xref: /openbmc/linux/arch/powerpc/kvm/book3s_64_mmu_hv.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "trace_hv.h"
31 
32 //#define DEBUG_RESIZE_HPT	1
33 
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...)				\
36 	do {							\
37 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
38 		printk(__VA_ARGS__);				\
39 	} while (0)
40 #else
41 #define resize_hpt_debug(resize, ...)				\
42 	do { } while (0)
43 #endif
44 
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 				long pte_index, unsigned long pteh,
47 				unsigned long ptel, unsigned long *pte_idx_ret);
48 
49 struct kvm_resize_hpt {
50 	/* These fields read-only after init */
51 	struct kvm *kvm;
52 	struct work_struct work;
53 	u32 order;
54 
55 	/* These fields protected by kvm->arch.mmu_setup_lock */
56 
57 	/* Possible values and their usage:
58 	 *  <0     an error occurred during allocation,
59 	 *  -EBUSY allocation is in the progress,
60 	 *  0      allocation made successfuly.
61 	 */
62 	int error;
63 
64 	/* Private to the work thread, until error != -EBUSY,
65 	 * then protected by kvm->arch.mmu_setup_lock.
66 	 */
67 	struct kvm_hpt_info hpt;
68 };
69 
70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
71 {
72 	unsigned long hpt = 0;
73 	int cma = 0;
74 	struct page *page = NULL;
75 	struct revmap_entry *rev;
76 	unsigned long npte;
77 
78 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79 		return -EINVAL;
80 
81 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82 	if (page) {
83 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84 		memset((void *)hpt, 0, (1ul << order));
85 		cma = 1;
86 	}
87 
88 	if (!hpt)
89 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90 				       |__GFP_NOWARN, order - PAGE_SHIFT);
91 
92 	if (!hpt)
93 		return -ENOMEM;
94 
95 	/* HPTEs are 2**4 bytes long */
96 	npte = 1ul << (order - 4);
97 
98 	/* Allocate reverse map array */
99 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100 	if (!rev) {
101 		if (cma)
102 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103 		else
104 			free_pages(hpt, order - PAGE_SHIFT);
105 		return -ENOMEM;
106 	}
107 
108 	info->order = order;
109 	info->virt = hpt;
110 	info->cma = cma;
111 	info->rev = rev;
112 
113 	return 0;
114 }
115 
116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
117 {
118 	atomic64_set(&kvm->arch.mmio_update, 0);
119 	kvm->arch.hpt = *info;
120 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
121 
122 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 		 info->virt, (long)info->order, kvm->arch.lpid);
124 }
125 
126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
127 {
128 	long err = -EBUSY;
129 	struct kvm_hpt_info info;
130 
131 	mutex_lock(&kvm->arch.mmu_setup_lock);
132 	if (kvm->arch.mmu_ready) {
133 		kvm->arch.mmu_ready = 0;
134 		/* order mmu_ready vs. vcpus_running */
135 		smp_mb();
136 		if (atomic_read(&kvm->arch.vcpus_running)) {
137 			kvm->arch.mmu_ready = 1;
138 			goto out;
139 		}
140 	}
141 	if (kvm_is_radix(kvm)) {
142 		err = kvmppc_switch_mmu_to_hpt(kvm);
143 		if (err)
144 			goto out;
145 	}
146 
147 	if (kvm->arch.hpt.order == order) {
148 		/* We already have a suitable HPT */
149 
150 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
151 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
152 		/*
153 		 * Reset all the reverse-mapping chains for all memslots
154 		 */
155 		kvmppc_rmap_reset(kvm);
156 		err = 0;
157 		goto out;
158 	}
159 
160 	if (kvm->arch.hpt.virt) {
161 		kvmppc_free_hpt(&kvm->arch.hpt);
162 		kvmppc_rmap_reset(kvm);
163 	}
164 
165 	err = kvmppc_allocate_hpt(&info, order);
166 	if (err < 0)
167 		goto out;
168 	kvmppc_set_hpt(kvm, &info);
169 
170 out:
171 	if (err == 0)
172 		/* Ensure that each vcpu will flush its TLB on next entry. */
173 		cpumask_setall(&kvm->arch.need_tlb_flush);
174 
175 	mutex_unlock(&kvm->arch.mmu_setup_lock);
176 	return err;
177 }
178 
179 void kvmppc_free_hpt(struct kvm_hpt_info *info)
180 {
181 	vfree(info->rev);
182 	info->rev = NULL;
183 	if (info->cma)
184 		kvm_free_hpt_cma(virt_to_page(info->virt),
185 				 1 << (info->order - PAGE_SHIFT));
186 	else if (info->virt)
187 		free_pages(info->virt, info->order - PAGE_SHIFT);
188 	info->virt = 0;
189 	info->order = 0;
190 }
191 
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197 
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201 	return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203 
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 		     unsigned long porder)
206 {
207 	unsigned long i;
208 	unsigned long npages;
209 	unsigned long hp_v, hp_r;
210 	unsigned long addr, hash;
211 	unsigned long psize;
212 	unsigned long hp0, hp1;
213 	unsigned long idx_ret;
214 	long ret;
215 	struct kvm *kvm = vcpu->kvm;
216 
217 	psize = 1ul << porder;
218 	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 
220 	/* VRMA can't be > 1TB */
221 	if (npages > 1ul << (40 - porder))
222 		npages = 1ul << (40 - porder);
223 	/* Can't use more than 1 HPTE per HPTEG */
224 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226 
227 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 	hp1 = hpte1_pgsize_encoding(psize) |
230 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231 
232 	for (i = 0; i < npages; ++i) {
233 		addr = i << porder;
234 		/* can't use hpt_hash since va > 64 bits */
235 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 		/*
238 		 * We assume that the hash table is empty and no
239 		 * vcpus are using it at this stage.  Since we create
240 		 * at most one HPTE per HPTEG, we just assume entry 7
241 		 * is available and use it.
