1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/kvm_ppc.h> 33 #include <asm/kvm_book3s.h> 34 #include <asm/book3s/64/mmu-hash.h> 35 #include <asm/hvcall.h> 36 #include <asm/synch.h> 37 #include <asm/ppc-opcode.h> 38 #include <asm/cputable.h> 39 #include <asm/pte-walk.h> 40 41 #include "trace_hv.h" 42 43 //#define DEBUG_RESIZE_HPT 1 44 45 #ifdef DEBUG_RESIZE_HPT 46 #define resize_hpt_debug(resize, ...) \ 47 do { \ 48 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 49 printk(__VA_ARGS__); \ 50 } while (0) 51 #else 52 #define resize_hpt_debug(resize, ...) \ 53 do { } while (0) 54 #endif 55 56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 57 long pte_index, unsigned long pteh, 58 unsigned long ptel, unsigned long *pte_idx_ret); 59 60 struct kvm_resize_hpt { 61 /* These fields read-only after init */ 62 struct kvm *kvm; 63 struct work_struct work; 64 u32 order; 65 66 /* These fields protected by kvm->lock */ 67 68 /* Possible values and their usage: 69 * <0 an error occurred during allocation, 70 * -EBUSY allocation is in the progress, 71 * 0 allocation made successfuly. 72 */ 73 int error; 74 75 /* Private to the work thread, until error != -EBUSY, 76 * then protected by kvm->lock. 77 */ 78 struct kvm_hpt_info hpt; 79 }; 80 81 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 82 { 83 unsigned long hpt = 0; 84 int cma = 0; 85 struct page *page = NULL; 86 struct revmap_entry *rev; 87 unsigned long npte; 88 89 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 90 return -EINVAL; 91 92 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 93 if (page) { 94 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 95 memset((void *)hpt, 0, (1ul << order)); 96 cma = 1; 97 } 98 99 if (!hpt) 100 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 101 |__GFP_NOWARN, order - PAGE_SHIFT); 102 103 if (!hpt) 104 return -ENOMEM; 105 106 /* HPTEs are 2**4 bytes long */ 107 npte = 1ul << (order - 4); 108 109 /* Allocate reverse map array */ 110 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 111 if (!rev) { 112 if (cma) 113 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 114 else 115 free_pages(hpt, order - PAGE_SHIFT); 116 return -ENOMEM; 117 } 118 119 info->order = order; 120 info->virt = hpt; 121 info->cma = cma; 122 info->rev = rev; 123 124 return 0; 125 } 126 127 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 128 { 129 atomic64_set(&kvm->arch.mmio_update, 0); 130 kvm->arch.hpt = *info; 131 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 132 133 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 134 info->virt, (long)info->order, kvm->arch.lpid); 135 } 136 137 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 138 { 139 long err = -EBUSY; 140 struct kvm_hpt_info info; 141 142 mutex_lock(&kvm->lock); 143 if (kvm->arch.mmu_ready) { 144 kvm->arch.mmu_ready = 0; 145 /* order mmu_ready vs. vcpus_running */ 146 smp_mb(); 147 if (atomic_read(&kvm->arch.vcpus_running)) { 148 kvm->arch.mmu_ready = 1; 149 goto out; 150 } 151 } 152 if (kvm_is_radix(kvm)) { 153 err = kvmppc_switch_mmu_to_hpt(kvm); 154 if (err) 155 goto out; 156 } 157 158 if (kvm->arch.hpt.order == order) { 159 /* We already have a suitable HPT */ 160 161 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 162 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 163 /* 164 * Reset all the reverse-mapping chains for all memslots 165 */ 166 kvmppc_rmap_reset(kvm); 167 err = 0; 168 goto out; 169 } 170 171 if (kvm->arch.hpt.virt) { 172 kvmppc_free_hpt(&kvm->arch.hpt); 173 kvmppc_rmap_reset(kvm); 174 } 175 176 err = kvmppc_allocate_hpt(&info, order); 177 if (err < 0) 178 goto out; 179 kvmppc_set_hpt(kvm, &info); 180 181 out: 182 if (err == 0) 183 /* Ensure that each vcpu will flush its TLB on next entry. */ 184 cpumask_setall(&kvm->arch.need_tlb_flush); 185 186 mutex_unlock(&kvm->lock); 187 return err; 188 } 189 190 void kvmppc_free_hpt(struct kvm_hpt_info *info) 191 { 192 vfree(info->rev); 193 info->rev = NULL; 194 if (info->cma) 195 kvm_free_hpt_cma(virt_to_page(info->virt), 196 1 << (info->order - PAGE_SHIFT)); 197 else if (info->virt) 198 free_pages(info->virt, info->order - PAGE_SHIFT); 199 info->virt = 0; 200 info->order = 0; 201 } 202 203 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 204 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 205 { 206 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 207 } 208 209 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 210 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 211 { 212 return (pgsize == 0x10000) ? 0x1000 : 0; 213 } 214 215 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 216 unsigned long porder) 217 { 218 unsigned long i; 219 unsigned long npages; 220 unsigned long hp_v, hp_r; 221 unsigned long addr, hash; 222 unsigned long psize; 223 unsigned long hp0, hp1; 224 unsigned long idx_ret; 225 long ret; 226 struct kvm *kvm = vcpu->kvm; 227 228 psize = 1ul << porder; 229 npages = memslot->npages >> (porder - PAGE_SHIFT); 230 231 /* VRMA can't be > 1TB */ 232 if (npages > 1ul << (40 - porder)) 233 npages = 1ul << (40 - porder); 234 /* Can't use more than 1 HPTE per HPTEG */ 235 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 236 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 237 238 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 239 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 240 hp1 = hpte1_pgsize_encoding(psize) | 241 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 242 243 for (i = 0; i < npages; ++i) { 244 addr = i << porder; 245 /* can't use hpt_hash since va > 64 bits */ 246 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 247 & kvmppc_hpt_mask(&kvm->arch.hpt); 248 /* 249 * We assume that the hash table is empty and no 250 * vcpus are using it at this stage. Since we create 251 * at most one HPTE per HPTEG, we just assume entry 7 252 * is available and use it. 253 */ 254 hash = (hash << 3) + 7; 255 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 256 hp_r = hp1 | addr; 257 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 258 &idx_ret); 259 if (ret != H_SUCCESS) { 260 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 261 addr, ret); 262 break; 263 } 264 } 265 } 266 267 int kvmppc_mmu_hv_init(void) 268 { 269 unsigned long host_lpid, rsvd_lpid; 270 271 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 272 return -EINVAL; 273 274 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 275 host_lpid = 0; 276 if (cpu_has_feature(CPU_FTR_HVMODE)) 277 host_lpid = mfspr(SPRN_LPID); 278 rsvd_lpid = LPID_RSVD; 279 280 kvmppc_init_lpid(rsvd_lpid + 1); 281 282 kvmppc_claim_lpid(host_lpid); 283 /* rsvd_lpid is reserved for use in partition switching */ 284 kvmppc_claim_lpid(rsvd_lpid); 285 286 return 0; 287 } 288 289 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 290 { 291 unsigned long msr = vcpu->arch.intr_msr; 292 293 /* If transactional, change to suspend mode on IRQ delivery */ 294 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 295 msr |= MSR_TS_S; 296 else 297 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 298 kvmppc_set_msr(vcpu, msr); 299 } 300 301 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 302 long pte_index, unsigned long pteh, 303 unsigned long ptel, unsigned long *pte_idx_ret) 304 { 305 long ret; 306 307 /* Protect linux PTE lookup from page table destruction */ 308 rcu_read_lock_sched(); /* this disables preemption too */ 309 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 