1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31 
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/book3s/64/mmu-hash.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40 
41 #include "trace_hv.h"
42 
43 //#define DEBUG_RESIZE_HPT	1
44 
45 #ifdef DEBUG_RESIZE_HPT
46 #define resize_hpt_debug(resize, ...)				\
47 	do {							\
48 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
49 		printk(__VA_ARGS__);				\
50 	} while (0)
51 #else
52 #define resize_hpt_debug(resize, ...)				\
53 	do { } while (0)
54 #endif
55 
56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57 				long pte_index, unsigned long pteh,
58 				unsigned long ptel, unsigned long *pte_idx_ret);
59 
60 struct kvm_resize_hpt {
61 	/* These fields read-only after init */
62 	struct kvm *kvm;
63 	struct work_struct work;
64 	u32 order;
65 
66 	/* These fields protected by kvm->lock */
67 	int error;
68 	bool prepare_done;
69 
70 	/* Private to the work thread, until prepare_done is true,
71 	 * then protected by kvm->resize_hpt_sem */
72 	struct kvm_hpt_info hpt;
73 };
74 
75 static void kvmppc_rmap_reset(struct kvm *kvm);
76 
77 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
78 {
79 	unsigned long hpt = 0;
80 	int cma = 0;
81 	struct page *page = NULL;
82 	struct revmap_entry *rev;
83 	unsigned long npte;
84 
85 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
86 		return -EINVAL;
87 
88 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
89 	if (page) {
90 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
91 		memset((void *)hpt, 0, (1ul << order));
92 		cma = 1;
93 	}
94 
95 	if (!hpt)
96 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
97 				       |__GFP_NOWARN, order - PAGE_SHIFT);
98 
99 	if (!hpt)
100 		return -ENOMEM;
101 
102 	/* HPTEs are 2**4 bytes long */
103 	npte = 1ul << (order - 4);
104 
105 	/* Allocate reverse map array */
106 	rev = vmalloc(sizeof(struct revmap_entry) * npte);
107 	if (!rev) {
108 		pr_err("kvmppc_allocate_hpt: Couldn't alloc reverse map array\n");
109 		if (cma)
110 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
111 		else
112 			free_pages(hpt, order - PAGE_SHIFT);
113 		return -ENOMEM;
114 	}
115 
116 	info->order = order;
117 	info->virt = hpt;
118 	info->cma = cma;
119 	info->rev = rev;
120 
121 	return 0;
122 }
123 
124 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
125 {
126 	atomic64_set(&kvm->arch.mmio_update, 0);
127 	kvm->arch.hpt = *info;
128 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
129 
130 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
131 		 info->virt, (long)info->order, kvm->arch.lpid);
132 }
133 
134 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
135 {
136 	long err = -EBUSY;
137 	struct kvm_hpt_info info;
138 
139 	if (kvm_is_radix(kvm))
140 		return -EINVAL;
141 
142 	mutex_lock(&kvm->lock);
143 	if (kvm->arch.hpte_setup_done) {
144 		kvm->arch.hpte_setup_done = 0;
145 		/* order hpte_setup_done vs. vcpus_running */
146 		smp_mb();
147 		if (atomic_read(&kvm->arch.vcpus_running)) {
148 			kvm->arch.hpte_setup_done = 1;
149 			goto out;
150 		}
151 	}
152 	if (kvm->arch.hpt.order == order) {
153 		/* We already have a suitable HPT */
154 
155 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
156 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
157 		/*
158 		 * Reset all the reverse-mapping chains for all memslots
159 		 */
160 		kvmppc_rmap_reset(kvm);
161 		/* Ensure that each vcpu will flush its TLB on next entry. */
162 		cpumask_setall(&kvm->arch.need_tlb_flush);
163 		err = 0;
164 		goto out;
165 	}
166 
167 	if (kvm->arch.hpt.virt)
168 		kvmppc_free_hpt(&kvm->arch.hpt);
169 
170 	err = kvmppc_allocate_hpt(&info, order);
171 	if (err < 0)
172 		goto out;
173 	kvmppc_set_hpt(kvm, &info);
174 
175 out:
176 	mutex_unlock(&kvm->lock);
177 	return err;
178 }
179 
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182 	vfree(info->rev);
183 	if (info->cma)
184 		kvm_free_hpt_cma(virt_to_page(info->virt),
185 				 1 << (info->order - PAGE_SHIFT));
186 	else if (info->virt)
187 		free_pages(info->virt, info->order - PAGE_SHIFT);
188 	info->virt = 0;
189 	info->order = 0;
190 }
191 
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197 
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201 	return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203 
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 		     unsigned long porder)
206 {
207 	unsigned long i;
208 	unsigned long npages;
209 	unsigned long hp_v, hp_r;
210 	unsigned long addr, hash;
211 	unsigned long psize;
212 	unsigned long hp0, hp1;
213 	unsigned long idx_ret;
214 	long ret;
215 	struct kvm *kvm = vcpu->kvm;
216 
217 	psize = 1ul << porder;
218 	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 
220 	/* VRMA can't be > 1TB */
221 	if (npages > 1ul << (40 - porder))
222 		npages = 1ul << (40 - porder);
223 	/* Can't use more than 1 HPTE per HPTEG */
224 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226 
227 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 	hp1 = hpte1_pgsize_encoding(psize) |
230 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231 
232 	for (i = 0; i < npages; ++i) {
233 		addr = i << porder;
234 		/* can't use hpt_hash since va > 64 bits */
235 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 		/*
238 		 * We assume that the hash table is empty and no
239 		 * vcpus are using it at this stage.  Since we create
240 		 * at most one HPTE per HPTEG, we just assume entry 7
241 		 * is available and use it.
