1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31 
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/book3s/64/mmu-hash.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 #include <asm/pte-walk.h>
40 
41 #include "trace_hv.h"
42 
43 //#define DEBUG_RESIZE_HPT	1
44 
45 #ifdef DEBUG_RESIZE_HPT
46 #define resize_hpt_debug(resize, ...)				\
47 	do {							\
48 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
49 		printk(__VA_ARGS__);				\
50 	} while (0)
51 #else
52 #define resize_hpt_debug(resize, ...)				\
53 	do { } while (0)
54 #endif
55 
56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57 				long pte_index, unsigned long pteh,
58 				unsigned long ptel, unsigned long *pte_idx_ret);
59 
60 struct kvm_resize_hpt {
61 	/* These fields read-only after init */
62 	struct kvm *kvm;
63 	struct work_struct work;
64 	u32 order;
65 
66 	/* These fields protected by kvm->lock */
67 
68 	/* Possible values and their usage:
69 	 *  <0     an error occurred during allocation,
70 	 *  -EBUSY allocation is in the progress,
71 	 *  0      allocation made successfuly.
72 	 */
73 	int error;
74 
75 	/* Private to the work thread, until error != -EBUSY,
76 	 * then protected by kvm->lock.
77 	 */
78 	struct kvm_hpt_info hpt;
79 };
80 
81 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
82 {
83 	unsigned long hpt = 0;
84 	int cma = 0;
85 	struct page *page = NULL;
86 	struct revmap_entry *rev;
87 	unsigned long npte;
88 
89 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
90 		return -EINVAL;
91 
92 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
93 	if (page) {
94 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
95 		memset((void *)hpt, 0, (1ul << order));
96 		cma = 1;
97 	}
98 
99 	if (!hpt)
100 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
101 				       |__GFP_NOWARN, order - PAGE_SHIFT);
102 
103 	if (!hpt)
104 		return -ENOMEM;
105 
106 	/* HPTEs are 2**4 bytes long */
107 	npte = 1ul << (order - 4);
108 
109 	/* Allocate reverse map array */
110 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
111 	if (!rev) {
112 		if (cma)
113 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
114 		else
115 			free_pages(hpt, order - PAGE_SHIFT);
116 		return -ENOMEM;
117 	}
118 
119 	info->order = order;
120 	info->virt = hpt;
121 	info->cma = cma;
122 	info->rev = rev;
123 
124 	return 0;
125 }
126 
127 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
128 {
129 	atomic64_set(&kvm->arch.mmio_update, 0);
130 	kvm->arch.hpt = *info;
131 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
132 
133 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
134 		 info->virt, (long)info->order, kvm->arch.lpid);
135 }
136 
137 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
138 {
139 	long err = -EBUSY;
140 	struct kvm_hpt_info info;
141 
142 	mutex_lock(&kvm->lock);
143 	if (kvm->arch.mmu_ready) {
144 		kvm->arch.mmu_ready = 0;
145 		/* order mmu_ready vs. vcpus_running */
146 		smp_mb();
147 		if (atomic_read(&kvm->arch.vcpus_running)) {
148 			kvm->arch.mmu_ready = 1;
149 			goto out;
150 		}
151 	}
152 	if (kvm_is_radix(kvm)) {
153 		err = kvmppc_switch_mmu_to_hpt(kvm);
154 		if (err)
155 			goto out;
156 	}
157 
158 	if (kvm->arch.hpt.order == order) {
159 		/* We already have a suitable HPT */
160 
161 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
162 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
163 		/*
164 		 * Reset all the reverse-mapping chains for all memslots
165 		 */
166 		kvmppc_rmap_reset(kvm);
167 		err = 0;
168 		goto out;
169 	}
170 
171 	if (kvm->arch.hpt.virt) {
172 		kvmppc_free_hpt(&kvm->arch.hpt);
173 		kvmppc_rmap_reset(kvm);
174 	}
175 
176 	err = kvmppc_allocate_hpt(&info, order);
177 	if (err < 0)
178 		goto out;
179 	kvmppc_set_hpt(kvm, &info);
180 
181 out:
182 	if (err == 0)
183 		/* Ensure that each vcpu will flush its TLB on next entry. */
184 		cpumask_setall(&kvm->arch.need_tlb_flush);
185 
186 	mutex_unlock(&kvm->lock);
187 	return err;
188 }
189 
190 void kvmppc_free_hpt(struct kvm_hpt_info *info)
191 {
192 	vfree(info->rev);
193 	info->rev = NULL;
194 	if (info->cma)
195 		kvm_free_hpt_cma(virt_to_page(info->virt),
196 				 1 << (info->order - PAGE_SHIFT));
197 	else if (info->virt)
198 		free_pages(info->virt, info->order - PAGE_SHIFT);
199 	info->virt = 0;
200 	info->order = 0;
201 }
202 
203 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
204 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
205 {
206 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
207 }
208 
209 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
210 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
211 {
212 	return (pgsize == 0x10000) ? 0x1000 : 0;
213 }
214 
215 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
216 		     unsigned long porder)
217 {
218 	unsigned long i;
219 	unsigned long npages;
220 	unsigned long hp_v, hp_r;
221 	unsigned long addr, hash;
222 	unsigned long psize;
223 	unsigned long hp0, hp1;
224 	unsigned long idx_ret;
225 	long ret;
226 	struct kvm *kvm = vcpu->kvm;
227 
228 	psize = 1ul << porder;
229 	npages = memslot->npages >> (porder - PAGE_SHIFT);
230 
231 	/* VRMA can't be > 1TB */
232 	if (npages > 1ul << (40 - porder))
233 		npages = 1ul << (40 - porder);
234 	/* Can't use more than 1 HPTE per HPTEG */
235 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
236 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
237 
238 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
239 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
240 	hp1 = hpte1_pgsize_encoding(psize) |
241 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
242 
243 	for (i = 0; i < npages; ++i) {
244 		addr = i << porder;
245 		/* can't use hpt_hash since va > 64 bits */
246 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
247 			& kvmppc_hpt_mask(&kvm->arch.hpt);
248 		/*
249 		 * We assume that the hash table is empty and no
250 		 * vcpus are using it at this stage.  Since we create
251 		 * at most one HPTE per HPTEG, we just assume entry 7
252 		 * is available and use it.
