1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "trace_hv.h"
31 
32 //#define DEBUG_RESIZE_HPT	1
33 
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...)				\
36 	do {							\
37 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
38 		printk(__VA_ARGS__);				\
39 	} while (0)
40 #else
41 #define resize_hpt_debug(resize, ...)				\
42 	do { } while (0)
43 #endif
44 
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 				long pte_index, unsigned long pteh,
47 				unsigned long ptel, unsigned long *pte_idx_ret);
48 
49 struct kvm_resize_hpt {
50 	/* These fields read-only after init */
51 	struct kvm *kvm;
52 	struct work_struct work;
53 	u32 order;
54 
55 	/* These fields protected by kvm->arch.mmu_setup_lock */
56 
57 	/* Possible values and their usage:
58 	 *  <0     an error occurred during allocation,
59 	 *  -EBUSY allocation is in the progress,
60 	 *  0      allocation made successfuly.
61 	 */
62 	int error;
63 
64 	/* Private to the work thread, until error != -EBUSY,
65 	 * then protected by kvm->arch.mmu_setup_lock.
66 	 */
67 	struct kvm_hpt_info hpt;
68 };
69 
70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
71 {
72 	unsigned long hpt = 0;
73 	int cma = 0;
74 	struct page *page = NULL;
75 	struct revmap_entry *rev;
76 	unsigned long npte;
77 
78 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79 		return -EINVAL;
80 
81 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82 	if (page) {
83 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84 		memset((void *)hpt, 0, (1ul << order));
85 		cma = 1;
86 	}
87 
88 	if (!hpt)
89 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90 				       |__GFP_NOWARN, order - PAGE_SHIFT);
91 
92 	if (!hpt)
93 		return -ENOMEM;
94 
95 	/* HPTEs are 2**4 bytes long */
96 	npte = 1ul << (order - 4);
97 
98 	/* Allocate reverse map array */
99 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100 	if (!rev) {
101 		if (cma)
102 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103 		else
104 			free_pages(hpt, order - PAGE_SHIFT);
105 		return -ENOMEM;
106 	}
107 
108 	info->order = order;
109 	info->virt = hpt;
110 	info->cma = cma;
111 	info->rev = rev;
112 
113 	return 0;
114 }
115 
116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
117 {
118 	atomic64_set(&kvm->arch.mmio_update, 0);
119 	kvm->arch.hpt = *info;
120 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
121 
122 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 		 info->virt, (long)info->order, kvm->arch.lpid);
124 }
125 
126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
127 {
128 	long err = -EBUSY;
129 	struct kvm_hpt_info info;
130 
131 	mutex_lock(&kvm->arch.mmu_setup_lock);
132 	if (kvm->arch.mmu_ready) {
133 		kvm->arch.mmu_ready = 0;
134 		/* order mmu_ready vs. vcpus_running */
135 		smp_mb();
136 		if (atomic_read(&kvm->arch.vcpus_running)) {
137 			kvm->arch.mmu_ready = 1;
138 			goto out;
139 		}
140 	}
141 	if (kvm_is_radix(kvm)) {
142 		err = kvmppc_switch_mmu_to_hpt(kvm);
143 		if (err)
144 			goto out;
145 	}
146 
147 	if (kvm->arch.hpt.order == order) {
148 		/* We already have a suitable HPT */
149 
150 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
151 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
152 		/*
153 		 * Reset all the reverse-mapping chains for all memslots
154 		 */
155 		kvmppc_rmap_reset(kvm);
156 		err = 0;
157 		goto out;
158 	}
159 
160 	if (kvm->arch.hpt.virt) {
161 		kvmppc_free_hpt(&kvm->arch.hpt);
162 		kvmppc_rmap_reset(kvm);
163 	}
164 
165 	err = kvmppc_allocate_hpt(&info, order);
166 	if (err < 0)
167 		goto out;
168 	kvmppc_set_hpt(kvm, &info);
169 
170 out:
171 	if (err == 0)
172 		/* Ensure that each vcpu will flush its TLB on next entry. */
173 		cpumask_setall(&kvm->arch.need_tlb_flush);
174 
175 	mutex_unlock(&kvm->arch.mmu_setup_lock);
176 	return err;
177 }
178 
179 void kvmppc_free_hpt(struct kvm_hpt_info *info)
180 {
181 	vfree(info->rev);
182 	info->rev = NULL;
183 	if (info->cma)
184 		kvm_free_hpt_cma(virt_to_page(info->virt),
185 				 1 << (info->order - PAGE_SHIFT));
186 	else if (info->virt)
187 		free_pages(info->virt, info->order - PAGE_SHIFT);
188 	info->virt = 0;
189 	info->order = 0;
190 }
191 
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197 
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201 	return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203 
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 		     unsigned long porder)
206 {
207 	unsigned long i;
208 	unsigned long npages;
209 	unsigned long hp_v, hp_r;
210 	unsigned long addr, hash;
211 	unsigned long psize;
212 	unsigned long hp0, hp1;
213 	unsigned long idx_ret;
214 	long ret;
215 	struct kvm *kvm = vcpu->kvm;
216 
217 	psize = 1ul << porder;
218 	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 
220 	/* VRMA can't be > 1TB */
221 	if (npages > 1ul << (40 - porder))
222 		npages = 1ul << (40 - porder);
223 	/* Can't use more than 1 HPTE per HPTEG */
224 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226 
227 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 	hp1 = hpte1_pgsize_encoding(psize) |
230 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231 
232 	for (i = 0; i < npages; ++i) {
233 		addr = i << porder;
234 		/* can't use hpt_hash since va > 64 bits */
235 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 		/*
238 		 * We assume that the hash table is empty and no
239 		 * vcpus are using it at this stage.  Since we create
240 		 * at most one HPTE per HPTEG, we just assume entry 7
241 		 * is available and use it.
