1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 #include <asm/pte-walk.h> 41 42 #include "trace_hv.h" 43 44 //#define DEBUG_RESIZE_HPT 1 45 46 #ifdef DEBUG_RESIZE_HPT 47 #define resize_hpt_debug(resize, ...) \ 48 do { \ 49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 50 printk(__VA_ARGS__); \ 51 } while (0) 52 #else 53 #define resize_hpt_debug(resize, ...) \ 54 do { } while (0) 55 #endif 56 57 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 58 long pte_index, unsigned long pteh, 59 unsigned long ptel, unsigned long *pte_idx_ret); 60 61 struct kvm_resize_hpt { 62 /* These fields read-only after init */ 63 struct kvm *kvm; 64 struct work_struct work; 65 u32 order; 66 67 /* These fields protected by kvm->lock */ 68 int error; 69 bool prepare_done; 70 71 /* Private to the work thread, until prepare_done is true, 72 * then protected by kvm->resize_hpt_sem */ 73 struct kvm_hpt_info hpt; 74 }; 75 76 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 77 { 78 unsigned long hpt = 0; 79 int cma = 0; 80 struct page *page = NULL; 81 struct revmap_entry *rev; 82 unsigned long npte; 83 84 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 85 return -EINVAL; 86 87 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 88 if (page) { 89 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 90 memset((void *)hpt, 0, (1ul << order)); 91 cma = 1; 92 } 93 94 if (!hpt) 95 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 96 |__GFP_NOWARN, order - PAGE_SHIFT); 97 98 if (!hpt) 99 return -ENOMEM; 100 101 /* HPTEs are 2**4 bytes long */ 102 npte = 1ul << (order - 4); 103 104 /* Allocate reverse map array */ 105 rev = vmalloc(sizeof(struct revmap_entry) * npte); 106 if (!rev) { 107 if (cma) 108 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 109 else 110 free_pages(hpt, order - PAGE_SHIFT); 111 return -ENOMEM; 112 } 113 114 info->order = order; 115 info->virt = hpt; 116 info->cma = cma; 117 info->rev = rev; 118 119 return 0; 120 } 121 122 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 123 { 124 atomic64_set(&kvm->arch.mmio_update, 0); 125 kvm->arch.hpt = *info; 126 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 127 128 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 129 info->virt, (long)info->order, kvm->arch.lpid); 130 } 131 132 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 133 { 134 long err = -EBUSY; 135 struct kvm_hpt_info info; 136 137 mutex_lock(&kvm->lock); 138 if (kvm->arch.mmu_ready) { 139 kvm->arch.mmu_ready = 0; 140 /* order mmu_ready vs. vcpus_running */ 141 smp_mb(); 142 if (atomic_read(&kvm->arch.vcpus_running)) { 143 kvm->arch.mmu_ready = 1; 144 goto out; 145 } 146 } 147 if (kvm_is_radix(kvm)) { 148 err = kvmppc_switch_mmu_to_hpt(kvm); 149 if (err) 150 goto out; 151 } 152 153 if (kvm->arch.hpt.order == order) { 154 /* We already have a suitable HPT */ 155 156 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 157 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 158 /* 159 * Reset all the reverse-mapping chains for all memslots 160 */ 161 kvmppc_rmap_reset(kvm); 162 /* Ensure that each vcpu will flush its TLB on next entry. */ 163 cpumask_setall(&kvm->arch.need_tlb_flush); 164 err = 0; 165 goto out; 166 } 167 168 if (kvm->arch.hpt.virt) { 169 kvmppc_free_hpt(&kvm->arch.hpt); 170 kvmppc_rmap_reset(kvm); 171 } 172 173 err = kvmppc_allocate_hpt(&info, order); 174 if (err < 0) 175 goto out; 176 kvmppc_set_hpt(kvm, &info); 177 178 out: 179 mutex_unlock(&kvm->lock); 180 return err; 181 } 182 183 void kvmppc_free_hpt(struct kvm_hpt_info *info) 184 { 185 vfree(info->rev); 186 info->rev = NULL; 187 if (info->cma) 188 kvm_free_hpt_cma(virt_to_page(info->virt), 189 1 << (info->order - PAGE_SHIFT)); 190 else if (info->virt) 191 free_pages(info->virt, info->order - PAGE_SHIFT); 192 info->virt = 0; 193 info->order = 0; 194 } 195 196 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 197 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 198 { 199 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 200 } 201 202 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 203 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 204 { 205 return (pgsize == 0x10000) ? 0x1000 : 0; 206 } 207 208 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 209 unsigned long porder) 210 { 211 unsigned long i; 212 unsigned long npages; 213 unsigned long hp_v, hp_r; 214 unsigned long addr, hash; 215 unsigned long psize; 216 unsigned long hp0, hp1; 217 unsigned long idx_ret; 218 long ret; 219 struct kvm *kvm = vcpu->kvm; 220 221 psize = 1ul << porder; 222 npages = memslot->npages >> (porder - PAGE_SHIFT); 223 224 /* VRMA can't be > 1TB */ 225 if (npages > 1ul << (40 - porder)) 226 npages = 1ul << (40 - porder); 227 /* Can't use more than 1 HPTE per HPTEG */ 228 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 229 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 230 231 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 232 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 233 hp1 = hpte1_pgsize_encoding(psize) | 234 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 235 236 for (i = 0; i < npages; ++i) { 237 addr = i << porder; 238 /* can't use hpt_hash since va > 64 bits */ 239 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 240 & kvmppc_hpt_mask(&kvm->arch.hpt); 241 /* 242 * We assume that the hash table is empty and no 243 * vcpus are using it at this stage. Since we create 244 * at most one HPTE per HPTEG, we just assume entry 7 245 * is available and use it. 246 */ 247 hash = (hash << 3) + 7; 248 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 249 hp_r = hp1 | addr; 250 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 251 &idx_ret); 252 if (ret != H_SUCCESS) { 253 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 254 addr, ret); 255 break; 256 } 257 } 258 } 259 260 int kvmppc_mmu_hv_init(void) 261 { 262 unsigned long host_lpid, rsvd_lpid; 263 264 if (!cpu_has_feature(CPU_FTR_HVMODE)) 265 return -EINVAL; 266 267 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 268 host_lpid = mfspr(SPRN_LPID); 269 rsvd_lpid = LPID_RSVD; 270 271 kvmppc_init_lpid(rsvd_lpid + 1); 272 273 kvmppc_claim_lpid(host_lpid); 274 /* rsvd_lpid is reserved for use in partition switching */ 275 kvmppc_claim_lpid(rsvd_lpid); 276 277 return 0; 278 } 279 280 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 281 { 282 unsigned long msr = vcpu->arch.intr_msr; 283 284 /* If transactional, change to suspend mode on IRQ delivery */ 285 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 286 msr |= MSR_TS_S; 287 else 288 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 289 kvmppc_set_msr(vcpu, msr); 290 } 291 292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 293 long pte_index, unsigned long pteh, 294 unsigned long ptel, unsigned long *pte_idx_ret) 295 { 296 long ret; 297 298 /* Protect linux PTE lookup from page table destruction */ 299 rcu_read_lock_sched(); /* this disables preemption too */ 300 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 301 current->mm->pgd, false, pte_idx_ret); 302 rcu_read_unlock_sched(); 303 if (ret == H_TOO_HARD) { 304 /* this can't happen */ 305 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 306 ret = H_RESOURCE; /* or something */ 307 } 308 