xref: /openbmc/linux/arch/powerpc/kvm/book3s_32_mmu_host.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *     Alexander Graf <agraf@suse.de>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License, version 2, as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 
21 #include <linux/kvm_host.h>
22 
23 #include <asm/kvm_ppc.h>
24 #include <asm/kvm_book3s.h>
25 #include <asm/mmu-hash32.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu_context.h>
28 #include <asm/hw_irq.h>
29 
30 /* #define DEBUG_MMU */
31 /* #define DEBUG_SR */
32 
33 #ifdef DEBUG_MMU
34 #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
35 #else
36 #define dprintk_mmu(a, ...) do { } while(0)
37 #endif
38 
39 #ifdef DEBUG_SR
40 #define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
41 #else
42 #define dprintk_sr(a, ...) do { } while(0)
43 #endif
44 
45 #if PAGE_SHIFT != 12
46 #error Unknown page size
47 #endif
48 
49 #ifdef CONFIG_SMP
50 #error XXX need to grab mmu_hash_lock
51 #endif
52 
53 #ifdef CONFIG_PTE_64BIT
54 #error Only 32 bit pages are supported for now
55 #endif
56 
57 static ulong htab;
58 static u32 htabmask;
59 
60 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
61 {
62 	volatile u32 *pteg;
63 
64 	/* Remove from host HTAB */
65 	pteg = (u32*)pte->slot;
66 	pteg[0] = 0;
67 
68 	/* And make sure it's gone from the TLB too */
69 	asm volatile ("sync");
70 	asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
71 	asm volatile ("sync");
72 	asm volatile ("tlbsync");
73 }
74 
75 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
76  * a hash, so we don't waste cycles on looping */
77 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
78 {
79 	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
80 		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
81 		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
82 		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
83 		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
84 		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
85 		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
86 		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
87 }
88 
89 
90 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
91 {
92 	struct kvmppc_sid_map *map;
93 	u16 sid_map_mask;
94 
95 	if (vcpu->arch.shared->msr & MSR_PR)
96 		gvsid |= VSID_PR;
97 
98 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
99 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
100 	if (map->guest_vsid == gvsid) {
101 		dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
102 			    gvsid, map->host_vsid);
103 		return map;
104 	}
105 
106 	map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
107 	if (map->guest_vsid == gvsid) {
108 		dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
109 			    gvsid, map->host_vsid);
110 		return map;
111 	}
112 
113 	dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
114 	return NULL;
115 }
116 
117 static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
118 				bool primary)
119 {
120 	u32 page, hash;
121 	ulong pteg = htab;
122 
123 	page = (eaddr & ~ESID_MASK) >> 12;
124 
125 	hash = ((vsid ^ page) << 6);
126 	if (!primary)
127 		hash = ~hash;
128 
129 	hash &= htabmask;
130 
131 	pteg |= hash;
132 
133 	dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n",
134 		htab, hash, htabmask, pteg);
135 
136 	return (u32*)pteg;
137 }
138 
139 extern char etext[];
140 
141 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
142 {
143 	pfn_t hpaddr;
144 	u64 va;
145 	u64 vsid;
146 	struct kvmppc_sid_map *map;
147 	volatile u32 *pteg;
148 	u32 eaddr = orig_pte->eaddr;
149 	u32 pteg0, pteg1;
150 	register int rr = 0;
151 	bool primary = false;
152 	bool evict = false;
153 	struct hpte_cache *pte;
154 
155 	/* Get host physical address for gpa */
156 	hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
157 	if (is_error_pfn(hpaddr)) {
158 		printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
159 				 orig_pte->eaddr);
160 		return -EINVAL;
161 	}
162 	hpaddr <<= PAGE_SHIFT;
163 
164 	/* and write the mapping ea -> hpa into the pt */
165 	vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
166 	map = find_sid_vsid(vcpu, vsid);
167 	if (!map) {
168 		kvmppc_mmu_map_segment(vcpu, eaddr);
169 		map = find_sid_vsid(vcpu, vsid);
170 	}
171 	BUG_ON(!map);
172 
173 	vsid = map->host_vsid;
174 	va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK);
175 
176 next_pteg:
177 	if (rr == 16) {
178 		primary = !primary;
179 		evict = true;
180 		rr = 0;
181 	}
182 
183 	pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
184 
185 	/* not evicting yet */
186 	if (!evict && (pteg[rr] & PTE_V)) {
187 		rr += 2;
188 		goto next_pteg;
189 	}
190 
191 	dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
192 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
193 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
194 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
195 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
196 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
197 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
198 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
199 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);
