rmap chain for the page base address */
680 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
681 	lock_rmap(rmap);
682 
683 	/* Check if we might have been invalidated; let the guest retry if so */
684 	ret = RESUME_GUEST;
685 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
686 		unlock_rmap(rmap);
687 		goto out_unlock;
688 	}
689 
690 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
691 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
692 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
693 
694 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
695 		/* HPTE was previously valid, so we need to invalidate it */
696 		unlock_rmap(rmap);
697 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
698 		kvmppc_invalidate_hpte(kvm, hptep, index);
699 		/* don't lose previous R and C bits */
700 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
701 	} else {
702 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
703 	}
704 
705 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
706 		r = hpte_old_to_new_r(hpte[0], r);
707 		hpte[0] = hpte_old_to_new_v(hpte[0]);
708 	}
709 	hptep[1] = cpu_to_be64(r);
710 	eieio();
711 	__unlock_hpte(hptep, hpte[0]);
712 	asm volatile("ptesync" : : : "memory");
713 	preempt_enable();
714 	if (page && hpte_is_writable(r))
715 		SetPageDirty(page);
716 
717  out_put:
718 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
719 
720 	if (page) {
721 		/*
722 		 * We drop pages[0] here, not page because page might
723 		 * have been set to the head page of a compound, but
724 		 * we have to drop the reference on the correct tail
725 		 * page to match the get inside gup()
726 		 */
727 		put_page(pages[0]);
728 	}
729 	return ret;
730 
731  out_unlock:
732 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
733 	preempt_enable();
734 	goto out_put;
735 }
736 
737 void kvmppc_rmap_reset(struct kvm *kvm)
738 {
739 	struct kvm_memslots *slots;
740 	struct kvm_memory_slot *memslot;
741 	int srcu_idx;
742 
743 	srcu_idx = srcu_read_lock(&kvm->srcu);
744 	slots = kvm_memslots(kvm);
745 	kvm_for_each_memslot(memslot, slots) {
746 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
747 		spin_lock(&kvm->mmu_lock);
748 		/*
749 		 * This assumes it is acceptable to lose reference and
750 		 * change bits across a reset.
751 		 */
752 		memset(memslot->arch.rmap, 0,
753 		       memslot->npages * sizeof(*memslot->arch.rmap));
754 		spin_unlock(&kvm->mmu_lock);
755 	}
756 	srcu_read_unlock(&kvm->srcu, srcu_idx);
757 }
758 
759 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
760 			      unsigned long gfn);
761 
762 static int kvm_handle_hva_range(struct kvm *kvm,
763 				unsigned long start,
764 				unsigned long end,
765 				hva_handler_fn handler)
766 {
767 	int ret;
768 	int retval = 0;
769 	struct kvm_memslots *slots;
770 	struct kvm_memory_slot *memslot;
771 
772 	slots = kvm_memslots(kvm);
773 	kvm_for_each_memslot(memslot, slots) {
774 		unsigned long hva_start, hva_end;
775 		gfn_t gfn, gfn_end;
776 
777 		hva_start = max(start, memslot->userspace_addr);
778 		hva_end = min(end, memslot->userspace_addr +
779 					(memslot->npages << PAGE_SHIFT));
780 		if (hva_start >= hva_end)
781 			continue;
782 		/*
783 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
784 		 * {gfn, gfn+1, ..., gfn_end-1}.
785 		 */
786 		gfn = hva_to_gfn_memslot(hva_start, memslot);
787 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
788 
789 		for (; gfn < gfn_end; ++gfn) {
790 			ret = handler(kvm, memslot, gfn);
791 			retval |= ret;
792 		}
793 	}
794 
795 	return retval;
796 }
797 
798 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
799 			  hva_handler_fn handler)
800 {
801 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
802 }
803 
804 /* Must be called with both HPTE and rmap locked */
805 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
806 			      struct kvm_memory_slot *memslot,
807 			      unsigned long *rmapp, unsigned long gfn)
808 {
809 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
810 	struct revmap_entry *rev = kvm->arch.hpt.rev;
811 	unsigned long j, h;
812 	unsigned long ptel, psize, rcbits;
813 
814 	j = rev[i].forw;
815 	if (j == i) {
816 		/* chain is now empty */
817 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
818 	} else {
819 		/* remove i from chain */
820 		h = rev[i].back;
821 		rev[h].forw = j;
822 		rev[j].back = h;
823 		rev[i].forw = rev[i].back = i;
824 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
825 	}
826 
827 	/* Now check and modify the HPTE */
828 	ptel = rev[i].guest_rpte;
829 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
830 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
831 	    hpte_rpn(ptel, psize) == gfn) {
832 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
833 		kvmppc_invalidate_hpte(kvm, hptep, i);
834 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
835 		/* Harvest R and C */
836 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
837 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
838 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
839 			kvmppc_update_dirty_map(memslot, gfn, psize);
840 		if (rcbits & ~rev[i].guest_rpte) {
841 			rev[i].guest_rpte = ptel | rcbits;
842 			note_hpte_modification(kvm, &rev[i]);
843 		}
844 	}
845 }
846 
847 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
848 			   unsigned long gfn)
849 {
850 	unsigned long i;
851 	__be64 *hptep;
852 	unsigned long *rmapp;
853 
854 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
855 	for (;;) {
856 		lock_rmap(rmapp);
857 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
858 			unlock_rmap(rmapp);
859 			break;
860 		}
861 
862 		/*
863 		 * To avoid an ABBA deadlock with the HPTE lock bit,
864 		 * we can't spin on the HPTE lock while holding the
865 		 * rmap chain lock.
