1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39 
40 #include "trace_hv.h"
41 
42 /* Power architecture requires HPT is at least 256kB */
43 #define PPC_MIN_HPT_ORDER	18
44 
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 				long pte_index, unsigned long pteh,
47 				unsigned long ptel, unsigned long *pte_idx_ret);
48 static void kvmppc_rmap_reset(struct kvm *kvm);
49 
50 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
51 {
52 	unsigned long hpt = 0;
53 	struct revmap_entry *rev;
54 	struct page *page = NULL;
55 	long order = KVM_DEFAULT_HPT_ORDER;
56 
57 	if (htab_orderp) {
58 		order = *htab_orderp;
59 		if (order < PPC_MIN_HPT_ORDER)
60 			order = PPC_MIN_HPT_ORDER;
61 	}
62 
63 	kvm->arch.hpt_cma_alloc = 0;
64 	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
65 	if (page) {
66 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
67 		memset((void *)hpt, 0, (1ul << order));
68 		kvm->arch.hpt_cma_alloc = 1;
69 	}
70 
71 	/* Lastly try successively smaller sizes from the page allocator */
72 	while (!hpt && order > PPC_MIN_HPT_ORDER) {
73 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
74 				       __GFP_NOWARN, order - PAGE_SHIFT);
75 		if (!hpt)
76 			--order;
77 	}
78 
79 	if (!hpt)
80 		return -ENOMEM;
81 
82 	kvm->arch.hpt_virt = hpt;
83 	kvm->arch.hpt_order = order;
84 	/* HPTEs are 2**4 bytes long */
85 	kvm->arch.hpt_npte = 1ul << (order - 4);
86 	/* 128 (2**7) bytes in each HPTEG */
87 	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
88 
89 	/* Allocate reverse map array */
90 	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
91 	if (!rev) {
92 		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
93 		goto out_freehpt;
94 	}
95 	kvm->arch.revmap = rev;
96 	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
97 
98 	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
99 		hpt, order, kvm->arch.lpid);
100 
101 	if (htab_orderp)
102 		*htab_orderp = order;
103 	return 0;
104 
105  out_freehpt:
106 	if (kvm->arch.hpt_cma_alloc)
107 		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
108 	else
109 		free_pages(hpt, order - PAGE_SHIFT);
110 	return -ENOMEM;
111 }
112 
113 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
114 {
115 	long err = -EBUSY;
116 	long order;
117 
118 	mutex_lock(&kvm->lock);
119 	if (kvm->arch.rma_setup_done) {
120 		kvm->arch.rma_setup_done = 0;
121 		/* order rma_setup_done vs. vcpus_running */
122 		smp_mb();
123 		if (atomic_read(&kvm->arch.vcpus_running)) {
124 			kvm->arch.rma_setup_done = 1;
125 			goto out;
126 		}
127 	}
128 	if (kvm->arch.hpt_virt) {
129 		order = kvm->arch.hpt_order;
130 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
131 		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
132 		/*
133 		 * Reset all the reverse-mapping chains for all memslots
134 		 */
135 		kvmppc_rmap_reset(kvm);
136 		/* Ensure that each vcpu will flush its TLB on next entry. */
137 		cpumask_setall(&kvm->arch.need_tlb_flush);
138 		*htab_orderp = order;
139 		err = 0;
140 	} else {
141 		err = kvmppc_alloc_hpt(kvm, htab_orderp);
142 		order = *htab_orderp;
143 	}
144  out:
145 	mutex_unlock(&kvm->lock);
146 	return err;
147 }
148 
149 void kvmppc_free_hpt(struct kvm *kvm)
150 {
151 	kvmppc_free_lpid(kvm->arch.lpid);
152 	vfree(kvm->arch.revmap);
153 	if (kvm->arch.hpt_cma_alloc)
154 		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
155 				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
156 	else
157 		free_pages(kvm->arch.hpt_virt,
158 			   kvm->arch.hpt_order - PAGE_SHIFT);
159 }
160 
161 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
162 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
163 {
164 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
165 }
166 
167 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
168 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
169 {
170 	return (pgsize == 0x10000) ? 0x1000 : 0;
171 }
172 
173 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
174 		     unsigned long porder)
175 {
176 	unsigned long i;
177 	unsigned long npages;
178 	unsigned long hp_v, hp_r;
179 	unsigned long addr, hash;
180 	unsigned long psize;
181 	unsigned long hp0, hp1;
182 	unsigned long idx_ret;
183 	long ret;
184 	struct kvm *kvm = vcpu->kvm;
185 
186 	psize = 1ul << porder;
187 	npages = memslot->npages >> (porder - PAGE_SHIFT);
188 
189 	/* VRMA can't be > 1TB */
190 	if (npages > 1ul << (40 - porder))
191 		npages = 1ul << (40 - porder);
192 	/* Can't use more than 1 HPTE per HPTEG */
193 	if (npages > kvm->arch.hpt_mask + 1)
194 		npages = kvm->arch.hpt_mask + 1;
195 
196 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
197 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
198 	hp1 = hpte1_pgsize_encoding(psize) |
199 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
200 
201 	for (i = 0; i < npages; ++i) {
202 		addr = i << porder;
203 		/* can't use hpt_hash since va > 64 bits */
204 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
205 		/*
206 		 * We assume that the hash table is empty and no
207 		 * vcpus are using it at this stage.  Since we create
208 		 * at most one HPTE per HPTEG, we just assume entry 7
209 		 * is available and use it.