310 current->mm->pgd, false, pte_idx_ret); 311 rcu_read_unlock_sched(); 312 if (ret == H_TOO_HARD) { 313 /* this can't happen */ 314 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 315 ret = H_RESOURCE; /* or something */ 316 } 317 return ret; 318 319 } 320 321 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 322 gva_t eaddr) 323 { 324 u64 mask; 325 int i; 326 327 for (i = 0; i < vcpu->arch.slb_nr; i++) { 328 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 329 continue; 330 331 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 332 mask = ESID_MASK_1T; 333 else 334 mask = ESID_MASK; 335 336 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 337 return &vcpu->arch.slb[i]; 338 } 339 return NULL; 340 } 341 342 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 343 unsigned long ea) 344 { 345 unsigned long ra_mask; 346 347 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 348 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 349 } 350 351 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 352 struct kvmppc_pte *gpte, bool data, bool iswrite) 353 { 354 struct kvm *kvm = vcpu->kvm; 355 struct kvmppc_slb *slbe; 356 unsigned long slb_v; 357 unsigned long pp, key; 358 unsigned long v, orig_v, gr; 359 __be64 *hptep; 360 long int index; 361 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 362 363 if (kvm_is_radix(vcpu->kvm)) 364 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 365 366 /* Get SLB entry */ 367 if (virtmode) { 368 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 369 if (!slbe) 370 return -EINVAL; 371 slb_v = slbe->origv; 372 } else { 373 /* real mode access */ 374 slb_v = vcpu->kvm->arch.vrma_slb_v; 375 } 376 377 preempt_disable(); 378 /* Find the HPTE in the hash table */ 379 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 380 HPTE_V_VALID | HPTE_V_ABSENT); 381 if (index < 0) { 382 preempt_enable(); 383 return -ENOENT; 384 } 385 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 386 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 387 if (cpu_has_feature(CPU_FTR_ARCH_300)) 388 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 389 gr = kvm->arch.hpt.rev[index].guest_rpte; 390 391 unlock_hpte(hptep, orig_v); 392 preempt_enable(); 393 394 gpte->eaddr = eaddr; 395 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 396 397 /* Get PP bits and key for permission check */ 398 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 399 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 400 key &= slb_v; 401 402 /* Calculate permissions */ 403 gpte->may_read = hpte_read_permission(pp, key); 404 gpte->may_write = hpte_write_permission(pp, key); 405 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 406 407 /* Storage key permission check for POWER7 */ 408 if (data && virtmode) { 409 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 410 if (amrfield & 1) 411 gpte->may_read = 0; 412 if (amrfield & 2) 413 gpte->may_write = 0; 414 } 415 416 /* Get the guest physical address */ 417 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 418 return 0; 419 } 420 421 /* 422 * Quick test for whether an instruction is a load or a store. 423 * If the instruction is a load or a store, then this will indicate 424 * which it is, at least on server processors. (Embedded processors 425 * have some external PID instructions that don't follow the rule 426 * embodied here.) If the instruction isn't a load or store, then 427 * this doesn't return anything useful. 428 */ 429 static int instruction_is_store(unsigned int instr) 430 { 431 unsigned int mask; 432 433 mask = 0x10000000; 434 if ((instr & 0xfc000000) == 0x7c000000) 435 mask = 0x100; /* major opcode 31 */ 436 return (instr & mask) != 0; 437 } 438 439 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 440 unsigned long gpa, gva_t ea, int is_store) 441 { 442 u32 last_inst; 443 444 /* 445 * If we fail, we just return to the guest and try executing it again. 446 */ 447 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 448 EMULATE_DONE) 449 return RESUME_GUEST; 450 451 /* 452 * WARNING: We do not know for sure whether the instruction we just 453 * read from memory is the same that caused the fault in the first 454 * place. If the instruction we read is neither an load or a store, 455 * then it can't access memory, so we don't need to worry about 456 * enforcing access permissions. So, assuming it is a load or 457 * store, we just check that its direction (load or store) is 458 * consistent with the original fault, since that's what we 459 * checked the access permissions against. If there is a mismatch 460 * we just return and retry the instruction. 461 */ 462 463 if (instruction_is_store(last_inst) != !!is_store) 464 return RESUME_GUEST; 465 466 /* 467 * Emulated accesses are emulated by looking at the hash for 468 * translation once, then performing the access later. The 469 * translation could be invalidated in the meantime in which 470 * point performing the subsequent memory access on the old 471 * physical address could possibly be a security hole for the 472 * guest (but not the host). 473 * 474 * This is less of an issue for MMIO stores since they aren't 475 * globally visible. It could be an issue for MMIO loads to 476 * a certain extent but we'll ignore it for now. 477 */ 478 479 vcpu->arch.paddr_accessed = gpa; 480 vcpu->arch.vaddr_accessed = ea; 481 return kvmppc_emulate_mmio(run, vcpu); 482 } 483 484 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 485 unsigned long ea, unsigned long dsisr) 486 { 487 struct kvm *kvm = vcpu->kvm; 488 unsigned long hpte[3], r; 489 unsigned long hnow_v, hnow_r; 490 __be64 *hptep; 491 unsigned long mmu_seq, psize, pte_size; 492 unsigned long gpa_base, gfn_base; 493 unsigned long gpa, gfn, hva, pfn; 494 struct kvm_memory_slot *memslot; 495 unsigned long *rmap; 496 struct revmap_entry *rev; 497 struct page *page, *pages[1]; 498 long index, ret, npages; 499 bool is_ci; 500 unsigned int writing, write_ok; 501 struct vm_area_struct *vma; 502 unsigned long rcbits; 503 long mmio_update; 504 505 if (kvm_is_radix(kvm)) 506 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 507 508 /* 509 * Real-mode code has already searched the HPT and found the 510 * entry we're interested in. Lock the entry and check that 511 * it hasn't changed. If it has, just return and re-execute the 512 * instruction. 513 */ 514 if (ea != vcpu->arch.pgfault_addr) 515 return RESUME_GUEST; 516 517 if (vcpu->arch.pgfault_cache) { 518 mmio_update = atomic64_read(&kvm->arch.mmio_update); 519 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 520 r = vcpu->arch.pgfault_cache->rpte; 521 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 522 r); 523 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 524 gfn_base = gpa_base >> PAGE_SHIFT; 525 gpa = gpa_base | (ea & (psize - 1)); 526 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 527 dsisr & DSISR_ISSTORE); 528 } 529 } 530 index = vcpu->arch.pgfault_index; 531 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 532 rev = &kvm->arch.hpt.rev[index]; 533 preempt_disable(); 534 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 535 cpu_relax(); 536 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 537 hpte[1] = be64_to_cpu(hptep[1]); 538 hpte[2] = r = rev->guest_rpte; 539 unlock_hpte(hptep, hpte[0]); 540 preempt_enable(); 541 542 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 543 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 544 hpte[1] = hpte_new_to_old_r(hpte[1]); 545 } 546 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 547 hpte[1] != vcpu->arch.pgfault_hpte[1]) 548 return RESUME_GUEST; 549 550 /* Translate the logical address and get the page */ 551 psize = kvmppc_actual_pgsz(hpte[0], r); 552 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 553 gfn_base = gpa_base >> PAGE_SHIFT; 554 gpa = gpa_base | (ea & (psize - 1)); 555 gfn = gpa >> PAGE_SHIFT; 556 memslot = gfn_to_memslot(kvm, gfn); 557 558 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 559 560 /* No memslot means it's an emulated MMIO region */ 561 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 562 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 563 dsisr & DSISR_ISSTORE); 564 565 /* 566 * This should never happen, because of the slot_is_aligned() 567 * check in kvmppc_do_h_enter(). 