253 		 */
254 		hash = (hash << 3) + 7;
255 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
256 		hp_r = hp1 | addr;
257 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
258 						 &idx_ret);
259 		if (ret != H_SUCCESS) {
260 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
261 			       addr, ret);
262 			break;
263 		}
264 	}
265 }
266 
267 int kvmppc_mmu_hv_init(void)
268 {
269 	unsigned long host_lpid, rsvd_lpid;
270 
271 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
272 		return -EINVAL;
273 
274 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
275 	host_lpid = 0;
276 	if (cpu_has_feature(CPU_FTR_HVMODE))
277 		host_lpid = mfspr(SPRN_LPID);
278 	rsvd_lpid = LPID_RSVD;
279 
280 	kvmppc_init_lpid(rsvd_lpid + 1);
281 
282 	kvmppc_claim_lpid(host_lpid);
283 	/* rsvd_lpid is reserved for use in partition switching */
284 	kvmppc_claim_lpid(rsvd_lpid);
285 
286 	return 0;
287 }
288 
289 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
290 {
291 	unsigned long msr = vcpu->arch.intr_msr;
292 
293 	/* If transactional, change to suspend mode on IRQ delivery */
294 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
295 		msr |= MSR_TS_S;
296 	else
297 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
298 	kvmppc_set_msr(vcpu, msr);
299 }
300 
301 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
302 				long pte_index, unsigned long pteh,
303 				unsigned long ptel, unsigned long *pte_idx_ret)
304 {
305 	long ret;
306 
307 	/* Protect linux PTE lookup from page table destruction */
308 	rcu_read_lock_sched();	/* this disables preemption too */
309 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
310 				current->mm->pgd, false, pte_idx_ret);
311 	rcu_read_unlock_sched();
312 	if (ret == H_TOO_HARD) {
313 		/* this can't happen */
314 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
315 		ret = H_RESOURCE;	/* or something */
316 	}
317 	return ret;
318 
319 }
320 
321 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
322 							 gva_t eaddr)
323 {
324 	u64 mask;
325 	int i;
326 
327 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
328 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
329 			continue;
330 
331 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
332 			mask = ESID_MASK_1T;
333 		else
334 			mask = ESID_MASK;
335 
336 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
337 			return &vcpu->arch.slb[i];
338 	}
339 	return NULL;
340 }
341 
342 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
343 			unsigned long ea)
344 {
345 	unsigned long ra_mask;
346 
347 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
348 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
349 }
350 
351 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
352 			struct kvmppc_pte *gpte, bool data, bool iswrite)
353 {
354 	struct kvm *kvm = vcpu->kvm;
355 	struct kvmppc_slb *slbe;
356 	unsigned long slb_v;
357 	unsigned long pp, key;
358 	unsigned long v, orig_v, gr;
359 	__be64 *hptep;
360 	long int index;
361 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
362 
363 	if (kvm_is_radix(vcpu->kvm))
364 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
365 
366 	/* Get SLB entry */
367 	if (virtmode) {
368 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
369 		if (!slbe)
370 			return -EINVAL;
371 		slb_v = slbe->origv;
372 	} else {
373 		/* real mode access */
374 		slb_v = vcpu->kvm->arch.vrma_slb_v;
375 	}
376 
377 	preempt_disable();
378 	/* Find the HPTE in the hash table */
379 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
380 					 HPTE_V_VALID | HPTE_V_ABSENT);
381 	if (index < 0) {
382 		preempt_enable();
383 		return -ENOENT;
384 	}
385 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
386 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
387 	if (cpu_has_feature(CPU_FTR_ARCH_300))
388 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
389 	gr = kvm->arch.hpt.rev[index].guest_rpte;
390 
391 	unlock_hpte(hptep, orig_v);
392 	preempt_enable();
393 
394 	gpte->eaddr = eaddr;
395 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
396 
397 	/* Get PP bits and key for permission check */
398 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
399 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
400 	key &= slb_v;
401 
402 	/* Calculate permissions */
403 	gpte->may_read = hpte_read_permission(pp, key);
404 	gpte->may_write = hpte_write_permission(pp, key);
405 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
406 
407 	/* Storage key permission check for POWER7 */
408 	if (data && virtmode) {
409 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
410 		if (amrfield & 1)
411 			gpte->may_read = 0;
412 		if (amrfield & 2)
413 			gpte->may_write = 0;
414 	}
415 
416 	/* Get the guest physical address */
417 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
418 	return 0;
419 }
420 
421 /*
422  * Quick test for whether an instruction is a load or a store.
423  * If the instruction is a load or a store, then this will indicate
424  * which it is, at least on server processors.  (Embedded processors
425  * have some external PID instructions that don't follow the rule
426  * embodied here.)  If the instruction isn't a load or store, then
427  * this doesn't return anything useful.
428  */
429 static int instruction_is_store(unsigned int instr)
430 {
431 	unsigned int mask;
432 
433 	mask = 0x10000000;
434 	if ((instr & 0xfc000000) == 0x7c000000)
435 		mask = 0x100;		/* major opcode 31 */
436 	return (instr & mask) != 0;
437 }
438 
439 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
440 			   unsigned long gpa, gva_t ea, int is_store)
441 {
442 	u32 last_inst;
443 
444 	/*
445 	 * Fast path - check if the guest physical address corresponds to a
446 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
447 	 * instruction all together, then we can just handle it and return.
448 	 */
449 	if (is_store) {
450 		int idx, ret;
451 
452 		idx = srcu_read_lock(&vcpu->kvm->srcu);
453 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
454 				       NULL);
455 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
456 		if (!ret) {
457 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
458 			return RESUME_GUEST;
459 		}
460 	}
461 
462 	/*
463 	 * If we fail, we just return to the guest and try executing it again.
464 	 */
465 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
466 		EMULATE_DONE)
467 		return RESUME_GUEST;
468 
469 	/*
470 	 * WARNING: We do not know for sure whether the instruction we just
471 	 * read from memory is the same that caused the fault in the first
472 	 * place.  If the instruction we read is neither an load or a store,
473 	 * then it can't access memory, so we don't need to worry about
474 	 * enforcing access permissions.  So, assuming it is a load or
475 	 * store, we just check that its direction (load or store) is
476 	 * consistent with the original fault, since that's what we
477 	 * checked the access permissions against.  If there is a mismatch
478 	 * we just return and retry the instruction.
479 	 */
480 
481 	if (instruction_is_store(last_inst) != !!is_store)
482 		return RESUME_GUEST;
483 
484 	/*
485 	 * Emulated accesses are emulated by looking at the hash for
486 	 * translation once, then performing the access later. The
487 	 * translation could be invalidated in the meantime in which
488 	 * point performing the subsequent memory access on the old
489 	 * physical address could possibly be a security hole for the
490 	 * guest (but not the host).
491 	 *
492 	 * This is less of an issue for MMIO stores since they aren't
493 	 * globally visible. It could be an issue for MMIO loads to
494 	 * a certain extent but we'll ignore it for now.
495 	 */
496 
497 	vcpu->arch.paddr_accessed = gpa;
498 	vcpu->arch.vaddr_accessed = ea;
499 	return kvmppc_emulate_mmio(run, vcpu);
500 }
501 
502 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
503 				unsigned long ea, unsigned long dsisr)
504 {
505 	struct kvm *kvm = vcpu->kvm;
506 	unsigned long hpte[3], r;
507 	unsigned long hnow_v, hnow_r;
508 	__be64 *hptep;
509 	unsigned long mmu_seq, psize, pte_size;
510 	unsigned long gpa_base, gfn_base;
511 	unsigned long gpa, gfn, hva, pfn;
512 	struct kvm_memory_slot *memslot;
513 	unsigned long *rmap;
514 	struct revmap_entry *rev;
515 	struct page *page, *pages[1];
516 	long index, ret, npages;
517 	bool is_ci;
518 	unsigned int writing, write_ok;
519 	struct vm_area_struct *vma;
520 	unsigned long rcbits;
521 	long mmio_update;
522 
523 	if (kvm_is_radix(kvm))
524 		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
525 
526 	/*
527 	 * Real-mode code has already searched the HPT and found the
528 	 * entry we're interested in.  Lock the entry and check that
529 	 * it hasn't changed.  If it has, just return and re-execute the
530 	 * instruction.
531 	 */
532 	if (ea != vcpu->arch.pgfault_addr)
533 		return RESUME_GUEST;
534 
535 	if (vcpu->arch.pgfault_cache) {
536 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
537 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
538 			r = vcpu->arch.pgfault_cache->rpte;
539 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
540 						   r);
541 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
542 			gfn_base = gpa_base >> PAGE_SHIFT;
543 			gpa = gpa_base | (ea & (psize - 1));
544 			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
545 						dsisr & DSISR_ISSTORE);
546 		}
547 	}
548 	index = vcpu->arch.pgfault_index;
549 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
550 	rev = &kvm->arch.hpt.rev[index];
551 	preempt_disable();
552 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
553 		cpu_relax();
554 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
555 	hpte[1] = be64_to_cpu(hptep[1]);
556 	hpte[2] = r = rev->guest_rpte;
557 	unlock_hpte(hptep, hpte[0]);
558 	preempt_enable();
559 
560 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
561 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
562 		hpte[1] = hpte_new_to_old_r(hpte[1]);
563 	}
564 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
565 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
566 		return RESUME_GUEST;
567 
568 	/* Translate the logical address and get the page */
569 	psize = kvmppc_actual_pgsz(hpte[0], r);
570 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
571 	gfn_base = gpa_base >> PAGE_SHIFT;
572 	gpa = gpa_base | (ea & (psize - 1));
573 	gfn = gpa >> PAGE_SHIFT;
574 	memslot = gfn_to_memslot(kvm, gfn);
575 
576 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
577 
578 	/* No memslot means it's an emulated MMIO region */
579 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
580 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
581 					      dsisr & DSISR_ISSTORE);
582 
583 	/*
584 	 * This should never happen, because of the slot_is_aligned()
585 	 * check in kvmppc_do_h_enter().