210 		 */
211 		hash = (hash << 3) + 7;
212 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
213 		hp_r = hp1 | addr;
214 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
215 						 &idx_ret);
216 		if (ret != H_SUCCESS) {
217 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
218 			       addr, ret);
219 			break;
220 		}
221 	}
222 }
223 
224 int kvmppc_mmu_hv_init(void)
225 {
226 	unsigned long host_lpid, rsvd_lpid;
227 
228 	if (!cpu_has_feature(CPU_FTR_HVMODE))
229 		return -EINVAL;
230 
231 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
232 	host_lpid = mfspr(SPRN_LPID);
233 	rsvd_lpid = LPID_RSVD;
234 
235 	kvmppc_init_lpid(rsvd_lpid + 1);
236 
237 	kvmppc_claim_lpid(host_lpid);
238 	/* rsvd_lpid is reserved for use in partition switching */
239 	kvmppc_claim_lpid(rsvd_lpid);
240 
241 	return 0;
242 }
243 
244 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
245 {
246 	unsigned long msr = vcpu->arch.intr_msr;
247 
248 	/* If transactional, change to suspend mode on IRQ delivery */
249 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
250 		msr |= MSR_TS_S;
251 	else
252 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
253 	kvmppc_set_msr(vcpu, msr);
254 }
255 
256 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
257 				long pte_index, unsigned long pteh,
258 				unsigned long ptel, unsigned long *pte_idx_ret)
259 {
260 	long ret;
261 
262 	/* Protect linux PTE lookup from page table destruction */
263 	rcu_read_lock_sched();	/* this disables preemption too */
264 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
265 				current->mm->pgd, false, pte_idx_ret);
266 	rcu_read_unlock_sched();
267 	if (ret == H_TOO_HARD) {
268 		/* this can't happen */
269 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
270 		ret = H_RESOURCE;	/* or something */
271 	}
272 	return ret;
273 
274 }
275 
276 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
277 							 gva_t eaddr)
278 {
279 	u64 mask;
280 	int i;
281 
282 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
283 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
284 			continue;
285 
286 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
287 			mask = ESID_MASK_1T;
288 		else
289 			mask = ESID_MASK;
290 
291 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
292 			return &vcpu->arch.slb[i];
293 	}
294 	return NULL;
295 }
296 
297 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
298 			unsigned long ea)
299 {
300 	unsigned long ra_mask;
301 
302 	ra_mask = hpte_page_size(v, r) - 1;
303 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
304 }
305 
306 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
307 			struct kvmppc_pte *gpte, bool data, bool iswrite)
308 {
309 	struct kvm *kvm = vcpu->kvm;
310 	struct kvmppc_slb *slbe;
311 	unsigned long slb_v;
312 	unsigned long pp, key;
313 	unsigned long v, gr;
314 	__be64 *hptep;
315 	int index;
316 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
317 
318 	/* Get SLB entry */
319 	if (virtmode) {
320 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
321 		if (!slbe)
322 			return -EINVAL;
323 		slb_v = slbe->origv;
324 	} else {
325 		/* real mode access */
326 		slb_v = vcpu->kvm->arch.vrma_slb_v;
327 	}
328 
329 	preempt_disable();
330 	/* Find the HPTE in the hash table */
331 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
332 					 HPTE_V_VALID | HPTE_V_ABSENT);
333 	if (index < 0) {
334 		preempt_enable();
335 		return -ENOENT;
336 	}
337 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
338 	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
339 	gr = kvm->arch.revmap[index].guest_rpte;
340 
341 	/* Unlock the HPTE */
342 	asm volatile("lwsync" : : : "memory");
343 	hptep[0] = cpu_to_be64(v);
344 	preempt_enable();
345 
346 	gpte->eaddr = eaddr;
347 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348 
349 	/* Get PP bits and key for permission check */
350 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 	key &= slb_v;
353 
354 	/* Calculate permissions */
355 	gpte->may_read = hpte_read_permission(pp, key);
356 	gpte->may_write = hpte_write_permission(pp, key);
357 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358 
359 	/* Storage key permission check for POWER7 */
360 	if (data && virtmode) {
361 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 		if (amrfield & 1)
363 			gpte->may_read = 0;
364 		if (amrfield & 2)
365 			gpte->may_write = 0;
366 	}
367 
368 	/* Get the guest physical address */
369 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 	return 0;
371 }
372 
373 /*
374  * Quick test for whether an instruction is a load or a store.
375  * If the instruction is a load or a store, then this will indicate
376  * which it is, at least on server processors.  (Embedded processors
377  * have some external PID instructions that don't follow the rule
378  * embodied here.)  If the instruction isn't a load or store, then
379  * this doesn't return anything useful.
380  */
381 static int instruction_is_store(unsigned int instr)
382 {
383 	unsigned int mask;
384 
385 	mask = 0x10000000;
386 	if ((instr & 0xfc000000) == 0x7c000000)
387 		mask = 0x100;		/* major opcode 31 */
388 	return (instr & mask) != 0;
389 }
390 
391 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392 				  unsigned long gpa, gva_t ea, int is_store)
393 {
394 	u32 last_inst;
395 
396 	/*
397 	 * If we fail, we just return to the guest and try executing it again.
398 	 */
399 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 		EMULATE_DONE)
401 		return RESUME_GUEST;
402 
403 	/*
404 	 * WARNING: We do not know for sure whether the instruction we just
405 	 * read from memory is the same that caused the fault in the first
406 	 * place.  If the instruction we read is neither an load or a store,
407 	 * then it can't access memory, so we don't need to worry about
408 	 * enforcing access permissions.  So, assuming it is a load or
409 	 * store, we just check that its direction (load or store) is
410 	 * consistent with the original fault, since that's what we
411 	 * checked the access permissions against.  If there is a mismatch
412 	 * we just return and retry the instruction.
