1 /*
2  * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *     Alexander Graf <agraf@suse.de>
6  *     Kevin Wolf <mail@kevin-wolf.de>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License, version 2, as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
20  */
21 
22 #include <linux/kvm_host.h>
23 
24 #include <asm/kvm_ppc.h>
25 #include <asm/kvm_book3s.h>
26 #include <asm/mmu-hash64.h>
27 #include <asm/machdep.h>
28 #include <asm/mmu_context.h>
29 #include <asm/hw_irq.h>
30 #include "trace_pr.h"
31 
32 #define PTE_SIZE 12
33 
34 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
35 {
36 	ppc_md.hpte_invalidate(pte->slot, pte->host_vpn,
37 			       pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M,
38 			       false);
39 }
40 
41 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
42  * a hash, so we don't waste cycles on looping */
43 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
44 {
45 	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
46 		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
47 		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
48 		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
49 		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
50 		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
51 		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
52 		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
53 }
54 
55 
56 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
57 {
58 	struct kvmppc_sid_map *map;
59 	u16 sid_map_mask;
60 
61 	if (kvmppc_get_msr(vcpu) & MSR_PR)
62 		gvsid |= VSID_PR;
63 
64 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
65 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
66 	if (map->valid && (map->guest_vsid == gvsid)) {
67 		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
68 		return map;
69 	}
70 
71 	map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
72 	if (map->valid && (map->guest_vsid == gvsid)) {
73 		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
74 		return map;
75 	}
76 
77 	trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
78 	return NULL;
79 }
80 
81 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
82 			bool iswrite)
83 {
84 	unsigned long vpn;
85 	pfn_t hpaddr;
86 	ulong hash, hpteg;
87 	u64 vsid;
88 	int ret;
89 	int rflags = 0x192;
90 	int vflags = 0;
91 	int attempt = 0;
92 	struct kvmppc_sid_map *map;
93 	int r = 0;
94 	int hpsize = MMU_PAGE_4K;
95 	bool writable;
96 	unsigned long mmu_seq;
97 	struct kvm *kvm = vcpu->kvm;
98 	struct hpte_cache *cpte;
99 	unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT;
100 	unsigned long pfn;
101 
102 	/* used to check for invalidations in progress */
103 	mmu_seq = kvm->mmu_notifier_seq;
104 	smp_rmb();
105 
106 	/* Get host physical address for gpa */
107 	pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable);
108 	if (is_error_noslot_pfn(pfn)) {
109 		printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n",
110 		       orig_pte->raddr);
111 		r = -EINVAL;
112 		goto out;
113 	}
114 	hpaddr = pfn << PAGE_SHIFT;
115 
116 	/* and write the mapping ea -> hpa into the pt */
117 	vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
118 	map = find_sid_vsid(vcpu, vsid);
119 	if (!map) {
120 		ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
121 		WARN_ON(ret < 0);
122 		map = find_sid_vsid(vcpu, vsid);
123 	}
124 	if (!map) {
125 		printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
126 				vsid, orig_pte->eaddr);
127 		WARN_ON(true);
128 		r = -EINVAL;
129 		goto out;
130 	}
131 
132 	vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
133 
134 	kvm_set_pfn_accessed(pfn);
135 	if (!orig_pte->may_write || !writable)
136 		rflags |= PP_RXRX;
137 	else {
138 		mark_page_dirty(vcpu->kvm, gfn);
139 		kvm_set_pfn_dirty(pfn);
140 	}
141 
142 	if (!orig_pte->may_execute)
143 		rflags |= HPTE_R_N;
144 	else
145 		kvmppc_mmu_flush_icache(pfn);
146 
147 	/*
148 	 * Use 64K pages if possible; otherwise, on 64K page kernels,
149 	 * we need to transfer 4 more bits from guest real to host real addr.
150 	 */
151 	if (vsid & VSID_64K)
152 		hpsize = MMU_PAGE_64K;
153 	else
154 		hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
155 
156 	hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
157 
158 	cpte = kvmppc_mmu_hpte_cache_next(vcpu);
159 
160 	spin_lock(&kvm->mmu_lock);
161 	if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) {
162 		r = -EAGAIN;
163 		goto out_unlock;
164 	}
165 
166 map_again:
167 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
168 
169 	/* In case we tried normal mapping already, let's nuke old entries */
170 	if (attempt > 1)
171 		if (ppc_md.hpte_remove(hpteg) < 0) {
172 			r = -1;
173 			goto out_unlock;
174 		}
175 
176 	ret = ppc_md.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
177 				 hpsize, hpsize, MMU_SEGSIZE_256M);
178 
179 	if (ret < 0) {
180 		/* If we couldn't map a primary PTE, try a secondary */
181 		hash = ~hash;
182 		vflags ^= HPTE_V_SECONDARY;
183 		attempt++;
184 		goto map_again;
185 	} else {
186 		trace_kvm_book3s_64_mmu_map(rflags, hpteg,
187 					    vpn, hpaddr, orig_pte);
188 
189 		/* The ppc_md code may give us a secondary entry even though we
190 		   asked for a primary. Fix up. */
191 		if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
192 			hash = ~hash;
193 			hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
194 		}
195 
196 		cpte->slot = hpteg + (ret & 7);
197 		cpte->host_vpn = vpn;