242 		 */
243 		hash = (hash << 3) + 7;
244 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 		hp_r = hp1 | addr;
246 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 						 &idx_ret);
248 		if (ret != H_SUCCESS) {
249 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 			       addr, ret);
251 			break;
252 		}
253 	}
254 }
255 
256 int kvmppc_mmu_hv_init(void)
257 {
258 	unsigned long host_lpid, rsvd_lpid;
259 
260 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261 		return -EINVAL;
262 
263 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264 	host_lpid = 0;
265 	if (cpu_has_feature(CPU_FTR_HVMODE))
266 		host_lpid = mfspr(SPRN_LPID);
267 	rsvd_lpid = LPID_RSVD;
268 
269 	kvmppc_init_lpid(rsvd_lpid + 1);
270 
271 	kvmppc_claim_lpid(host_lpid);
272 	/* rsvd_lpid is reserved for use in partition switching */
273 	kvmppc_claim_lpid(rsvd_lpid);
274 
275 	return 0;
276 }
277 
278 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
279 				long pte_index, unsigned long pteh,
280 				unsigned long ptel, unsigned long *pte_idx_ret)
281 {
282 	long ret;
283 
284 	/* Protect linux PTE lookup from page table destruction */
285 	rcu_read_lock_sched();	/* this disables preemption too */
286 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
287 				kvm->mm->pgd, false, pte_idx_ret);
288 	rcu_read_unlock_sched();
289 	if (ret == H_TOO_HARD) {
290 		/* this can't happen */
291 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
292 		ret = H_RESOURCE;	/* or something */
293 	}
294 	return ret;
295 
296 }
297 
298 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
299 							 gva_t eaddr)
300 {
301 	u64 mask;
302 	int i;
303 
304 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
305 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
306 			continue;
307 
308 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
309 			mask = ESID_MASK_1T;
310 		else
311 			mask = ESID_MASK;
312 
313 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
314 			return &vcpu->arch.slb[i];
315 	}
316 	return NULL;
317 }
318 
319 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
320 			unsigned long ea)
321 {
322 	unsigned long ra_mask;
323 
324 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
325 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
326 }
327 
328 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
329 			struct kvmppc_pte *gpte, bool data, bool iswrite)
330 {
331 	struct kvm *kvm = vcpu->kvm;
332 	struct kvmppc_slb *slbe;
333 	unsigned long slb_v;
334 	unsigned long pp, key;
335 	unsigned long v, orig_v, gr;
336 	__be64 *hptep;
337 	long int index;
338 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
339 
340 	if (kvm_is_radix(vcpu->kvm))
341 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
342 
343 	/* Get SLB entry */
344 	if (virtmode) {
345 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
346 		if (!slbe)
347 			return -EINVAL;
348 		slb_v = slbe->origv;
349 	} else {
350 		/* real mode access */
351 		slb_v = vcpu->kvm->arch.vrma_slb_v;
352 	}
353 
354 	preempt_disable();
355 	/* Find the HPTE in the hash table */
356 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
357 					 HPTE_V_VALID | HPTE_V_ABSENT);
358 	if (index < 0) {
359 		preempt_enable();
360 		return -ENOENT;
361 	}
362 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
363 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
364 	if (cpu_has_feature(CPU_FTR_ARCH_300))
365 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
366 	gr = kvm->arch.hpt.rev[index].guest_rpte;
367 
368 	unlock_hpte(hptep, orig_v);
369 	preempt_enable();
370 
371 	gpte->eaddr = eaddr;
372 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
373 
374 	/* Get PP bits and key for permission check */
375 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
376 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
377 	key &= slb_v;
378 
379 	/* Calculate permissions */
380 	gpte->may_read = hpte_read_permission(pp, key);
381 	gpte->may_write = hpte_write_permission(pp, key);
382 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
383 
384 	/* Storage key permission check for POWER7 */
385 	if (data && virtmode) {
386 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
387 		if (amrfield & 1)
388 			gpte->may_read = 0;
389 		if (amrfield & 2)
390 			gpte->may_write = 0;
391 	}
392 
393 	/* Get the guest physical address */
394 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
395 	return 0;
396 }
397 
398 /*
399  * Quick test for whether an instruction is a load or a store.
400  * If the instruction is a load or a store, then this will indicate
401  * which it is, at least on server processors.  (Embedded processors
402  * have some external PID instructions that don't follow the rule
403  * embodied here.)  If the instruction isn't a load or store, then
404  * this doesn't return anything useful.
405  */
406 static int instruction_is_store(unsigned int instr)
407 {
408 	unsigned int mask;
409 
410 	mask = 0x10000000;
411 	if ((instr & 0xfc000000) == 0x7c000000)
412 		mask = 0x100;		/* major opcode 31 */
413 	return (instr & mask) != 0;
414 }
415 
416 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
417 			   unsigned long gpa, gva_t ea, int is_store)
418 {
419 	u32 last_inst;
420 
421 	/*
422 	 * Fast path - check if the guest physical address corresponds to a
423 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
424 	 * instruction all together, then we can just handle it and return.
425 	 */
426 	if (is_store) {
427 		int idx, ret;
428 
429 		idx = srcu_read_lock(&vcpu->kvm->srcu);
430 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
431 				       NULL);
432 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
433 		if (!ret) {
434 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
435 			return RESUME_GUEST;
436 		}
437 	}
438 
439 	/*
440 	 * If we fail, we just return to the guest and try executing it again.
441 	 */
442 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
443 		EMULATE_DONE)
444 		return RESUME_GUEST;
445 
446 	/*
447 	 * WARNING: We do not know for sure whether the instruction we just
448 	 * read from memory is the same that caused the fault in the first
449 	 * place.  If the instruction we read is neither an load or a store,
450 	 * then it can't access memory, so we don't need to worry about
451 	 * enforcing access permissions.  So, assuming it is a load or
452 	 * store, we just check that its direction (load or store) is
453 	 * consistent with the original fault, since that's what we
454 	 * checked the access permissions against.  If there is a mismatch
455 	 * we just return and retry the instruction.
456 	 */
457 
458 	if (instruction_is_store(last_inst) != !!is_store)
459 		return RESUME_GUEST;
460 
461 	/*
462 	 * Emulated accesses are emulated by looking at the hash for
463 	 * translation once, then performing the access later. The
464 	 * translation could be invalidated in the meantime in which
465 	 * point performing the subsequent memory access on the old
466 	 * physical address could possibly be a security hole for the
467 	 * guest (but not the host).
468 	 *
469 	 * This is less of an issue for MMIO stores since they aren't
470 	 * globally visible. It could be an issue for MMIO loads to
471 	 * a certain extent but we'll ignore it for now.
472 	 */
473 
474 	vcpu->arch.paddr_accessed = gpa;
475 	vcpu->arch.vaddr_accessed = ea;
476 	return kvmppc_emulate_mmio(run, vcpu);
477 }
478 
479 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
480 				unsigned long ea, unsigned long dsisr)
481 {
482 	struct kvm *kvm = vcpu->kvm;
483 	unsigned long hpte[3], r;
484 	unsigned long hnow_v, hnow_r;
485 	__be64 *hptep;
486 	unsigned long mmu_seq, psize, pte_size;
487 	unsigned long gpa_base, gfn_base;
488 	unsigned long gpa, gfn, hva, pfn, hpa;
489 	struct kvm_memory_slot *memslot;
490 	unsigned long *rmap;
491 	struct revmap_entry *rev;
492 	struct page *page;
493 	long index, ret;
494 	bool is_ci;
495 	bool writing, write_ok;
496 	unsigned int shift;
497 	unsigned long rcbits;
498 	long mmio_update;
499 	pte_t pte, *ptep;
500 
501 	if (kvm_is_radix(kvm))
502 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
503 
504 	/*
505 	 * Real-mode code has already searched the HPT and found the
506 	 * entry we're interested in.  Lock the entry and check that
507 	 * it hasn't changed.  If it has, just return and re-execute the
508 	 * instruction.
509 	 */
510 	if (ea != vcpu->arch.pgfault_addr)
511 		return RESUME_GUEST;
512 
513 	if (vcpu->arch.pgfault_cache) {
514 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
515 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
516 			r = vcpu->arch.pgfault_cache->rpte;
517 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
518 						   r);
519 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
520 			gfn_base = gpa_base >> PAGE_SHIFT;
521 			gpa = gpa_base | (ea & (psize - 1));
522 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
523 						dsisr & DSISR_ISSTORE);
524 		}
525 	}
526 	index = vcpu->arch.pgfault_index;
527 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
528 	rev = &kvm->arch.hpt.rev[index];
529 	preempt_disable();
530 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
531 		cpu_relax();
532 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
533 	hpte[1] = be64_to_cpu(hptep[1]);
534 	hpte[2] = r = rev->guest_rpte;
535 	unlock_hpte(hptep, hpte[0]);
536 	preempt_enable();
537 
538 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
539 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
540 		hpte[1] = hpte_new_to_old_r(hpte[1]);
541 	}
542 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
543 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
544 		return RESUME_GUEST;
545 
546 	/* Translate the logical address and get the page */
547 	psize = kvmppc_actual_pgsz(hpte[0], r);
548 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
549 	gfn_base = gpa_base >> PAGE_SHIFT;
550 	gpa = gpa_base | (ea & (psize - 1));
551 	gfn = gpa >> PAGE_SHIFT;
552 	memslot = gfn_to_memslot(kvm, gfn);
553 
554 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
555 
556 	/* No memslot means it's an emulated MMIO region */
557 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
558 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
559 					      dsisr & DSISR_ISSTORE);
560 
561 	/*
562 	 * This should never happen, because of the slot_is_aligned()
563 	 * check in kvmppc_do_h_enter().