242 		 */
243 		hash = (hash << 3) + 7;
244 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 		hp_r = hp1 | addr;
246 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 						 &idx_ret);
248 		if (ret != H_SUCCESS) {
249 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 			       addr, ret);
251 			break;
252 		}
253 	}
254 }
255 
256 int kvmppc_mmu_hv_init(void)
257 {
258 	unsigned long host_lpid, rsvd_lpid;
259 
260 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261 		return -EINVAL;
262 
263 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264 	host_lpid = 0;
265 	if (cpu_has_feature(CPU_FTR_HVMODE))
266 		host_lpid = mfspr(SPRN_LPID);
267 	rsvd_lpid = LPID_RSVD;
268 
269 	kvmppc_init_lpid(rsvd_lpid + 1);
270 
271 	kvmppc_claim_lpid(host_lpid);
272 	/* rsvd_lpid is reserved for use in partition switching */
273 	kvmppc_claim_lpid(rsvd_lpid);
274 
275 	return 0;
276 }
277 
278 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
279 {
280 	unsigned long msr = vcpu->arch.intr_msr;
281 
282 	/* If transactional, change to suspend mode on IRQ delivery */
283 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
284 		msr |= MSR_TS_S;
285 	else
286 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
287 	kvmppc_set_msr(vcpu, msr);
288 }
289 
290 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
291 				long pte_index, unsigned long pteh,
292 				unsigned long ptel, unsigned long *pte_idx_ret)
293 {
294 	long ret;
295 
296 	/* Protect linux PTE lookup from page table destruction */
297 	rcu_read_lock_sched();	/* this disables preemption too */
298 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
299 				current->mm->pgd, false, pte_idx_ret);
300 	rcu_read_unlock_sched();
301 	if (ret == H_TOO_HARD) {
302 		/* this can't happen */
303 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
304 		ret = H_RESOURCE;	/* or something */
305 	}
306 	return ret;
307 
308 }
309 
310 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
311 							 gva_t eaddr)
312 {
313 	u64 mask;
314 	int i;
315 
316 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
317 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
318 			continue;
319 
320 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
321 			mask = ESID_MASK_1T;
322 		else
323 			mask = ESID_MASK;
324 
325 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
326 			return &vcpu->arch.slb[i];
327 	}
328 	return NULL;
329 }
330 
331 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
332 			unsigned long ea)
333 {
334 	unsigned long ra_mask;
335 
336 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
337 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
338 }
339 
340 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
341 			struct kvmppc_pte *gpte, bool data, bool iswrite)
342 {
343 	struct kvm *kvm = vcpu->kvm;
344 	struct kvmppc_slb *slbe;
345 	unsigned long slb_v;
346 	unsigned long pp, key;
347 	unsigned long v, orig_v, gr;
348 	__be64 *hptep;
349 	long int index;
350 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
351 
352 	if (kvm_is_radix(vcpu->kvm))
353 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
354 
355 	/* Get SLB entry */
356 	if (virtmode) {
357 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
358 		if (!slbe)
359 			return -EINVAL;
360 		slb_v = slbe->origv;
361 	} else {
362 		/* real mode access */
363 		slb_v = vcpu->kvm->arch.vrma_slb_v;
364 	}
365 
366 	preempt_disable();
367 	/* Find the HPTE in the hash table */
368 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
369 					 HPTE_V_VALID | HPTE_V_ABSENT);
370 	if (index < 0) {
371 		preempt_enable();
372 		return -ENOENT;
373 	}
374 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
375 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
376 	if (cpu_has_feature(CPU_FTR_ARCH_300))
377 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
378 	gr = kvm->arch.hpt.rev[index].guest_rpte;
379 
380 	unlock_hpte(hptep, orig_v);
381 	preempt_enable();
382 
383 	gpte->eaddr = eaddr;
384 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
385 
386 	/* Get PP bits and key for permission check */
387 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
388 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
389 	key &= slb_v;
390 
391 	/* Calculate permissions */
392 	gpte->may_read = hpte_read_permission(pp, key);
393 	gpte->may_write = hpte_write_permission(pp, key);
394 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
395 
396 	/* Storage key permission check for POWER7 */
397 	if (data && virtmode) {
398 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
399 		if (amrfield & 1)
400 			gpte->may_read = 0;
401 		if (amrfield & 2)
402 			gpte->may_write = 0;
403 	}
404 
405 	/* Get the guest physical address */
406 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
407 	return 0;
408 }
409 
410 /*
411  * Quick test for whether an instruction is a load or a store.
412  * If the instruction is a load or a store, then this will indicate
413  * which it is, at least on server processors.  (Embedded processors
414  * have some external PID instructions that don't follow the rule
415  * embodied here.)  If the instruction isn't a load or store, then
416  * this doesn't return anything useful.
417  */
418 static int instruction_is_store(unsigned int instr)
419 {
420 	unsigned int mask;
421 
422 	mask = 0x10000000;
423 	if ((instr & 0xfc000000) == 0x7c000000)
424 		mask = 0x100;		/* major opcode 31 */
425 	return (instr & mask) != 0;
426 }
427 
428 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
429 			   unsigned long gpa, gva_t ea, int is_store)
430 {
431 	u32 last_inst;
432 
433 	/*
434 	 * Fast path - check if the guest physical address corresponds to a
435 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
436 	 * instruction all together, then we can just handle it and return.
437 	 */
438 	if (is_store) {
439 		int idx, ret;
440 
441 		idx = srcu_read_lock(&vcpu->kvm->srcu);
442 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
443 				       NULL);
444 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
445 		if (!ret) {
446 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
447 			return RESUME_GUEST;
448 		}
449 	}
450 
451 	/*
452 	 * If we fail, we just return to the guest and try executing it again.
453 	 */
454 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
455 		EMULATE_DONE)
456 		return RESUME_GUEST;
457 
458 	/*
459 	 * WARNING: We do not know for sure whether the instruction we just
460 	 * read from memory is the same that caused the fault in the first
461 	 * place.  If the instruction we read is neither an load or a store,
462 	 * then it can't access memory, so we don't need to worry about
463 	 * enforcing access permissions.  So, assuming it is a load or
464 	 * store, we just check that its direction (load or store) is
465 	 * consistent with the original fault, since that's what we
466 	 * checked the access permissions against.  If there is a mismatch
467 	 * we just return and retry the instruction.
468 	 */
469 
470 	if (instruction_is_store(last_inst) != !!is_store)
471 		return RESUME_GUEST;
472 
473 	/*
474 	 * Emulated accesses are emulated by looking at the hash for
475 	 * translation once, then performing the access later. The
476 	 * translation could be invalidated in the meantime in which
477 	 * point performing the subsequent memory access on the old
478 	 * physical address could possibly be a security hole for the
479 	 * guest (but not the host).
480 	 *
481 	 * This is less of an issue for MMIO stores since they aren't
482 	 * globally visible. It could be an issue for MMIO loads to
483 	 * a certain extent but we'll ignore it for now.
484 	 */
485 
486 	vcpu->arch.paddr_accessed = gpa;
487 	vcpu->arch.vaddr_accessed = ea;
488 	return kvmppc_emulate_mmio(run, vcpu);
489 }
490 
491 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
492 				unsigned long ea, unsigned long dsisr)
493 {
494 	struct kvm *kvm = vcpu->kvm;
495 	unsigned long hpte[3], r;
496 	unsigned long hnow_v, hnow_r;
497 	__be64 *hptep;
498 	unsigned long mmu_seq, psize, pte_size;
499 	unsigned long gpa_base, gfn_base;
500 	unsigned long gpa, gfn, hva, pfn;
501 	struct kvm_memory_slot *memslot;
502 	unsigned long *rmap;
503 	struct revmap_entry *rev;
504 	struct page *page, *pages[1];
505 	long index, ret, npages;
506 	bool is_ci;
507 	unsigned int writing, write_ok;
508 	struct vm_area_struct *vma;
509 	unsigned long rcbits;
510 	long mmio_update;
511 
512 	if (kvm_is_radix(kvm))
513 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
514 
515 	/*
516 	 * Real-mode code has already searched the HPT and found the
517 	 * entry we're interested in.  Lock the entry and check that
518 	 * it hasn't changed.  If it has, just return and re-execute the
519 	 * instruction.
520 	 */
521 	if (ea != vcpu->arch.pgfault_addr)
522 		return RESUME_GUEST;
523 
524 	if (vcpu->arch.pgfault_cache) {
525 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
526 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
527 			r = vcpu->arch.pgfault_cache->rpte;
528 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
529 						   r);
530 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
531 			gfn_base = gpa_base >> PAGE_SHIFT;
532 			gpa = gpa_base | (ea & (psize - 1));
533 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
534 						dsisr & DSISR_ISSTORE);
535 		}
536 	}
537 	index = vcpu->arch.pgfault_index;
538 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
539 	rev = &kvm->arch.hpt.rev[index];
540 	preempt_disable();
541 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
542 		cpu_relax();
543 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
544 	hpte[1] = be64_to_cpu(hptep[1]);
545 	hpte[2] = r = rev->guest_rpte;
546 	unlock_hpte(hptep, hpte[0]);
547 	preempt_enable();
548 
549 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
550 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
551 		hpte[1] = hpte_new_to_old_r(hpte[1]);
552 	}
553 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
554 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
555 		return RESUME_GUEST;
556 
557 	/* Translate the logical address and get the page */
558 	psize = kvmppc_actual_pgsz(hpte[0], r);
559 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
560 	gfn_base = gpa_base >> PAGE_SHIFT;
561 	gpa = gpa_base | (ea & (psize - 1));
562 	gfn = gpa >> PAGE_SHIFT;
563 	memslot = gfn_to_memslot(kvm, gfn);
564 
565 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
566 
567 	/* No memslot means it's an emulated MMIO region */
568 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
569 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
570 					      dsisr & DSISR_ISSTORE);
571 
572 	/*
573 	 * This should never happen, because of the slot_is_aligned()
574 	 * check in kvmppc_do_h_enter().