586 	 */
587 	if (gfn_base < memslot->base_gfn)
588 		return -EFAULT;
589 
590 	/* used to check for invalidations in progress */
591 	mmu_seq = kvm->mmu_notifier_seq;
592 	smp_rmb();
593 
594 	ret = -EFAULT;
595 	is_ci = false;
596 	pfn = 0;
597 	page = NULL;
598 	pte_size = PAGE_SIZE;
599 	writing = (dsisr & DSISR_ISSTORE) != 0;
600 	/* If writing != 0, then the HPTE must allow writing, if we get here */
601 	write_ok = writing;
602 	hva = gfn_to_hva_memslot(memslot, gfn);
603 	npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages);
604 	if (npages < 1) {
605 		/* Check if it's an I/O mapping */
606 		down_read(&current->mm->mmap_sem);
607 		vma = find_vma(current->mm, hva);
608 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
609 		    (vma->vm_flags & VM_PFNMAP)) {
610 			pfn = vma->vm_pgoff +
611 				((hva - vma->vm_start) >> PAGE_SHIFT);
612 			pte_size = psize;
613 			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
614 			write_ok = vma->vm_flags & VM_WRITE;
615 		}
616 		up_read(&current->mm->mmap_sem);
617 		if (!pfn)
618 			goto out_put;
619 	} else {
620 		page = pages[0];
621 		pfn = page_to_pfn(page);
622 		if (PageHuge(page)) {
623 			page = compound_head(page);
624 			pte_size <<= compound_order(page);
625 		}
626 		/* if the guest wants write access, see if that is OK */
627 		if (!writing && hpte_is_writable(r)) {
628 			pte_t *ptep, pte;
629 			unsigned long flags;
630 			/*
631 			 * We need to protect against page table destruction
632 			 * hugepage split and collapse.
633 			 */
634 			local_irq_save(flags);
635 			ptep = find_current_mm_pte(current->mm->pgd,
636 						   hva, NULL, NULL);
637 			if (ptep) {
638 				pte = kvmppc_read_update_linux_pte(ptep, 1);
639 				if (__pte_write(pte))
640 					write_ok = 1;
641 			}
642 			local_irq_restore(flags);
643 		}
644 	}
645 
646 	if (psize > pte_size)
647 		goto out_put;
648 
649 	/* Check WIMG vs. the actual page we're accessing */
650 	if (!hpte_cache_flags_ok(r, is_ci)) {
651 		if (is_ci)
652 			goto out_put;
653 		/*
654 		 * Allow guest to map emulated device memory as
655 		 * uncacheable, but actually make it cacheable.
656 		 */
657 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
658 	}
659 
660 	/*
661 	 * Set the HPTE to point to pfn.
662 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
663 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
664 	 */
665 	if (psize < PAGE_SIZE)
666 		psize = PAGE_SIZE;
667 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
668 					((pfn << PAGE_SHIFT) & ~(psize - 1));
669 	if (hpte_is_writable(r) && !write_ok)
670 		r = hpte_make_readonly(r);
671 	ret = RESUME_GUEST;
672 	preempt_disable();
673 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
674 		cpu_relax();
675 	hnow_v = be64_to_cpu(hptep[0]);
676 	hnow_r = be64_to_cpu(hptep[1]);
677 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
678 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
679 		hnow_r = hpte_new_to_old_r(hnow_r);
680 	}
681 
682 	/*
683 	 * If the HPT is being resized, don't update the HPTE,
684 	 * instead let the guest retry after the resize operation is complete.
685 	 * The synchronization for mmu_ready test vs. set is provided
686 	 * by the HPTE lock.
687 	 */
688 	if (!kvm->arch.mmu_ready)
689 		goto out_unlock;
690 
691 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
692 	    rev->guest_rpte != hpte[2])
693 		/* HPTE has been changed under us; let the guest retry */
694 		goto out_unlock;
695 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
696 
697 	/* Always put the HPTE in the rmap chain for the page base address */
698 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
699 	lock_rmap(rmap);
700 
701 	/* Check if we might have been invalidated; let the guest retry if so */
702 	ret = RESUME_GUEST;
703 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
704 		unlock_rmap(rmap);
705 		goto out_unlock;
706 	}
707 
708 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
709 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
710 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
711 
712 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
713 		/* HPTE was previously valid, so we need to invalidate it */
714 		unlock_rmap(rmap);
715 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
716 		kvmppc_invalidate_hpte(kvm, hptep, index);
717 		/* don't lose previous R and C bits */
718 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
719 	} else {
720 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
721 	}
722 
723 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
724 		r = hpte_old_to_new_r(hpte[0], r);
725 		hpte[0] = hpte_old_to_new_v(hpte[0]);
726 	}
727 	hptep[1] = cpu_to_be64(r);
728 	eieio();
729 	__unlock_hpte(hptep, hpte[0]);
730 	asm volatile("ptesync" : : : "memory");
731 	preempt_enable();
732 	if (page && hpte_is_writable(r))
733 		SetPageDirty(page);
734 
735  out_put:
736 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
737 
738 	if (page) {
739 		/*
740 		 * We drop pages[0] here, not page because page might
741 		 * have been set to the head page of a compound, but
742 		 * we have to drop the reference on the correct tail
743 		 * page to match the get inside gup()
744 		 */
745 		put_page(pages[0]);
746 	}
747 	return ret;
748 
749  out_unlock:
750 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
751 	preempt_enable();
752 	goto out_put;
753 }
754 
755 void kvmppc_rmap_reset(struct kvm *kvm)
756 {
757 	struct kvm_memslots *slots;
758 	struct kvm_memory_slot *memslot;
759 	int srcu_idx;
760 
761 	srcu_idx = srcu_read_lock(&kvm->srcu);
762 	slots = kvm_memslots(kvm);
763 	kvm_for_each_memslot(memslot, slots) {
764 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
765 		spin_lock(&kvm->mmu_lock);
766 		/*
767 		 * This assumes it is acceptable to lose reference and
768 		 * change bits across a reset.
769 		 */
770 		memset(memslot->arch.rmap, 0,
771 		       memslot->npages * sizeof(*memslot->arch.rmap));
772 		spin_unlock(&kvm->mmu_lock);
773 	}
774 	srcu_read_unlock(&kvm->srcu, srcu_idx);
775 }
776 
777 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
778 			      unsigned long gfn);
779 
780 static int kvm_handle_hva_range(struct kvm *kvm,
781 				unsigned long start,
782 				unsigned long end,
783 				hva_handler_fn handler)
784 {
785 	int ret;
786 	int retval = 0;
787 	struct kvm_memslots *slots;
788 	struct kvm_memory_slot *memslot;
789 
790 	slots = kvm_memslots(kvm);
791 	kvm_for_each_memslot(memslot, slots) {
792 		unsigned long hva_start, hva_end;
793 		gfn_t gfn, gfn_end;
794 
795 		hva_start = max(start, memslot->userspace_addr);
796 		hva_end = min(end, memslot->userspace_addr +
797 					(memslot->npages << PAGE_SHIFT));
798 		if (hva_start >= hva_end)
799 			continue;
800 		/*
801 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
802 		 * {gfn, gfn+1, ..., gfn_end-1}.