564 	 */
565 	if (gfn_base < memslot->base_gfn)
566 		return -EFAULT;
567 
568 	/* used to check for invalidations in progress */
569 	mmu_seq = kvm->mmu_notifier_seq;
570 	smp_rmb();
571 
572 	ret = -EFAULT;
573 	page = NULL;
574 	writing = (dsisr & DSISR_ISSTORE) != 0;
575 	/* If writing != 0, then the HPTE must allow writing, if we get here */
576 	write_ok = writing;
577 	hva = gfn_to_hva_memslot(memslot, gfn);
578 
579 	/*
580 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
581 	 * do it with !atomic && !async, which is how we call it.
582 	 * We always ask for write permission since the common case
583 	 * is that the page is writable.
584 	 */
585 	if (__get_user_pages_fast(hva, 1, 1, &page) == 1) {
586 		write_ok = true;
587 	} else {
588 		/* Call KVM generic code to do the slow-path check */
589 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
590 					   writing, &write_ok);
591 		if (is_error_noslot_pfn(pfn))
592 			return -EFAULT;
593 		page = NULL;
594 		if (pfn_valid(pfn)) {
595 			page = pfn_to_page(pfn);
596 			if (PageReserved(page))
597 				page = NULL;
598 		}
599 	}
600 
601 	/*
602 	 * Read the PTE from the process' radix tree and use that
603 	 * so we get the shift and attribute bits.
604 	 */
605 	local_irq_disable();
606 	ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
607 	pte = __pte(0);
608 	if (ptep)
609 		pte = *ptep;
610 	local_irq_enable();
611 	/*
612 	 * If the PTE disappeared temporarily due to a THP
613 	 * collapse, just return and let the guest try again.
614 	 */
615 	if (!pte_present(pte)) {
616 		if (page)
617 			put_page(page);
618 		return RESUME_GUEST;
619 	}
620 	hpa = pte_pfn(pte) << PAGE_SHIFT;
621 	pte_size = PAGE_SIZE;
622 	if (shift)
623 		pte_size = 1ul << shift;
624 	is_ci = pte_ci(pte);
625 
626 	if (psize > pte_size)
627 		goto out_put;
628 	if (pte_size > psize)
629 		hpa |= hva & (pte_size - psize);
630 
631 	/* Check WIMG vs. the actual page we're accessing */
632 	if (!hpte_cache_flags_ok(r, is_ci)) {
633 		if (is_ci)
634 			goto out_put;
635 		/*
636 		 * Allow guest to map emulated device memory as
637 		 * uncacheable, but actually make it cacheable.
638 		 */
639 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
640 	}
641 
642 	/*
643 	 * Set the HPTE to point to hpa.
644 	 * Since the hpa is at PAGE_SIZE granularity, make sure we
645 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
646 	 */
647 	if (psize < PAGE_SIZE)
648 		psize = PAGE_SIZE;
649 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
650 	if (hpte_is_writable(r) && !write_ok)
651 		r = hpte_make_readonly(r);
652 	ret = RESUME_GUEST;
653 	preempt_disable();
654 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
655 		cpu_relax();
656 	hnow_v = be64_to_cpu(hptep[0]);
657 	hnow_r = be64_to_cpu(hptep[1]);
658 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
659 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
660 		hnow_r = hpte_new_to_old_r(hnow_r);
661 	}
662 
663 	/*
664 	 * If the HPT is being resized, don't update the HPTE,
665 	 * instead let the guest retry after the resize operation is complete.
666 	 * The synchronization for mmu_ready test vs. set is provided
667 	 * by the HPTE lock.
668 	 */
669 	if (!kvm->arch.mmu_ready)
670 		goto out_unlock;
671 
672 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
673 	    rev->guest_rpte != hpte[2])
674 		/* HPTE has been changed under us; let the guest retry */
675 		goto out_unlock;
676 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
677 
678 	/* Always put the HPTE in the rmap chain for the page base address */
679 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
680 	lock_rmap(rmap);
681 
682 	/* Check if we might have been invalidated; let the guest retry if so */
683 	ret = RESUME_GUEST;
684 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
685 		unlock_rmap(rmap);
686 		goto out_unlock;
687 	}
688 
689 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
690 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
691 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
692 
693 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
694 		/* HPTE was previously valid, so we need to invalidate it */
695 		unlock_rmap(rmap);
696 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
697 		kvmppc_invalidate_hpte(kvm, hptep, index);
698 		/* don't lose previous R and C bits */
699 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
700 	} else {
701 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
702 	}
703 
704 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
705 		r = hpte_old_to_new_r(hpte[0], r);
706 		hpte[0] = hpte_old_to_new_v(hpte[0]);
707 	}
708 	hptep[1] = cpu_to_be64(r);
709 	eieio();
710 	__unlock_hpte(hptep, hpte[0]);
711 	asm volatile("ptesync" : : : "memory");
712 	preempt_enable();
713 	if (page && hpte_is_writable(r))
714 		set_page_dirty_lock(page);
715 
716  out_put:
717 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
718 
719 	if (page)
720 		put_page(page);
721 	return ret;
722 
723  out_unlock:
724 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
725 	preempt_enable();
726 	goto out_put;
727 }
728 
729 void kvmppc_rmap_reset(struct kvm *kvm)
730 {
731 	struct kvm_memslots *slots;
732 	struct kvm_memory_slot *memslot;
733 	int srcu_idx;
734 
735 	srcu_idx = srcu_read_lock(&kvm->srcu);
736 	slots = kvm_memslots(kvm);
737 	kvm_for_each_memslot(memslot, slots) {
738 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
739 		spin_lock(&kvm->mmu_lock);
740 		/*
741 		 * This assumes it is acceptable to lose reference and
742 		 * change bits across a reset.
743 		 */
744 		memset(memslot->arch.rmap, 0,
745 		       memslot->npages * sizeof(*memslot->arch.rmap));
746 		spin_unlock(&kvm->mmu_lock);
747 	}
748 	srcu_read_unlock(&kvm->srcu, srcu_idx);
749 }
750 
751 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
752 			      unsigned long gfn);
753 
754 static int kvm_handle_hva_range(struct kvm *kvm,
755 				unsigned long start,
756 				unsigned long end,
757 				hva_handler_fn handler)
758 {
759 	int ret;
760 	int retval = 0;
761 	struct kvm_memslots *slots;
762 	struct kvm_memory_slot *memslot;
763 
764 	slots = kvm_memslots(kvm);
765 	kvm_for_each_memslot(memslot, slots) {
766 		unsigned long hva_start, hva_end;
767 		gfn_t gfn, gfn_end;
768 
769 		hva_start = max(start, memslot->userspace_addr);
770 		hva_end = min(end, memslot->userspace_addr +
771 					(memslot->npages << PAGE_SHIFT));
772 		if (hva_start >= hva_end)
773 			continue;
774 		/*
775 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
776 		 * {gfn, gfn+1, ..., gfn_end-1}.
777 		 */
778 		gfn = hva_to_gfn_memslot(hva_start, memslot);
779 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
780 
781 		for (; gfn < gfn_end; ++gfn) {
782 			ret = handler(kvm, memslot, gfn);
783 			retval |= ret;
784 		}
785 	}
786 
787 	return retval;
788 }
789 
790 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
791 			  hva_handler_fn handler)
792 {
793 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
794 }
795 
796 /* Must be called with both HPTE and rmap locked */
797 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
798 			      struct kvm_memory_slot *memslot,
799 			      unsigned long *rmapp, unsigned long gfn)
800 {
801 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
802 	struct revmap_entry *rev = kvm->arch.hpt.rev;
803 	unsigned long j, h;
804 	unsigned long ptel, psize, rcbits;
805 
806 	j = rev[i].forw;
807 	if (j == i) {
808 		/* chain is now empty */
809 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
810 	} else {
811 		/* remove i from chain */
812 		h = rev[i].back;
813 		rev[h].forw = j;
814 		rev[j].back = h;
815 		rev[i].forw = rev[i].back = i;
816 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
817 	}
818 
819 	/* Now check and modify the HPTE */
820 	ptel = rev[i].guest_rpte;
821 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
822 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
823 	    hpte_rpn(ptel, psize) == gfn) {
824 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
825 		kvmppc_invalidate_hpte(kvm, hptep, i);
826 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
827 		/* Harvest R and C */
828 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
829 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
830 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
831 			kvmppc_update_dirty_map(memslot, gfn, psize);
832 		if (rcbits & ~rev[i].guest_rpte) {
833 			rev[i].guest_rpte = ptel | rcbits;
834 			note_hpte_modification(kvm, &rev[i]);
835 		}
836 	}
837 }
838 
839 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
840 			   unsigned long gfn)
841 {
842 	unsigned long i;
843 	__be64 *hptep;
844 	unsigned long *rmapp;
845 
846 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
847 	for (;;) {
848 		lock_rmap(rmapp);
849 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
850 			unlock_rmap(rmapp);
851 			break;
852 		}
853 
854 		/*
855 		 * To avoid an ABBA deadlock with the HPTE lock bit,
856 		 * we can't spin on the HPTE lock while holding the
857 		 * rmap chain lock.
