1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 
40 #include "book3s_hv_cma.h"
41 
42 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43 #define MAX_LPID_970	63
44 
45 /* Power architecture requires HPT is at least 256kB */
46 #define PPC_MIN_HPT_ORDER	18
47 
48 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
49 				long pte_index, unsigned long pteh,
50 				unsigned long ptel, unsigned long *pte_idx_ret);
51 static void kvmppc_rmap_reset(struct kvm *kvm);
52 
53 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
54 {
55 	unsigned long hpt = 0;
56 	struct revmap_entry *rev;
57 	struct page *page = NULL;
58 	long order = KVM_DEFAULT_HPT_ORDER;
59 
60 	if (htab_orderp) {
61 		order = *htab_orderp;
62 		if (order < PPC_MIN_HPT_ORDER)
63 			order = PPC_MIN_HPT_ORDER;
64 	}
65 
66 	kvm->arch.hpt_cma_alloc = 0;
67 	VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
68 	page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
69 	if (page) {
70 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
71 		kvm->arch.hpt_cma_alloc = 1;
72 	}
73 
74 	/* Lastly try successively smaller sizes from the page allocator */
75 	while (!hpt && order > PPC_MIN_HPT_ORDER) {
76 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
77 				       __GFP_NOWARN, order - PAGE_SHIFT);
78 		if (!hpt)
79 			--order;
80 	}
81 
82 	if (!hpt)
83 		return -ENOMEM;
84 
85 	kvm->arch.hpt_virt = hpt;
86 	kvm->arch.hpt_order = order;
87 	/* HPTEs are 2**4 bytes long */
88 	kvm->arch.hpt_npte = 1ul << (order - 4);
89 	/* 128 (2**7) bytes in each HPTEG */
90 	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
91 
92 	/* Allocate reverse map array */
93 	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
94 	if (!rev) {
95 		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
96 		goto out_freehpt;
97 	}
98 	kvm->arch.revmap = rev;
99 	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
100 
101 	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
102 		hpt, order, kvm->arch.lpid);
103 
104 	if (htab_orderp)
105 		*htab_orderp = order;
106 	return 0;
107 
108  out_freehpt:
109 	if (kvm->arch.hpt_cma_alloc)
110 		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
111 	else
112 		free_pages(hpt, order - PAGE_SHIFT);
113 	return -ENOMEM;
114 }
115 
116 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
117 {
118 	long err = -EBUSY;
119 	long order;
120 
121 	mutex_lock(&kvm->lock);
122 	if (kvm->arch.rma_setup_done) {
123 		kvm->arch.rma_setup_done = 0;
124 		/* order rma_setup_done vs. vcpus_running */
125 		smp_mb();
126 		if (atomic_read(&kvm->arch.vcpus_running)) {
127 			kvm->arch.rma_setup_done = 1;
128 			goto out;
129 		}
130 	}
131 	if (kvm->arch.hpt_virt) {
132 		order = kvm->arch.hpt_order;
133 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
134 		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
135 		/*
136 		 * Reset all the reverse-mapping chains for all memslots
137 		 */
138 		kvmppc_rmap_reset(kvm);
139 		/* Ensure that each vcpu will flush its TLB on next entry. */
140 		cpumask_setall(&kvm->arch.need_tlb_flush);
141 		*htab_orderp = order;
142 		err = 0;
143 	} else {
144 		err = kvmppc_alloc_hpt(kvm, htab_orderp);
145 		order = *htab_orderp;
146 	}
147  out:
148 	mutex_unlock(&kvm->lock);
149 	return err;
150 }
151 
152 void kvmppc_free_hpt(struct kvm *kvm)
153 {
154 	kvmppc_free_lpid(kvm->arch.lpid);
155 	vfree(kvm->arch.revmap);
156 	if (kvm->arch.hpt_cma_alloc)
157 		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
158 				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
159 	else
160 		free_pages(kvm->arch.hpt_virt,
161 			   kvm->arch.hpt_order - PAGE_SHIFT);
162 }
163 
164 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
165 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
166 {
167 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
168 }
169 
170 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
171 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
172 {
173 	return (pgsize == 0x10000) ? 0x1000 : 0;
174 }
175 
176 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
177 		     unsigned long porder)
178 {
179 	unsigned long i;
180 	unsigned long npages;
181 	unsigned long hp_v, hp_r;
182 	unsigned long addr, hash;
183 	unsigned long psize;
184 	unsigned long hp0, hp1;
185 	unsigned long idx_ret;
186 	long ret;
187 	struct kvm *kvm = vcpu->kvm;
188 
189 	psize = 1ul << porder;
190 	npages = memslot->npages >> (porder - PAGE_SHIFT);
191 
192 	/* VRMA can't be > 1TB */
193 	if (npages > 1ul << (40 - porder))
194 		npages = 1ul << (40 - porder);
195 	/* Can't use more than 1 HPTE per HPTEG */
196 	if (npages > kvm->arch.hpt_mask + 1)
197 		npages = kvm->arch.hpt_mask + 1;
198 
199 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
200 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
201 	hp1 = hpte1_pgsize_encoding(psize) |
202 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
203 
204 	for (i = 0; i < npages; ++i) {
205 		addr = i << porder;
206 		/* can't use hpt_hash since va > 64 bits */
207 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
208 		/*
209 		 * We assume that the hash table is empty and no
210 		 * vcpus are using it at this stage.  Since we create
211 		 * at most one HPTE per HPTEG, we just assume entry 7
212 		 * is available and use it.
213 		 */
214 		hash = (hash << 3) + 7;
215 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
216 		hp_r = hp1 | addr;
217 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
218 						 &idx_ret);
219 		if (ret != H_SUCCESS) {
220 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
221 			       addr, ret);
222 			break;
223 		}
224 	}
225 }
226 
227 int kvmppc_mmu_hv_init(void)
228 {
229 	unsigned long host_lpid, rsvd_lpid;
230 
231 	if (!cpu_has_feature(CPU_FTR_HVMODE))
232 		return -EINVAL;
233 
234 	/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
235 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
236 		host_lpid = mfspr(SPRN_LPID);	/* POWER7 */
237 		rsvd_lpid = LPID_RSVD;
238 	} else {
239 		host_lpid = 0;			/* PPC970 */
240 		rsvd_lpid = MAX_LPID_970;
241 	}
242 
243 	kvmppc_init_lpid(rsvd_lpid + 1);
244 
245 	kvmppc_claim_lpid(host_lpid);
246 	/* rsvd_lpid is reserved for use in partition switching */
247 	kvmppc_claim_lpid(rsvd_lpid);
248 
249 	return 0;
250 }
251 
252 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
253 {
254 	unsigned long msr = vcpu->arch.intr_msr;
255 
256 	/* If transactional, change to suspend mode on IRQ delivery */
257 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
258 		msr |= MSR_TS_S;
259 	else
260 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
261 	kvmppc_set_msr(vcpu, msr);
262 }
263 
264 /*
265  * This is called to get a reference to a guest page if there isn't
266  * one already in the memslot->arch.slot_phys[] array.