198 		cpte->pte = *orig_pte;
199 		cpte->pfn = pfn;
200 		cpte->pagesize = hpsize;
201 
202 		kvmppc_mmu_hpte_cache_map(vcpu, cpte);
203 		cpte = NULL;
204 	}
205 
206 out_unlock:
207 	spin_unlock(&kvm->mmu_lock);
208 	kvm_release_pfn_clean(pfn);
209 	if (cpte)
210 		kvmppc_mmu_hpte_cache_free(cpte);
211 
212 out:
213 	return r;
214 }
215 
216 void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
217 {
218 	u64 mask = 0xfffffffffULL;
219 	u64 vsid;
220 
221 	vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid);
222 	if (vsid & VSID_64K)
223 		mask = 0xffffffff0ULL;
224 	kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask);
225 }
226 
227 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
228 {
229 	struct kvmppc_sid_map *map;
230 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
231 	u16 sid_map_mask;
232 	static int backwards_map = 0;
233 
234 	if (kvmppc_get_msr(vcpu) & MSR_PR)
235 		gvsid |= VSID_PR;
236 
237 	/* We might get collisions that trap in preceding order, so let's
238 	   map them differently */
239 
240 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
241 	if (backwards_map)
242 		sid_map_mask = SID_MAP_MASK - sid_map_mask;
243 
244 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
245 
246 	/* Make sure we're taking the other map next time */
247 	backwards_map = !backwards_map;
248 
249 	/* Uh-oh ... out of mappings. Let's flush! */
250 	if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
251 		vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
252 		memset(vcpu_book3s->sid_map, 0,
253 		       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
254 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
255 		kvmppc_mmu_flush_segments(vcpu);
256 	}
257 	map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
258 
259 	map->guest_vsid = gvsid;
260 	map->valid = true;
261 
262 	trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
263 
264 	return map;
265 }
266 
267 static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
268 {
269 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
270 	int i;
271 	int max_slb_size = 64;
272 	int found_inval = -1;
273 	int r;
274 
275 	/* Are we overwriting? */
276 	for (i = 0; i < svcpu->slb_max; i++) {
277 		if (!(svcpu->slb[i].esid & SLB_ESID_V))
278 			found_inval = i;
279 		else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
280 			r = i;
281 			goto out;
282 		}
283 	}
284 
285 	/* Found a spare entry that was invalidated before */
286 	if (found_inval >= 0) {
287 		r = found_inval;
288 		goto out;
289 	}
290 
291 	/* No spare invalid entry, so create one */
292 
293 	if (mmu_slb_size < 64)
294 		max_slb_size = mmu_slb_size;
295 
296 	/* Overflowing -> purge */
297 	if ((svcpu->slb_max) == max_slb_size)
298 		kvmppc_mmu_flush_segments(vcpu);
299 
300 	r = svcpu->slb_max;
301 	svcpu->slb_max++;
302 
303 out:
304 	svcpu_put(svcpu);
305 	return r;
306 }
307 
308 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
309 {
310 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
311 	u64 esid = eaddr >> SID_SHIFT;
312 	u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
313 	u64 slb_vsid = SLB_VSID_USER;
314 	u64 gvsid;
315 	int slb_index;
316 	struct kvmppc_sid_map *map;
317 	int r = 0;
318 
319 	slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
320 
321 	if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
322 		/* Invalidate an entry */
323 		svcpu->slb[slb_index].esid = 0;
324 		r = -ENOENT;
325 		goto out;
326 	}
327 
328 	map = find_sid_vsid(vcpu, gvsid);
329 	if (!map)
330 		map = create_sid_map(vcpu, gvsid);
331 
332 	map->guest_esid = esid;
333 
334 	slb_vsid |= (map->host_vsid << 12);
335 	slb_vsid &= ~SLB_VSID_KP;
336 	slb_esid |= slb_index;
337 
338 #ifdef CONFIG_PPC_64K_PAGES
339 	/* Set host segment base page size to 64K if possible */
340 	if (gvsid & VSID_64K)
341 		slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
342 #endif
343 
344 	svcpu->slb[slb_index].esid = slb_esid;
345 	svcpu->slb[slb_index].vsid = slb_vsid;
346 
347 	trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
348 
349 out:
350 	svcpu_put(svcpu);
351 	return r;
352 }
353 
354 void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
355 {
356 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
357 	ulong seg_mask = -seg_size;
358 	int i;
359 
360 	for (i = 0; i < svcpu->slb_max; i++) {
361 		if ((svcpu->slb[i].esid & SLB_ESID_V) &&
362 		    (svcpu->slb[i].esid & seg_mask) == ea) {
363 			/* Invalidate this entry */
364 			svcpu->slb[i].esid = 0;
365 		}
366 	}
367 
368 	svcpu_put(svcpu);
369 }
370 
371 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
372 {
373 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
374 	svcpu->slb_max = 0;
375 	svcpu->slb[0].esid = 0;
376 	svcpu_put(svcpu);
377 }
378 
379 void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
380 {
381 	kvmppc_mmu_hpte_destroy(vcpu);
382 	__destroy_context(to_book3s(vcpu)->context_id[0]);
383 }
384 
385 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
386 {
387 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
388 	int err;
389 
390 	err = __init_new_context();
391 	if (err < 0)
392 		return -1;
393 	vcpu3s->context_id[0] = err;
394 
395 	vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
396 				  << ESID_BITS) - 1;
397 	vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
398 	vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
399 
400 	kvmppc_mmu_hpte_init(vcpu);
401 
402 	return 0;
403 }
404