1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "trace_hv.h" 31 32 //#define DEBUG_RESIZE_HPT 1 33 34 #ifdef DEBUG_RESIZE_HPT 35 #define resize_hpt_debug(resize, ...) \ 36 do { \ 37 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 38 printk(__VA_ARGS__); \ 39 } while (0) 40 #else 41 #define resize_hpt_debug(resize, ...) \ 42 do { } while (0) 43 #endif 44 45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 46 long pte_index, unsigned long pteh, 47 unsigned long ptel, unsigned long *pte_idx_ret); 48 49 struct kvm_resize_hpt { 50 /* These fields read-only after init */ 51 struct kvm *kvm; 52 struct work_struct work; 53 u32 order; 54 55 /* These fields protected by kvm->arch.mmu_setup_lock */ 56 57 /* Possible values and their usage: 58 * <0 an error occurred during allocation, 59 * -EBUSY allocation is in the progress, 60 * 0 allocation made successfuly. 61 */ 62 int error; 63 64 /* Private to the work thread, until error != -EBUSY, 65 * then protected by kvm->arch.mmu_setup_lock. 66 */ 67 struct kvm_hpt_info hpt; 68 }; 69 70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 71 { 72 unsigned long hpt = 0; 73 int cma = 0; 74 struct page *page = NULL; 75 struct revmap_entry *rev; 76 unsigned long npte; 77 78 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 79 return -EINVAL; 80 81 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 82 if (page) { 83 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 84 memset((void *)hpt, 0, (1ul << order)); 85 cma = 1; 86 } 87 88 if (!hpt) 89 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 90 |__GFP_NOWARN, order - PAGE_SHIFT); 91 92 if (!hpt) 93 return -ENOMEM; 94 95 /* HPTEs are 2**4 bytes long */ 96 npte = 1ul << (order - 4); 97 98 /* Allocate reverse map array */ 99 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 100 if (!rev) { 101 if (cma) 102 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 103 else 104 free_pages(hpt, order - PAGE_SHIFT); 105 return -ENOMEM; 106 } 107 108 info->order = order; 109 info->virt = hpt; 110 info->cma = cma; 111 info->rev = rev; 112 113 return 0; 114 } 115 116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 117 { 118 atomic64_set(&kvm->arch.mmio_update, 0); 119 kvm->arch.hpt = *info; 120 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 121 122 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 123 info->virt, (long)info->order, kvm->arch.lpid); 124 } 125 126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 127 { 128 long err = -EBUSY; 129 struct kvm_hpt_info info; 130 131 mutex_lock(&kvm->arch.mmu_setup_lock); 132 if (kvm->arch.mmu_ready) { 133 kvm->arch.mmu_ready = 0; 134 /* order mmu_ready vs. vcpus_running */ 135 smp_mb(); 136 if (atomic_read(&kvm->arch.vcpus_running)) { 137 kvm->arch.mmu_ready = 1; 138 goto out; 139 } 140 } 141 if (kvm_is_radix(kvm)) { 142 err = kvmppc_switch_mmu_to_hpt(kvm); 143 if (err) 144 goto out; 145 } 146 147 if (kvm->arch.hpt.order == order) { 148 /* We already have a suitable HPT */ 149 150 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 151 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 152 /* 153 * Reset all the reverse-mapping chains for all memslots 154 */ 155 kvmppc_rmap_reset(kvm); 156 err = 0; 157 goto out; 158 } 159 160 if (kvm->arch.hpt.virt) { 161 kvmppc_free_hpt(&kvm->arch.hpt); 162 kvmppc_rmap_reset(kvm); 163 } 164 165 err = kvmppc_allocate_hpt(&info, order); 166 if (err < 0) 167 goto out; 168 kvmppc_set_hpt(kvm, &info); 169 170 out: 171 if (err == 0) 172 /* Ensure that each vcpu will flush its TLB on next entry. */ 173 cpumask_setall(&kvm->arch.need_tlb_flush); 174 175 mutex_unlock(&kvm->arch.mmu_setup_lock); 176 return err; 177 } 178 179 void kvmppc_free_hpt(struct kvm_hpt_info *info) 180 { 181 vfree(info->rev); 182 info->rev = NULL; 183 if (info->cma) 184 kvm_free_hpt_cma(virt_to_page(info->virt), 185 1 << (info->order - PAGE_SHIFT)); 186 else if (info->virt) 187 free_pages(info->virt, info->order - PAGE_SHIFT); 188 info->virt = 0; 189 info->order = 0; 190 } 191 192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 194 { 195 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 196 } 197 198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 200 { 201 return (pgsize == 0x10000) ? 0x1000 : 0; 202 } 203 204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 205 unsigned long porder) 206 { 207 unsigned long i; 208 unsigned long npages; 209 unsigned long hp_v, hp_r; 210 unsigned long addr, hash; 211 unsigned long psize; 212 unsigned long hp0, hp1; 213 unsigned long idx_ret; 214 long ret; 215 struct kvm *kvm = vcpu->kvm; 216 217 psize = 1ul << porder; 218 npages = memslot->npages >> (porder - PAGE_SHIFT); 219 220 /* VRMA can't be > 1TB */ 221 if (npages > 1ul << (40 - porder)) 222 npages = 1ul << (40 - porder); 223 /* Can't use more than 1 HPTE per HPTEG */ 224 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 225 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 226 227 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 228 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 229 hp1 = hpte1_pgsize_encoding(psize) | 230 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 231 232 for (i = 0; i < npages; ++i) { 233 addr = i << porder; 234 /* can't use hpt_hash since va > 64 bits */ 235 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 236 & kvmppc_hpt_mask(&kvm->arch.hpt); 237 /* 238 * We assume that the hash table is empty and no 239 * vcpus are using it at this stage. Since we create 240 * at most one HPTE per HPTEG, we just assume entry 7 241 * is available and use it. 242 */ 243 hash = (hash << 3) + 7; 244 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 245 hp_r = hp1 | addr; 246 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 247 &idx_ret); 248 if (ret != H_SUCCESS) { 249 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 250 addr, ret); 251 break; 252 } 253 } 254 } 255 256 int kvmppc_mmu_hv_init(void) 257 { 258 unsigned long host_lpid, rsvd_lpid; 259 260 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 261 return -EINVAL; 262 263 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 264 host_lpid = 0; 265 if (cpu_has_feature(CPU_FTR_HVMODE)) 266 host_lpid = mfspr(SPRN_LPID); 267 rsvd_lpid = LPID_RSVD; 268 269 kvmppc_init_lpid(rsvd_lpid + 1); 270 271 kvmppc_claim_lpid(host_lpid); 272 /* rsvd_lpid is reserved for use in partition switching */ 273 kvmppc_claim_lpid(rsvd_lpid); 274 275 return 0; 276 } 277 278 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 279 long pte_index, unsigned long pteh, 280 unsigned long ptel, unsigned long *pte_idx_ret) 281 { 282 long ret; 283 284 /* Protect linux PTE lookup from page table destruction */ 285 rcu_read_lock_sched(); /* this disables preemption too */ 286 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 287 kvm->mm->pgd, false, pte_idx_ret); 288 rcu_read_unlock_sched(); 289 if (ret == H_TOO_HARD) { 290 /* this can't happen */ 291 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 292 ret = H_RESOURCE; /* or something */ 293 } 294 return ret; 295 296 } 297 298 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 299 gva_t eaddr) 300 { 301 u64 mask; 302 int i; 303 304 for (i = 0; i < vcpu->arch.slb_nr; i++) { 305 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 306 continue; 307 308 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 309 mask = ESID_MASK_1T; 310 else 311 mask = ESID_MASK; 312 313 