1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "trace_hv.h" 31 32 //#define DEBUG_RESIZE_HPT 1 33 34 #ifdef DEBUG_RESIZE_HPT 35 #define resize_hpt_debug(resize, ...) \ 36 do { \ 37 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 38 printk(__VA_ARGS__); \ 39 } while (0) 40 #else 41 #define resize_hpt_debug(resize, ...) \ 42 do { } while (0) 43 #endif 44 45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 46 long pte_index, unsigned long pteh, 47 unsigned long ptel, unsigned long *pte_idx_ret); 48 49 struct kvm_resize_hpt { 50 /* These fields read-only after init */ 51 struct kvm *kvm; 52 struct work_struct work; 53 u32 order; 54 55 /* These fields protected by kvm->arch.mmu_setup_lock */ 56 57 /* Possible values and their usage: 58 * <0 an error occurred during allocation, 59 * -EBUSY allocation is in the progress, 60 * 0 allocation made successfuly. 61 */ 62 int error; 63 64 /* Private to the work thread, until error != -EBUSY, 65 * then protected by kvm->arch.mmu_setup_lock. 66 */ 67 struct kvm_hpt_info hpt; 68 }; 69 70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 71 { 72 unsigned long hpt = 0; 73 int cma = 0; 74 struct page *page = NULL; 75 struct revmap_entry *rev; 76 unsigned long npte; 77 78 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 79 return -EINVAL; 80 81 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 82 if (page) { 83 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 84 memset((void *)hpt, 0, (1ul << order)); 85 cma = 1; 86 } 87 88 if (!hpt) 89 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 90 |__GFP_NOWARN, order - PAGE_SHIFT); 91 92 if (!hpt) 93 return -ENOMEM; 94 95 /* HPTEs are 2**4 bytes long */ 96 npte = 1ul << (order - 4); 97 98 /* Allocate reverse map array */ 99 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 100 if (!rev) { 101 if (cma) 102 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 103 else 104 free_pages(hpt, order - PAGE_SHIFT); 105 return -ENOMEM; 106 } 107 108 info->order = order; 109 info->virt = hpt; 110 info->cma = cma; 111 info->rev = rev; 112 113 return 0; 114 } 115 116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 117 { 118 atomic64_set(&kvm->arch.mmio_update, 0); 119 kvm->arch.hpt = *info; 120 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 121 122 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 123 info->virt, (long)info->order, kvm->arch.lpid); 124 } 125 126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 127 { 128 long err = -EBUSY; 129 struct kvm_hpt_info info; 130 131 mutex_lock(&kvm->arch.mmu_setup_lock); 132 if (kvm->arch.mmu_ready) { 133 kvm->arch.mmu_ready = 0; 134 /* order mmu_ready vs. vcpus_running */ 135 smp_mb(); 136 if (atomic_read(&kvm->arch.vcpus_running)) { 137 kvm->arch.mmu_ready = 1; 138 goto out; 139 } 140 } 141 if (kvm_is_radix(kvm)) { 142 err = kvmppc_switch_mmu_to_hpt(kvm); 143 if (err) 144 goto out; 145 } 146 147 if (kvm->arch.hpt.order == order) { 148 /* We already have a suitable HPT */ 149 150 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 151 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 152 /* 153 * Reset all the reverse-mapping chains for all memslots 154 */ 155 kvmppc_rmap_reset(kvm); 156 err = 0; 157 goto out; 158 } 159 160 if (kvm->arch.hpt.virt) { 161 kvmppc_free_hpt(&kvm->arch.hpt); 162 kvmppc_rmap_reset(kvm); 163 } 164 165 err = kvmppc_allocate_hpt(&info, order); 166 if (err < 0) 167 goto out; 168 kvmppc_set_hpt(kvm, &info); 169 170 out: 171 if (err == 0) 172 /* Ensure that each vcpu will flush its TLB on next entry. */ 173 cpumask_setall(&kvm->arch.need_tlb_flush); 174 175 mutex_unlock(&kvm->arch.mmu_setup_lock); 176 return err; 177 } 178 179 void kvmppc_free_hpt(struct kvm_hpt_info *info) 180 { 181 vfree(info->rev); 182 info->rev = NULL; 183 if (info->cma) 184 kvm_free_hpt_cma(virt_to_page(info->virt), 185 1 << (info->order - PAGE_SHIFT)); 186 else if (info->virt) 187 free_pages(info->virt, info->order - PAGE_SHIFT); 188 info->virt = 0; 189 info->order = 0; 190 } 191 192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 194 { 195 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 196 } 197 198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 200 { 201 return (pgsize == 0x10000) ? 0x1000 : 0; 202 } 203 204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 205 unsigned long porder) 206 { 207 unsigned long i; 208 unsigned long npages; 209 unsigned long hp_v, hp_r; 210 unsigned long addr, hash; 211 unsigned long psize; 212 unsigned long hp0, hp1; 213 unsigned long idx_ret; 214 long ret; 215 struct kvm *kvm = vcpu->kvm; 216 217 psize = 1ul << porder; 218 npages = memslot->npages >> (porder - PAGE_SHIFT); 219 220 /* VRMA can't be > 1TB */ 221 if (npages > 1ul << (40 - porder)) 222 npages = 1ul << (40 - porder); 223 /* Can't use more than 1 HPTE per HPTEG */ 224 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 225 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 226 227 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 228 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 229 hp1 = hpte1_pgsize_encoding(psize) | 230 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 231 232 for (i = 0; i < npages; ++i) { 233 addr = i << porder; 234 /* can't use hpt_hash since va > 64 bits */ 235 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 236 & kvmppc_hpt_mask(&kvm->arch.hpt); 237 /* 238 * We assume that the hash table is empty and no 239 * vcpus are using it at this stage. Since we create 240 * at most one HPTE per HPTEG, we just assume entry 7 241 * is available and use it. 242 */ 243 hash = (hash << 3) + 7; 244 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 245 hp_r = hp1 | addr; 246 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 247 &idx_ret); 248 if (ret != H_SUCCESS) { 249 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 250 addr, ret); 251 break; 252 } 253 } 254 } 255 256 int kvmppc_mmu_hv_init(void) 257 { 258 unsigned long host_lpid, rsvd_lpid; 259 260 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 261 return -EINVAL; 262 263 host_lpid = 0; 264 if (cpu_has_feature(CPU_FTR_HVMODE)) 265 host_lpid = mfspr(SPRN_LPID); 266 267 /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */ 268 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 269 rsvd_lpid = LPID_RSVD; 270 else 271 rsvd_lpid = LPID_RSVD_POWER7; 272 273 kvmppc_init_lpid(rsvd_lpid + 1); 274 275 kvmppc_claim_lpid(host_lpid); 276 /* rsvd_lpid is reserved for use in partition switching */ 277 kvmppc_claim_lpid(rsvd_lpid); 278 279 return 0; 280 } 281 282 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 283 long pte_index, unsigned long pteh, 284 unsigned long ptel, unsigned long *pte_idx_ret) 285 { 286 long ret; 287 288 preempt_disable(); 289 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 290 kvm->mm->pgd, false, pte_idx_ret); 291 preempt_enable(); 292 if (ret == H_TOO_HARD) { 293 /* this can't happen */ 294 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 295 ret = H_RESOURCE; /* or something */ 296 } 297 return ret; 298 299 } 300 301 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 302 gva_t eaddr) 303 { 304 u64 mask; 305 int i; 306 307 for (i = 0; i < vcpu->arch.slb_nr; i++) { 308 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 309 continue; 310 311 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 312 mask = ESID_MASK_1T; 313 else 314 mask = ESID_MASK; 315 316 