575 	 */
576 	if (gfn_base < memslot->base_gfn)
577 		return -EFAULT;
578 
579 	/* used to check for invalidations in progress */
580 	mmu_seq = kvm->mmu_notifier_seq;
581 	smp_rmb();
582 
583 	ret = -EFAULT;
584 	is_ci = false;
585 	pfn = 0;
586 	page = NULL;
587 	pte_size = PAGE_SIZE;
588 	writing = (dsisr & DSISR_ISSTORE) != 0;
589 	/* If writing != 0, then the HPTE must allow writing, if we get here */
590 	write_ok = writing;
591 	hva = gfn_to_hva_memslot(memslot, gfn);
592 	npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages);
593 	if (npages < 1) {
594 		/* Check if it's an I/O mapping */
595 		down_read(&current->mm->mmap_sem);
596 		vma = find_vma(current->mm, hva);
597 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
598 		    (vma->vm_flags & VM_PFNMAP)) {
599 			pfn = vma->vm_pgoff +
600 				((hva - vma->vm_start) >> PAGE_SHIFT);
601 			pte_size = psize;
602 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
603 			write_ok = vma->vm_flags & VM_WRITE;
604 		}
605 		up_read(&current->mm->mmap_sem);
606 		if (!pfn)
607 			goto out_put;
608 	} else {
609 		page = pages[0];
610 		pfn = page_to_pfn(page);
611 		if (PageHuge(page)) {
612 			page = compound_head(page);
613 			pte_size <<= compound_order(page);
614 		}
615 		/* if the guest wants write access, see if that is OK */
616 		if (!writing && hpte_is_writable(r)) {
617 			pte_t *ptep, pte;
618 			unsigned long flags;
619 			/*
620 			 * We need to protect against page table destruction
621 			 * hugepage split and collapse.
622 			 */
623 			local_irq_save(flags);
624 			ptep = find_current_mm_pte(current->mm->pgd,
625 						   hva, NULL, NULL);
626 			if (ptep) {
627 				pte = kvmppc_read_update_linux_pte(ptep, 1);
628 				if (__pte_write(pte))
629 					write_ok = 1;
630 			}
631 			local_irq_restore(flags);
632 		}
633 	}
634 
635 	if (psize > pte_size)
636 		goto out_put;
637 
638 	/* Check WIMG vs. the actual page we're accessing */
639 	if (!hpte_cache_flags_ok(r, is_ci)) {
640 		if (is_ci)
641 			goto out_put;
642 		/*
643 		 * Allow guest to map emulated device memory as
644 		 * uncacheable, but actually make it cacheable.
645 		 */
646 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
647 	}
648 
649 	/*
650 	 * Set the HPTE to point to pfn.
651 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
652 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
653 	 */
654 	if (psize < PAGE_SIZE)
655 		psize = PAGE_SIZE;
656 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
657 					((pfn << PAGE_SHIFT) & ~(psize - 1));
658 	if (hpte_is_writable(r) && !write_ok)
659 		r = hpte_make_readonly(r);
660 	ret = RESUME_GUEST;
661 	preempt_disable();
662 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
663 		cpu_relax();
664 	hnow_v = be64_to_cpu(hptep[0]);
665 	hnow_r = be64_to_cpu(hptep[1]);
666 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
667 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
668 		hnow_r = hpte_new_to_old_r(hnow_r);
669 	}
670 
671 	/*
672 	 * If the HPT is being resized, don't update the HPTE,
673 	 * instead let the guest retry after the resize operation is complete.
674 	 * The synchronization for mmu_ready test vs. set is provided
675 	 * by the HPTE lock.
676 	 */
677 	if (!kvm->arch.mmu_ready)
678 		goto out_unlock;
679 
680 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
681 	    rev->guest_rpte != hpte[2])
682 		/* HPTE has been changed under us; let the guest retry */
683 		goto out_unlock;
684 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
685 
686 	/* Always put the HPTE in the rmap chain for the page base address */
687 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
688 	lock_rmap(rmap);
689 
690 	/* Check if we might have been invalidated; let the guest retry if so */
691 	ret = RESUME_GUEST;
692 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
693 		unlock_rmap(rmap);
694 		goto out_unlock;
695 	}
696 
697 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
698 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
699 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
700 
701 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
702 		/* HPTE was previously valid, so we need to invalidate it */
703 		unlock_rmap(rmap);
704 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
705 		kvmppc_invalidate_hpte(kvm, hptep, index);
706 		/* don't lose previous R and C bits */
707 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
708 	} else {
709 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
710 	}
711 
712 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
713 		r = hpte_old_to_new_r(hpte[0], r);
714 		hpte[0] = hpte_old_to_new_v(hpte[0]);
715 	}
716 	hptep[1] = cpu_to_be64(r);
717 	eieio();
718 	__unlock_hpte(hptep, hpte[0]);
719 	asm volatile("ptesync" : : : "memory");
720 	preempt_enable();
721 	if (page && hpte_is_writable(r))
722 		SetPageDirty(page);
723 
724  out_put:
725 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
726 
727 	if (page) {
728 		/*
729 		 * We drop pages[0] here, not page because page might
730 		 * have been set to the head page of a compound, but
731 		 * we have to drop the reference on the correct tail
732 		 * page to match the get inside gup()
733 		 */
734 		put_page(pages[0]);
735 	}
736 	return ret;
737 
738  out_unlock:
739 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
740 	preempt_enable();
741 	goto out_put;
742 }
743 
744 void kvmppc_rmap_reset(struct kvm *kvm)
745 {
746 	struct kvm_memslots *slots;
747 	struct kvm_memory_slot *memslot;
748 	int srcu_idx;
749 
750 	srcu_idx = srcu_read_lock(&kvm->srcu);
751 	slots = kvm_memslots(kvm);
752 	kvm_for_each_memslot(memslot, slots) {
753 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
754 		spin_lock(&kvm->mmu_lock);
755 		/*
756 		 * This assumes it is acceptable to lose reference and
757 		 * change bits across a reset.
758 		 */
759 		memset(memslot->arch.rmap, 0,
760 		       memslot->npages * sizeof(*memslot->arch.rmap));
761 		spin_unlock(&kvm->mmu_lock);
762 	}
763 	srcu_read_unlock(&kvm->srcu, srcu_idx);
764 }
765 
766 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
767 			      unsigned long gfn);
768 
769 static int kvm_handle_hva_range(struct kvm *kvm,
770 				unsigned long start,
771 				unsigned long end,
772 				hva_handler_fn handler)
773 {
774 	int ret;
775 	int retval = 0;
776 	struct kvm_memslots *slots;
777 	struct kvm_memory_slot *memslot;
778 
779 	slots = kvm_memslots(kvm);
780 	kvm_for_each_memslot(memslot, slots) {
781 		unsigned long hva_start, hva_end;
782 		gfn_t gfn, gfn_end;
783 
784 		hva_start = max(start, memslot->userspace_addr);
785 		hva_end = min(end, memslot->userspace_addr +
786 					(memslot->npages << PAGE_SHIFT));
787 		if (hva_start >= hva_end)
788 			continue;
789 		/*
790 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
791 		 * {gfn, gfn+1, ..., gfn_end-1}.