242 		 */
243 		hash = (hash << 3) + 7;
244 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 		hp_r = hp1 | addr;
246 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 						 &idx_ret);
248 		if (ret != H_SUCCESS) {
249 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 			       addr, ret);
251 			break;
252 		}
253 	}
254 }
255 
256 int kvmppc_mmu_hv_init(void)
257 {
258 	unsigned long host_lpid, rsvd_lpid;
259 
260 	if (!cpu_has_feature(CPU_FTR_HVMODE))
261 		return -EINVAL;
262 
263 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264 	host_lpid = mfspr(SPRN_LPID);
265 	rsvd_lpid = LPID_RSVD;
266 
267 	kvmppc_init_lpid(rsvd_lpid + 1);
268 
269 	kvmppc_claim_lpid(host_lpid);
270 	/* rsvd_lpid is reserved for use in partition switching */
271 	kvmppc_claim_lpid(rsvd_lpid);
272 
273 	return 0;
274 }
275 
276 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
277 {
278 	unsigned long msr = vcpu->arch.intr_msr;
279 
280 	/* If transactional, change to suspend mode on IRQ delivery */
281 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
282 		msr |= MSR_TS_S;
283 	else
284 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
285 	kvmppc_set_msr(vcpu, msr);
286 }
287 
288 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
289 				long pte_index, unsigned long pteh,
290 				unsigned long ptel, unsigned long *pte_idx_ret)
291 {
292 	long ret;
293 
294 	/* Protect linux PTE lookup from page table destruction */
295 	rcu_read_lock_sched();	/* this disables preemption too */
296 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
297 				current->mm->pgd, false, pte_idx_ret);
298 	rcu_read_unlock_sched();
299 	if (ret == H_TOO_HARD) {
300 		/* this can't happen */
301 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
302 		ret = H_RESOURCE;	/* or something */
303 	}
304 	return ret;
305 
306 }
307 
308 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
309 							 gva_t eaddr)
310 {
311 	u64 mask;
312 	int i;
313 
314 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
315 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
316 			continue;
317 
318 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
319 			mask = ESID_MASK_1T;
320 		else
321 			mask = ESID_MASK;
322 
323 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
324 			return &vcpu->arch.slb[i];
325 	}
326 	return NULL;
327 }
328 
329 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
330 			unsigned long ea)
331 {
332 	unsigned long ra_mask;
333 
334 	ra_mask = hpte_page_size(v, r) - 1;
335 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
336 }
337 
338 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
339 			struct kvmppc_pte *gpte, bool data, bool iswrite)
340 {
341 	struct kvm *kvm = vcpu->kvm;
342 	struct kvmppc_slb *slbe;
343 	unsigned long slb_v;
344 	unsigned long pp, key;
345 	unsigned long v, orig_v, gr;
346 	__be64 *hptep;
347 	int index;
348 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
349 
350 	/* Get SLB entry */
351 	if (virtmode) {
352 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
353 		if (!slbe)
354 			return -EINVAL;
355 		slb_v = slbe->origv;
356 	} else {
357 		/* real mode access */
358 		slb_v = vcpu->kvm->arch.vrma_slb_v;
359 	}
360 
361 	preempt_disable();
362 	/* Find the HPTE in the hash table */
363 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
364 					 HPTE_V_VALID | HPTE_V_ABSENT);
365 	if (index < 0) {
366 		preempt_enable();
367 		return -ENOENT;
368 	}
369 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
370 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
371 	if (cpu_has_feature(CPU_FTR_ARCH_300))
372 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
373 	gr = kvm->arch.hpt.rev[index].guest_rpte;
374 
375 	unlock_hpte(hptep, orig_v);
376 	preempt_enable();
377 
378 	gpte->eaddr = eaddr;
379 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
380 
381 	/* Get PP bits and key for permission check */
382 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
383 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
384 	key &= slb_v;
385 
386 	/* Calculate permissions */
387 	gpte->may_read = hpte_read_permission(pp, key);
388 	gpte->may_write = hpte_write_permission(pp, key);
389 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
390 
391 	/* Storage key permission check for POWER7 */
392 	if (data && virtmode) {
393 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
394 		if (amrfield & 1)
395 			gpte->may_read = 0;
396 		if (amrfield & 2)
397 			gpte->may_write = 0;
398 	}
399 
400 	/* Get the guest physical address */
401 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
402 	return 0;
403 }
404 
405 /*
406  * Quick test for whether an instruction is a load or a store.
407  * If the instruction is a load or a store, then this will indicate
408  * which it is, at least on server processors.  (Embedded processors
409  * have some external PID instructions that don't follow the rule
410  * embodied here.)  If the instruction isn't a load or store, then
411  * this doesn't return anything useful.
412  */
413 static int instruction_is_store(unsigned int instr)
414 {
415 	unsigned int mask;
416 
417 	mask = 0x10000000;
418 	if ((instr & 0xfc000000) == 0x7c000000)
419 		mask = 0x100;		/* major opcode 31 */
420 	return (instr & mask) != 0;
421 }
422 
423 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
424 			   unsigned long gpa, gva_t ea, int is_store)
425 {
426 	u32 last_inst;
427 
428 	/*
429 	 * If we fail, we just return to the guest and try executing it again.
430 	 */
431 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
432 		EMULATE_DONE)
433 		return RESUME_GUEST;
434 
435 	/*
436 	 * WARNING: We do not know for sure whether the instruction we just
437 	 * read from memory is the same that caused the fault in the first
438 	 * place.  If the instruction we read is neither an load or a store,
439 	 * then it can't access memory, so we don't need to worry about
440 	 * enforcing access permissions.  So, assuming it is a load or
441 	 * store, we just check that its direction (load or store) is
442 	 * consistent with the original fault, since that's what we
443 	 * checked the access permissions against.  If there is a mismatch
444 	 * we just return and retry the instruction.
445 	 */
446 
447 	if (instruction_is_store(last_inst) != !!is_store)
448 		return RESUME_GUEST;
449 
450 	/*
451 	 * Emulated accesses are emulated by looking at the hash for
452 	 * translation once, then performing the access later. The
453 	 * translation could be invalidated in the meantime in which
454 	 * point performing the subsequent memory access on the old
455 	 * physical address could possibly be a security hole for the
456 	 * guest (but not the host).
457 	 *
458 	 * This is less of an issue for MMIO stores since they aren't
459 	 * globally visible. It could be an issue for MMIO loads to
460 	 * a certain extent but we'll ignore it for now.
461 	 */
462 
463 	vcpu->arch.paddr_accessed = gpa;
464 	vcpu->arch.vaddr_accessed = ea;
465 	return kvmppc_emulate_mmio(run, vcpu);
466 }
467 
468 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
469 				unsigned long ea, unsigned long dsisr)
470 {
471 	struct kvm *kvm = vcpu->kvm;
472 	unsigned long hpte[3], r;
473 	unsigned long hnow_v, hnow_r;
474 	__be64 *hptep;
475 	unsigned long mmu_seq, psize, pte_size;
476 	unsigned long gpa_base, gfn_base;
477 	unsigned long gpa, gfn, hva, pfn;
478 	struct kvm_memory_slot *memslot;
479 	unsigned long *rmap;
480 	struct revmap_entry *rev;
481 	struct page *page, *pages[1];
482 	long index, ret, npages;
483 	bool is_ci;
484 	unsigned int writing, write_ok;
485 	struct vm_area_struct *vma;
486 	unsigned long rcbits;
487 	long mmio_update;
488 
489 	if (kvm_is_radix(kvm))
490 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
491 
492 	/*
493 	 * Real-mode code has already searched the HPT and found the
494 	 * entry we're interested in.  Lock the entry and check that
495 	 * it hasn't changed.  If it has, just return and re-execute the
496 	 * instruction.
497 	 */
498 	if (ea != vcpu->arch.pgfault_addr)
499 		return RESUME_GUEST;
500 
501 	if (vcpu->arch.pgfault_cache) {
502 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
503 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
504 			r = vcpu->arch.pgfault_cache->rpte;
505 			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
506 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
507 			gfn_base = gpa_base >> PAGE_SHIFT;
508 			gpa = gpa_base | (ea & (psize - 1));
509 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
510 						dsisr & DSISR_ISSTORE);
511 		}
512 	}
513 	index = vcpu->arch.pgfault_index;
514 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
515 	rev = &kvm->arch.hpt.rev[index];
516 	preempt_disable();
517 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
518 		cpu_relax();
519 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
520 	hpte[1] = be64_to_cpu(hptep[1]);
521 	hpte[2] = r = rev->guest_rpte;
522 	unlock_hpte(hptep, hpte[0]);
523 	preempt_enable();
524 
525 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
526 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
527 		hpte[1] = hpte_new_to_old_r(hpte[1]);
528 	}
529 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
530 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
531 		return RESUME_GUEST;
532 
533 	/* Translate the logical address and get the page */
534 	psize = hpte_page_size(hpte[0], r);
535 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
536 	gfn_base = gpa_base >> PAGE_SHIFT;
537 	gpa = gpa_base | (ea & (psize - 1));
538 	gfn = gpa >> PAGE_SHIFT;
539 	memslot = gfn_to_memslot(kvm, gfn);
540 
541 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
542 
543 	/* No memslot means it's an emulated MMIO region */
544 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
545 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
546 					      dsisr & DSISR_ISSTORE);
547 
548 	/*
549 	 * This should never happen, because of the slot_is_aligned()
550 	 * check in kvmppc_do_h_enter().