803 		 */
804 		gfn = hva_to_gfn_memslot(hva_start, memslot);
805 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
806 
807 		for (; gfn < gfn_end; ++gfn) {
808 			ret = handler(kvm, memslot, gfn);
809 			retval |= ret;
810 		}
811 	}
812 
813 	return retval;
814 }
815 
816 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
817 			  hva_handler_fn handler)
818 {
819 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
820 }
821 
822 /* Must be called with both HPTE and rmap locked */
823 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
824 			      struct kvm_memory_slot *memslot,
825 			      unsigned long *rmapp, unsigned long gfn)
826 {
827 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
828 	struct revmap_entry *rev = kvm->arch.hpt.rev;
829 	unsigned long j, h;
830 	unsigned long ptel, psize, rcbits;
831 
832 	j = rev[i].forw;
833 	if (j == i) {
834 		/* chain is now empty */
835 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
836 	} else {
837 		/* remove i from chain */
838 		h = rev[i].back;
839 		rev[h].forw = j;
840 		rev[j].back = h;
841 		rev[i].forw = rev[i].back = i;
842 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
843 	}
844 
845 	/* Now check and modify the HPTE */
846 	ptel = rev[i].guest_rpte;
847 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
848 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
849 	    hpte_rpn(ptel, psize) == gfn) {
850 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
851 		kvmppc_invalidate_hpte(kvm, hptep, i);
852 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
853 		/* Harvest R and C */
854 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
855 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
856 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
857 			kvmppc_update_dirty_map(memslot, gfn, psize);
858 		if (rcbits & ~rev[i].guest_rpte) {
859 			rev[i].guest_rpte = ptel | rcbits;
860 			note_hpte_modification(kvm, &rev[i]);
861 		}
862 	}
863 }
864 
865 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
866 			   unsigned long gfn)
867 {
868 	unsigned long i;
869 	__be64 *hptep;
870 	unsigned long *rmapp;
871 
872 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
873 	for (;;) {
874 		lock_rmap(rmapp);
875 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
876 			unlock_rmap(rmapp);
877 			break;
878 		}
879 
880 		/*
881 		 * To avoid an ABBA deadlock with the HPTE lock bit,
882 		 * we can't spin on the HPTE lock while holding the
883 		 * rmap chain lock.
884 		 */
885 		i = *rmapp & KVMPPC_RMAP_INDEX;
886 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
887 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
888 			/* unlock rmap before spinning on the HPTE lock */
889 			unlock_rmap(rmapp);
890 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
891 				cpu_relax();
892 			continue;
893 		}
894 
895 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
896 		unlock_rmap(rmapp);
897 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
898 	}
899 	return 0;
900 }
901 
902 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
903 {
904 	hva_handler_fn handler;
905 
906 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
907 	kvm_handle_hva_range(kvm, start, end, handler);
908 	return 0;
909 }
910 
911 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
912 				  struct kvm_memory_slot *memslot)
913 {
914 	unsigned long gfn;
915 	unsigned long n;
916 	unsigned long *rmapp;
917 
918 	gfn = memslot->base_gfn;
919 	rmapp = memslot->arch.rmap;
920 	if (kvm_is_radix(kvm)) {
921 		kvmppc_radix_flush_memslot(kvm, memslot);
922 		return;
923 	}
924 
925 	for (n = memslot->npages; n; --n, ++gfn) {
926 		/*
927 		 * Testing the present bit without locking is OK because
928 		 * the memslot has been marked invalid already, and hence
929 		 * no new HPTEs referencing this page can be created,
930 		 * thus the present bit can't go from 0 to 1.
931 		 */
932 		if (*rmapp & KVMPPC_RMAP_PRESENT)
933 			kvm_unmap_rmapp(kvm, memslot, gfn);
934 		++rmapp;
935 	}
936 }
937 
938 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
939 			 unsigned long gfn)
940 {
941 	struct revmap_entry *rev = kvm->arch.hpt.rev;
942 	unsigned long head, i, j;
943 	__be64 *hptep;
944 	int ret = 0;
945 	unsigned long *rmapp;
946 
947 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
948  retry:
949 	lock_rmap(rmapp);
950 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
951 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
952 		ret = 1;
953 	}
954 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
955 		unlock_rmap(rmapp);
956 		return ret;
957 	}
958 
959 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
960 	do {
961 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
962 		j = rev[i].forw;
963 
964 		/* If this HPTE isn't referenced, ignore it */
965 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
966 			continue;
967 
968 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
969 			/* unlock rmap before spinning on the HPTE lock */
970 			unlock_rmap(rmapp);
971 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
972 				cpu_relax();
973 			goto retry;
974 		}
975 
976 		/* Now check and modify the HPTE */
977 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
978 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
979 			kvmppc_clear_ref_hpte(kvm, hptep, i);
980 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
981 				rev[i].guest_rpte |= HPTE_R_R;
982 				note_hpte_modification(kvm, &rev[i]);
983 			}
984 			ret = 1;
985 		}
986 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
987 	} while ((i = j) != head);
988 
989 	unlock_rmap(rmapp);
990 	return ret;
991 }
992 
993 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
994 {
995 	hva_handler_fn handler;
996 
997 	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
998 	return kvm_handle_hva_range(kvm, start, end, handler);
999 }
1000 
1001 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
1002 			      unsigned long gfn)
1003 {
1004 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1005 	unsigned long head, i, j;
1006 	unsigned long *hp;
1007 	int ret = 1;
1008 	unsigned long *rmapp;
1009 
1010 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1011 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1012 		return 1;
1013 
1014 	lock_rmap(rmapp);
1015 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
1016 		goto out;
1017 
1018 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
1019 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
1020 		do {
1021 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1022 			j = rev[i].forw;
1023 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1024 				goto out;
1025 		} while ((i = j) != head);
1026 	}
1027 	ret = 0;
1028 
1029  out:
1030 	unlock_rmap(rmapp);
1031 	return ret;
1032 }
1033 
1034 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1035 {
1036 	hva_handler_fn handler;
1037 
1038 	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1039 	return kvm_handle_hva(kvm, hva, handler);
1040 }
1041 
1042 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1043 {
1044 	hva_handler_fn handler;
1045 
1046 	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1047 	kvm_handle_hva(kvm, hva, handler);
1048 }
1049 
1050 static int vcpus_running(struct kvm *kvm)
1051 {
1052 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1053 }
1054 
1055 /*
1056  * Returns the number of system pages that are dirty.
1057  * This can be more than 1 if we find a huge-page HPTE.
1058  */
1059 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1060 {
1061 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1062 	unsigned long head, i, j;
1063 	unsigned long n;
1064 	unsigned long v, r;
1065 	__be64 *hptep;
1066 	int npages_dirty = 0;
1067 
1068  retry:
1069 	lock_rmap(rmapp);
1070 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1071 		unlock_rmap(rmapp);
1072 		return npages_dirty;
1073 	}
1074 
1075 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1076 	do {
1077 		unsigned long hptep1;
1078 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1079 		j = rev[i].forw;
1080 
1081 		/*
1082 		 * Checking the C (changed) bit here is racy since there
1083 		 * is no guarantee about when the hardware writes it back.
1084 		 * If the HPTE is not writable then it is stable since the
1085 		 * page can't be written to, and we would have done a tlbie
1086 		 * (which forces the hardware to complete any writeback)
1087 		 * when making the HPTE read-only.
1088 		 * If vcpus are running then this call is racy anyway
1089 		 * since the page could get dirtied subsequently, so we
1090 		 * expect there to be a further call which would pick up
1091 		 * any delayed C bit writeback.
1092 		 * Otherwise we need to do the tlbie even if C==0 in
1093 		 * order to pick up any delayed writeback of C.