858 		 */
859 		i = *rmapp & KVMPPC_RMAP_INDEX;
860 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
861 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
862 			/* unlock rmap before spinning on the HPTE lock */
863 			unlock_rmap(rmapp);
864 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
865 				cpu_relax();
866 			continue;
867 		}
868 
869 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
870 		unlock_rmap(rmapp);
871 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
872 	}
873 	return 0;
874 }
875 
876 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
877 {
878 	hva_handler_fn handler;
879 
880 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
881 	kvm_handle_hva_range(kvm, start, end, handler);
882 	return 0;
883 }
884 
885 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
886 				  struct kvm_memory_slot *memslot)
887 {
888 	unsigned long gfn;
889 	unsigned long n;
890 	unsigned long *rmapp;
891 
892 	gfn = memslot->base_gfn;
893 	rmapp = memslot->arch.rmap;
894 	if (kvm_is_radix(kvm)) {
895 		kvmppc_radix_flush_memslot(kvm, memslot);
896 		return;
897 	}
898 
899 	for (n = memslot->npages; n; --n, ++gfn) {
900 		/*
901 		 * Testing the present bit without locking is OK because
902 		 * the memslot has been marked invalid already, and hence
903 		 * no new HPTEs referencing this page can be created,
904 		 * thus the present bit can't go from 0 to 1.
905 		 */
906 		if (*rmapp & KVMPPC_RMAP_PRESENT)
907 			kvm_unmap_rmapp(kvm, memslot, gfn);
908 		++rmapp;
909 	}
910 }
911 
912 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
913 			 unsigned long gfn)
914 {
915 	struct revmap_entry *rev = kvm->arch.hpt.rev;
916 	unsigned long head, i, j;
917 	__be64 *hptep;
918 	int ret = 0;
919 	unsigned long *rmapp;
920 
921 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
922  retry:
923 	lock_rmap(rmapp);
924 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
925 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
926 		ret = 1;
927 	}
928 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
929 		unlock_rmap(rmapp);
930 		return ret;
931 	}
932 
933 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
934 	do {
935 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
936 		j = rev[i].forw;
937 
938 		/* If this HPTE isn't referenced, ignore it */
939 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
940 			continue;
941 
942 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
943 			/* unlock rmap before spinning on the HPTE lock */
944 			unlock_rmap(rmapp);
945 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
946 				cpu_relax();
947 			goto retry;
948 		}
949 
950 		/* Now check and modify the HPTE */
951 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
952 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
953 			kvmppc_clear_ref_hpte(kvm, hptep, i);
954 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
955 				rev[i].guest_rpte |= HPTE_R_R;
956 				note_hpte_modification(kvm, &rev[i]);
957 			}
958 			ret = 1;
959 		}
960 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
961 	} while ((i = j) != head);
962 
963 	unlock_rmap(rmapp);
964 	return ret;
965 }
966 
967 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
968 {
969 	hva_handler_fn handler;
970 
971 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
972 	return kvm_handle_hva_range(kvm, start, end, handler);
973 }
974 
975 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
976 			      unsigned long gfn)
977 {
978 	struct revmap_entry *rev = kvm->arch.hpt.rev;
979 	unsigned long head, i, j;
980 	unsigned long *hp;
981 	int ret = 1;
982 	unsigned long *rmapp;
983 
984 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
985 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
986 		return 1;
987 
988 	lock_rmap(rmapp);
989 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
990 		goto out;
991 
992 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
993 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
994 		do {
995 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
996 			j = rev[i].forw;
997 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
998 				goto out;
999 		} while ((i = j) != head);
1000 	}
1001 	ret = 0;
1002 
1003  out:
1004 	unlock_rmap(rmapp);
1005 	return ret;
1006 }
1007 
1008 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1009 {
1010 	hva_handler_fn handler;
1011 
1012 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1013 	return kvm_handle_hva(kvm, hva, handler);
1014 }
1015 
1016 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1017 {
1018 	hva_handler_fn handler;
1019 
1020 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1021 	kvm_handle_hva(kvm, hva, handler);
1022 }
1023 
1024 static int vcpus_running(struct kvm *kvm)
1025 {
1026 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1027 }
1028 
1029 /*
1030  * Returns the number of system pages that are dirty.
1031  * This can be more than 1 if we find a huge-page HPTE.
1032  */
1033 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1034 {
1035 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1036 	unsigned long head, i, j;
1037 	unsigned long n;
1038 	unsigned long v, r;
1039 	__be64 *hptep;
1040 	int npages_dirty = 0;
1041 
1042  retry:
1043 	lock_rmap(rmapp);
1044 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1045 		unlock_rmap(rmapp);
1046 		return npages_dirty;
1047 	}
1048 
1049 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1050 	do {
1051 		unsigned long hptep1;
1052 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1053 		j = rev[i].forw;
1054 
1055 		/*
1056 		 * Checking the C (changed) bit here is racy since there
1057 		 * is no guarantee about when the hardware writes it back.
1058 		 * If the HPTE is not writable then it is stable since the
1059 		 * page can't be written to, and we would have done a tlbie
1060 		 * (which forces the hardware to complete any writeback)
1061 		 * when making the HPTE read-only.
1062 		 * If vcpus are running then this call is racy anyway
1063 		 * since the page could get dirtied subsequently, so we
1064 		 * expect there to be a further call which would pick up
1065 		 * any delayed C bit writeback.
1066 		 * Otherwise we need to do the tlbie even if C==0 in
1067 		 * order to pick up any delayed writeback of C.