551 	 */
552 	if (gfn_base < memslot->base_gfn)
553 		return -EFAULT;
554 
555 	/* used to check for invalidations in progress */
556 	mmu_seq = kvm->mmu_notifier_seq;
557 	smp_rmb();
558 
559 	ret = -EFAULT;
560 	is_ci = false;
561 	pfn = 0;
562 	page = NULL;
563 	pte_size = PAGE_SIZE;
564 	writing = (dsisr & DSISR_ISSTORE) != 0;
565 	/* If writing != 0, then the HPTE must allow writing, if we get here */
566 	write_ok = writing;
567 	hva = gfn_to_hva_memslot(memslot, gfn);
568 	npages = get_user_pages_fast(hva, 1, writing, pages);
569 	if (npages < 1) {
570 		/* Check if it's an I/O mapping */
571 		down_read(&current->mm->mmap_sem);
572 		vma = find_vma(current->mm, hva);
573 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
574 		    (vma->vm_flags & VM_PFNMAP)) {
575 			pfn = vma->vm_pgoff +
576 				((hva - vma->vm_start) >> PAGE_SHIFT);
577 			pte_size = psize;
578 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
579 			write_ok = vma->vm_flags & VM_WRITE;
580 		}
581 		up_read(&current->mm->mmap_sem);
582 		if (!pfn)
583 			goto out_put;
584 	} else {
585 		page = pages[0];
586 		pfn = page_to_pfn(page);
587 		if (PageHuge(page)) {
588 			page = compound_head(page);
589 			pte_size <<= compound_order(page);
590 		}
591 		/* if the guest wants write access, see if that is OK */
592 		if (!writing && hpte_is_writable(r)) {
593 			pte_t *ptep, pte;
594 			unsigned long flags;
595 			/*
596 			 * We need to protect against page table destruction
597 			 * hugepage split and collapse.
598 			 */
599 			local_irq_save(flags);
600 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
601 							 hva, NULL, NULL);
602 			if (ptep) {
603 				pte = kvmppc_read_update_linux_pte(ptep, 1);
604 				if (__pte_write(pte))
605 					write_ok = 1;
606 			}
607 			local_irq_restore(flags);
608 		}
609 	}
610 
611 	if (psize > pte_size)
612 		goto out_put;
613 
614 	/* Check WIMG vs. the actual page we're accessing */
615 	if (!hpte_cache_flags_ok(r, is_ci)) {
616 		if (is_ci)
617 			goto out_put;
618 		/*
619 		 * Allow guest to map emulated device memory as
620 		 * uncacheable, but actually make it cacheable.
621 		 */
622 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
623 	}
624 
625 	/*
626 	 * Set the HPTE to point to pfn.
627 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
628 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
629 	 */
630 	if (psize < PAGE_SIZE)
631 		psize = PAGE_SIZE;
632 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
633 					((pfn << PAGE_SHIFT) & ~(psize - 1));
634 	if (hpte_is_writable(r) && !write_ok)
635 		r = hpte_make_readonly(r);
636 	ret = RESUME_GUEST;
637 	preempt_disable();
638 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
639 		cpu_relax();
640 	hnow_v = be64_to_cpu(hptep[0]);
641 	hnow_r = be64_to_cpu(hptep[1]);
642 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
643 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
644 		hnow_r = hpte_new_to_old_r(hnow_r);
645 	}
646 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
647 	    rev->guest_rpte != hpte[2])
648 		/* HPTE has been changed under us; let the guest retry */
649 		goto out_unlock;
650 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
651 
652 	/* Always put the HPTE in the rmap chain for the page base address */
653 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
654 	lock_rmap(rmap);
655 
656 	/* Check if we might have been invalidated; let the guest retry if so */
657 	ret = RESUME_GUEST;
658 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
659 		unlock_rmap(rmap);
660 		goto out_unlock;
661 	}
662 
663 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
664 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
665 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
666 
667 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
668 		/* HPTE was previously valid, so we need to invalidate it */
669 		unlock_rmap(rmap);
670 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
671 		kvmppc_invalidate_hpte(kvm, hptep, index);
672 		/* don't lose previous R and C bits */
673 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
674 	} else {
675 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
676 	}
677 
678 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
679 		r = hpte_old_to_new_r(hpte[0], r);
680 		hpte[0] = hpte_old_to_new_v(hpte[0]);
681 	}
682 	hptep[1] = cpu_to_be64(r);
683 	eieio();
684 	__unlock_hpte(hptep, hpte[0]);
685 	asm volatile("ptesync" : : : "memory");
686 	preempt_enable();
687 	if (page && hpte_is_writable(r))
688 		SetPageDirty(page);
689 
690  out_put:
691 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
692 
693 	if (page) {
694 		/*
695 		 * We drop pages[0] here, not page because page might
696 		 * have been set to the head page of a compound, but
697 		 * we have to drop the reference on the correct tail
698 		 * page to match the get inside gup()
699 		 */
700 		put_page(pages[0]);
701 	}
702 	return ret;
703 
704  out_unlock:
705 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
706 	preempt_enable();
707 	goto out_put;
708 }
709 
710 static void kvmppc_rmap_reset(struct kvm *kvm)
711 {
712 	struct kvm_memslots *slots;
713 	struct kvm_memory_slot *memslot;
714 	int srcu_idx;
715 
716 	srcu_idx = srcu_read_lock(&kvm->srcu);
717 	slots = kvm_memslots(kvm);
718 	kvm_for_each_memslot(memslot, slots) {
719 		/*
720 		 * This assumes it is acceptable to lose reference and
721 		 * change bits across a reset.
722 		 */
723 		memset(memslot->arch.rmap, 0,
724 		       memslot->npages * sizeof(*memslot->arch.rmap));
725 	}
726 	srcu_read_unlock(&kvm->srcu, srcu_idx);
727 }
728 
729 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
730 			      unsigned long gfn);
731 
732 static int kvm_handle_hva_range(struct kvm *kvm,
733 				unsigned long start,
734 				unsigned long end,
735 				hva_handler_fn handler)
736 {
737 	int ret;
738 	int retval = 0;
739 	struct kvm_memslots *slots;
740 	struct kvm_memory_slot *memslot;
741 
742 	slots = kvm_memslots(kvm);
743 	kvm_for_each_memslot(memslot, slots) {
744 		unsigned long hva_start, hva_end;
745 		gfn_t gfn, gfn_end;
746 
747 		hva_start = max(start, memslot->userspace_addr);
748 		hva_end = min(end, memslot->userspace_addr +
749 					(memslot->npages << PAGE_SHIFT));
750 		if (hva_start >= hva_end)
751 			continue;
752 		/*
753 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
754 		 * {gfn, gfn+1, ..., gfn_end-1}.
755 		 */
756 		gfn = hva_to_gfn_memslot(hva_start, memslot);
757 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
758 
759 		for (; gfn < gfn_end; ++gfn) {
760 			ret = handler(kvm, memslot, gfn);
761 			retval |= ret;
762 		}
763 	}
764 
765 	return retval;
766 }
767 
768 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
769 			  hva_handler_fn handler)
770 {
771 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
772 }
773 
774 /* Must be called with both HPTE and rmap locked */
775 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
776 			      unsigned long *rmapp, unsigned long gfn)
777 {
778 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
779 	struct revmap_entry *rev = kvm->arch.hpt.rev;
780 	unsigned long j, h;
781 	unsigned long ptel, psize, rcbits;
782 
783 	j = rev[i].forw;
784 	if (j == i) {
785 		/* chain is now empty */
786 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
787 	} else {
788 		/* remove i from chain */
789 		h = rev[i].back;
790 		rev[h].forw = j;
791 		rev[j].back = h;
792 		rev[i].forw = rev[i].back = i;
793 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
794 	}
795 
796 	/* Now check and modify the HPTE */
797 	ptel = rev[i].guest_rpte;
798 	psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
799 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
800 	    hpte_rpn(ptel, psize) == gfn) {
801 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
802 		kvmppc_invalidate_hpte(kvm, hptep, i);
803 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
804 		/* Harvest R and C */
805 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
806 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
807 		if (rcbits & HPTE_R_C)
808 			kvmppc_update_rmap_change(rmapp, psize);
809 		if (rcbits & ~rev[i].guest_rpte) {
810 			rev[i].guest_rpte = ptel | rcbits;
811 			note_hpte_modification(kvm, &rev[i]);
812 		}
813 	}
814 }
815 
816 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
817 			   unsigned long gfn)
818 {
819 	unsigned long i;
820 	__be64 *hptep;
821 	unsigned long *rmapp;
822 
823 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
824 	for (;;) {
825 		lock_rmap(rmapp);
826 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
827 			unlock_rmap(rmapp);
828 			break;
829 		}
830 
831 		/*
832 		 * To avoid an ABBA deadlock with the HPTE lock bit,
833 		 * we can't spin on the HPTE lock while holding the
834 		 * rmap chain lock.