267  */
268 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
269 				  struct kvm_memory_slot *memslot,
270 				  unsigned long psize)
271 {
272 	unsigned long start;
273 	long np, err;
274 	struct page *page, *hpage, *pages[1];
275 	unsigned long s, pgsize;
276 	unsigned long *physp;
277 	unsigned int is_io, got, pgorder;
278 	struct vm_area_struct *vma;
279 	unsigned long pfn, i, npages;
280 
281 	physp = memslot->arch.slot_phys;
282 	if (!physp)
283 		return -EINVAL;
284 	if (physp[gfn - memslot->base_gfn])
285 		return 0;
286 
287 	is_io = 0;
288 	got = 0;
289 	page = NULL;
290 	pgsize = psize;
291 	err = -EINVAL;
292 	start = gfn_to_hva_memslot(memslot, gfn);
293 
294 	/* Instantiate and get the page we want access to */
295 	np = get_user_pages_fast(start, 1, 1, pages);
296 	if (np != 1) {
297 		/* Look up the vma for the page */
298 		down_read(&current->mm->mmap_sem);
299 		vma = find_vma(current->mm, start);
300 		if (!vma || vma->vm_start > start ||
301 		    start + psize > vma->vm_end ||
302 		    !(vma->vm_flags & VM_PFNMAP))
303 			goto up_err;
304 		is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
305 		pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
306 		/* check alignment of pfn vs. requested page size */
307 		if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
308 			goto up_err;
309 		up_read(&current->mm->mmap_sem);
310 
311 	} else {
312 		page = pages[0];
313 		got = KVMPPC_GOT_PAGE;
314 
315 		/* See if this is a large page */
316 		s = PAGE_SIZE;
317 		if (PageHuge(page)) {
318 			hpage = compound_head(page);
319 			s <<= compound_order(hpage);
320 			/* Get the whole large page if slot alignment is ok */
321 			if (s > psize && slot_is_aligned(memslot, s) &&
322 			    !(memslot->userspace_addr & (s - 1))) {
323 				start &= ~(s - 1);
324 				pgsize = s;
325 				get_page(hpage);
326 				put_page(page);
327 				page = hpage;
328 			}
329 		}
330 		if (s < psize)
331 			goto out;
332 		pfn = page_to_pfn(page);
333 	}
334 
335 	npages = pgsize >> PAGE_SHIFT;
336 	pgorder = __ilog2(npages);
337 	physp += (gfn - memslot->base_gfn) & ~(npages - 1);
338 	spin_lock(&kvm->arch.slot_phys_lock);
339 	for (i = 0; i < npages; ++i) {
340 		if (!physp[i]) {
341 			physp[i] = ((pfn + i) << PAGE_SHIFT) +
342 				got + is_io + pgorder;
343 			got = 0;
344 		}
345 	}
346 	spin_unlock(&kvm->arch.slot_phys_lock);
347 	err = 0;
348 
349  out:
350 	if (got)
351 		put_page(page);
352 	return err;
353 
354  up_err:
355 	up_read(&current->mm->mmap_sem);
356 	return err;
357 }
358 
359 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
360 				long pte_index, unsigned long pteh,
361 				unsigned long ptel, unsigned long *pte_idx_ret)
362 {
363 	unsigned long psize, gpa, gfn;
364 	struct kvm_memory_slot *memslot;
365 	long ret;
366 
367 	if (kvm->arch.using_mmu_notifiers)
368 		goto do_insert;
369 
370 	psize = hpte_page_size(pteh, ptel);
371 	if (!psize)
372 		return H_PARAMETER;
373 
374 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
375 
376 	/* Find the memslot (if any) for this address */
377 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
378 	gfn = gpa >> PAGE_SHIFT;
379 	memslot = gfn_to_memslot(kvm, gfn);
380 	if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
381 		if (!slot_is_aligned(memslot, psize))
382 			return H_PARAMETER;
383 		if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
384 			return H_PARAMETER;
385 	}
386 
387  do_insert:
388 	/* Protect linux PTE lookup from page table destruction */
389 	rcu_read_lock_sched();	/* this disables preemption too */
390 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
391 				current->mm->pgd, false, pte_idx_ret);
392 	rcu_read_unlock_sched();
393 	if (ret == H_TOO_HARD) {
394 		/* this can't happen */
395 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
396 		ret = H_RESOURCE;	/* or something */
397 	}
398 	return ret;
399 
400 }
401 
402 /*
403  * We come here on a H_ENTER call from the guest when we are not
404  * using mmu notifiers and we don't have the requested page pinned
405  * already.
406  */
407 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
408 			     long pte_index, unsigned long pteh,
409 			     unsigned long ptel)
410 {
411 	return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
412 					  pteh, ptel, &vcpu->arch.gpr[4]);
413 }
414 
415 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
416 							 gva_t eaddr)
417 {
418 	u64 mask;
419 	int i;
420 
421 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
422 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
423 			continue;
424 
425 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
426 			mask = ESID_MASK_1T;
427 		else
428 			mask = ESID_MASK;
429 
430 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
431 			return &vcpu->arch.slb[i];
432 	}
433 	return NULL;
434 }
435 
436 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
437 			unsigned long ea)
438 {
439 	unsigned long ra_mask;
440 
441 	ra_mask = hpte_page_size(v, r) - 1;
442 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
443 }
444 
445 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
446 			struct kvmppc_pte *gpte, bool data, bool iswrite)
447 {
448 	struct kvm *kvm = vcpu->kvm;
449 	struct kvmppc_slb *slbe;
450 	unsigned long slb_v;
451 	unsigned long pp, key;
452 	unsigned long v, gr;
453 	unsigned long *hptep;
454 	int index;
455 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
456 
457 	/* Get SLB entry */
458 	if (virtmode) {
459 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
460 		if (!slbe)
461 			return -EINVAL;
462 		slb_v = slbe->origv;
463 	} else {
464 		/* real mode access */
465 		slb_v = vcpu->kvm->arch.vrma_slb_v;
466 	}
467 
468 	preempt_disable();
469 	/* Find the HPTE in the hash table */
470 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
471 					 HPTE_V_VALID | HPTE_V_ABSENT);
472 	if (index < 0) {
473 		preempt_enable();
474 		return -ENOENT;
475 	}
476 	hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
477 	v = hptep[0] & ~HPTE_V_HVLOCK;
478 	gr = kvm->arch.revmap[index].guest_rpte;
479 
480 	/* Unlock the HPTE */
481 	asm volatile("lwsync" : : : "memory");
482 	hptep[0] = v;
483 	preempt_enable();
484 
485 	gpte->eaddr = eaddr;
486 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
487 
488 	/* Get PP bits and key for permission check */
489 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
490 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
491 	key &= slb_v;
492 
493 	/* Calculate permissions */
494 	gpte->may_read = hpte_read_permission(pp, key);
495 	gpte->may_write = hpte_write_permission(pp, key);
496 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
497 
498 	/* Storage key permission check for POWER7 */
499 	if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
500 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
501 		if (amrfield & 1)
502 			gpte->may_read = 0;
503 		if (amrfield & 2)
504 			gpte->may_write = 0;
505 	}
506 
507 	/* Get the guest physical address */
508 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
509 	return 0;
510 }
511 
512 /*
513  * Quick test for whether an instruction is a load or a store.