return ret; 309 310 } 311 312 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 313 gva_t eaddr) 314 { 315 u64 mask; 316 int i; 317 318 for (i = 0; i < vcpu->arch.slb_nr; i++) { 319 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 320 continue; 321 322 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 323 mask = ESID_MASK_1T; 324 else 325 mask = ESID_MASK; 326 327 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 328 return &vcpu->arch.slb[i]; 329 } 330 return NULL; 331 } 332 333 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 334 unsigned long ea) 335 { 336 unsigned long ra_mask; 337 338 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 339 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 340 } 341 342 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 343 struct kvmppc_pte *gpte, bool data, bool iswrite) 344 { 345 struct kvm *kvm = vcpu->kvm; 346 struct kvmppc_slb *slbe; 347 unsigned long slb_v; 348 unsigned long pp, key; 349 unsigned long v, orig_v, gr; 350 __be64 *hptep; 351 int index; 352 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 353 354 if (kvm_is_radix(vcpu->kvm)) 355 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 356 357 /* Get SLB entry */ 358 if (virtmode) { 359 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 360 if (!slbe) 361 return -EINVAL; 362 slb_v = slbe->origv; 363 } else { 364 /* real mode access */ 365 slb_v = vcpu->kvm->arch.vrma_slb_v; 366 } 367 368 preempt_disable(); 369 /* Find the HPTE in the hash table */ 370 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 371 HPTE_V_VALID | HPTE_V_ABSENT); 372 if (index < 0) { 373 preempt_enable(); 374 return -ENOENT; 375 } 376 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 377 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 378 if (cpu_has_feature(CPU_FTR_ARCH_300)) 379 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 380 gr = kvm->arch.hpt.rev[index].guest_rpte; 381 382 unlock_hpte(hptep, orig_v); 383 preempt_enable(); 384 385 gpte->eaddr = eaddr; 386 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 387 388 /* Get PP bits and key for permission check */ 389 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 390 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 391 key &= slb_v; 392 393 /* Calculate permissions */ 394 gpte->may_read = hpte_read_permission(pp, key); 395 gpte->may_write = hpte_write_permission(pp, key); 396 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 397 398 /* Storage key permission check for POWER7 */ 399 if (data && virtmode) { 400 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 401 if (amrfield & 1) 402 gpte->may_read = 0; 403 if (amrfield & 2) 404 gpte->may_write = 0; 405 } 406 407 /* Get the guest physical address */ 408 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 409 return 0; 410 } 411 412 /* 413 * Quick test for whether an instruction is a load or a store. 414 * If the instruction is a load or a store, then this will indicate 415 * which it is, at least on server processors. (Embedded processors 416 * have some external PID instructions that don't follow the rule 417 * embodied here.) If the instruction isn't a load or store, then 418 * this doesn't return anything useful. 419 */ 420 static int instruction_is_store(unsigned int instr) 421 { 422 unsigned int mask; 423 424 mask = 0x10000000; 425 if ((instr & 0xfc000000) == 0x7c000000) 426 mask = 0x100; /* major opcode 31 */ 427 return (instr & mask) != 0; 428 } 429 430 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 431 unsigned long gpa, gva_t ea, int is_store) 432 { 433 u32 last_inst; 434 435 /* 436 * If we fail, we just return to the guest and try executing it again. 437 */ 438 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 439 EMULATE_DONE) 440 return RESUME_GUEST; 441 442 /* 443 * WARNING: We do not know for sure whether the instruction we just 444 * read from memory is the same that caused the fault in the first 445 * place. If the instruction we read is neither an load or a store, 446 * then it can't access memory, so we don't need to worry about 447 * enforcing access permissions. So, assuming it is a load or 448 * store, we just check that its direction (load or store) is 449 * consistent with the original fault, since that's what we 450 * checked the access permissions against. If there is a mismatch 451 * we just return and retry the instruction. 452 */ 453 454 if (instruction_is_store(last_inst) != !!is_store) 455 return RESUME_GUEST; 456 457 /* 458 * Emulated accesses are emulated by looking at the hash for 459 * translation once, then performing the access later. The 460 * translation could be invalidated in the meantime in which 461 * point performing the subsequent memory access on the old 462 * physical address could possibly be a security hole for the 463 * guest (but not the host). 464 * 465 * This is less of an issue for MMIO stores since they aren't 466 * globally visible. It could be an issue for MMIO loads to 467 * a certain extent but we'll ignore it for now. 468 */ 469 470 vcpu->arch.paddr_accessed = gpa; 471 vcpu->arch.vaddr_accessed = ea; 472 return kvmppc_emulate_mmio(run, vcpu); 473 } 474 475 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 476 unsigned long ea, unsigned long dsisr) 477 { 478 struct kvm *kvm = vcpu->kvm; 479 unsigned long hpte[3], r; 480 unsigned long hnow_v, hnow_r; 481 __be64 *hptep; 482 unsigned long mmu_seq, psize, pte_size; 483 unsigned long gpa_base, gfn_base; 484 unsigned long gpa, gfn, hva, pfn; 485 struct kvm_memory_slot *memslot; 486 unsigned long *rmap; 487 struct revmap_entry *rev; 488 struct page *page, *pages[1]; 489 long index, ret, npages; 490 bool is_ci; 491 unsigned int writing, write_ok; 492 struct vm_area_struct *vma; 493 unsigned long rcbits; 494 long mmio_update; 495 496 if (kvm_is_radix(kvm)) 497 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 498 499 /* 500 * Real-mode code has already searched the HPT and found the 501 * entry we're interested in. Lock the entry and check that 502 * it hasn't changed. If it has, just return and re-execute the 503 * instruction. 504 */ 505 if (ea != vcpu->arch.pgfault_addr) 506 return RESUME_GUEST; 507 508 if (vcpu->arch.pgfault_cache) { 509 mmio_update = atomic64_read(&kvm->arch.mmio_update); 510 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 511 r = vcpu->arch.pgfault_cache->rpte; 512 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 513 r); 514 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 515 gfn_base = gpa_base >> PAGE_SHIFT; 516 gpa = gpa_base | (ea & (psize - 1)); 517 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 518 dsisr & DSISR_ISSTORE); 519 } 520 } 521 index = vcpu->arch.pgfault_index; 522 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 523 rev = &kvm->arch.hpt.rev[index]; 524 preempt_disable(); 525 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 526 cpu_relax(); 527 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 528 hpte[1] = be64_to_cpu(hptep[1]); 529 hpte[2] = r = rev->guest_rpte; 530 unlock_hpte(hptep, hpte[0]); 531 preempt_enable(); 532 533 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 534 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 535 hpte[1] = hpte_new_to_old_r(hpte[1]); 536 } 537 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 538 hpte[1] != vcpu->arch.pgfault_hpte[1]) 539 return RESUME_GUEST; 540 541 /* Translate the logical address and get the page */ 542 psize = kvmppc_actual_pgsz(hpte[0], r); 543 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 544 gfn_base = gpa_base >> PAGE_SHIFT; 545 gpa = gpa_base | (ea & (psize - 1)); 546 gfn = gpa >> PAGE_SHIFT; 547 memslot = gfn_to_memslot(kvm, gfn); 548 549 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 550 551 /* No memslot means it's an emulated MMIO region */ 552 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 553 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 554 dsisr & DSISR_ISSTORE); 555 556 /* 557 * This should never happen, because of the slot_is_aligned() 558 * check in kvmppc_do_h_enter(). 