1068 		 */
1069 		hptep1 = be64_to_cpu(hptep[1]);
1070 		if (!(hptep1 & HPTE_R_C) &&
1071 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1072 			continue;
1073 
1074 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1075 			/* unlock rmap before spinning on the HPTE lock */
1076 			unlock_rmap(rmapp);
1077 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1078 				cpu_relax();
1079 			goto retry;
1080 		}
1081 
1082 		/* Now check and modify the HPTE */
1083 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1084 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1085 			continue;
1086 		}
1087 
1088 		/* need to make it temporarily absent so C is stable */
1089 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1090 		kvmppc_invalidate_hpte(kvm, hptep, i);
1091 		v = be64_to_cpu(hptep[0]);
1092 		r = be64_to_cpu(hptep[1]);
1093 		if (r & HPTE_R_C) {
1094 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1095 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1096 				rev[i].guest_rpte |= HPTE_R_C;
1097 				note_hpte_modification(kvm, &rev[i]);
1098 			}
1099 			n = kvmppc_actual_pgsz(v, r);
1100 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101 			if (n > npages_dirty)
1102 				npages_dirty = n;
1103 			eieio();
1104 		}
1105 		v &= ~HPTE_V_ABSENT;
1106 		v |= HPTE_V_VALID;
1107 		__unlock_hpte(hptep, v);
1108 	} while ((i = j) != head);
1109 
1110 	unlock_rmap(rmapp);
1111 	return npages_dirty;
1112 }
1113 
1114 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1115 			      struct kvm_memory_slot *memslot,
1116 			      unsigned long *map)
1117 {
1118 	unsigned long gfn;
1119 
1120 	if (!vpa->dirty || !vpa->pinned_addr)
1121 		return;
1122 	gfn = vpa->gpa >> PAGE_SHIFT;
1123 	if (gfn < memslot->base_gfn ||
1124 	    gfn >= memslot->base_gfn + memslot->npages)
1125 		return;
1126 
1127 	vpa->dirty = false;
1128 	if (map)
1129 		__set_bit_le(gfn - memslot->base_gfn, map);
1130 }
1131 
1132 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1133 			struct kvm_memory_slot *memslot, unsigned long *map)
1134 {
1135 	unsigned long i;
1136 	unsigned long *rmapp;
1137 
1138 	preempt_disable();
1139 	rmapp = memslot->arch.rmap;
1140 	for (i = 0; i < memslot->npages; ++i) {
1141 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1142 		/*
1143 		 * Note that if npages > 0 then i must be a multiple of npages,
1144 		 * since we always put huge-page HPTEs in the rmap chain
1145 		 * corresponding to their page base address.
1146 		 */
1147 		if (npages)
1148 			set_dirty_bits(map, i, npages);
1149 		++rmapp;
1150 	}
1151 	preempt_enable();
1152 	return 0;
1153 }
1154 
1155 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1156 			    unsigned long *nb_ret)
1157 {
1158 	struct kvm_memory_slot *memslot;
1159 	unsigned long gfn = gpa >> PAGE_SHIFT;
1160 	struct page *page, *pages[1];
1161 	int npages;
1162 	unsigned long hva, offset;
1163 	int srcu_idx;
1164 
1165 	srcu_idx = srcu_read_lock(&kvm->srcu);
1166 	memslot = gfn_to_memslot(kvm, gfn);
1167 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1168 		goto err;
1169 	hva = gfn_to_hva_memslot(memslot, gfn);
1170 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1171 	if (npages < 1)
1172 		goto err;
1173 	page = pages[0];
1174 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1175 
1176 	offset = gpa & (PAGE_SIZE - 1);
1177 	if (nb_ret)
1178 		*nb_ret = PAGE_SIZE - offset;
1179 	return page_address(page) + offset;
1180 
1181  err:
1182 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1183 	return NULL;
1184 }
1185 
1186 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1187 			     bool dirty)
1188 {
1189 	struct page *page = virt_to_page(va);
1190 	struct kvm_memory_slot *memslot;
1191 	unsigned long gfn;
1192 	int srcu_idx;
1193 
1194 	put_page(page);
1195 
1196 	if (!dirty)
1197 		return;
1198 
1199 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1200 	gfn = gpa >> PAGE_SHIFT;
1201 	srcu_idx = srcu_read_lock(&kvm->srcu);
1202 	memslot = gfn_to_memslot(kvm, gfn);
1203 	if (memslot && memslot->dirty_bitmap)
1204 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1205 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1206 }
1207 
1208 /*
1209  * HPT resizing
1210  */
1211 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1212 {
1213 	int rc;
1214 
1215 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1216 	if (rc < 0)
1217 		return rc;
1218 
1219 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1220 			 resize->hpt.virt);
1221 
1222 	return 0;
1223 }
1224 
1225 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1226 					    unsigned long idx)
1227 {
1228 	struct kvm *kvm = resize->kvm;
1229 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1230 	struct kvm_hpt_info *new = &resize->hpt;
1231 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1232 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1233 	__be64 *hptep, *new_hptep;
1234 	unsigned long vpte, rpte, guest_rpte;
1235 	int ret;
1236 	struct revmap_entry *rev;
1237 	unsigned long apsize, avpn, pteg, hash;
1238 	unsigned long new_idx, new_pteg, replace_vpte;
1239 	int pshift;
1240 
1241 	hptep = (__be64 *)(old->virt + (idx << 4));
1242 
1243 	/* Guest is stopped, so new HPTEs can't be added or faulted
1244 	 * in, only unmapped or altered by host actions.  So, it's
1245 	 * safe to check this before we take the HPTE lock */
1246 	vpte = be64_to_cpu(hptep[0]);
1247 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1248 		return 0; /* nothing to do */
1249 
1250 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1251 		cpu_relax();
1252 
1253 	vpte = be64_to_cpu(hptep[0]);
1254 
1255 	ret = 0;
1256 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1257 		/* Nothing to do */
1258 		goto out;
1259 
1260 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1261 		rpte = be64_to_cpu(hptep[1]);
1262 		vpte = hpte_new_to_old_v(vpte, rpte);
1263 	}
1264 
1265 	/* Unmap */
1266 	rev = &old->rev[idx];
1267 	guest_rpte = rev->guest_rpte;
1268 
1269 	ret = -EIO;
1270 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1271 	if (!apsize)
1272 		goto out;
1273 
1274 	if (vpte & HPTE_V_VALID) {
1275 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1276 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1277 		struct kvm_memory_slot *memslot =
1278 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1279 
1280 		if (memslot) {
1281 			unsigned long *rmapp;
1282 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1283 
1284 			lock_rmap(rmapp);
1285 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1286 			unlock_rmap(rmapp);
1287 		}
1288 
1289 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1290 	}
1291 
1292 	/* Reload PTE after unmap */
1293 	vpte = be64_to_cpu(hptep[0]);
1294 	BUG_ON(vpte & HPTE_V_VALID);
1295 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1296 
1297 	ret = 0;
1298 	if (!(vpte & HPTE_V_BOLTED))
1299 		goto out;
1300 
1301 	rpte = be64_to_cpu(hptep[1]);
1302 
1303 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1304 		vpte = hpte_new_to_old_v(vpte, rpte);
1305 		rpte = hpte_new_to_old_r(rpte);
1306 	}
1307 
1308 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1309 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1310 	pteg = idx / HPTES_PER_GROUP;
1311 	if (vpte & HPTE_V_SECONDARY)
1312 		pteg = ~pteg;
1313 
1314 	if (!(vpte & HPTE_V_1TB_SEG)) {
1315 		unsigned long offset, vsid;
1316 
1317 		/* We only have 28 - 23 bits of offset in avpn */
1318 		offset = (avpn & 0x1f) << 23;
1319 		vsid = avpn >> 5;
1320 		/* We can find more bits from the pteg value */
1321 		if (pshift < 23)
1322 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1323 
1324 		hash = vsid ^ (offset >> pshift);
1325 	} else {
1326 		unsigned long offset, vsid;
1327 
1328 		/* We only have 40 - 23 bits of seg_off in avpn */
1329 		offset = (avpn & 0x1ffff) << 23;