792 		 */
793 		gfn = hva_to_gfn_memslot(hva_start, memslot);
794 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
795 
796 		for (; gfn < gfn_end; ++gfn) {
797 			ret = handler(kvm, memslot, gfn);
798 			retval |= ret;
799 		}
800 	}
801 
802 	return retval;
803 }
804 
805 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
806 			  hva_handler_fn handler)
807 {
808 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
809 }
810 
811 /* Must be called with both HPTE and rmap locked */
812 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
813 			      struct kvm_memory_slot *memslot,
814 			      unsigned long *rmapp, unsigned long gfn)
815 {
816 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
817 	struct revmap_entry *rev = kvm->arch.hpt.rev;
818 	unsigned long j, h;
819 	unsigned long ptel, psize, rcbits;
820 
821 	j = rev[i].forw;
822 	if (j == i) {
823 		/* chain is now empty */
824 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
825 	} else {
826 		/* remove i from chain */
827 		h = rev[i].back;
828 		rev[h].forw = j;
829 		rev[j].back = h;
830 		rev[i].forw = rev[i].back = i;
831 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
832 	}
833 
834 	/* Now check and modify the HPTE */
835 	ptel = rev[i].guest_rpte;
836 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
837 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
838 	    hpte_rpn(ptel, psize) == gfn) {
839 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
840 		kvmppc_invalidate_hpte(kvm, hptep, i);
841 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
842 		/* Harvest R and C */
843 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
844 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
845 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
846 			kvmppc_update_dirty_map(memslot, gfn, psize);
847 		if (rcbits & ~rev[i].guest_rpte) {
848 			rev[i].guest_rpte = ptel | rcbits;
849 			note_hpte_modification(kvm, &rev[i]);
850 		}
851 	}
852 }
853 
854 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
855 			   unsigned long gfn)
856 {
857 	unsigned long i;
858 	__be64 *hptep;
859 	unsigned long *rmapp;
860 
861 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
862 	for (;;) {
863 		lock_rmap(rmapp);
864 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
865 			unlock_rmap(rmapp);
866 			break;
867 		}
868 
869 		/*
870 		 * To avoid an ABBA deadlock with the HPTE lock bit,
871 		 * we can't spin on the HPTE lock while holding the
872 		 * rmap chain lock.
873 		 */
874 		i = *rmapp & KVMPPC_RMAP_INDEX;
875 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
876 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
877 			/* unlock rmap before spinning on the HPTE lock */
878 			unlock_rmap(rmapp);
879 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
880 				cpu_relax();
881 			continue;
882 		}
883 
884 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
885 		unlock_rmap(rmapp);
886 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
887 	}
888 	return 0;
889 }
890 
891 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
892 {
893 	hva_handler_fn handler;
894 
895 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
896 	kvm_handle_hva_range(kvm, start, end, handler);
897 	return 0;
898 }
899 
900 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
901 				  struct kvm_memory_slot *memslot)
902 {
903 	unsigned long gfn;
904 	unsigned long n;
905 	unsigned long *rmapp;
906 
907 	gfn = memslot->base_gfn;
908 	rmapp = memslot->arch.rmap;
909 	if (kvm_is_radix(kvm)) {
910 		kvmppc_radix_flush_memslot(kvm, memslot);
911 		return;
912 	}
913 
914 	for (n = memslot->npages; n; --n, ++gfn) {
915 		/*
916 		 * Testing the present bit without locking is OK because
917 		 * the memslot has been marked invalid already, and hence
918 		 * no new HPTEs referencing this page can be created,
919 		 * thus the present bit can't go from 0 to 1.
920 		 */
921 		if (*rmapp & KVMPPC_RMAP_PRESENT)
922 			kvm_unmap_rmapp(kvm, memslot, gfn);
923 		++rmapp;
924 	}
925 }
926 
927 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
928 			 unsigned long gfn)
929 {
930 	struct revmap_entry *rev = kvm->arch.hpt.rev;
931 	unsigned long head, i, j;
932 	__be64 *hptep;
933 	int ret = 0;
934 	unsigned long *rmapp;
935 
936 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
937  retry:
938 	lock_rmap(rmapp);
939 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
940 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
941 		ret = 1;
942 	}
943 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
944 		unlock_rmap(rmapp);
945 		return ret;
946 	}
947 
948 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
949 	do {
950 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
951 		j = rev[i].forw;
952 
953 		/* If this HPTE isn't referenced, ignore it */
954 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
955 			continue;
956 
957 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
958 			/* unlock rmap before spinning on the HPTE lock */
959 			unlock_rmap(rmapp);
960 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
961 				cpu_relax();
962 			goto retry;
963 		}
964 
965 		/* Now check and modify the HPTE */
966 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
967 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
968 			kvmppc_clear_ref_hpte(kvm, hptep, i);
969 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
970 				rev[i].guest_rpte |= HPTE_R_R;
971 				note_hpte_modification(kvm, &rev[i]);
972 			}
973 			ret = 1;
974 		}
975 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
976 	} while ((i = j) != head);
977 
978 	unlock_rmap(rmapp);
979 	return ret;
980 }
981 
982 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
983 {
984 	hva_handler_fn handler;
985 
986 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
987 	return kvm_handle_hva_range(kvm, start, end, handler);
988 }
989 
990 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
991 			      unsigned long gfn)
992 {
993 	struct revmap_entry *rev = kvm->arch.hpt.rev;
994 	unsigned long head, i, j;
995 	unsigned long *hp;
996 	int ret = 1;
997 	unsigned long *rmapp;
998 
999 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1000 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1001 		return 1;
1002 
1003 	lock_rmap(rmapp);
1004 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1005 		goto out;
1006 
1007 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
1008 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
1009 		do {
1010 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1011 			j = rev[i].forw;
1012 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1013 				goto out;
1014 		} while ((i = j) != head);
1015 	}
1016 	ret = 0;
1017 
1018  out:
1019 	unlock_rmap(rmapp);
1020 	return ret;
1021 }
1022 
1023 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1024 {
1025 	hva_handler_fn handler;
1026 
1027 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1028 	return kvm_handle_hva(kvm, hva, handler);
1029 }
1030 
1031 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1032 {
1033 	hva_handler_fn handler;
1034 
1035 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1036 	kvm_handle_hva(kvm, hva, handler);
1037 }
1038 
1039 static int vcpus_running(struct kvm *kvm)
1040 {
1041 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1042 }
1043 
1044 /*
1045  * Returns the number of system pages that are dirty.
1046  * This can be more than 1 if we find a huge-page HPTE.
1047  */
1048 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1049 {
1050 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1051 	unsigned long head, i, j;
1052 	unsigned long n;
1053 	unsigned long v, r;
1054 	__be64 *hptep;
1055 	int npages_dirty = 0;
1056 
1057  retry:
1058 	lock_rmap(rmapp);
1059 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1060 		unlock_rmap(rmapp);
1061 		return npages_dirty;
1062 	}
1063 
1064 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1065 	do {
1066 		unsigned long hptep1;
1067 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1068 		j = rev[i].forw;
1069 
1070 		/*
1071 		 * Checking the C (changed) bit here is racy since there
1072 		 * is no guarantee about when the hardware writes it back.
1073 		 * If the HPTE is not writable then it is stable since the
1074 		 * page can't be written to, and we would have done a tlbie
1075 		 * (which forces the hardware to complete any writeback)
1076 		 * when making the HPTE read-only.
1077 		 * If vcpus are running then this call is racy anyway
1078 		 * since the page could get dirtied subsequently, so we
1079 		 * expect there to be a further call which would pick up
1080 		 * any delayed C bit writeback.
1081 		 * Otherwise we need to do the tlbie even if C==0 in
1082 		 * order to pick up any delayed writeback of C.