559 */ 560 if (gfn_base < memslot->base_gfn) 561 return -EFAULT; 562 563 /* used to check for invalidations in progress */ 564 mmu_seq = kvm->mmu_notifier_seq; 565 smp_rmb(); 566 567 ret = -EFAULT; 568 is_ci = false; 569 pfn = 0; 570 page = NULL; 571 pte_size = PAGE_SIZE; 572 writing = (dsisr & DSISR_ISSTORE) != 0; 573 /* If writing != 0, then the HPTE must allow writing, if we get here */ 574 write_ok = writing; 575 hva = gfn_to_hva_memslot(memslot, gfn); 576 npages = get_user_pages_fast(hva, 1, writing, pages); 577 if (npages < 1) { 578 /* Check if it's an I/O mapping */ 579 down_read(¤t->mm->mmap_sem); 580 vma = find_vma(current->mm, hva); 581 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 582 (vma->vm_flags & VM_PFNMAP)) { 583 pfn = vma->vm_pgoff + 584 ((hva - vma->vm_start) >> PAGE_SHIFT); 585 pte_size = psize; 586 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 587 write_ok = vma->vm_flags & VM_WRITE; 588 } 589 up_read(¤t->mm->mmap_sem); 590 if (!pfn) 591 goto out_put; 592 } else { 593 page = pages[0]; 594 pfn = page_to_pfn(page); 595 if (PageHuge(page)) { 596 page = compound_head(page); 597 pte_size <<= compound_order(page); 598 } 599 /* if the guest wants write access, see if that is OK */ 600 if (!writing && hpte_is_writable(r)) { 601 pte_t *ptep, pte; 602 unsigned long flags; 603 /* 604 * We need to protect against page table destruction 605 * hugepage split and collapse. 606 */ 607 local_irq_save(flags); 608 ptep = find_current_mm_pte(current->mm->pgd, 609 hva, NULL, NULL); 610 if (ptep) { 611 pte = kvmppc_read_update_linux_pte(ptep, 1); 612 if (__pte_write(pte)) 613 write_ok = 1; 614 } 615 local_irq_restore(flags); 616 } 617 } 618 619 if (psize > pte_size) 620 goto out_put; 621 622 /* Check WIMG vs. the actual page we're accessing */ 623 if (!hpte_cache_flags_ok(r, is_ci)) { 624 if (is_ci) 625 goto out_put; 626 /* 627 * Allow guest to map emulated device memory as 628 * uncacheable, but actually make it cacheable. 629 */ 630 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 631 } 632 633 /* 634 * Set the HPTE to point to pfn. 635 * Since the pfn is at PAGE_SIZE granularity, make sure we 636 * don't mask out lower-order bits if psize < PAGE_SIZE. 637 */ 638 if (psize < PAGE_SIZE) 639 psize = PAGE_SIZE; 640 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 641 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 642 if (hpte_is_writable(r) && !write_ok) 643 r = hpte_make_readonly(r); 644 ret = RESUME_GUEST; 645 preempt_disable(); 646 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 647 cpu_relax(); 648 hnow_v = be64_to_cpu(hptep[0]); 649 hnow_r = be64_to_cpu(hptep[1]); 650 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 651 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 652 hnow_r = hpte_new_to_old_r(hnow_r); 653 } 654 655 /* 656 * If the HPT is being resized, don't update the HPTE, 657 * instead let the guest retry after the resize operation is complete. 658 * The synchronization for mmu_ready test vs. set is provided 659 * by the HPTE lock. 660 */ 661 if (!kvm->arch.mmu_ready) 662 goto out_unlock; 663 664 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 665 rev->guest_rpte != hpte[2]) 666 /* HPTE has been changed under us; let the guest retry */ 667 goto out_unlock; 668 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 669 670 /* Always put the HPTE in the rmap chain for the page base address */ 671 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 672 lock_rmap(rmap); 673 674 /* Check if we might have been invalidated; let the guest retry if so */ 675 ret = RESUME_GUEST; 676 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 677 unlock_rmap(rmap); 678 goto out_unlock; 679 } 680 681 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 682 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 683 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 684 685 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 686 /* HPTE was previously valid, so we need to invalidate it */ 687 unlock_rmap(rmap); 688 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 689 kvmppc_invalidate_hpte(kvm, hptep, index); 690 /* don't lose previous R and C bits */ 691 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 692 } else { 693 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 694 } 695 696 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 697 r = hpte_old_to_new_r(hpte[0], r); 698 hpte[0] = hpte_old_to_new_v(hpte[0]); 699 } 700 hptep[1] = cpu_to_be64(r); 701 eieio(); 702 __unlock_hpte(hptep, hpte[0]); 703 asm volatile("ptesync" : : : "memory"); 704 preempt_enable(); 705 if (page && hpte_is_writable(r)) 706 SetPageDirty(page); 707 708 out_put: 709 trace_kvm_page_fault_exit(vcpu, hpte, ret); 710 711 if (page) { 712 /* 713 * We drop pages[0] here, not page because page might 714 * have been set to the head page of a compound, but 715 * we have to drop the reference on the correct tail 716 * page to match the get inside gup() 717 */ 718 put_page(pages[0]); 719 } 720 return ret; 721 722 out_unlock: 723 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 724 preempt_enable(); 725 goto out_put; 726 } 727 728 void kvmppc_rmap_reset(struct kvm *kvm) 729 { 730 struct kvm_memslots *slots; 731 struct kvm_memory_slot *memslot; 732 int srcu_idx; 733 734 srcu_idx = srcu_read_lock(&kvm->srcu); 735 slots = kvm_memslots(kvm); 736 kvm_for_each_memslot(memslot, slots) { 737 /* 738 * This assumes it is acceptable to lose reference and 739 * change bits across a reset. 740 */ 741 memset(memslot->arch.rmap, 0, 742 memslot->npages * sizeof(*memslot->arch.rmap)); 743 } 744 srcu_read_unlock(&kvm->srcu, srcu_idx); 745 } 746 747 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 748 unsigned long gfn); 749 750 static int kvm_handle_hva_range(struct kvm *kvm, 751 unsigned long start, 752 unsigned long end, 753 hva_handler_fn handler) 754 { 755 int ret; 756 int retval = 0; 757 struct kvm_memslots *slots; 758 struct kvm_memory_slot *memslot; 759 760 slots = kvm_memslots(kvm); 761 kvm_for_each_memslot(memslot, slots) { 762 unsigned long hva_start, hva_end; 763 gfn_t gfn, gfn_end; 764 765 hva_start = max(start, memslot->userspace_addr); 766 hva_end = min(end, memslot->userspace_addr + 767 (memslot->npages << PAGE_SHIFT)); 768 if (hva_start >= hva_end) 769 continue; 770 /* 771 * {gfn(page) | page intersects with [hva_start, hva_end)} = 772 * {gfn, gfn+1, ..., gfn_end-1}. 