514  * If the instruction is a load or a store, then this will indicate
515  * which it is, at least on server processors.  (Embedded processors
516  * have some external PID instructions that don't follow the rule
517  * embodied here.)  If the instruction isn't a load or store, then
518  * this doesn't return anything useful.
519  */
520 static int instruction_is_store(unsigned int instr)
521 {
522 	unsigned int mask;
523 
524 	mask = 0x10000000;
525 	if ((instr & 0xfc000000) == 0x7c000000)
526 		mask = 0x100;		/* major opcode 31 */
527 	return (instr & mask) != 0;
528 }
529 
530 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
531 				  unsigned long gpa, gva_t ea, int is_store)
532 {
533 	int ret;
534 	u32 last_inst;
535 	unsigned long srr0 = kvmppc_get_pc(vcpu);
536 
537 	/* We try to load the last instruction.  We don't let
538 	 * emulate_instruction do it as it doesn't check what
539 	 * kvmppc_ld returns.
540 	 * If we fail, we just return to the guest and try executing it again.
541 	 */
542 	if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
543 		ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
544 		if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
545 			return RESUME_GUEST;
546 		vcpu->arch.last_inst = last_inst;
547 	}
548 
549 	/*
550 	 * WARNING: We do not know for sure whether the instruction we just
551 	 * read from memory is the same that caused the fault in the first
552 	 * place.  If the instruction we read is neither an load or a store,
553 	 * then it can't access memory, so we don't need to worry about
554 	 * enforcing access permissions.  So, assuming it is a load or
555 	 * store, we just check that its direction (load or store) is
556 	 * consistent with the original fault, since that's what we
557 	 * checked the access permissions against.  If there is a mismatch
558 	 * we just return and retry the instruction.
559 	 */
560 
561 	if (instruction_is_store(kvmppc_get_last_inst(vcpu)) != !!is_store)
562 		return RESUME_GUEST;
563 
564 	/*
565 	 * Emulated accesses are emulated by looking at the hash for
566 	 * translation once, then performing the access later. The
567 	 * translation could be invalidated in the meantime in which
568 	 * point performing the subsequent memory access on the old
569 	 * physical address could possibly be a security hole for the
570 	 * guest (but not the host).
571 	 *
572 	 * This is less of an issue for MMIO stores since they aren't
573 	 * globally visible. It could be an issue for MMIO loads to
574 	 * a certain extent but we'll ignore it for now.
575 	 */
576 
577 	vcpu->arch.paddr_accessed = gpa;
578 	vcpu->arch.vaddr_accessed = ea;
579 	return kvmppc_emulate_mmio(run, vcpu);
580 }
581 
582 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
583 				unsigned long ea, unsigned long dsisr)
584 {
585 	struct kvm *kvm = vcpu->kvm;
586 	unsigned long *hptep, hpte[3], r;
587 	unsigned long mmu_seq, psize, pte_size;
588 	unsigned long gpa_base, gfn_base;
589 	unsigned long gpa, gfn, hva, pfn;
590 	struct kvm_memory_slot *memslot;
591 	unsigned long *rmap;
592 	struct revmap_entry *rev;
593 	struct page *page, *pages[1];
594 	long index, ret, npages;
595 	unsigned long is_io;
596 	unsigned int writing, write_ok;
597 	struct vm_area_struct *vma;
598 	unsigned long rcbits;
599 
600 	/*
601 	 * Real-mode code has already searched the HPT and found the
602 	 * entry we're interested in.  Lock the entry and check that
603 	 * it hasn't changed.  If it has, just return and re-execute the
604 	 * instruction.
605 	 */
606 	if (ea != vcpu->arch.pgfault_addr)
607 		return RESUME_GUEST;
608 	index = vcpu->arch.pgfault_index;
609 	hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
610 	rev = &kvm->arch.revmap[index];
611 	preempt_disable();
612 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
613 		cpu_relax();
614 	hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
615 	hpte[1] = hptep[1];
616 	hpte[2] = r = rev->guest_rpte;
617 	asm volatile("lwsync" : : : "memory");
618 	hptep[0] = hpte[0];
619 	preempt_enable();
620 
621 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
622 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
623 		return RESUME_GUEST;
624 
625 	/* Translate the logical address and get the page */
626 	psize = hpte_page_size(hpte[0], r);
627 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
628 	gfn_base = gpa_base >> PAGE_SHIFT;
629 	gpa = gpa_base | (ea & (psize - 1));
630 	gfn = gpa >> PAGE_SHIFT;
631 	memslot = gfn_to_memslot(kvm, gfn);
632 
633 	/* No memslot means it's an emulated MMIO region */
634 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
635 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
636 					      dsisr & DSISR_ISSTORE);
637 
638 	if (!kvm->arch.using_mmu_notifiers)
639 		return -EFAULT;		/* should never get here */
640 
641 	/*
642 	 * This should never happen, because of the slot_is_aligned()
643 	 * check in kvmppc_do_h_enter().
