1 /* 2 * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. 3 * 4 * Authors: 5 * Alexander Graf <agraf@suse.de> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License, version 2, as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 21 #include <linux/kvm_host.h> 22 23 #include <asm/kvm_ppc.h> 24 #include <asm/kvm_book3s.h> 25 #include <asm/mmu-hash32.h> 26 #include <asm/machdep.h> 27 #include <asm/mmu_context.h> 28 #include <asm/hw_irq.h> 29 30 /* #define DEBUG_MMU */ 31 /* #define DEBUG_SR */ 32 33 #ifdef DEBUG_MMU 34 #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) 35 #else 36 #define dprintk_mmu(a, ...) do { } while(0) 37 #endif 38 39 #ifdef DEBUG_SR 40 #define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__) 41 #else 42 #define dprintk_sr(a, ...) do { } while(0) 43 #endif 44 45 #if PAGE_SHIFT != 12 46 #error Unknown page size 47 #endif 48 49 #ifdef CONFIG_SMP 50 #error XXX need to grab mmu_hash_lock 51 #endif 52 53 #ifdef CONFIG_PTE_64BIT 54 #error Only 32 bit pages are supported for now 55 #endif 56 57 static ulong htab; 58 static u32 htabmask; 59 60 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) 61 { 62 volatile u32 *pteg; 63 64 /* Remove from host HTAB */ 65 pteg = (u32*)pte->slot; 66 pteg[0] = 0; 67 68 /* And make sure it's gone from the TLB too */ 69 asm volatile ("sync"); 70 asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory"); 71 asm volatile ("sync"); 72 asm volatile ("tlbsync"); 73 } 74 75 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using 76 * a hash, so we don't waste cycles on looping */ 77 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) 78 { 79 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ 80 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ 81 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ 82 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ 83 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ 84 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ 85 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ 86 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); 87 } 88 89 90 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) 91 { 92 struct kvmppc_sid_map *map; 93 u16 sid_map_mask; 94 95 if (kvmppc_get_msr(vcpu) & MSR_PR) 96 gvsid |= VSID_PR; 97 98 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 99 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 100 if (map->guest_vsid == gvsid) { 101 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", 102 gvsid, map->host_vsid); 103 return map; 104 } 105 106 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; 107 if (map->guest_vsid == gvsid) { 108 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", 109 gvsid, map->host_vsid); 110 return map; 111 } 112 113 dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid); 114 return NULL; 115 } 116 117 static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr, 118 bool primary) 119 { 120 u32 page, hash; 121 ulong pteg = htab; 122 123 page = (eaddr & ~ESID_MASK) >> 12; 124 125 hash = ((vsid ^ page) << 6); 126 if (!primary) 127 hash = ~hash; 128 129 hash &= htabmask; 130 131 pteg |= hash; 132 133 dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n", 134 htab, hash, htabmask, pteg); 135 136 return (u32*)pteg; 137 } 138 139 extern char etext[]; 140 141 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte, 142 bool iswrite) 143 { 144 pfn_t hpaddr; 145 u64 vpn; 146 u64 vsid; 147 struct kvmppc_sid_map *map; 148 volatile u32 *pteg; 149 u32 eaddr = orig_pte->eaddr; 150 u32 pteg0, pteg1; 151 register int rr = 0; 152 bool primary = false; 153 bool evict = false; 154 struct hpte_cache *pte; 155 int r = 0; 156 bool writable; 157 158 /* Get host physical address for gpa */ 159 hpaddr = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable); 160 if (is_error_noslot_pfn(hpaddr)) { 161 printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n", 162 orig_pte->raddr); 163 r = -EINVAL; 164 goto out; 165 } 166 hpaddr <<= PAGE_SHIFT; 167 168 /* and write the mapping ea -> hpa into the pt */ 169 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); 170 map = find_sid_vsid(vcpu, vsid); 171 if (!map) { 172 kvmppc_mmu_map_segment(vcpu, eaddr); 173 map = find_sid_vsid(vcpu, vsid); 174 } 175 BUG_ON(!map); 176 177 vsid = map->host_vsid; 178 vpn = (vsid << (SID_SHIFT - VPN_SHIFT)) | 179 ((eaddr & ~ESID_MASK) >> VPN_SHIFT); 180 next_pteg: 181 if (rr == 16) { 182 primary = !primary; 183 evict = true; 184 rr = 0; 185 } 186 187 pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary); 188 189 /* not evicting yet */ 190 if (!evict && (pteg[rr] & PTE_V)) { 191 rr += 2; 192 goto next_pteg; 193 } 194 195 dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr); 196 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); 197 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); 198 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); 199 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); 200 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); 201 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); 202 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); 203 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); 204 205 pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V | 206 (primary ? 