866 		 */
867 		i = *rmapp & KVMPPC_RMAP_INDEX;
868 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
869 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
870 			/* unlock rmap before spinning on the HPTE lock */
871 			unlock_rmap(rmapp);
872 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
873 				cpu_relax();
874 			continue;
875 		}
876 
877 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
878 		unlock_rmap(rmapp);
879 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
880 	}
881 	return 0;
882 }
883 
884 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
885 {
886 	hva_handler_fn handler;
887 
888 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
889 	kvm_handle_hva_range(kvm, start, end, handler);
890 	return 0;
891 }
892 
893 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
894 				  struct kvm_memory_slot *memslot)
895 {
896 	unsigned long gfn;
897 	unsigned long n;
898 	unsigned long *rmapp;
899 
900 	gfn = memslot->base_gfn;
901 	rmapp = memslot->arch.rmap;
902 	if (kvm_is_radix(kvm)) {
903 		kvmppc_radix_flush_memslot(kvm, memslot);
904 		return;
905 	}
906 
907 	for (n = memslot->npages; n; --n, ++gfn) {
908 		/*
909 		 * Testing the present bit without locking is OK because
910 		 * the memslot has been marked invalid already, and hence
911 		 * no new HPTEs referencing this page can be created,
912 		 * thus the present bit can't go from 0 to 1.
913 		 */
914 		if (*rmapp & KVMPPC_RMAP_PRESENT)
915 			kvm_unmap_rmapp(kvm, memslot, gfn);
916 		++rmapp;
917 	}
918 }
919 
920 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
921 			 unsigned long gfn)
922 {
923 	struct revmap_entry *rev = kvm->arch.hpt.rev;
924 	unsigned long head, i, j;
925 	__be64 *hptep;
926 	int ret = 0;
927 	unsigned long *rmapp;
928 
929 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
930  retry:
931 	lock_rmap(rmapp);
932 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
933 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
934 		ret = 1;
935 	}
936 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
937 		unlock_rmap(rmapp);
938 		return ret;
939 	}
940 
941 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
942 	do {
943 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
944 		j = rev[i].forw;
945 
946 		/* If this HPTE isn't referenced, ignore it */
947 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
948 			continue;
949 
950 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
951 			/* unlock rmap before spinning on the HPTE lock */
952 			unlock_rmap(rmapp);
953 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
954 				cpu_relax();
955 			goto retry;
956 		}
957 
958 		/* Now check and modify the HPTE */
959 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
960 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
961 			kvmppc_clear_ref_hpte(kvm, hptep, i);
962 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
963 				rev[i].guest_rpte |= HPTE_R_R;
964 				note_hpte_modification(kvm, &rev[i]);
965 			}
966 			ret = 1;
967 		}
968 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
969 	} while ((i = j) != head);
970 
971 	unlock_rmap(rmapp);
972 	return ret;
973 }
974 
975 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
976 {
977 	hva_handler_fn handler;
978 
979 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
980 	return kvm_handle_hva_range(kvm, start, end, handler);
981 }
982 
983 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
984 			      unsigned long gfn)
985 {
986 	struct revmap_entry *rev = kvm->arch.hpt.rev;
987 	unsigned long head, i, j;
988 	unsigned long *hp;
989 	int ret = 1;
990 	unsigned long *rmapp;
991 
992 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
993 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
994 		return 1;
995 
996 	lock_rmap(rmapp);
997 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
998 		goto out;
999 
1000 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
1001 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
1002 		do {
1003 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1004 			j = rev[i].forw;
1005 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1006 				goto out;
1007 		} while ((i = j) != head);
1008 	}
1009 	ret = 0;
1010 
1011  out:
1012 	unlock_rmap(rmapp);
1013 	return ret;
1014 }
1015 
1016 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1017 {
1018 	hva_handler_fn handler;
1019 
1020 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1021 	return kvm_handle_hva(kvm, hva, handler);
1022 }
1023 
1024 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1025 {
1026 	hva_handler_fn handler;
1027 
1028 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1029 	kvm_handle_hva(kvm, hva, handler);
1030 }
1031 
1032 static int vcpus_running(struct kvm *kvm)
1033 {
1034 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1035 }
1036 
1037 /*
1038  * Returns the number of system pages that are dirty.
1039  * This can be more than 1 if we find a huge-page HPTE.
1040  */
1041 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1042 {
1043 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1044 	unsigned long head, i, j;
1045 	unsigned long n;
1046 	unsigned long v, r;
1047 	__be64 *hptep;
1048 	int npages_dirty = 0;
1049 
1050  retry:
1051 	lock_rmap(rmapp);
1052 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1053 		unlock_rmap(rmapp);
1054 		return npages_dirty;
1055 	}
1056 
1057 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1058 	do {
1059 		unsigned long hptep1;
1060 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1061 		j = rev[i].forw;
1062 
1063 		/*
1064 		 * Checking the C (changed) bit here is racy since there
1065 		 * is no guarantee about when the hardware writes it back.
1066 		 * If the HPTE is not writable then it is stable since the
1067 		 * page can't be written to, and we would have done a tlbie
1068 		 * (which forces the hardware to complete any writeback)
1069 		 * when making the HPTE read-only.
1070 		 * If vcpus are running then this call is racy anyway
1071 		 * since the page could get dirtied subsequently, so we
1072 		 * expect there to be a further call which would pick up
1073 		 * any delayed C bit writeback.
1074 		 * Otherwise we need to do the tlbie even if C==0 in
1075 		 * order to pick up any delayed writeback of C.