644 	 */
645 	if (gfn_base < memslot->base_gfn)
646 		return -EFAULT;
647 
648 	/* used to check for invalidations in progress */
649 	mmu_seq = kvm->mmu_notifier_seq;
650 	smp_rmb();
651 
652 	is_io = 0;
653 	pfn = 0;
654 	page = NULL;
655 	pte_size = PAGE_SIZE;
656 	writing = (dsisr & DSISR_ISSTORE) != 0;
657 	/* If writing != 0, then the HPTE must allow writing, if we get here */
658 	write_ok = writing;
659 	hva = gfn_to_hva_memslot(memslot, gfn);
660 	npages = get_user_pages_fast(hva, 1, writing, pages);
661 	if (npages < 1) {
662 		/* Check if it's an I/O mapping */
663 		down_read(&current->mm->mmap_sem);
664 		vma = find_vma(current->mm, hva);
665 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
666 		    (vma->vm_flags & VM_PFNMAP)) {
667 			pfn = vma->vm_pgoff +
668 				((hva - vma->vm_start) >> PAGE_SHIFT);
669 			pte_size = psize;
670 			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
671 			write_ok = vma->vm_flags & VM_WRITE;
672 		}
673 		up_read(&current->mm->mmap_sem);
674 		if (!pfn)
675 			return -EFAULT;
676 	} else {
677 		page = pages[0];
678 		pfn = page_to_pfn(page);
679 		if (PageHuge(page)) {
680 			page = compound_head(page);
681 			pte_size <<= compound_order(page);
682 		}
683 		/* if the guest wants write access, see if that is OK */
684 		if (!writing && hpte_is_writable(r)) {
685 			unsigned int hugepage_shift;
686 			pte_t *ptep, pte;
687 
688 			/*
689 			 * We need to protect against page table destruction
690 			 * while looking up and updating the pte.
691 			 */
692 			rcu_read_lock_sched();
693 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
694 							 hva, &hugepage_shift);
695 			if (ptep) {
696 				pte = kvmppc_read_update_linux_pte(ptep, 1,
697 							   hugepage_shift);
698 				if (pte_write(pte))
699 					write_ok = 1;
700 			}
701 			rcu_read_unlock_sched();
702 		}
703 	}
704 
705 	ret = -EFAULT;
706 	if (psize > pte_size)
707 		goto out_put;
708 
709 	/* Check WIMG vs. the actual page we're accessing */
710 	if (!hpte_cache_flags_ok(r, is_io)) {
711 		if (is_io)
712 			return -EFAULT;
713 		/*
714 		 * Allow guest to map emulated device memory as
715 		 * uncacheable, but actually make it cacheable.
716 		 */
717 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
718 	}
719 
720 	/*
721 	 * Set the HPTE to point to pfn.
722 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
723 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
724 	 */
725 	if (psize < PAGE_SIZE)
726 		psize = PAGE_SIZE;
727 	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
728 	if (hpte_is_writable(r) && !write_ok)
729 		r = hpte_make_readonly(r);
730 	ret = RESUME_GUEST;
731 	preempt_disable();
732 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
733 		cpu_relax();
734 	if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
735 	    rev->guest_rpte != hpte[2])
736 		/* HPTE has been changed under us; let the guest retry */
737 		goto out_unlock;
738 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
739 
740 	/* Always put the HPTE in the rmap chain for the page base address */
741 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
742 	lock_rmap(rmap);
743 
744 	/* Check if we might have been invalidated; let the guest retry if so */
745 	ret = RESUME_GUEST;
746 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
747 		unlock_rmap(rmap);
748 		goto out_unlock;
749 	}
750 
751 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
752 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
753 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
754 
755 	if (hptep[0] & HPTE_V_VALID) {
756 		/* HPTE was previously valid, so we need to invalidate it */
757 		unlock_rmap(rmap);
758 		hptep[0] |= HPTE_V_ABSENT;
759 		kvmppc_invalidate_hpte(kvm, hptep, index);
760 		/* don't lose previous R and C bits */
761 		r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
762 	} else {
763 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
764 	}
765 
766 	hptep[1] = r;
767 	eieio();
768 	hptep[0] = hpte[0];
769 	asm volatile("ptesync" : : : "memory");
770 	preempt_enable();
771 	if (page && hpte_is_writable(r))
772 		SetPageDirty(page);
773 
774  out_put:
775 	if (page) {
776 		/*
777 		 * We drop pages[0] here, not page because page might
778 		 * have been set to the head page of a compound, but
779 		 * we have to drop the reference on the correct tail
780 		 * page to match the get inside gup()
781 		 */
782 		put_page(pages[0]);
783 	}
784 	return ret;
785 
786  out_unlock:
787 	hptep[0] &= ~HPTE_V_HVLOCK;
788 	preempt_enable();
789 	goto out_put;
790 }
791 
792 static void kvmppc_rmap_reset(struct kvm *kvm)
793 {
794 	struct kvm_memslots *slots;
795 	struct kvm_memory_slot *memslot;
796 	int srcu_idx;
797 
798 	srcu_idx = srcu_read_lock(&kvm->srcu);
799 	slots = kvm->memslots;
800 	kvm_for_each_memslot(memslot, slots) {
801 		/*
802 		 * This assumes it is acceptable to lose reference and
803 		 * change bits across a reset.
804 		 */
805 		memset(memslot->arch.rmap, 0,
806 		       memslot->npages * sizeof(*memslot->arch.rmap));
807 	}
808 	srcu_read_unlock(&kvm->srcu, srcu_idx);
809 }
810 
811 static int kvm_handle_hva_range(struct kvm *kvm,
812 				unsigned long start,
813 				unsigned long end,
814 				int (*handler)(struct kvm *kvm,
815 					       unsigned long *rmapp,
816 					       unsigned long gfn))
817 {
818 	int ret;
819 	int retval = 0;
820 	struct kvm_memslots *slots;
821 	struct kvm_memory_slot *memslot;
822 
823 	slots = kvm_memslots(kvm);
824 	kvm_for_each_memslot(memslot, slots) {
825 		unsigned long hva_start, hva_end;
826 		gfn_t gfn, gfn_end;
827 
828 		hva_start = max(start, memslot->userspace_addr);
829 		hva_end = min(end, memslot->userspace_addr +
830 					(memslot->npages << PAGE_SHIFT));
831 		if (hva_start >= hva_end)
832 			continue;
833 		/*
834 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
835 		 * {gfn, gfn+1, ..., gfn_end-1}.