773 */ 774 gfn = hva_to_gfn_memslot(hva_start, memslot); 775 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 776 777 for (; gfn < gfn_end; ++gfn) { 778 ret = handler(kvm, memslot, gfn); 779 retval |= ret; 780 } 781 } 782 783 return retval; 784 } 785 786 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 787 hva_handler_fn handler) 788 { 789 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 790 } 791 792 /* Must be called with both HPTE and rmap locked */ 793 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 794 struct kvm_memory_slot *memslot, 795 unsigned long *rmapp, unsigned long gfn) 796 { 797 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 798 struct revmap_entry *rev = kvm->arch.hpt.rev; 799 unsigned long j, h; 800 unsigned long ptel, psize, rcbits; 801 802 j = rev[i].forw; 803 if (j == i) { 804 /* chain is now empty */ 805 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 806 } else { 807 /* remove i from chain */ 808 h = rev[i].back; 809 rev[h].forw = j; 810 rev[j].back = h; 811 rev[i].forw = rev[i].back = i; 812 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 813 } 814 815 /* Now check and modify the HPTE */ 816 ptel = rev[i].guest_rpte; 817 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 818 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 819 hpte_rpn(ptel, psize) == gfn) { 820 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 821 kvmppc_invalidate_hpte(kvm, hptep, i); 822 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 823 /* Harvest R and C */ 824 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 825 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 826 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 827 kvmppc_update_dirty_map(memslot, gfn, psize); 828 if (rcbits & ~rev[i].guest_rpte) { 829 rev[i].guest_rpte = ptel | rcbits; 830 note_hpte_modification(kvm, &rev[i]); 831 } 832 } 833 } 834 835 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 836 unsigned long gfn) 837 { 838 unsigned long i; 839 __be64 *hptep; 840 unsigned long *rmapp; 841 842 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 843 for (;;) { 844 lock_rmap(rmapp); 845 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 846 unlock_rmap(rmapp); 847 break; 848 } 849 850 /* 851 * To avoid an ABBA deadlock with the HPTE lock bit, 852 * we can't spin on the HPTE lock while holding the 853 * rmap chain lock. 854 */ 855 i = *rmapp & KVMPPC_RMAP_INDEX; 856 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 857 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 858 /* unlock rmap before spinning on the HPTE lock */ 859 unlock_rmap(rmapp); 860 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 861 cpu_relax(); 862 continue; 863 } 864 865 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 866 unlock_rmap(rmapp); 867 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 868 } 869 return 0; 870 } 871 872 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva) 873 { 874 hva_handler_fn handler; 875 876 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 877 kvm_handle_hva(kvm, hva, handler); 878 return 0; 879 } 880 881 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 882 { 883 hva_handler_fn handler; 884 885 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 886 kvm_handle_hva_range(kvm, start, end, handler); 887 return 0; 888 } 889 890 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 891 struct kvm_memory_slot *memslot) 892 { 893 unsigned long gfn; 894 unsigned long n; 895 unsigned long *rmapp; 896 897 gfn = memslot->base_gfn; 898 rmapp = memslot->arch.rmap; 899 for (n = memslot->npages; n; --n, ++gfn) { 900 if (kvm_is_radix(kvm)) { 901 kvm_unmap_radix(kvm, memslot, gfn); 902 continue; 903 } 904 /* 905 * Testing the present bit without locking is OK because 906 * the memslot has been marked invalid already, and hence 907 * no new HPTEs referencing this page can be created, 908 * thus the present bit can't go from 0 to 1. 909 */ 910 if (*rmapp & KVMPPC_RMAP_PRESENT) 911 kvm_unmap_rmapp(kvm, memslot, gfn); 912 ++rmapp; 913 } 914 } 915 916 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 917 unsigned long gfn) 918 { 919 struct revmap_entry *rev = kvm->arch.hpt.rev; 920 unsigned long head, i, j; 921 __be64 *hptep; 922 int ret = 0; 923 unsigned long *rmapp; 924 925 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 926 retry: 927 lock_rmap(rmapp); 928 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 929 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 930 ret = 1; 931 } 932 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 933 unlock_rmap(rmapp); 934 return ret; 935 } 936 937 i = head = *rmapp & KVMPPC_RMAP_INDEX; 938 do { 939 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 940 j = rev[i].forw; 941 942 /* If this HPTE isn't referenced, ignore it */ 943 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 944 continue; 945 946 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 947 /* unlock rmap before spinning on the HPTE lock */ 948 unlock_rmap(rmapp); 949 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 950 cpu_relax(); 951 goto retry; 952 } 953 954 /* Now check and modify the HPTE */ 955 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 956 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 957 kvmppc_clear_ref_hpte(kvm, hptep, i); 958 if (!(rev[i].guest_rpte & HPTE_R_R)) { 959 rev[i].guest_rpte |= HPTE_R_R; 960 note_hpte_modification(kvm, &rev[i]); 961 } 962 ret = 1; 963 } 964 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 965 } while ((i = j) != head); 966 967 unlock_rmap(rmapp); 968 return ret; 969 } 970 971 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 972 { 973 hva_handler_fn handler; 974 975 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 976 return kvm_handle_hva_range(kvm, start, end, handler); 977 } 978 979 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 980 unsigned long gfn) 981 { 982 struct revmap_entry *rev = kvm->arch.hpt.rev; 983 unsigned long head, i, j; 984 unsigned long *hp; 985 int ret = 1; 986 unsigned long *rmapp; 987 988 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 989 if (*rmapp & KVMPPC_RMAP_REFERENCED) 990 return 1; 991 992 lock_rmap(rmapp); 993 if (*rmapp & KVMPPC_RMAP_REFERENCED) 994 goto out; 995 996 if (*rmapp & KVMPPC_RMAP_PRESENT) { 997 i = head = *rmapp & KVMPPC_RMAP_INDEX; 998 do { 999 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1000 j = rev[i].forw; 1001 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1002 goto out; 1003 } while ((i = j) != head); 1004 } 1005 ret = 0; 1006 1007 out: 1008 unlock_rmap(rmapp); 1009 return ret; 1010 } 1011 1012 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1013 { 1014 hva_handler_fn handler; 1015 1016 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1017 return kvm_handle_hva(kvm, hva, handler); 1018 } 1019 1020 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1021 { 1022 hva_handler_fn handler; 1023 1024 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1025 kvm_handle_hva(kvm, hva, handler); 1026 } 1027 1028 static int vcpus_running(struct kvm *kvm) 1029 { 1030 return atomic_read(&kvm->arch.vcpus_running) != 0; 1031 } 1032 1033 /* 1034 * Returns the number of system pages that are dirty. 