1076 		 */
1077 		hptep1 = be64_to_cpu(hptep[1]);
1078 		if (!(hptep1 & HPTE_R_C) &&
1079 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1080 			continue;
1081 
1082 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1083 			/* unlock rmap before spinning on the HPTE lock */
1084 			unlock_rmap(rmapp);
1085 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1086 				cpu_relax();
1087 			goto retry;
1088 		}
1089 
1090 		/* Now check and modify the HPTE */
1091 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1092 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1093 			continue;
1094 		}
1095 
1096 		/* need to make it temporarily absent so C is stable */
1097 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1098 		kvmppc_invalidate_hpte(kvm, hptep, i);
1099 		v = be64_to_cpu(hptep[0]);
1100 		r = be64_to_cpu(hptep[1]);
1101 		if (r & HPTE_R_C) {
1102 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1103 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1104 				rev[i].guest_rpte |= HPTE_R_C;
1105 				note_hpte_modification(kvm, &rev[i]);
1106 			}
1107 			n = kvmppc_actual_pgsz(v, r);
1108 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1109 			if (n > npages_dirty)
1110 				npages_dirty = n;
1111 			eieio();
1112 		}
1113 		v &= ~HPTE_V_ABSENT;
1114 		v |= HPTE_V_VALID;
1115 		__unlock_hpte(hptep, v);
1116 	} while ((i = j) != head);
1117 
1118 	unlock_rmap(rmapp);
1119 	return npages_dirty;
1120 }
1121 
1122 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1123 			      struct kvm_memory_slot *memslot,
1124 			      unsigned long *map)
1125 {
1126 	unsigned long gfn;
1127 
1128 	if (!vpa->dirty || !vpa->pinned_addr)
1129 		return;
1130 	gfn = vpa->gpa >> PAGE_SHIFT;
1131 	if (gfn < memslot->base_gfn ||
1132 	    gfn >= memslot->base_gfn + memslot->npages)
1133 		return;
1134 
1135 	vpa->dirty = false;
1136 	if (map)
1137 		__set_bit_le(gfn - memslot->base_gfn, map);
1138 }
1139 
1140 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1141 			struct kvm_memory_slot *memslot, unsigned long *map)
1142 {
1143 	unsigned long i;
1144 	unsigned long *rmapp;
1145 
1146 	preempt_disable();
1147 	rmapp = memslot->arch.rmap;
1148 	for (i = 0; i < memslot->npages; ++i) {
1149 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1150 		/*
1151 		 * Note that if npages > 0 then i must be a multiple of npages,
1152 		 * since we always put huge-page HPTEs in the rmap chain
1153 		 * corresponding to their page base address.
1154 		 */
1155 		if (npages)
1156 			set_dirty_bits(map, i, npages);
1157 		++rmapp;
1158 	}
1159 	preempt_enable();
1160 	return 0;
1161 }
1162 
1163 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1164 			    unsigned long *nb_ret)
1165 {
1166 	struct kvm_memory_slot *memslot;
1167 	unsigned long gfn = gpa >> PAGE_SHIFT;
1168 	struct page *page, *pages[1];
1169 	int npages;
1170 	unsigned long hva, offset;
1171 	int srcu_idx;
1172 
1173 	srcu_idx = srcu_read_lock(&kvm->srcu);
1174 	memslot = gfn_to_memslot(kvm, gfn);
1175 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1176 		goto err;
1177 	hva = gfn_to_hva_memslot(memslot, gfn);
1178 	npages = get_user_pages_fast(hva, 1, 1, pages);
1179 	if (npages < 1)
1180 		goto err;
1181 	page = pages[0];
1182 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1183 
1184 	offset = gpa & (PAGE_SIZE - 1);
1185 	if (nb_ret)
1186 		*nb_ret = PAGE_SIZE - offset;
1187 	return page_address(page) + offset;
1188 
1189  err:
1190 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1191 	return NULL;
1192 }
1193 
1194 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1195 			     bool dirty)
1196 {
1197 	struct page *page = virt_to_page(va);
1198 	struct kvm_memory_slot *memslot;
1199 	unsigned long gfn;
1200 	int srcu_idx;
1201 
1202 	put_page(page);
1203 
1204 	if (!dirty)
1205 		return;
1206 
1207 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1208 	gfn = gpa >> PAGE_SHIFT;
1209 	srcu_idx = srcu_read_lock(&kvm->srcu);
1210 	memslot = gfn_to_memslot(kvm, gfn);
1211 	if (memslot && memslot->dirty_bitmap)
1212 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1213 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1214 }
1215 
1216 /*
1217  * HPT resizing
1218  */
1219 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1220 {
1221 	int rc;
1222 
1223 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1224 	if (rc < 0)
1225 		return rc;
1226 
1227 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1228 			 resize->hpt.virt);
1229 
1230 	return 0;
1231 }
1232 
1233 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1234 					    unsigned long idx)
1235 {
1236 	struct kvm *kvm = resize->kvm;
1237 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1238 	struct kvm_hpt_info *new = &resize->hpt;
1239 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1240 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1241 	__be64 *hptep, *new_hptep;
1242 	unsigned long vpte, rpte, guest_rpte;
1243 	int ret;
1244 	struct revmap_entry *rev;
1245 	unsigned long apsize, avpn, pteg, hash;
1246 	unsigned long new_idx, new_pteg, replace_vpte;
1247 	int pshift;
1248 
1249 	hptep = (__be64 *)(old->virt + (idx << 4));
1250 
1251 	/* Guest is stopped, so new HPTEs can't be added or faulted
1252 	 * in, only unmapped or altered by host actions.  So, it's
1253 	 * safe to check this before we take the HPTE lock */
1254 	vpte = be64_to_cpu(hptep[0]);
1255 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1256 		return 0; /* nothing to do */
1257 
1258 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1259 		cpu_relax();
1260 
1261 	vpte = be64_to_cpu(hptep[0]);
1262 
1263 	ret = 0;
