1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright SUSE Linux Products GmbH 2009 16 * 17 * Authors: Alexander Graf <agraf@suse.de> 18 */ 19 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/highmem.h> 25 26 #include <asm/tlbflush.h> 27 #include <asm/kvm_ppc.h> 28 #include <asm/kvm_book3s.h> 29 #include <asm/mmu-hash64.h> 30 31 /* #define DEBUG_MMU */ 32 33 #ifdef DEBUG_MMU 34 #define dprintk(X...) printk(KERN_INFO X) 35 #else 36 #define dprintk(X...) do { } while(0) 37 #endif 38 39 static void kvmppc_mmu_book3s_64_reset_msr(struct kvm_vcpu *vcpu) 40 { 41 kvmppc_set_msr(vcpu, MSR_SF); 42 } 43 44 static struct kvmppc_slb *kvmppc_mmu_book3s_64_find_slbe( 45 struct kvm_vcpu *vcpu, 46 gva_t eaddr) 47 { 48 int i; 49 u64 esid = GET_ESID(eaddr); 50 u64 esid_1t = GET_ESID_1T(eaddr); 51 52 for (i = 0; i < vcpu->arch.slb_nr; i++) { 53 u64 cmp_esid = esid; 54 55 if (!vcpu->arch.slb[i].valid) 56 continue; 57 58 if (vcpu->arch.slb[i].tb) 59 cmp_esid = esid_1t; 60 61 if (vcpu->arch.slb[i].esid == cmp_esid) 62 return &vcpu->arch.slb[i]; 63 } 64 65 dprintk("KVM: No SLB entry found for 0x%lx [%llx | %llx]\n", 66 eaddr, esid, esid_1t); 67 for (i = 0; i < vcpu->arch.slb_nr; i++) { 68 if (vcpu->arch.slb[i].vsid) 69 dprintk(" %d: %c%c%c %llx %llx\n", i, 70 vcpu->arch.slb[i].valid ? 'v' : ' ', 71 vcpu->arch.slb[i].large ? 'l' : ' ', 72 vcpu->arch.slb[i].tb ? 't' : ' ', 73 vcpu->arch.slb[i].esid, 74 vcpu->arch.slb[i].vsid); 75 } 76 77 return NULL; 78 } 79 80 static int kvmppc_slb_sid_shift(struct kvmppc_slb *slbe) 81 { 82 return slbe->tb ? SID_SHIFT_1T : SID_SHIFT; 83 } 84 85 static u64 kvmppc_slb_offset_mask(struct kvmppc_slb *slbe) 86 { 87 return (1ul << kvmppc_slb_sid_shift(slbe)) - 1; 88 } 89 90 static u64 kvmppc_slb_calc_vpn(struct kvmppc_slb *slb, gva_t eaddr) 91 { 92 eaddr &= kvmppc_slb_offset_mask(slb); 93 94 return (eaddr >> VPN_SHIFT) | 95 ((slb->vsid) << (kvmppc_slb_sid_shift(slb) - VPN_SHIFT)); 96 } 97 98 static u64 kvmppc_mmu_book3s_64_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr, 99 bool data) 100 { 101 struct kvmppc_slb *slb; 102 103 slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr); 104 if (!slb) 105 return 0; 106 107 return kvmppc_slb_calc_vpn(slb, eaddr); 108 } 109 110 static int mmu_pagesize(int mmu_pg) 111 { 112 switch (mmu_pg) { 113 case MMU_PAGE_64K: 114 return 16; 115 case MMU_PAGE_16M: 116 return 24; 117 } 118 return 12; 119 } 120 121 static int kvmppc_mmu_book3s_64_get_pagesize(struct kvmppc_slb *slbe) 122 { 123 return mmu_pagesize(slbe->base_page_size); 124 } 125 126 static u32 kvmppc_mmu_book3s_64_get_page(struct kvmppc_slb *slbe, gva_t eaddr) 127 { 128 int p = kvmppc_mmu_book3s_64_get_pagesize(slbe); 129 130 return ((eaddr & kvmppc_slb_offset_mask(slbe)) >> p); 131 } 132 133 static hva_t kvmppc_mmu_book3s_64_get_pteg(struct