1094 		 */
1095 		hptep1 = be64_to_cpu(hptep[1]);
1096 		if (!(hptep1 & HPTE_R_C) &&
1097 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1098 			continue;
1099 
1100 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1101 			/* unlock rmap before spinning on the HPTE lock */
1102 			unlock_rmap(rmapp);
1103 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1104 				cpu_relax();
1105 			goto retry;
1106 		}
1107 
1108 		/* Now check and modify the HPTE */
1109 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1110 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1111 			continue;
1112 		}
1113 
1114 		/* need to make it temporarily absent so C is stable */
1115 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1116 		kvmppc_invalidate_hpte(kvm, hptep, i);
1117 		v = be64_to_cpu(hptep[0]);
1118 		r = be64_to_cpu(hptep[1]);
1119 		if (r & HPTE_R_C) {
1120 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1121 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1122 				rev[i].guest_rpte |= HPTE_R_C;
1123 				note_hpte_modification(kvm, &rev[i]);
1124 			}
1125 			n = kvmppc_actual_pgsz(v, r);
1126 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1127 			if (n > npages_dirty)
1128 				npages_dirty = n;
1129 			eieio();
1130 		}
1131 		v &= ~HPTE_V_ABSENT;
1132 		v |= HPTE_V_VALID;
1133 		__unlock_hpte(hptep, v);
1134 	} while ((i = j) != head);
1135 
1136 	unlock_rmap(rmapp);
1137 	return npages_dirty;
1138 }
1139 
1140 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1141 			      struct kvm_memory_slot *memslot,
1142 			      unsigned long *map)
1143 {
1144 	unsigned long gfn;
1145 
1146 	if (!vpa->dirty || !vpa->pinned_addr)
1147 		return;
1148 	gfn = vpa->gpa >> PAGE_SHIFT;
1149 	if (gfn < memslot->base_gfn ||
1150 	    gfn >= memslot->base_gfn + memslot->npages)
1151 		return;
1152 
1153 	vpa->dirty = false;
1154 	if (map)
1155 		__set_bit_le(gfn - memslot->base_gfn, map);
1156 }
1157 
1158 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1159 			struct kvm_memory_slot *memslot, unsigned long *map)
1160 {
1161 	unsigned long i;
1162 	unsigned long *rmapp;
1163 
1164 	preempt_disable();
1165 	rmapp = memslot->arch.rmap;
1166 	for (i = 0; i < memslot->npages; ++i) {
1167 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1168 		/*
1169 		 * Note that if npages > 0 then i must be a multiple of npages,
1170 		 * since we always put huge-page HPTEs in the rmap chain
1171 		 * corresponding to their page base address.
1172 		 */
1173 		if (npages)
1174 			set_dirty_bits(map, i, npages);
1175 		++rmapp;
1176 	}
1177 	preempt_enable();
1178 	return 0;
1179 }
1180 
1181 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1182 			    unsigned long *nb_ret)
1183 {
1184 	struct kvm_memory_slot *memslot;
1185 	unsigned long gfn = gpa >> PAGE_SHIFT;
1186 	struct page *page, *pages[1];
1187 	int npages;
1188 	unsigned long hva, offset;
1189 	int srcu_idx;
1190 
1191 	srcu_idx = srcu_read_lock(&kvm->srcu);
1192 	memslot = gfn_to_memslot(kvm, gfn);
1193 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1194 		goto err;
1195 	hva = gfn_to_hva_memslot(memslot, gfn);
1196 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1197 	if (npages < 1)
1198 		goto err;
1199 	page = pages[0];
1200 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1201 
1202 	offset = gpa & (PAGE_SIZE - 1);
1203 	if (nb_ret)
1204 		*nb_ret = PAGE_SIZE - offset;
1205 	return page_address(page) + offset;
1206 
1207  err:
1208 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1209 	return NULL;
1210 }
1211 
1212 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1213 			     bool dirty)
1214 {
1215 	struct page *page = virt_to_page(va);
1216 	struct kvm_memory_slot *memslot;
1217 	unsigned long gfn;
1218 	int srcu_idx;
1219 
1220 	put_page(page);
1221 
1222 	if (!dirty)
1223 		return;
1224 
1225 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1226 	gfn = gpa >> PAGE_SHIFT;
1227 	srcu_idx = srcu_read_lock(&kvm->srcu);
1228 	memslot = gfn_to_memslot(kvm, gfn);
1229 	if (memslot && memslot->dirty_bitmap)
1230 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1231 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1232 }
1233 
1234 /*
1235  * HPT resizing
1236  */
1237 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1238 {
1239 	int rc;
1240 
1241 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1242 	if (rc < 0)
1243 		return rc;
1244 
1245 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1246 			 resize->hpt.virt);
1247 
1248 	return 0;
1249 }
1250 
1251 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1252 					    unsigned long idx)
1253 {
1254 	struct kvm *kvm = resize->kvm;
1255 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1256 	struct kvm_hpt_info *new = &resize->hpt;
1257 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1258 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1259 	__be64 *hptep, *new_hptep;
1260 	unsigned long vpte, rpte, guest_rpte;
1261 	int ret;
1262 	struct revmap_entry *rev;
1263 	unsigned long apsize, avpn, pteg, hash;
1264 	unsigned long new_idx, new_pteg, replace_vpte;
1265 	int pshift;
1266 
1267 	hptep = (__be64 *)(old->virt + (idx << 4));
1268 
1269 	/* Guest is stopped, so new HPTEs can't be added or faulted
1270 	 * in, only unmapped or altered by host actions.  So, it's
1271 	 * safe to check this before we take the HPTE lock */
1272 	vpte = be64_to_cpu(hptep[0]);
1273 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1274 		return 0; /* nothing to do */
1275 
1276 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1277 		cpu_relax();
1278 
1279 	vpte = be64_to_cpu(hptep[0]);
1280 
1281 	ret = 0;
1282 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1283 		/* Nothing to do */
1284 		goto out;
1285 
1286 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1287 		rpte = be64_to_cpu(hptep[1]);
1288 		vpte = hpte_new_to_old_v(vpte, rpte);
1289 	}
1290 
1291 	/* Unmap */
1292 	rev = &old->rev[idx];
1293 	guest_rpte = rev->guest_rpte;
1294 
1295 	ret = -EIO;
1296 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1297 	if (!apsize)
1298 		goto out;
1299 
1300 	if (vpte & HPTE_V_VALID) {
1301 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1302 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1303 		struct kvm_memory_slot *memslot =
1304 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1305 
1306 		if (memslot) {
1307 			unsigned long *rmapp;
1308 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1309 
1310 			lock_rmap(rmapp);
1311 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1312 			unlock_rmap(rmapp);
1313 		}
1314 
1315 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1316 	}
1317 
1318 	/* Reload PTE after unmap */
1319 	vpte = be64_to_cpu(hptep[0]);
1320 	BUG_ON(vpte & HPTE_V_VALID);
1321 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1322 
1323 	ret = 0;
1324 	if (!(vpte & HPTE_V_BOLTED))
1325 		goto out;
1326 
1327 	rpte = be64_to_cpu(hptep[1]);
1328 
1329 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1330 		vpte = hpte_new_to_old_v(vpte, rpte);
1331 		rpte = hpte_new_to_old_r(rpte);
1332 	}
1333 
1334 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1335 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1336 	pteg = idx / HPTES_PER_GROUP;
1337 	if (vpte & HPTE_V_SECONDARY)
1338 		pteg = ~pteg;
1339 
1340 	if (!(vpte & HPTE_V_1TB_SEG)) {
1341 		unsigned long offset, vsid;
1342 
1343 		/* We only have 28 - 23 bits of offset in avpn */
1344 		offset = (avpn & 0x1f) << 23;
1345 		vsid = avpn >> 5;
1346 		/* We can find more bits from the pteg value */
1347 		if (pshift < 23)
1348 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1349 
1350 		hash = vsid ^ (offset >> pshift);
1351 	} else {
1352 		unsigned long offset, vsid;
1353 
1354 		/* We only have 40 - 23 bits of seg_off in avpn */