1264 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1265 		/* Nothing to do */
1266 		goto out;
1267 
1268 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1269 		rpte = be64_to_cpu(hptep[1]);
1270 		vpte = hpte_new_to_old_v(vpte, rpte);
1271 	}
1272 
1273 	/* Unmap */
1274 	rev = &old->rev[idx];
1275 	guest_rpte = rev->guest_rpte;
1276 
1277 	ret = -EIO;
1278 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1279 	if (!apsize)
1280 		goto out;
1281 
1282 	if (vpte & HPTE_V_VALID) {
1283 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1284 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1285 		struct kvm_memory_slot *memslot =
1286 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1287 
1288 		if (memslot) {
1289 			unsigned long *rmapp;
1290 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1291 
1292 			lock_rmap(rmapp);
1293 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1294 			unlock_rmap(rmapp);
1295 		}
1296 
1297 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1298 	}
1299 
1300 	/* Reload PTE after unmap */
1301 	vpte = be64_to_cpu(hptep[0]);
1302 	BUG_ON(vpte & HPTE_V_VALID);
1303 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1304 
1305 	ret = 0;
1306 	if (!(vpte & HPTE_V_BOLTED))
1307 		goto out;
1308 
1309 	rpte = be64_to_cpu(hptep[1]);
1310 
1311 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1312 		vpte = hpte_new_to_old_v(vpte, rpte);
1313 		rpte = hpte_new_to_old_r(rpte);
1314 	}
1315 
1316 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1317 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1318 	pteg = idx / HPTES_PER_GROUP;
1319 	if (vpte & HPTE_V_SECONDARY)
1320 		pteg = ~pteg;
1321 
1322 	if (!(vpte & HPTE_V_1TB_SEG)) {
1323 		unsigned long offset, vsid;
1324 
1325 		/* We only have 28 - 23 bits of offset in avpn */
1326 		offset = (avpn & 0x1f) << 23;
1327 		vsid = avpn >> 5;
1328 		/* We can find more bits from the pteg value */
1329 		if (pshift < 23)
1330 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1331 
1332 		hash = vsid ^ (offset >> pshift);
1333 	} else {
1334 		unsigned long offset, vsid;
1335 
1336 		/* We only have 40 - 23 bits of seg_off in avpn */
1337 		offset = (avpn & 0x1ffff) << 23;
1338 		vsid = avpn >> 17;
1339 		if (pshift < 23)
1340 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1341 
1342 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1343 	}
1344 
1345 	new_pteg = hash & new_hash_mask;
1346 	if (vpte & HPTE_V_SECONDARY)
1347 		new_pteg = ~hash & new_hash_mask;
1348 
1349 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1350 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1351 
1352 	replace_vpte = be64_to_cpu(new_hptep[0]);
1353 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1354 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1355 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1356 	}
1357 
1358 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1359 		BUG_ON(new->order >= old->order);
1360 
1361 		if (replace_vpte & HPTE_V_BOLTED) {
1362 			if (vpte & HPTE_V_BOLTED)
1363 				/* Bolted collision, nothing we can do */
1364 				ret = -ENOSPC;
1365 			/* Discard the new HPTE */
1366 			goto out;
1367 		}
1368 
1369 		/* Discard the previous HPTE */
1370 	}
1371 
1372 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1373 		rpte = hpte_old_to_new_r(vpte, rpte);
1374 		vpte = hpte_old_to_new_v(vpte);
1375 	}
1376 
1377 	new_hptep[1] = cpu_to_be64(rpte);
1378 	new->rev[new_idx].guest_rpte = guest_rpte;
1379 	/* No need for a barrier, since new HPT isn't active */
1380 	new_hptep[0] = cpu_to_be64(vpte);
1381 	unlock_hpte(new_hptep, vpte);
1382 
1383 out:
1384 	unlock_hpte(hptep, vpte);
1385 	return ret;
1386 }
1387 
1388 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1389 {
1390 	struct kvm *kvm = resize->kvm;
1391 	unsigned  long i;
1392 	int rc;
1393 
1394 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1395 		rc = resize_hpt_rehash_hpte(resize, i);
1396 		if (rc != 0)
1397 			return rc;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1404 {
1405 	struct kvm *kvm = resize->kvm;
1406 	struct kvm_hpt_info hpt_tmp;
1407 
1408 	/* Exchange the pending tables in the resize structure with
1409 	 * the active tables */
1410 
1411 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1412 
1413 	spin_lock(&kvm->mmu_lock);
1414 	asm volatile("ptesync" : : : "memory");
1415 
1416 	hpt_tmp = kvm->arch.hpt;
1417 	kvmppc_set_hpt(kvm, &resize->hpt);
1418 	resize->hpt = hpt_tmp;
1419 
1420 	spin_unlock(&kvm->mmu_lock);
1421 
1422 	synchronize_srcu_expedited(&kvm->srcu);
1423 
1424 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1425 		kvmppc_setup_partition_table(kvm);
1426 
1427 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1428 }
1429 
1430 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1431 {
1432 	if (WARN_ON(!mutex_is_locked(&kvm->lock)))
1433 		return;
1434 
1435 	if (!resize)
1436 		return;
1437 
1438 	if (resize->error != -EBUSY) {
1439 		if (resize->hpt.virt)
1440 			kvmppc_free_hpt(&resize->hpt);
1441 		kfree(resize);
1442 	}
1443 
1444 	if (kvm->arch.resize_hpt == resize)
1445 		kvm->arch.resize_hpt = NULL;
1446 }
1447 
1448 static void resize_hpt_prepare_work(struct work_struct *work)
1449 {
1450 	struct kvm_resize_hpt *resize = container_of(work,
1451 						     struct kvm_resize_hpt,
1452 						     work);
1453 	struct kvm *kvm = resize->kvm;
1454 	int err = 0;
1455 
1456 	if (WARN_ON(resize->error != -EBUSY))
1457 		return;
1458 
1459 	mutex_lock(&kvm->lock);
1460 
1461 	/* Request is still current? */
1462 	if (kvm->arch.resize_hpt == resize) {
1463 		/* We may request large allocations here:
1464 		 * do not sleep with kvm->lock held for a while.