kvm_vcpu *vcpu, 134 struct kvmppc_slb *slbe, gva_t eaddr, 135 bool second) 136 { 137 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 138 u64 hash, pteg, htabsize; 139 u32 ssize; 140 hva_t r; 141 u64 vpn; 142 143 htabsize = ((1 << ((vcpu_book3s->sdr1 & 0x1f) + 11)) - 1); 144 145 vpn = kvmppc_slb_calc_vpn(slbe, eaddr); 146 ssize = slbe->tb ? MMU_SEGSIZE_1T : MMU_SEGSIZE_256M; 147 hash = hpt_hash(vpn, kvmppc_mmu_book3s_64_get_pagesize(slbe), ssize); 148 if (second) 149 hash = ~hash; 150 hash &= ((1ULL << 39ULL) - 1ULL); 151 hash &= htabsize; 152 hash <<= 7ULL; 153 154 pteg = vcpu_book3s->sdr1 & 0xfffffffffffc0000ULL; 155 pteg |= hash; 156 157 dprintk("MMU: page=0x%x sdr1=0x%llx pteg=0x%llx vsid=0x%llx\n", 158 page, vcpu_book3s->sdr1, pteg, slbe->vsid); 159 160 /* When running a PAPR guest, SDR1 contains a HVA address instead 161 of a GPA */ 162 if (vcpu->arch.papr_enabled) 163 r = pteg; 164 else 165 r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT); 166 167 if (kvm_is_error_hva(r)) 168 return r; 169 return r | (pteg & ~PAGE_MASK); 170 } 171 172 static u64 kvmppc_mmu_book3s_64_get_avpn(struct kvmppc_slb *slbe, gva_t eaddr) 173 { 174 int p = kvmppc_mmu_book3s_64_get_pagesize(slbe); 175 u64 avpn; 176 177 avpn = kvmppc_mmu_book3s_64_get_page(slbe, eaddr); 178 avpn |= slbe->vsid << (kvmppc_slb_sid_shift(slbe) - p); 179 180 if (p < 16) 181 avpn >>= ((80 - p) - 56) - 8; /* 16 - p */ 182 else 183 avpn <<= p - 16; 184 185 return avpn; 186 } 187 188 /* 189 * Return page size encoded in the second word of a HPTE, or 190 * -1 for an invalid encoding for the base page size indicated by 191 * the SLB entry. This doesn't handle mixed pagesize segments yet. 192 */ 193 static int decode_pagesize(struct kvmppc_slb *slbe, u64 r) 194 { 195 switch (slbe->base_page_size) { 196 case MMU_PAGE_64K: 197 if ((r & 0xf000) == 0x1000) 198 return MMU_PAGE_64K; 199 break; 200 case MMU_PAGE_16M: 201 if ((r & 0xff000) == 0) 202 return MMU_PAGE_16M; 203 break; 204 } 205 return -1; 206 } 207 208 static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 209 struct kvmppc_pte *gpte, bool data, 210 bool iswrite) 211 { 212 struct kvmppc_slb *slbe; 213 hva_t ptegp; 214 u64 pteg[16]; 215 u64 avpn = 0; 216 u64 v, r; 217 u64 v_val, v_mask; 218 u64 eaddr_mask; 219 int i; 220 u8 pp, key = 0; 221 bool found = false; 222 bool second = false; 223 int pgsize; 224 ulong mp_ea = vcpu->arch.magic_page_ea; 225 226 /* Magic page override */ 227 if (unlikely(mp_ea) && 228 unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) && 229 !