835 		 */
836 		i = *rmapp & KVMPPC_RMAP_INDEX;
837 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
838 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
839 			/* unlock rmap before spinning on the HPTE lock */
840 			unlock_rmap(rmapp);
841 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842 				cpu_relax();
843 			continue;
844 		}
845 
846 		kvmppc_unmap_hpte(kvm, i, rmapp, gfn);
847 		unlock_rmap(rmapp);
848 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
849 	}
850 	return 0;
851 }
852 
853 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
854 {
855 	hva_handler_fn handler;
856 
857 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
858 	kvm_handle_hva(kvm, hva, handler);
859 	return 0;
860 }
861 
862 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
863 {
864 	hva_handler_fn handler;
865 
866 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
867 	kvm_handle_hva_range(kvm, start, end, handler);
868 	return 0;
869 }
870 
871 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
872 				  struct kvm_memory_slot *memslot)
873 {
874 	unsigned long gfn;
875 	unsigned long n;
876 	unsigned long *rmapp;
877 
878 	gfn = memslot->base_gfn;
879 	rmapp = memslot->arch.rmap;
880 	for (n = memslot->npages; n; --n, ++gfn) {
881 		if (kvm_is_radix(kvm)) {
882 			kvm_unmap_radix(kvm, memslot, gfn);
883 			continue;
884 		}
885 		/*
886 		 * Testing the present bit without locking is OK because
887 		 * the memslot has been marked invalid already, and hence
888 		 * no new HPTEs referencing this page can be created,
889 		 * thus the present bit can't go from 0 to 1.
890 		 */
891 		if (*rmapp & KVMPPC_RMAP_PRESENT)
892 			kvm_unmap_rmapp(kvm, memslot, gfn);
893 		++rmapp;
894 	}
895 }
896 
897 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
898 			 unsigned long gfn)
899 {
900 	struct revmap_entry *rev = kvm->arch.hpt.rev;
901 	unsigned long head, i, j;
902 	__be64 *hptep;
903 	int ret = 0;
904 	unsigned long *rmapp;
905 
906 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
907  retry:
908 	lock_rmap(rmapp);
909 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
910 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
911 		ret = 1;
912 	}
913 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
914 		unlock_rmap(rmapp);
915 		return ret;
916 	}
917 
918 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
919 	do {
920 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
921 		j = rev[i].forw;
922 
923 		/* If this HPTE isn't referenced, ignore it */
924 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
925 			continue;
926 
927 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
928 			/* unlock rmap before spinning on the HPTE lock */
929 			unlock_rmap(rmapp);
930 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
931 				cpu_relax();
932 			goto retry;
933 		}
934 
935 		/* Now check and modify the HPTE */
936 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
937 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
938 			kvmppc_clear_ref_hpte(kvm, hptep, i);
939 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
940 				rev[i].guest_rpte |= HPTE_R_R;
941 				note_hpte_modification(kvm, &rev[i]);
942 			}
943 			ret = 1;
944 		}
945 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
946 	} while ((i = j) != head);
947 
948 	unlock_rmap(rmapp);
949 	return ret;
950 }
951 
952 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
953 {
954 	hva_handler_fn handler;
955 
956 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
957 	return kvm_handle_hva_range(kvm, start, end, handler);
958 }
959 
960 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
961 			      unsigned long gfn)
962 {
963 	struct revmap_entry *rev = kvm->arch.hpt.rev;
964 	unsigned long head, i, j;
965 	unsigned long *hp;
966 	int ret = 1;
967 	unsigned long *rmapp;
968 
969 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
970 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
971 		return 1;
972 
973 	lock_rmap(rmapp);
974 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
975 		goto out;
976 
977 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
978 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
979 		do {
980 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
981 			j = rev[i].forw;
982 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
983 				goto out;
984 		} while ((i = j) != head);
985 	}
986 	ret = 0;
987 
988  out:
989 	unlock_rmap(rmapp);
990 	return ret;
991 }
992 
993 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
994 {
995 	hva_handler_fn handler;
996 
997 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
998 	return kvm_handle_hva(kvm, hva, handler);
999 }
1000 
1001 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1002 {
1003 	hva_handler_fn handler;
1004 
1005 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1006 	kvm_handle_hva(kvm, hva, handler);
1007 }
1008 
1009 static int vcpus_running(struct kvm *kvm)
1010 {
1011 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1012 }
1013 
1014 /*
1015  * Returns the number of system pages that are dirty.
1016  * This can be more than 1 if we find a huge-page HPTE.
1017  */
1018 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1019 {
1020 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1021 	unsigned long head, i, j;
1022 	unsigned long n;
1023 	unsigned long v, r;
1024 	__be64 *hptep;
1025 	int npages_dirty = 0;
1026 
1027  retry:
1028 	lock_rmap(rmapp);
1029 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
1030 		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
1031 			>> KVMPPC_RMAP_CHG_SHIFT;
1032 		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
1033 		npages_dirty = 1;
1034 		if (change_order > PAGE_SHIFT)
1035 			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
1036 	}
1037 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1038 		unlock_rmap(rmapp);
1039 		return npages_dirty;
1040 	}
1041 
1042 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1043 	do {
1044 		unsigned long hptep1;
1045 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1046 		j = rev[i].forw;
1047 
1048 		/*
1049 		 * Checking the C (changed) bit here is racy since there
1050 		 * is no guarantee about when the hardware writes it back.
1051 		 * If the HPTE is not writable then it is stable since the
1052 		 * page can't be written to, and we would have done a tlbie
1053 		 * (which forces the hardware to complete any writeback)
1054 		 * when making the HPTE read-only.
1055 		 * If vcpus are running then this call is racy anyway
1056 		 * since the page could get dirtied subsequently, so we
1057 		 * expect there to be a further call which would pick up
1058 		 * any delayed C bit writeback.
1059 		 * Otherwise we need to do the tlbie even if C==0 in
1060 		 * order to pick up any delayed writeback of C.