1465 		 */
1466 		mutex_unlock(&kvm->lock);
1467 
1468 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1469 				 resize->order);
1470 
1471 		err = resize_hpt_allocate(resize);
1472 
1473 		/* We have strict assumption about -EBUSY
1474 		 * when preparing for HPT resize.
1475 		 */
1476 		if (WARN_ON(err == -EBUSY))
1477 			err = -EINPROGRESS;
1478 
1479 		mutex_lock(&kvm->lock);
1480 		/* It is possible that kvm->arch.resize_hpt != resize
1481 		 * after we grab kvm->lock again.
1482 		 */
1483 	}
1484 
1485 	resize->error = err;
1486 
1487 	if (kvm->arch.resize_hpt != resize)
1488 		resize_hpt_release(kvm, resize);
1489 
1490 	mutex_unlock(&kvm->lock);
1491 }
1492 
1493 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1494 				     struct kvm_ppc_resize_hpt *rhpt)
1495 {
1496 	unsigned long flags = rhpt->flags;
1497 	unsigned long shift = rhpt->shift;
1498 	struct kvm_resize_hpt *resize;
1499 	int ret;
1500 
1501 	if (flags != 0 || kvm_is_radix(kvm))
1502 		return -EINVAL;
1503 
1504 	if (shift && ((shift < 18) || (shift > 46)))
1505 		return -EINVAL;
1506 
1507 	mutex_lock(&kvm->lock);
1508 
1509 	resize = kvm->arch.resize_hpt;
1510 
1511 	if (resize) {
1512 		if (resize->order == shift) {
1513 			/* Suitable resize in progress? */
1514 			ret = resize->error;
1515 			if (ret == -EBUSY)
1516 				ret = 100; /* estimated time in ms */
1517 			else if (ret)
1518 				resize_hpt_release(kvm, resize);
1519 
1520 			goto out;
1521 		}
1522 
1523 		/* not suitable, cancel it */
1524 		resize_hpt_release(kvm, resize);
1525 	}
1526 
1527 	ret = 0;
1528 	if (!shift)
1529 		goto out; /* nothing to do */
1530 
1531 	/* start new resize */
1532 
1533 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1534 	if (!resize) {
1535 		ret = -ENOMEM;
1536 		goto out;
1537 	}
1538 
1539 	resize->error = -EBUSY;
1540 	resize->order = shift;
1541 	resize->kvm = kvm;
1542 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1543 	kvm->arch.resize_hpt = resize;
1544 
1545 	schedule_work(&resize->work);
1546 
1547 	ret = 100; /* estimated time in ms */
1548 
1549 out:
1550 	mutex_unlock(&kvm->lock);
1551 	return ret;
1552 }
1553 
1554 static void resize_hpt_boot_vcpu(void *opaque)
1555 {
1556 	/* Nothing to do, just force a KVM exit */
1557 }
1558 
1559 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1560 				    struct kvm_ppc_resize_hpt *rhpt)
1561 {
1562 	unsigned long flags = rhpt->flags;
1563 	unsigned long shift = rhpt->shift;
1564 	struct kvm_resize_hpt *resize;
1565 	long ret;
1566 
1567 	if (flags != 0 || kvm_is_radix(kvm))
1568 		return -EINVAL;
1569 
1570 	if (shift && ((shift < 18) || (shift > 46)))
1571 		return -EINVAL;
1572 
1573 	mutex_lock(&kvm->lock);
1574 
1575 	resize = kvm->arch.resize_hpt;
1576 
1577 	/* This shouldn't be possible */
1578 	ret = -EIO;
1579 	if (WARN_ON(!kvm->arch.mmu_ready))
1580 		goto out_no_hpt;
1581 
1582 	/* Stop VCPUs from running while we mess with the HPT */
1583 	kvm->arch.mmu_ready = 0;
1584 	smp_mb();
1585 
1586 	/* Boot all CPUs out of the guest so they re-read
1587 	 * mmu_ready */
1588 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1589 
1590 	ret = -ENXIO;
1591 	if (!resize || (resize->order != shift))
1592 		goto out;
1593 
1594 	ret = resize->error;
1595 	if (ret)
1596 		goto out;
1597 
1598 	ret = resize_hpt_rehash(resize);
1599 	if (ret)
1600 		goto out;
1601 
1602 	resize_hpt_pivot(resize);
1603 
1604 out:
1605 	/* Let VCPUs run again */
1606 	kvm->arch.mmu_ready = 1;
1607 	smp_mb();
1608 out_no_hpt:
1609 	resize_hpt_release(kvm, resize);
1610 	mutex_unlock(&kvm->lock);
1611 	return ret;
1612 }
1613 
1614 /*
1615  * Functions for reading and writing the hash table via reads and
1616  * writes on a file descriptor.