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 317 return &vcpu->arch.slb[i]; 318 } 319 return NULL; 320 } 321 322 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 323 unsigned long ea) 324 { 325 unsigned long ra_mask; 326 327 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 328 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 329 } 330 331 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 332 struct kvmppc_pte *gpte, bool data, bool iswrite) 333 { 334 struct kvm *kvm = vcpu->kvm; 335 struct kvmppc_slb *slbe; 336 unsigned long slb_v; 337 unsigned long pp, key; 338 unsigned long v, orig_v, gr; 339 __be64 *hptep; 340 long int index; 341 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 342 343 if (kvm_is_radix(vcpu->kvm)) 344 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 345 346 /* Get SLB entry */ 347 if (virtmode) { 348 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 349 if (!slbe) 350 return -EINVAL; 351 slb_v = slbe->origv; 352 } else { 353 /* real mode access */ 354 slb_v = vcpu->kvm->arch.vrma_slb_v; 355 } 356 357 preempt_disable(); 358 /* Find the HPTE in the hash table */ 359 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 360 HPTE_V_VALID | HPTE_V_ABSENT); 361 if (index < 0) { 362 preempt_enable(); 363 return -ENOENT; 364 } 365 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 366 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 367 if (cpu_has_feature(CPU_FTR_ARCH_300)) 368 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 369 gr = kvm->arch.hpt.rev[index].guest_rpte; 370 371 unlock_hpte(hptep, orig_v); 372 preempt_enable(); 373 374 gpte->eaddr = eaddr; 375 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 376 377 /* Get PP bits and key for permission check */ 378 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 379 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 380 key &= slb_v; 381 382 /* Calculate permissions */ 383 gpte->may_read = hpte_read_permission(pp, key); 384 gpte->may_write = hpte_write_permission(pp, key); 385 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 386 387 /* Storage key permission check for POWER7 */ 388 if (data && virtmode) { 389 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 390 if (amrfield & 1) 391 gpte->may_read = 0; 392 if (amrfield & 2) 393 gpte->may_write = 0; 394 } 395 396 /* Get the guest physical address */ 397 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 398 return 0; 399 } 400 401 /* 402 * Quick test for whether an instruction is a load or a store. 403 * If the instruction is a load or a store, then this will indicate 404 * which it is, at least on server processors. (Embedded processors 405 * have some external PID instructions that don't follow the rule 406 * embodied here.) If the instruction isn't a load or store, then 407 * this doesn't return anything useful. 408 */ 409 static int instruction_is_store(unsigned int instr) 410 { 411 unsigned int mask; 412 413 mask = 0x10000000; 414 if ((instr & 0xfc000000) == 0x7c000000) 415 mask = 0x100; /* major opcode 31 */ 416 return (instr & mask) != 0; 417 } 418 419 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, 420 unsigned long gpa, gva_t ea, int is_store) 421 { 422 u32 last_inst; 423 424 /* 425 * Fast path - check if the guest physical address corresponds to a 426 * device on the FAST_MMIO_BUS, if so we can avoid loading the 427 * instruction all together, then we can just handle it and return. 428 */ 429 if (is_store) { 430 int idx, ret; 431 432 idx = srcu_read_lock(&vcpu->kvm->srcu); 433 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 434 NULL); 435 srcu_read_unlock(&vcpu->kvm->srcu, idx); 436 if (!ret) { 437 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 438 return RESUME_GUEST; 439 } 440 } 441 442 /* 443 * If we fail, we just return to the guest and try executing it again. 444 */ 445 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 446 EMULATE_DONE) 447 return RESUME_GUEST; 448 449 /* 450 * WARNING: We do not know for sure whether the instruction we just 451 * read from memory is the same that caused the fault in the first 452 * place. If the instruction we read is neither an load or a store, 453 * then it can't access memory, so we don't need to worry about 454 * enforcing access permissions. So, assuming it is a load or 455 * store, we just check that its direction (load or store) is 456 * consistent with the original fault, since that's what we 457 * checked the access permissions against. If there is a mismatch 458 * we just return and retry the instruction. 459 */ 460 461 if (instruction_is_store(last_inst) != !!is_store) 462 return RESUME_GUEST; 463 464 /* 465 * Emulated accesses are emulated by looking at the hash for 466 * translation once, then performing the access later. The 467 * translation could be invalidated in the meantime in which 468 * point performing the subsequent memory access on the old 469 * physical address could possibly be a security hole for the 470 * guest (but not the host). 471 * 472 * This is less of an issue for MMIO stores since they aren't 473 * globally visible. It could be an issue for MMIO loads to 474 * a certain extent but we'll ignore it for now. 475 */ 476 477 vcpu->arch.paddr_accessed = gpa; 478 vcpu->arch.vaddr_accessed = ea; 479 return kvmppc_emulate_mmio(vcpu); 480 } 481 482 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, 483 unsigned long ea, unsigned long dsisr) 484 { 485 struct kvm *kvm = vcpu->kvm; 486 unsigned long hpte[3], r; 487 unsigned long hnow_v, hnow_r; 488 __be64 *hptep; 489 unsigned long mmu_seq, psize, pte_size; 490 unsigned long gpa_base, gfn_base; 491 unsigned long gpa, gfn, hva, pfn, hpa; 492 struct kvm_memory_slot *memslot; 493 unsigned long *rmap; 494 struct revmap_entry *rev; 495 struct page *page; 496 long index, ret; 497 bool is_ci; 498 bool writing, write_ok; 499 unsigned int shift; 500 unsigned long rcbits; 501 long mmio_update; 502 pte_t pte, *ptep; 503 504 if (kvm_is_radix(kvm)) 505 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); 506 507 /* 508 * Real-mode code has already searched the HPT and found the 509 * entry we're interested in. Lock the entry and check that 510 * it hasn't changed. If it has, just return and re-execute the 511 * instruction. 512 */ 513 if (ea != vcpu->arch.pgfault_addr) 514 return RESUME_GUEST; 515 516 if (vcpu->arch.pgfault_cache) { 517 mmio_update = atomic64_read(&kvm->arch.mmio_update); 518 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 519 r = vcpu->arch.pgfault_cache->rpte; 520 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 521 r); 522 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 523 gfn_base = gpa_base >> PAGE_SHIFT; 524 gpa = gpa_base | (ea & (psize - 1)); 525 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 526 dsisr & DSISR_ISSTORE); 527 } 528 } 529 index = vcpu->arch.pgfault_index; 530 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 531 rev = &kvm->arch.hpt.rev[index]; 532 preempt_disable(); 533 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 534 cpu_relax(); 535 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 536 hpte[1] = be64_to_cpu(hptep[1]); 537 hpte[2] = r = rev->guest_rpte; 538 unlock_hpte(hptep, hpte[0]); 539 preempt_enable(); 540 541 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 542 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 543 hpte[1] = hpte_new_to_old_r(hpte[1]); 544 } 545 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 546 hpte[1] != vcpu->arch.pgfault_hpte[1]) 547 return RESUME_GUEST; 548 549 /* Translate the logical address and get the page */ 550 psize = kvmppc_actual_pgsz(hpte[0], r); 551 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 552 gfn_base = gpa_base >> PAGE_SHIFT; 553 gpa = gpa_base | (ea & (psize - 1)); 554 gfn = gpa >> PAGE_SHIFT; 555 memslot = gfn_to_memslot(kvm, gfn); 556 557 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 558 559 /* No memslot means it's an emulated MMIO region */ 560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 561 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 562 dsisr & DSISR_ISSTORE); 563 564 /* 565 * This should never happen, because of the slot_is_aligned() 566 * check in kvmppc_do_h_enter(). 