836 		 */
837 		gfn = hva_to_gfn_memslot(hva_start, memslot);
838 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
839 
840 		for (; gfn < gfn_end; ++gfn) {
841 			gfn_t gfn_offset = gfn - memslot->base_gfn;
842 
843 			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
844 			retval |= ret;
845 		}
846 	}
847 
848 	return retval;
849 }
850 
851 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
852 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
853 					 unsigned long gfn))
854 {
855 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
856 }
857 
858 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
859 			   unsigned long gfn)
860 {
861 	struct revmap_entry *rev = kvm->arch.revmap;
862 	unsigned long h, i, j;
863 	unsigned long *hptep;
864 	unsigned long ptel, psize, rcbits;
865 
866 	for (;;) {
867 		lock_rmap(rmapp);
868 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
869 			unlock_rmap(rmapp);
870 			break;
871 		}
872 
873 		/*
874 		 * To avoid an ABBA deadlock with the HPTE lock bit,
875 		 * we can't spin on the HPTE lock while holding the
876 		 * rmap chain lock.
877 		 */
878 		i = *rmapp & KVMPPC_RMAP_INDEX;
879 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
880 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
881 			/* unlock rmap before spinning on the HPTE lock */
882 			unlock_rmap(rmapp);
883 			while (hptep[0] & HPTE_V_HVLOCK)
884 				cpu_relax();
885 			continue;
886 		}
887 		j = rev[i].forw;
888 		if (j == i) {
889 			/* chain is now empty */
890 			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
891 		} else {
892 			/* remove i from chain */
893 			h = rev[i].back;
894 			rev[h].forw = j;
895 			rev[j].back = h;
896 			rev[i].forw = rev[i].back = i;
897 			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
898 		}
899 
900 		/* Now check and modify the HPTE */
901 		ptel = rev[i].guest_rpte;
902 		psize = hpte_page_size(hptep[0], ptel);
903 		if ((hptep[0] & HPTE_V_VALID) &&
904 		    hpte_rpn(ptel, psize) == gfn) {
905 			if (kvm->arch.using_mmu_notifiers)
906 				hptep[0] |= HPTE_V_ABSENT;
907 			kvmppc_invalidate_hpte(kvm, hptep, i);
908 			/* Harvest R and C */
909 			rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
910 			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
911 			if (rcbits & ~rev[i].guest_rpte) {
912 				rev[i].guest_rpte = ptel | rcbits;
913 				note_hpte_modification(kvm, &rev[i]);
914 			}
915 		}
916 		unlock_rmap(rmapp);
917 		hptep[0] &= ~HPTE_V_HVLOCK;
918 	}
919 	return 0;
920 }
921 
922 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
923 {
924 	if (kvm->arch.using_mmu_notifiers)
925 		kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
926 	return 0;
927 }
928 
929 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
930 {
931 	if (kvm->arch.using_mmu_notifiers)
932 		kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
933 	return 0;
934 }
935 
936 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
937 				  struct kvm_memory_slot *memslot)
938 {
939 	unsigned long *rmapp;
940 	unsigned long gfn;
941 	unsigned long n;
942 
943 	rmapp = memslot->arch.rmap;
944 	gfn = memslot->base_gfn;
945 	for (n = memslot->npages; n; --n) {
946 		/*
947 		 * Testing the present bit without locking is OK because
948 		 * the memslot has been marked invalid already, and hence
949 		 * no new HPTEs referencing this page can be created,
950 		 * thus the present bit can't go from 0 to 1.
951 		 */
952 		if (*rmapp & KVMPPC_RMAP_PRESENT)
953 			kvm_unmap_rmapp(kvm, rmapp, gfn);
954 		++rmapp;
955 		++gfn;
956 	}
957 }
958 
959 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
960 			 unsigned long gfn)
961 {
962 	struct revmap_entry *rev = kvm->arch.revmap;
963 	unsigned long head, i, j;
964 	unsigned long *hptep;
965 	int ret = 0;
966 
967  retry:
968 	lock_rmap(rmapp);
969 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
970 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
971 		ret = 1;
972 	}
973 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
974 		unlock_rmap(rmapp);
975 		return ret;
976 	}
977 
978 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
979 	do {
980 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
981 		j = rev[i].forw;
982 
983 		/* If this HPTE isn't referenced, ignore it */
984 		if (!(hptep[1] & HPTE_R_R))
985 			continue;
986 
987 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
988 			/* unlock rmap before spinning on the HPTE lock */
989 			unlock_rmap(rmapp);
990 			while (hptep[0] & HPTE_V_HVLOCK)
991 				cpu_relax();
992 			goto retry;
993 		}
994 
995 		/* Now check and modify the HPTE */
996 		if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
997 			kvmppc_clear_ref_hpte(kvm, hptep, i);
998 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
999 				rev[i].guest_rpte |= HPTE_R_R;
1000 				note_hpte_modification(kvm, &rev[i]);
1001 			}
1002 			ret = 1;
1003 		}
1004 		hptep[0] &= ~HPTE_V_HVLOCK;
1005 	} while ((i = j) != head);
1006 
1007 	unlock_rmap(rmapp);
1008 	return ret;
1009 }
1010 
1011 int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
1012 {
1013 	if (!kvm->arch.using_mmu_notifiers)
1014 		return 0;
1015 	return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1016 }
1017 
1018 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1019 			      unsigned long gfn)
1020 {
1021 	struct revmap_entry *rev = kvm->arch.revmap;
1022 	unsigned long head, i, j;
1023 	unsigned long *hp;
1024 	int ret = 1;
1025 
1026 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1027 		return 1;
1028 
1029 	lock_rmap(rmapp);
1030 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1031 		goto out;
1032 
1033 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
1034 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
1035 		do {
1036 			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1037 			j = rev[i].forw;
1038 			if (hp[1] & HPTE_R_R)
1039 				goto out;
1040 		} while ((i = j) != head);
1041 	}
1042 	ret = 0;
1043 
1044  out:
1045 	unlock_rmap(rmapp);
1046 	return ret;
1047 }
1048 
1049 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1050 {
1051 	if (!kvm->arch.using_mmu_notifiers)
1052 		return 0;
1053 	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1054 }
1055 
1056 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1057 {
1058 	if (!kvm->arch.using_mmu_notifiers)
1059 		return;
1060 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1061 }
1062 
1063 static int vcpus_running(struct kvm *kvm)
1064 {
1065 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1066 }
1067 
1068 /*
1069  * Returns the number of system pages that are dirty.
1070  * This can be more than 1 if we find a huge-page HPTE.