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 314 return &vcpu->arch.slb[i]; 315 } 316 return NULL; 317 } 318 319 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 320 unsigned long ea) 321 { 322 unsigned long ra_mask; 323 324 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 325 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 326 } 327 328 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 329 struct kvmppc_pte *gpte, bool data, bool iswrite) 330 { 331 struct kvm *kvm = vcpu->kvm; 332 struct kvmppc_slb *slbe; 333 unsigned long slb_v; 334 unsigned long pp, key; 335 unsigned long v, orig_v, gr; 336 __be64 *hptep; 337 long int index; 338 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 339 340 if (kvm_is_radix(vcpu->kvm)) 341 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 342 343 /* Get SLB entry */ 344 if (virtmode) { 345 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 346 if (!slbe) 347 return -EINVAL; 348 slb_v = slbe->origv; 349 } else { 350 /* real mode access */ 351 slb_v = vcpu->kvm->arch.vrma_slb_v; 352 } 353 354 preempt_disable(); 355 /* Find the HPTE in the hash table */ 356 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 357 HPTE_V_VALID | HPTE_V_ABSENT); 358 if (index < 0) { 359 preempt_enable(); 360 return -ENOENT; 361 } 362 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 363 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 364 if (cpu_has_feature(CPU_FTR_ARCH_300)) 365 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 366 gr = kvm->arch.hpt.rev[index].guest_rpte; 367 368 unlock_hpte(hptep, orig_v); 369 preempt_enable(); 370 371 gpte->eaddr = eaddr; 372 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 373 374 /* Get PP bits and key for permission check */ 375 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 376 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 377 key &= slb_v; 378 379 /* Calculate permissions */ 380 gpte->may_read = hpte_read_permission(pp, key); 381 gpte->may_write = hpte_write_permission(pp, key); 382 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 383 384 /* Storage key permission check for POWER7 */ 385 if (data && virtmode) { 386 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 387 if (amrfield & 1) 388 gpte->may_read = 0; 389 if (amrfield & 2) 390 gpte->may_write = 0; 391 } 392 393 /* Get the guest physical address */ 394 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 395 return 0; 396 } 397 398 /* 399 * Quick test for whether an instruction is a load or a store. 400 * If the instruction is a load or a store, then this will indicate 401 * which it is, at least on server processors. (Embedded processors 402 * have some external PID instructions that don't follow the rule 403 * embodied here.) If the instruction isn't a load or store, then 404 * this doesn't return anything useful. 405 */ 406 static int instruction_is_store(unsigned int instr) 407 { 408 unsigned int mask; 409 410 mask = 0x10000000; 411 if ((instr & 0xfc000000) == 0x7c000000) 412 mask = 0x100; /* major opcode 31 */ 413 return (instr & mask) != 0; 414 } 415 416 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 417 unsigned long gpa, gva_t ea, int is_store) 418 { 419 u32 last_inst; 420 421 /* 422 * Fast path - check if the guest physical address corresponds to a 423 * device on the FAST_MMIO_BUS, if so we can avoid loading the 424 * instruction all together, then we can just handle it and return. 425 */ 426 if (is_store) { 427 int idx, ret; 428 429 idx = srcu_read_lock(&vcpu->kvm->srcu); 430 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 431 NULL); 432 srcu_read_unlock(&vcpu->kvm->srcu, idx); 433 if (!ret) { 434 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 435 return RESUME_GUEST; 436 } 437 } 438 439 /* 440 * If we fail, we just return to the guest and try executing it again. 441 */ 442 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 443 EMULATE_DONE) 444 return RESUME_GUEST; 445 446 /* 447 * WARNING: We do not know for sure whether the instruction we just 448 * read from memory is the same that caused the fault in the first 449 * place. If the instruction we read is neither an load or a store, 450 * then it can't access memory, so we don't need to worry about 451 * enforcing access permissions. So, assuming it is a load or 452 * store, we just check that its direction (load or store) is 453 * consistent with the original fault, since that's what we 454 * checked the access permissions against. If there is a mismatch 455 * we just return and retry the instruction. 456 */ 457 458 if (instruction_is_store(last_inst) != !!is_store) 459 return RESUME_GUEST; 460 461 /* 462 * Emulated accesses are emulated by looking at the hash for 463 * translation once, then performing the access later. The 464 * translation could be invalidated in the meantime in which 465 * point performing the subsequent memory access on the old 466 * physical address could possibly be a security hole for the 467 * guest (but not the host). 468 * 469 * This is less of an issue for MMIO stores since they aren't 470 * globally visible. It could be an issue for MMIO loads to 471 * a certain extent but we'll ignore it for now. 472 */ 473 474 vcpu->arch.paddr_accessed = gpa; 475 vcpu->arch.vaddr_accessed = ea; 476 return kvmppc_emulate_mmio(run, vcpu); 477 } 478 479 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 480 unsigned long ea, unsigned long dsisr) 481 { 482 struct kvm *kvm = vcpu->kvm; 483 unsigned long hpte[3], r; 484 unsigned long hnow_v, hnow_r; 485 __be64 *hptep; 486 unsigned long mmu_seq, psize, pte_size; 487 unsigned long gpa_base, gfn_base; 488 unsigned long gpa, gfn, hva, pfn, hpa; 489 struct kvm_memory_slot *memslot; 490 unsigned long *rmap; 491 struct revmap_entry *rev; 492 struct page *page; 493 long index, ret; 494 bool is_ci; 495 bool writing, write_ok; 496 unsigned int shift; 497 unsigned long rcbits; 498 long mmio_update; 499 pte_t pte, *ptep; 500 501 if (kvm_is_radix(kvm)) 502 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 503 504 /* 505 * Real-mode code has already searched the HPT and found the 506 * entry we're interested in. Lock the entry and check that 507 * it hasn't changed. If it has, just return and re-execute the 508 * instruction. 509 */ 510 if (ea != vcpu->arch.pgfault_addr) 511 return RESUME_GUEST; 512 513 if (vcpu->arch.pgfault_cache) { 514 mmio_update = atomic64_read(&kvm->arch.mmio_update); 515 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 516 r = vcpu->arch.pgfault_cache->rpte; 517 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 518 r); 519 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 520 gfn_base = gpa_base >> PAGE_SHIFT; 521 gpa = gpa_base | (ea & (psize - 1)); 522 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 523 dsisr & DSISR_ISSTORE); 524 } 525 } 526 index = vcpu->arch.pgfault_index; 527 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 528 rev = &kvm->arch.hpt.rev[index]; 529 preempt_disable(); 530 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 531 cpu_relax(); 532 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 533 hpte[1] = be64_to_cpu(hptep[1]); 534 hpte[2] = r = rev->guest_rpte; 535 unlock_hpte(hptep, hpte[0]); 536 preempt_enable(); 537 538 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 539 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 540 hpte[1] = hpte_new_to_old_r(hpte[1]); 541 } 542 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 543 hpte[1] != vcpu->arch.pgfault_hpte[1]) 544 return RESUME_GUEST; 545 546 /* Translate the logical address and get the page */ 547 psize = kvmppc_actual_pgsz(hpte[0], r); 548 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 549 gfn_base = gpa_base >> PAGE_SHIFT; 550 gpa = gpa_base | (ea & (psize - 1)); 551 gfn = gpa >> PAGE_SHIFT; 552 memslot = gfn_to_memslot(kvm, gfn); 553 554 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 555 556 /* No memslot means it's an emulated MMIO region */ 557 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 558 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 559 dsisr & DSISR_ISSTORE); 560 561 /* 562 * This should never happen, because of the slot_is_aligned() 563 * check in kvmppc_do_h_enter(). 