413 	 */
414 
415 	if (instruction_is_store(last_inst) != !!is_store)
416 		return RESUME_GUEST;
417 
418 	/*
419 	 * Emulated accesses are emulated by looking at the hash for
420 	 * translation once, then performing the access later. The
421 	 * translation could be invalidated in the meantime in which
422 	 * point performing the subsequent memory access on the old
423 	 * physical address could possibly be a security hole for the
424 	 * guest (but not the host).
425 	 *
426 	 * This is less of an issue for MMIO stores since they aren't
427 	 * globally visible. It could be an issue for MMIO loads to
428 	 * a certain extent but we'll ignore it for now.
429 	 */
430 
431 	vcpu->arch.paddr_accessed = gpa;
432 	vcpu->arch.vaddr_accessed = ea;
433 	return kvmppc_emulate_mmio(run, vcpu);
434 }
435 
436 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 				unsigned long ea, unsigned long dsisr)
438 {
439 	struct kvm *kvm = vcpu->kvm;
440 	unsigned long hpte[3], r;
441 	__be64 *hptep;
442 	unsigned long mmu_seq, psize, pte_size;
443 	unsigned long gpa_base, gfn_base;
444 	unsigned long gpa, gfn, hva, pfn;
445 	struct kvm_memory_slot *memslot;
446 	unsigned long *rmap;
447 	struct revmap_entry *rev;
448 	struct page *page, *pages[1];
449 	long index, ret, npages;
450 	unsigned long is_io;
451 	unsigned int writing, write_ok;
452 	struct vm_area_struct *vma;
453 	unsigned long rcbits;
454 
455 	/*
456 	 * Real-mode code has already searched the HPT and found the
457 	 * entry we're interested in.  Lock the entry and check that
458 	 * it hasn't changed.  If it has, just return and re-execute the
459 	 * instruction.
460 	 */
461 	if (ea != vcpu->arch.pgfault_addr)
462 		return RESUME_GUEST;
463 	index = vcpu->arch.pgfault_index;
464 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 	rev = &kvm->arch.revmap[index];
466 	preempt_disable();
467 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 		cpu_relax();
469 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 	hpte[1] = be64_to_cpu(hptep[1]);
471 	hpte[2] = r = rev->guest_rpte;
472 	asm volatile("lwsync" : : : "memory");
473 	hptep[0] = cpu_to_be64(hpte[0]);
474 	preempt_enable();
475 
476 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
477 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
478 		return RESUME_GUEST;
479 
480 	/* Translate the logical address and get the page */
481 	psize = hpte_page_size(hpte[0], r);
482 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
483 	gfn_base = gpa_base >> PAGE_SHIFT;
484 	gpa = gpa_base | (ea & (psize - 1));
485 	gfn = gpa >> PAGE_SHIFT;
486 	memslot = gfn_to_memslot(kvm, gfn);
487 
488 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
489 
490 	/* No memslot means it's an emulated MMIO region */
491 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
492 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
493 					      dsisr & DSISR_ISSTORE);
494 
495 	/*
496 	 * This should never happen, because of the slot_is_aligned()
497 	 * check in kvmppc_do_h_enter().
498 	 */
499 	if (gfn_base < memslot->base_gfn)
500 		return -EFAULT;
501 
502 	/* used to check for invalidations in progress */
503 	mmu_seq = kvm->mmu_notifier_seq;
504 	smp_rmb();
505 
506 	ret = -EFAULT;
507 	is_io = 0;
508 	pfn = 0;
509 	page = NULL;
510 	pte_size = PAGE_SIZE;
511 	writing = (dsisr & DSISR_ISSTORE) != 0;
512 	/* If writing != 0, then the HPTE must allow writing, if we get here */
513 	write_ok = writing;
514 	hva = gfn_to_hva_memslot(memslot, gfn);
515 	npages = get_user_pages_fast(hva, 1, writing, pages);
516 	if (npages < 1) {
517 		/* Check if it's an I/O mapping */
518 		down_read(&current->mm->mmap_sem);
519 		vma = find_vma(current->mm, hva);
520 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
521 		    (vma->vm_flags & VM_PFNMAP)) {
522 			pfn = vma->vm_pgoff +
523 				((hva - vma->vm_start) >> PAGE_SHIFT);
524 			pte_size = psize;
525 			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
526 			write_ok = vma->vm_flags & VM_WRITE;
527 		}
528 		up_read(&current->mm->mmap_sem);
529 		if (!pfn)
530 			goto out_put;
531 	} else {
532 		page = pages[0];
533 		pfn = page_to_pfn(page);
534 		if (PageHuge(page)) {
535 			page = compound_head(page);
536 			pte_size <<= compound_order(page);
537 		}
538 		/* if the guest wants write access, see if that is OK */
539 		if (!writing && hpte_is_writable(r)) {
540 			unsigned int hugepage_shift;
541 			pte_t *ptep, pte;
542 
543 			/*
544 			 * We need to protect against page table destruction
545 			 * while looking up and updating the pte.
546 			 */
547 			rcu_read_lock_sched();
548 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
549 							 hva, &hugepage_shift);
550 			if (ptep) {
551 				pte = kvmppc_read_update_linux_pte(ptep, 1,
552 							   hugepage_shift);
553 				if (pte_write(pte))
554 					write_ok = 1;
555 			}
556 			rcu_read_unlock_sched();
557 		}
558 	}
559 
560 	if (psize > pte_size)
561 		goto out_put;
562 
563 	/* Check WIMG vs. the actual page we're accessing */
564 	if (!hpte_cache_flags_ok(r, is_io)) {
565 		if (is_io)
566 			goto out_put;
567 
568 		/*
569 		 * Allow guest to map emulated device memory as
570 		 * uncacheable, but actually make it cacheable.