(vcpu->arch.shared->msr & MSR_PR)) { 230 gpte->eaddr = eaddr; 231 gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data); 232 gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff); 233 gpte->raddr &= KVM_PAM; 234 gpte->may_execute = true; 235 gpte->may_read = true; 236 gpte->may_write = true; 237 gpte->page_size = MMU_PAGE_4K; 238 239 return 0; 240 } 241 242 slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr); 243 if (!slbe) 244 goto no_seg_found; 245 246 avpn = kvmppc_mmu_book3s_64_get_avpn(slbe, eaddr); 247 v_val = avpn & HPTE_V_AVPN; 248 249 if (slbe->tb) 250 v_val |= SLB_VSID_B_1T; 251 if (slbe->large) 252 v_val |= HPTE_V_LARGE; 253 v_val |= HPTE_V_VALID; 254 255 v_mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_LARGE | HPTE_V_VALID | 256 HPTE_V_SECONDARY; 257 258 pgsize = slbe->large ? MMU_PAGE_16M : MMU_PAGE_4K; 259 260 mutex_lock(&vcpu->kvm->arch.hpt_mutex); 261 262 do_second: 263 ptegp = kvmppc_mmu_book3s_64_get_pteg(vcpu, slbe, eaddr, second); 264 if (kvm_is_error_hva(ptegp)) 265 goto no_page_found; 266 267 if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) { 268 printk(KERN_ERR "KVM can't copy data from 0x%lx!\n", ptegp); 269 goto no_page_found; 270 } 271 272 if ((vcpu->arch.shared->msr & MSR_PR) && slbe->Kp) 273 key = 4; 274 else if (!(vcpu->arch.shared->msr & MSR_PR) && slbe->Ks) 275 key = 4; 276 277 for (i=0; i<16; i+=2) { 278 /* Check all relevant fields of 1st dword */ 279 if ((pteg[i] & v_mask) == v_val) { 280 /* If large page bit is set, check pgsize encoding */ 281 if (slbe->large && 282 (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 283 pgsize = decode_pagesize(slbe, pteg[i+1]); 284 if (pgsize < 0) 285 continue; 286 } 287 found = true; 288 break; 289 } 290 } 291 292 if (!found) { 293 if (second) 294 goto no_page_found; 295 v_val |= HPTE_V_SECONDARY; 296 second = true; 297 goto do_second; 298 } 299 300 v = pteg[i]; 301 r = pteg[i+1]; 302 pp = (r & HPTE_R_PP) | key; 303 if (r & HPTE_R_PP0) 304 pp |= 8; 305 306 gpte->eaddr = eaddr; 307 gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data); 308 309 eaddr_mask = (1ull << mmu_pagesize(pgsize)) - 1; 310 gpte->raddr = (r & HPTE_R_RPN & ~eaddr_mask) | (eaddr & eaddr_mask); 311 gpte->page_size = pgsize; 312 gpte->may_execute = ((r & HPTE_R_N) ? false : true); 313 gpte->may_read = false; 314 gpte->may_write = false; 315 316 switch (pp) { 317 case 0: 318 case 1: 319 case 2: 320 case 6: 321 gpte->may_write = true; 322 /* fall through */ 323 case 3: 324 case 5: 325 case 7: 326 case 10: 327 gpte->may_read = true; 328 break; 329 } 330 331 dprintk("KVM MMU: Translated 0x%lx [0x%llx] -> 0x%llx " 332 "-> 0x%lx\n", 333 eaddr, avpn, gpte->vpage, gpte->raddr); 334 335 /* Update PTE R and C bits, so the guest's swapper knows we used the 336 * page */ 337 if (gpte->may_read && !(r & HPTE_R_R)) { 338 /* 339 * Set the accessed flag. 340 * We have to write this back with a single byte write 341 * because another vcpu may be accessing this on 342 * non-PAPR platforms such as mac99, and this is 343 * what real hardware does. 344 */ 345 char __user *addr = (char __user *) &pteg[i+1]; 346 r |= HPTE_R_R; 347 put_user(r >> 8, addr + 6); 348 } 349 if (iswrite && gpte->may_write && !