568 */ 569 if (gfn_base < memslot->base_gfn) 570 return -EFAULT; 571 572 /* used to check for invalidations in progress */ 573 mmu_seq = kvm->mmu_notifier_seq; 574 smp_rmb(); 575 576 ret = -EFAULT; 577 is_ci = false; 578 pfn = 0; 579 page = NULL; 580 pte_size = PAGE_SIZE; 581 writing = (dsisr & DSISR_ISSTORE) != 0; 582 /* If writing != 0, then the HPTE must allow writing, if we get here */ 583 write_ok = writing; 584 hva = gfn_to_hva_memslot(memslot, gfn); 585 npages = get_user_pages_fast(hva, 1, writing, pages); 586 if (npages < 1) { 587 /* Check if it's an I/O mapping */ 588 down_read(¤t->mm->mmap_sem); 589 vma = find_vma(current->mm, hva); 590 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 591 (vma->vm_flags & VM_PFNMAP)) { 592 pfn = vma->vm_pgoff + 593 ((hva - vma->vm_start) >> PAGE_SHIFT); 594 pte_size = psize; 595 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 596 write_ok = vma->vm_flags & VM_WRITE; 597 } 598 up_read(¤t->mm->mmap_sem); 599 if (!pfn) 600 goto out_put; 601 } else { 602 page = pages[0]; 603 pfn = page_to_pfn(page); 604 if (PageHuge(page)) { 605 page = compound_head(page); 606 pte_size <<= compound_order(page); 607 } 608 /* if the guest wants write access, see if that is OK */ 609 if (!writing && hpte_is_writable(r)) { 610 pte_t *ptep, pte; 611 unsigned long flags; 612 /* 613 * We need to protect against page table destruction 614 * hugepage split and collapse. 615 */ 616 local_irq_save(flags); 617 ptep = find_current_mm_pte(current->mm->pgd, 618 hva, NULL, NULL); 619 if (ptep) { 620 pte = kvmppc_read_update_linux_pte(ptep, 1); 621 if (__pte_write(pte)) 622 write_ok = 1; 623 } 624 local_irq_restore(flags); 625 } 626 } 627 628 if (psize > pte_size) 629 goto out_put; 630 631 /* Check WIMG vs. the actual page we're accessing */ 632 if (!hpte_cache_flags_ok(r, is_ci)) { 633 if (is_ci) 634 goto out_put; 635 /* 636 * Allow guest to map emulated device memory as 637 * uncacheable, but actually make it cacheable. 638 */ 639 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 640 } 641 642 /* 643 * Set the HPTE to point to pfn. 644 * Since the pfn is at PAGE_SIZE granularity, make sure we 645 * don't mask out lower-order bits if psize < PAGE_SIZE. 646 */ 647 if (psize < PAGE_SIZE) 648 psize = PAGE_SIZE; 649 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 650 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 651 if (hpte_is_writable(r) && !write_ok) 652 r = hpte_make_readonly(r); 653 ret = RESUME_GUEST; 654 preempt_disable(); 655 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 656 cpu_relax(); 657 hnow_v = be64_to_cpu(hptep[0]); 658 hnow_r = be64_to_cpu(hptep[1]); 659 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 660 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 661 hnow_r = hpte_new_to_old_r(hnow_r); 662 } 663 664 /* 665 * If the HPT is being resized, don't update the HPTE, 666 * instead let the guest retry after the resize operation is complete. 667 * The synchronization for mmu_ready test vs. set is provided 668 * by the HPTE lock. 669 */ 670 if (!kvm->arch.mmu_ready) 671 goto out_unlock; 672 673 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 674 rev->guest_rpte != hpte[2]) 675 /* HPTE has been changed under us; let the guest retry */ 676 goto out_unlock; 677 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 678 679 /* Always put the HPTE in the rmap chain for the page base address */ 680 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 681 lock_rmap(rmap); 682 683 /* Check if we might have been invalidated; let the guest retry if so */ 684 ret = RESUME_GUEST; 685 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 686 unlock_rmap(rmap); 687 goto out_unlock; 688 } 689 690 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 691 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 692 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 693 694 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 695 /* HPTE was previously valid, so we need to invalidate it */ 696 unlock_rmap(rmap); 697 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 698 kvmppc_invalidate_hpte(kvm, hptep, index); 699 /* don't lose previous R and C bits */ 700 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 701 } else { 702 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 703 } 704 705 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 706 r = hpte_old_to_new_r(hpte[0], r); 707 hpte[0] = hpte_old_to_new_v(hpte[0]); 708 } 709 hptep[1] = cpu_to_be64(r); 710 eieio(); 711 __unlock_hpte(hptep, hpte[0]); 712 asm volatile("ptesync" : : : "memory"); 713 preempt_enable(); 714 if (page && hpte_is_writable(r)) 715 SetPageDirty(page); 716 717 out_put: 718 trace_kvm_page_fault_exit(vcpu, hpte, ret); 719 720 if (page) { 721 /* 722 * We drop pages[0] here, not page because page might 723 * have been set to the head page of a compound, but 724 * we have to drop the reference on the correct tail 725 * page to match the get inside gup() 726 */ 727 put_page(pages[0]); 728 } 729 return ret; 730 731 out_unlock: 732 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 733 preempt_enable(); 734 goto out_put; 735 } 736 737 void kvmppc_rmap_reset(struct kvm *kvm) 738 { 739 struct kvm_memslots *slots; 740 struct kvm_memory_slot *memslot; 741 int srcu_idx; 742 743 srcu_idx = srcu_read_lock(&kvm->srcu); 744 slots = kvm_memslots(kvm); 745 kvm_for_each_memslot(memslot, slots) { 746 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 747 spin_lock(&kvm->mmu_lock); 748 /* 749 * This assumes it is acceptable to lose reference and 750 * change bits across a reset. 751 */ 752 memset(memslot->arch.rmap, 0, 753 memslot->npages * sizeof(*memslot->arch.rmap)); 754 spin_unlock(&kvm->mmu_lock); 755 } 756 srcu_read_unlock(&kvm->srcu, srcu_idx); 757 } 758 759 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 760 unsigned long gfn); 761 762 static int kvm_handle_hva_range(struct kvm *kvm, 763 unsigned long start, 764 unsigned long end, 765 hva_handler_fn handler) 766 { 767 int ret; 768 int retval = 0; 769 struct kvm_memslots *slots; 770 struct kvm_memory_slot *memslot; 771 772 slots = kvm_memslots(kvm); 773 kvm_for_each_memslot(memslot, slots) { 774 unsigned long hva_start, hva_end; 775 gfn_t gfn, gfn_end; 776 777 hva_start = max(start, memslot->userspace_addr); 778 hva_end = min(end, memslot->userspace_addr + 779 (memslot->npages << PAGE_SHIFT)); 780 if (hva_start >= hva_end) 781 continue; 782 /* 783 * {gfn(page) | page intersects with [hva_start, hva_end)} = 784 * {gfn, gfn+1, ..., gfn_end-1}. 