1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Alexander Graf <agraf@suse.de> 7 * Kevin Wolf <mail@kevin-wolf.de> 8 */ 9 10 #include <linux/kvm_host.h> 11 12 #include <asm/kvm_ppc.h> 13 #include <asm/kvm_book3s.h> 14 #include <asm/book3s/64/mmu-hash.h> 15 #include <asm/machdep.h> 16 #include <asm/mmu_context.h> 17 #include <asm/hw_irq.h> 18 #include "trace_pr.h" 19 #include "book3s.h" 20 21 #define PTE_SIZE 12 22 23 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) 24 { 25 mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn, 26 pte->pagesize, pte->pagesize, 27 MMU_SEGSIZE_256M, false); 28 } 29 30 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using 31 * a hash, so we don't waste cycles on looping */ 32 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) 33 { 34 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ 35 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ 36 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ 37 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ 38 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ 39 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ 40 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ 41 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); 42 } 43 44 45 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) 46 { 47 struct kvmppc_sid_map *map; 48 u16 sid_map_mask; 49 50 if (kvmppc_get_msr(vcpu) & MSR_PR) 51 gvsid |= VSID_PR; 52 53 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 54 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 55 if (map->valid && (map->guest_vsid == gvsid)) { 56 trace_kvm_book3s_slb_found(gvsid, map->host_vsid); 57 return map; 58 } 59 60 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; 61 if (map->valid && (map->guest_vsid == gvsid)) { 62 trace_kvm_book3s_slb_found(gvsid, map->host_vsid); 63 return map; 64 } 65 66 trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); 67 return NULL; 68 } 69 70 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte, 71 bool iswrite) 72 { 73 unsigned long vpn; 74 kvm_pfn_t hpaddr; 75 ulong hash, hpteg; 76 u64 vsid; 77 int ret; 78 int rflags = 0x192; 79 int vflags = 0; 80 int attempt = 0; 81 struct kvmppc_sid_map *map; 82 int r = 0; 83 int hpsize = MMU_PAGE_4K; 84 bool writable; 85 unsigned long mmu_seq; 86 struct kvm *kvm = vcpu->kvm; 87 struct hpte_cache *cpte; 88 unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT; 89 unsigned long pfn; 90 91 /* used to check for invalidations in progress */ 92 mmu_seq = kvm->mmu_notifier_seq; 93 smp_rmb(); 94 95 /* Get host physical address for gpa */ 96 pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable); 97 if (is_error_noslot_pfn(pfn)) { 98 printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n", 99 orig_pte->raddr); 100 r = -EINVAL; 101 goto out; 102 } 103 hpaddr = pfn << PAGE_SHIFT; 104 105 /* and write the mapping ea -> hpa into the pt */ 106 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); 107 map = find_sid_vsid(vcpu, vsid); 108 if (!map) { 109 ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); 110 WARN_ON(ret < 0); 111 map = find_sid_vsid(vcpu, vsid); 112 } 113 if (!map) { 114 printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n", 115 vsid, orig_pte->eaddr); 116 WARN_ON(true); 117 r = -EINVAL; 118 goto out; 119 } 120 121 vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M); 122 123 kvm_set_pfn_accessed(pfn); 124 if (!orig_pte->may_write || !writable) 125 rflags |= PP_RXRX; 126 else { 127 mark_page_dirty(vcpu->kvm, gfn); 128 kvm_set_pfn_dirty(pfn); 129 } 130 131 if (!orig_pte->may_execute) 132 rflags |= HPTE_R_N; 133 else 134 kvmppc_mmu_flush_icache(pfn); 135 136 rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg; 137 138 /* 139 * Use 64K pages if possible; otherwise, on 64K page kernels, 140 * we need to transfer 4 more bits from guest real to host real addr. 141 */ 142 if (vsid & VSID_64K) 143 hpsize = MMU_PAGE_64K; 144 else 145 hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); 146 147 hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M); 148 149 cpte = kvmppc_mmu_hpte_cache_next(vcpu); 150 151 spin_lock(&kvm->mmu_lock); 152 if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) { 153 r = -EAGAIN; 154 goto out_unlock; 155 } 156 157 map_again: 158 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 159 160 /* In case we tried normal mapping already, let's nuke old entries */ 161 if (attempt > 1) 162 if (mmu_hash_ops.hpte_remove(hpteg) < 0) { 163 r = -1; 164 goto out_unlock; 165 } 166 167 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags, 168 hpsize, hpsize, MMU_SEGSIZE_256M); 169 170 if (ret == -1) { 171 /* If we couldn't map a primary PTE, try a secondary */ 172 hash = ~hash; 173 vflags ^= HPTE_V_SECONDARY; 174 attempt++; 175 goto map_again; 176 } else if (ret < 0) { 177 r = -EIO; 178 goto out_unlock; 179 } else { 180 trace_kvm_book3s_64_mmu_map(rflags, hpteg, 181 vpn, hpaddr, orig_pte); 182 183 /* 184 * The mmu_hash_ops code may give us a secondary entry even 185 * though we asked for a primary. Fix up. 186 */ 187 if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) { 188 hash = ~hash; 189 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 190 } 191 192 cpte->slot = hpteg + (ret & 7); 193 cpte->host_vpn = vpn; 194 cpte->pte = *orig_pte; 195 cpte->pfn = pfn; 196 cpte->pagesize = hpsize; 