1071  */
1072 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1073 {
1074 	struct revmap_entry *rev = kvm->arch.revmap;
1075 	unsigned long head, i, j;
1076 	unsigned long n;
1077 	unsigned long v, r;
1078 	unsigned long *hptep;
1079 	int npages_dirty = 0;
1080 
1081  retry:
1082 	lock_rmap(rmapp);
1083 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
1084 		*rmapp &= ~KVMPPC_RMAP_CHANGED;
1085 		npages_dirty = 1;
1086 	}
1087 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1088 		unlock_rmap(rmapp);
1089 		return npages_dirty;
1090 	}
1091 
1092 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1093 	do {
1094 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1095 		j = rev[i].forw;
1096 
1097 		/*
1098 		 * Checking the C (changed) bit here is racy since there
1099 		 * is no guarantee about when the hardware writes it back.
1100 		 * If the HPTE is not writable then it is stable since the
1101 		 * page can't be written to, and we would have done a tlbie
1102 		 * (which forces the hardware to complete any writeback)
1103 		 * when making the HPTE read-only.
1104 		 * If vcpus are running then this call is racy anyway
1105 		 * since the page could get dirtied subsequently, so we
1106 		 * expect there to be a further call which would pick up
1107 		 * any delayed C bit writeback.
1108 		 * Otherwise we need to do the tlbie even if C==0 in
1109 		 * order to pick up any delayed writeback of C.
1110 		 */
1111 		if (!(hptep[1] & HPTE_R_C) &&
1112 		    (!hpte_is_writable(hptep[1]) || vcpus_running(kvm)))
1113 			continue;
1114 
1115 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1116 			/* unlock rmap before spinning on the HPTE lock */
1117 			unlock_rmap(rmapp);
1118 			while (hptep[0] & HPTE_V_HVLOCK)
1119 				cpu_relax();
1120 			goto retry;
1121 		}
1122 
1123 		/* Now check and modify the HPTE */
1124 		if (!(hptep[0] & HPTE_V_VALID))
1125 			continue;
1126 
1127 		/* need to make it temporarily absent so C is stable */
1128 		hptep[0] |= HPTE_V_ABSENT;
1129 		kvmppc_invalidate_hpte(kvm, hptep, i);
1130 		v = hptep[0];
1131 		r = hptep[1];
1132 		if (r & HPTE_R_C) {
1133 			hptep[1] = r & ~HPTE_R_C;
1134 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1135 				rev[i].guest_rpte |= HPTE_R_C;
1136 				note_hpte_modification(kvm, &rev[i]);
1137 			}
1138 			n = hpte_page_size(v, r);
1139 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1140 			if (n > npages_dirty)
1141 				npages_dirty = n;
1142 			eieio();
1143 		}
1144 		v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1145 		v |= HPTE_V_VALID;
1146 		hptep[0] = v;
1147 	} while ((i = j) != head);
1148 
1149 	unlock_rmap(rmapp);
1150 	return npages_dirty;
1151 }
1152 
1153 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1154 			      struct kvm_memory_slot *memslot,
1155 			      unsigned long *map)
1156 {
1157 	unsigned long gfn;
1158 
1159 	if (!vpa->dirty || !vpa->pinned_addr)
1160 		return;
1161 	gfn = vpa->gpa >> PAGE_SHIFT;
1162 	if (gfn < memslot->base_gfn ||
1163 	    gfn >= memslot->base_gfn + memslot->npages)
1164 		return;
1165 
1166 	vpa->dirty = false;
1167 	if (map)
1168 		__set_bit_le(gfn - memslot->base_gfn, map);
1169 }
1170 
1171 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1172 			     unsigned long *map)
1173 {
1174 	unsigned long i, j;
1175 	unsigned long *rmapp;
1176 	struct kvm_vcpu *vcpu;
1177 
1178 	preempt_disable();
1179 	rmapp = memslot->arch.rmap;
1180 	for (i = 0; i < memslot->npages; ++i) {
1181 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1182 		/*
1183 		 * Note that if npages > 0 then i must be a multiple of npages,
1184 		 * since we always put huge-page HPTEs in the rmap chain
1185 		 * corresponding to their page base address.
1186 		 */
1187 		if (npages && map)
1188 			for (j = i; npages; ++j, --npages)
1189 				__set_bit_le(j, map);
1190 		++rmapp;
1191 	}
1192 
1193 	/* Harvest dirty bits from VPA and DTL updates */
1194 	/* Note: we never modify the SLB shadow buffer areas */
1195 	kvm_for_each_vcpu(i, vcpu, kvm) {
1196 		spin_lock(&vcpu->arch.vpa_update_lock);
1197 		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1198 		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1199 		spin_unlock(&vcpu->arch.vpa_update_lock);
1200 	}
1201 	preempt_enable();
1202 	return 0;
1203 }
1204 
1205 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1206 			    unsigned long *nb_ret)
1207 {
1208 	struct kvm_memory_slot *memslot;
1209 	unsigned long gfn = gpa >> PAGE_SHIFT;
1210 	struct page *page, *pages[1];
1211 	int npages;
1212 	unsigned long hva, offset;
1213 	unsigned long pa;
1214 	unsigned long *physp;
1215 	int srcu_idx;
1216 
1217 	srcu_idx = srcu_read_lock(&kvm->srcu);
1218 	memslot = gfn_to_memslot(kvm, gfn);
1219 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1220 		goto err;
1221 	if (!kvm->arch.using_mmu_notifiers) {
1222 		physp = memslot->arch.slot_phys;
1223 		if (!physp)
1224 			goto err;
1225 		physp += gfn - memslot->base_gfn;
1226 		pa = *physp;
1227 		if (!pa) {
1228 			if (kvmppc_get_guest_page(kvm, gfn, memslot,
1229 						  PAGE_SIZE) < 0)
1230 				goto err;
1231 			pa = *physp;
1232 		}
1233 		page = pfn_to_page(pa >> PAGE_SHIFT);
1234 		get_page(page);
1235 	} else {
1236 		hva = gfn_to_hva_memslot(memslot, gfn);
1237 		npages = get_user_pages_fast(hva, 1, 1, pages);
1238 		if (npages < 1)
1239 			goto err;
1240 		page = pages[0];
1241 	}
1242 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1243 
1244 	offset = gpa & (PAGE_SIZE - 1);
1245 	if (nb_ret)
1246 		*nb_ret = PAGE_SIZE - offset;
1247 	return page_address(page) + offset;
1248 
1249  err:
1250 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1251 	return NULL;
1252 }
1253 
1254 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1255 			     bool dirty)
1256 {
1257 	struct page *page = virt_to_page(va);
1258 	struct kvm_memory_slot *memslot;
1259 	unsigned long gfn;
1260 	unsigned long *rmap;
1261 	int srcu_idx;
1262 
1263 	put_page(page);
1264 
1265 	if (!dirty || !kvm->arch.using_mmu_notifiers)
1266 		return;
1267 
1268 	/* We need to mark this page dirty in the rmap chain */
1269 	gfn = gpa >> PAGE_SHIFT;
1270 	srcu_idx = srcu_read_lock(&kvm->srcu);
1271 	memslot = gfn_to_memslot(kvm, gfn);
1272 	if (memslot) {
1273 		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1274 		lock_rmap(rmap);
1275 		*rmap |= KVMPPC_RMAP_CHANGED;
1276 		unlock_rmap(rmap);
1277 	}
1278 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1279 }
1280 
1281 /*
1282  * Functions for reading and writing the hash table via reads and
1283  * writes on a file descriptor.