564 */ 565 if (gfn_base < memslot->base_gfn) 566 return -EFAULT; 567 568 /* used to check for invalidations in progress */ 569 mmu_seq = kvm->mmu_notifier_seq; 570 smp_rmb(); 571 572 ret = -EFAULT; 573 page = NULL; 574 writing = (dsisr & DSISR_ISSTORE) != 0; 575 /* If writing != 0, then the HPTE must allow writing, if we get here */ 576 write_ok = writing; 577 hva = gfn_to_hva_memslot(memslot, gfn); 578 579 /* 580 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 581 * do it with !atomic && !async, which is how we call it. 582 * We always ask for write permission since the common case 583 * is that the page is writable. 584 */ 585 if (__get_user_pages_fast(hva, 1, 1, &page) == 1) { 586 write_ok = true; 587 } else { 588 /* Call KVM generic code to do the slow-path check */ 589 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 590 writing, &write_ok); 591 if (is_error_noslot_pfn(pfn)) 592 return -EFAULT; 593 page = NULL; 594 if (pfn_valid(pfn)) { 595 page = pfn_to_page(pfn); 596 if (PageReserved(page)) 597 page = NULL; 598 } 599 } 600 601 /* 602 * Read the PTE from the process' radix tree and use that 603 * so we get the shift and attribute bits. 604 */ 605 local_irq_disable(); 606 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); 607 pte = __pte(0); 608 if (ptep) 609 pte = *ptep; 610 local_irq_enable(); 611 /* 612 * If the PTE disappeared temporarily due to a THP 613 * collapse, just return and let the guest try again. 614 */ 615 if (!pte_present(pte)) { 616 if (page) 617 put_page(page); 618 return RESUME_GUEST; 619 } 620 hpa = pte_pfn(pte) << PAGE_SHIFT; 621 pte_size = PAGE_SIZE; 622 if (shift) 623 pte_size = 1ul << shift; 624 is_ci = pte_ci(pte); 625 626 if (psize > pte_size) 627 goto out_put; 628 if (pte_size > psize) 629 hpa |= hva & (pte_size - psize); 630 631 /* Check WIMG vs. the actual page we're accessing */ 632 if (!hpte_cache_flags_ok(r, is_ci)) { 633 if (is_ci) 634 goto out_put; 635 /* 636 * Allow guest to map emulated device memory as 637 * uncacheable, but actually make it cacheable. 638 */ 639 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 640 } 641 642 /* 643 * Set the HPTE to point to hpa. 644 * Since the hpa is at PAGE_SIZE granularity, make sure we 645 * don't mask out lower-order bits if psize < PAGE_SIZE. 646 */ 647 if (psize < PAGE_SIZE) 648 psize = PAGE_SIZE; 649 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; 650 if (hpte_is_writable(r) && !write_ok) 651 r = hpte_make_readonly(r); 652 ret = RESUME_GUEST; 653 preempt_disable(); 654 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 655 cpu_relax(); 656 hnow_v = be64_to_cpu(hptep[0]); 657 hnow_r = be64_to_cpu(hptep[1]); 658 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 659 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 660 hnow_r = hpte_new_to_old_r(hnow_r); 661 } 662 663 /* 664 * If the HPT is being resized, don't update the HPTE, 665 * instead let the guest retry after the resize operation is complete. 666 * The synchronization for mmu_ready test vs. set is provided 667 * by the HPTE lock. 668 */ 669 if (!kvm->arch.mmu_ready) 670 goto out_unlock; 671 672 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 673 rev->guest_rpte != hpte[2]) 674 /* HPTE has been changed under us; let the guest retry */ 675 goto out_unlock; 676 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 677 678 /* Always put the HPTE in the rmap chain for the page base address */ 679 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 680 lock_rmap(rmap); 681 682 /* Check if we might have been invalidated; let the guest retry if so */ 683 ret = RESUME_GUEST; 684 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 685 unlock_rmap(rmap); 686 goto out_unlock; 687 } 688 689 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 690 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 691 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 692 693 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 694 /* HPTE was previously valid, so we need to invalidate it */ 695 unlock_rmap(rmap); 696 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 697 kvmppc_invalidate_hpte(kvm, hptep, index); 698 /* don't lose previous R and C bits */ 699 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 700 } else { 701 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 702 } 703 704 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 705 r = hpte_old_to_new_r(hpte[0], r); 706 hpte[0] = hpte_old_to_new_v(hpte[0]); 707 } 708 hptep[1] = cpu_to_be64(r); 709 eieio(); 710 __unlock_hpte(hptep, hpte[0]); 711 asm volatile("ptesync" : : : "memory"); 712 preempt_enable(); 713 if (page && hpte_is_writable(r)) 714 set_page_dirty_lock(page); 715 716 out_put: 717 trace_kvm_page_fault_exit(vcpu, hpte, ret); 718 719 if (page) 720 put_page(page); 721 return ret; 722 723 out_unlock: 724 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 725 preempt_enable(); 726 goto out_put; 727 } 728 729 void kvmppc_rmap_reset(struct kvm *kvm) 730 { 731 struct kvm_memslots *slots; 732 struct kvm_memory_slot *memslot; 733 int srcu_idx; 734 735 srcu_idx = srcu_read_lock(&kvm->srcu); 736 slots = kvm_memslots(kvm); 737 kvm_for_each_memslot(memslot, slots) { 738 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 739 spin_lock(&kvm->mmu_lock); 740 /* 741 * This assumes it is acceptable to lose reference and 742 * change bits across a reset. 743 */ 744 memset(memslot->arch.rmap, 0, 745 memslot->npages * sizeof(*memslot->arch.rmap)); 746 spin_unlock(&kvm->mmu_lock); 747 } 748 srcu_read_unlock(&kvm->srcu, srcu_idx); 749 } 750 751 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 752 unsigned long gfn); 753 754 static int kvm_handle_hva_range(struct kvm *kvm, 755 unsigned long start, 756 unsigned long end, 757 hva_handler_fn handler) 758 { 759 int ret; 760 int retval = 0; 761 struct kvm_memslots *slots; 762 struct kvm_memory_slot *memslot; 763 764 slots = kvm_memslots(kvm); 765 kvm_for_each_memslot(memslot, slots) { 766 unsigned long hva_start, hva_end; 767 gfn_t gfn, gfn_end; 768 769 hva_start = max(start, memslot->userspace_addr); 770 hva_end = min(end, memslot->userspace_addr + 771 (memslot->npages << PAGE_SHIFT)); 772 if (hva_start >= hva_end) 773 continue; 774 /* 775 * {gfn(page) | page intersects with [hva_start, hva_end)} = 776 * {gfn, gfn+1, ..., gfn_end-1}. 