1330 		vsid = avpn >> 17;
1331 		if (pshift < 23)
1332 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1333 
1334 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1335 	}
1336 
1337 	new_pteg = hash & new_hash_mask;
1338 	if (vpte & HPTE_V_SECONDARY)
1339 		new_pteg = ~hash & new_hash_mask;
1340 
1341 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1342 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1343 
1344 	replace_vpte = be64_to_cpu(new_hptep[0]);
1345 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1346 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1347 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1348 	}
1349 
1350 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1351 		BUG_ON(new->order >= old->order);
1352 
1353 		if (replace_vpte & HPTE_V_BOLTED) {
1354 			if (vpte & HPTE_V_BOLTED)
1355 				/* Bolted collision, nothing we can do */
1356 				ret = -ENOSPC;
1357 			/* Discard the new HPTE */
1358 			goto out;
1359 		}
1360 
1361 		/* Discard the previous HPTE */
1362 	}
1363 
1364 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1365 		rpte = hpte_old_to_new_r(vpte, rpte);
1366 		vpte = hpte_old_to_new_v(vpte);
1367 	}
1368 
1369 	new_hptep[1] = cpu_to_be64(rpte);
1370 	new->rev[new_idx].guest_rpte = guest_rpte;
1371 	/* No need for a barrier, since new HPT isn't active */
1372 	new_hptep[0] = cpu_to_be64(vpte);
1373 	unlock_hpte(new_hptep, vpte);
1374 
1375 out:
1376 	unlock_hpte(hptep, vpte);
1377 	return ret;
1378 }
1379 
1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1381 {
1382 	struct kvm *kvm = resize->kvm;
1383 	unsigned  long i;
1384 	int rc;
1385 
1386 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1387 		rc = resize_hpt_rehash_hpte(resize, i);
1388 		if (rc != 0)
1389 			return rc;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1396 {
1397 	struct kvm *kvm = resize->kvm;
1398 	struct kvm_hpt_info hpt_tmp;
1399 
1400 	/* Exchange the pending tables in the resize structure with
1401 	 * the active tables */
1402 
1403 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1404 
1405 	spin_lock(&kvm->mmu_lock);
1406 	asm volatile("ptesync" : : : "memory");
1407 
1408 	hpt_tmp = kvm->arch.hpt;
1409 	kvmppc_set_hpt(kvm, &resize->hpt);
1410 	resize->hpt = hpt_tmp;
1411 
1412 	spin_unlock(&kvm->mmu_lock);
1413 
1414 	synchronize_srcu_expedited(&kvm->srcu);
1415 
1416 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1417 		kvmppc_setup_partition_table(kvm);
1418 
1419 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1420 }
1421 
1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1423 {
1424 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1425 		return;
1426 
1427 	if (!resize)
1428 		return;
1429 
1430 	if (resize->error != -EBUSY) {
1431 		if (resize->hpt.virt)
1432 			kvmppc_free_hpt(&resize->hpt);
1433 		kfree(resize);
1434 	}
1435 
1436 	if (kvm->arch.resize_hpt == resize)
1437 		kvm->arch.resize_hpt = NULL;
1438 }
1439 
1440 static void resize_hpt_prepare_work(struct work_struct *work)
1441 {
1442 	struct kvm_resize_hpt *resize = container_of(work,
1443 						     struct kvm_resize_hpt,
1444 						     work);
1445 	struct kvm *kvm = resize->kvm;
1446 	int err = 0;
1447 
1448 	if (WARN_ON(resize->error != -EBUSY))
1449 		return;
1450 
1451 	mutex_lock(&kvm->arch.mmu_setup_lock);
1452 
1453 	/* Request is still current? */
1454 	if (kvm->arch.resize_hpt == resize) {
1455 		/* We may request large allocations here:
1456 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1457 		 */
1458 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1459 
1460 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1461 				 resize->order);
1462 
1463 		err = resize_hpt_allocate(resize);
1464 
1465 		/* We have strict assumption about -EBUSY
1466 		 * when preparing for HPT resize.
1467 		 */
1468 		if (WARN_ON(err == -EBUSY))
1469 			err = -EINPROGRESS;
1470 
1471 		mutex_lock(&kvm->arch.mmu_setup_lock);
1472 		/* It is possible that kvm->arch.resize_hpt != resize
1473 		 * after we grab kvm->arch.mmu_setup_lock again.
1474 		 */
1475 	}
1476 
1477 	resize->error = err;
1478 
1479 	if (kvm->arch.resize_hpt != resize)
1480 		resize_hpt_release(kvm, resize);
1481 
1482 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1483 }
1484 
1485 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1486 				     struct kvm_ppc_resize_hpt *rhpt)
1487 {
1488 	unsigned long flags = rhpt->flags;
1489 	unsigned long shift = rhpt->shift;
1490 	struct kvm_resize_hpt *resize;
1491 	int ret;
1492 
1493 	if (flags != 0 || kvm_is_radix(kvm))
1494 		return -EINVAL;
1495 
1496 	if (shift && ((shift < 18) || (shift > 46)))
1497 		return -EINVAL;
1498 
1499 	mutex_lock(&kvm->arch.mmu_setup_lock);
1500 
1501 	resize = kvm->arch.resize_hpt;
1502 
1503 	if (resize) {
1504 		if (resize->order == shift) {
1505 			/* Suitable resize in progress? */
1506 			ret = resize->error;
1507 			if (ret == -EBUSY)
1508 				ret = 100; /* estimated time in ms */
1509 			else if (ret)
1510 				resize_hpt_release(kvm, resize);
1511 
1512 			goto out;
1513 		}
1514 
1515 		/* not suitable, cancel it */
1516 		resize_hpt_release(kvm, resize);
1517 	}
1518 
1519 	ret = 0;
1520 	if (!shift)
1521 		goto out; /* nothing to do */
1522 
1523 	/* start new resize */
1524 
1525 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1526 	if (!resize) {
1527 		ret = -ENOMEM;
1528 		goto out;
1529 	}
1530 
1531 	resize->error = -EBUSY;
1532 	resize->order = shift;
1533 	resize->kvm = kvm;
1534 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1535 	kvm->arch.resize_hpt = resize;
1536 
1537 	schedule_work(&resize->work);
1538 
1539 	ret = 100; /* estimated time in ms */
1540 
1541 out:
1542 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1543 	return ret;
1544 }
1545 
1546 static void resize_hpt_boot_vcpu(void *opaque)
1547 {
1548 	/* Nothing to do, just force a KVM exit */
1549 }
1550 
1551 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1552 				    struct kvm_ppc_resize_hpt *rhpt)
1553 {
1554 	unsigned long flags = rhpt->flags;
1555 	unsigned long shift = rhpt->shift;
1556 	struct kvm_resize_hpt *resize;
1557 	long ret;
1558 
1559 	if (flags != 0 || kvm_is_radix(kvm))
1560 		return -EINVAL;
1561 
1562 	if (shift && ((shift < 18) || (shift > 46)))
1563 		return -EINVAL;
1564 
1565 	mutex_lock(&kvm->arch.mmu_setup_lock);
1566 
1567 	resize = kvm->arch.resize_hpt;
1568 
1569 	/* This shouldn't be possible */
1570 	ret = -EIO;
1571 	if (WARN_ON(!kvm->arch.mmu_ready))
1572 		goto out_no_hpt;
1573 
1574 	/* Stop VCPUs from running while we mess with the HPT */
1575 	kvm->arch.mmu_ready = 0;
1576 	smp_mb();
1577 
1578 	/* Boot all CPUs out of the guest so they re-read
1579 	 * mmu_ready */
1580 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1581 
1582 	ret = -ENXIO;
1583 	if (!resize || (resize->order != shift))
1584 		goto out;
1585 
1586 	ret = resize->error;
1587 	if (ret)
1588 		goto out;
1589 
1590 	ret = resize_hpt_rehash(resize);
1591 	if (ret)
1592 		goto out;
1593 
1594 	resize_hpt_pivot(resize);
1595 
1596 out:
1597 	/* Let VCPUs run again */
1598 	kvm->arch.mmu_ready = 1;
1599 	smp_mb();
1600 out_no_hpt:
1601 	resize_hpt_release(kvm, resize);
1602 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * Functions for reading and writing the hash table via reads and
1608  * writes on a file descriptor.
1609  *
1610  * Reads return the guest view of the hash table, which has to be
1611  * pieced together from the real hash table and the guest_rpte
1612  * values in the revmap array.
1613  *
1614  * On writes, each HPTE written is considered in turn, and if it
1615  * is valid, it is written to the HPT as if an H_ENTER with the
1616  * exact flag set was done.  When the invalid count is non-zero
1617  * in the header written to the stream, the kernel will make
1618  * sure that that many HPTEs are invalid, and invalidate them
1619  * if not.