1617  *
1618  * Reads return the guest view of the hash table, which has to be
1619  * pieced together from the real hash table and the guest_rpte
1620  * values in the revmap array.
1621  *
1622  * On writes, each HPTE written is considered in turn, and if it
1623  * is valid, it is written to the HPT as if an H_ENTER with the
1624  * exact flag set was done.  When the invalid count is non-zero
1625  * in the header written to the stream, the kernel will make
1626  * sure that that many HPTEs are invalid, and invalidate them
1627  * if not.
1628  */
1629 
1630 struct kvm_htab_ctx {
1631 	unsigned long	index;
1632 	unsigned long	flags;
1633 	struct kvm	*kvm;
1634 	int		first_pass;
1635 };
1636 
1637 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1638 
1639 /*
1640  * Returns 1 if this HPT entry has been modified or has pending
1641  * R/C bit changes.
1642  */
1643 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1644 {
1645 	unsigned long rcbits_unset;
1646 
1647 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1648 		return 1;
1649 
1650 	/* Also need to consider changes in reference and changed bits */
1651 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1652 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1653 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1654 		return 1;
1655 
1656 	return 0;
1657 }
1658 
1659 static long record_hpte(unsigned long flags, __be64 *hptp,
1660 			unsigned long *hpte, struct revmap_entry *revp,
1661 			int want_valid, int first_pass)
1662 {
1663 	unsigned long v, r, hr;
1664 	unsigned long rcbits_unset;
1665 	int ok = 1;
1666 	int valid, dirty;
1667 
1668 	/* Unmodified entries are uninteresting except on the first pass */
1669 	dirty = hpte_dirty(revp, hptp);
1670 	if (!first_pass && !dirty)
1671 		return 0;
1672 
1673 	valid = 0;
1674 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1675 		valid = 1;
1676 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1677 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1678 			valid = 0;
1679 	}
1680 	if (valid != want_valid)
1681 		return 0;
1682 
1683 	v = r = 0;
1684 	if (valid || dirty) {
1685 		/* lock the HPTE so it's stable and read it */
1686 		preempt_disable();
1687 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1688 			cpu_relax();
1689 		v = be64_to_cpu(hptp[0]);
1690 		hr = be64_to_cpu(hptp[1]);
1691 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1692 			v = hpte_new_to_old_v(v, hr);
1693 			hr = hpte_new_to_old_r(hr);
1694 		}
1695 
1696 		/* re-evaluate valid and dirty from synchronized HPTE value */
1697 		valid = !!(v & HPTE_V_VALID);
1698 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1699 
1700 		/* Harvest R and C into guest view if necessary */
1701 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1702 		if (valid && (rcbits_unset & hr)) {
1703 			revp->guest_rpte |= (hr &
1704 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1705 			dirty = 1;
1706 		}
1707 
1708 		if (v & HPTE_V_ABSENT) {
1709 			v &= ~HPTE_V_ABSENT;
1710 			v |= HPTE_V_VALID;
1711 			valid = 1;
1712 		}
1713 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1714 			valid = 0;
1715 
1716 		r = revp->guest_rpte;
1717 		/* only clear modified if this is the right sort of entry */
1718 		if (valid == want_valid && dirty) {
1719 			r &= ~HPTE_GR_MODIFIED;
1720 			revp->guest_rpte = r;
1721 		}
1722 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1723 		preempt_enable();
1724 		if (!(valid == want_valid && (first_pass || dirty)))
1725 			ok = 0;
1726 	}
1727 	hpte[0] = cpu_to_be64(v);
1728 	hpte[1] = cpu_to_be64(r);
1729 	return ok;
1730 }
1731 
1732 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1733 			     size_t count, loff_t *ppos)
1734 {
1735 	struct kvm_htab_ctx *ctx = file->private_data;
1736 	struct kvm *kvm = ctx->kvm;
1737 	struct kvm_get_htab_header hdr;
1738 	__be64 *hptp;
1739 	struct revmap_entry *revp;
1740 	unsigned long i, nb, nw;
1741 	unsigned long __user *lbuf;
1742 	struct kvm_get_htab_header __user *hptr;
1743 	unsigned long flags;
1744 	int first_pass;
1745 	unsigned long hpte[2];
1746 
1747 	if (!access_ok(buf, count))
1748 		return -EFAULT;
1749 	if (kvm_is_radix(kvm))
1750 		return 0;
1751 
1752 	first_pass = ctx->first_pass;
1753 	flags = ctx->flags;
1754 
1755 	i = ctx->index;
1756 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1757 	revp = kvm->arch.hpt.rev + i;
1758 	lbuf = (unsigned long __user *)buf;
1759 
1760 	nb = 0;
1761 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1762 		/* Initialize header */
1763 		hptr = (struct kvm_get_htab_header __user *)buf;
1764 		hdr.n_valid = 0;
1765 		hdr.n_invalid = 0;
1766 		nw = nb;
1767 		nb += sizeof(hdr);
1768 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1769 
1770 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1771 		if (!first_pass) {
1772 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1773 			       !hpte_dirty(revp, hptp)) {
1774 				++i;
1775 				hptp += 2;
1776 				++revp;
1777 			}
1778 		}
1779 		hdr.index = i;
1780 
1781 		/* Grab a series of valid entries */
1782 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1783 		       hdr.n_valid < 0xffff &&