0 : PTE_SEC); 207 pteg1 = hpaddr | PTE_M | PTE_R | PTE_C; 208 209 if (orig_pte->may_write && writable) { 210 pteg1 |= PP_RWRW; 211 mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); 212 } else { 213 pteg1 |= PP_RWRX; 214 } 215 216 if (orig_pte->may_execute) 217 kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT); 218 219 local_irq_disable(); 220 221 if (pteg[rr]) { 222 pteg[rr] = 0; 223 asm volatile ("sync"); 224 } 225 pteg[rr + 1] = pteg1; 226 pteg[rr] = pteg0; 227 asm volatile ("sync"); 228 229 local_irq_enable(); 230 231 dprintk_mmu("KVM: new PTEG: %p\n", pteg); 232 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); 233 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); 234 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); 235 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); 236 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); 237 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); 238 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); 239 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); 240 241 242 /* Now tell our Shadow PTE code about the new page */ 243 244 pte = kvmppc_mmu_hpte_cache_next(vcpu); 245 if (!pte) { 246 kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT); 247 r = -EAGAIN; 248 goto out; 249 } 250 251 dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n", 252 orig_pte->may_write ? 'w' : '-', 253 orig_pte->may_execute ? 'x' : '-', 254 orig_pte->eaddr, (ulong)pteg, vpn, 255 orig_pte->vpage, hpaddr); 256 257 pte->slot = (ulong)&pteg[rr]; 258 pte->host_vpn = vpn; 259 pte->pte = *orig_pte; 260 pte->pfn = hpaddr >> PAGE_SHIFT; 261 262 kvmppc_mmu_hpte_cache_map(vcpu, pte); 263 264 kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT); 265 out: 266 return r; 267 } 268 269 void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 270 { 271 kvmppc_mmu_pte_vflush(vcpu, pte->vpage, 0xfffffffffULL); 272 } 273 274 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) 275 { 276 struct kvmppc_sid_map *map; 277 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 278 u16 sid_map_mask; 279 static int backwards_map = 0; 280 281 if (kvmppc_get_msr(vcpu) & MSR_PR) 282 gvsid |= VSID_PR; 283 284 /* We might get collisions that trap in preceding order, so let's 285 map them differently */ 286 287 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); 288 if (backwards_map) 289 sid_map_mask = SID_MAP_MASK - sid_map_mask; 290 291 map = &to_book3s(vcpu)->sid_map[sid_map_mask]; 292 293 /* Make sure we're taking the other map next time */ 294 backwards_map = !backwards_map; 295 296 /* Uh-oh ... out of mappings. Let's flush! */ 297 if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) { 298 vcpu_book3s->vsid_next = 0; 299 memset(vcpu_book3s->sid_map, 0, 300 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); 301 kvmppc_mmu_pte_flush(vcpu, 0, 0); 302 kvmppc_mmu_flush_segments(vcpu); 303 } 304 map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next]; 305 vcpu_book3s->vsid_next++; 306 307 map->guest_vsid = gvsid; 308 map->valid = true; 309 310 return map; 311 } 312 313 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) 314 { 315 u32 esid = eaddr >> SID_SHIFT; 316 u64 gvsid; 317 u32 sr; 318 struct kvmppc_sid_map *map; 319 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 320 int r = 0; 321 322 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { 323 /* Invalidate an entry */ 324 svcpu->sr[esid] = SR_INVALID; 325 r = -ENOENT; 326 goto out; 327 } 328 329 map = find_sid_vsid(vcpu, gvsid); 330 if (!map) 331 map = create_sid_map(vcpu, gvsid); 332 333 map->guest_esid = esid; 334 sr = map->host_vsid | SR_KP; 335 svcpu->sr[esid] = sr; 336 337 dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr); 338 339 out: 340 svcpu_put(svcpu); 341 return r; 342 } 343 344 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) 345 { 346 int i; 347 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 348 349 dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr)); 350 for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++) 351 svcpu->sr[i] = SR_INVALID; 352 353 svcpu_put(svcpu); 354 } 355 356 void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu) 357 { 358 int i; 359 360 kvmppc_mmu_hpte_destroy(vcpu); 361 preempt_disable(); 362 for (i = 0; i < SID_CONTEXTS; i++) 363 __destroy_context(to_book3s(vcpu)->context_id[i]); 364 preempt_enable(); 365 } 366 367 /* From mm/mmu_context_hash32.c */ 368 #define CTX_TO_VSID(c, id) ((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff) 369 370 int kvmppc_mmu_init(struct kvm_vcpu *vcpu) 371 { 372 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 373 int err; 374 ulong sdr1; 375 int i; 376 int j; 377 378 for (i = 0; i < SID_CONTEXTS; i++) { 379 err = __init_new_context(); 380 if (err < 0) 381 goto init_fail; 382 vcpu3s->context_id[i] = err; 383 384 /* Remember context id for this combination */ 385 for (j = 0; j < 16; j++) 386 vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j); 387 } 388 389 vcpu3s->vsid_next = 0; 390 391 /* Remember where the HTAB is */ 392 asm ( "mfsdr1 %0" : "=r"(sdr1) ); 393 htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0; 394 htab = (ulong)__va(sdr1 & 0xffff0000); 395 396 kvmppc_mmu_hpte_init(vcpu); 397 398 return 0; 399 400 init_fail: 401 for (j = 0; j < i; j++) { 402 if (!vcpu3s->context_id[j]) 403 continue; 404 405 __destroy_context(to_book3s(vcpu)->context_id[j]); 406 } 407 408 return -1; 409 } 410