1620  */
1621 
1622 struct kvm_htab_ctx {
1623 	unsigned long	index;
1624 	unsigned long	flags;
1625 	struct kvm	*kvm;
1626 	int		first_pass;
1627 };
1628 
1629 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1630 
1631 /*
1632  * Returns 1 if this HPT entry has been modified or has pending
1633  * R/C bit changes.
1634  */
1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1636 {
1637 	unsigned long rcbits_unset;
1638 
1639 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1640 		return 1;
1641 
1642 	/* Also need to consider changes in reference and changed bits */
1643 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1644 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1645 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1646 		return 1;
1647 
1648 	return 0;
1649 }
1650 
1651 static long record_hpte(unsigned long flags, __be64 *hptp,
1652 			unsigned long *hpte, struct revmap_entry *revp,
1653 			int want_valid, int first_pass)
1654 {
1655 	unsigned long v, r, hr;
1656 	unsigned long rcbits_unset;
1657 	int ok = 1;
1658 	int valid, dirty;
1659 
1660 	/* Unmodified entries are uninteresting except on the first pass */
1661 	dirty = hpte_dirty(revp, hptp);
1662 	if (!first_pass && !dirty)
1663 		return 0;
1664 
1665 	valid = 0;
1666 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1667 		valid = 1;
1668 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1669 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1670 			valid = 0;
1671 	}
1672 	if (valid != want_valid)
1673 		return 0;
1674 
1675 	v = r = 0;
1676 	if (valid || dirty) {
1677 		/* lock the HPTE so it's stable and read it */
1678 		preempt_disable();
1679 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1680 			cpu_relax();
1681 		v = be64_to_cpu(hptp[0]);
1682 		hr = be64_to_cpu(hptp[1]);
1683 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1684 			v = hpte_new_to_old_v(v, hr);
1685 			hr = hpte_new_to_old_r(hr);
1686 		}
1687 
1688 		/* re-evaluate valid and dirty from synchronized HPTE value */
1689 		valid = !!(v & HPTE_V_VALID);
1690 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1691 
1692 		/* Harvest R and C into guest view if necessary */
1693 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1694 		if (valid && (rcbits_unset & hr)) {
1695 			revp->guest_rpte |= (hr &
1696 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1697 			dirty = 1;
1698 		}
1699 
1700 		if (v & HPTE_V_ABSENT) {
1701 			v &= ~HPTE_V_ABSENT;
1702 			v |= HPTE_V_VALID;
1703 			valid = 1;
1704 		}
1705 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1706 			valid = 0;
1707 
1708 		r = revp->guest_rpte;
1709 		/* only clear modified if this is the right sort of entry */
1710 		if (valid == want_valid && dirty) {
1711 			r &= ~HPTE_GR_MODIFIED;
1712 			revp->guest_rpte = r;
1713 		}
1714 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1715 		preempt_enable();
1716 		if (!(valid == want_valid && (first_pass || dirty)))
1717 			ok = 0;
1718 	}
1719 	hpte[0] = cpu_to_be64(v);
1720 	hpte[1] = cpu_to_be64(r);
1721 	return ok;
1722 }
1723 
1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1725 			     size_t count, loff_t *ppos)
1726 {
1727 	struct kvm_htab_ctx *ctx = file->private_data;
1728 	struct kvm *kvm = ctx->kvm;
1729 	struct kvm_get_htab_header hdr;
1730 	__be64 *hptp;
1731 	struct revmap_entry *revp;
1732 	unsigned long i, nb, nw;
1733 	unsigned long __user *lbuf;
1734 	struct kvm_get_htab_header __user *hptr;
1735 	unsigned long flags;
1736 	int first_pass;
1737 	unsigned long hpte[2];
1738 
1739 	if (!access_ok(buf, count))
1740 		return -EFAULT;
1741 	if (kvm_is_radix(kvm))
1742 		return 0;
1743 
1744 	first_pass = ctx->first_pass;
1745 	flags = ctx->flags;
1746 
1747 	i = ctx->index;
1748 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1749 	revp = kvm->arch.hpt.rev + i;
1750 	lbuf = (unsigned long __user *)buf;
1751 
1752 	nb = 0;
1753 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1754 		/* Initialize header */
1755 		hptr = (struct kvm_get_htab_header __user *)buf;
1756 		hdr.n_valid = 0;
1757 		hdr.n_invalid = 0;
1758 		nw = nb;
1759 		nb += sizeof(hdr);
1760 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1761 
1762 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1763 		if (!first_pass) {
1764 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1765 			       !hpte_dirty(revp, hptp)) {
1766 				++i;
1767 				hptp += 2;
1768 				++revp;
1769 			}
1770 		}
1771 		hdr.index = i;
1772 
1773 		/* Grab a series of valid entries */
1774 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1775 		       hdr.n_valid < 0xffff &&
1776 		       nb + HPTE_SIZE < count &&
1777 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1778 			/* valid entry, write it out */
1779 			++hdr.n_valid;
1780 			if (__put_user(hpte[0], lbuf) ||
1781 			    __put_user(hpte[1], lbuf + 1))
1782 				return -EFAULT;
1783 			nb += HPTE_SIZE;
1784 			lbuf += 2;
1785 			++i;
1786 			hptp += 2;
1787 			++revp;
1788 		}
1789 		/* Now skip invalid entries while we can */
1790 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1791 		       hdr.n_invalid < 0xffff &&
1792 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1793 			/* found an invalid entry */
1794 			++hdr.n_invalid;
1795 			++i;
1796 			hptp += 2;
1797 			++revp;
1798 		}
1799 
1800 		if (hdr.n_valid || hdr.n_invalid) {
1801 			/* write back the header */
1802 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1803 				return -EFAULT;
1804 			nw = nb;
1805 			buf = (char __user *)lbuf;
1806 		} else {
1807 			nb = nw;
1808 		}
1809 
1810 		/* Check if we've wrapped around the hash table */
1811 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1812 			i = 0;
1813 			ctx->first_pass = 0;
1814 			break;
1815 		}
1816 	}
1817 
1818 	ctx->index = i;
1819 
1820 	return nb;
1821 }
1822 
1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1824 			      size_t count, loff_t *ppos)
1825 {
1826 	struct kvm_htab_ctx *ctx = file->private_data;
1827 	struct kvm *kvm = ctx->kvm;
1828 	struct kvm_get_htab_header hdr;
1829 	unsigned long i, j;
1830 	unsigned long v, r;
1831 	unsigned long __user *lbuf;
1832 	__be64 *hptp;
1833 	unsigned long tmp[2];
1834 	ssize_t nb;
1835 	long int err, ret;
1836 	int mmu_ready;
1837 	int pshift;
1838 
1839 	if (!access_ok(buf, count))
1840 		return -EFAULT;
1841 	if (kvm_is_radix(kvm))
1842 		return -EINVAL;
1843 
1844 	/* lock out vcpus from running while we're doing this */
1845 	mutex_lock(&kvm->arch.mmu_setup_lock);
1846 	mmu_ready = kvm->arch.mmu_ready;
1847 	if (mmu_ready) {
1848 		kvm->arch.mmu_ready = 0;	/* temporarily */
1849 		/* order mmu_ready vs. vcpus_running */
1850 		smp_mb();
1851 		if (atomic_read(&kvm->arch.vcpus_running)) {
1852 			kvm->arch.mmu_ready = 1;
1853 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1854 			return -EBUSY;
1855 		}
1856 	}
1857 
1858 	err = 0;
1859 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1860 		err = -EFAULT;
1861 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1862 			break;
1863 
1864 		err = 0;
1865 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1866 			break;
1867 
1868 		nb += sizeof(hdr);
1869 		buf += sizeof(hdr);
1870 
1871 		err = -EINVAL;
1872 		i = hdr.index;
1873 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1874 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1875 			break;
1876 