1784 		       nb + HPTE_SIZE < count &&
1785 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1786 			/* valid entry, write it out */
1787 			++hdr.n_valid;
1788 			if (__put_user(hpte[0], lbuf) ||
1789 			    __put_user(hpte[1], lbuf + 1))
1790 				return -EFAULT;
1791 			nb += HPTE_SIZE;
1792 			lbuf += 2;
1793 			++i;
1794 			hptp += 2;
1795 			++revp;
1796 		}
1797 		/* Now skip invalid entries while we can */
1798 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1799 		       hdr.n_invalid < 0xffff &&
1800 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1801 			/* found an invalid entry */
1802 			++hdr.n_invalid;
1803 			++i;
1804 			hptp += 2;
1805 			++revp;
1806 		}
1807 
1808 		if (hdr.n_valid || hdr.n_invalid) {
1809 			/* write back the header */
1810 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1811 				return -EFAULT;
1812 			nw = nb;
1813 			buf = (char __user *)lbuf;
1814 		} else {
1815 			nb = nw;
1816 		}
1817 
1818 		/* Check if we've wrapped around the hash table */
1819 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1820 			i = 0;
1821 			ctx->first_pass = 0;
1822 			break;
1823 		}
1824 	}
1825 
1826 	ctx->index = i;
1827 
1828 	return nb;
1829 }
1830 
1831 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1832 			      size_t count, loff_t *ppos)
1833 {
1834 	struct kvm_htab_ctx *ctx = file->private_data;
1835 	struct kvm *kvm = ctx->kvm;
1836 	struct kvm_get_htab_header hdr;
1837 	unsigned long i, j;
1838 	unsigned long v, r;
1839 	unsigned long __user *lbuf;
1840 	__be64 *hptp;
1841 	unsigned long tmp[2];
1842 	ssize_t nb;
1843 	long int err, ret;
1844 	int mmu_ready;
1845 	int pshift;
1846 
1847 	if (!access_ok(buf, count))
1848 		return -EFAULT;
1849 	if (kvm_is_radix(kvm))
1850 		return -EINVAL;
1851 
1852 	/* lock out vcpus from running while we're doing this */
1853 	mutex_lock(&kvm->lock);
1854 	mmu_ready = kvm->arch.mmu_ready;
1855 	if (mmu_ready) {
1856 		kvm->arch.mmu_ready = 0;	/* temporarily */
1857 		/* order mmu_ready vs. vcpus_running */
1858 		smp_mb();
1859 		if (atomic_read(&kvm->arch.vcpus_running)) {
1860 			kvm->arch.mmu_ready = 1;
1861 			mutex_unlock(&kvm->lock);
1862 			return -EBUSY;
1863 		}
1864 	}
1865 
1866 	err = 0;
1867 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1868 		err = -EFAULT;
1869 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1870 			break;
1871 
1872 		err = 0;
1873 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1874 			break;
1875 
1876 		nb += sizeof(hdr);
1877 		buf += sizeof(hdr);
1878 
1879 		err = -EINVAL;
1880 		i = hdr.index;
1881 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1882 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1883 			break;
1884 
1885 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1886 		lbuf = (unsigned long __user *)buf;
1887 		for (j = 0; j < hdr.n_valid; ++j) {
1888 			__be64 hpte_v;
1889 			__be64 hpte_r;
1890 
1891 			err = -EFAULT;
1892 			if (__get_user(hpte_v, lbuf) ||
1893 			    __get_user(hpte_r, lbuf + 1))
1894 				goto out;
1895 			v = be64_to_cpu(hpte_v);
1896 			r = be64_to_cpu(hpte_r);
1897 			err = -EINVAL;
1898 			if (!(v & HPTE_V_VALID))
1899 				goto out;
1900 			pshift = kvmppc_hpte_base_page_shift(v, r);
1901 			if (pshift <= 0)
1902 				goto out;
1903 			lbuf += 2;
1904 			nb += HPTE_SIZE;
1905 
1906 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1907 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1908 			err = -EIO;
1909 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1910 							 tmp);
1911 			if (ret != H_SUCCESS) {
1912 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1913 				       "r=%lx\n", ret, i, v, r);
1914 				goto out;
1915 			}
1916 			if (!mmu_ready && is_vrma_hpte(v)) {
1917 				unsigned long senc, lpcr;
1918 
1919 				senc = slb_pgsize_encoding(1ul << pshift);
1920 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1921 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1922 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1923 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1924 					kvmppc_update_lpcr(kvm, lpcr,
1925 							   LPCR_VRMASD);
1926 				} else {
1927 					kvmppc_setup_partition_table(kvm);
1928 				}
1929 				mmu_ready = 1;
1930 			}
1931 			++i;
1932 			hptp += 2;
1933 		}
1934 
1935 		for (j = 0; j < hdr.n_invalid; ++j) {
1936 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1937 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1938 			++i;
1939 			hptp += 2;
1940 		}
1941 		err = 0;
1942 	}
1943 
1944  out:
1945 	/* Order HPTE updates vs. mmu_ready */
1946 	smp_wmb();
1947 	kvm->arch.mmu_ready = mmu_ready;
1948 	mutex_unlock(&kvm->lock);
1949 
1950 	if (err)
1951 		return err;
1952 	return nb;
1953 }
1954 
1955 static int kvm_htab_release(struct inode *inode, struct file *filp)
1956 {
1957 	struct kvm_htab_ctx *ctx = filp->private_data;
1958 
1959 	filp->private_data = NULL;
1960 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1961 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1962 	kvm_put_kvm(ctx->kvm);
1963 	kfree(ctx);
1964 	return 0;
1965 }