1355 		offset = (avpn & 0x1ffff) << 23;
1356 		vsid = avpn >> 17;
1357 		if (pshift < 23)
1358 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1359 
1360 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1361 	}
1362 
1363 	new_pteg = hash & new_hash_mask;
1364 	if (vpte & HPTE_V_SECONDARY)
1365 		new_pteg = ~hash & new_hash_mask;
1366 
1367 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1368 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1369 
1370 	replace_vpte = be64_to_cpu(new_hptep[0]);
1371 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1372 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1373 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1374 	}
1375 
1376 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1377 		BUG_ON(new->order >= old->order);
1378 
1379 		if (replace_vpte & HPTE_V_BOLTED) {
1380 			if (vpte & HPTE_V_BOLTED)
1381 				/* Bolted collision, nothing we can do */
1382 				ret = -ENOSPC;
1383 			/* Discard the new HPTE */
1384 			goto out;
1385 		}
1386 
1387 		/* Discard the previous HPTE */
1388 	}
1389 
1390 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1391 		rpte = hpte_old_to_new_r(vpte, rpte);
1392 		vpte = hpte_old_to_new_v(vpte);
1393 	}
1394 
1395 	new_hptep[1] = cpu_to_be64(rpte);
1396 	new->rev[new_idx].guest_rpte = guest_rpte;
1397 	/* No need for a barrier, since new HPT isn't active */
1398 	new_hptep[0] = cpu_to_be64(vpte);
1399 	unlock_hpte(new_hptep, vpte);
1400 
1401 out:
1402 	unlock_hpte(hptep, vpte);
1403 	return ret;
1404 }
1405 
1406 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1407 {
1408 	struct kvm *kvm = resize->kvm;
1409 	unsigned  long i;
1410 	int rc;
1411 
1412 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1413 		rc = resize_hpt_rehash_hpte(resize, i);
1414 		if (rc != 0)
1415 			return rc;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1422 {
1423 	struct kvm *kvm = resize->kvm;
1424 	struct kvm_hpt_info hpt_tmp;
1425 
1426 	/* Exchange the pending tables in the resize structure with
1427 	 * the active tables */
1428 
1429 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1430 
1431 	spin_lock(&kvm->mmu_lock);
1432 	asm volatile("ptesync" : : : "memory");
1433 
1434 	hpt_tmp = kvm->arch.hpt;
1435 	kvmppc_set_hpt(kvm, &resize->hpt);
1436 	resize->hpt = hpt_tmp;
1437 
1438 	spin_unlock(&kvm->mmu_lock);
1439 
1440 	synchronize_srcu_expedited(&kvm->srcu);
1441 
1442 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1443 		kvmppc_setup_partition_table(kvm);
1444 
1445 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1446 }
1447 
1448 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1449 {
1450 	if (WARN_ON(!mutex_is_locked(&kvm->lock)))
1451 		return;
1452 
1453 	if (!resize)
1454 		return;
1455 
1456 	if (resize->error != -EBUSY) {
1457 		if (resize->hpt.virt)
1458 			kvmppc_free_hpt(&resize->hpt);
1459 		kfree(resize);
1460 	}
1461 
1462 	if (kvm->arch.resize_hpt == resize)
1463 		kvm->arch.resize_hpt = NULL;
1464 }
1465 
1466 static void resize_hpt_prepare_work(struct work_struct *work)
1467 {
1468 	struct kvm_resize_hpt *resize = container_of(work,
1469 						     struct kvm_resize_hpt,
1470 						     work);
1471 	struct kvm *kvm = resize->kvm;
1472 	int err = 0;
1473 
1474 	if (WARN_ON(resize->error != -EBUSY))
1475 		return;
1476 
1477 	mutex_lock(&kvm->lock);
1478 
1479 	/* Request is still current? */
1480 	if (kvm->arch.resize_hpt == resize) {
1481 		/* We may request large allocations here:
1482 		 * do not sleep with kvm->lock held for a while.
1483 		 */
1484 		mutex_unlock(&kvm->lock);
1485 
1486 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1487 				 resize->order);
1488 
1489 		err = resize_hpt_allocate(resize);
1490 
1491 		/* We have strict assumption about -EBUSY
1492 		 * when preparing for HPT resize.
1493 		 */
1494 		if (WARN_ON(err == -EBUSY))
1495 			err = -EINPROGRESS;
1496 
1497 		mutex_lock(&kvm->lock);
1498 		/* It is possible that kvm->arch.resize_hpt != resize
1499 		 * after we grab kvm->lock again.
1500 		 */
1501 	}
1502 
1503 	resize->error = err;
1504 
1505 	if (kvm->arch.resize_hpt != resize)
1506 		resize_hpt_release(kvm, resize);
1507 
1508 	mutex_unlock(&kvm->lock);
1509 }
1510 
1511 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1512 				     struct kvm_ppc_resize_hpt *rhpt)
1513 {
1514 	unsigned long flags = rhpt->flags;
1515 	unsigned long shift = rhpt->shift;
1516 	struct kvm_resize_hpt *resize;
1517 	int ret;
1518 
1519 	if (flags != 0 || kvm_is_radix(kvm))
1520 		return -EINVAL;
1521 
1522 	if (shift && ((shift < 18) || (shift > 46)))
1523 		return -EINVAL;
1524 
1525 	mutex_lock(&kvm->lock);
1526 
1527 	resize = kvm->arch.resize_hpt;
1528 
1529 	if (resize) {
1530 		if (resize->order == shift) {
1531 			/* Suitable resize in progress? */
1532 			ret = resize->error;
1533 			if (ret == -EBUSY)
1534 				ret = 100; /* estimated time in ms */
1535 			else if (ret)
1536 				resize_hpt_release(kvm, resize);
1537 
1538 			goto out;
1539 		}
1540 
1541 		/* not suitable, cancel it */
1542 		resize_hpt_release(kvm, resize);
1543 	}
1544 
1545 	ret = 0;
1546 	if (!shift)
1547 		goto out; /* nothing to do */
1548 
1549 	/* start new resize */
1550 
1551 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1552 	if (!resize) {
1553 		ret = -ENOMEM;
1554 		goto out;
1555 	}
1556 
1557 	resize->error = -EBUSY;
1558 	resize->order = shift;
1559 	resize->kvm = kvm;
1560 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1561 	kvm->arch.resize_hpt = resize;
1562 
1563 	schedule_work(&resize->work);
1564 
1565 	ret = 100; /* estimated time in ms */
1566 
1567 out:
1568 	mutex_unlock(&kvm->lock);
1569 	return ret;
1570 }
1571 
1572 static void resize_hpt_boot_vcpu(void *opaque)
1573 {
1574 	/* Nothing to do, just force a KVM exit */
1575 }
1576 
1577 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1578 				    struct kvm_ppc_resize_hpt *rhpt)
1579 {
1580 	unsigned long flags = rhpt->flags;
1581 	unsigned long shift = rhpt->shift;
1582 	struct kvm_resize_hpt *resize;
1583 	long ret;
1584 
1585 	if (flags != 0 || kvm_is_radix(kvm))
1586 		return -EINVAL;
1587 
1588 	if (shift && ((shift < 18) || (shift > 46)))
1589 		return -EINVAL;
1590 
1591 	mutex_lock(&kvm->lock);
1592 
1593 	resize = kvm->arch.resize_hpt;
1594 
1595 	/* This shouldn't be possible */
1596 	ret = -EIO;
1597 	if (WARN_ON(!kvm->arch.mmu_ready))
1598 		goto out_no_hpt;
1599 
1600 	/* Stop VCPUs from running while we mess with the HPT */
1601 	kvm->arch.mmu_ready = 0;
1602 	smp_mb();
1603 
1604 	/* Boot all CPUs out of the guest so they re-read
1605 	 * mmu_ready */
1606 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1607 
1608 	ret = -ENXIO;
1609 	if (!resize || (resize->order != shift))
1610 		goto out;
1611 
1612 	ret = resize->error;
1613 	if (ret)
1614 		goto out;
1615 
1616 	ret = resize_hpt_rehash(resize);
1617 	if (ret)
1618 		goto out;
1619 
1620 	resize_hpt_pivot(resize);
1621 
1622 out:
1623 	/* Let VCPUs run again */
1624 	kvm->arch.mmu_ready = 1;
1625 	smp_mb();
1626 out_no_hpt:
1627 	resize_hpt_release(kvm, resize);
1628 	mutex_unlock(&kvm->lock);
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Functions for reading and writing the hash table via reads and
1634  * writes on a file descriptor.
1635  *
1636  * Reads return the guest view of the hash table, which has to be
1637  * pieced together from the real hash table and the guest_rpte
1638  * values in the revmap array.
1639  *
1640  * On writes, each HPTE written is considered in turn, and if it
1641  * is valid, it is written to the HPT as if an H_ENTER with the
1642  * exact flag set was done.  When the invalid count is non-zero
1643  * in the header written to the stream, the kernel will make
1644  * sure that that many HPTEs are invalid, and invalidate them
1645  * if not.