1061 		 */
1062 		hptep1 = be64_to_cpu(hptep[1]);
1063 		if (!(hptep1 & HPTE_R_C) &&
1064 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1065 			continue;
1066 
1067 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1068 			/* unlock rmap before spinning on the HPTE lock */
1069 			unlock_rmap(rmapp);
1070 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1071 				cpu_relax();
1072 			goto retry;
1073 		}
1074 
1075 		/* Now check and modify the HPTE */
1076 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1077 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1078 			continue;
1079 		}
1080 
1081 		/* need to make it temporarily absent so C is stable */
1082 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1083 		kvmppc_invalidate_hpte(kvm, hptep, i);
1084 		v = be64_to_cpu(hptep[0]);
1085 		r = be64_to_cpu(hptep[1]);
1086 		if (r & HPTE_R_C) {
1087 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1088 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1089 				rev[i].guest_rpte |= HPTE_R_C;
1090 				note_hpte_modification(kvm, &rev[i]);
1091 			}
1092 			n = hpte_page_size(v, r);
1093 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094 			if (n > npages_dirty)
1095 				npages_dirty = n;
1096 			eieio();
1097 		}
1098 		v &= ~HPTE_V_ABSENT;
1099 		v |= HPTE_V_VALID;
1100 		__unlock_hpte(hptep, v);
1101 	} while ((i = j) != head);
1102 
1103 	unlock_rmap(rmapp);
1104 	return npages_dirty;
1105 }
1106 
1107 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1108 			      struct kvm_memory_slot *memslot,
1109 			      unsigned long *map)
1110 {
1111 	unsigned long gfn;
1112 
1113 	if (!vpa->dirty || !vpa->pinned_addr)
1114 		return;
1115 	gfn = vpa->gpa >> PAGE_SHIFT;
1116 	if (gfn < memslot->base_gfn ||
1117 	    gfn >= memslot->base_gfn + memslot->npages)
1118 		return;
1119 
1120 	vpa->dirty = false;
1121 	if (map)
1122 		__set_bit_le(gfn - memslot->base_gfn, map);
1123 }
1124 
1125 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1126 			struct kvm_memory_slot *memslot, unsigned long *map)
1127 {
1128 	unsigned long i, j;
1129 	unsigned long *rmapp;
1130 
1131 	preempt_disable();
1132 	rmapp = memslot->arch.rmap;
1133 	for (i = 0; i < memslot->npages; ++i) {
1134 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1135 		/*
1136 		 * Note that if npages > 0 then i must be a multiple of npages,
1137 		 * since we always put huge-page HPTEs in the rmap chain
1138 		 * corresponding to their page base address.
1139 		 */
1140 		if (npages && map)
1141 			for (j = i; npages; ++j, --npages)
1142 				__set_bit_le(j, map);
1143 		++rmapp;
1144 	}
1145 	preempt_enable();
1146 	return 0;
1147 }
1148 
1149 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1150 			    unsigned long *nb_ret)
1151 {
1152 	struct kvm_memory_slot *memslot;
1153 	unsigned long gfn = gpa >> PAGE_SHIFT;
1154 	struct page *page, *pages[1];
1155 	int npages;
1156 	unsigned long hva, offset;
1157 	int srcu_idx;
1158 
1159 	srcu_idx = srcu_read_lock(&kvm->srcu);
1160 	memslot = gfn_to_memslot(kvm, gfn);
1161 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1162 		goto err;
1163 	hva = gfn_to_hva_memslot(memslot, gfn);
1164 	npages = get_user_pages_fast(hva, 1, 1, pages);
1165 	if (npages < 1)
1166 		goto err;
1167 	page = pages[0];
1168 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1169 
1170 	offset = gpa & (PAGE_SIZE - 1);
1171 	if (nb_ret)
1172 		*nb_ret = PAGE_SIZE - offset;
1173 	return page_address(page) + offset;
1174 
1175  err:
1176 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1177 	return NULL;
1178 }
1179 
1180 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1181 			     bool dirty)
1182 {
1183 	struct page *page = virt_to_page(va);
1184 	struct kvm_memory_slot *memslot;
1185 	unsigned long gfn;
1186 	unsigned long *rmap;
1187 	int srcu_idx;
1188 
1189 	put_page(page);
1190 
1191 	if (!dirty)
1192 		return;
1193 
1194 	/* We need to mark this page dirty in the rmap chain */
1195 	gfn = gpa >> PAGE_SHIFT;
1196 	srcu_idx = srcu_read_lock(&kvm->srcu);
1197 	memslot = gfn_to_memslot(kvm, gfn);
1198 	if (memslot) {
1199 		if (!kvm_is_radix(kvm)) {
1200 			rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1201 			lock_rmap(rmap);
1202 			*rmap |= KVMPPC_RMAP_CHANGED;
1203 			unlock_rmap(rmap);
1204 		} else if (memslot->dirty_bitmap) {
1205 			mark_page_dirty(kvm, gfn);
1206 		}
1207 	}
1208 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1209 }
1210 
1211 /*
1212  * HPT resizing
1213  */
1214 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1215 {
1216 	int rc;
1217 
1218 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1219 	if (rc < 0)
1220 		return rc;
1221 
1222 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1223 			 resize->hpt.virt);
1224 
1225 	return 0;
1226 }
1227 
1228 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1229 					    unsigned long idx)
1230 {
1231 	struct kvm *kvm = resize->kvm;
1232 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1233 	struct kvm_hpt_info *new = &resize->hpt;
1234 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1235 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1236 	__be64 *hptep, *new_hptep;
1237 	unsigned long vpte, rpte, guest_rpte;
1238 	int ret;
1239 	struct revmap_entry *rev;
1240 	unsigned long apsize, psize, avpn, pteg, hash;
1241 	unsigned long new_idx, new_pteg, replace_vpte;
1242 
1243 	hptep = (__be64 *)(old->virt + (idx << 4));
1244 
1245 	/* Guest is stopped, so new HPTEs can't be added or faulted
1246 	 * in, only unmapped or altered by host actions.  So, it's
1247 	 * safe to check this before we take the HPTE lock */
1248 	vpte = be64_to_cpu(hptep[0]);
1249 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1250 		return 0; /* nothing to do */
1251 
1252 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1253 		cpu_relax();
1254 
1255 	vpte = be64_to_cpu(hptep[0]);
1256 
1257 	ret = 0;
1258 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1259 		/* Nothing to do */
1260 		goto out;
1261 
1262 	/* Unmap */
1263 	rev = &old->rev[idx];
1264 	guest_rpte = rev->guest_rpte;
1265 
1266 	ret = -EIO;
1267 	apsize = hpte_page_size(vpte, guest_rpte);
1268 	if (!apsize)
1269 		goto out;
1270 
1271 	if (vpte & HPTE_V_VALID) {
1272 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1273 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1274 		struct kvm_memory_slot *memslot =
1275 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1276 
1277 		if (memslot) {
1278 			unsigned long *rmapp;
1279 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1280 
1281 			lock_rmap(rmapp);
1282 			kvmppc_unmap_hpte(kvm, idx, rmapp, gfn);
1283 			unlock_rmap(rmapp);
1284 		}
1285 
1286 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1287 	}
1288 
1289 	/* Reload PTE after unmap */
1290 	vpte = be64_to_cpu(hptep[0]);
1291 
1292 	BUG_ON(vpte & HPTE_V_VALID);
1293 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1294 
1295 	ret = 0;
1296 	if (!(vpte & HPTE_V_BOLTED))
1297 		goto out;
1298 
1299 	rpte = be64_to_cpu(hptep[1]);
1300 	psize = hpte_base_page_size(vpte, rpte);
1301 	avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23);
1302 	pteg = idx / HPTES_PER_GROUP;
1303 	if (vpte & HPTE_V_SECONDARY)
1304 		pteg = ~pteg;
1305 
1306 	if (!(vpte & HPTE_V_1TB_SEG)) {
1307 		unsigned long offset, vsid;
1308 
1309 		/* We only have 28 - 23 bits of offset in avpn */
1310 		offset = (avpn & 0x1f) << 23;
1311 		vsid = avpn >> 5;
1312 		/* We can find more bits from the pteg value */
1313 		if (psize < (1ULL << 23))
1314 			offset |= ((vsid ^ pteg) & old_hash_mask) * psize;
1315 
1316 		hash = vsid ^ (offset / psize);
1317 	} else {
1318 		unsigned long offset, vsid;
1319 
1320 		/* We only have 40 - 23 bits of seg_off in avpn */
1321 		offset = (avpn & 0x1ffff) << 23;
1322 		vsid = avpn >> 17;
1323 		if (psize < (1ULL << 23))
1324 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize;
1325 
1326 		hash = vsid ^ (vsid << 25) ^ (offset / psize);
1327 	}
1328 
1329 	new_pteg = hash & new_hash_mask;
1330 	if (vpte & HPTE_V_SECONDARY) {
1331 		BUG_ON(~pteg != (hash & old_hash_mask));
1332 		new_pteg = ~new_pteg;
1333 	} else {
1334 		BUG_ON(pteg != (hash & old_hash_mask));
1335 	}
1336 
1337 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1338 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1339 
1340 	replace_vpte = be64_to_cpu(new_hptep[0]);
1341 
1342 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1343 		BUG_ON(new->order >= old->order);
1344 
1345 		if (replace_vpte & HPTE_V_BOLTED) {
1346 			if (vpte & HPTE_V_BOLTED)
1347 				/* Bolted collision, nothing we can do */
1348 				ret = -ENOSPC;
1349 			/* Discard the new HPTE */
1350 			goto out;
1351 		}
1352 
1353 		/* Discard the previous HPTE */
1354 	}
1355 
1356 	new_hptep[1] = cpu_to_be64(rpte);
1357 	new->rev[new_idx].guest_rpte = guest_rpte;
1358 	/* No need for a barrier, since new HPT isn't active */
1359 	new_hptep[0] = cpu_to_be64(vpte);
1360 	unlock_hpte(new_hptep, vpte);
1361 
1362 out:
1363 	unlock_hpte(hptep, vpte);
1364 	return ret;
1365 }
1366 
1367 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1368 {
1369 	struct kvm *kvm = resize->kvm;
1370 	unsigned  long i;
1371 	int rc;
1372 
1373 	/*
1374 	 * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs
1375 	 * that POWER9 uses, and could well hit a BUG_ON on POWER9.