571 		 */
572 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
573 	}
574 
575 	/*
576 	 * Set the HPTE to point to pfn.
577 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
578 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
579 	 */
580 	if (psize < PAGE_SIZE)
581 		psize = PAGE_SIZE;
582 	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
583 	if (hpte_is_writable(r) && !write_ok)
584 		r = hpte_make_readonly(r);
585 	ret = RESUME_GUEST;
586 	preempt_disable();
587 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
588 		cpu_relax();
589 	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
590 		be64_to_cpu(hptep[1]) != hpte[1] ||
591 		rev->guest_rpte != hpte[2])
592 		/* HPTE has been changed under us; let the guest retry */
593 		goto out_unlock;
594 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
595 
596 	/* Always put the HPTE in the rmap chain for the page base address */
597 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
598 	lock_rmap(rmap);
599 
600 	/* Check if we might have been invalidated; let the guest retry if so */
601 	ret = RESUME_GUEST;
602 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
603 		unlock_rmap(rmap);
604 		goto out_unlock;
605 	}
606 
607 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
608 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
609 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
610 
611 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
612 		/* HPTE was previously valid, so we need to invalidate it */
613 		unlock_rmap(rmap);
614 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
615 		kvmppc_invalidate_hpte(kvm, hptep, index);
616 		/* don't lose previous R and C bits */
617 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
618 	} else {
619 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
620 	}
621 
622 	hptep[1] = cpu_to_be64(r);
623 	eieio();
624 	hptep[0] = cpu_to_be64(hpte[0]);
625 	asm volatile("ptesync" : : : "memory");
626 	preempt_enable();
627 	if (page && hpte_is_writable(r))
628 		SetPageDirty(page);
629 
630  out_put:
631 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
632 
633 	if (page) {
634 		/*
635 		 * We drop pages[0] here, not page because page might
636 		 * have been set to the head page of a compound, but
637 		 * we have to drop the reference on the correct tail
638 		 * page to match the get inside gup()
639 		 */
640 		put_page(pages[0]);
641 	}
642 	return ret;
643 
644  out_unlock:
645 	hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
646 	preempt_enable();
647 	goto out_put;
648 }
649 
650 static void kvmppc_rmap_reset(struct kvm *kvm)
651 {
652 	struct kvm_memslots *slots;
653 	struct kvm_memory_slot *memslot;
654 	int srcu_idx;
655 
656 	srcu_idx = srcu_read_lock(&kvm->srcu);
657 	slots = kvm->memslots;
658 	kvm_for_each_memslot(memslot, slots) {
659 		/*
660 		 * This assumes it is acceptable to lose reference and
661 		 * change bits across a reset.
662 		 */
663 		memset(memslot->arch.rmap, 0,
664 		       memslot->npages * sizeof(*memslot->arch.rmap));
665 	}
666 	srcu_read_unlock(&kvm->srcu, srcu_idx);
667 }
668 
669 static int kvm_handle_hva_range(struct kvm *kvm,
670 				unsigned long start,
671 				unsigned long end,
672 				int (*handler)(struct kvm *kvm,
673 					       unsigned long *rmapp,
674 					       unsigned long gfn))
675 {
676 	int ret;
677 	int retval = 0;
678 	struct kvm_memslots *slots;
679 	struct kvm_memory_slot *memslot;
680 
681 	slots = kvm_memslots(kvm);
682 	kvm_for_each_memslot(memslot, slots) {
683 		unsigned long hva_start, hva_end;
684 		gfn_t gfn, gfn_end;
685 
686 		hva_start = max(start, memslot->userspace_addr);
687 		hva_end = min(end, memslot->userspace_addr +
688 					(memslot->npages << PAGE_SHIFT));
689 		if (hva_start >= hva_end)
690 			continue;
691 		/*
692 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
693 		 * {gfn, gfn+1, ..., gfn_end-1}.
694 		 */
695 		gfn = hva_to_gfn_memslot(hva_start, memslot);
696 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
697 
698 		for (; gfn < gfn_end; ++gfn) {
699 			gfn_t gfn_offset = gfn - memslot->base_gfn;
700 
701 			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
702 			retval |= ret;
703 		}
704 	}
705 
706 	return retval;
707 }
708 
709 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
710 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
711 					 unsigned long gfn))
712 {
713 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
714 }
715 
716 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
717 			   unsigned long gfn)
718 {
719 	struct revmap_entry *rev = kvm->arch.revmap;
720 	unsigned long h, i, j;
721 	__be64 *hptep;
722 	unsigned long ptel, psize, rcbits;
723 
724 	for (;;) {
725 		lock_rmap(rmapp);
726 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
727 			unlock_rmap(rmapp);
728 			break;
729 		}
730 
731 		/*
732 		 * To avoid an ABBA deadlock with the HPTE lock bit,
733 		 * we can't spin on the HPTE lock while holding the
734 		 * rmap chain lock.