1966 
1967 static const struct file_operations kvm_htab_fops = {
1968 	.read		= kvm_htab_read,
1969 	.write		= kvm_htab_write,
1970 	.llseek		= default_llseek,
1971 	.release	= kvm_htab_release,
1972 };
1973 
1974 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1975 {
1976 	int ret;
1977 	struct kvm_htab_ctx *ctx;
1978 	int rwflag;
1979 
1980 	/* reject flags we don't recognize */
1981 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1982 		return -EINVAL;
1983 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1984 	if (!ctx)
1985 		return -ENOMEM;
1986 	kvm_get_kvm(kvm);
1987 	ctx->kvm = kvm;
1988 	ctx->index = ghf->start_index;
1989 	ctx->flags = ghf->flags;
1990 	ctx->first_pass = 1;
1991 
1992 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1993 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1994 	if (ret < 0) {
1995 		kfree(ctx);
1996 		kvm_put_kvm(kvm);
1997 		return ret;
1998 	}
1999 
2000 	if (rwflag == O_RDONLY) {
2001 		mutex_lock(&kvm->slots_lock);
2002 		atomic_inc(&kvm->arch.hpte_mod_interest);
2003 		/* make sure kvmppc_do_h_enter etc. see the increment */
2004 		synchronize_srcu_expedited(&kvm->srcu);
2005 		mutex_unlock(&kvm->slots_lock);
2006 	}
2007 
2008 	return ret;
2009 }
2010 
2011 struct debugfs_htab_state {
2012 	struct kvm	*kvm;
2013 	struct mutex	mutex;
2014 	unsigned long	hpt_index;
2015 	int		chars_left;
2016 	int		buf_index;
2017 	char		buf[64];
2018 };
2019 
2020 static int debugfs_htab_open(struct inode *inode, struct file *file)
2021 {
2022 	struct kvm *kvm = inode->i_private;
2023 	struct debugfs_htab_state *p;
2024 
2025 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2026 	if (!p)
2027 		return -ENOMEM;
2028 
2029 	kvm_get_kvm(kvm);
2030 	p->kvm = kvm;
2031 	mutex_init(&p->mutex);
2032 	file->private_data = p;
2033 
2034 	return nonseekable_open(inode, file);
2035 }
2036 
2037 static int debugfs_htab_release(struct inode *inode, struct file *file)
2038 {
2039 	struct debugfs_htab_state *p = file->private_data;
2040 
2041 	kvm_put_kvm(p->kvm);
2042 	kfree(p);
2043 	return 0;
2044 }
2045 
2046 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2047 				 size_t len, loff_t *ppos)
2048 {
2049 	struct debugfs_htab_state *p = file->private_data;
2050 	ssize_t ret, r;
2051 	unsigned long i, n;
2052 	unsigned long v, hr, gr;
2053 	struct kvm *kvm;
2054 	__be64 *hptp;
2055 
2056 	kvm = p->kvm;
2057 	if (kvm_is_radix(kvm))
2058 		return 0;
2059 
2060 	ret = mutex_lock_interruptible(&p->mutex);
2061 	if (ret)
2062 		return ret;
2063 
2064 	if (p->chars_left) {
2065 		n = p->chars_left;
2066 		if (n > len)
2067 			n = len;
2068 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2069 		n -= r;
2070 		p->chars_left -= n;
2071 		p->buf_index += n;
2072 		buf += n;
2073 		len -= n;
2074 		ret = n;
2075 		if (r) {
2076 			if (!n)
2077 				ret = -EFAULT;
2078 			goto out;
2079 		}
2080 	}
2081 
2082 	i = p->hpt_index;
2083 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2084 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2085 	     ++i, hptp += 2) {
2086 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2087 			continue;
2088 
2089 		/* lock the HPTE so it's stable and read it */
2090 		preempt_disable();
2091 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2092 			cpu_relax();
2093 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2094 		hr = be64_to_cpu(hptp[1]);
2095 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2096 		unlock_hpte(hptp, v);
2097 		preempt_enable();
2098 
2099 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2100 			continue;
2101 
2102 		n = scnprintf(p->buf, sizeof(p->buf),
2103 			      "%6lx %.16lx %.16lx %.16lx\n",
2104 			      i, v, hr, gr);
2105 		p->chars_left = n;
2106 		if (n > len)
2107 			n = len;
2108 		r = copy_to_user(buf, p->buf, n);
2109 		n -= r;
2110 		p->chars_left -= n;
2111 		p->buf_index = n;
2112 		buf += n;
2113 		len -= n;
2114 		ret += n;
2115 		if (r) {
2116 			if (!ret)
2117 				ret = -EFAULT;
2118 			goto out;
2119 		}
2120 	}
2121 	p->hpt_index = i;
2122 
2123  out:
2124 	mutex_unlock(&p->mutex);
2125 	return ret;
2126 }
2127 
2128 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2129 			   size_t len, loff_t *ppos)
2130 {
2131 	return -EACCES;
2132 }
2133 
2134 static const struct file_operations debugfs_htab_fops = {
2135 	.owner	 = THIS_MODULE,
2136 	.open	 = debugfs_htab_open,
2137 	.release = debugfs_htab_release,
2138 	.read	 = debugfs_htab_read,
2139 	.write	 = debugfs_htab_write,
2140 	.llseek	 = generic_file_llseek,
2141 };
2142 
2143 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2144 {
2145 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2146 						    kvm->arch.debugfs_dir, kvm,
2147 						    &debugfs_htab_fops);
2148 }
2149 
2150 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2151 {
2152 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2153 
2154 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2155 
2156 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2157 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2158 
2159 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2160 }
2161