567 */ 568 if (gfn_base < memslot->base_gfn) 569 return -EFAULT; 570 571 /* used to check for invalidations in progress */ 572 mmu_seq = kvm->mmu_notifier_seq; 573 smp_rmb(); 574 575 ret = -EFAULT; 576 page = NULL; 577 writing = (dsisr & DSISR_ISSTORE) != 0; 578 /* If writing != 0, then the HPTE must allow writing, if we get here */ 579 write_ok = writing; 580 hva = gfn_to_hva_memslot(memslot, gfn); 581 582 /* 583 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 584 * do it with !atomic && !async, which is how we call it. 585 * We always ask for write permission since the common case 586 * is that the page is writable. 587 */ 588 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { 589 write_ok = true; 590 } else { 591 /* Call KVM generic code to do the slow-path check */ 592 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 593 writing, &write_ok); 594 if (is_error_noslot_pfn(pfn)) 595 return -EFAULT; 596 page = NULL; 597 if (pfn_valid(pfn)) { 598 page = pfn_to_page(pfn); 599 if (PageReserved(page)) 600 page = NULL; 601 } 602 } 603 604 /* 605 * Read the PTE from the process' radix tree and use that 606 * so we get the shift and attribute bits. 607 */ 608 spin_lock(&kvm->mmu_lock); 609 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); 610 pte = __pte(0); 611 if (ptep) 612 pte = READ_ONCE(*ptep); 613 spin_unlock(&kvm->mmu_lock); 614 /* 615 * If the PTE disappeared temporarily due to a THP 616 * collapse, just return and let the guest try again. 617 */ 618 if (!pte_present(pte)) { 619 if (page) 620 put_page(page); 621 return RESUME_GUEST; 622 } 623 hpa = pte_pfn(pte) << PAGE_SHIFT; 624 pte_size = PAGE_SIZE; 625 if (shift) 626 pte_size = 1ul << shift; 627 is_ci = pte_ci(pte); 628 629 if (psize > pte_size) 630 goto out_put; 631 if (pte_size > psize) 632 hpa |= hva & (pte_size - psize); 633 634 /* Check WIMG vs. the actual page we're accessing */ 635 if (!hpte_cache_flags_ok(r, is_ci)) { 636 if (is_ci) 637 goto out_put; 638 /* 639 * Allow guest to map emulated device memory as 640 * uncacheable, but actually make it cacheable. 641 */ 642 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 643 } 644 645 /* 646 * Set the HPTE to point to hpa. 647 * Since the hpa is at PAGE_SIZE granularity, make sure we 648 * don't mask out lower-order bits if psize < PAGE_SIZE. 649 */ 650 if (psize < PAGE_SIZE) 651 psize = PAGE_SIZE; 652 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; 653 if (hpte_is_writable(r) && !write_ok) 654 r = hpte_make_readonly(r); 655 ret = RESUME_GUEST; 656 preempt_disable(); 657 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 658 cpu_relax(); 659 hnow_v = be64_to_cpu(hptep[0]); 660 hnow_r = be64_to_cpu(hptep[1]); 661 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 662 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 663 hnow_r = hpte_new_to_old_r(hnow_r); 664 } 665 666 /* 667 * If the HPT is being resized, don't update the HPTE, 668 * instead let the guest retry after the resize operation is complete. 669 * The synchronization for mmu_ready test vs. set is provided 670 * by the HPTE lock. 671 */ 672 if (!kvm->arch.mmu_ready) 673 goto out_unlock; 674 675 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 676 rev->guest_rpte != hpte[2]) 677 /* HPTE has been changed under us; let the guest retry */ 678 goto out_unlock; 679 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 680 681 /* Always put the HPTE in the rmap chain for the page base address */ 682 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 683 lock_rmap(rmap); 684 685 /* Check if we might have been invalidated; let the guest retry if so */ 686 ret = RESUME_GUEST; 687 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 688 unlock_rmap(rmap); 689 goto out_unlock; 690 } 691 692 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 693 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 694 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 695 696 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 697 /* HPTE was previously valid, so we need to invalidate it */ 698 unlock_rmap(rmap); 699 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 700 kvmppc_invalidate_hpte(kvm, hptep, index); 701 /* don't lose previous R and C bits */ 702 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 703 } else { 704 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 705 } 706 707 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 708 r = hpte_old_to_new_r(hpte[0], r); 709 hpte[0] = hpte_old_to_new_v(hpte[0]); 710 } 711 hptep[1] = cpu_to_be64(r); 712 eieio(); 713 __unlock_hpte(hptep, hpte[0]); 714 asm volatile("ptesync" : : : "memory"); 715 preempt_enable(); 716 if (page && hpte_is_writable(r)) 717 set_page_dirty_lock(page); 718 719 out_put: 720 trace_kvm_page_fault_exit(vcpu, hpte, ret); 721 722 if (page) 723 put_page(page); 724 return ret; 725 726 out_unlock: 727 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 728 preempt_enable(); 729 goto out_put; 730 } 731 732 void kvmppc_rmap_reset(struct kvm *kvm) 733 { 734 struct kvm_memslots *slots; 735 struct kvm_memory_slot *memslot; 736 int srcu_idx; 737 738 srcu_idx = srcu_read_lock(&kvm->srcu); 739 slots = kvm_memslots(kvm); 740 kvm_for_each_memslot(memslot, slots) { 741 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 742 spin_lock(&kvm->mmu_lock); 743 /* 744 * This assumes it is acceptable to lose reference and 745 * change bits across a reset. 746 */ 747 memset(memslot->arch.rmap, 0, 748 memslot->npages * sizeof(*memslot->arch.rmap)); 749 spin_unlock(&kvm->mmu_lock); 750 } 751 srcu_read_unlock(&kvm->srcu, srcu_idx); 752 } 753 754 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 755 unsigned long gfn); 756 757 static int kvm_handle_hva_range(struct kvm *kvm, 758 unsigned long start, 759 unsigned long end, 760 hva_handler_fn handler) 761 { 762 int ret; 763 int retval = 0; 764 struct kvm_memslots *slots; 765 struct kvm_memory_slot *memslot; 766 767 slots = kvm_memslots(kvm); 768 kvm_for_each_memslot(memslot, slots) { 769 unsigned long hva_start, hva_end; 770 gfn_t gfn, gfn_end; 771 772 hva_start = max(start, memslot->userspace_addr); 773 hva_end = min(end, memslot->userspace_addr + 774 (memslot->npages << PAGE_SHIFT)); 775 if (hva_start >= hva_end) 776 continue; 777 /* 778 * {gfn(page) | page intersects with [hva_start, hva_end)} = 779 * {gfn, gfn+1, ..., gfn_end-1}. 