1376 	 */
1377 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1378 		return -EIO;
1379 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1380 		rc = resize_hpt_rehash_hpte(resize, i);
1381 		if (rc != 0)
1382 			return rc;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1389 {
1390 	struct kvm *kvm = resize->kvm;
1391 	struct kvm_hpt_info hpt_tmp;
1392 
1393 	/* Exchange the pending tables in the resize structure with
1394 	 * the active tables */
1395 
1396 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1397 
1398 	spin_lock(&kvm->mmu_lock);
1399 	asm volatile("ptesync" : : : "memory");
1400 
1401 	hpt_tmp = kvm->arch.hpt;
1402 	kvmppc_set_hpt(kvm, &resize->hpt);
1403 	resize->hpt = hpt_tmp;
1404 
1405 	spin_unlock(&kvm->mmu_lock);
1406 
1407 	synchronize_srcu_expedited(&kvm->srcu);
1408 
1409 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1410 }
1411 
1412 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1413 {
1414 	BUG_ON(kvm->arch.resize_hpt != resize);
1415 
1416 	if (!resize)
1417 		return;
1418 
1419 	if (resize->hpt.virt)
1420 		kvmppc_free_hpt(&resize->hpt);
1421 
1422 	kvm->arch.resize_hpt = NULL;
1423 	kfree(resize);
1424 }
1425 
1426 static void resize_hpt_prepare_work(struct work_struct *work)
1427 {
1428 	struct kvm_resize_hpt *resize = container_of(work,
1429 						     struct kvm_resize_hpt,
1430 						     work);
1431 	struct kvm *kvm = resize->kvm;
1432 	int err;
1433 
1434 	resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1435 			 resize->order);
1436 
1437 	err = resize_hpt_allocate(resize);
1438 
1439 	mutex_lock(&kvm->lock);
1440 
1441 	resize->error = err;
1442 	resize->prepare_done = true;
1443 
1444 	mutex_unlock(&kvm->lock);
1445 }
1446 
1447 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1448 				     struct kvm_ppc_resize_hpt *rhpt)
1449 {
1450 	unsigned long flags = rhpt->flags;
1451 	unsigned long shift = rhpt->shift;
1452 	struct kvm_resize_hpt *resize;
1453 	int ret;
1454 
1455 	if (flags != 0)
1456 		return -EINVAL;
1457 
1458 	if (shift && ((shift < 18) || (shift > 46)))
1459 		return -EINVAL;
1460 
1461 	mutex_lock(&kvm->lock);
1462 
1463 	resize = kvm->arch.resize_hpt;
1464 
1465 	if (resize) {
1466 		if (resize->order == shift) {
1467 			/* Suitable resize in progress */
1468 			if (resize->prepare_done) {
1469 				ret = resize->error;
1470 				if (ret != 0)
1471 					resize_hpt_release(kvm, resize);
1472 			} else {
1473 				ret = 100; /* estimated time in ms */
1474 			}
1475 
1476 			goto out;
1477 		}
1478 
1479 		/* not suitable, cancel it */
1480 		resize_hpt_release(kvm, resize);
1481 	}
1482 
1483 	ret = 0;
1484 	if (!shift)
1485 		goto out; /* nothing to do */
1486 
1487 	/* start new resize */
1488 
1489 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1490 	if (!resize) {
1491 		ret = -ENOMEM;
1492 		goto out;
1493 	}
1494 	resize->order = shift;
1495 	resize->kvm = kvm;
1496 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1497 	kvm->arch.resize_hpt = resize;
1498 
1499 	schedule_work(&resize->work);
1500 
1501 	ret = 100; /* estimated time in ms */
1502 
1503 out:
1504 	mutex_unlock(&kvm->lock);
1505 	return ret;
1506 }
1507 
1508 static void resize_hpt_boot_vcpu(void *opaque)
1509 {
1510 	/* Nothing to do, just force a KVM exit */
1511 }
1512 
1513 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1514 				    struct kvm_ppc_resize_hpt *rhpt)
1515 {
1516 	unsigned long flags = rhpt->flags;
1517 	unsigned long shift = rhpt->shift;
1518 	struct kvm_resize_hpt *resize;
1519 	long ret;
1520 
1521 	if (flags != 0)
1522 		return -EINVAL;
1523 
1524 	if (shift && ((shift < 18) || (shift > 46)))
1525 		return -EINVAL;
1526 
1527 	mutex_lock(&kvm->lock);
1528 
1529 	resize = kvm->arch.resize_hpt;
1530 
1531 	/* This shouldn't be possible */
1532 	ret = -EIO;
1533 	if (WARN_ON(!kvm->arch.hpte_setup_done))
1534 		goto out_no_hpt;
1535 
1536 	/* Stop VCPUs from running while we mess with the HPT */
1537 	kvm->arch.hpte_setup_done = 0;
1538 	smp_mb();
1539 
1540 	/* Boot all CPUs out of the guest so they re-read
1541 	 * hpte_setup_done */
1542 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1543 
1544 	ret = -ENXIO;
1545 	if (!resize || (resize->order != shift))
1546 		goto out;
1547 
1548 	ret = -EBUSY;
1549 	if (!resize->prepare_done)
1550 		goto out;
1551 
1552 	ret = resize->error;
1553 	if (ret != 0)
1554 		goto out;
1555 
1556 	ret = resize_hpt_rehash(resize);
1557 	if (ret != 0)
1558 		goto out;
1559 
1560 	resize_hpt_pivot(resize);
1561 
1562 out:
1563 	/* Let VCPUs run again */
1564 	kvm->arch.hpte_setup_done = 1;
1565 	smp_mb();
1566 out_no_hpt:
1567 	resize_hpt_release(kvm, resize);
1568 	mutex_unlock(&kvm->lock);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Functions for reading and writing the hash table via reads and
1574  * writes on a file descriptor.
1575  *
1576  * Reads return the guest view of the hash table, which has to be
1577  * pieced together from the real hash table and the guest_rpte
1578  * values in the revmap array.
1579  *
1580  * On writes, each HPTE written is considered in turn, and if it
1581  * is valid, it is written to the HPT as if an H_ENTER with the
1582  * exact flag set was done.  When the invalid count is non-zero
1583  * in the header written to the stream, the kernel will make
1584  * sure that that many HPTEs are invalid, and invalidate them
1585  * if not.