1035 * This can be more than 1 if we find a huge-page HPTE. 1036 */ 1037 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1038 { 1039 struct revmap_entry *rev = kvm->arch.hpt.rev; 1040 unsigned long head, i, j; 1041 unsigned long n; 1042 unsigned long v, r; 1043 __be64 *hptep; 1044 int npages_dirty = 0; 1045 1046 retry: 1047 lock_rmap(rmapp); 1048 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1049 unlock_rmap(rmapp); 1050 return npages_dirty; 1051 } 1052 1053 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1054 do { 1055 unsigned long hptep1; 1056 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1057 j = rev[i].forw; 1058 1059 /* 1060 * Checking the C (changed) bit here is racy since there 1061 * is no guarantee about when the hardware writes it back. 1062 * If the HPTE is not writable then it is stable since the 1063 * page can't be written to, and we would have done a tlbie 1064 * (which forces the hardware to complete any writeback) 1065 * when making the HPTE read-only. 1066 * If vcpus are running then this call is racy anyway 1067 * since the page could get dirtied subsequently, so we 1068 * expect there to be a further call which would pick up 1069 * any delayed C bit writeback. 1070 * Otherwise we need to do the tlbie even if C==0 in 1071 * order to pick up any delayed writeback of C. 1072 */ 1073 hptep1 = be64_to_cpu(hptep[1]); 1074 if (!(hptep1 & HPTE_R_C) && 1075 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1076 continue; 1077 1078 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1079 /* unlock rmap before spinning on the HPTE lock */ 1080 unlock_rmap(rmapp); 1081 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1082 cpu_relax(); 1083 goto retry; 1084 } 1085 1086 /* Now check and modify the HPTE */ 1087 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1088 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1089 continue; 1090 } 1091 1092 /* need to make it temporarily absent so C is stable */ 1093 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1094 kvmppc_invalidate_hpte(kvm, hptep, i); 1095 v = be64_to_cpu(hptep[0]); 1096 r = be64_to_cpu(hptep[1]); 1097 if (r & HPTE_R_C) { 1098 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1099 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1100 rev[i].guest_rpte |= HPTE_R_C; 1101 note_hpte_modification(kvm, &rev[i]); 1102 } 1103 n = kvmppc_actual_pgsz(v, r); 1104 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1105 if (n > npages_dirty) 1106 npages_dirty = n; 1107 eieio(); 1108 } 1109 v &= ~HPTE_V_ABSENT; 1110 v |= HPTE_V_VALID; 1111 __unlock_hpte(hptep, v); 1112 } while ((i = j) != head); 1113 1114 unlock_rmap(rmapp); 1115 return npages_dirty; 1116 } 1117 1118 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1119 struct kvm_memory_slot *memslot, 1120 unsigned long *map) 1121 { 1122 unsigned long gfn; 1123 1124 if (!vpa->dirty || !vpa->pinned_addr) 1125 return; 1126 gfn = vpa->gpa >> PAGE_SHIFT; 1127 if (gfn < memslot->base_gfn || 1128 gfn >= memslot->base_gfn + memslot->npages) 1129 return; 1130 1131 vpa->dirty = false; 1132 if (map) 1133 __set_bit_le(gfn - memslot->base_gfn, map); 1134 } 1135 1136 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1137 struct kvm_memory_slot *memslot, unsigned long *map) 1138 { 1139 unsigned long i; 1140 unsigned long *rmapp; 1141 1142 preempt_disable(); 1143 rmapp = memslot->arch.rmap; 1144 for (i = 0; i < memslot->npages; ++i) { 1145 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1146 /* 1147 * Note that if npages > 0 then i must be a multiple of npages, 1148 * since we always put huge-page HPTEs in the rmap chain 1149 * corresponding to their page base address. 1150 */ 1151 if (npages) 1152 set_dirty_bits(map, i, npages); 1153 ++rmapp; 1154 } 1155 preempt_enable(); 1156 return 0; 1157 } 1158 1159 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1160 unsigned long *nb_ret) 1161 { 1162 struct kvm_memory_slot *memslot; 1163 unsigned long gfn = gpa >> PAGE_SHIFT; 1164 struct page *page, *pages[1]; 1165 int npages; 1166 unsigned long hva, offset; 1167 int srcu_idx; 1168 1169 srcu_idx = srcu_read_lock(&kvm->srcu); 1170 memslot = gfn_to_memslot(kvm, gfn); 1171 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1172 goto err; 1173 hva = gfn_to_hva_memslot(memslot, gfn); 1174 npages = get_user_pages_fast(hva, 1, 1, pages); 1175 if (npages < 1) 1176 goto err; 1177 page = pages[0]; 1178 srcu_read_unlock(&kvm->srcu, srcu_idx); 1179 1180 offset = gpa & (PAGE_SIZE - 1); 1181 if (nb_ret) 1182 *nb_ret = PAGE_SIZE - offset; 1183 return page_address(page) + offset; 1184 1185 err: 1186 srcu_read_unlock(&kvm->srcu, srcu_idx); 1187 return NULL; 1188 } 1189 1190 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1191 bool dirty) 1192 { 1193 struct page *page = virt_to_page(va); 1194 struct kvm_memory_slot *memslot; 1195 unsigned long gfn; 1196 int srcu_idx; 1197 1198 put_page(page); 1199 1200 if (!dirty) 1201 return; 1202 1203 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1204 gfn = gpa >> PAGE_SHIFT; 1205 srcu_idx = srcu_read_lock(&kvm->srcu); 1206 memslot = gfn_to_memslot(kvm, gfn); 1207 if (memslot && memslot->dirty_bitmap) 1208 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1209 srcu_read_unlock(&kvm->srcu, srcu_idx); 1210 } 1211 1212 /* 1213 * HPT resizing 1214 */ 1215 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1216 { 1217 int rc; 1218 1219 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1220 if (rc < 0) 1221 return rc; 1222 1223 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1224 resize->hpt.virt); 1225 1226 return 0; 1227 } 1228 1229 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1230 unsigned long idx) 1231 { 1232 struct kvm *kvm = resize->kvm; 1233 struct kvm_hpt_info *old = &kvm->arch.hpt; 1234 struct kvm_hpt_info *new = &resize->hpt; 1235 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1236 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1237 __be64 *hptep, *new_hptep; 1238 unsigned long vpte, rpte, guest_rpte; 1239 int ret; 1240 struct revmap_entry *rev; 1241 unsigned long apsize, avpn, pteg, hash; 1242 unsigned long new_idx, new_pteg, replace_vpte; 1243 int pshift; 1244 1245 hptep = (__be64 *)(old->virt + (idx << 4)); 1246 1247 /* Guest is stopped, so new HPTEs can't be added or faulted 1248 * in, only unmapped or altered by host actions. So, it's 1249 * safe to check this before we take the HPTE lock */ 1250 vpte = be64_to_cpu(hptep[0]); 1251 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1252 return 0; /* nothing to do */ 1253 1254 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1255 cpu_relax(); 1256 1257 vpte = be64_to_cpu(hptep[0]); 1258 1259 ret = 0; 1260 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1261 /* Nothing to do */ 1262 goto out; 1263 1264 /* Unmap */ 1265 rev = &old->rev[idx]; 1266 guest_rpte = rev->guest_rpte; 1267 1268 ret = -EIO; 1269 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1270 if (!apsize) 1271 goto out; 1272 1273 if (vpte & HPTE_V_VALID) { 1274 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1275 int srcu_idx = srcu_read_lock(&kvm->srcu); 1276 struct kvm_memory_slot *memslot = 1277 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1278 1279 if (memslot) { 1280 unsigned long *rmapp; 1281 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1282 1283 lock_rmap(rmapp); 1284 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1285 unlock_rmap(rmapp); 1286 } 1287 1288 srcu_read_unlock(&kvm->srcu, srcu_idx); 1289 } 1290 1291 /* Reload PTE after unmap */ 1292 vpte = be64_to_cpu(hptep[0]); 1293 1294 BUG_ON(vpte & HPTE_V_VALID); 1295 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1296 1297 ret = 0; 1298 if (!