780 */ 781 gfn = hva_to_gfn_memslot(hva_start, memslot); 782 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 783 784 for (; gfn < gfn_end; ++gfn) { 785 ret = handler(kvm, memslot, gfn); 786 retval |= ret; 787 } 788 } 789 790 return retval; 791 } 792 793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 794 hva_handler_fn handler) 795 { 796 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 797 } 798 799 /* Must be called with both HPTE and rmap locked */ 800 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 801 struct kvm_memory_slot *memslot, 802 unsigned long *rmapp, unsigned long gfn) 803 { 804 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 805 struct revmap_entry *rev = kvm->arch.hpt.rev; 806 unsigned long j, h; 807 unsigned long ptel, psize, rcbits; 808 809 j = rev[i].forw; 810 if (j == i) { 811 /* chain is now empty */ 812 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 813 } else { 814 /* remove i from chain */ 815 h = rev[i].back; 816 rev[h].forw = j; 817 rev[j].back = h; 818 rev[i].forw = rev[i].back = i; 819 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 820 } 821 822 /* Now check and modify the HPTE */ 823 ptel = rev[i].guest_rpte; 824 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 825 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 826 hpte_rpn(ptel, psize) == gfn) { 827 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 828 kvmppc_invalidate_hpte(kvm, hptep, i); 829 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 830 /* Harvest R and C */ 831 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 832 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 833 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 834 kvmppc_update_dirty_map(memslot, gfn, psize); 835 if (rcbits & ~rev[i].guest_rpte) { 836 rev[i].guest_rpte = ptel | rcbits; 837 note_hpte_modification(kvm, &rev[i]); 838 } 839 } 840 } 841 842 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 843 unsigned long gfn) 844 { 845 unsigned long i; 846 __be64 *hptep; 847 unsigned long *rmapp; 848 849 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 850 for (;;) { 851 lock_rmap(rmapp); 852 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 853 unlock_rmap(rmapp); 854 break; 855 } 856 857 /* 858 * To avoid an ABBA deadlock with the HPTE lock bit, 859 * we can't spin on the HPTE lock while holding the 860 * rmap chain lock. 861 */ 862 i = *rmapp & KVMPPC_RMAP_INDEX; 863 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 864 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 865 /* unlock rmap before spinning on the HPTE lock */ 866 unlock_rmap(rmapp); 867 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 868 cpu_relax(); 869 continue; 870 } 871 872 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 873 unlock_rmap(rmapp); 874 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 875 } 876 return 0; 877 } 878 879 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 880 { 881 hva_handler_fn handler; 882 883 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 884 kvm_handle_hva_range(kvm, start, end, handler); 885 return 0; 886 } 887 888 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 889 struct kvm_memory_slot *memslot) 890 { 891 unsigned long gfn; 892 unsigned long n; 893 unsigned long *rmapp; 894 895 gfn = memslot->base_gfn; 896 rmapp = memslot->arch.rmap; 897 if (kvm_is_radix(kvm)) { 898 kvmppc_radix_flush_memslot(kvm, memslot); 899 return; 900 } 901 902 for (n = memslot->npages; n; --n, ++gfn) { 903 /* 904 * Testing the present bit without locking is OK because 905 * the memslot has been marked invalid already, and hence 906 * no new HPTEs referencing this page can be created, 907 * thus the present bit can't go from 0 to 1. 908 */ 909 if (*rmapp & KVMPPC_RMAP_PRESENT) 910 kvm_unmap_rmapp(kvm, memslot, gfn); 911 ++rmapp; 912 } 913 } 914 915 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 916 unsigned long gfn) 917 { 918 struct revmap_entry *rev = kvm->arch.hpt.rev; 919 unsigned long head, i, j; 920 __be64 *hptep; 921 int ret = 0; 922 unsigned long *rmapp; 923 924 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 925 retry: 926 lock_rmap(rmapp); 927 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 928 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 929 ret = 1; 930 } 931 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 932 unlock_rmap(rmapp); 933 return ret; 934 } 935 936 i = head = *rmapp & KVMPPC_RMAP_INDEX; 937 do { 938 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 939 j = rev[i].forw; 940 941 /* If this HPTE isn't referenced, ignore it */ 942 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 943 continue; 944 945 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 946 /* unlock rmap before spinning on the HPTE lock */ 947 unlock_rmap(rmapp); 948 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 949 cpu_relax(); 950 goto retry; 951 } 952 953 /* Now check and modify the HPTE */ 954 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 955 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 956 kvmppc_clear_ref_hpte(kvm, hptep, i); 957 if (!(rev[i].guest_rpte & HPTE_R_R)) { 958 rev[i].guest_rpte |= HPTE_R_R; 959 note_hpte_modification(kvm, &rev[i]); 960 } 961 ret = 1; 962 } 963 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 964 } while ((i = j) != head); 965 966 unlock_rmap(rmapp); 967 return ret; 968 } 969 970 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 971 { 972 hva_handler_fn handler; 973 974 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 975 return kvm_handle_hva_range(kvm, start, end, handler); 976 } 977 978 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 979 unsigned long gfn) 980 { 981 struct revmap_entry *rev = kvm->arch.hpt.rev; 982 unsigned long head, i, j; 983 unsigned long *hp; 984 int ret = 1; 985 unsigned long *rmapp; 986 987 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 988 if (*rmapp & KVMPPC_RMAP_REFERENCED) 989 return 1; 990 991 lock_rmap(rmapp); 992 if (*rmapp & KVMPPC_RMAP_REFERENCED) 993 goto out; 994 995 if (*rmapp & KVMPPC_RMAP_PRESENT) { 996 i = head = *rmapp & KVMPPC_RMAP_INDEX; 997 do { 998 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 999 j = rev[i].forw; 1000 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1001 goto out; 1002 } while ((i = j) != head); 1003 } 1004 ret = 0; 1005 1006 out: 1007 unlock_rmap(rmapp); 1008 return ret; 1009 } 1010 1011 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1012 { 1013 hva_handler_fn handler; 1014 1015 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1016 return kvm_handle_hva(kvm, hva, handler); 1017 } 1018 1019 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1020 { 1021 hva_handler_fn handler; 1022 1023 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1024 kvm_handle_hva(kvm, hva, handler); 1025 } 1026 1027 static int vcpus_running(struct kvm *kvm) 1028 { 1029 return atomic_read(&kvm->arch.vcpus_running) != 0; 1030 } 1031 1032 /* 1033 * Returns the number of system pages that are dirty. 1034 * This can be more than 1 if we find a huge-page HPTE. 1035 */ 1036 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1037 { 1038 struct revmap_entry *rev = kvm->arch.hpt.rev; 1039 unsigned long head, i, j; 1040 unsigned long n; 1041 unsigned long v, r; 1042 __be64 *hptep; 1043 int npages_dirty = 0; 1044 1045 retry: 1046 lock_rmap(rmapp); 1047 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1048 unlock_rmap(rmapp); 1049 return npages_dirty; 1050 } 1051 1052 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1053 do { 1054 unsigned long hptep1; 1055 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1056 j = rev[i].forw; 1057 1058 /* 1059 * Checking the C (changed) bit here is racy since there 1060 * is no guarantee about when the hardware writes it back. 1061 * If the HPTE is not writable then it is stable since the 1062 * page can't be written to, and we would have done a tlbie 1063 * (which forces the hardware to complete any writeback) 1064 * when making the HPTE read-only. 1065 * If vcpus are running then this call is racy anyway 1066 * since the page could get dirtied subsequently, so we 1067 * expect there to be a further call which would pick up 1068 * any delayed C bit writeback. 