1 /* 2 * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. 3 * 4 * Authors: 5 * Alexander Graf <agraf@suse.de> 6 * Kevin Wolf <mail@kevin-wolf.de> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License, version 2, as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 20 */ 21 22 #include <linux/kvm_host.h> 23 24 #include <asm/kvm_ppc.h> 25 #include <asm/kvm_book3s.h> 26 #include <asm/mmu-hash64.h> 27 #include <asm/machdep.h> 28 #include <asm/mmu_context.h> 29 #include <asm/hw_irq.h> 30 31 #define PTE_SIZE 12 32 #define VSID_ALL 0 33 34 /* #define DEBUG_MMU */ 35 /* #define DEBUG_SLB */ 36 37 #ifdef DEBUG_MMU 38 #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) 39 #else 40 #define dprintk_mmu(a, ...) do { } while(0) 41 #endif 42 43 #ifdef DEBUG_SLB 44 #define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__) 45 #else 46 #define dprintk_slb(a, ...) do { } while(0) 47 #endif 48 49 static void invalidate_pte(struct hpte_cache *pte) 50 { 51 dprintk_mmu("KVM: Flushing SPT %d: 0x%llx (0x%llx) -> 0x%llx\n", 52 i, pte->pte.eaddr, pte->pte.vpage, pte->host_va); 53 54 ppc_md.hpte_invalidate(pte->slot, pte->host_va, 55 MMU_PAGE_4K, MMU_SEGSIZE_256M, 56 false); 57 pte->host_va = 0; 58 kvm_release_pfn_dirty(pte->pfn); 59 } 60 61 void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, u64 guest_ea, u64 ea_mask) 62 { 63 int i; 64 65 dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%llx & 0x%llx\n", 66 vcpu->arch.hpte_cache_offset, guest_ea, ea_mask); 67 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); 68 69 guest_ea &= ea_mask; 70 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { 71 struct hpte_cache *pte; 72 73 pte = &vcpu->arch.hpte_cache[i]; 74 if (!pte->host_va) 75 continue; 76 77 if ((pte->pte.eaddr & ea_mask) == guest_ea) { 78 invalidate_pte(pte); 79 } 80 } 81 82 /* Doing a complete flush -> start from scratch */ 83 if (!ea_mask) 84 vcpu->arch.hpte_cache_offset = 0; 85 } 86 87 void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) 88 { 89 int i; 90 91 dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", 92 vcpu->arch.hpte_cache_offset, guest_vp, vp_mask); 93 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); 94 95 guest_vp &= vp_mask; 96 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { 97 struct hpte_cache *pte; 98 99 pte = &vcpu->arch.hpte_cache[i]; 100 if (!pte->host_va) 101 continue; 102 103 if ((pte->pte.vpage & vp_mask) == guest_vp) { 104 invalidate_pte(pte); 105 } 106 } 107 } 108 109 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, u64 pa_start, u64 pa_end) 110 { 111 int i; 112 113 dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n", 114 vcpu->arch.hpte_cache_offset, guest_pa, pa_mask); 115 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); 116 117 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { 118 struct hpte_cache *pte; 119 120 pte = &vcpu->arch.hpte_cache[i]; 121 if (!pte->host_va) 122 continue; 123 124 if ((pte->pte.raddr >= pa_start) && 125 (pte->pte.raddr < pa_end)) { 126 invalidate_pte(pte); 127 } 128 } 129 } 130 131 struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data) 132 { 133 int i; 134 u64 guest_vp; 135 136 guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false); 137 for (i=0; i<vcpu->arch.hpte_cache_offset; i++) { 138 struct hpte_cache *pte; 139 140 pte = &vcpu->arch.hpte_cache[i]; 141 if (!pte->host_va) 142 continue; 143 144 if (pte->pte.vpage == guest_vp) 145 return &pte->pte; 146 } 147 148 return NULL; 149 } 150 151 static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) 152 { 153 if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM) 154 kvmppc_mmu_pte_flush(vcpu, 0, 0); 155 156 return vcpu->arch.hpte_cache_offset++; 157 } 158 159 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using 160 * a hash, so we don't waste cycles on looping */ 161 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) 162 { 163 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ 164 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ 165 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ 166 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ 167 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ 168 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ 169 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ 170 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); 171 } 172 173 174 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) 175 { 176 struct kvmppc_sid_map *map; 177 u16 sid_map_mask; 178 179 if (vcpu->arch.msr & MSR_PR) 180 gvsid |= VSID_PR; 181 182 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 183 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 184 if (map->guest_vsid == gvsid) { 185 dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", 186 gvsid, map->host_vsid); 187 return map; 188 } 189 190 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; 191 if (map->guest_vsid == gvsid) { 192 dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", 193 gvsid, map->host_vsid); 194 return map; 195 } 196 197 dprintk_slb("SLB: Searching 0x%llx -> not found\n", gvsid); 198 return NULL; 199 } 200 201 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) 202 { 203 pfn_t hpaddr; 204 ulong hash, hpteg, va; 205 u64 vsid; 206 int ret; 207 int rflags = 0x192; 208 int vflags = 0; 209 int attempt = 0; 210 struct kvmppc_sid_map *map; 211 212 /* Get host physical address for gpa */ 213 hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); 214 if (kvm_is_error_hva(hpaddr)) { 215 printk(KERN_INFO "Couldn't get guest page for gfn %llx!