1877 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1878 		lbuf = (unsigned long __user *)buf;
1879 		for (j = 0; j < hdr.n_valid; ++j) {
1880 			__be64 hpte_v;
1881 			__be64 hpte_r;
1882 
1883 			err = -EFAULT;
1884 			if (__get_user(hpte_v, lbuf) ||
1885 			    __get_user(hpte_r, lbuf + 1))
1886 				goto out;
1887 			v = be64_to_cpu(hpte_v);
1888 			r = be64_to_cpu(hpte_r);
1889 			err = -EINVAL;
1890 			if (!(v & HPTE_V_VALID))
1891 				goto out;
1892 			pshift = kvmppc_hpte_base_page_shift(v, r);
1893 			if (pshift <= 0)
1894 				goto out;
1895 			lbuf += 2;
1896 			nb += HPTE_SIZE;
1897 
1898 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1899 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1900 			err = -EIO;
1901 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1902 							 tmp);
1903 			if (ret != H_SUCCESS) {
1904 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1905 				       "r=%lx\n", ret, i, v, r);
1906 				goto out;
1907 			}
1908 			if (!mmu_ready && is_vrma_hpte(v)) {
1909 				unsigned long senc, lpcr;
1910 
1911 				senc = slb_pgsize_encoding(1ul << pshift);
1912 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1913 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1914 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1915 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1916 					kvmppc_update_lpcr(kvm, lpcr,
1917 							   LPCR_VRMASD);
1918 				} else {
1919 					kvmppc_setup_partition_table(kvm);
1920 				}
1921 				mmu_ready = 1;
1922 			}
1923 			++i;
1924 			hptp += 2;
1925 		}
1926 
1927 		for (j = 0; j < hdr.n_invalid; ++j) {
1928 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1929 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1930 			++i;
1931 			hptp += 2;
1932 		}
1933 		err = 0;
1934 	}
1935 
1936  out:
1937 	/* Order HPTE updates vs. mmu_ready */
1938 	smp_wmb();
1939 	kvm->arch.mmu_ready = mmu_ready;
1940 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1941 
1942 	if (err)
1943 		return err;
1944 	return nb;
1945 }
1946 
1947 static int kvm_htab_release(struct inode *inode, struct file *filp)
1948 {
1949 	struct kvm_htab_ctx *ctx = filp->private_data;
1950 
1951 	filp->private_data = NULL;
1952 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1953 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1954 	kvm_put_kvm(ctx->kvm);
1955 	kfree(ctx);
1956 	return 0;
1957 }
1958 
1959 static const struct file_operations kvm_htab_fops = {
1960 	.read		= kvm_htab_read,
1961 	.write		= kvm_htab_write,
1962 	.llseek		= default_llseek,
1963 	.release	= kvm_htab_release,
1964 };
1965 
1966 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1967 {
1968 	int ret;
1969 	struct kvm_htab_ctx *ctx;
1970 	int rwflag;
1971 
1972 	/* reject flags we don't recognize */
1973 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1974 		return -EINVAL;
1975 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1976 	if (!ctx)
1977 		return -ENOMEM;
1978 	kvm_get_kvm(kvm);
1979 	ctx->kvm = kvm;
1980 	ctx->index = ghf->start_index;
1981 	ctx->flags = ghf->flags;
1982 	ctx->first_pass = 1;
1983 
1984 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1985 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1986 	if (ret < 0) {
1987 		kfree(ctx);
1988 		kvm_put_kvm_no_destroy(kvm);
1989 		return ret;
1990 	}
1991 
1992 	if (rwflag == O_RDONLY) {
1993 		mutex_lock(&kvm->slots_lock);
1994 		atomic_inc(&kvm->arch.hpte_mod_interest);
1995 		/* make sure kvmppc_do_h_enter etc. see the increment */
1996 		synchronize_srcu_expedited(&kvm->srcu);
1997 		mutex_unlock(&kvm->slots_lock);
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 struct debugfs_htab_state {
2004 	struct kvm	*kvm;
2005 	struct mutex	mutex;
2006 	unsigned long	hpt_index;
2007 	int		chars_left;
2008 	int		buf_index;
2009 	char		buf[64];
2010 };
2011 
2012 static int debugfs_htab_open(struct inode *inode, struct file *file)
2013 {
2014 	struct kvm *kvm = inode->i_private;
2015 	struct debugfs_htab_state *p;
2016 
2017 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2018 	if (!p)
2019 		return -ENOMEM;
2020 
2021 	kvm_get_kvm(kvm);
2022 	p->kvm = kvm;
2023 	mutex_init(&p->mutex);
2024 	file->private_data = p;
2025 
2026 	return nonseekable_open(inode, file);
2027 }
2028 
2029 static int debugfs_htab_release(struct inode *inode, struct file *file)
2030 {
2031 	struct debugfs_htab_state *p = file->private_data;
2032 
2033 	kvm_put_kvm(p->kvm);
2034 	kfree(p);
2035 	return 0;
2036 }
2037 
2038 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2039 				 size_t len, loff_t *ppos)
2040 {
2041 	struct debugfs_htab_state *p = file->private_data;
2042 	ssize_t ret, r;
2043 	unsigned long i, n;
2044 	unsigned long v, hr, gr;
2045 	struct kvm *kvm;
2046 	__be64 *hptp;
2047 
2048 	kvm = p->kvm;
2049 	if (kvm_is_radix(kvm))
2050 		return 0;
2051 
2052 	ret = mutex_lock_interruptible(&p->mutex);
2053 	if (ret)
2054 		return ret;
2055 
2056 	if (p->chars_left) {
2057 		n = p->chars_left;
2058 		if (n > len)
2059 			n = len;
2060 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2061 		n -= r;
2062 		p->chars_left -= n;
2063 		p->buf_index += n;
2064 		buf += n;
2065 		len -= n;
2066 		ret = n;
2067 		if (r) {
2068 			if (!n)
2069 				ret = -EFAULT;
2070 			goto out;
2071 		}
2072 	}
2073 
2074 	i = p->hpt_index;
2075 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2076 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2077 	     ++i, hptp += 2) {
2078 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2079 			continue;
2080 
2081 		/* lock the HPTE so it's stable and read it */
2082 		preempt_disable();
2083 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2084 			cpu_relax();
2085 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2086 		hr = be64_to_cpu(hptp[1]);
2087 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2088 		unlock_hpte(hptp, v);
2089 		preempt_enable();
2090 
2091 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2092 			continue;
2093 
2094 		n = scnprintf(p->buf, sizeof(p->buf),
2095 			      "%6lx %.16lx %.16lx %.16lx\n",
2096 			      i, v, hr, gr);
2097 		p->chars_left = n;
2098 		if (n > len)
2099 			n = len;
2100 		r = copy_to_user(buf, p->buf, n);
2101 		n -= r;
2102 		p->chars_left -= n;
2103 		p->buf_index = n;
2104 		buf += n;
2105 		len -= n;
2106 		ret += n;
2107 		if (r) {
2108 			if (!ret)
2109 				ret = -EFAULT;
2110 			goto out;
2111 		}
2112 	}
2113 	p->hpt_index = i;
2114 
2115  out:
2116 	mutex_unlock(&p->mutex);
2117 	return ret;
2118 }
2119 
2120 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2121 			   size_t len, loff_t *ppos)
2122 {
2123 	return -EACCES;
2124 }
2125 
2126 static const struct file_operations debugfs_htab_fops = {
2127 	.owner	 = THIS_MODULE,
2128 	.open	 = debugfs_htab_open,
2129 	.release = debugfs_htab_release,
2130 	.read	 = debugfs_htab_read,
2131 	.write	 = debugfs_htab_write,
2132 	.llseek	 = generic_file_llseek,
2133 };
2134 
2135 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2136 {
2137 	debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2138 			    &debugfs_htab_fops);
2139 }
2140 
2141 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2142 {
2143 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2144 
2145 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2146 
2147 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2148 
2149 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2150 }
2151