1069 * Otherwise we need to do the tlbie even if C==0 in 1070 * order to pick up any delayed writeback of C. 1071 */ 1072 hptep1 = be64_to_cpu(hptep[1]); 1073 if (!(hptep1 & HPTE_R_C) && 1074 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1075 continue; 1076 1077 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1078 /* unlock rmap before spinning on the HPTE lock */ 1079 unlock_rmap(rmapp); 1080 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1081 cpu_relax(); 1082 goto retry; 1083 } 1084 1085 /* Now check and modify the HPTE */ 1086 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1087 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1088 continue; 1089 } 1090 1091 /* need to make it temporarily absent so C is stable */ 1092 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1093 kvmppc_invalidate_hpte(kvm, hptep, i); 1094 v = be64_to_cpu(hptep[0]); 1095 r = be64_to_cpu(hptep[1]); 1096 if (r & HPTE_R_C) { 1097 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1098 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1099 rev[i].guest_rpte |= HPTE_R_C; 1100 note_hpte_modification(kvm, &rev[i]); 1101 } 1102 n = kvmppc_actual_pgsz(v, r); 1103 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1104 if (n > npages_dirty) 1105 npages_dirty = n; 1106 eieio(); 1107 } 1108 v &= ~HPTE_V_ABSENT; 1109 v |= HPTE_V_VALID; 1110 __unlock_hpte(hptep, v); 1111 } while ((i = j) != head); 1112 1113 unlock_rmap(rmapp); 1114 return npages_dirty; 1115 } 1116 1117 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1118 struct kvm_memory_slot *memslot, 1119 unsigned long *map) 1120 { 1121 unsigned long gfn; 1122 1123 if (!vpa->dirty || !vpa->pinned_addr) 1124 return; 1125 gfn = vpa->gpa >> PAGE_SHIFT; 1126 if (gfn < memslot->base_gfn || 1127 gfn >= memslot->base_gfn + memslot->npages) 1128 return; 1129 1130 vpa->dirty = false; 1131 if (map) 1132 __set_bit_le(gfn - memslot->base_gfn, map); 1133 } 1134 1135 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1136 struct kvm_memory_slot *memslot, unsigned long *map) 1137 { 1138 unsigned long i; 1139 unsigned long *rmapp; 1140 1141 preempt_disable(); 1142 rmapp = memslot->arch.rmap; 1143 for (i = 0; i < memslot->npages; ++i) { 1144 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1145 /* 1146 * Note that if npages > 0 then i must be a multiple of npages, 1147 * since we always put huge-page HPTEs in the rmap chain 1148 * corresponding to their page base address. 1149 */ 1150 if (npages) 1151 set_dirty_bits(map, i, npages); 1152 ++rmapp; 1153 } 1154 preempt_enable(); 1155 return 0; 1156 } 1157 1158 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1159 unsigned long *nb_ret) 1160 { 1161 struct kvm_memory_slot *memslot; 1162 unsigned long gfn = gpa >> PAGE_SHIFT; 1163 struct page *page, *pages[1]; 1164 int npages; 1165 unsigned long hva, offset; 1166 int srcu_idx; 1167 1168 srcu_idx = srcu_read_lock(&kvm->srcu); 1169 memslot = gfn_to_memslot(kvm, gfn); 1170 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1171 goto err; 1172 hva = gfn_to_hva_memslot(memslot, gfn); 1173 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1174 if (npages < 1) 1175 goto err; 1176 page = pages[0]; 1177 srcu_read_unlock(&kvm->srcu, srcu_idx); 1178 1179 offset = gpa & (PAGE_SIZE - 1); 1180 if (nb_ret) 1181 *nb_ret = PAGE_SIZE - offset; 1182 return page_address(page) + offset; 1183 1184 err: 1185 srcu_read_unlock(&kvm->srcu, srcu_idx); 1186 return NULL; 1187 } 1188 1189 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1190 bool dirty) 1191 { 1192 struct page *page = virt_to_page(va); 1193 struct kvm_memory_slot *memslot; 1194 unsigned long gfn; 1195 int srcu_idx; 1196 1197 put_page(page); 1198 1199 if (!dirty) 1200 return; 1201 1202 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1203 gfn = gpa >> PAGE_SHIFT; 1204 srcu_idx = srcu_read_lock(&kvm->srcu); 1205 memslot = gfn_to_memslot(kvm, gfn); 1206 if (memslot && memslot->dirty_bitmap) 1207 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1208 srcu_read_unlock(&kvm->srcu, srcu_idx); 1209 } 1210 1211 /* 1212 * HPT resizing 1213 */ 1214 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1215 { 1216 int rc; 1217 1218 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1219 if (rc < 0) 1220 return rc; 1221 1222 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1223 resize->hpt.virt); 1224 1225 return 0; 1226 } 1227 1228 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1229 unsigned long idx) 1230 { 1231 struct kvm *kvm = resize->kvm; 1232 struct kvm_hpt_info *old = &kvm->arch.hpt; 1233 struct kvm_hpt_info *new = &resize->hpt; 1234 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1235 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1236 __be64 *hptep, *new_hptep; 1237 unsigned long vpte, rpte, guest_rpte; 1238 int ret; 1239 struct revmap_entry *rev; 1240 unsigned long apsize, avpn, pteg, hash; 1241 unsigned long new_idx, new_pteg, replace_vpte; 1242 int pshift; 1243 1244 hptep = (__be64 *)(old->virt + (idx << 4)); 1245 1246 /* Guest is stopped, so new HPTEs can't be added or faulted 1247 * in, only unmapped or altered by host actions. So, it's 1248 * safe to check this before we take the HPTE lock */ 1249 vpte = be64_to_cpu(hptep[0]); 1250 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1251 return 0; /* nothing to do */ 1252 1253 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1254 cpu_relax(); 1255 1256 vpte = be64_to_cpu(hptep[0]); 1257 1258 ret = 0; 1259 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1260 /* Nothing to do */ 1261 goto out; 1262 1263 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1264 rpte = be64_to_cpu(hptep[1]); 1265 vpte = hpte_new_to_old_v(vpte, rpte); 1266 } 1267 1268 /* Unmap */ 1269 rev = &old->rev[idx]; 1270 guest_rpte = rev->guest_rpte; 1271 1272 ret = -EIO; 1273 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1274 if (!apsize) 1275 goto out; 1276 1277 if (vpte & HPTE_V_VALID) { 1278 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1279 int srcu_idx = srcu_read_lock(&kvm->srcu); 1280 struct kvm_memory_slot *memslot = 1281 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1282 1283 if (memslot) { 1284 unsigned long *rmapp; 1285 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1286 1287 lock_rmap(rmapp); 1288 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1289 unlock_rmap(rmapp); 1290 } 1291 1292 srcu_read_unlock(&kvm->srcu, srcu_idx); 1293 } 1294 1295 /* Reload PTE after unmap */ 1296 vpte = be64_to_cpu(hptep[0]); 1297 BUG_ON(vpte & HPTE_V_VALID); 1298 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1299 1300 ret = 0; 1301 if (!