777 */ 778 gfn = hva_to_gfn_memslot(hva_start, memslot); 779 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 780 781 for (; gfn < gfn_end; ++gfn) { 782 ret = handler(kvm, memslot, gfn); 783 retval |= ret; 784 } 785 } 786 787 return retval; 788 } 789 790 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 791 hva_handler_fn handler) 792 { 793 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 794 } 795 796 /* Must be called with both HPTE and rmap locked */ 797 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 798 struct kvm_memory_slot *memslot, 799 unsigned long *rmapp, unsigned long gfn) 800 { 801 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 802 struct revmap_entry *rev = kvm->arch.hpt.rev; 803 unsigned long j, h; 804 unsigned long ptel, psize, rcbits; 805 806 j = rev[i].forw; 807 if (j == i) { 808 /* chain is now empty */ 809 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 810 } else { 811 /* remove i from chain */ 812 h = rev[i].back; 813 rev[h].forw = j; 814 rev[j].back = h; 815 rev[i].forw = rev[i].back = i; 816 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 817 } 818 819 /* Now check and modify the HPTE */ 820 ptel = rev[i].guest_rpte; 821 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 822 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 823 hpte_rpn(ptel, psize) == gfn) { 824 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 825 kvmppc_invalidate_hpte(kvm, hptep, i); 826 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 827 /* Harvest R and C */ 828 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 829 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 830 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 831 kvmppc_update_dirty_map(memslot, gfn, psize); 832 if (rcbits & ~rev[i].guest_rpte) { 833 rev[i].guest_rpte = ptel | rcbits; 834 note_hpte_modification(kvm, &rev[i]); 835 } 836 } 837 } 838 839 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 840 unsigned long gfn) 841 { 842 unsigned long i; 843 __be64 *hptep; 844 unsigned long *rmapp; 845 846 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 847 for (;;) { 848 lock_rmap(rmapp); 849 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 850 unlock_rmap(rmapp); 851 break; 852 } 853 854 /* 855 * To avoid an ABBA deadlock with the HPTE lock bit, 856 * we can't spin on the HPTE lock while holding the 857 * rmap chain lock. 858 */ 859 i = *rmapp & KVMPPC_RMAP_INDEX; 860 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 861 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 862 /* unlock rmap before spinning on the HPTE lock */ 863 unlock_rmap(rmapp); 864 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 865 cpu_relax(); 866 continue; 867 } 868 869 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 870 unlock_rmap(rmapp); 871 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 872 } 873 return 0; 874 } 875 876 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 877 { 878 hva_handler_fn handler; 879 880 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 881 kvm_handle_hva_range(kvm, start, end, handler); 882 return 0; 883 } 884 885 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 886 struct kvm_memory_slot *memslot) 887 { 888 unsigned long gfn; 889 unsigned long n; 890 unsigned long *rmapp; 891 892 gfn = memslot->base_gfn; 893 rmapp = memslot->arch.rmap; 894 if (kvm_is_radix(kvm)) { 895 kvmppc_radix_flush_memslot(kvm, memslot); 896 return; 897 } 898 899 for (n = memslot->npages; n; --n, ++gfn) { 900 /* 901 * Testing the present bit without locking is OK because 902 * the memslot has been marked invalid already, and hence 903 * no new HPTEs referencing this page can be created, 904 * thus the present bit can't go from 0 to 1. 905 */ 906 if (*rmapp & KVMPPC_RMAP_PRESENT) 907 kvm_unmap_rmapp(kvm, memslot, gfn); 908 ++rmapp; 909 } 910 } 911 912 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 913 unsigned long gfn) 914 { 915 struct revmap_entry *rev = kvm->arch.hpt.rev; 916 unsigned long head, i, j; 917 __be64 *hptep; 918 int ret = 0; 919 unsigned long *rmapp; 920 921 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 922 retry: 923 lock_rmap(rmapp); 924 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 925 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 926 ret = 1; 927 } 928 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 929 unlock_rmap(rmapp); 930 return ret; 931 } 932 933 i = head = *rmapp & KVMPPC_RMAP_INDEX; 934 do { 935 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 936 j = rev[i].forw; 937 938 /* If this HPTE isn't referenced, ignore it */ 939 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 940 continue; 941 942 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 943 /* unlock rmap before spinning on the HPTE lock */ 944 unlock_rmap(rmapp); 945 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 946 cpu_relax(); 947 goto retry; 948 } 949 950 /* Now check and modify the HPTE */ 951 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 952 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 953 kvmppc_clear_ref_hpte(kvm, hptep, i); 954 if (!(rev[i].guest_rpte & HPTE_R_R)) { 955 rev[i].guest_rpte |= HPTE_R_R; 956 note_hpte_modification(kvm, &rev[i]); 957 } 958 ret = 1; 959 } 960 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 961 } while ((i = j) != head); 962 963 unlock_rmap(rmapp); 964 return ret; 965 } 966 967 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 968 { 969 hva_handler_fn handler; 970 971 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 972 return kvm_handle_hva_range(kvm, start, end, handler); 973 } 974 975 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 976 unsigned long gfn) 977 { 978 struct revmap_entry *rev = kvm->arch.hpt.rev; 979 unsigned long head, i, j; 980 unsigned long *hp; 981 int ret = 1; 982 unsigned long *rmapp; 983 984 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 985 if (*rmapp & KVMPPC_RMAP_REFERENCED) 986 return 1; 987 988 lock_rmap(rmapp); 989 if (*rmapp & KVMPPC_RMAP_REFERENCED) 990 goto out; 991 992 if (*rmapp & KVMPPC_RMAP_PRESENT) { 993 i = head = *rmapp & KVMPPC_RMAP_INDEX; 994 do { 995 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 996 j = rev[i].forw; 997 if (be64_to_cpu(hp[1]) & HPTE_R_R) 998 goto out; 999 } while ((i = j) != head); 1000 } 1001 ret = 0; 1002 1003 out: 1004 unlock_rmap(rmapp); 1005 return ret; 1006 } 1007 1008 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1009 { 1010 hva_handler_fn handler; 1011 1012 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1013 return kvm_handle_hva(kvm, hva, handler); 1014 } 1015 1016 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1017 { 1018 hva_handler_fn handler; 1019 1020 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1021 kvm_handle_hva(kvm, hva, handler); 1022 } 1023 1024 static int vcpus_running(struct kvm *kvm) 1025 { 1026 return atomic_read(&kvm->arch.vcpus_running) != 0; 1027 } 1028 1029 /* 1030 * Returns the number of system pages that are dirty. 1031 * This can be more than 1 if we find a huge-page HPTE. 1032 */ 1033 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1034 { 1035 struct revmap_entry *rev = kvm->arch.hpt.rev; 1036 unsigned long head, i, j; 1037 unsigned long n; 1038 unsigned long v, r; 1039 __be64 *hptep; 1040 int npages_dirty = 0; 1041 1042 retry: 1043 lock_rmap(rmapp); 1044 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1045 unlock_rmap(rmapp); 1046 return npages_dirty; 1047 } 1048 1049 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1050 do { 1051 unsigned long hptep1; 1052 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1053 j = rev[i].forw; 1054 1055 /* 1056 * Checking the C (changed) bit here is racy since there 1057 * is no guarantee about when the hardware writes it back. 1058 * If the HPTE is not writable then it is stable since the 1059 * page can't be written to, and we would have done a tlbie 1060 * (which forces the hardware to complete any writeback) 1061 * when making the HPTE read-only. 1062 * If vcpus are running then this call is racy anyway 1063 * since the page could get dirtied subsequently, so we 1064 * expect there to be a further call which would pick up 1065 * any delayed C bit writeback. 