1586  */
1587 
1588 struct kvm_htab_ctx {
1589 	unsigned long	index;
1590 	unsigned long	flags;
1591 	struct kvm	*kvm;
1592 	int		first_pass;
1593 };
1594 
1595 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1596 
1597 /*
1598  * Returns 1 if this HPT entry has been modified or has pending
1599  * R/C bit changes.
1600  */
1601 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1602 {
1603 	unsigned long rcbits_unset;
1604 
1605 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1606 		return 1;
1607 
1608 	/* Also need to consider changes in reference and changed bits */
1609 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1610 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1611 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1612 		return 1;
1613 
1614 	return 0;
1615 }
1616 
1617 static long record_hpte(unsigned long flags, __be64 *hptp,
1618 			unsigned long *hpte, struct revmap_entry *revp,
1619 			int want_valid, int first_pass)
1620 {
1621 	unsigned long v, r, hr;
1622 	unsigned long rcbits_unset;
1623 	int ok = 1;
1624 	int valid, dirty;
1625 
1626 	/* Unmodified entries are uninteresting except on the first pass */
1627 	dirty = hpte_dirty(revp, hptp);
1628 	if (!first_pass && !dirty)
1629 		return 0;
1630 
1631 	valid = 0;
1632 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1633 		valid = 1;
1634 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1635 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1636 			valid = 0;
1637 	}
1638 	if (valid != want_valid)
1639 		return 0;
1640 
1641 	v = r = 0;
1642 	if (valid || dirty) {
1643 		/* lock the HPTE so it's stable and read it */
1644 		preempt_disable();
1645 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1646 			cpu_relax();
1647 		v = be64_to_cpu(hptp[0]);
1648 		hr = be64_to_cpu(hptp[1]);
1649 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1650 			v = hpte_new_to_old_v(v, hr);
1651 			hr = hpte_new_to_old_r(hr);
1652 		}
1653 
1654 		/* re-evaluate valid and dirty from synchronized HPTE value */
1655 		valid = !!(v & HPTE_V_VALID);
1656 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1657 
1658 		/* Harvest R and C into guest view if necessary */
1659 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1660 		if (valid && (rcbits_unset & hr)) {
1661 			revp->guest_rpte |= (hr &
1662 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1663 			dirty = 1;
1664 		}
1665 
1666 		if (v & HPTE_V_ABSENT) {
1667 			v &= ~HPTE_V_ABSENT;
1668 			v |= HPTE_V_VALID;
1669 			valid = 1;
1670 		}
1671 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1672 			valid = 0;
1673 
1674 		r = revp->guest_rpte;
1675 		/* only clear modified if this is the right sort of entry */
1676 		if (valid == want_valid && dirty) {
1677 			r &= ~HPTE_GR_MODIFIED;
1678 			revp->guest_rpte = r;
1679 		}
1680 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1681 		preempt_enable();
1682 		if (!(valid == want_valid && (first_pass || dirty)))
1683 			ok = 0;
1684 	}
1685 	hpte[0] = cpu_to_be64(v);
1686 	hpte[1] = cpu_to_be64(r);
1687 	return ok;
1688 }
1689 
1690 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1691 			     size_t count, loff_t *ppos)
1692 {
1693 	struct kvm_htab_ctx *ctx = file->private_data;
1694 	struct kvm *kvm = ctx->kvm;
1695 	struct kvm_get_htab_header hdr;
1696 	__be64 *hptp;
1697 	struct revmap_entry *revp;
1698 	unsigned long i, nb, nw;
1699 	unsigned long __user *lbuf;
1700 	struct kvm_get_htab_header __user *hptr;
1701 	unsigned long flags;
1702 	int first_pass;
1703 	unsigned long hpte[2];
1704 
1705 	if (!access_ok(VERIFY_WRITE, buf, count))
1706 		return -EFAULT;
1707 
1708 	first_pass = ctx->first_pass;
1709 	flags = ctx->flags;
1710 
1711 	i = ctx->index;
1712 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1713 	revp = kvm->arch.hpt.rev + i;
1714 	lbuf = (unsigned long __user *)buf;
1715 
1716 	nb = 0;
1717 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1718 		/* Initialize header */
1719 		hptr = (struct kvm_get_htab_header __user *)buf;
1720 		hdr.n_valid = 0;
1721 		hdr.n_invalid = 0;
1722 		nw = nb;
1723 		nb += sizeof(hdr);
1724 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1725 
1726 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1727 		if (!first_pass) {
1728 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1729 			       !hpte_dirty(revp, hptp)) {
1730 				++i;
1731 				hptp += 2;
1732 				++revp;
1733 			}
1734 		}
1735 		hdr.index = i;
1736 
1737 		/* Grab a series of valid entries */
1738 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1739 		       hdr.n_valid < 0xffff &&
1740 		       nb + HPTE_SIZE < count &&
1741 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1742 			/* valid entry, write it out */
1743 			++hdr.n_valid;
1744 			if (__put_user(hpte[0], lbuf) ||
1745 			    __put_user(hpte[1], lbuf + 1))
1746 				return -EFAULT;
1747 			nb += HPTE_SIZE;
1748 			lbuf += 2;
1749 			++i;
1750 			hptp += 2;
1751 			++revp;
1752 		}
1753 		/* Now skip invalid entries while we can */
1754 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1755 		       hdr.n_invalid < 0xffff &&
1756 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1757 			/* found an invalid entry */
1758 			++hdr.n_invalid;
1759 			++i;
1760 			hptp += 2;
1761 			++revp;
1762 		}
1763 
1764 		if (hdr.n_valid || hdr.n_invalid) {
1765 			/* write back the header */
1766 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1767 				return -EFAULT;
1768 			nw = nb;
1769 			buf = (char __user *)lbuf;
1770 		} else {
1771 			nb = nw;
1772 		}
1773 
1774 		/* Check if we've wrapped around the hash table */
1775 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1776 			i = 0;
1777 			ctx->first_pass = 0;
1778 			break;
1779 		}
1780 	}
1781 
1782 	ctx->index = i;
1783 
1784 	return nb;
1785 }
1786 
1787 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1788 			      size_t count, loff_t *ppos)
1789 {
1790 	struct kvm_htab_ctx *ctx = file->private_data;
1791 	struct kvm *kvm = ctx->kvm;
1792 	struct kvm_get_htab_header hdr;
1793 	unsigned long i, j;
1794 	unsigned long v, r;
1795 	unsigned long __user *lbuf;
1796 	__be64 *hptp;
1797 	unsigned long tmp[2];
1798 	ssize_t nb;
1799 	long int err, ret;
1800 	int hpte_setup;
1801 
1802 	if (!access_ok(VERIFY_READ, buf, count))
1803 		return -EFAULT;
1804 
1805 	/* lock out vcpus from running while we're doing this */
1806 	mutex_lock(&kvm->lock);
1807 	hpte_setup = kvm->arch.hpte_setup_done;
1808 	if (hpte_setup) {
1809 		kvm->arch.hpte_setup_done = 0;	/* temporarily */
1810 		/* order hpte_setup_done vs. vcpus_running */
1811 		smp_mb();
1812 		if (atomic_read(&kvm->arch.vcpus_running)) {
1813 			kvm->arch.hpte_setup_done = 1;
1814 			mutex_unlock(&kvm->lock);
1815 			return -EBUSY;
1816 		}
1817 	}
1818 
1819 	err = 0;
1820 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1821 		err = -EFAULT;
1822 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1823 			break;
1824 
1825 		err = 0;
1826 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1827 			break;
1828 
1829 		nb += sizeof(hdr);
1830 		buf += sizeof(hdr);
1831 
1832 		err = -EINVAL;
1833 		i = hdr.index;
1834 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1835 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1836 			break;
1837 