(vpte & HPTE_V_BOLTED)) 1302 goto out; 1303 1304 rpte = be64_to_cpu(hptep[1]); 1305 1306 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1307 vpte = hpte_new_to_old_v(vpte, rpte); 1308 rpte = hpte_new_to_old_r(rpte); 1309 } 1310 1311 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1312 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1313 pteg = idx / HPTES_PER_GROUP; 1314 if (vpte & HPTE_V_SECONDARY) 1315 pteg = ~pteg; 1316 1317 if (!(vpte & HPTE_V_1TB_SEG)) { 1318 unsigned long offset, vsid; 1319 1320 /* We only have 28 - 23 bits of offset in avpn */ 1321 offset = (avpn & 0x1f) << 23; 1322 vsid = avpn >> 5; 1323 /* We can find more bits from the pteg value */ 1324 if (pshift < 23) 1325 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1326 1327 hash = vsid ^ (offset >> pshift); 1328 } else { 1329 unsigned long offset, vsid; 1330 1331 /* We only have 40 - 23 bits of seg_off in avpn */ 1332 offset = (avpn & 0x1ffff) << 23; 1333 vsid = avpn >> 17; 1334 if (pshift < 23) 1335 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1336 1337 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1338 } 1339 1340 new_pteg = hash & new_hash_mask; 1341 if (vpte & HPTE_V_SECONDARY) 1342 new_pteg = ~hash & new_hash_mask; 1343 1344 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1345 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1346 1347 replace_vpte = be64_to_cpu(new_hptep[0]); 1348 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1349 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1350 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1351 } 1352 1353 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1354 BUG_ON(new->order >= old->order); 1355 1356 if (replace_vpte & HPTE_V_BOLTED) { 1357 if (vpte & HPTE_V_BOLTED) 1358 /* Bolted collision, nothing we can do */ 1359 ret = -ENOSPC; 1360 /* Discard the new HPTE */ 1361 goto out; 1362 } 1363 1364 /* Discard the previous HPTE */ 1365 } 1366 1367 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1368 rpte = hpte_old_to_new_r(vpte, rpte); 1369 vpte = hpte_old_to_new_v(vpte); 1370 } 1371 1372 new_hptep[1] = cpu_to_be64(rpte); 1373 new->rev[new_idx].guest_rpte = guest_rpte; 1374 /* No need for a barrier, since new HPT isn't active */ 1375 new_hptep[0] = cpu_to_be64(vpte); 1376 unlock_hpte(new_hptep, vpte); 1377 1378 out: 1379 unlock_hpte(hptep, vpte); 1380 return ret; 1381 } 1382 1383 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1384 { 1385 struct kvm *kvm = resize->kvm; 1386 unsigned long i; 1387 int rc; 1388 1389 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1390 rc = resize_hpt_rehash_hpte(resize, i); 1391 if (rc != 0) 1392 return rc; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1399 { 1400 struct kvm *kvm = resize->kvm; 1401 struct kvm_hpt_info hpt_tmp; 1402 1403 /* Exchange the pending tables in the resize structure with 1404 * the active tables */ 1405 1406 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1407 1408 spin_lock(&kvm->mmu_lock); 1409 asm volatile("ptesync" : : : "memory"); 1410 1411 hpt_tmp = kvm->arch.hpt; 1412 kvmppc_set_hpt(kvm, &resize->hpt); 1413 resize->hpt = hpt_tmp; 1414 1415 spin_unlock(&kvm->mmu_lock); 1416 1417 synchronize_srcu_expedited(&kvm->srcu); 1418 1419 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1420 kvmppc_setup_partition_table(kvm); 1421 1422 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1423 } 1424 1425 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1426 { 1427 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1428 return; 1429 1430 if (!resize) 1431 return; 1432 1433 if (resize->error != -EBUSY) { 1434 if (resize->hpt.virt) 1435 kvmppc_free_hpt(&resize->hpt); 1436 kfree(resize); 1437 } 1438 1439 if (kvm->arch.resize_hpt == resize) 1440 kvm->arch.resize_hpt = NULL; 1441 } 1442 1443 static void resize_hpt_prepare_work(struct work_struct *work) 1444 { 1445 struct kvm_resize_hpt *resize = container_of(work, 1446 struct kvm_resize_hpt, 1447 work); 1448 struct kvm *kvm = resize->kvm; 1449 int err = 0; 1450 1451 if (WARN_ON(resize->error != -EBUSY)) 1452 return; 1453 1454 mutex_lock(&kvm->arch.mmu_setup_lock); 1455 1456 /* Request is still current? */ 1457 if (kvm->arch.resize_hpt == resize) { 1458 /* We may request large allocations here: 1459 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1460 */ 1461 mutex_unlock(&kvm->arch.mmu_setup_lock); 1462 1463 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1464 resize->order); 1465 1466 err = resize_hpt_allocate(resize); 1467 1468 /* We have strict assumption about -EBUSY 1469 * when preparing for HPT resize. 1470 */ 1471 if (WARN_ON(err == -EBUSY)) 1472 err = -EINPROGRESS; 1473 1474 mutex_lock(&kvm->arch.mmu_setup_lock); 1475 /* It is possible that kvm->arch.resize_hpt != resize 1476 * after we grab kvm->arch.mmu_setup_lock again. 1477 */ 1478 } 1479 1480 resize->error = err; 1481 1482 if (kvm->arch.resize_hpt != resize) 1483 resize_hpt_release(kvm, resize); 1484 1485 mutex_unlock(&kvm->arch.mmu_setup_lock); 1486 } 1487 1488 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1489 struct kvm_ppc_resize_hpt *rhpt) 1490 { 1491 unsigned long flags = rhpt->flags; 1492 unsigned long shift = rhpt->shift; 1493 struct kvm_resize_hpt *resize; 1494 int ret; 1495 1496 if (flags != 0 || kvm_is_radix(kvm)) 1497 return -EINVAL; 1498 1499 if (shift && ((shift < 18) || (shift > 46))) 1500 return -EINVAL; 1501 1502 mutex_lock(&kvm->arch.mmu_setup_lock); 1503 1504 resize = kvm->arch.resize_hpt; 1505 1506 if (resize) { 1507 if (resize->order == shift) { 1508 /* Suitable resize in progress? */ 1509 ret = resize->error; 1510 if (ret == -EBUSY) 1511 ret = 100; /* estimated time in ms */ 1512 else if (ret) 1513 resize_hpt_release(kvm, resize); 1514 1515 goto out; 1516 } 1517 1518 /* not suitable, cancel it */ 1519 resize_hpt_release(kvm, resize); 1520 } 1521 1522 ret = 0; 1523 if (!shift) 1524 goto out; /* nothing to do */ 1525 1526 /* start new resize */ 1527 1528 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1529 if (!resize) { 1530 ret = -ENOMEM; 1531 goto out; 1532 } 1533 1534 resize->error = -EBUSY; 1535 resize->order = shift; 1536 resize->kvm = kvm; 1537 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1538 kvm->arch.resize_hpt = resize; 1539 1540 schedule_work(&resize->work); 1541 1542 ret = 100; /* estimated time in ms */ 1543 1544 out: 1545 mutex_unlock(&kvm->arch.mmu_setup_lock); 1546 return ret; 1547 } 1548 1549 static void resize_hpt_boot_vcpu(void *opaque) 1550 { 1551 /* Nothing to do, just force a KVM exit */ 1552 } 1553 1554 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1555 struct kvm_ppc_resize_hpt *rhpt) 1556 { 1557 unsigned long flags = rhpt->flags; 1558 unsigned long shift = rhpt->shift; 1559 struct kvm_resize_hpt *resize; 1560 long ret; 1561 1562 if (flags != 0 || kvm_is_radix(kvm)) 1563 return -EINVAL; 1564 1565 if (shift && ((shift < 18) || (shift > 46))) 1566 return -EINVAL; 1567 1568 mutex_lock(&kvm->arch.mmu_setup_lock); 1569 1570 resize = kvm->arch.resize_hpt; 1571 1572 /* This shouldn't be possible */ 1573 ret = -EIO; 1574 if (WARN_ON(!kvm->arch.mmu_ready)) 1575 goto out_no_hpt; 1576 1577 /* Stop VCPUs from running while we mess with the HPT */ 1578 kvm->arch.mmu_ready = 0; 1579 smp_mb(); 1580 1581 /* Boot all CPUs out of the guest so they re-read 1582 * mmu_ready */ 1583 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1584 1585 ret = -ENXIO; 1586 if (!resize || (resize->order != shift)) 1587 goto out; 1588 1589 ret = resize->error; 1590 if (ret) 1591 goto out; 1592 1593 ret = resize_hpt_rehash(resize); 1594 if (ret) 1595 goto out; 1596 1597 resize_hpt_pivot(resize); 1598 1599 out: 1600 /* Let VCPUs run again */ 1601 kvm->arch.mmu_ready = 1; 1602 smp_mb(); 1603 out_no_hpt: 1604 resize_hpt_release(kvm, resize); 1605 mutex_unlock(&kvm->arch.mmu_setup_lock); 1606 return ret; 1607 } 1608 1609 /* 1610 * Functions for reading and writing the hash table via reads and 1611 * writes on a file descriptor. 