1066 * Otherwise we need to do the tlbie even if C==0 in 1067 * order to pick up any delayed writeback of C. 1068 */ 1069 hptep1 = be64_to_cpu(hptep[1]); 1070 if (!(hptep1 & HPTE_R_C) && 1071 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1072 continue; 1073 1074 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1075 /* unlock rmap before spinning on the HPTE lock */ 1076 unlock_rmap(rmapp); 1077 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1078 cpu_relax(); 1079 goto retry; 1080 } 1081 1082 /* Now check and modify the HPTE */ 1083 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1084 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1085 continue; 1086 } 1087 1088 /* need to make it temporarily absent so C is stable */ 1089 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1090 kvmppc_invalidate_hpte(kvm, hptep, i); 1091 v = be64_to_cpu(hptep[0]); 1092 r = be64_to_cpu(hptep[1]); 1093 if (r & HPTE_R_C) { 1094 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1095 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1096 rev[i].guest_rpte |= HPTE_R_C; 1097 note_hpte_modification(kvm, &rev[i]); 1098 } 1099 n = kvmppc_actual_pgsz(v, r); 1100 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1101 if (n > npages_dirty) 1102 npages_dirty = n; 1103 eieio(); 1104 } 1105 v &= ~HPTE_V_ABSENT; 1106 v |= HPTE_V_VALID; 1107 __unlock_hpte(hptep, v); 1108 } while ((i = j) != head); 1109 1110 unlock_rmap(rmapp); 1111 return npages_dirty; 1112 } 1113 1114 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1115 struct kvm_memory_slot *memslot, 1116 unsigned long *map) 1117 { 1118 unsigned long gfn; 1119 1120 if (!vpa->dirty || !vpa->pinned_addr) 1121 return; 1122 gfn = vpa->gpa >> PAGE_SHIFT; 1123 if (gfn < memslot->base_gfn || 1124 gfn >= memslot->base_gfn + memslot->npages) 1125 return; 1126 1127 vpa->dirty = false; 1128 if (map) 1129 __set_bit_le(gfn - memslot->base_gfn, map); 1130 } 1131 1132 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1133 struct kvm_memory_slot *memslot, unsigned long *map) 1134 { 1135 unsigned long i; 1136 unsigned long *rmapp; 1137 1138 preempt_disable(); 1139 rmapp = memslot->arch.rmap; 1140 for (i = 0; i < memslot->npages; ++i) { 1141 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1142 /* 1143 * Note that if npages > 0 then i must be a multiple of npages, 1144 * since we always put huge-page HPTEs in the rmap chain 1145 * corresponding to their page base address. 1146 */ 1147 if (npages) 1148 set_dirty_bits(map, i, npages); 1149 ++rmapp; 1150 } 1151 preempt_enable(); 1152 return 0; 1153 } 1154 1155 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1156 unsigned long *nb_ret) 1157 { 1158 struct kvm_memory_slot *memslot; 1159 unsigned long gfn = gpa >> PAGE_SHIFT; 1160 struct page *page, *pages[1]; 1161 int npages; 1162 unsigned long hva, offset; 1163 int srcu_idx; 1164 1165 srcu_idx = srcu_read_lock(&kvm->srcu); 1166 memslot = gfn_to_memslot(kvm, gfn); 1167 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1168 goto err; 1169 hva = gfn_to_hva_memslot(memslot, gfn); 1170 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1171 if (npages < 1) 1172 goto err; 1173 page = pages[0]; 1174 srcu_read_unlock(&kvm->srcu, srcu_idx); 1175 1176 offset = gpa & (PAGE_SIZE - 1); 1177 if (nb_ret) 1178 *nb_ret = PAGE_SIZE - offset; 1179 return page_address(page) + offset; 1180 1181 err: 1182 srcu_read_unlock(&kvm->srcu, srcu_idx); 1183 return NULL; 1184 } 1185 1186 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1187 bool dirty) 1188 { 1189 struct page *page = virt_to_page(va); 1190 struct kvm_memory_slot *memslot; 1191 unsigned long gfn; 1192 int srcu_idx; 1193 1194 put_page(page); 1195 1196 if (!dirty) 1197 return; 1198 1199 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1200 gfn = gpa >> PAGE_SHIFT; 1201 srcu_idx = srcu_read_lock(&kvm->srcu); 1202 memslot = gfn_to_memslot(kvm, gfn); 1203 if (memslot && memslot->dirty_bitmap) 1204 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1205 srcu_read_unlock(&kvm->srcu, srcu_idx); 1206 } 1207 1208 /* 1209 * HPT resizing 1210 */ 1211 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1212 { 1213 int rc; 1214 1215 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1216 if (rc < 0) 1217 return rc; 1218 1219 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1220 resize->hpt.virt); 1221 1222 return 0; 1223 } 1224 1225 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1226 unsigned long idx) 1227 { 1228 struct kvm *kvm = resize->kvm; 1229 struct kvm_hpt_info *old = &kvm->arch.hpt; 1230 struct kvm_hpt_info *new = &resize->hpt; 1231 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1232 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1233 __be64 *hptep, *new_hptep; 1234 unsigned long vpte, rpte, guest_rpte; 1235 int ret; 1236 struct revmap_entry *rev; 1237 unsigned long apsize, avpn, pteg, hash; 1238 unsigned long new_idx, new_pteg, replace_vpte; 1239 int pshift; 1240 1241 hptep = (__be64 *)(old->virt + (idx << 4)); 1242 1243 /* Guest is stopped, so new HPTEs can't be added or faulted 1244 * in, only unmapped or altered by host actions. So, it's 1245 * safe to check this before we take the HPTE lock */ 1246 vpte = be64_to_cpu(hptep[0]); 1247 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1248 return 0; /* nothing to do */ 1249 1250 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1251 cpu_relax(); 1252 1253 vpte = be64_to_cpu(hptep[0]); 1254 1255 ret = 0; 1256 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1257 /* Nothing to do */ 1258 goto out; 1259 1260 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1261 rpte = be64_to_cpu(hptep[1]); 1262 vpte = hpte_new_to_old_v(vpte, rpte); 1263 } 1264 1265 /* Unmap */ 1266 rev = &old->rev[idx]; 1267 guest_rpte = rev->guest_rpte; 1268 1269 ret = -EIO; 1270 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1271 if (!apsize) 1272 goto out; 1273 1274 if (vpte & HPTE_V_VALID) { 1275 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1276 int srcu_idx = srcu_read_lock(&kvm->srcu); 1277 struct kvm_memory_slot *memslot = 1278 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1279 1280 if (memslot) { 1281 unsigned long *rmapp; 1282 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1283 1284 lock_rmap(rmapp); 1285 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1286 unlock_rmap(rmapp); 1287 } 1288 1289 srcu_read_unlock(&kvm->srcu, srcu_idx); 1290 } 1291 1292 /* Reload PTE after unmap */ 1293 vpte = be64_to_cpu(hptep[0]); 1294 BUG_ON(vpte & HPTE_V_VALID); 1295 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1296 1297 ret = 0; 1298 if (!(vpte & HPTE_V_BOLTED)) 1299 goto out; 1300 1301 rpte = be64_to_cpu(hptep[1]); 1302 1303 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1304 vpte = hpte_new_to_old_v(vpte, rpte); 1305 rpte = hpte_new_to_old_r(rpte); 1306 } 1307 1308 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1309 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1310 pteg = idx / HPTES_PER_GROUP; 1311 if (vpte & HPTE_V_SECONDARY) 1312 pteg = ~pteg; 1313 1314 if (!