735 		 */
736 		i = *rmapp & KVMPPC_RMAP_INDEX;
737 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
738 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
739 			/* unlock rmap before spinning on the HPTE lock */
740 			unlock_rmap(rmapp);
741 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
742 				cpu_relax();
743 			continue;
744 		}
745 		j = rev[i].forw;
746 		if (j == i) {
747 			/* chain is now empty */
748 			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
749 		} else {
750 			/* remove i from chain */
751 			h = rev[i].back;
752 			rev[h].forw = j;
753 			rev[j].back = h;
754 			rev[i].forw = rev[i].back = i;
755 			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
756 		}
757 
758 		/* Now check and modify the HPTE */
759 		ptel = rev[i].guest_rpte;
760 		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
761 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
762 		    hpte_rpn(ptel, psize) == gfn) {
763 			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
764 			kvmppc_invalidate_hpte(kvm, hptep, i);
765 			/* Harvest R and C */
766 			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
767 			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
768 			if (rcbits & ~rev[i].guest_rpte) {
769 				rev[i].guest_rpte = ptel | rcbits;
770 				note_hpte_modification(kvm, &rev[i]);
771 			}
772 		}
773 		unlock_rmap(rmapp);
774 		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
775 	}
776 	return 0;
777 }
778 
779 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
780 {
781 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
782 	return 0;
783 }
784 
785 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
786 {
787 	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
788 	return 0;
789 }
790 
791 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
792 				  struct kvm_memory_slot *memslot)
793 {
794 	unsigned long *rmapp;
795 	unsigned long gfn;
796 	unsigned long n;
797 
798 	rmapp = memslot->arch.rmap;
799 	gfn = memslot->base_gfn;
800 	for (n = memslot->npages; n; --n) {
801 		/*
802 		 * Testing the present bit without locking is OK because
803 		 * the memslot has been marked invalid already, and hence
804 		 * no new HPTEs referencing this page can be created,
805 		 * thus the present bit can't go from 0 to 1.
806 		 */
807 		if (*rmapp & KVMPPC_RMAP_PRESENT)
808 			kvm_unmap_rmapp(kvm, rmapp, gfn);
809 		++rmapp;
810 		++gfn;
811 	}
812 }
813 
814 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
815 			 unsigned long gfn)
816 {
817 	struct revmap_entry *rev = kvm->arch.revmap;
818 	unsigned long head, i, j;
819 	__be64 *hptep;
820 	int ret = 0;
821 
822  retry:
823 	lock_rmap(rmapp);
824 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
825 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
826 		ret = 1;
827 	}
828 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
829 		unlock_rmap(rmapp);
830 		return ret;
831 	}
832 
833 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
834 	do {
835 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
836 		j = rev[i].forw;
837 
838 		/* If this HPTE isn't referenced, ignore it */
839 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
840 			continue;
841 
842 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843 			/* unlock rmap before spinning on the HPTE lock */
844 			unlock_rmap(rmapp);
845 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
846 				cpu_relax();
847 			goto retry;
848 		}
849 
850 		/* Now check and modify the HPTE */
851 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
852 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
853 			kvmppc_clear_ref_hpte(kvm, hptep, i);
854 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
855 				rev[i].guest_rpte |= HPTE_R_R;
856 				note_hpte_modification(kvm, &rev[i]);
857 			}
858 			ret = 1;
859 		}
860 		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
861 	} while ((i = j) != head);
862 
863 	unlock_rmap(rmapp);
864 	return ret;
865 }
866 
867 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
868 {
869 	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
870 }
871 
872 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
873 			      unsigned long gfn)
874 {
875 	struct revmap_entry *rev = kvm->arch.revmap;
876 	unsigned long head, i, j;
877 	unsigned long *hp;
878 	int ret = 1;
879 
880 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
881 		return 1;
882 
883 	lock_rmap(rmapp);
884 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
885 		goto out;
886 
887 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
888 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
889 		do {
890 			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
891 			j = rev[i].forw;
892 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
893 				goto out;
894 		} while ((i = j) != head);
895 	}
896 	ret = 0;
897 
898  out:
899 	unlock_rmap(rmapp);
900 	return ret;
901 }
902 
903 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
904 {
905 	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
906 }
907 
908 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
909 {
910 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
911 }
912 
913 static int vcpus_running(struct kvm *kvm)
914 {
915 	return atomic_read(&kvm->arch.vcpus_running) != 0;
916 }
917 
918 /*
919  * Returns the number of system pages that are dirty.
920  * This can be more than 1 if we find a huge-page HPTE.
921  */
922 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
923 {
924 	struct revmap_entry *rev = kvm->arch.revmap;
925 	unsigned long head, i, j;
926 	unsigned long n;
927 	unsigned long v, r;
928 	__be64 *hptep;
929 	int npages_dirty = 0;
930 
931  retry:
932 	lock_rmap(rmapp);
933 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
934 		*rmapp &= ~KVMPPC_RMAP_CHANGED;
935 		npages_dirty = 1;
936 	}
937 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
938 		unlock_rmap(rmapp);
939 		return npages_dirty;
940 	}
941 
942 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
943 	do {
944 		unsigned long hptep1;
945 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
946 		j = rev[i].forw;
947 
948 		/*
949 		 * Checking the C (changed) bit here is racy since there
950 		 * is no guarantee about when the hardware writes it back.
951 		 * If the HPTE is not writable then it is stable since the
952 		 * page can't be written to, and we would have done a tlbie
953 		 * (which forces the hardware to complete any writeback)
954 		 * when making the HPTE read-only.
955 		 * If vcpus are running then this call is racy anyway
956 		 * since the page could get dirtied subsequently, so we
957 		 * expect there to be a further call which would pick up
958 		 * any delayed C bit writeback.
959 		 * Otherwise we need to do the tlbie even if C==0 in
960 		 * order to pick up any delayed writeback of C.