1612 * 1613 * Reads return the guest view of the hash table, which has to be 1614 * pieced together from the real hash table and the guest_rpte 1615 * values in the revmap array. 1616 * 1617 * On writes, each HPTE written is considered in turn, and if it 1618 * is valid, it is written to the HPT as if an H_ENTER with the 1619 * exact flag set was done. When the invalid count is non-zero 1620 * in the header written to the stream, the kernel will make 1621 * sure that that many HPTEs are invalid, and invalidate them 1622 * if not. 1623 */ 1624 1625 struct kvm_htab_ctx { 1626 unsigned long index; 1627 unsigned long flags; 1628 struct kvm *kvm; 1629 int first_pass; 1630 }; 1631 1632 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1633 1634 /* 1635 * Returns 1 if this HPT entry has been modified or has pending 1636 * R/C bit changes. 1637 */ 1638 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1639 { 1640 unsigned long rcbits_unset; 1641 1642 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1643 return 1; 1644 1645 /* Also need to consider changes in reference and changed bits */ 1646 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1647 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1648 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1649 return 1; 1650 1651 return 0; 1652 } 1653 1654 static long record_hpte(unsigned long flags, __be64 *hptp, 1655 unsigned long *hpte, struct revmap_entry *revp, 1656 int want_valid, int first_pass) 1657 { 1658 unsigned long v, r, hr; 1659 unsigned long rcbits_unset; 1660 int ok = 1; 1661 int valid, dirty; 1662 1663 /* Unmodified entries are uninteresting except on the first pass */ 1664 dirty = hpte_dirty(revp, hptp); 1665 if (!first_pass && !dirty) 1666 return 0; 1667 1668 valid = 0; 1669 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1670 valid = 1; 1671 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1672 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1673 valid = 0; 1674 } 1675 if (valid != want_valid) 1676 return 0; 1677 1678 v = r = 0; 1679 if (valid || dirty) { 1680 /* lock the HPTE so it's stable and read it */ 1681 preempt_disable(); 1682 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1683 cpu_relax(); 1684 v = be64_to_cpu(hptp[0]); 1685 hr = be64_to_cpu(hptp[1]); 1686 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1687 v = hpte_new_to_old_v(v, hr); 1688 hr = hpte_new_to_old_r(hr); 1689 } 1690 1691 /* re-evaluate valid and dirty from synchronized HPTE value */ 1692 valid = !!(v & HPTE_V_VALID); 1693 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1694 1695 /* Harvest R and C into guest view if necessary */ 1696 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1697 if (valid && (rcbits_unset & hr)) { 1698 revp->guest_rpte |= (hr & 1699 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1700 dirty = 1; 1701 } 1702 1703 if (v & HPTE_V_ABSENT) { 1704 v &= ~HPTE_V_ABSENT; 1705 v |= HPTE_V_VALID; 1706 valid = 1; 1707 } 1708 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1709 valid = 0; 1710 1711 r = revp->guest_rpte; 1712 /* only clear modified if this is the right sort of entry */ 1713 if (valid == want_valid && dirty) { 1714 r &= ~HPTE_GR_MODIFIED; 1715 revp->guest_rpte = r; 1716 } 1717 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1718 preempt_enable(); 1719 if (!(valid == want_valid && (first_pass || dirty))) 1720 ok = 0; 1721 } 1722 hpte[0] = cpu_to_be64(v); 1723 hpte[1] = cpu_to_be64(r); 1724 return ok; 1725 } 1726 1727 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1728 size_t count, loff_t *ppos) 1729 { 1730 struct kvm_htab_ctx *ctx = file->private_data; 1731 struct kvm *kvm = ctx->kvm; 1732 struct kvm_get_htab_header hdr; 1733 __be64 *hptp; 1734 struct revmap_entry *revp; 1735 unsigned long i, nb, nw; 1736 unsigned long __user *lbuf; 1737 struct kvm_get_htab_header __user *hptr; 1738 unsigned long flags; 1739 int first_pass; 1740 unsigned long hpte[2]; 1741 1742 if (!access_ok(buf, count)) 1743 return -EFAULT; 1744 if (kvm_is_radix(kvm)) 1745 return 0; 1746 1747 first_pass = ctx->first_pass; 1748 flags = ctx->flags; 1749 1750 i = ctx->index; 1751 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1752 revp = kvm->arch.hpt.rev + i; 1753 lbuf = (unsigned long __user *)buf; 1754 1755 nb = 0; 1756 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1757 /* Initialize header */ 1758 hptr = (struct kvm_get_htab_header __user *)buf; 1759 hdr.n_valid = 0; 1760 hdr.n_invalid = 0; 1761 nw = nb; 1762 nb += sizeof(hdr); 1763 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1764 1765 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1766 if (!first_pass) { 1767 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1768 !hpte_dirty(revp, hptp)) { 1769 ++i; 1770 hptp += 2; 1771 ++revp; 1772 } 1773 } 1774 hdr.index = i; 1775 1776 /* Grab a series of valid entries */ 1777 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1778 hdr.n_valid < 0xffff && 1779 nb + HPTE_SIZE < count && 1780 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1781 /* valid entry, write it out */ 1782 ++hdr.n_valid; 1783 if (__put_user(hpte[0], lbuf) || 1784 __put_user(hpte[1], lbuf + 1)) 1785 return -EFAULT; 1786 nb += HPTE_SIZE; 1787 lbuf += 2; 1788 ++i; 1789 hptp += 2; 1790 ++revp; 1791 } 1792 /* Now skip invalid entries while we can */ 1793 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1794 hdr.n_invalid < 0xffff && 1795 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1796 /* found an invalid entry */ 1797 ++hdr.n_invalid; 1798 ++i; 1799 hptp += 2; 1800 ++revp; 1801 } 1802 1803 if (hdr.n_valid || hdr.n_invalid) { 1804 /* write back the header */ 1805 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1806 return -EFAULT; 1807 nw = nb; 1808 buf = (char __user *)lbuf; 1809 } else { 1810 nb = nw; 1811 } 1812 1813 /* Check if we've wrapped around the hash table */ 1814 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1815 i = 0; 1816 ctx->first_pass = 0; 1817 break; 1818 } 1819 } 1820 1821 ctx->index = i; 1822 1823 return nb; 1824 } 1825 1826 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1827 size_t count, loff_t *ppos) 1828 { 1829 struct kvm_htab_ctx *ctx = file->private_data; 1830 struct kvm *kvm = ctx->kvm; 1831 struct kvm_get_htab_header hdr; 1832 unsigned long i, j; 1833 unsigned long v, r; 1834 unsigned long __user *lbuf; 1835 __be64 *hptp; 1836 unsigned long tmp[2]; 1837 ssize_t nb; 1838 long int err, ret; 1839 int mmu_ready; 1840 int pshift; 1841 1842 if (!access_ok(buf, count)) 1843 return -EFAULT; 1844 if (kvm_is_radix(kvm)) 1845 return -EINVAL; 1846 1847 /* lock out vcpus from running while we're doing this */ 1848 mutex_lock(&kvm->arch.mmu_setup_lock); 1849 mmu_ready = kvm->arch.mmu_ready; 1850 if (mmu_ready) { 1851 kvm->arch.mmu_ready = 0; /* temporarily */ 1852 /* order mmu_ready vs. vcpus_running */ 1853 smp_mb(); 1854 if (atomic_read(&kvm->arch.vcpus_running)) { 1855 kvm->arch.mmu_ready = 1; 1856 mutex_unlock(&kvm->arch.mmu_setup_lock); 1857 return -EBUSY; 1858 } 1859 } 1860 1861 err = 0; 1862 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1863 err = -EFAULT; 1864 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1865 break; 1866 1867 err = 0; 1868 if (nb + hdr.n_valid * HPTE_SIZE > count) 1869 break; 1870 1871 nb += sizeof(hdr); 1872 buf += sizeof(hdr); 1873 1874 err = -EINVAL; 1875 i = hdr.index; 1876 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1877 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1878 break; 1879 1880 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1881 lbuf = (unsigned long __user *)buf; 1882 for (j = 0; j < hdr.n_valid; ++j) { 1883 __be64 hpte_v; 1884 __be64 hpte_r; 1885 1886 err = -EFAULT; 1887 if (__get_user(hpte_v, lbuf) || 1888 __get_user(hpte_r, lbuf + 1)) 1889 goto out; 1890 v = be64_to_cpu(hpte_v); 1891 r = be64_to_cpu(hpte_r); 1892 err = -EINVAL; 1893 if (!