785 */ 786 gfn = hva_to_gfn_memslot(hva_start, memslot); 787 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 788 789 for (; gfn < gfn_end; ++gfn) { 790 ret = handler(kvm, memslot, gfn); 791 retval |= ret; 792 } 793 } 794 795 return retval; 796 } 797 798 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 799 hva_handler_fn handler) 800 { 801 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 802 } 803 804 /* Must be called with both HPTE and rmap locked */ 805 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 806 struct kvm_memory_slot *memslot, 807 unsigned long *rmapp, unsigned long gfn) 808 { 809 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 810 struct revmap_entry *rev = kvm->arch.hpt.rev; 811 unsigned long j, h; 812 unsigned long ptel, psize, rcbits; 813 814 j = rev[i].forw; 815 if (j == i) { 816 /* chain is now empty */ 817 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 818 } else { 819 /* remove i from chain */ 820 h = rev[i].back; 821 rev[h].forw = j; 822 rev[j].back = h; 823 rev[i].forw = rev[i].back = i; 824 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 825 } 826 827 /* Now check and modify the HPTE */ 828 ptel = rev[i].guest_rpte; 829 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 830 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 831 hpte_rpn(ptel, psize) == gfn) { 832 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 833 kvmppc_invalidate_hpte(kvm, hptep, i); 834 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 835 /* Harvest R and C */ 836 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 837 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 838 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 839 kvmppc_update_dirty_map(memslot, gfn, psize); 840 if (rcbits & ~rev[i].guest_rpte) { 841 rev[i].guest_rpte = ptel | rcbits; 842 note_hpte_modification(kvm, &rev[i]); 843 } 844 } 845 } 846 847 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 848 unsigned long gfn) 849 { 850 unsigned long i; 851 __be64 *hptep; 852 unsigned long *rmapp; 853 854 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 855 for (;;) { 856 lock_rmap(rmapp); 857 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 858 unlock_rmap(rmapp); 859 break; 860 } 861 862 /* 863 * To avoid an ABBA deadlock with the HPTE lock bit, 864 * we can't spin on the HPTE lock while holding the 865 * rmap chain lock. 866 */ 867 i = *rmapp & KVMPPC_RMAP_INDEX; 868 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 869 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 870 /* unlock rmap before spinning on the HPTE lock */ 871 unlock_rmap(rmapp); 872 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 873 cpu_relax(); 874 continue; 875 } 876 877 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 878 unlock_rmap(rmapp); 879 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 880 } 881 return 0; 882 } 883 884 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 885 { 886 hva_handler_fn handler; 887 888 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 889 kvm_handle_hva_range(kvm, start, end, handler); 890 return 0; 891 } 892 893 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 894 struct kvm_memory_slot *memslot) 895 { 896 unsigned long gfn; 897 unsigned long n; 898 unsigned long *rmapp; 899 900 gfn = memslot->base_gfn; 901 rmapp = memslot->arch.rmap; 902 if (kvm_is_radix(kvm)) { 903 kvmppc_radix_flush_memslot(kvm, memslot); 904 return; 905 } 906 907 for (n = memslot->npages; n; --n, ++gfn) { 908 /* 909 * Testing the present bit without locking is OK because 910 * the memslot has been marked invalid already, and hence 911 * no new HPTEs referencing this page can be created, 912 * thus the present bit can't go from 0 to 1. 913 */ 914 if (*rmapp & KVMPPC_RMAP_PRESENT) 915 kvm_unmap_rmapp(kvm, memslot, gfn); 916 ++rmapp; 917 } 918 } 919 920 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 921 unsigned long gfn) 922 { 923 struct revmap_entry *rev = kvm->arch.hpt.rev; 924 unsigned long head, i, j; 925 __be64 *hptep; 926 int ret = 0; 927 unsigned long *rmapp; 928 929 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 930 retry: 931 lock_rmap(rmapp); 932 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 933 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 934 ret = 1; 935 } 936 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 937 unlock_rmap(rmapp); 938 return ret; 939 } 940 941 i = head = *rmapp & KVMPPC_RMAP_INDEX; 942 do { 943 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 944 j = rev[i].forw; 945 946 /* If this HPTE isn't referenced, ignore it */ 947 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 948 continue; 949 950 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 951 /* unlock rmap before spinning on the HPTE lock */ 952 unlock_rmap(rmapp); 953 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 954 cpu_relax(); 955 goto retry; 956 } 957 958 /* Now check and modify the HPTE */ 959 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 960 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 961 kvmppc_clear_ref_hpte(kvm, hptep, i); 962 if (!(rev[i].guest_rpte & HPTE_R_R)) { 963 rev[i].guest_rpte |= HPTE_R_R; 964 note_hpte_modification(kvm, &rev[i]); 965 } 966 ret = 1; 967 } 968 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 969 } while ((i = j) != head); 970 971 unlock_rmap(rmapp); 972 return ret; 973 } 974 975 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 976 { 977 hva_handler_fn handler; 978 979 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 980 return kvm_handle_hva_range(kvm, start, end, handler); 981 } 982 983 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 984 unsigned long gfn) 985 { 986 struct revmap_entry *rev = kvm->arch.hpt.rev; 987 unsigned long head, i, j; 988 unsigned long *hp; 989 int ret = 1; 990 unsigned long *rmapp; 991 992 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 993 if (*rmapp & KVMPPC_RMAP_REFERENCED) 994 return 1; 995 996 lock_rmap(rmapp); 997 if (*rmapp & KVMPPC_RMAP_REFERENCED) 998 goto out; 999 1000 if (*rmapp & KVMPPC_RMAP_PRESENT) { 1001 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1002 do { 1003 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1004 j = rev[i].forw; 1005 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1006 goto out; 1007 } while ((i = j) != head); 1008 } 1009 ret = 0; 1010 1011 out: 1012 unlock_rmap(rmapp); 1013 return ret; 1014 } 1015 1016 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1017 { 1018 hva_handler_fn handler; 1019 1020 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1021 return kvm_handle_hva(kvm, hva, handler); 1022 } 1023 1024 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1025 { 1026 hva_handler_fn handler; 1027 1028 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1029 kvm_handle_hva(kvm, hva, handler); 1030 } 1031 1032 static int vcpus_running(struct kvm *kvm) 1033 { 1034 return atomic_read(&kvm->arch.vcpus_running) != 0; 1035 } 1036 1037 /* 1038 * Returns the number of system pages that are dirty. 