(vpte & HPTE_V_BOLTED)) 1299 goto out; 1300 1301 rpte = be64_to_cpu(hptep[1]); 1302 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1303 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1304 pteg = idx / HPTES_PER_GROUP; 1305 if (vpte & HPTE_V_SECONDARY) 1306 pteg = ~pteg; 1307 1308 if (!(vpte & HPTE_V_1TB_SEG)) { 1309 unsigned long offset, vsid; 1310 1311 /* We only have 28 - 23 bits of offset in avpn */ 1312 offset = (avpn & 0x1f) << 23; 1313 vsid = avpn >> 5; 1314 /* We can find more bits from the pteg value */ 1315 if (pshift < 23) 1316 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1317 1318 hash = vsid ^ (offset >> pshift); 1319 } else { 1320 unsigned long offset, vsid; 1321 1322 /* We only have 40 - 23 bits of seg_off in avpn */ 1323 offset = (avpn & 0x1ffff) << 23; 1324 vsid = avpn >> 17; 1325 if (pshift < 23) 1326 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1327 1328 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1329 } 1330 1331 new_pteg = hash & new_hash_mask; 1332 if (vpte & HPTE_V_SECONDARY) { 1333 BUG_ON(~pteg != (hash & old_hash_mask)); 1334 new_pteg = ~new_pteg; 1335 } else { 1336 BUG_ON(pteg != (hash & old_hash_mask)); 1337 } 1338 1339 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1340 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1341 1342 replace_vpte = be64_to_cpu(new_hptep[0]); 1343 1344 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1345 BUG_ON(new->order >= old->order); 1346 1347 if (replace_vpte & HPTE_V_BOLTED) { 1348 if (vpte & HPTE_V_BOLTED) 1349 /* Bolted collision, nothing we can do */ 1350 ret = -ENOSPC; 1351 /* Discard the new HPTE */ 1352 goto out; 1353 } 1354 1355 /* Discard the previous HPTE */ 1356 } 1357 1358 new_hptep[1] = cpu_to_be64(rpte); 1359 new->rev[new_idx].guest_rpte = guest_rpte; 1360 /* No need for a barrier, since new HPT isn't active */ 1361 new_hptep[0] = cpu_to_be64(vpte); 1362 unlock_hpte(new_hptep, vpte); 1363 1364 out: 1365 unlock_hpte(hptep, vpte); 1366 return ret; 1367 } 1368 1369 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1370 { 1371 struct kvm *kvm = resize->kvm; 1372 unsigned long i; 1373 int rc; 1374 1375 /* 1376 * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs 1377 * that POWER9 uses, and could well hit a BUG_ON on POWER9. 1378 */ 1379 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1380 return -EIO; 1381 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1382 rc = resize_hpt_rehash_hpte(resize, i); 1383 if (rc != 0) 1384 return rc; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1391 { 1392 struct kvm *kvm = resize->kvm; 1393 struct kvm_hpt_info hpt_tmp; 1394 1395 /* Exchange the pending tables in the resize structure with 1396 * the active tables */ 1397 1398 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1399 1400 spin_lock(&kvm->mmu_lock); 1401 asm volatile("ptesync" : : : "memory"); 1402 1403 hpt_tmp = kvm->arch.hpt; 1404 kvmppc_set_hpt(kvm, &resize->hpt); 1405 resize->hpt = hpt_tmp; 1406 1407 spin_unlock(&kvm->mmu_lock); 1408 1409 synchronize_srcu_expedited(&kvm->srcu); 1410 1411 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1412 } 1413 1414 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1415 { 1416 BUG_ON(kvm->arch.resize_hpt != resize); 1417 1418 if (!resize) 1419 return; 1420 1421 if (resize->hpt.virt) 1422 kvmppc_free_hpt(&resize->hpt); 1423 1424 kvm->arch.resize_hpt = NULL; 1425 kfree(resize); 1426 } 1427 1428 static void resize_hpt_prepare_work(struct work_struct *work) 1429 { 1430 struct kvm_resize_hpt *resize = container_of(work, 1431 struct kvm_resize_hpt, 1432 work); 1433 struct kvm *kvm = resize->kvm; 1434 int err; 1435 1436 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1437 resize->order); 1438 1439 err = resize_hpt_allocate(resize); 1440 1441 mutex_lock(&kvm->lock); 1442 1443 resize->error = err; 1444 resize->prepare_done = true; 1445 1446 mutex_unlock(&kvm->lock); 1447 } 1448 1449 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1450 struct kvm_ppc_resize_hpt *rhpt) 1451 { 1452 unsigned long flags = rhpt->flags; 1453 unsigned long shift = rhpt->shift; 1454 struct kvm_resize_hpt *resize; 1455 int ret; 1456 1457 if (flags != 0 || kvm_is_radix(kvm)) 1458 return -EINVAL; 1459 1460 if (shift && ((shift < 18) || (shift > 46))) 1461 return -EINVAL; 1462 1463 mutex_lock(&kvm->lock); 1464 1465 resize = kvm->arch.resize_hpt; 1466 1467 if (resize) { 1468 if (resize->order == shift) { 1469 /* Suitable resize in progress */ 1470 if (resize->prepare_done) { 1471 ret = resize->error; 1472 if (ret != 0) 1473 resize_hpt_release(kvm, resize); 1474 } else { 1475 ret = 100; /* estimated time in ms */ 1476 } 1477 1478 goto out; 1479 } 1480 1481 /* not suitable, cancel it */ 1482 resize_hpt_release(kvm, resize); 1483 } 1484 1485 ret = 0; 1486 if (!shift) 1487 goto out; /* nothing to do */ 1488 1489 /* start new resize */ 1490 1491 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1492 if (!resize) { 1493 ret = -ENOMEM; 1494 goto out; 1495 } 1496 resize->order = shift; 1497 resize->kvm = kvm; 1498 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1499 kvm->arch.resize_hpt = resize; 1500 1501 schedule_work(&resize->work); 1502 1503 ret = 100; /* estimated time in ms */ 1504 1505 out: 1506 mutex_unlock(&kvm->lock); 1507 return ret; 1508 } 1509 1510 static void resize_hpt_boot_vcpu(void *opaque) 1511 { 1512 /* Nothing to do, just force a KVM exit */ 1513 } 1514 1515 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1516 struct kvm_ppc_resize_hpt *rhpt) 1517 { 1518 unsigned long flags = rhpt->flags; 1519 unsigned long shift = rhpt->shift; 1520 struct kvm_resize_hpt *resize; 1521 long ret; 1522 1523 if (flags != 0 || kvm_is_radix(kvm)) 1524 return -EINVAL; 1525 1526 if (shift && ((shift < 18) || (shift > 46))) 1527 return -EINVAL; 1528 1529 mutex_lock(&kvm->lock); 1530 1531 resize = kvm->arch.resize_hpt; 1532 1533 /* This shouldn't be possible */ 1534 ret = -EIO; 1535 if (WARN_ON(!kvm->arch.mmu_ready)) 1536 goto out_no_hpt; 1537 1538 /* Stop VCPUs from running while we mess with the HPT */ 1539 kvm->arch.mmu_ready = 0; 1540 smp_mb(); 1541 1542 /* Boot all CPUs out of the guest so they re-read 1543 * mmu_ready */ 1544 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1545 1546 ret = -ENXIO; 1547 if (!resize || (resize->order != shift)) 1548 goto out; 1549 1550 ret = -EBUSY; 1551 if (!resize->prepare_done) 1552 goto out; 1553 1554 ret = resize->error; 1555 if (ret != 0) 1556 goto out; 1557 1558 ret = resize_hpt_rehash(resize); 1559 if (ret != 0) 1560 goto out; 1561 1562 resize_hpt_pivot(resize); 1563 1564 out: 1565 /* Let VCPUs run again */ 1566 kvm->arch.mmu_ready = 1; 1567 smp_mb(); 1568 out_no_hpt: 1569 resize_hpt_release(kvm, resize); 1570 mutex_unlock(&kvm->lock); 1571 return ret; 1572 } 1573 1574 /* 1575 * Functions for reading and writing the hash table via reads and 1576 * writes on a file descriptor. 