1083 		 */
1084 		hptep1 = be64_to_cpu(hptep[1]);
1085 		if (!(hptep1 & HPTE_R_C) &&
1086 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1087 			continue;
1088 
1089 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1090 			/* unlock rmap before spinning on the HPTE lock */
1091 			unlock_rmap(rmapp);
1092 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1093 				cpu_relax();
1094 			goto retry;
1095 		}
1096 
1097 		/* Now check and modify the HPTE */
1098 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1099 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1100 			continue;
1101 		}
1102 
1103 		/* need to make it temporarily absent so C is stable */
1104 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1105 		kvmppc_invalidate_hpte(kvm, hptep, i);
1106 		v = be64_to_cpu(hptep[0]);
1107 		r = be64_to_cpu(hptep[1]);
1108 		if (r & HPTE_R_C) {
1109 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1110 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1111 				rev[i].guest_rpte |= HPTE_R_C;
1112 				note_hpte_modification(kvm, &rev[i]);
1113 			}
1114 			n = kvmppc_actual_pgsz(v, r);
1115 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116 			if (n > npages_dirty)
1117 				npages_dirty = n;
1118 			eieio();
1119 		}
1120 		v &= ~HPTE_V_ABSENT;
1121 		v |= HPTE_V_VALID;
1122 		__unlock_hpte(hptep, v);
1123 	} while ((i = j) != head);
1124 
1125 	unlock_rmap(rmapp);
1126 	return npages_dirty;
1127 }
1128 
1129 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1130 			      struct kvm_memory_slot *memslot,
1131 			      unsigned long *map)
1132 {
1133 	unsigned long gfn;
1134 
1135 	if (!vpa->dirty || !vpa->pinned_addr)
1136 		return;
1137 	gfn = vpa->gpa >> PAGE_SHIFT;
1138 	if (gfn < memslot->base_gfn ||
1139 	    gfn >= memslot->base_gfn + memslot->npages)
1140 		return;
1141 
1142 	vpa->dirty = false;
1143 	if (map)
1144 		__set_bit_le(gfn - memslot->base_gfn, map);
1145 }
1146 
1147 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1148 			struct kvm_memory_slot *memslot, unsigned long *map)
1149 {
1150 	unsigned long i;
1151 	unsigned long *rmapp;
1152 
1153 	preempt_disable();
1154 	rmapp = memslot->arch.rmap;
1155 	for (i = 0; i < memslot->npages; ++i) {
1156 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1157 		/*
1158 		 * Note that if npages > 0 then i must be a multiple of npages,
1159 		 * since we always put huge-page HPTEs in the rmap chain
1160 		 * corresponding to their page base address.
1161 		 */
1162 		if (npages)
1163 			set_dirty_bits(map, i, npages);
1164 		++rmapp;
1165 	}
1166 	preempt_enable();
1167 	return 0;
1168 }
1169 
1170 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1171 			    unsigned long *nb_ret)
1172 {
1173 	struct kvm_memory_slot *memslot;
1174 	unsigned long gfn = gpa >> PAGE_SHIFT;
1175 	struct page *page, *pages[1];
1176 	int npages;
1177 	unsigned long hva, offset;
1178 	int srcu_idx;
1179 
1180 	srcu_idx = srcu_read_lock(&kvm->srcu);
1181 	memslot = gfn_to_memslot(kvm, gfn);
1182 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1183 		goto err;
1184 	hva = gfn_to_hva_memslot(memslot, gfn);
1185 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1186 	if (npages < 1)
1187 		goto err;
1188 	page = pages[0];
1189 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1190 
1191 	offset = gpa & (PAGE_SIZE - 1);
1192 	if (nb_ret)
1193 		*nb_ret = PAGE_SIZE - offset;
1194 	return page_address(page) + offset;
1195 
1196  err:
1197 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1198 	return NULL;
1199 }
1200 
1201 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1202 			     bool dirty)
1203 {
1204 	struct page *page = virt_to_page(va);
1205 	struct kvm_memory_slot *memslot;
1206 	unsigned long gfn;
1207 	int srcu_idx;
1208 
1209 	put_page(page);
1210 
1211 	if (!dirty)
1212 		return;
1213 
1214 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1215 	gfn = gpa >> PAGE_SHIFT;
1216 	srcu_idx = srcu_read_lock(&kvm->srcu);
1217 	memslot = gfn_to_memslot(kvm, gfn);
1218 	if (memslot && memslot->dirty_bitmap)
1219 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1220 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1221 }
1222 
1223 /*
1224  * HPT resizing
1225  */
1226 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1227 {
1228 	int rc;
1229 
1230 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1231 	if (rc < 0)
1232 		return rc;
1233 
1234 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1235 			 resize->hpt.virt);
1236 
1237 	return 0;
1238 }
1239 
1240 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1241 					    unsigned long idx)
1242 {
1243 	struct kvm *kvm = resize->kvm;
1244 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1245 	struct kvm_hpt_info *new = &resize->hpt;
1246 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1247 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1248 	__be64 *hptep, *new_hptep;
1249 	unsigned long vpte, rpte, guest_rpte;
1250 	int ret;
1251 	struct revmap_entry *rev;
1252 	unsigned long apsize, avpn, pteg, hash;
1253 	unsigned long new_idx, new_pteg, replace_vpte;
1254 	int pshift;
1255 
1256 	hptep = (__be64 *)(old->virt + (idx << 4));
1257 
1258 	/* Guest is stopped, so new HPTEs can't be added or faulted
1259 	 * in, only unmapped or altered by host actions.  So, it's
1260 	 * safe to check this before we take the HPTE lock */
1261 	vpte = be64_to_cpu(hptep[0]);
1262 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1263 		return 0; /* nothing to do */
1264 
1265 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1266 		cpu_relax();
1267 
1268 	vpte = be64_to_cpu(hptep[0]);
1269 
1270 	ret = 0;
1271 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1272 		/* Nothing to do */
1273 		goto out;
1274 
1275 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1276 		rpte = be64_to_cpu(hptep[1]);
1277 		vpte = hpte_new_to_old_v(vpte, rpte);
1278 	}
1279 
1280 	/* Unmap */
1281 	rev = &old->rev[idx];
1282 	guest_rpte = rev->guest_rpte;
1283 
1284 	ret = -EIO;
1285 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1286 	if (!apsize)
1287 		goto out;
1288 
1289 	if (vpte & HPTE_V_VALID) {
1290 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1291 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1292 		struct kvm_memory_slot *memslot =
1293 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1294 
1295 		if (memslot) {
1296 			unsigned long *rmapp;
1297 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1298 
1299 			lock_rmap(rmapp);
1300 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1301 			unlock_rmap(rmapp);
1302 		}
1303 
1304 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1305 	}
1306 
1307 	/* Reload PTE after unmap */
1308 	vpte = be64_to_cpu(hptep[0]);
1309 	BUG_ON(vpte & HPTE_V_VALID);
1310 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1311 
1312 	ret = 0;
1313 	if (!(vpte & HPTE_V_BOLTED))
1314 		goto out;
1315 
1316 	rpte = be64_to_cpu(hptep[1]);
1317 
1318 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1319 		vpte = hpte_new_to_old_v(vpte, rpte);
1320 		rpte = hpte_new_to_old_r(rpte);
1321 	}
1322 
1323 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1324 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1325 	pteg = idx / HPTES_PER_GROUP;
1326 	if (vpte & HPTE_V_SECONDARY)
1327 		pteg = ~pteg;
1328 
1329 	if (!(vpte & HPTE_V_1TB_SEG)) {
1330 		unsigned long offset, vsid;
1331 
1332 		/* We only have 28 - 23 bits of offset in avpn */
1333 		offset = (avpn & 0x1f) << 23;
1334 		vsid = avpn >> 5;
1335 		/* We can find more bits from the pteg value */
1336 		if (pshift < 23)
1337 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1338 
1339 		hash = vsid ^ (offset >> pshift);
1340 	} else {
1341 		unsigned long offset, vsid;
1342 
1343 		/* We only have 40 - 23 bits of seg_off in avpn */
1344 		offset = (avpn & 0x1ffff) << 23;
1345 		vsid = avpn >> 17;