961 		 */
962 		hptep1 = be64_to_cpu(hptep[1]);
963 		if (!(hptep1 & HPTE_R_C) &&
964 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
965 			continue;
966 
967 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
968 			/* unlock rmap before spinning on the HPTE lock */
969 			unlock_rmap(rmapp);
970 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
971 				cpu_relax();
972 			goto retry;
973 		}
974 
975 		/* Now check and modify the HPTE */
976 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
977 			/* unlock and continue */
978 			hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
979 			continue;
980 		}
981 
982 		/* need to make it temporarily absent so C is stable */
983 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
984 		kvmppc_invalidate_hpte(kvm, hptep, i);
985 		v = be64_to_cpu(hptep[0]);
986 		r = be64_to_cpu(hptep[1]);
987 		if (r & HPTE_R_C) {
988 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
989 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
990 				rev[i].guest_rpte |= HPTE_R_C;
991 				note_hpte_modification(kvm, &rev[i]);
992 			}
993 			n = hpte_page_size(v, r);
994 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 			if (n > npages_dirty)
996 				npages_dirty = n;
997 			eieio();
998 		}
999 		v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1000 		v |= HPTE_V_VALID;
1001 		hptep[0] = cpu_to_be64(v);
1002 	} while ((i = j) != head);
1003 
1004 	unlock_rmap(rmapp);
1005 	return npages_dirty;
1006 }
1007 
1008 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1009 			      struct kvm_memory_slot *memslot,
1010 			      unsigned long *map)
1011 {
1012 	unsigned long gfn;
1013 
1014 	if (!vpa->dirty || !vpa->pinned_addr)
1015 		return;
1016 	gfn = vpa->gpa >> PAGE_SHIFT;
1017 	if (gfn < memslot->base_gfn ||
1018 	    gfn >= memslot->base_gfn + memslot->npages)
1019 		return;
1020 
1021 	vpa->dirty = false;
1022 	if (map)
1023 		__set_bit_le(gfn - memslot->base_gfn, map);
1024 }
1025 
1026 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1027 			     unsigned long *map)
1028 {
1029 	unsigned long i, j;
1030 	unsigned long *rmapp;
1031 	struct kvm_vcpu *vcpu;
1032 
1033 	preempt_disable();
1034 	rmapp = memslot->arch.rmap;
1035 	for (i = 0; i < memslot->npages; ++i) {
1036 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1037 		/*
1038 		 * Note that if npages > 0 then i must be a multiple of npages,
1039 		 * since we always put huge-page HPTEs in the rmap chain
1040 		 * corresponding to their page base address.
1041 		 */
1042 		if (npages && map)
1043 			for (j = i; npages; ++j, --npages)
1044 				__set_bit_le(j, map);
1045 		++rmapp;
1046 	}
1047 
1048 	/* Harvest dirty bits from VPA and DTL updates */
1049 	/* Note: we never modify the SLB shadow buffer areas */
1050 	kvm_for_each_vcpu(i, vcpu, kvm) {
1051 		spin_lock(&vcpu->arch.vpa_update_lock);
1052 		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1053 		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1054 		spin_unlock(&vcpu->arch.vpa_update_lock);
1055 	}
1056 	preempt_enable();
1057 	return 0;
1058 }
1059 
1060 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1061 			    unsigned long *nb_ret)
1062 {
1063 	struct kvm_memory_slot *memslot;
1064 	unsigned long gfn = gpa >> PAGE_SHIFT;
1065 	struct page *page, *pages[1];
1066 	int npages;
1067 	unsigned long hva, offset;
1068 	int srcu_idx;
1069 
1070 	srcu_idx = srcu_read_lock(&kvm->srcu);
1071 	memslot = gfn_to_memslot(kvm, gfn);
1072 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1073 		goto err;
1074 	hva = gfn_to_hva_memslot(memslot, gfn);
1075 	npages = get_user_pages_fast(hva, 1, 1, pages);
1076 	if (npages < 1)
1077 		goto err;
1078 	page = pages[0];
1079 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1080 
1081 	offset = gpa & (PAGE_SIZE - 1);
1082 	if (nb_ret)
1083 		*nb_ret = PAGE_SIZE - offset;
1084 	return page_address(page) + offset;
1085 
1086  err:
1087 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1088 	return NULL;
1089 }
1090 
1091 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1092 			     bool dirty)
1093 {
1094 	struct page *page = virt_to_page(va);
1095 	struct kvm_memory_slot *memslot;
1096 	unsigned long gfn;
1097 	unsigned long *rmap;
1098 	int srcu_idx;
1099 
1100 	put_page(page);
1101 
1102 	if (!dirty)
1103 		return;
1104 
1105 	/* We need to mark this page dirty in the rmap chain */
1106 	gfn = gpa >> PAGE_SHIFT;
1107 	srcu_idx = srcu_read_lock(&kvm->srcu);
1108 	memslot = gfn_to_memslot(kvm, gfn);
1109 	if (memslot) {
1110 		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1111 		lock_rmap(rmap);
1112 		*rmap |= KVMPPC_RMAP_CHANGED;
1113 		unlock_rmap(rmap);
1114 	}
1115 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1116 }
1117 
1118 /*
1119  * Functions for reading and writing the hash table via reads and
1120  * writes on a file descriptor.
1121  *
1122  * Reads return the guest view of the hash table, which has to be
1123  * pieced together from the real hash table and the guest_rpte
1124  * values in the revmap array.
1125  *
1126  * On writes, each HPTE written is considered in turn, and if it
1127  * is valid, it is written to the HPT as if an H_ENTER with the
1128  * exact flag set was done.  When the invalid count is non-zero
1129  * in the header written to the stream, the kernel will make
1130  * sure that that many HPTEs are invalid, and invalidate them
1131  * if not.
1132  */
1133 
1134 struct kvm_htab_ctx {
1135 	unsigned long	index;
1136 	unsigned long	flags;
1137 	struct kvm	*kvm;
1138 	int		first_pass;
1139 };
1140 
1141 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1142 
1143 /*
1144  * Returns 1 if this HPT entry has been modified or has pending
1145  * R/C bit changes.