1577 * 1578 * Reads return the guest view of the hash table, which has to be 1579 * pieced together from the real hash table and the guest_rpte 1580 * values in the revmap array. 1581 * 1582 * On writes, each HPTE written is considered in turn, and if it 1583 * is valid, it is written to the HPT as if an H_ENTER with the 1584 * exact flag set was done. When the invalid count is non-zero 1585 * in the header written to the stream, the kernel will make 1586 * sure that that many HPTEs are invalid, and invalidate them 1587 * if not. 1588 */ 1589 1590 struct kvm_htab_ctx { 1591 unsigned long index; 1592 unsigned long flags; 1593 struct kvm *kvm; 1594 int first_pass; 1595 }; 1596 1597 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1598 1599 /* 1600 * Returns 1 if this HPT entry has been modified or has pending 1601 * R/C bit changes. 1602 */ 1603 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1604 { 1605 unsigned long rcbits_unset; 1606 1607 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1608 return 1; 1609 1610 /* Also need to consider changes in reference and changed bits */ 1611 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1612 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1613 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1614 return 1; 1615 1616 return 0; 1617 } 1618 1619 static long record_hpte(unsigned long flags, __be64 *hptp, 1620 unsigned long *hpte, struct revmap_entry *revp, 1621 int want_valid, int first_pass) 1622 { 1623 unsigned long v, r, hr; 1624 unsigned long rcbits_unset; 1625 int ok = 1; 1626 int valid, dirty; 1627 1628 /* Unmodified entries are uninteresting except on the first pass */ 1629 dirty = hpte_dirty(revp, hptp); 1630 if (!first_pass && !dirty) 1631 return 0; 1632 1633 valid = 0; 1634 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1635 valid = 1; 1636 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1637 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1638 valid = 0; 1639 } 1640 if (valid != want_valid) 1641 return 0; 1642 1643 v = r = 0; 1644 if (valid || dirty) { 1645 /* lock the HPTE so it's stable and read it */ 1646 preempt_disable(); 1647 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1648 cpu_relax(); 1649 v = be64_to_cpu(hptp[0]); 1650 hr = be64_to_cpu(hptp[1]); 1651 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1652 v = hpte_new_to_old_v(v, hr); 1653 hr = hpte_new_to_old_r(hr); 1654 } 1655 1656 /* re-evaluate valid and dirty from synchronized HPTE value */ 1657 valid = !!(v & HPTE_V_VALID); 1658 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1659 1660 /* Harvest R and C into guest view if necessary */ 1661 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1662 if (valid && (rcbits_unset & hr)) { 1663 revp->guest_rpte |= (hr & 1664 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1665 dirty = 1; 1666 } 1667 1668 if (v & HPTE_V_ABSENT) { 1669 v &= ~HPTE_V_ABSENT; 1670 v |= HPTE_V_VALID; 1671 valid = 1; 1672 } 1673 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1674 valid = 0; 1675 1676 r = revp->guest_rpte; 1677 /* only clear modified if this is the right sort of entry */ 1678 if (valid == want_valid && dirty) { 1679 r &= ~HPTE_GR_MODIFIED; 1680 revp->guest_rpte = r; 1681 } 1682 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1683 preempt_enable(); 1684 if (!(valid == want_valid && (first_pass || dirty))) 1685 ok = 0; 1686 } 1687 hpte[0] = cpu_to_be64(v); 1688 hpte[1] = cpu_to_be64(r); 1689 return ok; 1690 } 1691 1692 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1693 size_t count, loff_t *ppos) 1694 { 1695 struct kvm_htab_ctx *ctx = file->private_data; 1696 struct kvm *kvm = ctx->kvm; 1697 struct kvm_get_htab_header hdr; 1698 __be64 *hptp; 1699 struct revmap_entry *revp; 1700 unsigned long i, nb, nw; 1701 unsigned long __user *lbuf; 1702 struct kvm_get_htab_header __user *hptr; 1703 unsigned long flags; 1704 int first_pass; 1705 unsigned long hpte[2]; 1706 1707 if (!access_ok(VERIFY_WRITE, buf, count)) 1708 return -EFAULT; 1709 if (kvm_is_radix(kvm)) 1710 return 0; 1711 1712 first_pass = ctx->first_pass; 1713 flags = ctx->flags; 1714 1715 i = ctx->index; 1716 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1717 revp = kvm->arch.hpt.rev + i; 1718 lbuf = (unsigned long __user *)buf; 1719 1720 nb = 0; 1721 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1722 /* Initialize header */ 1723 hptr = (struct kvm_get_htab_header __user *)buf; 1724 hdr.n_valid = 0; 1725 hdr.n_invalid = 0; 1726 nw = nb; 1727 nb += sizeof(hdr); 1728 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1729 1730 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1731 if (!first_pass) { 1732 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1733 !hpte_dirty(revp, hptp)) { 1734 ++i; 1735 hptp += 2; 1736 ++revp; 1737 } 1738 } 1739 hdr.index = i; 1740 1741 /* Grab a series of valid entries */ 1742 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1743 hdr.n_valid < 0xffff && 1744 nb + HPTE_SIZE < count && 1745 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1746 /* valid entry, write it out */ 1747 ++hdr.n_valid; 1748 if (__put_user(hpte[0], lbuf) || 1749 __put_user(hpte[1], lbuf + 1)) 1750 return -EFAULT; 1751 nb += HPTE_SIZE; 1752 lbuf += 2; 1753 ++i; 1754 hptp += 2; 1755 ++revp; 1756 } 1757 /* Now skip invalid entries while we can */ 1758 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1759 hdr.n_invalid < 0xffff && 1760 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1761 /* found an invalid entry */ 1762 ++hdr.n_invalid; 1763 ++i; 1764 hptp += 2; 1765 ++revp; 1766 } 1767 1768 if (hdr.n_valid || hdr.n_invalid) { 1769 /* write back the header */ 1770 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1771 return -EFAULT; 1772 nw = nb; 1773 buf = (char __user *)lbuf; 1774 } else { 1775 nb = nw; 1776 } 1777 1778 /* Check if we've wrapped around the hash table */ 1779 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1780 i = 0; 1781 ctx->first_pass = 0; 1782 break; 1783 } 1784 } 1785 1786 ctx->index = i; 1787 1788 return nb; 1789 } 1790 1791 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1792 size_t count, loff_t *ppos) 1793 { 1794 struct kvm_htab_ctx *ctx = file->private_data; 1795 struct kvm *kvm = ctx->kvm; 1796 struct kvm_get_htab_header hdr; 1797 unsigned long i, j; 1798 unsigned long v, r; 1799 unsigned long __user *lbuf; 1800 __be64 *hptp; 1801 unsigned long tmp[2]; 1802 ssize_t nb; 1803 long int err, ret; 1804 int mmu_ready; 1805 int pshift; 1806 1807 if (!access_ok(VERIFY_READ, buf, count)) 1808 return -EFAULT; 1809 if (kvm_is_radix(kvm)) 1810 return -EINVAL; 1811 1812 /* lock out vcpus from running while we're doing this */ 1813 mutex_lock(&kvm->lock); 1814 mmu_ready = kvm->arch.mmu_ready; 1815 if (mmu_ready) { 1816 kvm->arch.mmu_ready = 0; /* temporarily */ 1817 /* order mmu_ready vs. vcpus_running */ 1818 smp_mb(); 1819 if (atomic_read(&kvm->arch.vcpus_running)) { 1820 kvm->arch.mmu_ready = 1; 1821 mutex_unlock(&kvm->lock); 1822 return -EBUSY; 1823 } 1824 } 1825 1826 err = 0; 1827 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1828 err = -EFAULT; 1829 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1830 break; 1831 1832 err = 0; 1833 if (nb + hdr.n_valid * HPTE_SIZE > count) 1834 break; 1835 1836 nb += sizeof(hdr); 1837 buf += sizeof(hdr); 1838 1839 err = -EINVAL; 1840 i = hdr.index; 1841 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1842 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1843 break; 1844 1845 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1846 lbuf = (unsigned long __user *)buf; 1847 for (j = 0; j < hdr.n_valid; ++j) { 1848 __be64 hpte_v; 1849 __be64 hpte_r; 1850 1851 err = -EFAULT; 1852 if (__get_user(hpte_v, lbuf) || 1853 __get_user(hpte_r, lbuf + 1)) 1854 goto out; 1855 v = be64_to_cpu(hpte_v); 1856 r = be64_to_cpu(hpte_r); 1857 err = -EINVAL; 1858 if (!