1039 * This can be more than 1 if we find a huge-page HPTE. 1040 */ 1041 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1042 { 1043 struct revmap_entry *rev = kvm->arch.hpt.rev; 1044 unsigned long head, i, j; 1045 unsigned long n; 1046 unsigned long v, r; 1047 __be64 *hptep; 1048 int npages_dirty = 0; 1049 1050 retry: 1051 lock_rmap(rmapp); 1052 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1053 unlock_rmap(rmapp); 1054 return npages_dirty; 1055 } 1056 1057 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1058 do { 1059 unsigned long hptep1; 1060 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1061 j = rev[i].forw; 1062 1063 /* 1064 * Checking the C (changed) bit here is racy since there 1065 * is no guarantee about when the hardware writes it back. 1066 * If the HPTE is not writable then it is stable since the 1067 * page can't be written to, and we would have done a tlbie 1068 * (which forces the hardware to complete any writeback) 1069 * when making the HPTE read-only. 1070 * If vcpus are running then this call is racy anyway 1071 * since the page could get dirtied subsequently, so we 1072 * expect there to be a further call which would pick up 1073 * any delayed C bit writeback. 1074 * Otherwise we need to do the tlbie even if C==0 in 1075 * order to pick up any delayed writeback of C. 1076 */ 1077 hptep1 = be64_to_cpu(hptep[1]); 1078 if (!(hptep1 & HPTE_R_C) && 1079 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1080 continue; 1081 1082 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1083 /* unlock rmap before spinning on the HPTE lock */ 1084 unlock_rmap(rmapp); 1085 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1086 cpu_relax(); 1087 goto retry; 1088 } 1089 1090 /* Now check and modify the HPTE */ 1091 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1092 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1093 continue; 1094 } 1095 1096 /* need to make it temporarily absent so C is stable */ 1097 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1098 kvmppc_invalidate_hpte(kvm, hptep, i); 1099 v = be64_to_cpu(hptep[0]); 1100 r = be64_to_cpu(hptep[1]); 1101 if (r & HPTE_R_C) { 1102 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1103 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1104 rev[i].guest_rpte |= HPTE_R_C; 1105 note_hpte_modification(kvm, &rev[i]); 1106 } 1107 n = kvmppc_actual_pgsz(v, r); 1108 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1109 if (n > npages_dirty) 1110 npages_dirty = n; 1111 eieio(); 1112 } 1113 v &= ~HPTE_V_ABSENT; 1114 v |= HPTE_V_VALID; 1115 __unlock_hpte(hptep, v); 1116 } while ((i = j) != head); 1117 1118 unlock_rmap(rmapp); 1119 return npages_dirty; 1120 } 1121 1122 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1123 struct kvm_memory_slot *memslot, 1124 unsigned long *map) 1125 { 1126 unsigned long gfn; 1127 1128 if (!vpa->dirty || !vpa->pinned_addr) 1129 return; 1130 gfn = vpa->gpa >> PAGE_SHIFT; 1131 if (gfn < memslot->base_gfn || 1132 gfn >= memslot->base_gfn + memslot->npages) 1133 return; 1134 1135 vpa->dirty = false; 1136 if (map) 1137 __set_bit_le(gfn - memslot->base_gfn, map); 1138 } 1139 1140 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1141 struct kvm_memory_slot *memslot, unsigned long *map) 1142 { 1143 unsigned long i; 1144 unsigned long *rmapp; 1145 1146 preempt_disable(); 1147 rmapp = memslot->arch.rmap; 1148 for (i = 0; i < memslot->npages; ++i) { 1149 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1150 /* 1151 * Note that if npages > 0 then i must be a multiple of npages, 1152 * since we always put huge-page HPTEs in the rmap chain 1153 * corresponding to their page base address. 1154 */ 1155 if (npages) 1156 set_dirty_bits(map, i, npages); 1157 ++rmapp; 1158 } 1159 preempt_enable(); 1160 return 0; 1161 } 1162 1163 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1164 unsigned long *nb_ret) 1165 { 1166 struct kvm_memory_slot *memslot; 1167 unsigned long gfn = gpa >> PAGE_SHIFT; 1168 struct page *page, *pages[1]; 1169 int npages; 1170 unsigned long hva, offset; 1171 int srcu_idx; 1172 1173 srcu_idx = srcu_read_lock(&kvm->srcu); 1174 memslot = gfn_to_memslot(kvm, gfn); 1175 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1176 goto err; 1177 hva = gfn_to_hva_memslot(memslot, gfn); 1178 npages = get_user_pages_fast(hva, 1, 1, pages); 1179 if (npages < 1) 1180 goto err; 1181 page = pages[0]; 1182 srcu_read_unlock(&kvm->srcu, srcu_idx); 1183 1184 offset = gpa & (PAGE_SIZE - 1); 1185 if (nb_ret) 1186 *nb_ret = PAGE_SIZE - offset; 1187 return page_address(page) + offset; 1188 1189 err: 1190 srcu_read_unlock(&kvm->srcu, srcu_idx); 1191 return NULL; 1192 } 1193 1194 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1195 bool dirty) 1196 { 1197 struct page *page = virt_to_page(va); 1198 struct kvm_memory_slot *memslot; 1199 unsigned long gfn; 1200 int srcu_idx; 1201 1202 put_page(page); 1203 1204 if (!dirty) 1205 return; 1206 1207 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1208 gfn = gpa >> PAGE_SHIFT; 1209 srcu_idx = srcu_read_lock(&kvm->srcu); 1210 memslot = gfn_to_memslot(kvm, gfn); 1211 if (memslot && memslot->dirty_bitmap) 1212 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1213 srcu_read_unlock(&kvm->srcu, srcu_idx); 1214 } 1215 1216 /* 1217 * HPT resizing 1218 */ 1219 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1220 { 1221 int rc; 1222 1223 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1224 if (rc < 0) 1225 return rc; 1226 1227 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1228 resize->hpt.virt); 1229 1230 return 0; 1231 } 1232 1233 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1234 unsigned long idx) 1235 { 1236 struct kvm *kvm = resize->kvm; 1237 struct kvm_hpt_info *old = &kvm->arch.hpt; 1238 struct kvm_hpt_info *new = &resize->hpt; 1239 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1240 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1241 __be64 *hptep, *new_hptep; 1242 unsigned long vpte, rpte, guest_rpte; 1243 int ret; 1244 struct revmap_entry *rev; 1245 unsigned long apsize, avpn, pteg, hash; 1246 unsigned long new_idx, new_pteg, replace_vpte; 1247 int pshift; 1248 1249 hptep = (__be64 *)(old->virt + (idx << 4)); 1250 1251 /* Guest is stopped, so new HPTEs can't be added or faulted 1252 * in, only unmapped or altered by host actions. So, it's 1253 * safe to check this before we take the HPTE lock */ 1254 vpte = be64_to_cpu(hptep[0]); 1255 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1256 return 0; /* nothing to do */ 1257 1258 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1259 cpu_relax(); 1260 1261 vpte = be64_to_cpu(hptep[0]); 1262 1263 ret = 0; 1264 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1265 /* Nothing to do */ 1266 goto out; 1267 1268 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1269 rpte = be64_to_cpu(hptep[1]); 1270 vpte = hpte_new_to_old_v(vpte, rpte); 1271 } 1272 1273 /* Unmap */ 1274 rev = &old->rev[idx]; 1275 guest_rpte = rev->guest_rpte; 1276 1277 ret = -EIO; 1278 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1279 if (!apsize) 1280 goto out; 1281 1282 if (vpte & HPTE_V_VALID) { 1283 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1284 int srcu_idx = srcu_read_lock(&kvm->srcu); 1285 struct kvm_memory_slot *memslot = 1286 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1287 1288 if (memslot) { 1289 unsigned long *rmapp; 1290 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1291 1292 lock_rmap(rmapp); 1293 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1294 unlock_rmap(rmapp); 1295 } 1296 1297 srcu_read_unlock(&kvm->srcu, srcu_idx); 1298 } 1299 1300 /* Reload PTE after unmap */ 1301 vpte = be64_to_cpu(hptep[0]); 1302 BUG_ON(vpte & HPTE_V_VALID); 1303 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1304 1305 ret = 0; 1306 if (!