197 198 kvmppc_mmu_hpte_cache_map(vcpu, cpte); 199 cpte = NULL; 200 } 201 202 out_unlock: 203 spin_unlock(&kvm->mmu_lock); 204 kvm_release_pfn_clean(pfn); 205 if (cpte) 206 kvmppc_mmu_hpte_cache_free(cpte); 207 208 out: 209 return r; 210 } 211 212 void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 213 { 214 u64 mask = 0xfffffffffULL; 215 u64 vsid; 216 217 vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid); 218 if (vsid & VSID_64K) 219 mask = 0xffffffff0ULL; 220 kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask); 221 } 222 223 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) 224 { 225 unsigned long vsid_bits = VSID_BITS_65_256M; 226 struct kvmppc_sid_map *map; 227 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 228 u16 sid_map_mask; 229 static int backwards_map = 0; 230 231 if (kvmppc_get_msr(vcpu) & MSR_PR) 232 gvsid |= VSID_PR; 233 234 /* We might get collisions that trap in preceding order, so let's 235 map them differently */ 236 237 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 238 if (backwards_map) 239 sid_map_mask = SID_MAP_MASK - sid_map_mask; 240 241 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 242 243 /* Make sure we're taking the other map next time */ 244 backwards_map = !backwards_map; 245 246 /* Uh-oh ... out of mappings. Let's flush! */ 247 if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) { 248 vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first; 249 memset(vcpu_book3s->sid_map, 0, 250 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); 251 kvmppc_mmu_pte_flush(vcpu, 0, 0); 252 kvmppc_mmu_flush_segments(vcpu); 253 } 254 255 if (mmu_has_feature(MMU_FTR_68_BIT_VA)) 256 vsid_bits = VSID_BITS_256M; 257 258 map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 259 VSID_MULTIPLIER_256M, vsid_bits); 260 261 map->guest_vsid = gvsid; 262 map->valid = true; 263 264 trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); 265 266 return map; 267 } 268 269 static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) 270 { 271 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 272 int i; 273 int max_slb_size = 64; 274 int found_inval = -1; 275 int r; 276 277 /* Are we overwriting? */ 278 for (i = 0; i < svcpu->slb_max; i++) { 279 if (!(svcpu->slb[i].esid & SLB_ESID_V)) 280 found_inval = i; 281 else if ((svcpu->slb[i].esid & ESID_MASK) == esid) { 282 r = i; 283 goto out; 284 } 285 } 286 287 /* Found a spare entry that was invalidated before */ 288 if (found_inval >= 0) { 289 r = found_inval; 290 goto out; 291 } 292 293 /* No spare invalid entry, so create one */ 294 295 if (mmu_slb_size < 64) 296 max_slb_size = mmu_slb_size; 297 298 /* Overflowing -> purge */ 299 if ((svcpu->slb_max) == max_slb_size) 300 kvmppc_mmu_flush_segments(vcpu); 301 302 r = svcpu->slb_max; 303 svcpu->slb_max++; 304 305 out: 306 svcpu_put(svcpu); 307 return r; 308 } 309 310 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) 311 { 312 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 313 u64 esid = eaddr >> SID_SHIFT; 314 u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; 315 u64 slb_vsid = SLB_VSID_USER; 316 u64 gvsid; 317 int slb_index; 318 struct kvmppc_sid_map *map; 319 int r = 0; 320 321 slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); 322 323 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { 324 /* Invalidate an entry */ 325 svcpu->slb[slb_index].esid = 0; 326 r = -ENOENT; 327 goto out; 328 } 329 330 map = find_sid_vsid(vcpu, gvsid); 331 if (!map) 332 map = create_sid_map(vcpu, gvsid); 333 334 map->guest_esid = esid; 335 336 slb_vsid |= (map->host_vsid << 12); 337 slb_vsid &= ~SLB_VSID_KP; 338 slb_esid |= slb_index; 339 340 #ifdef CONFIG_PPC_64K_PAGES 341 /* Set host segment base page size to 64K if possible */ 342 if (gvsid & VSID_64K) 343 slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp; 344 #endif 345 346 svcpu->slb[slb_index].esid = slb_esid; 347 svcpu->slb[slb_index].vsid = slb_vsid; 348 349 trace_kvm_book3s_slbmte(slb_vsid, slb_esid); 350 351 out: 352 svcpu_put(svcpu); 353 return r; 354 } 355 356 void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size) 357 { 358 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 359 ulong seg_mask = -seg_size; 360 int i; 361 362 for (i = 0; i < svcpu->slb_max; i++) { 363 if ((svcpu->slb[i].esid & SLB_ESID_V) && 364 (svcpu->slb[i].esid & seg_mask) == ea) { 365 /* Invalidate this entry */ 366 svcpu->slb[i].esid = 0; 367 } 368 } 369 370 svcpu_put(svcpu); 371 } 372 373 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) 374 { 375 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 376 svcpu->slb_max = 0; 377 svcpu->slb[0].esid = 0; 378 svcpu_put(svcpu); 379 } 380 381 void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu) 382 { 383 kvmppc_mmu_hpte_destroy(vcpu); 384 __destroy_context(to_book3s(vcpu)->context_id[0]); 385 } 386 387 int kvmppc_mmu_init(struct kvm_vcpu *vcpu) 388 { 389 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 390 int err; 391 392 err = hash__alloc_context_id(); 393 if (err < 0) 394 return -1; 395 vcpu3s->context_id[0] = err; 396 397 vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1) 398 << ESID_BITS) - 1; 399 vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS; 400 vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first; 401 402 kvmppc_mmu_hpte_init(vcpu); 403 404 return 0; 405 } 406