1646  */
1647 
1648 struct kvm_htab_ctx {
1649 	unsigned long	index;
1650 	unsigned long	flags;
1651 	struct kvm	*kvm;
1652 	int		first_pass;
1653 };
1654 
1655 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1656 
1657 /*
1658  * Returns 1 if this HPT entry has been modified or has pending
1659  * R/C bit changes.
1660  */
1661 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1662 {
1663 	unsigned long rcbits_unset;
1664 
1665 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1666 		return 1;
1667 
1668 	/* Also need to consider changes in reference and changed bits */
1669 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1670 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1671 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1672 		return 1;
1673 
1674 	return 0;
1675 }
1676 
1677 static long record_hpte(unsigned long flags, __be64 *hptp,
1678 			unsigned long *hpte, struct revmap_entry *revp,
1679 			int want_valid, int first_pass)
1680 {
1681 	unsigned long v, r, hr;
1682 	unsigned long rcbits_unset;
1683 	int ok = 1;
1684 	int valid, dirty;
1685 
1686 	/* Unmodified entries are uninteresting except on the first pass */
1687 	dirty = hpte_dirty(revp, hptp);
1688 	if (!first_pass && !dirty)
1689 		return 0;
1690 
1691 	valid = 0;
1692 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1693 		valid = 1;
1694 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1695 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1696 			valid = 0;
1697 	}
1698 	if (valid != want_valid)
1699 		return 0;
1700 
1701 	v = r = 0;
1702 	if (valid || dirty) {
1703 		/* lock the HPTE so it's stable and read it */
1704 		preempt_disable();
1705 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1706 			cpu_relax();
1707 		v = be64_to_cpu(hptp[0]);
1708 		hr = be64_to_cpu(hptp[1]);
1709 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1710 			v = hpte_new_to_old_v(v, hr);
1711 			hr = hpte_new_to_old_r(hr);
1712 		}
1713 
1714 		/* re-evaluate valid and dirty from synchronized HPTE value */
1715 		valid = !!(v & HPTE_V_VALID);
1716 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1717 
1718 		/* Harvest R and C into guest view if necessary */
1719 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1720 		if (valid && (rcbits_unset & hr)) {
1721 			revp->guest_rpte |= (hr &
1722 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1723 			dirty = 1;
1724 		}
1725 
1726 		if (v & HPTE_V_ABSENT) {
1727 			v &= ~HPTE_V_ABSENT;
1728 			v |= HPTE_V_VALID;
1729 			valid = 1;
1730 		}
1731 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1732 			valid = 0;
1733 
1734 		r = revp->guest_rpte;
1735 		/* only clear modified if this is the right sort of entry */
1736 		if (valid == want_valid && dirty) {
1737 			r &= ~HPTE_GR_MODIFIED;
1738 			revp->guest_rpte = r;
1739 		}
1740 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1741 		preempt_enable();
1742 		if (!(valid == want_valid && (first_pass || dirty)))
1743 			ok = 0;
1744 	}
1745 	hpte[0] = cpu_to_be64(v);
1746 	hpte[1] = cpu_to_be64(r);
1747 	return ok;
1748 }
1749 
1750 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1751 			     size_t count, loff_t *ppos)
1752 {
1753 	struct kvm_htab_ctx *ctx = file->private_data;
1754 	struct kvm *kvm = ctx->kvm;
1755 	struct kvm_get_htab_header hdr;
1756 	__be64 *hptp;
1757 	struct revmap_entry *revp;
1758 	unsigned long i, nb, nw;
1759 	unsigned long __user *lbuf;
1760 	struct kvm_get_htab_header __user *hptr;
1761 	unsigned long flags;
1762 	int first_pass;
1763 	unsigned long hpte[2];
1764 
1765 	if (!access_ok(buf, count))
1766 		return -EFAULT;
1767 	if (kvm_is_radix(kvm))
1768 		return 0;
1769 
1770 	first_pass = ctx->first_pass;
1771 	flags = ctx->flags;
1772 
1773 	i = ctx->index;
1774 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1775 	revp = kvm->arch.hpt.rev + i;
1776 	lbuf = (unsigned long __user *)buf;
1777 
1778 	nb = 0;
1779 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1780 		/* Initialize header */
1781 		hptr = (struct kvm_get_htab_header __user *)buf;
1782 		hdr.n_valid = 0;
1783 		hdr.n_invalid = 0;
1784 		nw = nb;
1785 		nb += sizeof(hdr);
1786 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1787 
1788 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1789 		if (!first_pass) {
1790 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1791 			       !hpte_dirty(revp, hptp)) {
1792 				++i;
1793 				hptp += 2;
1794 				++revp;
1795 			}
1796 		}
1797 		hdr.index = i;
1798 
1799 		/* Grab a series of valid entries */
1800 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1801 		       hdr.n_valid < 0xffff &&
1802 		       nb + HPTE_SIZE < count &&
1803 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1804 			/* valid entry, write it out */
1805 			++hdr.n_valid;
1806 			if (__put_user(hpte[0], lbuf) ||
1807 			    __put_user(hpte[1], lbuf + 1))
1808 				return -EFAULT;
1809 			nb += HPTE_SIZE;
1810 			lbuf += 2;
1811 			++i;
1812 			hptp += 2;
1813 			++revp;
1814 		}
1815 		/* Now skip invalid entries while we can */
1816 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1817 		       hdr.n_invalid < 0xffff &&
1818 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1819 			/* found an invalid entry */
1820 			++hdr.n_invalid;
1821 			++i;
1822 			hptp += 2;
1823 			++revp;
1824 		}
1825 
1826 		if (hdr.n_valid || hdr.n_invalid) {
1827 			/* write back the header */
1828 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1829 				return -EFAULT;
1830 			nw = nb;
1831 			buf = (char __user *)lbuf;
1832 		} else {
1833 			nb = nw;
1834 		}
1835 
1836 		/* Check if we've wrapped around the hash table */
1837 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1838 			i = 0;
1839 			ctx->first_pass = 0;
1840 			break;
1841 		}
1842 	}
1843 
1844 	ctx->index = i;
1845 
1846 	return nb;
1847 }
1848 
1849 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1850 			      size_t count, loff_t *ppos)
1851 {
1852 	struct kvm_htab_ctx *ctx = file->private_data;
1853 	struct kvm *kvm = ctx->kvm;
1854 	struct kvm_get_htab_header hdr;
1855 	unsigned long i, j;
1856 	unsigned long v, r;
1857 	unsigned long __user *lbuf;
1858 	__be64 *hptp;
1859 	unsigned long tmp[2];
1860 	ssize_t nb;
1861 	long int err, ret;
1862 	int mmu_ready;
1863 	int pshift;
1864 
1865 	if (!access_ok(buf, count))
1866 		return -EFAULT;
1867 	if (kvm_is_radix(kvm))
1868 		return -EINVAL;
1869 
1870 	/* lock out vcpus from running while we're doing this */
1871 	mutex_lock(&kvm->lock);
1872 	mmu_ready = kvm->arch.mmu_ready;
1873 	if (mmu_ready) {
1874 		kvm->arch.mmu_ready = 0;	/* temporarily */
1875 		/* order mmu_ready vs. vcpus_running */
1876 		smp_mb();
1877 		if (atomic_read(&kvm->arch.vcpus_running)) {
1878 			kvm->arch.mmu_ready = 1;
1879 			mutex_unlock(&kvm->lock);
1880 			return -EBUSY;
1881 		}
1882 	}
1883 
1884 	err = 0;
1885 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1886 		err = -EFAULT;
1887 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1888 			break;
1889 
1890 		err = 0;
1891 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1892 			break;
1893 
1894 		nb += sizeof(hdr);
1895 		buf += sizeof(hdr);
1896 
1897 		err = -EINVAL;
1898 		i = hdr.index;
1899 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1900 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1901 			break;
1902 
1903 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1904 		lbuf = (unsigned long __user *)buf;