(vpte & HPTE_V_1TB_SEG)) { 1315 unsigned long offset, vsid; 1316 1317 /* We only have 28 - 23 bits of offset in avpn */ 1318 offset = (avpn & 0x1f) << 23; 1319 vsid = avpn >> 5; 1320 /* We can find more bits from the pteg value */ 1321 if (pshift < 23) 1322 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1323 1324 hash = vsid ^ (offset >> pshift); 1325 } else { 1326 unsigned long offset, vsid; 1327 1328 /* We only have 40 - 23 bits of seg_off in avpn */ 1329 offset = (avpn & 0x1ffff) << 23; 1330 vsid = avpn >> 17; 1331 if (pshift < 23) 1332 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1333 1334 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1335 } 1336 1337 new_pteg = hash & new_hash_mask; 1338 if (vpte & HPTE_V_SECONDARY) 1339 new_pteg = ~hash & new_hash_mask; 1340 1341 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1342 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1343 1344 replace_vpte = be64_to_cpu(new_hptep[0]); 1345 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1346 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1347 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1348 } 1349 1350 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1351 BUG_ON(new->order >= old->order); 1352 1353 if (replace_vpte & HPTE_V_BOLTED) { 1354 if (vpte & HPTE_V_BOLTED) 1355 /* Bolted collision, nothing we can do */ 1356 ret = -ENOSPC; 1357 /* Discard the new HPTE */ 1358 goto out; 1359 } 1360 1361 /* Discard the previous HPTE */ 1362 } 1363 1364 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1365 rpte = hpte_old_to_new_r(vpte, rpte); 1366 vpte = hpte_old_to_new_v(vpte); 1367 } 1368 1369 new_hptep[1] = cpu_to_be64(rpte); 1370 new->rev[new_idx].guest_rpte = guest_rpte; 1371 /* No need for a barrier, since new HPT isn't active */ 1372 new_hptep[0] = cpu_to_be64(vpte); 1373 unlock_hpte(new_hptep, vpte); 1374 1375 out: 1376 unlock_hpte(hptep, vpte); 1377 return ret; 1378 } 1379 1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1381 { 1382 struct kvm *kvm = resize->kvm; 1383 unsigned long i; 1384 int rc; 1385 1386 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1387 rc = resize_hpt_rehash_hpte(resize, i); 1388 if (rc != 0) 1389 return rc; 1390 } 1391 1392 return 0; 1393 } 1394 1395 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1396 { 1397 struct kvm *kvm = resize->kvm; 1398 struct kvm_hpt_info hpt_tmp; 1399 1400 /* Exchange the pending tables in the resize structure with 1401 * the active tables */ 1402 1403 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1404 1405 spin_lock(&kvm->mmu_lock); 1406 asm volatile("ptesync" : : : "memory"); 1407 1408 hpt_tmp = kvm->arch.hpt; 1409 kvmppc_set_hpt(kvm, &resize->hpt); 1410 resize->hpt = hpt_tmp; 1411 1412 spin_unlock(&kvm->mmu_lock); 1413 1414 synchronize_srcu_expedited(&kvm->srcu); 1415 1416 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1417 kvmppc_setup_partition_table(kvm); 1418 1419 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1420 } 1421 1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1423 { 1424 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1425 return; 1426 1427 if (!resize) 1428 return; 1429 1430 if (resize->error != -EBUSY) { 1431 if (resize->hpt.virt) 1432 kvmppc_free_hpt(&resize->hpt); 1433 kfree(resize); 1434 } 1435 1436 if (kvm->arch.resize_hpt == resize) 1437 kvm->arch.resize_hpt = NULL; 1438 } 1439 1440 static void resize_hpt_prepare_work(struct work_struct *work) 1441 { 1442 struct kvm_resize_hpt *resize = container_of(work, 1443 struct kvm_resize_hpt, 1444 work); 1445 struct kvm *kvm = resize->kvm; 1446 int err = 0; 1447 1448 if (WARN_ON(resize->error != -EBUSY)) 1449 return; 1450 1451 mutex_lock(&kvm->arch.mmu_setup_lock); 1452 1453 /* Request is still current? */ 1454 if (kvm->arch.resize_hpt == resize) { 1455 /* We may request large allocations here: 1456 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1457 */ 1458 mutex_unlock(&kvm->arch.mmu_setup_lock); 1459 1460 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1461 resize->order); 1462 1463 err = resize_hpt_allocate(resize); 1464 1465 /* We have strict assumption about -EBUSY 1466 * when preparing for HPT resize. 1467 */ 1468 if (WARN_ON(err == -EBUSY)) 1469 err = -EINPROGRESS; 1470 1471 mutex_lock(&kvm->arch.mmu_setup_lock); 1472 /* It is possible that kvm->arch.resize_hpt != resize 1473 * after we grab kvm->arch.mmu_setup_lock again. 1474 */ 1475 } 1476 1477 resize->error = err; 1478 1479 if (kvm->arch.resize_hpt != resize) 1480 resize_hpt_release(kvm, resize); 1481 1482 mutex_unlock(&kvm->arch.mmu_setup_lock); 1483 } 1484 1485 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1486 struct kvm_ppc_resize_hpt *rhpt) 1487 { 1488 unsigned long flags = rhpt->flags; 1489 unsigned long shift = rhpt->shift; 1490 struct kvm_resize_hpt *resize; 1491 int ret; 1492 1493 if (flags != 0 || kvm_is_radix(kvm)) 1494 return -EINVAL; 1495 1496 if (shift && ((shift < 18) || (shift > 46))) 1497 return -EINVAL; 1498 1499 mutex_lock(&kvm->arch.mmu_setup_lock); 1500 1501 resize = kvm->arch.resize_hpt; 1502 1503 if (resize) { 1504 if (resize->order == shift) { 1505 /* Suitable resize in progress? */ 1506 ret = resize->error; 1507 if (ret == -EBUSY) 1508 ret = 100; /* estimated time in ms */ 1509 else if (ret) 1510 resize_hpt_release(kvm, resize); 1511 1512 goto out; 1513 } 1514 1515 /* not suitable, cancel it */ 1516 resize_hpt_release(kvm, resize); 1517 } 1518 1519 ret = 0; 1520 if (!shift) 1521 goto out; /* nothing to do */ 1522 1523 /* start new resize */ 1524 1525 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1526 if (!resize) { 1527 ret = -ENOMEM; 1528 goto out; 1529 } 1530 1531 resize->error = -EBUSY; 1532 resize->order = shift; 1533 resize->kvm = kvm; 1534 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1535 kvm->arch.resize_hpt = resize; 1536 1537 schedule_work(&resize->work); 1538 1539 ret = 100; /* estimated time in ms */ 1540 1541 out: 1542 mutex_unlock(&kvm->arch.mmu_setup_lock); 1543 return ret; 1544 } 1545 1546 static void resize_hpt_boot_vcpu(void *opaque) 1547 { 1548 /* Nothing to do, just force a KVM exit */ 1549 } 1550 1551 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1552 struct kvm_ppc_resize_hpt *rhpt) 1553 { 1554 unsigned long flags = rhpt->flags; 1555 unsigned long shift = rhpt->shift; 1556 struct kvm_resize_hpt *resize; 1557 long ret; 1558 1559 if (flags != 0 || kvm_is_radix(kvm)) 1560 return -EINVAL; 1561 1562 if (shift && ((shift < 18) || (shift > 46))) 1563 return -EINVAL; 1564 1565 mutex_lock(&kvm->arch.mmu_setup_lock); 1566 1567 resize = kvm->arch.resize_hpt; 1568 1569 /* This shouldn't be possible */ 1570 ret = -EIO; 1571 if (WARN_ON(!kvm->arch.mmu_ready)) 1572 goto out_no_hpt; 1573 1574 /* Stop VCPUs from running while we mess with the HPT */ 1575 kvm->arch.mmu_ready = 0; 1576 smp_mb(); 1577 1578 /* Boot all CPUs out of the guest so they re-read 1579 * mmu_ready */ 1580 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1581 1582 ret = -ENXIO; 1583 if (!resize || (resize->order != shift)) 1584 goto out; 1585 1586 ret = resize->error; 1587 if (ret) 1588 goto out; 1589 1590 ret = resize_hpt_rehash(resize); 1591 if (ret) 1592 goto out; 1593 1594 resize_hpt_pivot(resize); 1595 1596 out: 1597 /* Let VCPUs run again */ 1598 kvm->arch.mmu_ready = 1; 1599 smp_mb(); 1600 out_no_hpt: 1601 resize_hpt_release(kvm, resize); 1602 mutex_unlock(&kvm->arch.mmu_setup_lock); 1603 return ret; 1604 } 1605 1606 /* 1607 * Functions for reading and writing the hash table via reads and 1608 * writes on a file descriptor. 