1346 		if (pshift < 23)
1347 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1348 
1349 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1350 	}
1351 
1352 	new_pteg = hash & new_hash_mask;
1353 	if (vpte & HPTE_V_SECONDARY)
1354 		new_pteg = ~hash & new_hash_mask;
1355 
1356 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1357 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1358 
1359 	replace_vpte = be64_to_cpu(new_hptep[0]);
1360 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1361 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1362 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1363 	}
1364 
1365 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1366 		BUG_ON(new->order >= old->order);
1367 
1368 		if (replace_vpte & HPTE_V_BOLTED) {
1369 			if (vpte & HPTE_V_BOLTED)
1370 				/* Bolted collision, nothing we can do */
1371 				ret = -ENOSPC;
1372 			/* Discard the new HPTE */
1373 			goto out;
1374 		}
1375 
1376 		/* Discard the previous HPTE */
1377 	}
1378 
1379 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1380 		rpte = hpte_old_to_new_r(vpte, rpte);
1381 		vpte = hpte_old_to_new_v(vpte);
1382 	}
1383 
1384 	new_hptep[1] = cpu_to_be64(rpte);
1385 	new->rev[new_idx].guest_rpte = guest_rpte;
1386 	/* No need for a barrier, since new HPT isn't active */
1387 	new_hptep[0] = cpu_to_be64(vpte);
1388 	unlock_hpte(new_hptep, vpte);
1389 
1390 out:
1391 	unlock_hpte(hptep, vpte);
1392 	return ret;
1393 }
1394 
1395 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1396 {
1397 	struct kvm *kvm = resize->kvm;
1398 	unsigned  long i;
1399 	int rc;
1400 
1401 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1402 		rc = resize_hpt_rehash_hpte(resize, i);
1403 		if (rc != 0)
1404 			return rc;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1411 {
1412 	struct kvm *kvm = resize->kvm;
1413 	struct kvm_hpt_info hpt_tmp;
1414 
1415 	/* Exchange the pending tables in the resize structure with
1416 	 * the active tables */
1417 
1418 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1419 
1420 	spin_lock(&kvm->mmu_lock);
1421 	asm volatile("ptesync" : : : "memory");
1422 
1423 	hpt_tmp = kvm->arch.hpt;
1424 	kvmppc_set_hpt(kvm, &resize->hpt);
1425 	resize->hpt = hpt_tmp;
1426 
1427 	spin_unlock(&kvm->mmu_lock);
1428 
1429 	synchronize_srcu_expedited(&kvm->srcu);
1430 
1431 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1432 		kvmppc_setup_partition_table(kvm);
1433 
1434 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1435 }
1436 
1437 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1438 {
1439 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1440 		return;
1441 
1442 	if (!resize)
1443 		return;
1444 
1445 	if (resize->error != -EBUSY) {
1446 		if (resize->hpt.virt)
1447 			kvmppc_free_hpt(&resize->hpt);
1448 		kfree(resize);
1449 	}
1450 
1451 	if (kvm->arch.resize_hpt == resize)
1452 		kvm->arch.resize_hpt = NULL;
1453 }
1454 
1455 static void resize_hpt_prepare_work(struct work_struct *work)
1456 {
1457 	struct kvm_resize_hpt *resize = container_of(work,
1458 						     struct kvm_resize_hpt,
1459 						     work);
1460 	struct kvm *kvm = resize->kvm;
1461 	int err = 0;
1462 
1463 	if (WARN_ON(resize->error != -EBUSY))
1464 		return;
1465 
1466 	mutex_lock(&kvm->arch.mmu_setup_lock);
1467 
1468 	/* Request is still current? */
1469 	if (kvm->arch.resize_hpt == resize) {
1470 		/* We may request large allocations here:
1471 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1472 		 */
1473 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1474 
1475 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1476 				 resize->order);
1477 
1478 		err = resize_hpt_allocate(resize);
1479 
1480 		/* We have strict assumption about -EBUSY
1481 		 * when preparing for HPT resize.
1482 		 */
1483 		if (WARN_ON(err == -EBUSY))
1484 			err = -EINPROGRESS;
1485 
1486 		mutex_lock(&kvm->arch.mmu_setup_lock);
1487 		/* It is possible that kvm->arch.resize_hpt != resize
1488 		 * after we grab kvm->arch.mmu_setup_lock again.
1489 		 */
1490 	}
1491 
1492 	resize->error = err;
1493 
1494 	if (kvm->arch.resize_hpt != resize)
1495 		resize_hpt_release(kvm, resize);
1496 
1497 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1498 }
1499 
1500 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1501 				     struct kvm_ppc_resize_hpt *rhpt)
1502 {
1503 	unsigned long flags = rhpt->flags;
1504 	unsigned long shift = rhpt->shift;
1505 	struct kvm_resize_hpt *resize;
1506 	int ret;
1507 
1508 	if (flags != 0 || kvm_is_radix(kvm))
1509 		return -EINVAL;
1510 
1511 	if (shift && ((shift < 18) || (shift > 46)))
1512 		return -EINVAL;
1513 
1514 	mutex_lock(&kvm->arch.mmu_setup_lock);
1515 
1516 	resize = kvm->arch.resize_hpt;
1517 
1518 	if (resize) {
1519 		if (resize->order == shift) {
1520 			/* Suitable resize in progress? */
1521 			ret = resize->error;
1522 			if (ret == -EBUSY)
1523 				ret = 100; /* estimated time in ms */
1524 			else if (ret)
1525 				resize_hpt_release(kvm, resize);
1526 
1527 			goto out;
1528 		}
1529 
1530 		/* not suitable, cancel it */
1531 		resize_hpt_release(kvm, resize);
1532 	}
1533 
1534 	ret = 0;
1535 	if (!shift)
1536 		goto out; /* nothing to do */
1537 
1538 	/* start new resize */
1539 
1540 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1541 	if (!resize) {
1542 		ret = -ENOMEM;
1543 		goto out;
1544 	}
1545 
1546 	resize->error = -EBUSY;
1547 	resize->order = shift;
1548 	resize->kvm = kvm;
1549 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1550 	kvm->arch.resize_hpt = resize;
1551 
1552 	schedule_work(&resize->work);
1553 
1554 	ret = 100; /* estimated time in ms */
1555 
1556 out:
1557 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1558 	return ret;
1559 }
1560 
1561 static void resize_hpt_boot_vcpu(void *opaque)
1562 {
1563 	/* Nothing to do, just force a KVM exit */
1564 }
1565 
1566 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1567 				    struct kvm_ppc_resize_hpt *rhpt)
1568 {
1569 	unsigned long flags = rhpt->flags;
1570 	unsigned long shift = rhpt->shift;
1571 	struct kvm_resize_hpt *resize;
1572 	long ret;
1573 
1574 	if (flags != 0 || kvm_is_radix(kvm))
1575 		return -EINVAL;
1576 
1577 	if (shift && ((shift < 18) || (shift > 46)))
1578 		return -EINVAL;
1579 
1580 	mutex_lock(&kvm->arch.mmu_setup_lock);
1581 
1582 	resize = kvm->arch.resize_hpt;
1583 
1584 	/* This shouldn't be possible */
1585 	ret = -EIO;
1586 	if (WARN_ON(!kvm->arch.mmu_ready))
1587 		goto out_no_hpt;
1588 
1589 	/* Stop VCPUs from running while we mess with the HPT */
1590 	kvm->arch.mmu_ready = 0;
1591 	smp_mb();
1592 
1593 	/* Boot all CPUs out of the guest so they re-read
1594 	 * mmu_ready */
1595 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1596 
1597 	ret = -ENXIO;
1598 	if (!resize || (resize->order != shift))
1599 		goto out;
1600 
1601 	ret = resize->error;
1602 	if (ret)
1603 		goto out;
1604 
1605 	ret = resize_hpt_rehash(resize);
1606 	if (ret)
1607 		goto out;
1608 
1609 	resize_hpt_pivot(resize);
1610 
1611 out:
1612 	/* Let VCPUs run again */
1613 	kvm->arch.mmu_ready = 1;
1614 	smp_mb();
1615 out_no_hpt:
1616 	resize_hpt_release(kvm, resize);
1617 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * Functions for reading and writing the hash table via reads and
1623  * writes on a file descriptor.
1624  *
1625  * Reads return the guest view of the hash table, which has to be
1626  * pieced together from the real hash table and the guest_rpte
1627  * values in the revmap array.
1628  *
1629  * On writes, each HPTE written is considered in turn, and if it
1630  * is valid, it is written to the HPT as if an H_ENTER with the
1631  * exact flag set was done.  When the invalid count is non-zero
1632  * in the header written to the stream, the kernel will make
1633  * sure that that many HPTEs are invalid, and invalidate them
1634  * if not.