(r & HPTE_R_C)) { 350 /* Set the dirty flag */ 351 /* Use a single byte write */ 352 char __user *addr = (char __user *) &pteg[i+1]; 353 r |= HPTE_R_C; 354 put_user(r, addr + 7); 355 } 356 357 mutex_unlock(&vcpu->kvm->arch.hpt_mutex); 358 359 if (!gpte->may_read || (iswrite && !gpte->may_write)) 360 return -EPERM; 361 return 0; 362 363 no_page_found: 364 mutex_unlock(&vcpu->kvm->arch.hpt_mutex); 365 return -ENOENT; 366 367 no_seg_found: 368 dprintk("KVM MMU: Trigger segment fault\n"); 369 return -EINVAL; 370 } 371 372 static void kvmppc_mmu_book3s_64_slbmte(struct kvm_vcpu *vcpu, u64 rs, u64 rb) 373 { 374 struct kvmppc_vcpu_book3s *vcpu_book3s; 375 u64 esid, esid_1t; 376 int slb_nr; 377 struct kvmppc_slb *slbe; 378 379 dprintk("KVM MMU: slbmte(0x%llx, 0x%llx)\n", rs, rb); 380 381 vcpu_book3s = to_book3s(vcpu); 382 383 esid = GET_ESID(rb); 384 esid_1t = GET_ESID_1T(rb); 385 slb_nr = rb & 0xfff; 386 387 if (slb_nr > vcpu->arch.slb_nr) 388 return; 389 390 slbe = &vcpu->arch.slb[slb_nr]; 391 392 slbe->large = (rs & SLB_VSID_L) ? 1 : 0; 393 slbe->tb = (rs & SLB_VSID_B_1T) ? 1 : 0; 394 slbe->esid = slbe->tb ? esid_1t : esid; 395 slbe->vsid = (rs & ~SLB_VSID_B) >> (kvmppc_slb_sid_shift(slbe) - 16); 396 slbe->valid = (rb & SLB_ESID_V) ? 1 : 0; 397 slbe->Ks = (rs & SLB_VSID_KS) ? 1 : 0; 398 slbe->Kp = (rs & SLB_VSID_KP) ? 1 : 0; 399 slbe->nx = (rs & SLB_VSID_N) ? 1 : 0; 400 slbe->class = (rs & SLB_VSID_C) ? 1 : 0; 401 402 slbe->base_page_size = MMU_PAGE_4K; 403 if (slbe->large) { 404 if (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE) { 405 switch (rs & SLB_VSID_LP) { 406 case SLB_VSID_LP_00: 407 slbe->base_page_size = MMU_PAGE_16M; 408 break; 409 case SLB_VSID_LP_01: 410 slbe->base_page_size = MMU_PAGE_64K; 411 break; 412 } 413 } else 414 slbe->base_page_size = MMU_PAGE_16M; 415 } 416 417 slbe->orige = rb & (ESID_MASK | SLB_ESID_V); 418 slbe->origv = rs; 419 420 /* Map the new segment */ 421 kvmppc_mmu_map_segment(vcpu, esid << SID_SHIFT); 422 } 423 424 static u64 kvmppc_mmu_book3s_64_slbmfee(struct kvm_vcpu *vcpu, u64 slb_nr) 425 { 426 struct kvmppc_slb *slbe; 427 428 if (slb_nr > vcpu->arch.slb_nr) 429 return 0; 430 431 slbe = &vcpu->arch.slb[slb_nr]; 432 433 return slbe->orige; 434 } 435 436 static u64 kvmppc_mmu_book3s_64_slbmfev(struct kvm_vcpu *vcpu, u64 slb_nr) 437 { 438 struct kvmppc_slb *slbe; 439 440 if (slb_nr > vcpu->arch.slb_nr) 441 return 0; 442 443 slbe = &vcpu->arch.slb[slb_nr]; 444 445 return slbe->origv; 446 } 447 448 static void kvmppc_mmu_book3s_64_slbie(struct kvm_vcpu *vcpu, u64 ea) 449 { 450 struct kvmppc_slb *slbe; 451 u64 seg_size; 452 453 dprintk("KVM MMU: slbie(0x%llx)\n", ea); 454 455 slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea); 456 457 if (!slbe) 458 return; 459 460 dprintk("KVM MMU: slbie(0x%llx, 0x%llx)\n", ea, slbe->esid); 461 462 slbe->valid = false; 463 slbe->orige = 0; 464 slbe->origv = 0; 465 466 seg_size = 1ull << kvmppc_slb_sid_shift(slbe); 467 kvmppc_mmu_flush_segment(vcpu, ea & ~(seg_size - 1), seg_size); 468 } 469 470 static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu) 471 { 472 int i; 473 474 dprintk("KVM MMU: slbia()\n"); 475 476 for (i = 1; i < vcpu->arch.slb_nr; i++) { 477 vcpu->arch.slb[i].valid = false; 478 vcpu->arch.slb[i].orige = 0; 479 vcpu->arch.slb[i].origv = 0; 480 } 481 482 if (vcpu->arch.shared->msr & MSR_IR) { 483 kvmppc_mmu_flush_segments(vcpu); 484 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 485 } 486 } 487 488 static void kvmppc_mmu_book3s_64_mtsrin(struct kvm_vcpu *vcpu, u32 srnum, 489 ulong value) 490 { 491 u64 rb = 0, rs = 0; 492 493 /* 494 * According to Book3 2.01 mtsrin is implemented as: 495 * 496 * The SLB entry specified by (RB)32:35 is loaded from register 497 * RS, as follows. 498 * 499 * SLBE Bit Source SLB Field 500 * 501 * 0:31 0x0000_0000 ESID-0:31 502 * 32:35 (RB)32:35 ESID-32:35 503 * 36 0b1 V 504 * 37:61 0x00_0000|| 0b0 VSID-0:24 505 * 62:88 (RS)37:63 VSID-25:51 506 * 89:91 (RS)33:35 Ks Kp N 507 * 92 (RS)36 L ((RS)36 must be 0b0) 508 * 93 0b0 C 509 */ 510 511 dprintk("KVM MMU: mtsrin(0x%x, 0x%lx)\n", srnum, value); 512 513 /* ESID = srnum */ 514 rb |= (srnum & 0xf) << 28; 515 /* Set the valid bit */ 516 rb |= 1 << 27; 517 /* Index = ESID */ 518 rb |= srnum; 519 520 /* VSID = VSID */ 521 rs |= (value & 0xfffffff) << 12; 522 /* flags = flags */ 523 rs |= ((value >> 28) & 0x7) << 9; 524 525 kvmppc_mmu_book3s_64_slbmte(vcpu, rs, rb); 526 } 527 528 static void kvmppc_mmu_book3s_64_tlbie(struct kvm_vcpu *vcpu, ulong va, 529 bool large) 530 { 531 u64 mask = 0xFFFFFFFFFULL; 532 long i; 533 struct kvm_vcpu *v; 534 535 dprintk("KVM MMU: tlbie(0x%lx)\n", va); 536 537 /* 538 * The tlbie instruction changed behaviour starting with 539 * POWER6. POWER6 and later don't have the large page flag 540 * in the instruction but in the RB value, along with bits 541 * indicating page and segment sizes. 542 */ 543 if (vcpu->arch.hflags & BOOK3S_HFLAG_NEW_TLBIE) { 544 /* POWER6 or later */ 545 if (va & 1) { /* L bit */ 546 if ((va & 0xf000) == 0x1000) 547 mask = 0xFFFFFFFF0ULL; /* 64k page */ 548 else 549 mask = 0xFFFFFF000ULL; /* 16M page */ 550 } 551 } else { 552 /* older processors, e.g. PPC970 */ 553 if (large) 554 mask = 0xFFFFFF000ULL; 555 } 556 /* flush this VA on all vcpus */ 557 kvm_for_each_vcpu(i, v, vcpu->kvm) 558 kvmppc_mmu_pte_vflush(v, va >> 12, mask); 559 } 560 561 #ifdef CONFIG_PPC_64K_PAGES 562 static int segment_contains_magic_page(struct kvm_vcpu *vcpu, ulong esid) 563 { 564 ulong mp_ea = vcpu->arch.magic_page_ea; 565 566 return mp_ea && !