200 
201 	pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
202 		(primary ? 0 : PTE_SEC);
203 	pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
204 
205 	if (orig_pte->may_write) {
206 		pteg1 |= PP_RWRW;
207 		mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
208 	} else {
209 		pteg1 |= PP_RWRX;
210 	}
211 
212 	local_irq_disable();
213 
214 	if (pteg[rr]) {
215 		pteg[rr] = 0;
216 		asm volatile ("sync");
217 	}
218 	pteg[rr + 1] = pteg1;
219 	pteg[rr] = pteg0;
220 	asm volatile ("sync");
221 
222 	local_irq_enable();
223 
224 	dprintk_mmu("KVM: new PTEG: %p\n", pteg);
225 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
226 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
227 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
228 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
229 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
230 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
231 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
232 	dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);
233 
234 
235 	/* Now tell our Shadow PTE code about the new page */
236 
237 	pte = kvmppc_mmu_hpte_cache_next(vcpu);
238 
239 	dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
240 		    orig_pte->may_write ? 'w' : '-',
241 		    orig_pte->may_execute ? 'x' : '-',
242 		    orig_pte->eaddr, (ulong)pteg, va,
243 		    orig_pte->vpage, hpaddr);
244 
245 	pte->slot = (ulong)&pteg[rr];
246 	pte->host_va = va;
247 	pte->pte = *orig_pte;
248 	pte->pfn = hpaddr >> PAGE_SHIFT;
249 
250 	kvmppc_mmu_hpte_cache_map(vcpu, pte);
251 
252 	return 0;
253 }
254 
255 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
256 {
257 	struct kvmppc_sid_map *map;
258 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
259 	u16 sid_map_mask;
260 	static int backwards_map = 0;
261 
262 	if (vcpu->arch.shared->msr & MSR_PR)
263 		gvsid |= VSID_PR;
264 
265 	/* We might get collisions that trap in preceding order, so let's
266 	   map them differently */
267 
268 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
269 	if (backwards_map)
270 		sid_map_mask = SID_MAP_MASK - sid_map_mask;
271 
272 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
273 
274 	/* Make sure we're taking the other map next time */
275 	backwards_map = !backwards_map;
276 
277 	/* Uh-oh ... out of mappings. Let's flush! */
278 	if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) {
279 		vcpu_book3s->vsid_next = 0;
280 		memset(vcpu_book3s->sid_map, 0,
281 		       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
282 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
283 		kvmppc_mmu_flush_segments(vcpu);
284 	}
285 	map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next];
286 	vcpu_book3s->vsid_next++;
287 
288 	map->guest_vsid = gvsid;
289 	map->valid = true;
290 
291 	return map;
292 }
293 
294 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
295 {
296 	u32 esid = eaddr >> SID_SHIFT;
297 	u64 gvsid;
298 	u32 sr;
299 	struct kvmppc_sid_map *map;
300 	struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
301 
302 	if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
303 		/* Invalidate an entry */
304 		svcpu->sr[esid] = SR_INVALID;
305 		return -ENOENT;
306 	}
307 
308 	map = find_sid_vsid(vcpu, gvsid);
309 	if (!map)
310 		map = create_sid_map(vcpu, gvsid);
311 
312 	map->guest_esid = esid;
313 	sr = map->host_vsid | SR_KP;
314 	svcpu->sr[esid] = sr;
315 
316 	dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
317 
318 	return 0;
319 }
320 
321 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
322 {
323 	int i;
324 	struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
325 
326 	dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
327 	for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
328 		svcpu->sr[i] = SR_INVALID;
329 }
330 
331 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
332 {
333 	int i;
334 
335 	kvmppc_mmu_hpte_destroy(vcpu);
336 	preempt_disable();
337 	for (i = 0; i < SID_CONTEXTS; i++)
338 		__destroy_context(to_book3s(vcpu)->context_id[i]);
339 	preempt_enable();
340 }
341 
342 /* From mm/mmu_context_hash32.c */
343 #define CTX_TO_VSID(c, id)	((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff)
344 
345 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
346 {
347 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
348 	int err;
349 	ulong sdr1;
350 	int i;
351 	int j;
352 
353 	for (i = 0; i < SID_CONTEXTS; i++) {
354 		err = __init_new_context();
355 		if (err < 0)
356 			goto init_fail;
357 		vcpu3s->context_id[i] = err;
358 
359 		/* Remember context id for this combination */
360 		for (j = 0; j < 16; j++)
361 			vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j);
362 	}
363 
364 	vcpu3s->vsid_next = 0;
365 
366 	/* Remember where the HTAB is */
367 	asm ( "mfsdr1 %0" : "=r"(sdr1) );
368 	htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0;
369 	htab = (ulong)__va(sdr1 & 0xffff0000);
370 
371 	kvmppc_mmu_hpte_init(vcpu);
372 
373 	return 0;
374 
375 init_fail:
376 	for (j = 0; j < i; j++) {
377 		if (!vcpu3s->context_id[j])
378 			continue;
379 
380 		__destroy_context(to_book3s(vcpu)->context_id[j]);
381 	}
382 
383 	return -1;
384 }
385