1905 		for (j = 0; j < hdr.n_valid; ++j) {
1906 			__be64 hpte_v;
1907 			__be64 hpte_r;
1908 
1909 			err = -EFAULT;
1910 			if (__get_user(hpte_v, lbuf) ||
1911 			    __get_user(hpte_r, lbuf + 1))
1912 				goto out;
1913 			v = be64_to_cpu(hpte_v);
1914 			r = be64_to_cpu(hpte_r);
1915 			err = -EINVAL;
1916 			if (!(v & HPTE_V_VALID))
1917 				goto out;
1918 			pshift = kvmppc_hpte_base_page_shift(v, r);
1919 			if (pshift <= 0)
1920 				goto out;
1921 			lbuf += 2;
1922 			nb += HPTE_SIZE;
1923 
1924 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1925 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1926 			err = -EIO;
1927 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1928 							 tmp);
1929 			if (ret != H_SUCCESS) {
1930 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1931 				       "r=%lx\n", ret, i, v, r);
1932 				goto out;
1933 			}
1934 			if (!mmu_ready && is_vrma_hpte(v)) {
1935 				unsigned long senc, lpcr;
1936 
1937 				senc = slb_pgsize_encoding(1ul << pshift);
1938 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1939 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1940 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1941 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1942 					kvmppc_update_lpcr(kvm, lpcr,
1943 							   LPCR_VRMASD);
1944 				} else {
1945 					kvmppc_setup_partition_table(kvm);
1946 				}
1947 				mmu_ready = 1;
1948 			}
1949 			++i;
1950 			hptp += 2;
1951 		}
1952 
1953 		for (j = 0; j < hdr.n_invalid; ++j) {
1954 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1955 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1956 			++i;
1957 			hptp += 2;
1958 		}
1959 		err = 0;
1960 	}
1961 
1962  out:
1963 	/* Order HPTE updates vs. mmu_ready */
1964 	smp_wmb();
1965 	kvm->arch.mmu_ready = mmu_ready;
1966 	mutex_unlock(&kvm->lock);
1967 
1968 	if (err)
1969 		return err;
1970 	return nb;
1971 }
1972 
1973 static int kvm_htab_release(struct inode *inode, struct file *filp)
1974 {
1975 	struct kvm_htab_ctx *ctx = filp->private_data;
1976 
1977 	filp->private_data = NULL;
1978 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1979 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1980 	kvm_put_kvm(ctx->kvm);
1981 	kfree(ctx);
1982 	return 0;
1983 }
1984 
1985 static const struct file_operations kvm_htab_fops = {
1986 	.read		= kvm_htab_read,
1987 	.write		= kvm_htab_write,
1988 	.llseek		= default_llseek,
1989 	.release	= kvm_htab_release,
1990 };
1991 
1992 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1993 {
1994 	int ret;
1995 	struct kvm_htab_ctx *ctx;
1996 	int rwflag;
1997 
1998 	/* reject flags we don't recognize */
1999 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
2000 		return -EINVAL;
2001 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2002 	if (!ctx)
2003 		return -ENOMEM;
2004 	kvm_get_kvm(kvm);
2005 	ctx->kvm = kvm;
2006 	ctx->index = ghf->start_index;
2007 	ctx->flags = ghf->flags;
2008 	ctx->first_pass = 1;
2009 
2010 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2011 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
2012 	if (ret < 0) {
2013 		kfree(ctx);
2014 		kvm_put_kvm(kvm);
2015 		return ret;
2016 	}
2017 
2018 	if (rwflag == O_RDONLY) {
2019 		mutex_lock(&kvm->slots_lock);
2020 		atomic_inc(&kvm->arch.hpte_mod_interest);
2021 		/* make sure kvmppc_do_h_enter etc. see the increment */
2022 		synchronize_srcu_expedited(&kvm->srcu);
2023 		mutex_unlock(&kvm->slots_lock);
2024 	}
2025 
2026 	return ret;
2027 }
2028 
2029 struct debugfs_htab_state {
2030 	struct kvm	*kvm;
2031 	struct mutex	mutex;
2032 	unsigned long	hpt_index;
2033 	int		chars_left;
2034 	int		buf_index;
2035 	char		buf[64];
2036 };
2037 
2038 static int debugfs_htab_open(struct inode *inode, struct file *file)
2039 {
2040 	struct kvm *kvm = inode->i_private;
2041 	struct debugfs_htab_state *p;
2042 
2043 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2044 	if (!p)
2045 		return -ENOMEM;
2046 
2047 	kvm_get_kvm(kvm);
2048 	p->kvm = kvm;
2049 	mutex_init(&p->mutex);
2050 	file->private_data = p;
2051 
2052 	return nonseekable_open(inode, file);
2053 }
2054 
2055 static int debugfs_htab_release(struct inode *inode, struct file *file)
2056 {
2057 	struct debugfs_htab_state *p = file->private_data;
2058 
2059 	kvm_put_kvm(p->kvm);
2060 	kfree(p);
2061 	return 0;
2062 }
2063 
2064 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2065 				 size_t len, loff_t *ppos)
2066 {
2067 	struct debugfs_htab_state *p = file->private_data;
2068 	ssize_t ret, r;
2069 	unsigned long i, n;
2070 	unsigned long v, hr, gr;
2071 	struct kvm *kvm;
2072 	__be64 *hptp;
2073 
2074 	kvm = p->kvm;
2075 	if (kvm_is_radix(kvm))
2076 		return 0;
2077 
2078 	ret = mutex_lock_interruptible(&p->mutex);
2079 	if (ret)
2080 		return ret;
2081 
2082 	if (p->chars_left) {
2083 		n = p->chars_left;
2084 		if (n > len)
2085 			n = len;
2086 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2087 		n -= r;
2088 		p->chars_left -= n;
2089 		p->buf_index += n;
2090 		buf += n;
2091 		len -= n;
2092 		ret = n;
2093 		if (r) {
2094 			if (!n)
2095 				ret = -EFAULT;
2096 			goto out;
2097 		}
2098 	}
2099 
2100 	i = p->hpt_index;
2101 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2102 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2103 	     ++i, hptp += 2) {
2104 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2105 			continue;
2106 
2107 		/* lock the HPTE so it's stable and read it */
2108 		preempt_disable();
2109 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2110 			cpu_relax();
2111 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2112 		hr = be64_to_cpu(hptp[1]);
2113 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2114 		unlock_hpte(hptp, v);
2115 		preempt_enable();
2116 
2117 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2118 			continue;
2119 
2120 		n = scnprintf(p->buf, sizeof(p->buf),
2121 			      "%6lx %.16lx %.16lx %.16lx\n",
2122 			      i, v, hr, gr);
2123 		p->chars_left = n;
2124 		if (n > len)
2125 			n = len;
2126 		r = copy_to_user(buf, p->buf, n);
2127 		n -= r;
2128 		p->chars_left -= n;
2129 		p->buf_index = n;
2130 		buf += n;
2131 		len -= n;
2132 		ret += n;
2133 		if (r) {
2134 			if (!ret)
2135 				ret = -EFAULT;
2136 			goto out;
2137 		}
2138 	}
2139 	p->hpt_index = i;
2140 
2141  out:
2142 	mutex_unlock(&p->mutex);
2143 	return ret;
2144 }
2145 
2146 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2147 			   size_t len, loff_t *ppos)
2148 {
2149 	return -EACCES;
2150 }
2151 
2152 static const struct file_operations debugfs_htab_fops = {
2153 	.owner	 = THIS_MODULE,
2154 	.open	 = debugfs_htab_open,
2155 	.release = debugfs_htab_release,
2156 	.read	 = debugfs_htab_read,
2157 	.write	 = debugfs_htab_write,
2158 	.llseek	 = generic_file_llseek,
2159 };
2160 
2161 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2162 {
2163 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2164 						    kvm->arch.debugfs_dir, kvm,
2165 						    &debugfs_htab_fops);
2166 }
2167 
2168 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2169 {
2170 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2171 
2172 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2173 
2174 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2175 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2176 
2177 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2178 }
2179