(vcpu->arch.shared->msr & MSR_PR) && 567 (mp_ea >> SID_SHIFT) == esid; 568 } 569 #endif 570 571 static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, 572 u64 *vsid) 573 { 574 ulong ea = esid << SID_SHIFT; 575 struct kvmppc_slb *slb; 576 u64 gvsid = esid; 577 ulong mp_ea = vcpu->arch.magic_page_ea; 578 int pagesize = MMU_PAGE_64K; 579 580 if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { 581 slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea); 582 if (slb) { 583 gvsid = slb->vsid; 584 pagesize = slb->base_page_size; 585 if (slb->tb) { 586 gvsid <<= SID_SHIFT_1T - SID_SHIFT; 587 gvsid |= esid & ((1ul << (SID_SHIFT_1T - SID_SHIFT)) - 1); 588 gvsid |= VSID_1T; 589 } 590 } 591 } 592 593 switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { 594 case 0: 595 gvsid = VSID_REAL | esid; 596 break; 597 case MSR_IR: 598 gvsid |= VSID_REAL_IR; 599 break; 600 case MSR_DR: 601 gvsid |= VSID_REAL_DR; 602 break; 603 case MSR_DR|MSR_IR: 604 if (!slb) 605 goto no_slb; 606 607 break; 608 default: 609 BUG(); 610 break; 611 } 612 613 #ifdef CONFIG_PPC_64K_PAGES 614 /* 615 * Mark this as a 64k segment if the host is using 616 * 64k pages, the host MMU supports 64k pages and 617 * the guest segment page size is >= 64k, 618 * but not if this segment contains the magic page. 619 */ 620 if (pagesize >= MMU_PAGE_64K && 621 mmu_psize_defs[MMU_PAGE_64K].shift && 622 !segment_contains_magic_page(vcpu, esid)) 623 gvsid |= VSID_64K; 624 #endif 625 626 if (vcpu->arch.shared->msr & MSR_PR) 627 gvsid |= VSID_PR; 628 629 *vsid = gvsid; 630 return 0; 631 632 no_slb: 633 /* Catch magic page case */ 634 if (unlikely(mp_ea) && 635 unlikely(esid == (mp_ea >> SID_SHIFT)) && 636 !(vcpu->arch.shared->msr & MSR_PR)) { 637 *vsid = VSID_REAL | esid; 638 return 0; 639 } 640 641 return -EINVAL; 642 } 643 644 static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu) 645 { 646 return (to_book3s(vcpu)->hid[5] & 0x80); 647 } 648 649 void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu) 650 { 651 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 652 653 mmu->mfsrin = NULL; 654 mmu->mtsrin = kvmppc_mmu_book3s_64_mtsrin; 655 mmu->slbmte = kvmppc_mmu_book3s_64_slbmte; 656 mmu->slbmfee = kvmppc_mmu_book3s_64_slbmfee; 657 mmu->slbmfev = kvmppc_mmu_book3s_64_slbmfev; 658 mmu->slbie = kvmppc_mmu_book3s_64_slbie; 659 mmu->slbia = kvmppc_mmu_book3s_64_slbia; 660 mmu->xlate = kvmppc_mmu_book3s_64_xlate; 661 mmu->reset_msr = kvmppc_mmu_book3s_64_reset_msr; 662 mmu->tlbie = kvmppc_mmu_book3s_64_tlbie; 663 mmu->esid_to_vsid = kvmppc_mmu_book3s_64_esid_to_vsid; 664 mmu->ea_to_vp = kvmppc_mmu_book3s_64_ea_to_vp; 665 mmu->is_dcbz32 = kvmppc_mmu_book3s_64_is_dcbz32; 666 667 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 668 } 669