(vpte & HPTE_V_BOLTED)) 1307 goto out; 1308 1309 rpte = be64_to_cpu(hptep[1]); 1310 1311 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1312 vpte = hpte_new_to_old_v(vpte, rpte); 1313 rpte = hpte_new_to_old_r(rpte); 1314 } 1315 1316 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1317 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1318 pteg = idx / HPTES_PER_GROUP; 1319 if (vpte & HPTE_V_SECONDARY) 1320 pteg = ~pteg; 1321 1322 if (!(vpte & HPTE_V_1TB_SEG)) { 1323 unsigned long offset, vsid; 1324 1325 /* We only have 28 - 23 bits of offset in avpn */ 1326 offset = (avpn & 0x1f) << 23; 1327 vsid = avpn >> 5; 1328 /* We can find more bits from the pteg value */ 1329 if (pshift < 23) 1330 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1331 1332 hash = vsid ^ (offset >> pshift); 1333 } else { 1334 unsigned long offset, vsid; 1335 1336 /* We only have 40 - 23 bits of seg_off in avpn */ 1337 offset = (avpn & 0x1ffff) << 23; 1338 vsid = avpn >> 17; 1339 if (pshift < 23) 1340 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1341 1342 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1343 } 1344 1345 new_pteg = hash & new_hash_mask; 1346 if (vpte & HPTE_V_SECONDARY) 1347 new_pteg = ~hash & new_hash_mask; 1348 1349 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1350 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1351 1352 replace_vpte = be64_to_cpu(new_hptep[0]); 1353 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1354 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1355 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1356 } 1357 1358 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1359 BUG_ON(new->order >= old->order); 1360 1361 if (replace_vpte & HPTE_V_BOLTED) { 1362 if (vpte & HPTE_V_BOLTED) 1363 /* Bolted collision, nothing we can do */ 1364 ret = -ENOSPC; 1365 /* Discard the new HPTE */ 1366 goto out; 1367 } 1368 1369 /* Discard the previous HPTE */ 1370 } 1371 1372 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1373 rpte = hpte_old_to_new_r(vpte, rpte); 1374 vpte = hpte_old_to_new_v(vpte); 1375 } 1376 1377 new_hptep[1] = cpu_to_be64(rpte); 1378 new->rev[new_idx].guest_rpte = guest_rpte; 1379 /* No need for a barrier, since new HPT isn't active */ 1380 new_hptep[0] = cpu_to_be64(vpte); 1381 unlock_hpte(new_hptep, vpte); 1382 1383 out: 1384 unlock_hpte(hptep, vpte); 1385 return ret; 1386 } 1387 1388 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1389 { 1390 struct kvm *kvm = resize->kvm; 1391 unsigned long i; 1392 int rc; 1393 1394 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1395 rc = resize_hpt_rehash_hpte(resize, i); 1396 if (rc != 0) 1397 return rc; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1404 { 1405 struct kvm *kvm = resize->kvm; 1406 struct kvm_hpt_info hpt_tmp; 1407 1408 /* Exchange the pending tables in the resize structure with 1409 * the active tables */ 1410 1411 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1412 1413 spin_lock(&kvm->mmu_lock); 1414 asm volatile("ptesync" : : : "memory"); 1415 1416 hpt_tmp = kvm->arch.hpt; 1417 kvmppc_set_hpt(kvm, &resize->hpt); 1418 resize->hpt = hpt_tmp; 1419 1420 spin_unlock(&kvm->mmu_lock); 1421 1422 synchronize_srcu_expedited(&kvm->srcu); 1423 1424 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1425 kvmppc_setup_partition_table(kvm); 1426 1427 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1428 } 1429 1430 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1431 { 1432 if (WARN_ON(!mutex_is_locked(&kvm->lock))) 1433 return; 1434 1435 if (!resize) 1436 return; 1437 1438 if (resize->error != -EBUSY) { 1439 if (resize->hpt.virt) 1440 kvmppc_free_hpt(&resize->hpt); 1441 kfree(resize); 1442 } 1443 1444 if (kvm->arch.resize_hpt == resize) 1445 kvm->arch.resize_hpt = NULL; 1446 } 1447 1448 static void resize_hpt_prepare_work(struct work_struct *work) 1449 { 1450 struct kvm_resize_hpt *resize = container_of(work, 1451 struct kvm_resize_hpt, 1452 work); 1453 struct kvm *kvm = resize->kvm; 1454 int err = 0; 1455 1456 if (WARN_ON(resize->error != -EBUSY)) 1457 return; 1458 1459 mutex_lock(&kvm->lock); 1460 1461 /* Request is still current? */ 1462 if (kvm->arch.resize_hpt == resize) { 1463 /* We may request large allocations here: 1464 * do not sleep with kvm->lock held for a while. 1465 */ 1466 mutex_unlock(&kvm->lock); 1467 1468 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1469 resize->order); 1470 1471 err = resize_hpt_allocate(resize); 1472 1473 /* We have strict assumption about -EBUSY 1474 * when preparing for HPT resize. 1475 */ 1476 if (WARN_ON(err == -EBUSY)) 1477 err = -EINPROGRESS; 1478 1479 mutex_lock(&kvm->lock); 1480 /* It is possible that kvm->arch.resize_hpt != resize 1481 * after we grab kvm->lock again. 1482 */ 1483 } 1484 1485 resize->error = err; 1486 1487 if (kvm->arch.resize_hpt != resize) 1488 resize_hpt_release(kvm, resize); 1489 1490 mutex_unlock(&kvm->lock); 1491 } 1492 1493 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1494 struct kvm_ppc_resize_hpt *rhpt) 1495 { 1496 unsigned long flags = rhpt->flags; 1497 unsigned long shift = rhpt->shift; 1498 struct kvm_resize_hpt *resize; 1499 int ret; 1500 1501 if (flags != 0 || kvm_is_radix(kvm)) 1502 return -EINVAL; 1503 1504 if (shift && ((shift < 18) || (shift > 46))) 1505 return -EINVAL; 1506 1507 mutex_lock(&kvm->lock); 1508 1509 resize = kvm->arch.resize_hpt; 1510 1511 if (resize) { 1512 if (resize->order == shift) { 1513 /* Suitable resize in progress? */ 1514 ret = resize->error; 1515 if (ret == -EBUSY) 1516 ret = 100; /* estimated time in ms */ 1517 else if (ret) 1518 resize_hpt_release(kvm, resize); 1519 1520 goto out; 1521 } 1522 1523 /* not suitable, cancel it */ 1524 resize_hpt_release(kvm, resize); 1525 } 1526 1527 ret = 0; 1528 if (!shift) 1529 goto out; /* nothing to do */ 1530 1531 /* start new resize */ 1532 1533 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1534 if (!resize) { 1535 ret = -ENOMEM; 1536 goto out; 1537 } 1538 1539 resize->error = -EBUSY; 1540 resize->order = shift; 1541 resize->kvm = kvm; 1542 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1543 kvm->arch.resize_hpt = resize; 1544 1545 schedule_work(&resize->work); 1546 1547 ret = 100; /* estimated time in ms */ 1548 1549 out: 1550 mutex_unlock(&kvm->lock); 1551 return ret; 1552 } 1553 1554 static void resize_hpt_boot_vcpu(void *opaque) 1555 { 1556 /* Nothing to do, just force a KVM exit */ 1557 } 1558 1559 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1560 struct kvm_ppc_resize_hpt *rhpt) 1561 { 1562 unsigned long flags = rhpt->flags; 1563 unsigned long shift = rhpt->shift; 1564 struct kvm_resize_hpt *resize; 1565 long ret; 1566 1567 if (flags != 0 || kvm_is_radix(kvm)) 1568 return -EINVAL; 1569 1570 if (shift && ((shift < 18) || (shift > 46))) 1571 return -EINVAL; 1572 1573 mutex_lock(&kvm->lock); 1574 1575 resize = kvm->arch.resize_hpt; 1576 1577 /* This shouldn't be possible */ 1578 ret = -EIO; 1579 if (WARN_ON(!kvm->arch.mmu_ready)) 1580 goto out_no_hpt; 1581 1582 /* Stop VCPUs from running while we mess with the HPT */ 1583 kvm->arch.mmu_ready = 0; 1584 smp_mb(); 1585 1586 /* Boot all CPUs out of the guest so they re-read 1587 * mmu_ready */ 1588 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1589 1590 ret = -ENXIO; 1591 if (!resize || (resize->order != shift)) 1592 goto out; 1593 1594 ret = resize->error; 1595 if (ret) 1596 goto out; 1597 1598 ret = resize_hpt_rehash(resize); 1599 if (ret) 1600 goto out; 1601 1602 resize_hpt_pivot(resize); 1603 1604 out: 1605 /* Let VCPUs run again */ 1606 kvm->arch.mmu_ready = 1; 1607 smp_mb(); 1608 out_no_hpt: 1609 resize_hpt_release(kvm, resize); 1610 mutex_unlock(&kvm->lock); 1611 return ret; 1612 } 1613 1614 /* 1615 * Functions for reading and writing the hash table via reads and 1616 * writes on a file descriptor. 