1146  */
1147 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1148 {
1149 	unsigned long rcbits_unset;
1150 
1151 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1152 		return 1;
1153 
1154 	/* Also need to consider changes in reference and changed bits */
1155 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1156 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1157 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1158 		return 1;
1159 
1160 	return 0;
1161 }
1162 
1163 static long record_hpte(unsigned long flags, __be64 *hptp,
1164 			unsigned long *hpte, struct revmap_entry *revp,
1165 			int want_valid, int first_pass)
1166 {
1167 	unsigned long v, r;
1168 	unsigned long rcbits_unset;
1169 	int ok = 1;
1170 	int valid, dirty;
1171 
1172 	/* Unmodified entries are uninteresting except on the first pass */
1173 	dirty = hpte_dirty(revp, hptp);
1174 	if (!first_pass && !dirty)
1175 		return 0;
1176 
1177 	valid = 0;
1178 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1179 		valid = 1;
1180 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1181 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1182 			valid = 0;
1183 	}
1184 	if (valid != want_valid)
1185 		return 0;
1186 
1187 	v = r = 0;
1188 	if (valid || dirty) {
1189 		/* lock the HPTE so it's stable and read it */
1190 		preempt_disable();
1191 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1192 			cpu_relax();
1193 		v = be64_to_cpu(hptp[0]);
1194 
1195 		/* re-evaluate valid and dirty from synchronized HPTE value */
1196 		valid = !!(v & HPTE_V_VALID);
1197 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1198 
1199 		/* Harvest R and C into guest view if necessary */
1200 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1201 		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1202 			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1203 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1204 			dirty = 1;
1205 		}
1206 
1207 		if (v & HPTE_V_ABSENT) {
1208 			v &= ~HPTE_V_ABSENT;
1209 			v |= HPTE_V_VALID;
1210 			valid = 1;
1211 		}
1212 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1213 			valid = 0;
1214 
1215 		r = revp->guest_rpte;
1216 		/* only clear modified if this is the right sort of entry */
1217 		if (valid == want_valid && dirty) {
1218 			r &= ~HPTE_GR_MODIFIED;
1219 			revp->guest_rpte = r;
1220 		}
1221 		asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1222 		hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1223 		preempt_enable();
1224 		if (!(valid == want_valid && (first_pass || dirty)))
1225 			ok = 0;
1226 	}
1227 	hpte[0] = cpu_to_be64(v);
1228 	hpte[1] = cpu_to_be64(r);
1229 	return ok;
1230 }
1231 
1232 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233 			     size_t count, loff_t *ppos)
1234 {
1235 	struct kvm_htab_ctx *ctx = file->private_data;
1236 	struct kvm *kvm = ctx->kvm;
1237 	struct kvm_get_htab_header hdr;
1238 	__be64 *hptp;
1239 	struct revmap_entry *revp;
1240 	unsigned long i, nb, nw;
1241 	unsigned long __user *lbuf;
1242 	struct kvm_get_htab_header __user *hptr;
1243 	unsigned long flags;
1244 	int first_pass;
1245 	unsigned long hpte[2];
1246 
1247 	if (!access_ok(VERIFY_WRITE, buf, count))
1248 		return -EFAULT;
1249 
1250 	first_pass = ctx->first_pass;
1251 	flags = ctx->flags;
1252 
1253 	i = ctx->index;
1254 	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255 	revp = kvm->arch.revmap + i;
1256 	lbuf = (unsigned long __user *)buf;
1257 
1258 	nb = 0;
1259 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260 		/* Initialize header */
1261 		hptr = (struct kvm_get_htab_header __user *)buf;
1262 		hdr.n_valid = 0;
1263 		hdr.n_invalid = 0;
1264 		nw = nb;
1265 		nb += sizeof(hdr);
1266 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267 
1268 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1269 		if (!first_pass) {
1270 			while (i < kvm->arch.hpt_npte &&
1271 			       !hpte_dirty(revp, hptp)) {
1272 				++i;
1273 				hptp += 2;
1274 				++revp;
1275 			}
1276 		}
1277 		hdr.index = i;
1278 
1279 		/* Grab a series of valid entries */
1280 		while (i < kvm->arch.hpt_npte &&
1281 		       hdr.n_valid < 0xffff &&
1282 		       nb + HPTE_SIZE < count &&
1283 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284 			/* valid entry, write it out */
1285 			++hdr.n_valid;
1286 			if (__put_user(hpte[0], lbuf) ||
1287 			    __put_user(hpte[1], lbuf + 1))
1288 				return -EFAULT;
1289 			nb += HPTE_SIZE;
1290 			lbuf += 2;
1291 			++i;
1292 			hptp += 2;
1293 			++revp;
1294 		}
1295 		/* Now skip invalid entries while we can */
1296 		while (i < kvm->arch.hpt_npte &&
1297 		       hdr.n_invalid < 0xffff &&
1298 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299 			/* found an invalid entry */
1300 			++hdr.n_invalid;
1301 			++i;
1302 			hptp += 2;
1303 			++revp;
1304 		}
1305 
1306 		if (hdr.n_valid || hdr.n_invalid) {
1307 			/* write back the header */
1308 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309 				return -EFAULT;
1310 			nw = nb;
1311 			buf = (char __user *)lbuf;
1312 		} else {
1313 			nb = nw;
1314 		}
1315 
1316 		/* Check if we've wrapped around the hash table */