1635  */
1636 
1637 struct kvm_htab_ctx {
1638 	unsigned long	index;
1639 	unsigned long	flags;
1640 	struct kvm	*kvm;
1641 	int		first_pass;
1642 };
1643 
1644 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1645 
1646 /*
1647  * Returns 1 if this HPT entry has been modified or has pending
1648  * R/C bit changes.
1649  */
1650 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1651 {
1652 	unsigned long rcbits_unset;
1653 
1654 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1655 		return 1;
1656 
1657 	/* Also need to consider changes in reference and changed bits */
1658 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1659 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1660 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1661 		return 1;
1662 
1663 	return 0;
1664 }
1665 
1666 static long record_hpte(unsigned long flags, __be64 *hptp,
1667 			unsigned long *hpte, struct revmap_entry *revp,
1668 			int want_valid, int first_pass)
1669 {
1670 	unsigned long v, r, hr;
1671 	unsigned long rcbits_unset;
1672 	int ok = 1;
1673 	int valid, dirty;
1674 
1675 	/* Unmodified entries are uninteresting except on the first pass */
1676 	dirty = hpte_dirty(revp, hptp);
1677 	if (!first_pass && !dirty)
1678 		return 0;
1679 
1680 	valid = 0;
1681 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1682 		valid = 1;
1683 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1684 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1685 			valid = 0;
1686 	}
1687 	if (valid != want_valid)
1688 		return 0;
1689 
1690 	v = r = 0;
1691 	if (valid || dirty) {
1692 		/* lock the HPTE so it's stable and read it */
1693 		preempt_disable();
1694 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1695 			cpu_relax();
1696 		v = be64_to_cpu(hptp[0]);
1697 		hr = be64_to_cpu(hptp[1]);
1698 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1699 			v = hpte_new_to_old_v(v, hr);
1700 			hr = hpte_new_to_old_r(hr);
1701 		}
1702 
1703 		/* re-evaluate valid and dirty from synchronized HPTE value */
1704 		valid = !!(v & HPTE_V_VALID);
1705 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1706 
1707 		/* Harvest R and C into guest view if necessary */
1708 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1709 		if (valid && (rcbits_unset & hr)) {
1710 			revp->guest_rpte |= (hr &
1711 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1712 			dirty = 1;
1713 		}
1714 
1715 		if (v & HPTE_V_ABSENT) {
1716 			v &= ~HPTE_V_ABSENT;
1717 			v |= HPTE_V_VALID;
1718 			valid = 1;
1719 		}
1720 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1721 			valid = 0;
1722 
1723 		r = revp->guest_rpte;
1724 		/* only clear modified if this is the right sort of entry */
1725 		if (valid == want_valid && dirty) {
1726 			r &= ~HPTE_GR_MODIFIED;
1727 			revp->guest_rpte = r;
1728 		}
1729 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1730 		preempt_enable();
1731 		if (!(valid == want_valid && (first_pass || dirty)))
1732 			ok = 0;
1733 	}
1734 	hpte[0] = cpu_to_be64(v);
1735 	hpte[1] = cpu_to_be64(r);
1736 	return ok;
1737 }
1738 
1739 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1740 			     size_t count, loff_t *ppos)
1741 {
1742 	struct kvm_htab_ctx *ctx = file->private_data;
1743 	struct kvm *kvm = ctx->kvm;
1744 	struct kvm_get_htab_header hdr;
1745 	__be64 *hptp;
1746 	struct revmap_entry *revp;
1747 	unsigned long i, nb, nw;
1748 	unsigned long __user *lbuf;
1749 	struct kvm_get_htab_header __user *hptr;
1750 	unsigned long flags;
1751 	int first_pass;
1752 	unsigned long hpte[2];
1753 
1754 	if (!access_ok(buf, count))
1755 		return -EFAULT;
1756 	if (kvm_is_radix(kvm))
1757 		return 0;
1758 
1759 	first_pass = ctx->first_pass;
1760 	flags = ctx->flags;
1761 
1762 	i = ctx->index;
1763 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1764 	revp = kvm->arch.hpt.rev + i;
1765 	lbuf = (unsigned long __user *)buf;
1766 
1767 	nb = 0;
1768 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1769 		/* Initialize header */
1770 		hptr = (struct kvm_get_htab_header __user *)buf;
1771 		hdr.n_valid = 0;
1772 		hdr.n_invalid = 0;
1773 		nw = nb;
1774 		nb += sizeof(hdr);
1775 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1776 
1777 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1778 		if (!first_pass) {
1779 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1780 			       !hpte_dirty(revp, hptp)) {
1781 				++i;
1782 				hptp += 2;
1783 				++revp;
1784 			}
1785 		}
1786 		hdr.index = i;
1787 
1788 		/* Grab a series of valid entries */
1789 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1790 		       hdr.n_valid < 0xffff &&
1791 		       nb + HPTE_SIZE < count &&
1792 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1793 			/* valid entry, write it out */
1794 			++hdr.n_valid;
1795 			if (__put_user(hpte[0], lbuf) ||
1796 			    __put_user(hpte[1], lbuf + 1))
1797 				return -EFAULT;
1798 			nb += HPTE_SIZE;
1799 			lbuf += 2;
1800 			++i;
1801 			hptp += 2;
1802 			++revp;
1803 		}
1804 		/* Now skip invalid entries while we can */
1805 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1806 		       hdr.n_invalid < 0xffff &&
1807 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1808 			/* found an invalid entry */
1809 			++hdr.n_invalid;
1810 			++i;
1811 			hptp += 2;
1812 			++revp;
1813 		}
1814 
1815 		if (hdr.n_valid || hdr.n_invalid) {
1816 			/* write back the header */
1817 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1818 				return -EFAULT;
1819 			nw = nb;
1820 			buf = (char __user *)lbuf;
1821 		} else {
1822 			nb = nw;
1823 		}
1824 
1825 		/* Check if we've wrapped around the hash table */
1826 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1827 			i = 0;
1828 			ctx->first_pass = 0;
1829 			break;
1830 		}
1831 	}
1832 
1833 	ctx->index = i;
1834 
1835 	return nb;
1836 }
1837 
1838 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1839 			      size_t count, loff_t *ppos)
1840 {
1841 	struct kvm_htab_ctx *ctx = file->private_data;
1842 	struct kvm *kvm = ctx->kvm;
1843 	struct kvm_get_htab_header hdr;
1844 	unsigned long i, j;
1845 	unsigned long v, r;
1846 	unsigned long __user *lbuf;
1847 	__be64 *hptp;
1848 	unsigned long tmp[2];
1849 	ssize_t nb;
1850 	long int err, ret;
1851 	int mmu_ready;
1852 	int pshift;
1853 
1854 	if (!access_ok(buf, count))
1855 		return -EFAULT;
1856 	if (kvm_is_radix(kvm))
1857 		return -EINVAL;
1858 
1859 	/* lock out vcpus from running while we're doing this */
1860 	mutex_lock(&kvm->arch.mmu_setup_lock);
1861 	mmu_ready = kvm->arch.mmu_ready;
1862 	if (mmu_ready) {
1863 		kvm->arch.mmu_ready = 0;	/* temporarily */
1864 		/* order mmu_ready vs. vcpus_running */
1865 		smp_mb();
1866 		if (atomic_read(&kvm->arch.vcpus_running)) {
1867 			kvm->arch.mmu_ready = 1;
1868 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1869 			return -EBUSY;
1870 		}
1871 	}
1872 
1873 	err = 0;
1874 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1875 		err = -EFAULT;
1876 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1877 			break;
1878 
1879 		err = 0;
1880 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1881 			break;
1882 
1883 		nb += sizeof(hdr);
1884 		buf += sizeof(hdr);
1885 
1886 		err = -EINVAL;
1887 		i = hdr.index;
1888 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1889 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1890 			break;
1891 
1892 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1893 		lbuf = (unsigned long __user *)buf;