1617 * 1618 * Reads return the guest view of the hash table, which has to be 1619 * pieced together from the real hash table and the guest_rpte 1620 * values in the revmap array. 1621 * 1622 * On writes, each HPTE written is considered in turn, and if it 1623 * is valid, it is written to the HPT as if an H_ENTER with the 1624 * exact flag set was done. When the invalid count is non-zero 1625 * in the header written to the stream, the kernel will make 1626 * sure that that many HPTEs are invalid, and invalidate them 1627 * if not. 1628 */ 1629 1630 struct kvm_htab_ctx { 1631 unsigned long index; 1632 unsigned long flags; 1633 struct kvm *kvm; 1634 int first_pass; 1635 }; 1636 1637 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1638 1639 /* 1640 * Returns 1 if this HPT entry has been modified or has pending 1641 * R/C bit changes. 1642 */ 1643 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1644 { 1645 unsigned long rcbits_unset; 1646 1647 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1648 return 1; 1649 1650 /* Also need to consider changes in reference and changed bits */ 1651 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1652 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1653 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1654 return 1; 1655 1656 return 0; 1657 } 1658 1659 static long record_hpte(unsigned long flags, __be64 *hptp, 1660 unsigned long *hpte, struct revmap_entry *revp, 1661 int want_valid, int first_pass) 1662 { 1663 unsigned long v, r, hr; 1664 unsigned long rcbits_unset; 1665 int ok = 1; 1666 int valid, dirty; 1667 1668 /* Unmodified entries are uninteresting except on the first pass */ 1669 dirty = hpte_dirty(revp, hptp); 1670 if (!first_pass && !dirty) 1671 return 0; 1672 1673 valid = 0; 1674 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1675 valid = 1; 1676 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1677 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1678 valid = 0; 1679 } 1680 if (valid != want_valid) 1681 return 0; 1682 1683 v = r = 0; 1684 if (valid || dirty) { 1685 /* lock the HPTE so it's stable and read it */ 1686 preempt_disable(); 1687 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1688 cpu_relax(); 1689 v = be64_to_cpu(hptp[0]); 1690 hr = be64_to_cpu(hptp[1]); 1691 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1692 v = hpte_new_to_old_v(v, hr); 1693 hr = hpte_new_to_old_r(hr); 1694 } 1695 1696 /* re-evaluate valid and dirty from synchronized HPTE value */ 1697 valid = !!(v & HPTE_V_VALID); 1698 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1699 1700 /* Harvest R and C into guest view if necessary */ 1701 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1702 if (valid && (rcbits_unset & hr)) { 1703 revp->guest_rpte |= (hr & 1704 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1705 dirty = 1; 1706 } 1707 1708 if (v & HPTE_V_ABSENT) { 1709 v &= ~HPTE_V_ABSENT; 1710 v |= HPTE_V_VALID; 1711 valid = 1; 1712 } 1713 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1714 valid = 0; 1715 1716 r = revp->guest_rpte; 1717 /* only clear modified if this is the right sort of entry */ 1718 if (valid == want_valid && dirty) { 1719 r &= ~HPTE_GR_MODIFIED; 1720 revp->guest_rpte = r; 1721 } 1722 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1723 preempt_enable(); 1724 if (!(valid == want_valid && (first_pass || dirty))) 1725 ok = 0; 1726 } 1727 hpte[0] = cpu_to_be64(v); 1728 hpte[1] = cpu_to_be64(r); 1729 return ok; 1730 } 1731 1732 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1733 size_t count, loff_t *ppos) 1734 { 1735 struct kvm_htab_ctx *ctx = file->private_data; 1736 struct kvm *kvm = ctx->kvm; 1737 struct kvm_get_htab_header hdr; 1738 __be64 *hptp; 1739 struct revmap_entry *revp; 1740 unsigned long i, nb, nw; 1741 unsigned long __user *lbuf; 1742 struct kvm_get_htab_header __user *hptr; 1743 unsigned long flags; 1744 int first_pass; 1745 unsigned long hpte[2]; 1746 1747 if (!access_ok(buf, count)) 1748 return -EFAULT; 1749 if (kvm_is_radix(kvm)) 1750 return 0; 1751 1752 first_pass = ctx->first_pass; 1753 flags = ctx->flags; 1754 1755 i = ctx->index; 1756 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1757 revp = kvm->arch.hpt.rev + i; 1758 lbuf = (unsigned long __user *)buf; 1759 1760 nb = 0; 1761 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1762 /* Initialize header */ 1763 hptr = (struct kvm_get_htab_header __user *)buf; 1764 hdr.n_valid = 0; 1765 hdr.n_invalid = 0; 1766 nw = nb; 1767 nb += sizeof(hdr); 1768 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1769 1770 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1771 if (!first_pass) { 1772 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1773 !hpte_dirty(revp, hptp)) { 1774 ++i; 1775 hptp += 2; 1776 ++revp; 1777 } 1778 } 1779 hdr.index = i; 1780 1781 /* Grab a series of valid entries */ 1782 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1783 hdr.n_valid < 0xffff && 1784 nb + HPTE_SIZE < count && 1785 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1786 /* valid entry, write it out */ 1787 ++hdr.n_valid; 1788 if (__put_user(hpte[0], lbuf) || 1789 __put_user(hpte[1], lbuf + 1)) 1790 return -EFAULT; 1791 nb += HPTE_SIZE; 1792 lbuf += 2; 1793 ++i; 1794 hptp += 2; 1795 ++revp; 1796 } 1797 /* Now skip invalid entries while we can */ 1798 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1799 hdr.n_invalid < 0xffff && 1800 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1801 /* found an invalid entry */ 1802 ++hdr.n_invalid; 1803 ++i; 1804 hptp += 2; 1805 ++revp; 1806 } 1807 1808 if (hdr.n_valid || hdr.n_invalid) { 1809 /* write back the header */ 1810 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1811 return -EFAULT; 1812 nw = nb; 1813 buf = (char __user *)lbuf; 1814 } else { 1815 nb = nw; 1816 } 1817 1818 /* Check if we've wrapped around the hash table */ 1819 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1820 i = 0; 1821 ctx->first_pass = 0; 1822 break; 1823 } 1824 } 1825 1826 ctx->index = i; 1827 1828 return nb; 1829 } 1830 1831 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1832 size_t count, loff_t *ppos) 1833 { 1834 struct kvm_htab_ctx *ctx = file->private_data; 1835 struct kvm *kvm = ctx->kvm; 1836 struct kvm_get_htab_header hdr; 1837 unsigned long i, j; 1838 unsigned long v, r; 1839 unsigned long __user *lbuf; 1840 __be64 *hptp; 1841 unsigned long tmp[2]; 1842 ssize_t nb; 1843 long int err, ret; 1844 int mmu_ready; 1845 int pshift; 1846 1847 if (!access_ok(buf, count)) 1848 return -EFAULT; 1849 if (kvm_is_radix(kvm)) 1850 return -EINVAL; 1851 1852 /* lock out vcpus from running while we're doing this */ 1853 mutex_lock(&kvm->lock); 1854 mmu_ready = kvm->arch.mmu_ready; 1855 if (mmu_ready) { 1856 kvm->arch.mmu_ready = 0; /* temporarily */ 1857 /* order mmu_ready vs. vcpus_running */ 1858 smp_mb(); 1859 if (atomic_read(&kvm->arch.vcpus_running)) { 1860 kvm->arch.mmu_ready = 1; 1861 mutex_unlock(&kvm->lock); 1862 return -EBUSY; 1863 } 1864 } 1865 1866 err = 0; 1867 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1868 err = -EFAULT; 1869 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1870 break; 1871 1872 err = 0; 1873 if (nb + hdr.n_valid * HPTE_SIZE > count) 1874 break; 1875 1876 nb += sizeof(hdr); 1877 buf += sizeof(hdr); 1878 1879 err = -EINVAL; 1880 i = hdr.index; 1881 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1882 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1883 break; 1884 1885 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1886 lbuf = (unsigned long __user *)buf; 1887 for (j = 0; j < hdr.n_valid; ++j) { 1888 __be64 hpte_v; 1889 __be64 hpte_r; 1890 1891 err = -EFAULT; 1892 if (__get_user(hpte_v, lbuf) || 1893 __get_user(hpte_r, lbuf + 1)) 1894 goto out; 1895 v = be64_to_cpu(hpte_v); 1896 r = be64_to_cpu(hpte_r); 1897 err = -EINVAL; 1898 if (!