1838 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1839 		lbuf = (unsigned long __user *)buf;
1840 		for (j = 0; j < hdr.n_valid; ++j) {
1841 			__be64 hpte_v;
1842 			__be64 hpte_r;
1843 
1844 			err = -EFAULT;
1845 			if (__get_user(hpte_v, lbuf) ||
1846 			    __get_user(hpte_r, lbuf + 1))
1847 				goto out;
1848 			v = be64_to_cpu(hpte_v);
1849 			r = be64_to_cpu(hpte_r);
1850 			err = -EINVAL;
1851 			if (!(v & HPTE_V_VALID))
1852 				goto out;
1853 			lbuf += 2;
1854 			nb += HPTE_SIZE;
1855 
1856 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1857 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1858 			err = -EIO;
1859 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1860 							 tmp);
1861 			if (ret != H_SUCCESS) {
1862 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1863 				       "r=%lx\n", ret, i, v, r);
1864 				goto out;
1865 			}
1866 			if (!hpte_setup && is_vrma_hpte(v)) {
1867 				unsigned long psize = hpte_base_page_size(v, r);
1868 				unsigned long senc = slb_pgsize_encoding(psize);
1869 				unsigned long lpcr;
1870 
1871 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1872 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1873 				lpcr = senc << (LPCR_VRMASD_SH - 4);
1874 				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1875 				hpte_setup = 1;
1876 			}
1877 			++i;
1878 			hptp += 2;
1879 		}
1880 
1881 		for (j = 0; j < hdr.n_invalid; ++j) {
1882 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1883 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1884 			++i;
1885 			hptp += 2;
1886 		}
1887 		err = 0;
1888 	}
1889 
1890  out:
1891 	/* Order HPTE updates vs. hpte_setup_done */
1892 	smp_wmb();
1893 	kvm->arch.hpte_setup_done = hpte_setup;
1894 	mutex_unlock(&kvm->lock);
1895 
1896 	if (err)
1897 		return err;
1898 	return nb;
1899 }
1900 
1901 static int kvm_htab_release(struct inode *inode, struct file *filp)
1902 {
1903 	struct kvm_htab_ctx *ctx = filp->private_data;
1904 
1905 	filp->private_data = NULL;
1906 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1907 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1908 	kvm_put_kvm(ctx->kvm);
1909 	kfree(ctx);
1910 	return 0;
1911 }
1912 
1913 static const struct file_operations kvm_htab_fops = {
1914 	.read		= kvm_htab_read,
1915 	.write		= kvm_htab_write,
1916 	.llseek		= default_llseek,
1917 	.release	= kvm_htab_release,
1918 };
1919 
1920 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1921 {
1922 	int ret;
1923 	struct kvm_htab_ctx *ctx;
1924 	int rwflag;
1925 
1926 	/* reject flags we don't recognize */
1927 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1928 		return -EINVAL;
1929 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1930 	if (!ctx)
1931 		return -ENOMEM;
1932 	kvm_get_kvm(kvm);
1933 	ctx->kvm = kvm;
1934 	ctx->index = ghf->start_index;
1935 	ctx->flags = ghf->flags;
1936 	ctx->first_pass = 1;
1937 
1938 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1939 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1940 	if (ret < 0) {
1941 		kvm_put_kvm(kvm);
1942 		return ret;
1943 	}
1944 
1945 	if (rwflag == O_RDONLY) {
1946 		mutex_lock(&kvm->slots_lock);
1947 		atomic_inc(&kvm->arch.hpte_mod_interest);
1948 		/* make sure kvmppc_do_h_enter etc. see the increment */
1949 		synchronize_srcu_expedited(&kvm->srcu);
1950 		mutex_unlock(&kvm->slots_lock);
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 struct debugfs_htab_state {
1957 	struct kvm	*kvm;
1958 	struct mutex	mutex;
1959 	unsigned long	hpt_index;
1960 	int		chars_left;
1961 	int		buf_index;
1962 	char		buf[64];
1963 };
1964 
1965 static int debugfs_htab_open(struct inode *inode, struct file *file)
1966 {
1967 	struct kvm *kvm = inode->i_private;
1968 	struct debugfs_htab_state *p;
1969 
1970 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1971 	if (!p)
1972 		return -ENOMEM;
1973 
1974 	kvm_get_kvm(kvm);
1975 	p->kvm = kvm;
1976 	mutex_init(&p->mutex);
1977 	file->private_data = p;
1978 
1979 	return nonseekable_open(inode, file);
1980 }
1981 
1982 static int debugfs_htab_release(struct inode *inode, struct file *file)
1983 {
1984 	struct debugfs_htab_state *p = file->private_data;
1985 
1986 	kvm_put_kvm(p->kvm);
1987 	kfree(p);
1988 	return 0;
1989 }
1990 
1991 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1992 				 size_t len, loff_t *ppos)
1993 {
1994 	struct debugfs_htab_state *p = file->private_data;
1995 	ssize_t ret, r;
1996 	unsigned long i, n;
1997 	unsigned long v, hr, gr;
1998 	struct kvm *kvm;
1999 	__be64 *hptp;
2000 
2001 	ret = mutex_lock_interruptible(&p->mutex);
2002 	if (ret)
2003 		return ret;
2004 
2005 	if (p->chars_left) {
2006 		n = p->chars_left;
2007 		if (n > len)
2008 			n = len;
2009 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2010 		n -= r;
2011 		p->chars_left -= n;
2012 		p->buf_index += n;
2013 		buf += n;
2014 		len -= n;
2015 		ret = n;
2016 		if (r) {
2017 			if (!n)
2018 				ret = -EFAULT;
2019 			goto out;
2020 		}
2021 	}
2022 
2023 	kvm = p->kvm;
2024 	i = p->hpt_index;
2025 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2026 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2027 	     ++i, hptp += 2) {
2028 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2029 			continue;
2030 
2031 		/* lock the HPTE so it's stable and read it */
2032 		preempt_disable();
2033 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2034 			cpu_relax();
2035 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2036 		hr = be64_to_cpu(hptp[1]);
2037 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2038 		unlock_hpte(hptp, v);
2039 		preempt_enable();
2040 
2041 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2042 			continue;
2043 
2044 		n = scnprintf(p->buf, sizeof(p->buf),
2045 			      "%6lx %.16lx %.16lx %.16lx\n",
2046 			      i, v, hr, gr);
2047 		p->chars_left = n;
2048 		if (n > len)
2049 			n = len;
2050 		r = copy_to_user(buf, p->buf, n);
2051 		n -= r;
2052 		p->chars_left -= n;
2053 		p->buf_index = n;
2054 		buf += n;
2055 		len -= n;
2056 		ret += n;
2057 		if (r) {
2058 			if (!ret)
2059 				ret = -EFAULT;
2060 			goto out;
2061 		}
2062 	}
2063 	p->hpt_index = i;
2064 
2065  out:
2066 	mutex_unlock(&p->mutex);
2067 	return ret;
2068 }
2069 
2070 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2071 			   size_t len, loff_t *ppos)
2072 {
2073 	return -EACCES;
2074 }
2075 
2076 static const struct file_operations debugfs_htab_fops = {
2077 	.owner	 = THIS_MODULE,
2078 	.open	 = debugfs_htab_open,
2079 	.release = debugfs_htab_release,
2080 	.read	 = debugfs_htab_read,
2081 	.write	 = debugfs_htab_write,
2082 	.llseek	 = generic_file_llseek,
2083 };
2084 
2085 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2086 {
2087 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2088 						    kvm->arch.debugfs_dir, kvm,
2089 						    &debugfs_htab_fops);
2090 }
2091 
2092 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2093 {
2094 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2095 
2096 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2097 
2098 	if (kvm_is_radix(vcpu->kvm))
2099 		mmu->xlate = kvmppc_mmu_radix_xlate;
2100 	else
2101 		mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2102 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2103 
2104 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2105 }
2106