1317 		if (i >= kvm->arch.hpt_npte) {
1318 			i = 0;
1319 			ctx->first_pass = 0;
1320 			break;
1321 		}
1322 	}
1323 
1324 	ctx->index = i;
1325 
1326 	return nb;
1327 }
1328 
1329 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330 			      size_t count, loff_t *ppos)
1331 {
1332 	struct kvm_htab_ctx *ctx = file->private_data;
1333 	struct kvm *kvm = ctx->kvm;
1334 	struct kvm_get_htab_header hdr;
1335 	unsigned long i, j;
1336 	unsigned long v, r;
1337 	unsigned long __user *lbuf;
1338 	__be64 *hptp;
1339 	unsigned long tmp[2];
1340 	ssize_t nb;
1341 	long int err, ret;
1342 	int rma_setup;
1343 
1344 	if (!access_ok(VERIFY_READ, buf, count))
1345 		return -EFAULT;
1346 
1347 	/* lock out vcpus from running while we're doing this */
1348 	mutex_lock(&kvm->lock);
1349 	rma_setup = kvm->arch.rma_setup_done;
1350 	if (rma_setup) {
1351 		kvm->arch.rma_setup_done = 0;	/* temporarily */
1352 		/* order rma_setup_done vs. vcpus_running */
1353 		smp_mb();
1354 		if (atomic_read(&kvm->arch.vcpus_running)) {
1355 			kvm->arch.rma_setup_done = 1;
1356 			mutex_unlock(&kvm->lock);
1357 			return -EBUSY;
1358 		}
1359 	}
1360 
1361 	err = 0;
1362 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363 		err = -EFAULT;
1364 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365 			break;
1366 
1367 		err = 0;
1368 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1369 			break;
1370 
1371 		nb += sizeof(hdr);
1372 		buf += sizeof(hdr);
1373 
1374 		err = -EINVAL;
1375 		i = hdr.index;
1376 		if (i >= kvm->arch.hpt_npte ||
1377 		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378 			break;
1379 
1380 		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381 		lbuf = (unsigned long __user *)buf;
1382 		for (j = 0; j < hdr.n_valid; ++j) {
1383 			__be64 hpte_v;
1384 			__be64 hpte_r;
1385 
1386 			err = -EFAULT;
1387 			if (__get_user(hpte_v, lbuf) ||
1388 			    __get_user(hpte_r, lbuf + 1))
1389 				goto out;
1390 			v = be64_to_cpu(hpte_v);
1391 			r = be64_to_cpu(hpte_r);
1392 			err = -EINVAL;
1393 			if (!(v & HPTE_V_VALID))
1394 				goto out;
1395 			lbuf += 2;
1396 			nb += HPTE_SIZE;
1397 
1398 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400 			err = -EIO;
1401 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402 							 tmp);
1403 			if (ret != H_SUCCESS) {
1404 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405 				       "r=%lx\n", ret, i, v, r);
1406 				goto out;
1407 			}
1408 			if (!rma_setup && is_vrma_hpte(v)) {
1409 				unsigned long psize = hpte_base_page_size(v, r);
1410 				unsigned long senc = slb_pgsize_encoding(psize);
1411 				unsigned long lpcr;
1412 
1413 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1415 				lpcr = senc << (LPCR_VRMASD_SH - 4);
1416 				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417 				rma_setup = 1;
1418 			}
1419 			++i;
1420 			hptp += 2;
1421 		}
1422 
1423 		for (j = 0; j < hdr.n_invalid; ++j) {
1424 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426 			++i;
1427 			hptp += 2;
1428 		}
1429 		err = 0;
1430 	}
1431 
1432  out:
1433 	/* Order HPTE updates vs. rma_setup_done */
1434 	smp_wmb();
1435 	kvm->arch.rma_setup_done = rma_setup;
1436 	mutex_unlock(&kvm->lock);
1437 
1438 	if (err)
1439 		return err;
1440 	return nb;
1441 }
1442 
1443 static int kvm_htab_release(struct inode *inode, struct file *filp)
1444 {
1445 	struct kvm_htab_ctx *ctx = filp->private_data;
1446 
1447 	filp->private_data = NULL;
1448 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450 	kvm_put_kvm(ctx->kvm);
1451 	kfree(ctx);
1452 	return 0;
1453 }
1454 
1455 static const struct file_operations kvm_htab_fops = {
1456 	.read		= kvm_htab_read,
1457 	.write		= kvm_htab_write,
1458 	.llseek		= default_llseek,
1459 	.release	= kvm_htab_release,
1460 };
1461 
1462 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463 {
1464 	int ret;
1465 	struct kvm_htab_ctx *ctx;
1466 	int rwflag;
1467 
1468 	/* reject flags we don't recognize */
1469 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470 		return -EINVAL;
1471 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472 	if (!ctx)
1473 		return -ENOMEM;
1474 	kvm_get_kvm(kvm);
1475 	ctx->kvm = kvm;
1476 	ctx->index = ghf->start_index;
1477 	ctx->flags = ghf->flags;
1478 	ctx->first_pass = 1;
1479 
1480 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482 	if (ret < 0) {
1483 		kvm_put_kvm(kvm);
1484 		return ret;
1485 	}
1486 
1487 	if (rwflag == O_RDONLY) {
1488 		mutex_lock(&kvm->slots_lock);
1489 		atomic_inc(&kvm->arch.hpte_mod_interest);
1490 		/* make sure kvmppc_do_h_enter etc. see the increment */
1491 		synchronize_srcu_expedited(&kvm->srcu);
1492 		mutex_unlock(&kvm->slots_lock);
1493 	}
1494 
1495 	return ret;
1496 }
1497 
1498 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1499 {
1500 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1501 
1502 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1503 
1504 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1505 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1506 
1507 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1508 }
1509