(v & HPTE_V_VALID)) 1899 goto out; 1900 pshift = kvmppc_hpte_base_page_shift(v, r); 1901 if (pshift <= 0) 1902 goto out; 1903 lbuf += 2; 1904 nb += HPTE_SIZE; 1905 1906 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1907 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1908 err = -EIO; 1909 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1910 tmp); 1911 if (ret != H_SUCCESS) { 1912 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1913 "r=%lx\n", ret, i, v, r); 1914 goto out; 1915 } 1916 if (!mmu_ready && is_vrma_hpte(v)) { 1917 unsigned long senc, lpcr; 1918 1919 senc = slb_pgsize_encoding(1ul << pshift); 1920 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1921 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1922 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1923 lpcr = senc << (LPCR_VRMASD_SH - 4); 1924 kvmppc_update_lpcr(kvm, lpcr, 1925 LPCR_VRMASD); 1926 } else { 1927 kvmppc_setup_partition_table(kvm); 1928 } 1929 mmu_ready = 1; 1930 } 1931 ++i; 1932 hptp += 2; 1933 } 1934 1935 for (j = 0; j < hdr.n_invalid; ++j) { 1936 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1937 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1938 ++i; 1939 hptp += 2; 1940 } 1941 err = 0; 1942 } 1943 1944 out: 1945 /* Order HPTE updates vs. mmu_ready */ 1946 smp_wmb(); 1947 kvm->arch.mmu_ready = mmu_ready; 1948 mutex_unlock(&kvm->lock); 1949 1950 if (err) 1951 return err; 1952 return nb; 1953 } 1954 1955 static int kvm_htab_release(struct inode *inode, struct file *filp) 1956 { 1957 struct kvm_htab_ctx *ctx = filp->private_data; 1958 1959 filp->private_data = NULL; 1960 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1961 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1962 kvm_put_kvm(ctx->kvm); 1963 kfree(ctx); 1964 return 0; 1965 } 1966 1967 static const struct file_operations kvm_htab_fops = { 1968 .read = kvm_htab_read, 1969 .write = kvm_htab_write, 1970 .llseek = default_llseek, 1971 .release = kvm_htab_release, 1972 }; 1973 1974 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1975 { 1976 int ret; 1977 struct kvm_htab_ctx *ctx; 1978 int rwflag; 1979 1980 /* reject flags we don't recognize */ 1981 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1982 return -EINVAL; 1983 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1984 if (!ctx) 1985 return -ENOMEM; 1986 kvm_get_kvm(kvm); 1987 ctx->kvm = kvm; 1988 ctx->index = ghf->start_index; 1989 ctx->flags = ghf->flags; 1990 ctx->first_pass = 1; 1991 1992 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1993 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1994 if (ret < 0) { 1995 kfree(ctx); 1996 kvm_put_kvm(kvm); 1997 return ret; 1998 } 1999 2000 if (rwflag == O_RDONLY) { 2001 mutex_lock(&kvm->slots_lock); 2002 atomic_inc(&kvm->arch.hpte_mod_interest); 2003 /* make sure kvmppc_do_h_enter etc. see the increment */ 2004 synchronize_srcu_expedited(&kvm->srcu); 2005 mutex_unlock(&kvm->slots_lock); 2006 } 2007 2008 return ret; 2009 } 2010 2011 struct debugfs_htab_state { 2012 struct kvm *kvm; 2013 struct mutex mutex; 2014 unsigned long hpt_index; 2015 int chars_left; 2016 int buf_index; 2017 char buf[64]; 2018 }; 2019 2020 static int debugfs_htab_open(struct inode *inode, struct file *file) 2021 { 2022 struct kvm *kvm = inode->i_private; 2023 struct debugfs_htab_state *p; 2024 2025 p = kzalloc(sizeof(*p), GFP_KERNEL); 2026 if (!p) 2027 return -ENOMEM; 2028 2029 kvm_get_kvm(kvm); 2030 p->kvm = kvm; 2031 mutex_init(&p->mutex); 2032 file->private_data = p; 2033 2034 return nonseekable_open(inode, file); 2035 } 2036 2037 static int debugfs_htab_release(struct inode *inode, struct file *file) 2038 { 2039 struct debugfs_htab_state *p = file->private_data; 2040 2041 kvm_put_kvm(p->kvm); 2042 kfree(p); 2043 return 0; 2044 } 2045 2046 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2047 size_t len, loff_t *ppos) 2048 { 2049 struct debugfs_htab_state *p = file->private_data; 2050 ssize_t ret, r; 2051 unsigned long i, n; 2052 unsigned long v, hr, gr; 2053 struct kvm *kvm; 2054 __be64 *hptp; 2055 2056 kvm = p->kvm; 2057 if (kvm_is_radix(kvm)) 2058 return 0; 2059 2060 ret = mutex_lock_interruptible(&p->mutex); 2061 if (ret) 2062 return ret; 2063 2064 if (p->chars_left) { 2065 n = p->chars_left; 2066 if (n > len) 2067 n = len; 2068 r = copy_to_user(buf, p->buf + p->buf_index, n); 2069 n -= r; 2070 p->chars_left -= n; 2071 p->buf_index += n; 2072 buf += n; 2073 len -= n; 2074 ret = n; 2075 if (r) { 2076 if (!n) 2077 ret = -EFAULT; 2078 goto out; 2079 } 2080 } 2081 2082 i = p->hpt_index; 2083 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2084 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2085 ++i, hptp += 2) { 2086 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2087 continue; 2088 2089 /* lock the HPTE so it's stable and read it */ 2090 preempt_disable(); 2091 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2092 cpu_relax(); 2093 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2094 hr = be64_to_cpu(hptp[1]); 2095 gr = kvm->arch.hpt.rev[i].guest_rpte; 2096 unlock_hpte(hptp, v); 2097 preempt_enable(); 2098 2099 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2100 continue; 2101 2102 n = scnprintf(p->buf, sizeof(p->buf), 2103 "%6lx %.16lx %.16lx %.16lx\n", 2104 i, v, hr, gr); 2105 p->chars_left = n; 2106 if (n > len) 2107 n = len; 2108 r = copy_to_user(buf, p->buf, n); 2109 n -= r; 2110 p->chars_left -= n; 2111 p->buf_index = n; 2112 buf += n; 2113 len -= n; 2114 ret += n; 2115 if (r) { 2116 if (!ret) 2117 ret = -EFAULT; 2118 goto out; 2119 } 2120 } 2121 p->hpt_index = i; 2122 2123 out: 2124 mutex_unlock(&p->mutex); 2125 return ret; 2126 } 2127 2128 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2129 size_t len, loff_t *ppos) 2130 { 2131 return -EACCES; 2132 } 2133 2134 static const struct file_operations debugfs_htab_fops = { 2135 .owner = THIS_MODULE, 2136 .open = debugfs_htab_open, 2137 .release = debugfs_htab_release, 2138 .read = debugfs_htab_read, 2139 .write = debugfs_htab_write, 2140 .llseek = generic_file_llseek, 2141 }; 2142 2143 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2144 { 2145 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2146 kvm->arch.debugfs_dir, kvm, 2147 &debugfs_htab_fops); 2148 } 2149 2150 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2151 { 2152 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2153 2154 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2155 2156 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2157 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2158 2159 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2160 } 2161