1894 		for (j = 0; j < hdr.n_valid; ++j) {
1895 			__be64 hpte_v;
1896 			__be64 hpte_r;
1897 
1898 			err = -EFAULT;
1899 			if (__get_user(hpte_v, lbuf) ||
1900 			    __get_user(hpte_r, lbuf + 1))
1901 				goto out;
1902 			v = be64_to_cpu(hpte_v);
1903 			r = be64_to_cpu(hpte_r);
1904 			err = -EINVAL;
1905 			if (!(v & HPTE_V_VALID))
1906 				goto out;
1907 			pshift = kvmppc_hpte_base_page_shift(v, r);
1908 			if (pshift <= 0)
1909 				goto out;
1910 			lbuf += 2;
1911 			nb += HPTE_SIZE;
1912 
1913 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1914 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1915 			err = -EIO;
1916 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1917 							 tmp);
1918 			if (ret != H_SUCCESS) {
1919 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1920 				       "r=%lx\n", ret, i, v, r);
1921 				goto out;
1922 			}
1923 			if (!mmu_ready && is_vrma_hpte(v)) {
1924 				unsigned long senc, lpcr;
1925 
1926 				senc = slb_pgsize_encoding(1ul << pshift);
1927 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1928 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1929 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1930 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1931 					kvmppc_update_lpcr(kvm, lpcr,
1932 							   LPCR_VRMASD);
1933 				} else {
1934 					kvmppc_setup_partition_table(kvm);
1935 				}
1936 				mmu_ready = 1;
1937 			}
1938 			++i;
1939 			hptp += 2;
1940 		}
1941 
1942 		for (j = 0; j < hdr.n_invalid; ++j) {
1943 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1944 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1945 			++i;
1946 			hptp += 2;
1947 		}
1948 		err = 0;
1949 	}
1950 
1951  out:
1952 	/* Order HPTE updates vs. mmu_ready */
1953 	smp_wmb();
1954 	kvm->arch.mmu_ready = mmu_ready;
1955 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1956 
1957 	if (err)
1958 		return err;
1959 	return nb;
1960 }
1961 
1962 static int kvm_htab_release(struct inode *inode, struct file *filp)
1963 {
1964 	struct kvm_htab_ctx *ctx = filp->private_data;
1965 
1966 	filp->private_data = NULL;
1967 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1968 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1969 	kvm_put_kvm(ctx->kvm);
1970 	kfree(ctx);
1971 	return 0;
1972 }
1973 
1974 static const struct file_operations kvm_htab_fops = {
1975 	.read		= kvm_htab_read,
1976 	.write		= kvm_htab_write,
1977 	.llseek		= default_llseek,
1978 	.release	= kvm_htab_release,
1979 };
1980 
1981 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1982 {
1983 	int ret;
1984 	struct kvm_htab_ctx *ctx;
1985 	int rwflag;
1986 
1987 	/* reject flags we don't recognize */
1988 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1989 		return -EINVAL;
1990 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1991 	if (!ctx)
1992 		return -ENOMEM;
1993 	kvm_get_kvm(kvm);
1994 	ctx->kvm = kvm;
1995 	ctx->index = ghf->start_index;
1996 	ctx->flags = ghf->flags;
1997 	ctx->first_pass = 1;
1998 
1999 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2000 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
2001 	if (ret < 0) {
2002 		kfree(ctx);
2003 		kvm_put_kvm(kvm);
2004 		return ret;
2005 	}
2006 
2007 	if (rwflag == O_RDONLY) {
2008 		mutex_lock(&kvm->slots_lock);
2009 		atomic_inc(&kvm->arch.hpte_mod_interest);
2010 		/* make sure kvmppc_do_h_enter etc. see the increment */
2011 		synchronize_srcu_expedited(&kvm->srcu);
2012 		mutex_unlock(&kvm->slots_lock);
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 struct debugfs_htab_state {
2019 	struct kvm	*kvm;
2020 	struct mutex	mutex;
2021 	unsigned long	hpt_index;
2022 	int		chars_left;
2023 	int		buf_index;
2024 	char		buf[64];
2025 };
2026 
2027 static int debugfs_htab_open(struct inode *inode, struct file *file)
2028 {
2029 	struct kvm *kvm = inode->i_private;
2030 	struct debugfs_htab_state *p;
2031 
2032 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2033 	if (!p)
2034 		return -ENOMEM;
2035 
2036 	kvm_get_kvm(kvm);
2037 	p->kvm = kvm;
2038 	mutex_init(&p->mutex);
2039 	file->private_data = p;
2040 
2041 	return nonseekable_open(inode, file);
2042 }
2043 
2044 static int debugfs_htab_release(struct inode *inode, struct file *file)
2045 {
2046 	struct debugfs_htab_state *p = file->private_data;
2047 
2048 	kvm_put_kvm(p->kvm);
2049 	kfree(p);
2050 	return 0;
2051 }
2052 
2053 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2054 				 size_t len, loff_t *ppos)
2055 {
2056 	struct debugfs_htab_state *p = file->private_data;
2057 	ssize_t ret, r;
2058 	unsigned long i, n;
2059 	unsigned long v, hr, gr;
2060 	struct kvm *kvm;
2061 	__be64 *hptp;
2062 
2063 	kvm = p->kvm;
2064 	if (kvm_is_radix(kvm))
2065 		return 0;
2066 
2067 	ret = mutex_lock_interruptible(&p->mutex);
2068 	if (ret)
2069 		return ret;
2070 
2071 	if (p->chars_left) {
2072 		n = p->chars_left;
2073 		if (n > len)
2074 			n = len;
2075 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2076 		n -= r;
2077 		p->chars_left -= n;
2078 		p->buf_index += n;
2079 		buf += n;
2080 		len -= n;
2081 		ret = n;
2082 		if (r) {
2083 			if (!n)
2084 				ret = -EFAULT;
2085 			goto out;
2086 		}
2087 	}
2088 
2089 	i = p->hpt_index;
2090 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2091 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2092 	     ++i, hptp += 2) {
2093 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2094 			continue;
2095 
2096 		/* lock the HPTE so it's stable and read it */
2097 		preempt_disable();
2098 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2099 			cpu_relax();
2100 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2101 		hr = be64_to_cpu(hptp[1]);
2102 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2103 		unlock_hpte(hptp, v);
2104 		preempt_enable();
2105 
2106 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2107 			continue;
2108 
2109 		n = scnprintf(p->buf, sizeof(p->buf),
2110 			      "%6lx %.16lx %.16lx %.16lx\n",
2111 			      i, v, hr, gr);
2112 		p->chars_left = n;
2113 		if (n > len)
2114 			n = len;
2115 		r = copy_to_user(buf, p->buf, n);
2116 		n -= r;
2117 		p->chars_left -= n;
2118 		p->buf_index = n;
2119 		buf += n;
2120 		len -= n;
2121 		ret += n;
2122 		if (r) {
2123 			if (!ret)
2124 				ret = -EFAULT;
2125 			goto out;
2126 		}
2127 	}
2128 	p->hpt_index = i;
2129 
2130  out:
2131 	mutex_unlock(&p->mutex);
2132 	return ret;
2133 }
2134 
2135 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2136 			   size_t len, loff_t *ppos)
2137 {
2138 	return -EACCES;
2139 }
2140 
2141 static const struct file_operations debugfs_htab_fops = {
2142 	.owner	 = THIS_MODULE,
2143 	.open	 = debugfs_htab_open,
2144 	.release = debugfs_htab_release,
2145 	.read	 = debugfs_htab_read,
2146 	.write	 = debugfs_htab_write,
2147 	.llseek	 = generic_file_llseek,
2148 };
2149 
2150 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2151 {
2152 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2153 						    kvm->arch.debugfs_dir, kvm,
2154 						    &debugfs_htab_fops);
2155 }
2156 
2157 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2158 {
2159 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2160 
2161 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2162 
2163 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2164 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2165 
2166 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2167 }
2168