1284  *
1285  * Reads return the guest view of the hash table, which has to be
1286  * pieced together from the real hash table and the guest_rpte
1287  * values in the revmap array.
1288  *
1289  * On writes, each HPTE written is considered in turn, and if it
1290  * is valid, it is written to the HPT as if an H_ENTER with the
1291  * exact flag set was done.  When the invalid count is non-zero
1292  * in the header written to the stream, the kernel will make
1293  * sure that that many HPTEs are invalid, and invalidate them
1294  * if not.
1295  */
1296 
1297 struct kvm_htab_ctx {
1298 	unsigned long	index;
1299 	unsigned long	flags;
1300 	struct kvm	*kvm;
1301 	int		first_pass;
1302 };
1303 
1304 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1305 
1306 /*
1307  * Returns 1 if this HPT entry has been modified or has pending
1308  * R/C bit changes.
1309  */
1310 static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1311 {
1312 	unsigned long rcbits_unset;
1313 
1314 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1315 		return 1;
1316 
1317 	/* Also need to consider changes in reference and changed bits */
1318 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1319 	if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1320 		return 1;
1321 
1322 	return 0;
1323 }
1324 
1325 static long record_hpte(unsigned long flags, unsigned long *hptp,
1326 			unsigned long *hpte, struct revmap_entry *revp,
1327 			int want_valid, int first_pass)
1328 {
1329 	unsigned long v, r;
1330 	unsigned long rcbits_unset;
1331 	int ok = 1;
1332 	int valid, dirty;
1333 
1334 	/* Unmodified entries are uninteresting except on the first pass */
1335 	dirty = hpte_dirty(revp, hptp);
1336 	if (!first_pass && !dirty)
1337 		return 0;
1338 
1339 	valid = 0;
1340 	if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1341 		valid = 1;
1342 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1343 		    !(hptp[0] & HPTE_V_BOLTED))
1344 			valid = 0;
1345 	}
1346 	if (valid != want_valid)
1347 		return 0;
1348 
1349 	v = r = 0;
1350 	if (valid || dirty) {
1351 		/* lock the HPTE so it's stable and read it */
1352 		preempt_disable();
1353 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1354 			cpu_relax();
1355 		v = hptp[0];
1356 
1357 		/* re-evaluate valid and dirty from synchronized HPTE value */
1358 		valid = !!(v & HPTE_V_VALID);
1359 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1360 
1361 		/* Harvest R and C into guest view if necessary */
1362 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1363 		if (valid && (rcbits_unset & hptp[1])) {
1364 			revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1365 				HPTE_GR_MODIFIED;
1366 			dirty = 1;
1367 		}
1368 
1369 		if (v & HPTE_V_ABSENT) {
1370 			v &= ~HPTE_V_ABSENT;
1371 			v |= HPTE_V_VALID;
1372 			valid = 1;
1373 		}
1374 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1375 			valid = 0;
1376 
1377 		r = revp->guest_rpte;
1378 		/* only clear modified if this is the right sort of entry */
1379 		if (valid == want_valid && dirty) {
1380 			r &= ~HPTE_GR_MODIFIED;
1381 			revp->guest_rpte = r;
1382 		}
1383 		asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1384 		hptp[0] &= ~HPTE_V_HVLOCK;
1385 		preempt_enable();
1386 		if (!(valid == want_valid && (first_pass || dirty)))
1387 			ok = 0;
1388 	}
1389 	hpte[0] = v;
1390 	hpte[1] = r;
1391 	return ok;
1392 }
1393 
1394 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1395 			     size_t count, loff_t *ppos)
1396 {
1397 	struct kvm_htab_ctx *ctx = file->private_data;
1398 	struct kvm *kvm = ctx->kvm;
1399 	struct kvm_get_htab_header hdr;
1400 	unsigned long *hptp;
1401 	struct revmap_entry *revp;
1402 	unsigned long i, nb, nw;
1403 	unsigned long __user *lbuf;
1404 	struct kvm_get_htab_header __user *hptr;
1405 	unsigned long flags;
1406 	int first_pass;
1407 	unsigned long hpte[2];
1408 
1409 	if (!access_ok(VERIFY_WRITE, buf, count))
1410 		return -EFAULT;
1411 
1412 	first_pass = ctx->first_pass;
1413 	flags = ctx->flags;
1414 
1415 	i = ctx->index;
1416 	hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1417 	revp = kvm->arch.revmap + i;
1418 	lbuf = (unsigned long __user *)buf;
1419 
1420 	nb = 0;
1421 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1422 		/* Initialize header */
1423 		hptr = (struct kvm_get_htab_header __user *)buf;
1424 		hdr.n_valid = 0;
1425 		hdr.n_invalid = 0;
1426 		nw = nb;
1427 		nb += sizeof(hdr);
1428 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1429 
1430 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1431 		if (!first_pass) {
1432 			while (i < kvm->arch.hpt_npte &&
1433 			       !hpte_dirty(revp, hptp)) {
1434 				++i;
1435 				hptp += 2;
1436 				++revp;
1437 			}
1438 		}
1439 		hdr.index = i;
1440 
1441 		/* Grab a series of valid entries */
1442 		while (i < kvm->arch.hpt_npte &&
1443 		       hdr.n_valid < 0xffff &&
1444 		       nb + HPTE_SIZE < count &&
1445 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1446 			/* valid entry, write it out */
1447 			++hdr.n_valid;
1448 			if (__put_user(hpte[0], lbuf) ||
1449 			    __put_user(hpte[1], lbuf + 1))
1450 				return -EFAULT;
1451 			nb += HPTE_SIZE;
1452 			lbuf += 2;
1453 			++i;
1454 			hptp += 2;
1455 			++revp;
1456 		}
1457 		/* Now skip invalid entries while we can */
1458 		while (i < kvm->arch.hpt_npte &&
1459 		       hdr.n_invalid < 0xffff &&
1460 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1461 			/* found an invalid entry */
1462 			++hdr.n_invalid;
1463 			++i;
1464 			hptp += 2;
1465 			++revp;
1466 		}
1467 
1468 		if (hdr.n_valid || hdr.n_invalid) {