(v & HPTE_V_VALID)) 1859 goto out; 1860 pshift = kvmppc_hpte_base_page_shift(v, r); 1861 if (pshift <= 0) 1862 goto out; 1863 lbuf += 2; 1864 nb += HPTE_SIZE; 1865 1866 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1867 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1868 err = -EIO; 1869 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1870 tmp); 1871 if (ret != H_SUCCESS) { 1872 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1873 "r=%lx\n", ret, i, v, r); 1874 goto out; 1875 } 1876 if (!mmu_ready && is_vrma_hpte(v)) { 1877 unsigned long senc, lpcr; 1878 1879 senc = slb_pgsize_encoding(1ul << pshift); 1880 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1881 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1882 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1883 lpcr = senc << (LPCR_VRMASD_SH - 4); 1884 kvmppc_update_lpcr(kvm, lpcr, 1885 LPCR_VRMASD); 1886 } else { 1887 kvmppc_setup_partition_table(kvm); 1888 } 1889 mmu_ready = 1; 1890 } 1891 ++i; 1892 hptp += 2; 1893 } 1894 1895 for (j = 0; j < hdr.n_invalid; ++j) { 1896 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1897 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1898 ++i; 1899 hptp += 2; 1900 } 1901 err = 0; 1902 } 1903 1904 out: 1905 /* Order HPTE updates vs. mmu_ready */ 1906 smp_wmb(); 1907 kvm->arch.mmu_ready = mmu_ready; 1908 mutex_unlock(&kvm->lock); 1909 1910 if (err) 1911 return err; 1912 return nb; 1913 } 1914 1915 static int kvm_htab_release(struct inode *inode, struct file *filp) 1916 { 1917 struct kvm_htab_ctx *ctx = filp->private_data; 1918 1919 filp->private_data = NULL; 1920 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1921 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1922 kvm_put_kvm(ctx->kvm); 1923 kfree(ctx); 1924 return 0; 1925 } 1926 1927 static const struct file_operations kvm_htab_fops = { 1928 .read = kvm_htab_read, 1929 .write = kvm_htab_write, 1930 .llseek = default_llseek, 1931 .release = kvm_htab_release, 1932 }; 1933 1934 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1935 { 1936 int ret; 1937 struct kvm_htab_ctx *ctx; 1938 int rwflag; 1939 1940 /* reject flags we don't recognize */ 1941 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1942 return -EINVAL; 1943 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1944 if (!ctx) 1945 return -ENOMEM; 1946 kvm_get_kvm(kvm); 1947 ctx->kvm = kvm; 1948 ctx->index = ghf->start_index; 1949 ctx->flags = ghf->flags; 1950 ctx->first_pass = 1; 1951 1952 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1953 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1954 if (ret < 0) { 1955 kfree(ctx); 1956 kvm_put_kvm(kvm); 1957 return ret; 1958 } 1959 1960 if (rwflag == O_RDONLY) { 1961 mutex_lock(&kvm->slots_lock); 1962 atomic_inc(&kvm->arch.hpte_mod_interest); 1963 /* make sure kvmppc_do_h_enter etc. see the increment */ 1964 synchronize_srcu_expedited(&kvm->srcu); 1965 mutex_unlock(&kvm->slots_lock); 1966 } 1967 1968 return ret; 1969 } 1970 1971 struct debugfs_htab_state { 1972 struct kvm *kvm; 1973 struct mutex mutex; 1974 unsigned long hpt_index; 1975 int chars_left; 1976 int buf_index; 1977 char buf[64]; 1978 }; 1979 1980 static int debugfs_htab_open(struct inode *inode, struct file *file) 1981 { 1982 struct kvm *kvm = inode->i_private; 1983 struct debugfs_htab_state *p; 1984 1985 p = kzalloc(sizeof(*p), GFP_KERNEL); 1986 if (!p) 1987 return -ENOMEM; 1988 1989 kvm_get_kvm(kvm); 1990 p->kvm = kvm; 1991 mutex_init(&p->mutex); 1992 file->private_data = p; 1993 1994 return nonseekable_open(inode, file); 1995 } 1996 1997 static int debugfs_htab_release(struct inode *inode, struct file *file) 1998 { 1999 struct debugfs_htab_state *p = file->private_data; 2000 2001 kvm_put_kvm(p->kvm); 2002 kfree(p); 2003 return 0; 2004 } 2005 2006 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2007 size_t len, loff_t *ppos) 2008 { 2009 struct debugfs_htab_state *p = file->private_data; 2010 ssize_t ret, r; 2011 unsigned long i, n; 2012 unsigned long v, hr, gr; 2013 struct kvm *kvm; 2014 __be64 *hptp; 2015 2016 kvm = p->kvm; 2017 if (kvm_is_radix(kvm)) 2018 return 0; 2019 2020 ret = mutex_lock_interruptible(&p->mutex); 2021 if (ret) 2022 return ret; 2023 2024 if (p->chars_left) { 2025 n = p->chars_left; 2026 if (n > len) 2027 n = len; 2028 r = copy_to_user(buf, p->buf + p->buf_index, n); 2029 n -= r; 2030 p->chars_left -= n; 2031 p->buf_index += n; 2032 buf += n; 2033 len -= n; 2034 ret = n; 2035 if (r) { 2036 if (!n) 2037 ret = -EFAULT; 2038 goto out; 2039 } 2040 } 2041 2042 i = p->hpt_index; 2043 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2044 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2045 ++i, hptp += 2) { 2046 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2047 continue; 2048 2049 /* lock the HPTE so it's stable and read it */ 2050 preempt_disable(); 2051 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2052 cpu_relax(); 2053 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2054 hr = be64_to_cpu(hptp[1]); 2055 gr = kvm->arch.hpt.rev[i].guest_rpte; 2056 unlock_hpte(hptp, v); 2057 preempt_enable(); 2058 2059 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2060 continue; 2061 2062 n = scnprintf(p->buf, sizeof(p->buf), 2063 "%6lx %.16lx %.16lx %.16lx\n", 2064 i, v, hr, gr); 2065 p->chars_left = n; 2066 if (n > len) 2067 n = len; 2068 r = copy_to_user(buf, p->buf, n); 2069 n -= r; 2070 p->chars_left -= n; 2071 p->buf_index = n; 2072 buf += n; 2073 len -= n; 2074 ret += n; 2075 if (r) { 2076 if (!ret) 2077 ret = -EFAULT; 2078 goto out; 2079 } 2080 } 2081 p->hpt_index = i; 2082 2083 out: 2084 mutex_unlock(&p->mutex); 2085 return ret; 2086 } 2087 2088 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2089 size_t len, loff_t *ppos) 2090 { 2091 return -EACCES; 2092 } 2093 2094 static const struct file_operations debugfs_htab_fops = { 2095 .owner = THIS_MODULE, 2096 .open = debugfs_htab_open, 2097 .release = debugfs_htab_release, 2098 .read = debugfs_htab_read, 2099 .write = debugfs_htab_write, 2100 .llseek = generic_file_llseek, 2101 }; 2102 2103 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2104 { 2105 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2106 kvm->arch.debugfs_dir, kvm, 2107 &debugfs_htab_fops); 2108 } 2109 2110 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2111 { 2112 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2113 2114 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2115 2116 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2117 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2118 2119 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2120 } 2121