1609 * 1610 * Reads return the guest view of the hash table, which has to be 1611 * pieced together from the real hash table and the guest_rpte 1612 * values in the revmap array. 1613 * 1614 * On writes, each HPTE written is considered in turn, and if it 1615 * is valid, it is written to the HPT as if an H_ENTER with the 1616 * exact flag set was done. When the invalid count is non-zero 1617 * in the header written to the stream, the kernel will make 1618 * sure that that many HPTEs are invalid, and invalidate them 1619 * if not. 1620 */ 1621 1622 struct kvm_htab_ctx { 1623 unsigned long index; 1624 unsigned long flags; 1625 struct kvm *kvm; 1626 int first_pass; 1627 }; 1628 1629 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1630 1631 /* 1632 * Returns 1 if this HPT entry has been modified or has pending 1633 * R/C bit changes. 1634 */ 1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1636 { 1637 unsigned long rcbits_unset; 1638 1639 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1640 return 1; 1641 1642 /* Also need to consider changes in reference and changed bits */ 1643 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1644 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1645 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1646 return 1; 1647 1648 return 0; 1649 } 1650 1651 static long record_hpte(unsigned long flags, __be64 *hptp, 1652 unsigned long *hpte, struct revmap_entry *revp, 1653 int want_valid, int first_pass) 1654 { 1655 unsigned long v, r, hr; 1656 unsigned long rcbits_unset; 1657 int ok = 1; 1658 int valid, dirty; 1659 1660 /* Unmodified entries are uninteresting except on the first pass */ 1661 dirty = hpte_dirty(revp, hptp); 1662 if (!first_pass && !dirty) 1663 return 0; 1664 1665 valid = 0; 1666 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1667 valid = 1; 1668 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1669 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1670 valid = 0; 1671 } 1672 if (valid != want_valid) 1673 return 0; 1674 1675 v = r = 0; 1676 if (valid || dirty) { 1677 /* lock the HPTE so it's stable and read it */ 1678 preempt_disable(); 1679 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1680 cpu_relax(); 1681 v = be64_to_cpu(hptp[0]); 1682 hr = be64_to_cpu(hptp[1]); 1683 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1684 v = hpte_new_to_old_v(v, hr); 1685 hr = hpte_new_to_old_r(hr); 1686 } 1687 1688 /* re-evaluate valid and dirty from synchronized HPTE value */ 1689 valid = !!(v & HPTE_V_VALID); 1690 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1691 1692 /* Harvest R and C into guest view if necessary */ 1693 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1694 if (valid && (rcbits_unset & hr)) { 1695 revp->guest_rpte |= (hr & 1696 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1697 dirty = 1; 1698 } 1699 1700 if (v & HPTE_V_ABSENT) { 1701 v &= ~HPTE_V_ABSENT; 1702 v |= HPTE_V_VALID; 1703 valid = 1; 1704 } 1705 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1706 valid = 0; 1707 1708 r = revp->guest_rpte; 1709 /* only clear modified if this is the right sort of entry */ 1710 if (valid == want_valid && dirty) { 1711 r &= ~HPTE_GR_MODIFIED; 1712 revp->guest_rpte = r; 1713 } 1714 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1715 preempt_enable(); 1716 if (!(valid == want_valid && (first_pass || dirty))) 1717 ok = 0; 1718 } 1719 hpte[0] = cpu_to_be64(v); 1720 hpte[1] = cpu_to_be64(r); 1721 return ok; 1722 } 1723 1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1725 size_t count, loff_t *ppos) 1726 { 1727 struct kvm_htab_ctx *ctx = file->private_data; 1728 struct kvm *kvm = ctx->kvm; 1729 struct kvm_get_htab_header hdr; 1730 __be64 *hptp; 1731 struct revmap_entry *revp; 1732 unsigned long i, nb, nw; 1733 unsigned long __user *lbuf; 1734 struct kvm_get_htab_header __user *hptr; 1735 unsigned long flags; 1736 int first_pass; 1737 unsigned long hpte[2]; 1738 1739 if (!access_ok(buf, count)) 1740 return -EFAULT; 1741 if (kvm_is_radix(kvm)) 1742 return 0; 1743 1744 first_pass = ctx->first_pass; 1745 flags = ctx->flags; 1746 1747 i = ctx->index; 1748 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1749 revp = kvm->arch.hpt.rev + i; 1750 lbuf = (unsigned long __user *)buf; 1751 1752 nb = 0; 1753 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1754 /* Initialize header */ 1755 hptr = (struct kvm_get_htab_header __user *)buf; 1756 hdr.n_valid = 0; 1757 hdr.n_invalid = 0; 1758 nw = nb; 1759 nb += sizeof(hdr); 1760 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1761 1762 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1763 if (!first_pass) { 1764 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1765 !hpte_dirty(revp, hptp)) { 1766 ++i; 1767 hptp += 2; 1768 ++revp; 1769 } 1770 } 1771 hdr.index = i; 1772 1773 /* Grab a series of valid entries */ 1774 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1775 hdr.n_valid < 0xffff && 1776 nb + HPTE_SIZE < count && 1777 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1778 /* valid entry, write it out */ 1779 ++hdr.n_valid; 1780 if (__put_user(hpte[0], lbuf) || 1781 __put_user(hpte[1], lbuf + 1)) 1782 return -EFAULT; 1783 nb += HPTE_SIZE; 1784 lbuf += 2; 1785 ++i; 1786 hptp += 2; 1787 ++revp; 1788 } 1789 /* Now skip invalid entries while we can */ 1790 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1791 hdr.n_invalid < 0xffff && 1792 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1793 /* found an invalid entry */ 1794 ++hdr.n_invalid; 1795 ++i; 1796 hptp += 2; 1797 ++revp; 1798 } 1799 1800 if (hdr.n_valid || hdr.n_invalid) { 1801 /* write back the header */ 1802 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1803 return -EFAULT; 1804 nw = nb; 1805 buf = (char __user *)lbuf; 1806 } else { 1807 nb = nw; 1808 } 1809 1810 /* Check if we've wrapped around the hash table */ 1811 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1812 i = 0; 1813 ctx->first_pass = 0; 1814 break; 1815 } 1816 } 1817 1818 ctx->index = i; 1819 1820 return nb; 1821 } 1822 1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1824 size_t count, loff_t *ppos) 1825 { 1826 struct kvm_htab_ctx *ctx = file->private_data; 1827 struct kvm *kvm = ctx->kvm; 1828 struct kvm_get_htab_header hdr; 1829 unsigned long i, j; 1830 unsigned long v, r; 1831 unsigned long __user *lbuf; 1832 __be64 *hptp; 1833 unsigned long tmp[2]; 1834 ssize_t nb; 1835 long int err, ret; 1836 int mmu_ready; 1837 int pshift; 1838 1839 if (!access_ok(buf, count)) 1840 return -EFAULT; 1841 if (kvm_is_radix(kvm)) 1842 return -EINVAL; 1843 1844 /* lock out vcpus from running while we're doing this */ 1845 mutex_lock(&kvm->arch.mmu_setup_lock); 1846 mmu_ready = kvm->arch.mmu_ready; 1847 if (mmu_ready) { 1848 kvm->arch.mmu_ready = 0; /* temporarily */ 1849 /* order mmu_ready vs. vcpus_running */ 1850 smp_mb(); 1851 if (atomic_read(&kvm->arch.vcpus_running)) { 1852 kvm->arch.mmu_ready = 1; 1853 mutex_unlock(&kvm->arch.mmu_setup_lock); 1854 return -EBUSY; 1855 } 1856 } 1857 1858 err = 0; 1859 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1860 err = -EFAULT; 1861 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1862 break; 1863 1864 err = 0; 1865 if (nb + hdr.n_valid * HPTE_SIZE > count) 1866 break; 1867 1868 nb += sizeof(hdr); 1869 buf += sizeof(hdr); 1870 1871 err = -EINVAL; 1872 i = hdr.index; 1873 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1874 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1875 break; 1876 1877 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1878 lbuf = (unsigned long __user *)buf; 1879 for (j = 0; j < hdr.n_valid; ++j) { 1880 __be64 hpte_v; 1881 __be64 hpte_r; 1882 1883 err = -EFAULT; 1884 if (__get_user(hpte_v, lbuf) || 1885 __get_user(hpte_r, lbuf + 1)) 1886 goto out; 1887 v = be64_to_cpu(hpte_v); 1888 r = be64_to_cpu(hpte_r); 1889 err = -EINVAL; 1890 if (!