1469 			/* write back the header */
1470 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1471 				return -EFAULT;
1472 			nw = nb;
1473 			buf = (char __user *)lbuf;
1474 		} else {
1475 			nb = nw;
1476 		}
1477 
1478 		/* Check if we've wrapped around the hash table */
1479 		if (i >= kvm->arch.hpt_npte) {
1480 			i = 0;
1481 			ctx->first_pass = 0;
1482 			break;
1483 		}
1484 	}
1485 
1486 	ctx->index = i;
1487 
1488 	return nb;
1489 }
1490 
1491 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1492 			      size_t count, loff_t *ppos)
1493 {
1494 	struct kvm_htab_ctx *ctx = file->private_data;
1495 	struct kvm *kvm = ctx->kvm;
1496 	struct kvm_get_htab_header hdr;
1497 	unsigned long i, j;
1498 	unsigned long v, r;
1499 	unsigned long __user *lbuf;
1500 	unsigned long *hptp;
1501 	unsigned long tmp[2];
1502 	ssize_t nb;
1503 	long int err, ret;
1504 	int rma_setup;
1505 
1506 	if (!access_ok(VERIFY_READ, buf, count))
1507 		return -EFAULT;
1508 
1509 	/* lock out vcpus from running while we're doing this */
1510 	mutex_lock(&kvm->lock);
1511 	rma_setup = kvm->arch.rma_setup_done;
1512 	if (rma_setup) {
1513 		kvm->arch.rma_setup_done = 0;	/* temporarily */
1514 		/* order rma_setup_done vs. vcpus_running */
1515 		smp_mb();
1516 		if (atomic_read(&kvm->arch.vcpus_running)) {
1517 			kvm->arch.rma_setup_done = 1;
1518 			mutex_unlock(&kvm->lock);
1519 			return -EBUSY;
1520 		}
1521 	}
1522 
1523 	err = 0;
1524 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1525 		err = -EFAULT;
1526 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1527 			break;
1528 
1529 		err = 0;
1530 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1531 			break;
1532 
1533 		nb += sizeof(hdr);
1534 		buf += sizeof(hdr);
1535 
1536 		err = -EINVAL;
1537 		i = hdr.index;
1538 		if (i >= kvm->arch.hpt_npte ||
1539 		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1540 			break;
1541 
1542 		hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1543 		lbuf = (unsigned long __user *)buf;
1544 		for (j = 0; j < hdr.n_valid; ++j) {
1545 			err = -EFAULT;
1546 			if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1547 				goto out;
1548 			err = -EINVAL;
1549 			if (!(v & HPTE_V_VALID))
1550 				goto out;
1551 			lbuf += 2;
1552 			nb += HPTE_SIZE;
1553 
1554 			if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1555 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1556 			err = -EIO;
1557 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1558 							 tmp);
1559 			if (ret != H_SUCCESS) {
1560 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1561 				       "r=%lx\n", ret, i, v, r);
1562 				goto out;
1563 			}
1564 			if (!rma_setup && is_vrma_hpte(v)) {
1565 				unsigned long psize = hpte_page_size(v, r);
1566 				unsigned long senc = slb_pgsize_encoding(psize);
1567 				unsigned long lpcr;
1568 
1569 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1570 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1571 				lpcr = senc << (LPCR_VRMASD_SH - 4);
1572 				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1573 				rma_setup = 1;
1574 			}
1575 			++i;
1576 			hptp += 2;
1577 		}
1578 
1579 		for (j = 0; j < hdr.n_invalid; ++j) {
1580 			if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1581 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1582 			++i;
1583 			hptp += 2;
1584 		}
1585 		err = 0;
1586 	}
1587 
1588  out:
1589 	/* Order HPTE updates vs. rma_setup_done */
1590 	smp_wmb();
1591 	kvm->arch.rma_setup_done = rma_setup;
1592 	mutex_unlock(&kvm->lock);
1593 
1594 	if (err)
1595 		return err;
1596 	return nb;
1597 }
1598 
1599 static int kvm_htab_release(struct inode *inode, struct file *filp)
1600 {
1601 	struct kvm_htab_ctx *ctx = filp->private_data;
1602 
1603 	filp->private_data = NULL;
1604 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1605 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1606 	kvm_put_kvm(ctx->kvm);
1607 	kfree(ctx);
1608 	return 0;
1609 }
1610 
1611 static const struct file_operations kvm_htab_fops = {
1612 	.read		= kvm_htab_read,
1613 	.write		= kvm_htab_write,
1614 	.llseek		= default_llseek,
1615 	.release	= kvm_htab_release,
1616 };
1617 
1618 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1619 {
1620 	int ret;
1621 	struct kvm_htab_ctx *ctx;
1622 	int rwflag;
1623 
1624 	/* reject flags we don't recognize */
1625 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1626 		return -EINVAL;
1627 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1628 	if (!ctx)
1629 		return -ENOMEM;
1630 	kvm_get_kvm(kvm);
1631 	ctx->kvm = kvm;
1632 	ctx->index = ghf->start_index;
1633 	ctx->flags = ghf->flags;
1634 	ctx->first_pass = 1;
1635 
1636 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1637 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1638 	if (ret < 0) {
1639 		kvm_put_kvm(kvm);
1640 		return ret;
1641 	}
1642 
1643 	if (rwflag == O_RDONLY) {
1644 		mutex_lock(&kvm->slots_lock);
1645 		atomic_inc(&kvm->arch.hpte_mod_interest);
1646 		/* make sure kvmppc_do_h_enter etc. see the increment */
1647 		synchronize_srcu_expedited(&kvm->srcu);
1648 		mutex_unlock(&kvm->slots_lock);
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1655 {
1656 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1657 
1658 	if (cpu_has_feature(CPU_FTR_ARCH_206))
1659 		vcpu->arch.slb_nr = 32;		/* POWER7 */
1660 	else
1661 		vcpu->arch.slb_nr = 64;
1662 
1663 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1664 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1665 
1666 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1667 }
1668