(v & HPTE_V_VALID)) 1894 goto out; 1895 pshift = kvmppc_hpte_base_page_shift(v, r); 1896 if (pshift <= 0) 1897 goto out; 1898 lbuf += 2; 1899 nb += HPTE_SIZE; 1900 1901 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1902 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1903 err = -EIO; 1904 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1905 tmp); 1906 if (ret != H_SUCCESS) { 1907 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1908 "r=%lx\n", ret, i, v, r); 1909 goto out; 1910 } 1911 if (!mmu_ready && is_vrma_hpte(v)) { 1912 unsigned long senc, lpcr; 1913 1914 senc = slb_pgsize_encoding(1ul << pshift); 1915 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1916 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1917 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1918 lpcr = senc << (LPCR_VRMASD_SH - 4); 1919 kvmppc_update_lpcr(kvm, lpcr, 1920 LPCR_VRMASD); 1921 } else { 1922 kvmppc_setup_partition_table(kvm); 1923 } 1924 mmu_ready = 1; 1925 } 1926 ++i; 1927 hptp += 2; 1928 } 1929 1930 for (j = 0; j < hdr.n_invalid; ++j) { 1931 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1932 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1933 ++i; 1934 hptp += 2; 1935 } 1936 err = 0; 1937 } 1938 1939 out: 1940 /* Order HPTE updates vs. mmu_ready */ 1941 smp_wmb(); 1942 kvm->arch.mmu_ready = mmu_ready; 1943 mutex_unlock(&kvm->arch.mmu_setup_lock); 1944 1945 if (err) 1946 return err; 1947 return nb; 1948 } 1949 1950 static int kvm_htab_release(struct inode *inode, struct file *filp) 1951 { 1952 struct kvm_htab_ctx *ctx = filp->private_data; 1953 1954 filp->private_data = NULL; 1955 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1956 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1957 kvm_put_kvm(ctx->kvm); 1958 kfree(ctx); 1959 return 0; 1960 } 1961 1962 static const struct file_operations kvm_htab_fops = { 1963 .read = kvm_htab_read, 1964 .write = kvm_htab_write, 1965 .llseek = default_llseek, 1966 .release = kvm_htab_release, 1967 }; 1968 1969 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1970 { 1971 int ret; 1972 struct kvm_htab_ctx *ctx; 1973 int rwflag; 1974 1975 /* reject flags we don't recognize */ 1976 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1977 return -EINVAL; 1978 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1979 if (!ctx) 1980 return -ENOMEM; 1981 kvm_get_kvm(kvm); 1982 ctx->kvm = kvm; 1983 ctx->index = ghf->start_index; 1984 ctx->flags = ghf->flags; 1985 ctx->first_pass = 1; 1986 1987 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1988 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1989 if (ret < 0) { 1990 kfree(ctx); 1991 kvm_put_kvm_no_destroy(kvm); 1992 return ret; 1993 } 1994 1995 if (rwflag == O_RDONLY) { 1996 mutex_lock(&kvm->slots_lock); 1997 atomic_inc(&kvm->arch.hpte_mod_interest); 1998 /* make sure kvmppc_do_h_enter etc. see the increment */ 1999 synchronize_srcu_expedited(&kvm->srcu); 2000 mutex_unlock(&kvm->slots_lock); 2001 } 2002 2003 return ret; 2004 } 2005 2006 struct debugfs_htab_state { 2007 struct kvm *kvm; 2008 struct mutex mutex; 2009 unsigned long hpt_index; 2010 int chars_left; 2011 int buf_index; 2012 char buf[64]; 2013 }; 2014 2015 static int debugfs_htab_open(struct inode *inode, struct file *file) 2016 { 2017 struct kvm *kvm = inode->i_private; 2018 struct debugfs_htab_state *p; 2019 2020 p = kzalloc(sizeof(*p), GFP_KERNEL); 2021 if (!p) 2022 return -ENOMEM; 2023 2024 kvm_get_kvm(kvm); 2025 p->kvm = kvm; 2026 mutex_init(&p->mutex); 2027 file->private_data = p; 2028 2029 return nonseekable_open(inode, file); 2030 } 2031 2032 static int debugfs_htab_release(struct inode *inode, struct file *file) 2033 { 2034 struct debugfs_htab_state *p = file->private_data; 2035 2036 kvm_put_kvm(p->kvm); 2037 kfree(p); 2038 return 0; 2039 } 2040 2041 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2042 size_t len, loff_t *ppos) 2043 { 2044 struct debugfs_htab_state *p = file->private_data; 2045 ssize_t ret, r; 2046 unsigned long i, n; 2047 unsigned long v, hr, gr; 2048 struct kvm *kvm; 2049 __be64 *hptp; 2050 2051 kvm = p->kvm; 2052 if (kvm_is_radix(kvm)) 2053 return 0; 2054 2055 ret = mutex_lock_interruptible(&p->mutex); 2056 if (ret) 2057 return ret; 2058 2059 if (p->chars_left) { 2060 n = p->chars_left; 2061 if (n > len) 2062 n = len; 2063 r = copy_to_user(buf, p->buf + p->buf_index, n); 2064 n -= r; 2065 p->chars_left -= n; 2066 p->buf_index += n; 2067 buf += n; 2068 len -= n; 2069 ret = n; 2070 if (r) { 2071 if (!n) 2072 ret = -EFAULT; 2073 goto out; 2074 } 2075 } 2076 2077 i = p->hpt_index; 2078 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2079 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2080 ++i, hptp += 2) { 2081 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2082 continue; 2083 2084 /* lock the HPTE so it's stable and read it */ 2085 preempt_disable(); 2086 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2087 cpu_relax(); 2088 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2089 hr = be64_to_cpu(hptp[1]); 2090 gr = kvm->arch.hpt.rev[i].guest_rpte; 2091 unlock_hpte(hptp, v); 2092 preempt_enable(); 2093 2094 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2095 continue; 2096 2097 n = scnprintf(p->buf, sizeof(p->buf), 2098 "%6lx %.16lx %.16lx %.16lx\n", 2099 i, v, hr, gr); 2100 p->chars_left = n; 2101 if (n > len) 2102 n = len; 2103 r = copy_to_user(buf, p->buf, n); 2104 n -= r; 2105 p->chars_left -= n; 2106 p->buf_index = n; 2107 buf += n; 2108 len -= n; 2109 ret += n; 2110 if (r) { 2111 if (!ret) 2112 ret = -EFAULT; 2113 goto out; 2114 } 2115 } 2116 p->hpt_index = i; 2117 2118 out: 2119 mutex_unlock(&p->mutex); 2120 return ret; 2121 } 2122 2123 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2124 size_t len, loff_t *ppos) 2125 { 2126 return -EACCES; 2127 } 2128 2129 static const struct file_operations debugfs_htab_fops = { 2130 .owner = THIS_MODULE, 2131 .open = debugfs_htab_open, 2132 .release = debugfs_htab_release, 2133 .read = debugfs_htab_read, 2134 .write = debugfs_htab_write, 2135 .llseek = generic_file_llseek, 2136 }; 2137 2138 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2139 { 2140 debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm, 2141 &debugfs_htab_fops); 2142 } 2143 2144 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2145 { 2146 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2147 2148 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2149 2150 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2151 2152 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2153 } 2154