\n", orig_pte->eaddr); 216 return -EINVAL; 217 } 218 hpaddr <<= PAGE_SHIFT; 219 #if PAGE_SHIFT == 12 220 #elif PAGE_SHIFT == 16 221 hpaddr |= orig_pte->raddr & 0xf000; 222 #else 223 #error Unknown page size 224 #endif 225 226 /* and write the mapping ea -> hpa into the pt */ 227 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); 228 map = find_sid_vsid(vcpu, vsid); 229 if (!map) { 230 kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); 231 map = find_sid_vsid(vcpu, vsid); 232 } 233 BUG_ON(!map); 234 235 vsid = map->host_vsid; 236 va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M); 237 238 if (!orig_pte->may_write) 239 rflags |= HPTE_R_PP; 240 else 241 mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); 242 243 if (!orig_pte->may_execute) 244 rflags |= HPTE_R_N; 245 246 hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M); 247 248 map_again: 249 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 250 251 /* In case we tried normal mapping already, let's nuke old entries */ 252 if (attempt > 1) 253 if (ppc_md.hpte_remove(hpteg) < 0) 254 return -1; 255 256 ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M); 257 258 if (ret < 0) { 259 /* If we couldn't map a primary PTE, try a secondary */ 260 #ifdef USE_SECONDARY 261 hash = ~hash; 262 attempt++; 263 if (attempt % 2) 264 vflags = HPTE_V_SECONDARY; 265 else 266 vflags = 0; 267 #else 268 attempt = 2; 269 #endif 270 goto map_again; 271 } else { 272 int hpte_id = kvmppc_mmu_hpte_cache_next(vcpu); 273 struct hpte_cache *pte = &vcpu->arch.hpte_cache[hpte_id]; 274 275 dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%lx (0x%llx) -> %lx\n", 276 ((rflags & HPTE_R_PP) == 3) ? '-' : 'w', 277 (rflags & HPTE_R_N) ? '-' : 'x', 278 orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr); 279 280 pte->slot = hpteg + (ret & 7); 281 pte->host_va = va; 282 pte->pte = *orig_pte; 283 pte->pfn = hpaddr >> PAGE_SHIFT; 284 } 285 286 return 0; 287 } 288 289 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) 290 { 291 struct kvmppc_sid_map *map; 292 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 293 u16 sid_map_mask; 294 static int backwards_map = 0; 295 296 if (vcpu->arch.msr & MSR_PR) 297 gvsid |= VSID_PR; 298 299 /* We might get collisions that trap in preceding order, so let's 300 map them differently */ 301 302 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 303 if (backwards_map) 304 sid_map_mask = SID_MAP_MASK - sid_map_mask; 305 306 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 307 308 /* Make sure we're taking the other map next time */ 309 backwards_map = !backwards_map; 310 311 /* Uh-oh ... out of mappings. Let's flush! */ 312 if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) { 313 vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; 314 memset(vcpu_book3s->sid_map, 0, 315 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); 316 kvmppc_mmu_pte_flush(vcpu, 0, 0); 317 kvmppc_mmu_flush_segments(vcpu); 318 } 319 map->host_vsid = vcpu_book3s->vsid_next++; 320 321 map->guest_vsid = gvsid; 322 map->valid = true; 323 324 return map; 325 } 326 327 static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) 328 { 329 int i; 330 int max_slb_size = 64; 331 int found_inval = -1; 332 int r; 333 334 if (!get_paca()->kvm_slb_max) 335 get_paca()->kvm_slb_max = 1; 336 337 /* Are we overwriting? */ 338 for (i = 1; i < get_paca()->kvm_slb_max; i++) { 339 if (!(get_paca()->kvm_slb[i].esid & SLB_ESID_V)) 340 found_inval = i; 341 else if ((get_paca()->kvm_slb[i].esid & ESID_MASK) == esid) 342 return i; 343 } 344 345 /* Found a spare entry that was invalidated before */ 346 if (found_inval > 0) 347 return found_inval; 348 349 /* No spare invalid entry, so create one */ 350 351 if (mmu_slb_size < 64) 352 max_slb_size = mmu_slb_size; 353 354 /* Overflowing -> purge */ 355 if ((get_paca()->kvm_slb_max) == max_slb_size) 356 kvmppc_mmu_flush_segments(vcpu); 357 358 r = get_paca()->kvm_slb_max; 359 get_paca()->kvm_slb_max++; 360 361 return r; 362 } 363 364 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) 365 { 366 u64 esid = eaddr >> SID_SHIFT; 367 u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; 368 u64 slb_vsid = SLB_VSID_USER; 369 u64 gvsid; 370 int slb_index; 371 struct kvmppc_sid_map *map; 372 373 slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); 374 375 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { 376 /* Invalidate an entry */ 377 get_paca()->kvm_slb[slb_index].esid = 0; 378 return -ENOENT; 379 } 380 381 map = find_sid_vsid(vcpu, gvsid); 382 if (!map) 383 map = create_sid_map(vcpu, gvsid); 384 385 map->guest_esid = esid; 386 387 slb_vsid |= (map->host_vsid << 12); 388 slb_vsid &= ~SLB_VSID_KP; 389 slb_esid |= slb_index; 390 391 get_paca()->kvm_slb[slb_index].esid = slb_esid; 392 get_paca()->kvm_slb[slb_index].vsid = slb_vsid; 393 394 dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid); 395 396 return 0; 397 } 398 399 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) 400 { 401 get_paca()->kvm_slb_max = 1; 402 get_paca()->kvm_slb[0].esid = 0; 403 } 404 405 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) 406 { 407 kvmppc_mmu_pte_flush(vcpu, 0, 0); 408 } 409