(v & HPTE_V_VALID)) 1891 goto out; 1892 pshift = kvmppc_hpte_base_page_shift(v, r); 1893 if (pshift <= 0) 1894 goto out; 1895 lbuf += 2; 1896 nb += HPTE_SIZE; 1897 1898 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1899 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1900 err = -EIO; 1901 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1902 tmp); 1903 if (ret != H_SUCCESS) { 1904 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1905 "r=%lx\n", ret, i, v, r); 1906 goto out; 1907 } 1908 if (!mmu_ready && is_vrma_hpte(v)) { 1909 unsigned long senc, lpcr; 1910 1911 senc = slb_pgsize_encoding(1ul << pshift); 1912 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1913 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1914 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1915 lpcr = senc << (LPCR_VRMASD_SH - 4); 1916 kvmppc_update_lpcr(kvm, lpcr, 1917 LPCR_VRMASD); 1918 } else { 1919 kvmppc_setup_partition_table(kvm); 1920 } 1921 mmu_ready = 1; 1922 } 1923 ++i; 1924 hptp += 2; 1925 } 1926 1927 for (j = 0; j < hdr.n_invalid; ++j) { 1928 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1929 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1930 ++i; 1931 hptp += 2; 1932 } 1933 err = 0; 1934 } 1935 1936 out: 1937 /* Order HPTE updates vs. mmu_ready */ 1938 smp_wmb(); 1939 kvm->arch.mmu_ready = mmu_ready; 1940 mutex_unlock(&kvm->arch.mmu_setup_lock); 1941 1942 if (err) 1943 return err; 1944 return nb; 1945 } 1946 1947 static int kvm_htab_release(struct inode *inode, struct file *filp) 1948 { 1949 struct kvm_htab_ctx *ctx = filp->private_data; 1950 1951 filp->private_data = NULL; 1952 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1953 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1954 kvm_put_kvm(ctx->kvm); 1955 kfree(ctx); 1956 return 0; 1957 } 1958 1959 static const struct file_operations kvm_htab_fops = { 1960 .read = kvm_htab_read, 1961 .write = kvm_htab_write, 1962 .llseek = default_llseek, 1963 .release = kvm_htab_release, 1964 }; 1965 1966 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1967 { 1968 int ret; 1969 struct kvm_htab_ctx *ctx; 1970 int rwflag; 1971 1972 /* reject flags we don't recognize */ 1973 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1974 return -EINVAL; 1975 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1976 if (!ctx) 1977 return -ENOMEM; 1978 kvm_get_kvm(kvm); 1979 ctx->kvm = kvm; 1980 ctx->index = ghf->start_index; 1981 ctx->flags = ghf->flags; 1982 ctx->first_pass = 1; 1983 1984 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1985 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1986 if (ret < 0) { 1987 kfree(ctx); 1988 kvm_put_kvm_no_destroy(kvm); 1989 return ret; 1990 } 1991 1992 if (rwflag == O_RDONLY) { 1993 mutex_lock(&kvm->slots_lock); 1994 atomic_inc(&kvm->arch.hpte_mod_interest); 1995 /* make sure kvmppc_do_h_enter etc. see the increment */ 1996 synchronize_srcu_expedited(&kvm->srcu); 1997 mutex_unlock(&kvm->slots_lock); 1998 } 1999 2000 return ret; 2001 } 2002 2003 struct debugfs_htab_state { 2004 struct kvm *kvm; 2005 struct mutex mutex; 2006 unsigned long hpt_index; 2007 int chars_left; 2008 int buf_index; 2009 char buf[64]; 2010 }; 2011 2012 static int debugfs_htab_open(struct inode *inode, struct file *file) 2013 { 2014 struct kvm *kvm = inode->i_private; 2015 struct debugfs_htab_state *p; 2016 2017 p = kzalloc(sizeof(*p), GFP_KERNEL); 2018 if (!p) 2019 return -ENOMEM; 2020 2021 kvm_get_kvm(kvm); 2022 p->kvm = kvm; 2023 mutex_init(&p->mutex); 2024 file->private_data = p; 2025 2026 return nonseekable_open(inode, file); 2027 } 2028 2029 static int debugfs_htab_release(struct inode *inode, struct file *file) 2030 { 2031 struct debugfs_htab_state *p = file->private_data; 2032 2033 kvm_put_kvm(p->kvm); 2034 kfree(p); 2035 return 0; 2036 } 2037 2038 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2039 size_t len, loff_t *ppos) 2040 { 2041 struct debugfs_htab_state *p = file->private_data; 2042 ssize_t ret, r; 2043 unsigned long i, n; 2044 unsigned long v, hr, gr; 2045 struct kvm *kvm; 2046 __be64 *hptp; 2047 2048 kvm = p->kvm; 2049 if (kvm_is_radix(kvm)) 2050 return 0; 2051 2052 ret = mutex_lock_interruptible(&p->mutex); 2053 if (ret) 2054 return ret; 2055 2056 if (p->chars_left) { 2057 n = p->chars_left; 2058 if (n > len) 2059 n = len; 2060 r = copy_to_user(buf, p->buf + p->buf_index, n); 2061 n -= r; 2062 p->chars_left -= n; 2063 p->buf_index += n; 2064 buf += n; 2065 len -= n; 2066 ret = n; 2067 if (r) { 2068 if (!n) 2069 ret = -EFAULT; 2070 goto out; 2071 } 2072 } 2073 2074 i = p->hpt_index; 2075 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2076 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2077 ++i, hptp += 2) { 2078 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2079 continue; 2080 2081 /* lock the HPTE so it's stable and read it */ 2082 preempt_disable(); 2083 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2084 cpu_relax(); 2085 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2086 hr = be64_to_cpu(hptp[1]); 2087 gr = kvm->arch.hpt.rev[i].guest_rpte; 2088 unlock_hpte(hptp, v); 2089 preempt_enable(); 2090 2091 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2092 continue; 2093 2094 n = scnprintf(p->buf, sizeof(p->buf), 2095 "%6lx %.16lx %.16lx %.16lx\n", 2096 i, v, hr, gr); 2097 p->chars_left = n; 2098 if (n > len) 2099 n = len; 2100 r = copy_to_user(buf, p->buf, n); 2101 n -= r; 2102 p->chars_left -= n; 2103 p->buf_index = n; 2104 buf += n; 2105 len -= n; 2106 ret += n; 2107 if (r) { 2108 if (!ret) 2109 ret = -EFAULT; 2110 goto out; 2111 } 2112 } 2113 p->hpt_index = i; 2114 2115 out: 2116 mutex_unlock(&p->mutex); 2117 return ret; 2118 } 2119 2120 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2121 size_t len, loff_t *ppos) 2122 { 2123 return -EACCES; 2124 } 2125 2126 static const struct file_operations debugfs_htab_fops = { 2127 .owner = THIS_MODULE, 2128 .open = debugfs_htab_open, 2129 .release = debugfs_htab_release, 2130 .read = debugfs_htab_read, 2131 .write = debugfs_htab_write, 2132 .llseek = generic_file_llseek, 2133 }; 2134 2135 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2136 { 2137 debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm, 2138 &debugfs_htab_fops); 2139 } 2140 2141 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2142 { 2143 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2144 2145 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2146 2147 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2148 2149 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2150 } 2151